task_url
stringlengths
30
116
task_name
stringlengths
2
86
task_description
stringlengths
0
14.4k
language_url
stringlengths
2
53
language_name
stringlengths
1
52
code
stringlengths
0
61.9k
http://rosettacode.org/wiki/Conway%27s_Game_of_Life
Conway's Game of Life
The Game of Life is a   cellular automaton   devised by the British mathematician   John Horton Conway   in 1970.   It is the best-known example of a cellular automaton. Conway's game of life is described   here: A cell   C   is represented by a   1   when alive,   or   0   when dead,   in an   m-by-m   (or m×m)   square array of cells. We calculate   N   - the sum of live cells in C's   eight-location neighbourhood,   then cell   C   is alive or dead in the next generation based on the following table: C N new C 1 0,1 -> 0 # Lonely 1 4,5,6,7,8 -> 0 # Overcrowded 1 2,3 -> 1 # Lives 0 3 -> 1 # It takes three to give birth! 0 0,1,2,4,5,6,7,8 -> 0 # Barren Assume cells beyond the boundary are always dead. The "game" is actually a zero-player game, meaning that its evolution is determined by its initial state, needing no input from human players.   One interacts with the Game of Life by creating an initial configuration and observing how it evolves. Task Although you should test your implementation on more complex examples such as the   glider   in a larger universe,   show the action of the blinker   (three adjoining cells in a row all alive),   over three generations, in a 3 by 3 grid. References   Its creator John Conway, explains   the game of life.   Video from numberphile on youtube.   John Conway   Inventing Game of Life   - Numberphile video. Related task   Langton's ant   - another well known cellular automaton.
#SQL
SQL
  -- save these lines in a file called -- setupworld.sql   -- turn off feedback for cleaner display   SET feedback off   -- 3 x 3 world   -- alive has coordinates of living cells   DROP TABLE alive;   CREATE TABLE alive (x NUMBER,y NUMBER);   -- three alive up the middle -- * -- * -- *   INSERT INTO alive VALUES (2,1); INSERT INTO alive VALUES (2,2); INSERT INTO alive VALUES (2,3);   commit;   -- save these lines in a file called newgeneration.SQL   -- adjact contains one row for each pair of -- coordinates that is adjacent to a living cell   DROP TABLE adjacent;   CREATE TABLE adjacent (x NUMBER,y NUMBER);   -- add row for each of the 8 adjacent squares   INSERT INTO adjacent SELECT x-1,y-1 FROM alive; INSERT INTO adjacent SELECT x-1,y FROM alive; INSERT INTO adjacent SELECT x-1,y+1 FROM alive; INSERT INTO adjacent SELECT x,y-1 FROM alive; INSERT INTO adjacent SELECT x,y+1 FROM alive; INSERT INTO adjacent SELECT x+1,y-1 FROM alive; INSERT INTO adjacent SELECT x+1,y FROM alive; INSERT INTO adjacent SELECT x+1,y+1 FROM alive;   commit;   -- delete rows for squares that are outside the world   DELETE FROM adjacent WHERE x<1 OR y<1 OR x>3 OR y>3;   commit;   -- table counts is the number of live cells -- adjacent to that point   DROP TABLE counts;   CREATE TABLE counts AS SELECT x,y,COUNT(*) n FROM adjacent a GROUP BY x,y;   -- C N new C -- 1 0,1 -> 0 # Lonely -- 1 4,5,6,7,8 -> 0 # Overcrowded -- 1 2,3 -> 1 # Lives -- 0 3 -> 1 # It takes three to give birth! -- 0 0,1,2,4,5,6,7,8 -> 0 # Barren   -- delete the ones who die   DELETE FROM alive a WHERE ((a.x,a.y) NOT IN (SELECT x,y FROM counts)) OR ((SELECT c.n FROM counts c WHERE a.x=c.x AND a.y=c.y) IN (1,4,5,6,7,8));   -- insert the ones that are born   INSERT INTO alive a SELECT x,y FROM counts c WHERE c.n=3 AND ((c.x,c.y) NOT IN (SELECT x,y FROM alive));   commit;   -- create output table   DROP TABLE output;   CREATE TABLE output AS SELECT rownum y,' ' x1,' ' x2,' ' x3 FROM dba_tables WHERE rownum < 4;   UPDATE output SET x1='*' WHERE (1,y) IN (SELECT x,y FROM alive);   UPDATE output SET x2='*' WHERE (2,y) IN (SELECT x,y FROM alive);   UPDATE output SET x3='*' WHERE (3,y) IN (SELECT x,y FROM alive);   commit   -- output configuration   SELECT x1||x2||x3 WLD FROM output ORDER BY y DESC;  
http://rosettacode.org/wiki/Colour_pinstripe/Display
Colour pinstripe/Display
The task is to create 1 pixel wide coloured vertical pinstripes with a sufficient number of pinstripes to span the entire width of the graphics display. The pinstripes should either follow the system palette sequence,   or a sequence that includes: black,   red,   green,   blue,   magenta,   cyan,   yellow,   and   white:   after filling the top quarter, switch to a wider 2 pixel wide vertical pinstripe pattern,   halfway down the display, switch to 3 pixel wide vertical pinstripe,   finally to a 4 pixels wide vertical pinstripe for the last quarter of the display. See also   display black and white   print colour
#ARM_Assembly
ARM Assembly
.org 0x08000000 ;cartridge ROM begins here   b ProgramStart ;branch around the cartridge header   ;;;; cartridge header goes here   .equ SCREEN_WIDTH,240 ;some labels for convenience .equ SCREEN_HEIGHT,160   ProgramStart: mov sp,#0x03000000 ;set up stack pointer (we won't be using it but it's a good practice to do so anyway   mov r4,#0x04000000 ;DISPCNT (LCD Control Register) mov r2,#0x403 ;4= Layer 2 on / 3= ScreenMode 3 (Bitmap Graphics, vram at 0x06000000)   str r2,[r4] ;now the screen is visible.   mov r0,#0x06000000 ;VRAM BASE (2 BYTES PER PIXEL) mov r1,#0 ;COLOR TO STORE (INIT TO ZERO, WILL GET FILLED IN LATER)   adr r4,palArray ;get address of palette mov r5,#0 ;index into palArray mov r6,#19200 ;this is one quarter of the screen   add r7,r0,r6 ;MOV R7, #0x06004B00 add r8,r7,r6 ;MOV R8, #0x06009600 add r9,r8,r6 ;MOV R9, #0x0600E100 add r10,r9,r6 ;MOV R10,#0x06012C00     loop_pinstripe_firstQuarter: ldrH r1,[r4,r5] strH r1,[r0],#2 ;store into video memory and post-inc by 2. add r5,r5,#2 ;next color in palette and r5,r5,#0x0F ;prevents indexing out of bounds cmp r0,r7 ;have we reached the end of this quarter of the screen? blt loop_pinstripe_firstQuarter ;if not, keep drawing   loop_pinstripe_secondQuarter: ldrH r1,[r4,r5] strH r1,[r0],#2 ;post-inc by 2 after the store strH r1,[r0],#2 ;post-inc by 2 after the store add r5,r5,#2 and r5,r5,#0x0F cmp r0,r8 blt loop_pinstripe_secondQuarter   loop_pinstripe_thirdQuarter: ldrH r1,[r4,r5] strH r1,[r0],#2 ;post-inc by 2 after the store strH r1,[r0],#2 strH r1,[r0],#2 add r5,r5,#2 and r5,r5,#0x0F cmp r0,r9 blt loop_pinstripe_thirdQuarter   ; the last quarter works differently. We'll need to use a different ; loop counter to get the last pinstripe mov r2,#SCREEN_WIDTH/4 ;inner loop counter mov r3,#48 ;outer loop counter   loop_pinstripe_lastQuarter: ldrH r1,[r4,r5] strH r1,[r0],#2 strH r1,[r0],#2 strH r1,[r0],#2 strH r1,[r0],#2 add r5,r5,#2 and r5,r5,#0x0F subs r2,r2,#1 bne loop_pinstripe_lastQuarter mov r5,#0 ;reset the palette pointer mov r2,#SCREEN_WIDTH/4 ;reset the inner loop counter subs r3,r3,#1 ;decrement the outer loop counter bne loop_pinstripe_lastQuarter ;if we're not done, keep going   forever: b forever ;end of program   palArray: ;GAME BOY ADVANCE USES 15-BIT COLOR. WE WON'T USE THE TOP BIT.   .word 0x0000 ;black .word 0b0000000000011111 ;red .word 0b0000001111100000 ;green .word 0b0111110000000000 ;blue .word 0b0111110000011111 ;magenta .word 0b0111111111100000 ;cyan .word 0b0000001111111111 ;yellow .word 0x7FFF ;white
http://rosettacode.org/wiki/Color_of_a_screen_pixel
Color of a screen pixel
Task Get color information from an arbitrary pixel on the screen, such as the current location of the mouse cursor. The mouse cursor may or may not have to be active in a GUI created by your program. These functions are OS related.
#C.23
C#
using System; using System.Drawing; using System.Windows.Forms;   class Program { static Color GetPixel(Point position) { using (var bitmap = new Bitmap(1, 1)) { using (var graphics = Graphics.FromImage(bitmap)) { graphics.CopyFromScreen(position, new Point(0, 0), new Size(1, 1)); } return bitmap.GetPixel(0, 0); } }   static void Main() { Console.WriteLine(GetPixel(Cursor.Position)); } }
http://rosettacode.org/wiki/Color_of_a_screen_pixel
Color of a screen pixel
Task Get color information from an arbitrary pixel on the screen, such as the current location of the mouse cursor. The mouse cursor may or may not have to be active in a GUI created by your program. These functions are OS related.
#C.2B.2B.2FCLI
C++/CLI
using namespace System; using namespace System::Drawing; using namespace System::Windows::Forms;   [STAThreadAttribute] int main() { Point^ MousePoint = gcnew Point(); Control^ TempControl = gcnew Control(); MousePoint = TempControl->MousePosition; Bitmap^ TempBitmap = gcnew Bitmap(1,1); Graphics^ g = Graphics::FromImage(TempBitmap); g->CopyFromScreen((Point)MousePoint, Point(0, 0), Size(1, 1)); Color color = TempBitmap->GetPixel(0,0); Console::WriteLine("R: "+color.R.ToString()); Console::WriteLine("G: "+color.G.ToString()); Console::WriteLine("B: "+color.B.ToString()); }
http://rosettacode.org/wiki/Color_wheel
Color wheel
Task Write a function to draw a HSV color wheel completely with code. This is strictly for learning purposes only. It's highly recommended that you use an image in an actual application to actually draw the color wheel   (as procedurally drawing is super slow). This does help you understand how color wheels work and this can easily be used to determine a color value based on a position within a circle.
#FreeBASIC
FreeBASIC
#include "fbgfx.bi"   Sub HSVtoRGB(h As Single, s As Integer, v As Integer, Byref r As Integer, Byref g As Integer, Byref b As Integer) If s = 0 Then r = v g = v b = v Return End If   h = h Mod 360 Dim As Single hue = h   Select Case h Case 0f To 51.5f hue = ((hue ) * (30f / (51.5f ))) Case 51.5f To 122f hue = ((hue - 51.5f) * (30f / (122f - 51.5f))) + 30 Case 122f To 142.5f hue = ((hue - 122f) * (30f / (142.5f - 122f))) + 60 Case 142.5f To 165.5f hue = ((hue - 142.5f) * (30f / (165.5f - 142.5f))) + 90 Case 165.5f To 192f hue = ((hue - 165.5f) * (30f / (192f - 165.5f))) + 120 Case 192f To 218.5f hue = ((hue - 192f) * (30f / (218.5f - 192f))) + 150 Case 218.5f To 247f hue = ((hue - 218.5f) * (30f / (247f - 218.5f))) + 180 Case 247f To 275.5f hue = ((hue - 247f) * (30f / (275.5f - 247f))) + 210 Case 275.5f To 302.5f hue = ((hue - 275.5f) * (30f / (302.5f - 275.5f))) + 240 Case 302.5f To 330f hue = ((hue - 302.5f) * (30f / (330f - 302.5f))) + 270 Case 330f To 344.5f hue = ((hue - 330f) * (30f / (344.5f - 330f))) + 300 Case 344.5f To 360f hue = ((hue - 344.5f) * (30f / (360f - 344.5f))) + 330 End Select h = hue   h = h Mod 360   Dim As Single h1 = h / 60 Dim As Integer i = Int(h1) Dim As Single f = h1 - i Dim As Integer p = v * (255 - s) / 256 Dim As Integer q = v * (255 - f * s) / 256 Dim As Integer t = v * (255 - (1 - f) * s) / 256   Select Case As Const i Case 0 r = v g = t b = p Return Case 1 r = q g = v b = p Return Case 2 r = p g = v b = t Return Case 3 r = p g = q b = v Return Case 4 r = t g = p b = v Return Case 5 r = v g = p b = q Return End Select End Sub   Const pi As Single = 4 * Atn(1) Const radius = 160 Const xres = (radius * 2) + 1, yres = xres   Screenres xres, yres, 32 Windowtitle "Color wheel"   Dim As Integer r,g,b Dim As Single dx, dy, dist, angle   Do Screenlock Cls For x As Integer = 0 To (radius * 2) - 1 For y As Integer = 0 To (radius * 2) - 1 dx = x - radius dy = radius - y dist = Sqr(dx * dx + dy * dy) If dist < radius Then angle = Atan2(dy, dx) * (180/pi) If angle < 0 Then angle += 360 If angle > 360 Then angle -= 360 HSVtoRGB(angle, (dist / radius) * 255, 255, r, g, b) Pset(x, y), Rgb(r, g, b) End If Next y Next x   Screenunlock Loop Until Inkey = Chr(27)
http://rosettacode.org/wiki/Conditional_structures
Conditional structures
Control Structures These are examples of control structures. You may also be interested in: Conditional structures Exceptions Flow-control structures Loops Task List the conditional structures offered by a programming language. See Wikipedia: conditionals for descriptions. Common conditional structures include if-then-else and switch. Less common are arithmetic if, ternary operator and Hash-based conditionals. Arithmetic if allows tight control over computed gotos, which optimizers have a hard time to figure out.
#LSE
LSE
SI A ET B ALORS AFFICHER [4X, 'A ET B = .VRAI.',/] SINON AFFICHER [4X, 'A ET B = .FAUX.',/] FIN SI SI A ET QUE B ALORS AFFICHER [4X, 'A ET QUE B = .VRAI.',/] SINON AFFICHER [4X, 'A ET QUE B = .FAUX.',/] FIN SI
http://rosettacode.org/wiki/Comments
Comments
Task Show all ways to include text in a language source file that's completely ignored by the compiler or interpreter. Related tasks   Documentation   Here_document See also   Wikipedia   xkcd (Humor: hand gesture denoting // for "commenting out" people.)
#Neko
Neko
// Single line comment, of course!   /* Multi line comment! */   /** Documentation block <doc>can include XML parsed nodes between doc tags</doc> **/
http://rosettacode.org/wiki/Comments
Comments
Task Show all ways to include text in a language source file that's completely ignored by the compiler or interpreter. Related tasks   Documentation   Here_document See also   Wikipedia   xkcd (Humor: hand gesture denoting // for "commenting out" people.)
#Nemerle
Nemerle
// This comment goes up to the end of the line /* This is a multiline comment */
http://rosettacode.org/wiki/Conway%27s_Game_of_Life
Conway's Game of Life
The Game of Life is a   cellular automaton   devised by the British mathematician   John Horton Conway   in 1970.   It is the best-known example of a cellular automaton. Conway's game of life is described   here: A cell   C   is represented by a   1   when alive,   or   0   when dead,   in an   m-by-m   (or m×m)   square array of cells. We calculate   N   - the sum of live cells in C's   eight-location neighbourhood,   then cell   C   is alive or dead in the next generation based on the following table: C N new C 1 0,1 -> 0 # Lonely 1 4,5,6,7,8 -> 0 # Overcrowded 1 2,3 -> 1 # Lives 0 3 -> 1 # It takes three to give birth! 0 0,1,2,4,5,6,7,8 -> 0 # Barren Assume cells beyond the boundary are always dead. The "game" is actually a zero-player game, meaning that its evolution is determined by its initial state, needing no input from human players.   One interacts with the Game of Life by creating an initial configuration and observing how it evolves. Task Although you should test your implementation on more complex examples such as the   glider   in a larger universe,   show the action of the blinker   (three adjoining cells in a row all alive),   over three generations, in a 3 by 3 grid. References   Its creator John Conway, explains   the game of life.   Video from numberphile on youtube.   John Conway   Inventing Game of Life   - Numberphile video. Related task   Langton's ant   - another well known cellular automaton.
#Swift
Swift
struct Cell: Hashable { var x: Int var y: Int }   struct Colony { private var height: Int private var width: Int private var cells: Set<Cell>   init(cells: Set<Cell>, height: Int, width: Int) { self.cells = cells self.height = height self.width = width }   private func neighborCounts() -> [Cell: Int] { var counts = [Cell: Int]()   for cell in cells.flatMap(Colony.neighbors(for:)) { counts[cell, default: 0] += 1 }   return counts }   private static func neighbors(for cell: Cell) -> [Cell] { return [ Cell(x: cell.x - 1, y: cell.y - 1), Cell(x: cell.x, y: cell.y - 1), Cell(x: cell.x + 1, y: cell.y - 1), Cell(x: cell.x - 1, y: cell.y), Cell(x: cell.x + 1, y: cell.y), Cell(x: cell.x - 1, y: cell.y + 1), Cell(x: cell.x, y: cell.y + 1), Cell(x: cell.x + 1, y: cell.y + 1), ] }   func printColony() { for y in 0..<height { for x in 0..<width { let char = cells.contains(Cell(x: x, y: y)) ? "0" : "."   print("\(char) ", terminator: "") }   print() } }   mutating func run(iterations: Int) { print("(0)") printColony() print()   for i in 1...iterations { print("(\(i))") runGeneration() printColony() print() } }   private mutating func runGeneration() { cells = Set(neighborCounts().compactMap({keyValue in switch (keyValue.value, cells.contains(keyValue.key)) { case (2, true), (3, _): return keyValue.key case _: return nil } })) } }   let blinker = [Cell(x: 1, y: 0), Cell(x: 1, y: 1), Cell(x: 1, y: 2)] as Set   var col = Colony(cells: blinker, height: 3, width: 3)   print("Blinker: ") col.run(iterations: 3)   let glider = [ Cell(x: 1, y: 0), Cell(x: 2, y: 1), Cell(x: 0, y: 2), Cell(x: 1, y: 2), Cell(x: 2, y: 2) ] as Set   col = Colony(cells: glider, height: 8, width: 8)   print("Glider: ") col.run(iterations: 20)
http://rosettacode.org/wiki/Colour_pinstripe/Display
Colour pinstripe/Display
The task is to create 1 pixel wide coloured vertical pinstripes with a sufficient number of pinstripes to span the entire width of the graphics display. The pinstripes should either follow the system palette sequence,   or a sequence that includes: black,   red,   green,   blue,   magenta,   cyan,   yellow,   and   white:   after filling the top quarter, switch to a wider 2 pixel wide vertical pinstripe pattern,   halfway down the display, switch to 3 pixel wide vertical pinstripe,   finally to a 4 pixels wide vertical pinstripe for the last quarter of the display. See also   display black and white   print colour
#AutoHotkey
AutoHotkey
h := A_ScreenHeight w := A_ScreenWidth pToken := gdip_Startup() hdc := CreateCompatibleDC() hbm := CreateDIBSection(w, h) obm := SelectObject(hdc, hbm) G := Gdip_GraphicsFromHDC(hdc)   OnExit, Exit   Gui -Caption +E0x80000 +LastFound +OwnDialogs +Owner +AlwaysOnTop Gui Show, NA hwnd := WinExist()   colors := [0xFF000000, 0xFFFF0000, 0xFF00FF00, 0xFF0000FF , 0xFFFF00FF, 0xFF00FFFF, 0xFFFFFF00, 0xFFFFFFFF] ; ARGB pBrush := [] Loop % colors.MaxIndex() pBrush[A_Index] := Gdip_BrushCreateSolid(colors[A_Index]) Loop 4 { n := A_Index Loop % w Gdip_FillRectangle(G, pBrush[Mod(A_Index-1, colors.MaxIndex())+1] , A_Index*n-n, (n-1)*h/4, n, h/4) }     UpdateLayeredWindow(hwnd, hdc, 0, 0, W, H)   Loop % colors.MaxIndex() Gdip_DeleteBrush(pBrush[A_Index])   SelectObject(hdc, obm) DeleteObject(hbm) DeleteDC(hdc) Gdip_DeleteGraphics(G) Return   Esc:: Exit: Gdip_Shutdown(pToken) ExitApp
http://rosettacode.org/wiki/Color_of_a_screen_pixel
Color of a screen pixel
Task Get color information from an arbitrary pixel on the screen, such as the current location of the mouse cursor. The mouse cursor may or may not have to be active in a GUI created by your program. These functions are OS related.
#Clojure
Clojure
(defn get-color-at [x y] (.getPixelColor (java.awt.Robot.) x y))
http://rosettacode.org/wiki/Color_of_a_screen_pixel
Color of a screen pixel
Task Get color information from an arbitrary pixel on the screen, such as the current location of the mouse cursor. The mouse cursor may or may not have to be active in a GUI created by your program. These functions are OS related.
#Common_Lisp
Common Lisp
(in-package :cg-user)   (defun print-hex (n) (let ((*print-base* 16.) (*print-radix* t)) (print n)) t)   (defun get-byte (n byte) (logand (ash n (* byte -8)) #xFF))   (defun get-pixel (x y) (let ((pixval (caar (contents (get-screen-pixmap :box (make-box x y (+ x 1) (+ y 1))))))) (mapcar #'(lambda (i) (get-byte pixval i)) '(2 1 0 3))))   (defun get-mouse-pixel () (let ((pos (cursor-position (screen *system*)))) (get-pixel (position-x pos) (position-y pos))))   (print-hex (get-mouse-pixel))
http://rosettacode.org/wiki/Color_wheel
Color wheel
Task Write a function to draw a HSV color wheel completely with code. This is strictly for learning purposes only. It's highly recommended that you use an image in an actual application to actually draw the color wheel   (as procedurally drawing is super slow). This does help you understand how color wheels work and this can easily be used to determine a color value based on a position within a circle.
#GML
GML
  for (var i = 1; i <= 360; i++) { for (var j = 0; j < 255; j++) {   var hue = 255*(i/360); var saturation = j; var value = 255;   var c = make_colour_hsv(hue,saturation,value);   //size of circle determined by how far from the center it is //if you just draw them too small the circle won't be full. //it will have patches inside it that didn't get filled in with color var r = max(1,3*(j/255));   //Math for built-in GMS functions //lengthdir_x(len,dir) = +cos(degtorad(direction))*length; //lengthdir_y(len,dir) = -sin(degtorad(direction))*length; draw_circle_colour(x+lengthdir_x(m_radius*(j/255),i),y+lengthdir_y(m_radius*(j/255),i),r,c,c,false); } }  
http://rosettacode.org/wiki/Color_wheel
Color wheel
Task Write a function to draw a HSV color wheel completely with code. This is strictly for learning purposes only. It's highly recommended that you use an image in an actual application to actually draw the color wheel   (as procedurally drawing is super slow). This does help you understand how color wheels work and this can easily be used to determine a color value based on a position within a circle.
#Go
Go
package main   import ( "github.com/fogleman/gg" "math" )   const tau = 2 * math.Pi   func hsb2rgb(hue, sat, bri float64) (r, g, b int) { u := int(bri*255 + 0.5) if sat == 0 { r, g, b = u, u, u } else { h := (hue - math.Floor(hue)) * 6 f := h - math.Floor(h) p := int(bri*(1-sat)*255 + 0.5) q := int(bri*(1-sat*f)*255 + 0.5) t := int(bri*(1-sat*(1-f))*255 + 0.5) switch int(h) { case 0: r, g, b = u, t, p case 1: r, g, b = q, u, p case 2: r, g, b = p, u, t case 3: r, g, b = p, q, u case 4: r, g, b = t, p, u case 5: r, g, b = u, p, q } } return }   func colorWheel(dc *gg.Context) { width, height := dc.Width(), dc.Height() centerX, centerY := width/2, height/2 radius := centerX if centerY < radius { radius = centerY } for y := 0; y < height; y++ { dy := float64(y - centerY) for x := 0; x < width; x++ { dx := float64(x - centerX) dist := math.Sqrt(dx*dx + dy*dy) if dist <= float64(radius) { theta := math.Atan2(dy, dx) hue := (theta + math.Pi) / tau r, g, b := hsb2rgb(hue, 1, 1) dc.SetRGB255(r, g, b) dc.SetPixel(x, y) } } } }   func main() { const width, height = 480, 480 dc := gg.NewContext(width, height) dc.SetRGB(1, 1, 1) // set background color to white dc.Clear() colorWheel(dc) dc.SavePNG("color_wheel.png") }
http://rosettacode.org/wiki/Conditional_structures
Conditional structures
Control Structures These are examples of control structures. You may also be interested in: Conditional structures Exceptions Flow-control structures Loops Task List the conditional structures offered by a programming language. See Wikipedia: conditionals for descriptions. Common conditional structures include if-then-else and switch. Less common are arithmetic if, ternary operator and Hash-based conditionals. Arithmetic if allows tight control over computed gotos, which optimizers have a hard time to figure out.
#LSE64
LSE64
t : " true" ,t f : " false" ,t true if t false ifnot f true ifelse t f
http://rosettacode.org/wiki/Comments
Comments
Task Show all ways to include text in a language source file that's completely ignored by the compiler or interpreter. Related tasks   Documentation   Here_document See also   Wikipedia   xkcd (Humor: hand gesture denoting // for "commenting out" people.)
#NESL
NESL
% This is a comment. %
http://rosettacode.org/wiki/Comments
Comments
Task Show all ways to include text in a language source file that's completely ignored by the compiler or interpreter. Related tasks   Documentation   Here_document See also   Wikipedia   xkcd (Humor: hand gesture denoting // for "commenting out" people.)
#NetRexx
NetRexx
/*   NetRexx comment block   */   -- NetRexx line comment    
http://rosettacode.org/wiki/Conway%27s_Game_of_Life
Conway's Game of Life
The Game of Life is a   cellular automaton   devised by the British mathematician   John Horton Conway   in 1970.   It is the best-known example of a cellular automaton. Conway's game of life is described   here: A cell   C   is represented by a   1   when alive,   or   0   when dead,   in an   m-by-m   (or m×m)   square array of cells. We calculate   N   - the sum of live cells in C's   eight-location neighbourhood,   then cell   C   is alive or dead in the next generation based on the following table: C N new C 1 0,1 -> 0 # Lonely 1 4,5,6,7,8 -> 0 # Overcrowded 1 2,3 -> 1 # Lives 0 3 -> 1 # It takes three to give birth! 0 0,1,2,4,5,6,7,8 -> 0 # Barren Assume cells beyond the boundary are always dead. The "game" is actually a zero-player game, meaning that its evolution is determined by its initial state, needing no input from human players.   One interacts with the Game of Life by creating an initial configuration and observing how it evolves. Task Although you should test your implementation on more complex examples such as the   glider   in a larger universe,   show the action of the blinker   (three adjoining cells in a row all alive),   over three generations, in a 3 by 3 grid. References   Its creator John Conway, explains   the game of life.   Video from numberphile on youtube.   John Conway   Inventing Game of Life   - Numberphile video. Related task   Langton's ant   - another well known cellular automaton.
#SystemVerilog
SystemVerilog
module gol;   parameter NUM_ROWS = 20; parameter NUM_COLS = 32;   bit [NUM_COLS:1] cell[1:NUM_ROWS]; bit clk;   initial begin cell[10][10:8] = 3'b111; cell[11][10:8] = 3'b100; cell[12][10:8] = 3'b010; repeat(8) #5 clk = ~clk; end   always @(posedge clk) begin foreach (cell[y,x]) begin automatic int count = $countones({ cell[y-1][x-1+:3], cell[y][x-1], cell[y][x+1], cell[y+1][x-1+:3] }); if (count == 3) cell[y][x] <= 1'b1; else if (count != 2) cell[y][x] <= 1'b0; end end   always @(negedge clk) begin $display("--"); foreach (cell[y]) $display( "  %b", cell[y] ); end   endmodule
http://rosettacode.org/wiki/Colour_pinstripe/Display
Colour pinstripe/Display
The task is to create 1 pixel wide coloured vertical pinstripes with a sufficient number of pinstripes to span the entire width of the graphics display. The pinstripes should either follow the system palette sequence,   or a sequence that includes: black,   red,   green,   blue,   magenta,   cyan,   yellow,   and   white:   after filling the top quarter, switch to a wider 2 pixel wide vertical pinstripe pattern,   halfway down the display, switch to 3 pixel wide vertical pinstripe,   finally to a 4 pixels wide vertical pinstripe for the last quarter of the display. See also   display black and white   print colour
#BASIC256
BASIC256
w = 640 : h = 480 graphsize w, h   dim k = {black, red, green, blue, purple, cyan, yellow, white} h /= 4   for i = 1 to 4 col = 0 y = (i-1) * h for x = 1 to w step i if col mod 8 = 0 then col = 0 colour k[col] rect (x, y, x + i, y + h) col += 1 next x next i
http://rosettacode.org/wiki/Colour_pinstripe/Display
Colour pinstripe/Display
The task is to create 1 pixel wide coloured vertical pinstripes with a sufficient number of pinstripes to span the entire width of the graphics display. The pinstripes should either follow the system palette sequence,   or a sequence that includes: black,   red,   green,   blue,   magenta,   cyan,   yellow,   and   white:   after filling the top quarter, switch to a wider 2 pixel wide vertical pinstripe pattern,   halfway down the display, switch to 3 pixel wide vertical pinstripe,   finally to a 4 pixels wide vertical pinstripe for the last quarter of the display. See also   display black and white   print colour
#BBC_BASIC
BBC BASIC
SW_MAXIMIZE = 3 SYS "ShowWindow", @hwnd%, SW_MAXIMIZE VDU 26   W% = @vdu%!208 * 2 H% = @vdu%!212 / 2   COLOUR 1,9 COLOUR 2,10 COLOUR 3,12 COLOUR 4,13 COLOUR 5,14 COLOUR 6,11 COLOUR 7,15   Y% = H%*4 FOR P% = 1 TO 4 Y% -= H% FOR X% = 0 TO W% STEP 4*P% C% = (C% + 1) MOD 8 GCOL C% RECTANGLE FILL X%, Y%, 2*P%, H% NEXT NEXT P%  
http://rosettacode.org/wiki/Colour_pinstripe/Display
Colour pinstripe/Display
The task is to create 1 pixel wide coloured vertical pinstripes with a sufficient number of pinstripes to span the entire width of the graphics display. The pinstripes should either follow the system palette sequence,   or a sequence that includes: black,   red,   green,   blue,   magenta,   cyan,   yellow,   and   white:   after filling the top quarter, switch to a wider 2 pixel wide vertical pinstripe pattern,   halfway down the display, switch to 3 pixel wide vertical pinstripe,   finally to a 4 pixels wide vertical pinstripe for the last quarter of the display. See also   display black and white   print colour
#Befunge
Befunge
"%":*3-"`"8*>4/::8%00p8/10p4*\55+"3P",,,:.\.5v 5+:,1vv\%2:%8/-g025:\-1_$$55+,\:v1+*8g01g00_@> 024,.<>2/:2%\2/...1+\:>^<:\0:\-1_$20g1-:20p^1p
http://rosettacode.org/wiki/Color_of_a_screen_pixel
Color of a screen pixel
Task Get color information from an arbitrary pixel on the screen, such as the current location of the mouse cursor. The mouse cursor may or may not have to be active in a GUI created by your program. These functions are OS related.
#Delphi
Delphi
  program ScreenPixel;   {$APPTYPE CONSOLE}   uses Windows, SysUtils, Graphics;     // Use this function in a GUI application to return the color function GetPixelColourAsColor(const PixelCoords: TPoint): TColor; var dc: HDC; begin // Get Device Context of windows desktop dc := GetDC(0); // Read the color of the pixel at the given coordinates Result := GetPixel(dc,PixelCoords.X,PixelCoords.Y); end;   // Use this function to get a string representation of the current colour function GetPixelColourAsString(const PixelCoords: TPoint): string; var r,g,b: Byte; col: TColor; begin col := GetPixelColourAsColor(PixelCoords);   // Convert the Delphi TColor value to it's RGB components r := col and $FF; g := (col shr 8) and $FF; b := (col shr 16) and $FF;   // Format the result Result := 'R('+IntToStr(r)+') G('+IntToStr(g)+') G('+IntToStr(b)+')';   { Alternatively, format the result as follows to get a string representation of the Delphi TColor value   Result := ColorToString(GetPixel(dc,curP.X,curP.Y)); }   end;   var s: string; P: TPoint; begin s := '';   Writeln('Move mouse over a pixel. Hit return to get colour of selected pixel.');   repeat Readln(s); if s = '' then begin GetCursorPos(P); Writeln('Colour at cursor position X:'+ IntToStr(P.X)+' Y:'+ IntToStr(P.Y) +' = '+ GetPixelColourAsString(P) ); Writeln(''); Writeln('Move mouse and hit enter again.'); end; until SameText(s,'quit');   end.  
http://rosettacode.org/wiki/Color_wheel
Color wheel
Task Write a function to draw a HSV color wheel completely with code. This is strictly for learning purposes only. It's highly recommended that you use an image in an actual application to actually draw the color wheel   (as procedurally drawing is super slow). This does help you understand how color wheels work and this can easily be used to determine a color value based on a position within a circle.
#J
J
rgbc=: {{1-x*0>.1<.(<.4&-)6|m+y%60}} hsv=: 5 rgbc(,"0 1) 3 rgbc(,"0) 1 rgbc degrees=: {{180p_1*{:"1+.^.y}} wheel=: {{((1>:|)*|hsv degrees)j./~y%~i:y}} require'viewmat' 'rgb' viewmat 256#.<.255*wheel 400
http://rosettacode.org/wiki/Color_wheel
Color wheel
Task Write a function to draw a HSV color wheel completely with code. This is strictly for learning purposes only. It's highly recommended that you use an image in an actual application to actually draw the color wheel   (as procedurally drawing is super slow). This does help you understand how color wheels work and this can easily be used to determine a color value based on a position within a circle.
#Java
Java
import java.awt.*; import javax.swing.*;   public class ColorWheel { public static void main(String[] args) { SwingUtilities.invokeLater(new Runnable() { public void run() { ColorWheelFrame frame = new ColorWheelFrame(); frame.setVisible(true); } }); }   private static class ColorWheelFrame extends JFrame { private ColorWheelFrame() { super("Color Wheel"); setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); getContentPane().add(new ColorWheelPanel()); pack(); } }   private static class ColorWheelPanel extends JComponent { private ColorWheelPanel() { setPreferredSize(new Dimension(400, 400)); } public void paint(Graphics g) { Graphics2D g2 = (Graphics2D)g; int w = getWidth(); int h = getHeight(); int margin = 10; int radius = (Math.min(w, h) - 2 * margin)/2; int cx = w/2; int cy = h/2; float[] dist = {0.F, 1.0F}; g2.setColor(Color.BLACK); g2.fillRect(0, 0, w, h); for (int angle = 0; angle < 360; ++angle) { Color color = hsvToRgb(angle, 1.0, 1.0); Color[] colors = {Color.WHITE, color}; RadialGradientPaint paint = new RadialGradientPaint(cx, cy, radius, dist, colors); g2.setPaint(paint); g2.fillArc(cx - radius, cy - radius, radius*2, radius*2, angle, 1); } } }   private static Color hsvToRgb(int h, double s, double v) { double hp = h/60.0; double c = s * v; double x = c * (1 - Math.abs(hp % 2.0 - 1)); double m = v - c; double r = 0, g = 0, b = 0; if (hp <= 1) { r = c; g = x; } else if (hp <= 2) { r = x; g = c; } else if (hp <= 3) { g = c; b = x; } else if (hp <= 4) { g = x; b = c; } else if (hp <= 5) { r = x; b = c; } else { r = c; b = x; } r += m; g += m; b += m; return new Color((int)(r * 255), (int)(g * 255), (int)(b * 255)); } }
http://rosettacode.org/wiki/Combinations
Combinations
Task Given non-negative integers   m   and   n,   generate all size   m   combinations   of the integers from   0   (zero)   to   n-1   in sorted order   (each combination is sorted and the entire table is sorted). Example 3   comb   5     is: 0 1 2 0 1 3 0 1 4 0 2 3 0 2 4 0 3 4 1 2 3 1 2 4 1 3 4 2 3 4 If it is more "natural" in your language to start counting from   1   (unity) instead of   0   (zero), the combinations can be of the integers from   1   to   n. See also The number of samples of size k from n objects. With   combinations and permutations   generation tasks. Order Unimportant Order Important Without replacement ( n k ) = n C k = n ( n − 1 ) … ( n − k + 1 ) k ( k − 1 ) … 1 {\displaystyle {\binom {n}{k}}=^{n}\operatorname {C} _{k}={\frac {n(n-1)\ldots (n-k+1)}{k(k-1)\dots 1}}} n P k = n ⋅ ( n − 1 ) ⋅ ( n − 2 ) ⋯ ( n − k + 1 ) {\displaystyle ^{n}\operatorname {P} _{k}=n\cdot (n-1)\cdot (n-2)\cdots (n-k+1)} Task: Combinations Task: Permutations With replacement ( n + k − 1 k ) = n + k − 1 C k = ( n + k − 1 ) ! ( n − 1 ) ! k ! {\displaystyle {\binom {n+k-1}{k}}=^{n+k-1}\operatorname {C} _{k}={(n+k-1)! \over (n-1)!k!}} n k {\displaystyle n^{k}} Task: Combinations with repetitions Task: Permutations with repetitions
#11l
11l
F comb(arr, k) I k == 0 R [[Int]()]   [[Int]] result L(x) arr V i = L.index L(suffix) comb(arr[i+1..], k-1) result [+]= x [+] suffix   R result   print(comb([0, 1, 2, 3, 4], 3))
http://rosettacode.org/wiki/Conditional_structures
Conditional structures
Control Structures These are examples of control structures. You may also be interested in: Conditional structures Exceptions Flow-control structures Loops Task List the conditional structures offered by a programming language. See Wikipedia: conditionals for descriptions. Common conditional structures include if-then-else and switch. Less common are arithmetic if, ternary operator and Hash-based conditionals. Arithmetic if allows tight control over computed gotos, which optimizers have a hard time to figure out.
#Lua
Lua
  --if-then-elseif-then-else if a then b() elseif c then d() else e() end   for var = start, _end, step do --note: end is a reserved word something() end   for var, var2, etc in iteratorfunction do something() end   while somethingistrue() do something() end   repeat something() until somethingistrue()   cases = { key1 = dothis, key2 = dothat, key3 = dotheother }   cases[key]() --equivalent to dothis(), dothat(), or dotheother() respectively
http://rosettacode.org/wiki/Comments
Comments
Task Show all ways to include text in a language source file that's completely ignored by the compiler or interpreter. Related tasks   Documentation   Here_document See also   Wikipedia   xkcd (Humor: hand gesture denoting // for "commenting out" people.)
#NewLISP
NewLISP
; This is a comment
http://rosettacode.org/wiki/Comments
Comments
Task Show all ways to include text in a language source file that's completely ignored by the compiler or interpreter. Related tasks   Documentation   Here_document See also   Wikipedia   xkcd (Humor: hand gesture denoting // for "commenting out" people.)
#Nim
Nim
# Nim supports single-line comments   var x = 0 ## Documentation comments start with double hash characters.   var y = 0 ## Documentation comments are a proper part of the syntax (they're not discarded by parser, and a real part of AST).   #[ There are also multi-line comments Everything inside of #[]# is commented. ]#   # You can also discard multiline statements:   discard """This can be considered as a "comment" too This is multi-line"""  
http://rosettacode.org/wiki/Conway%27s_Game_of_Life
Conway's Game of Life
The Game of Life is a   cellular automaton   devised by the British mathematician   John Horton Conway   in 1970.   It is the best-known example of a cellular automaton. Conway's game of life is described   here: A cell   C   is represented by a   1   when alive,   or   0   when dead,   in an   m-by-m   (or m×m)   square array of cells. We calculate   N   - the sum of live cells in C's   eight-location neighbourhood,   then cell   C   is alive or dead in the next generation based on the following table: C N new C 1 0,1 -> 0 # Lonely 1 4,5,6,7,8 -> 0 # Overcrowded 1 2,3 -> 1 # Lives 0 3 -> 1 # It takes three to give birth! 0 0,1,2,4,5,6,7,8 -> 0 # Barren Assume cells beyond the boundary are always dead. The "game" is actually a zero-player game, meaning that its evolution is determined by its initial state, needing no input from human players.   One interacts with the Game of Life by creating an initial configuration and observing how it evolves. Task Although you should test your implementation on more complex examples such as the   glider   in a larger universe,   show the action of the blinker   (three adjoining cells in a row all alive),   over three generations, in a 3 by 3 grid. References   Its creator John Conway, explains   the game of life.   Video from numberphile on youtube.   John Conway   Inventing Game of Life   - Numberphile video. Related task   Langton's ant   - another well known cellular automaton.
#Tcl
Tcl
package require Tcl 8.5   proc main {} { evolve 3 blinker [initialize_tableau {3 3} {{0 1} {1 1} {2 1}}] evolve 5 glider [initialize_tableau {4 4} {{0 1} {1 2} {2 0} {2 1} {2 2}}] }   proc evolve {generations name tableau} { for {set gen 1} {$gen <= $generations} {incr gen} { puts "$name generation $gen:" print $tableau set tableau [next_generation $tableau] } puts "" }   proc initialize_tableau {size initial_life} { lassign $size ::max_x ::max_y set tableau [blank_tableau] foreach point $initial_life { lset tableau {*}$point 1 } return $tableau }   proc blank_tableau {} { return [lrepeat $::max_x [lrepeat $::max_y 0]] }   proc print {tableau} { foreach row $tableau {puts [string map {0 . 1 #} [join $row]]} }   proc next_generation {tableau} { set new [blank_tableau] for {set x 0} {$x < $::max_x} {incr x} { for {set y 0} {$y < $::max_y} {incr y} { lset new $x $y [fate [list $x $y] $tableau] } } return $new }   proc fate {point tableau} { set current [value $point $tableau] set neighbours [sum_neighbours $point $tableau] return [expr {($neighbours == 3) || ($neighbours == 2 && $current == 1)}] }   proc value {point tableau} { return [lindex $tableau {*}$point] }   proc sum_neighbours {point tableau} { set sum 0 foreach neighbour [get_neighbours $point] { incr sum [value $neighbour $tableau] } return $sum }   proc get_neighbours {point} { lassign $point x y set results [list] foreach x_off {-1 0 1} { foreach y_off {-1 0 1} { if { ! ($x_off == 0 && $y_off == 0)} { set i [expr {$x + $x_off}] set j [expr {$y + $y_off}] if {(0 <= $i && $i < $::max_x) && (0 <= $j && $j < $::max_y)} { lappend results [list $i $j] } } } } return $results }   main
http://rosettacode.org/wiki/Colour_pinstripe/Display
Colour pinstripe/Display
The task is to create 1 pixel wide coloured vertical pinstripes with a sufficient number of pinstripes to span the entire width of the graphics display. The pinstripes should either follow the system palette sequence,   or a sequence that includes: black,   red,   green,   blue,   magenta,   cyan,   yellow,   and   white:   after filling the top quarter, switch to a wider 2 pixel wide vertical pinstripe pattern,   halfway down the display, switch to 3 pixel wide vertical pinstripe,   finally to a 4 pixels wide vertical pinstripe for the last quarter of the display. See also   display black and white   print colour
#C
C
  #include<graphics.h> #include<conio.h>   #define sections 4   int main() { int d=DETECT,m,maxX,maxY,x,y,colour=0,increment=1; initgraph(&d,&m,"c:/turboc3/bgi");   maxX = getmaxx(); maxY = getmaxy();   for(y=0;y<maxY;y+=maxY/sections) { for(x=0;x<maxX;x+=increment) { setfillstyle(SOLID_FILL,(colour++)%16); bar(x,y,x+increment,y+maxY/sections); } increment++; colour = 0; }   getch(); closegraph(); return 0; }  
http://rosettacode.org/wiki/Colour_pinstripe/Display
Colour pinstripe/Display
The task is to create 1 pixel wide coloured vertical pinstripes with a sufficient number of pinstripes to span the entire width of the graphics display. The pinstripes should either follow the system palette sequence,   or a sequence that includes: black,   red,   green,   blue,   magenta,   cyan,   yellow,   and   white:   after filling the top quarter, switch to a wider 2 pixel wide vertical pinstripe pattern,   halfway down the display, switch to 3 pixel wide vertical pinstripe,   finally to a 4 pixels wide vertical pinstripe for the last quarter of the display. See also   display black and white   print colour
#C.2B.2B
C++
  #include <windows.h>   //-------------------------------------------------------------------------------------------------- class pinstripe { public: pinstripe() { createColors(); } void setDimensions( int x, int y ) { _mw = x; _mh = y; } void createColors() { colors[0] = 0; colors[1] = 255; colors[2] = RGB( 0, 255, 0 ); colors[3] = RGB( 0, 0, 255 ); colors[4] = RGB( 255, 0, 255 ); colors[5] = RGB( 0, 255, 255 ); colors[6] = RGB( 255, 255, 0 ); colors[7] = RGB( 255, 255, 255 ); }   void draw( HDC dc ) { HPEN pen; int lh = _mh / 4, row, cp; for( int lw = 1; lw < 5; lw++ ) { cp = 0; row = ( lw - 1 ) * lh; for( int x = 0 + lw > 1 ? lw > 3 ? 2 : 1 : 0; x < _mw; x += lw ) { pen = CreatePen( PS_SOLID, lw, colors[cp] ); ++cp %= 8;   SelectObject( dc, pen ); MoveToEx( dc, x, row, NULL ); LineTo( dc, x, row + lh ); DeleteObject( pen ); } } }   private: int _mw, _mh; DWORD colors[8]; }; //-------------------------------------------------------------------------------------------------- pinstripe pin;   //-------------------------------------------------------------------------------------------------- void PaintWnd( HWND hWnd ) { PAINTSTRUCT ps; HDC hdc = BeginPaint( hWnd, &ps ); pin.draw( hdc ); EndPaint( hWnd, &ps ); } //-------------------------------------------------------------------------------------------------- LRESULT CALLBACK WndProc( HWND hWnd, UINT msg, WPARAM wParam, LPARAM lParam ) { switch( msg ) { case WM_DESTROY: PostQuitMessage( 0 ); break; case WM_PAINT: PaintWnd( hWnd ); break; default: return DefWindowProc( hWnd, msg, wParam, lParam ); } return 0; } //-------------------------------------------------------------------------------------------------- HWND InitAll( HINSTANCE hInstance ) { WNDCLASSEX wcex; ZeroMemory( &wcex, sizeof( wcex ) );   wcex.cbSize = sizeof( WNDCLASSEX ); wcex.style = CS_HREDRAW | CS_VREDRAW; wcex.lpfnWndProc = WndProc; wcex.hInstance = hInstance; wcex.hCursor = LoadCursor( NULL, IDC_ARROW ); wcex.hbrBackground = ( HBRUSH )( COLOR_WINDOW + 1 ); wcex.lpszClassName = "_CLR_PS_";   RegisterClassEx( &wcex ); return CreateWindow( "_CLR_PS_", ".: Clr Pinstripe -- PJorente :.", WS_POPUP, CW_USEDEFAULT, 0, 200, 200, NULL, NULL, hInstance, NULL ); } //-------------------------------------------------------------------------------------------------- int APIENTRY _tWinMain( HINSTANCE hInstance, HINSTANCE hPrevInstance, LPTSTR lpCmdLine, int nCmdShow ) { srand( GetTickCount() );   HWND hwnd = InitAll( hInstance ); if( !hwnd ) return -1;   int mw = GetSystemMetrics( SM_CXSCREEN ), mh = GetSystemMetrics( SM_CYSCREEN );   pin.setDimensions( mw, mh );   RECT rc = { 0, 0, mw, mh };   AdjustWindowRectEx( &rc, WS_POPUP, FALSE, 0 ); int w = rc.right - rc.left, h = rc.bottom - rc.top;   int posX = ( GetSystemMetrics( SM_CXSCREEN ) >> 1 ) - ( w >> 1 ), posY = ( GetSystemMetrics( SM_CYSCREEN ) >> 1 ) - ( h >> 1 );   SetWindowPos( hwnd, HWND_TOP, posX, posY, w, h, SWP_NOZORDER ); ShowWindow( hwnd, nCmdShow ); UpdateWindow( hwnd );   MSG msg; ZeroMemory( &msg, sizeof( msg ) ); while( msg.message != WM_QUIT ) { if( PeekMessage( &msg, NULL, 0, 0, PM_REMOVE ) != 0 ) { TranslateMessage( &msg ); DispatchMessage( &msg ); } } return UnregisterClass( "_CLR_PS_", hInstance ); } //--------------------------------------------------------------------------------------------------  
http://rosettacode.org/wiki/Color_of_a_screen_pixel
Color of a screen pixel
Task Get color information from an arbitrary pixel on the screen, such as the current location of the mouse cursor. The mouse cursor may or may not have to be active in a GUI created by your program. These functions are OS related.
#F.23
F#
open System.Drawing open System.Windows.Forms   let GetPixel x y = use img = new Bitmap(1,1) use g = Graphics.FromImage(img) g.CopyFromScreen(new Point(x,y), new Point(0,0), new Size(1,1)) let clr = img.GetPixel(0,0) (clr.R, clr.G, clr.B)   let GetPixelAtMouse () = let pt = Cursor.Position GetPixel pt.X pt.Y
http://rosettacode.org/wiki/Color_of_a_screen_pixel
Color of a screen pixel
Task Get color information from an arbitrary pixel on the screen, such as the current location of the mouse cursor. The mouse cursor may or may not have to be active in a GUI created by your program. These functions are OS related.
#Go
Go
package main   import ( "fmt" "github.com/go-vgo/robotgo" )   func main() { // get position of mouse cursor x, y := robotgo.GetMousePos()   // get color of pixel at that position color := robotgo.GetPixelColor(x, y) fmt.Printf("Color of pixel at (%d, %d) is 0x%s\n", x, y, color) }
http://rosettacode.org/wiki/Color_wheel
Color wheel
Task Write a function to draw a HSV color wheel completely with code. This is strictly for learning purposes only. It's highly recommended that you use an image in an actual application to actually draw the color wheel   (as procedurally drawing is super slow). This does help you understand how color wheels work and this can easily be used to determine a color value based on a position within a circle.
#Julia
Julia
using Gtk, Graphics, Colors   const win = GtkWindow("Color Wheel", 450, 450) |> (const can = @GtkCanvas()) set_gtk_property!(can, :expand, true)   @guarded draw(can) do widget ctx = getgc(can) h = height(can) w = width(can) center = (x = w / 2, y = h / 2) anglestep = 1/w for θ in 0:0.1:360 rgb = RGB(HSV(θ, 1, 1)) set_source_rgb(ctx, rgb.r, rgb.g, rgb.b) line_to(ctx, center...) arc(ctx, center.x, center.y, w/2.2, 2π * θ / 360, anglestep) line_to(ctx, center...) stroke(ctx) end end   show(can) const condition = Condition() endit(w) = notify(condition) signal_connect(endit, win, :destroy) wait(condition)  
http://rosettacode.org/wiki/Color_wheel
Color wheel
Task Write a function to draw a HSV color wheel completely with code. This is strictly for learning purposes only. It's highly recommended that you use an image in an actual application to actually draw the color wheel   (as procedurally drawing is super slow). This does help you understand how color wheels work and this can easily be used to determine a color value based on a position within a circle.
#Kotlin
Kotlin
// Version 1.2.41   import java.awt.Color import java.awt.Graphics import java.awt.image.BufferedImage import java.io.File import javax.imageio.ImageIO import kotlin.math.*   class BasicBitmapStorage(width: Int, height: Int) { val image = BufferedImage(width, height, BufferedImage.TYPE_3BYTE_BGR)   fun fill(c: Color) { val g = image.graphics g.color = c g.fillRect(0, 0, image.width, image.height) }   fun setPixel(x: Int, y: Int, c: Color) = image.setRGB(x, y, c.getRGB())   fun getPixel(x: Int, y: Int) = Color(image.getRGB(x, y))   fun colorWheel() { val centerX = image.width / 2 val centerY = image.height / 2 val radius = minOf(centerX, centerY) for (y in 0 until image.height) { val dy = (y - centerY).toDouble() for (x in 0 until image.width) { val dx = (x - centerX).toDouble() val dist = sqrt(dx * dx + dy * dy) if (dist <= radius) { val theta = atan2(dy, dx) val hue = (theta + PI) / (2.0 * PI) val rgb = Color.HSBtoRGB(hue.toFloat(), 1.0f, 1.0f) setPixel(x, y, Color(rgb)) } } } } }   fun main(args: Array<String>) { val bbs = BasicBitmapStorage(480, 480) with (bbs) { fill(Color.white) colorWheel() val cwFile = File("Color_wheel.png") ImageIO.write(image, "png", cwFile) } }  
http://rosettacode.org/wiki/Combinations
Combinations
Task Given non-negative integers   m   and   n,   generate all size   m   combinations   of the integers from   0   (zero)   to   n-1   in sorted order   (each combination is sorted and the entire table is sorted). Example 3   comb   5     is: 0 1 2 0 1 3 0 1 4 0 2 3 0 2 4 0 3 4 1 2 3 1 2 4 1 3 4 2 3 4 If it is more "natural" in your language to start counting from   1   (unity) instead of   0   (zero), the combinations can be of the integers from   1   to   n. See also The number of samples of size k from n objects. With   combinations and permutations   generation tasks. Order Unimportant Order Important Without replacement ( n k ) = n C k = n ( n − 1 ) … ( n − k + 1 ) k ( k − 1 ) … 1 {\displaystyle {\binom {n}{k}}=^{n}\operatorname {C} _{k}={\frac {n(n-1)\ldots (n-k+1)}{k(k-1)\dots 1}}} n P k = n ⋅ ( n − 1 ) ⋅ ( n − 2 ) ⋯ ( n − k + 1 ) {\displaystyle ^{n}\operatorname {P} _{k}=n\cdot (n-1)\cdot (n-2)\cdots (n-k+1)} Task: Combinations Task: Permutations With replacement ( n + k − 1 k ) = n + k − 1 C k = ( n + k − 1 ) ! ( n − 1 ) ! k ! {\displaystyle {\binom {n+k-1}{k}}=^{n+k-1}\operatorname {C} _{k}={(n+k-1)! \over (n-1)!k!}} n k {\displaystyle n^{k}} Task: Combinations with repetitions Task: Permutations with repetitions
#360_Assembly
360 Assembly
* Combinations 26/05/2016 COMBINE CSECT USING COMBINE,R13 base register B 72(R15) skip savearea DC 17F'0' savearea STM R14,R12,12(R13) prolog ST R13,4(R15) " ST R15,8(R13) " LR R13,R15 " SR R3,R3 clear LA R7,C @c(1) LH R8,N v=n LOOPI1 STC R8,0(R7) do i=1 to n; c(i)=n-i+1 LA R7,1(R7) @c(i)++ BCT R8,LOOPI1 next i LOOPBIG LA R10,PG big loop {------------------ LH R1,N n LA R7,C-1(R1) @c(i) LH R6,N i=n LOOPI2 IC R3,0(R7) do i=n to 1 by -1; r2=c(i) XDECO R3,PG+80 edit c(i) MVC 0(2,R10),PG+90 output c(i) LA R10,3(R10) @pgi=@pgi+3 BCTR R7,0 @c(i)-- BCT R6,LOOPI2 next i XPRNT PG,80 print buffer LA R7,C @c(1) LH R8,M v=m LA R6,1 i=1 LOOPI3 LR R1,R6 do i=1 by 1; r1=i IC R3,0(R7) c(i) CR R3,R8 while c(i)>=m-i+1 BL ELOOPI3 leave i CH R6,N if i>=n BNL ELOOPBIG exit loop BCTR R8,0 v=v-1 LA R7,1(R7) @c(i)++ LA R6,1(R6) i=i+1 B LOOPI3 next i ELOOPI3 LR R1,R6 i LA R4,C-1(R1) @c(i) IC R3,0(R4) c(i) LA R3,1(R3) c(i)+1 STC R3,0(R4) c(i)=c(i)+1 BCTR R7,0 @c(i)-- LOOPI4 CH R6,=H'2' do i=i to 2 by -1 BL ELOOPI4 leave i IC R3,1(R7) c(i) LA R3,1(R3) c(i)+1 STC R3,0(R7) c(i-1)=c(i)+1 BCTR R7,0 @c(i)-- BCTR R6,0 i=i-1 B LOOPI4 next i ELOOPI4 B LOOPBIG big loop }------------------ ELOOPBIG L R13,4(0,R13) epilog LM R14,R12,12(R13) " XR R15,R15 " BR R14 exit M DC H'5' <=input N DC H'3' <=input C DS 64X array of 8 bit integers PG DC CL92' ' buffer YREGS END COMBINE
http://rosettacode.org/wiki/Conditional_structures
Conditional structures
Control Structures These are examples of control structures. You may also be interested in: Conditional structures Exceptions Flow-control structures Loops Task List the conditional structures offered by a programming language. See Wikipedia: conditionals for descriptions. Common conditional structures include if-then-else and switch. Less common are arithmetic if, ternary operator and Hash-based conditionals. Arithmetic if allows tight control over computed gotos, which optimizers have a hard time to figure out.
#Luna
Luna
if char == "<" then Prepend "<" acc else acc
http://rosettacode.org/wiki/Comments
Comments
Task Show all ways to include text in a language source file that's completely ignored by the compiler or interpreter. Related tasks   Documentation   Here_document See also   Wikipedia   xkcd (Humor: hand gesture denoting // for "commenting out" people.)
#Nix
Nix
# This comment goes up to the end of the line /* This is a multiline comment */
http://rosettacode.org/wiki/Comments
Comments
Task Show all ways to include text in a language source file that's completely ignored by the compiler or interpreter. Related tasks   Documentation   Here_document See also   Wikipedia   xkcd (Humor: hand gesture denoting // for "commenting out" people.)
#NSIS
NSIS
  # This is a comment that goes from the # to the end of the line. ; This is a comment that goes from the ; to the end of the   /* This is a multi-line comment */  
http://rosettacode.org/wiki/Color_quantization
Color quantization
full color Example: Gimp 16 color Color quantization is the process of reducing number of colors used in an image while trying to maintain the visual appearance of the original image. In general, it is a form of cluster analysis, if each RGB color value is considered as a coordinate triple in the 3D colorspace. There are some well know algorithms [1], each with its own advantages and drawbacks. Task: Take an RGB color image and reduce its colors to some smaller number (< 256). For this task, use the frog as input and reduce colors to 16, and output the resulting colors. The chosen colors should be adaptive to the input image, meaning you should not use a fixed palette such as Web colors or Windows system palette. Dithering is not required. Note: the funny color bar on top of the frog image is intentional.
#C
C
typedef struct oct_node_t oct_node_t, *oct_node; struct oct_node_t{ /* sum of all colors represented by this node. 64 bit in case of HUGE image */ uint64_t r, g, b; int count, heap_idx; oct_node kids[8], parent; unsigned char n_kids, kid_idx, flags, depth; };   /* cmp function that decides the ordering in the heap. This is how we determine which octree node to fold next, the heart of the algorithm. */ inline int cmp_node(oct_node a, oct_node b) { if (a->n_kids < b->n_kids) return -1; if (a->n_kids > b->n_kids) return 1;   int ac = a->count * (1 + a->kid_idx) >> a->depth; int bc = b->count * (1 + b->kid_idx) >> b->depth; return ac < bc ? -1 : ac > bc; }   /* adding a color triple to octree */ oct_node node_insert(oct_node root, unsigned char *pix) { # define OCT_DEPTH 8 /* 8: number of significant bits used for tree. It's probably good enough for most images to use a value of 5. This affects how many nodes eventually end up in the tree and heap, thus smaller values helps with both speed and memory. */   unsigned char i, bit, depth = 0; for (bit = 1 << 7; ++depth < OCT_DEPTH; bit >>= 1) { i = !!(pix[1] & bit) * 4 + !!(pix[0] & bit) * 2 + !!(pix[2] & bit); if (!root->kids[i]) root->kids[i] = node_new(i, depth, root);   root = root->kids[i]; }   root->r += pix[0]; root->g += pix[1]; root->b += pix[2]; root->count++; return root; }   /* remove a node in octree and add its count and colors to parent node. */ oct_node node_fold(oct_node p) { if (p->n_kids) abort(); oct_node q = p->parent; q->count += p->count;   q->r += p->r; q->g += p->g; q->b += p->b; q->n_kids --; q->kids[p->kid_idx] = 0; return q; }   /* traverse the octree just like construction, but this time we replace the pixel color with color stored in the tree node */ void color_replace(oct_node root, unsigned char *pix) { unsigned char i, bit;   for (bit = 1 << 7; bit; bit >>= 1) { i = !!(pix[1] & bit) * 4 + !!(pix[0] & bit) * 2 + !!(pix[2] & bit); if (!root->kids[i]) break; root = root->kids[i]; }   pix[0] = root->r; pix[1] = root->g; pix[2] = root->b; }   /* Building an octree and keep leaf nodes in a bin heap. Afterwards remove first node in heap and fold it into its parent node (which may now be added to heap), until heap contains required number of colors. */ void color_quant(image im, int n_colors) { int i; unsigned char *pix = im->pix; node_heap heap = { 0, 0, 0 };   oct_node root = node_new(0, 0, 0), got; for (i = 0; i < im->w * im->h; i++, pix += 3) heap_add(&heap, node_insert(root, pix));   while (heap.n > n_colors + 1) heap_add(&heap, node_fold(pop_heap(&heap)));   double c; for (i = 1; i < heap.n; i++) { got = heap.buf[i]; c = got->count; got->r = got->r / c + .5; got->g = got->g / c + .5; got->b = got->b / c + .5; printf("%2d | %3llu %3llu %3llu (%d pixels)\n", i, got->r, got->g, got->b, got->count); }   for (i = 0, pix = im->pix; i < im->w * im->h; i++, pix += 3) color_replace(root, pix);   node_free(); free(heap.buf); }
http://rosettacode.org/wiki/Conway%27s_Game_of_Life
Conway's Game of Life
The Game of Life is a   cellular automaton   devised by the British mathematician   John Horton Conway   in 1970.   It is the best-known example of a cellular automaton. Conway's game of life is described   here: A cell   C   is represented by a   1   when alive,   or   0   when dead,   in an   m-by-m   (or m×m)   square array of cells. We calculate   N   - the sum of live cells in C's   eight-location neighbourhood,   then cell   C   is alive or dead in the next generation based on the following table: C N new C 1 0,1 -> 0 # Lonely 1 4,5,6,7,8 -> 0 # Overcrowded 1 2,3 -> 1 # Lives 0 3 -> 1 # It takes three to give birth! 0 0,1,2,4,5,6,7,8 -> 0 # Barren Assume cells beyond the boundary are always dead. The "game" is actually a zero-player game, meaning that its evolution is determined by its initial state, needing no input from human players.   One interacts with the Game of Life by creating an initial configuration and observing how it evolves. Task Although you should test your implementation on more complex examples such as the   glider   in a larger universe,   show the action of the blinker   (three adjoining cells in a row all alive),   over three generations, in a 3 by 3 grid. References   Its creator John Conway, explains   the game of life.   Video from numberphile on youtube.   John Conway   Inventing Game of Life   - Numberphile video. Related task   Langton's ant   - another well known cellular automaton.
#Ursala
Ursala
#import std #import nat   rule = -: ^(~&,~&l?(~&r-={2,3},~&r-={3})^|/~& length@F)* pad0 iota512   neighborhoods = ~&thth3hthhttPCPthPTPTX**K7S+ swin3**+ swin3@hNSPiCihNCT+ --<0>*+ 0-*   evolve "n" = next"n" rule**+ neighborhoods
http://rosettacode.org/wiki/Colour_pinstripe/Display
Colour pinstripe/Display
The task is to create 1 pixel wide coloured vertical pinstripes with a sufficient number of pinstripes to span the entire width of the graphics display. The pinstripes should either follow the system palette sequence,   or a sequence that includes: black,   red,   green,   blue,   magenta,   cyan,   yellow,   and   white:   after filling the top quarter, switch to a wider 2 pixel wide vertical pinstripe pattern,   halfway down the display, switch to 3 pixel wide vertical pinstripe,   finally to a 4 pixels wide vertical pinstripe for the last quarter of the display. See also   display black and white   print colour
#Common_Lisp
Common Lisp
(in-package :cg-user)   ;;; We only need a bitmap pane - nothing fancy (defclass draw-pane (bitmap-pane)())   ;;; close it down by clicking on it (defmethod mouse-left-down ((pane draw-pane) buttons data) (declare (ignore buttons data)) (close pane))   ;;; Create the window and draw the pinstripes (defun make-draw-window () (let ((win (make-window :one :class 'draw-pane :width 300 :height 200))) (draw win)))   ;;; Function to draw the pinstripes. The lines are a bit ragged at the intersections ;;; between pinstripe sections due to the fact that common graphics uses round line ;;; caps and there doesn't appear any way to change that. Could be fixed by using ;;; rectangles rather than lines or, perhaps, by setting rectangular clipping regions.   (defun draw (win) (do ((lwidth 1 (+ 1 lwidth)) (top 0 bottom) (colors (make-array 8 :initial-contents '(black red green blue magenta cyan yellow white))) (bottom (/ (height win) 4) (+ (/ (height win) 4) bottom))) ((eql 5 lwidth) t) (with-line-width (win lwidth) (do ((xpos 0 (+ xpos lwidth)) (clr-ndx 0 (mod (+ clr-ndx 1) 8))) ((> xpos (width win)) t) (with-foreground-color (win (aref colors clr-ndx)) (draw-line win (make-position xpos top) (make-position xpos bottom)))))))
http://rosettacode.org/wiki/Color_of_a_screen_pixel
Color of a screen pixel
Task Get color information from an arbitrary pixel on the screen, such as the current location of the mouse cursor. The mouse cursor may or may not have to be active in a GUI created by your program. These functions are OS related.
#Groovy
Groovy
import java.awt.Robot   class GetPixelColor { static void main(args) { println getColorAt(args[0] as Integer, args[1] as Integer) }   static getColorAt(x, y) { new Robot().getPixelColor(x, y) } }  
http://rosettacode.org/wiki/Color_of_a_screen_pixel
Color of a screen pixel
Task Get color information from an arbitrary pixel on the screen, such as the current location of the mouse cursor. The mouse cursor may or may not have to be active in a GUI created by your program. These functions are OS related.
#Icon_and_Unicon
Icon and Unicon
link graphics,printf   procedure main()   WOpen("canvas=hidden") # hide for query height := WAttrib("displayheight") - 45 # adjust for ... width := WAttrib("displaywidth") - 20 # ... window 7 borders WClose(&window)   W := WOpen("size="||width||","||height,"bg=black") | stop("Unable to open window")   every 1 to 10 do { # generate some random rectangles within the frame x := ?width y := ?(height-100) WAttrib("fg="||?["red","green","blue","purple","yellow"]) FillRectangle(x,x+50,y,y+50) }   while Event() do printf("x=%d,y=%d pixel=%s\n",&x,&y,Pixel(&x,&y,&x,&y))   WDone(W) # q to exit end  
http://rosettacode.org/wiki/Color_wheel
Color wheel
Task Write a function to draw a HSV color wheel completely with code. This is strictly for learning purposes only. It's highly recommended that you use an image in an actual application to actually draw the color wheel   (as procedurally drawing is super slow). This does help you understand how color wheels work and this can easily be used to determine a color value based on a position within a circle.
#Lua
Lua
  local function hsv_to_rgb (h, s, v) -- values in ranges: [0, 360], [0, 1], [0, 1] local r = math.min (math.max (3*math.abs (((h )/180)%2-1)-1, 0), 1) local g = math.min (math.max (3*math.abs (((h -120)/180)%2-1)-1, 0), 1) local b = math.min (math.max (3*math.abs (((h +120)/180)%2-1)-1, 0), 1) local k1 = v*(1-s) local k2 = v - k1 return k1+k2*r, k1+k2*g, k1+k2*b -- values in ranges: [0, 1], [0, 1], [0, 1] end   function love.load() local w, h, r = 256, 256, 128-0.5 local cx, cy = w/2, h/2 canvas = love.graphics.newCanvas () love.graphics.setCanvas(canvas) for x = 0, w do for y = 0, h do local dx, dy = x-cx, y-cy if dx*dx + dy*dy <= r*r then local h = math.deg(math.atan2(dy, dx)) local s = (dx*dx + dy*dy)^0.5/r local v = 1 love.graphics.setColor (hsv_to_rgb (h, s, v)) love.graphics.points (x, y) end end end love.graphics.setCanvas() end   function love.draw() love.graphics.setColor (1,1,1) love.graphics.draw (canvas) end  
http://rosettacode.org/wiki/Combinations
Combinations
Task Given non-negative integers   m   and   n,   generate all size   m   combinations   of the integers from   0   (zero)   to   n-1   in sorted order   (each combination is sorted and the entire table is sorted). Example 3   comb   5     is: 0 1 2 0 1 3 0 1 4 0 2 3 0 2 4 0 3 4 1 2 3 1 2 4 1 3 4 2 3 4 If it is more "natural" in your language to start counting from   1   (unity) instead of   0   (zero), the combinations can be of the integers from   1   to   n. See also The number of samples of size k from n objects. With   combinations and permutations   generation tasks. Order Unimportant Order Important Without replacement ( n k ) = n C k = n ( n − 1 ) … ( n − k + 1 ) k ( k − 1 ) … 1 {\displaystyle {\binom {n}{k}}=^{n}\operatorname {C} _{k}={\frac {n(n-1)\ldots (n-k+1)}{k(k-1)\dots 1}}} n P k = n ⋅ ( n − 1 ) ⋅ ( n − 2 ) ⋯ ( n − k + 1 ) {\displaystyle ^{n}\operatorname {P} _{k}=n\cdot (n-1)\cdot (n-2)\cdots (n-k+1)} Task: Combinations Task: Permutations With replacement ( n + k − 1 k ) = n + k − 1 C k = ( n + k − 1 ) ! ( n − 1 ) ! k ! {\displaystyle {\binom {n+k-1}{k}}=^{n+k-1}\operatorname {C} _{k}={(n+k-1)! \over (n-1)!k!}} n k {\displaystyle n^{k}} Task: Combinations with repetitions Task: Permutations with repetitions
#Action.21
Action!
PROC PrintComb(BYTE ARRAY c BYTE len) BYTE i   Put('() FOR i=0 TO len-1 DO IF i>0 THEN Put(',) FI PrintB(c(i)) OD Put(')) PutE() RETURN   BYTE FUNC Increasing(BYTE ARRAY c BYTE len) BYTE i   IF len<2 THEN RETURN (1) FI   FOR i=0 TO len-2 DO IF c(i)>=c(i+1) THEN RETURN (0) FI OD RETURN (1)   BYTE FUNC NextComb(BYTE ARRAY c BYTE n,k) INT pos,i   DO pos=k-1 DO c(pos)==+1 IF c(pos)<n THEN EXIT ELSE pos==-1 IF pos<0 THEN RETURN (0) FI FI FOR i=pos+1 TO k-1 DO c(i)=c(pos) OD OD UNTIL Increasing(c,k) OD RETURN (1)   PROC Comb(BYTE n,k) BYTE ARRAY c(10) BYTE i   IF k>n THEN Print("Error! k is greater than n.") Break() FI   FOR i=0 TO k-1 DO c(i)=i OD   DO PrintComb(c,k) UNTIL NextComb(c,n,k)=0 OD RETURN   PROC Main() Comb(5,3) RETURN
http://rosettacode.org/wiki/Conditional_structures
Conditional structures
Control Structures These are examples of control structures. You may also be interested in: Conditional structures Exceptions Flow-control structures Loops Task List the conditional structures offered by a programming language. See Wikipedia: conditionals for descriptions. Common conditional structures include if-then-else and switch. Less common are arithmetic if, ternary operator and Hash-based conditionals. Arithmetic if allows tight control over computed gotos, which optimizers have a hard time to figure out.
#M2000_Interpreter
M2000 Interpreter
  Module CheckIt { Read a If a>1 then { Print "Top" } else.if a>=-4 then { Print "Middle" } else { Print "Bottom" } } CheckIt 100 CheckIt 0 CheckIt -100   Module CheckIt { Read a \\ using end if without blocks If a>1 then Print "Top" else.if a>=-4 then Print "Middle" else Print "Bottom" End If } CheckIt 100 CheckIt 0 CheckIt -100   Module CheckIt { Read a \\ without use of END IF in one line If a>1 then Print "Top" else.if a>=-4 then Print "Middle" else Print "Bottom" } CheckIt 100 CheckIt 0 CheckIt -100  
http://rosettacode.org/wiki/Comments
Comments
Task Show all ways to include text in a language source file that's completely ignored by the compiler or interpreter. Related tasks   Documentation   Here_document See also   Wikipedia   xkcd (Humor: hand gesture denoting // for "commenting out" people.)
#Oberon-2
Oberon-2
  (* this is a comment *) (* and this is a multiline comment (* with a nested comment *) *)  
http://rosettacode.org/wiki/Comments
Comments
Task Show all ways to include text in a language source file that's completely ignored by the compiler or interpreter. Related tasks   Documentation   Here_document See also   Wikipedia   xkcd (Humor: hand gesture denoting // for "commenting out" people.)
#Objeck
Objeck
  #This is a comment. # This is other comment.   #~ This is a comment too. ~#   #~ This is a multi-line comment ~#  
http://rosettacode.org/wiki/Color_quantization
Color quantization
full color Example: Gimp 16 color Color quantization is the process of reducing number of colors used in an image while trying to maintain the visual appearance of the original image. In general, it is a form of cluster analysis, if each RGB color value is considered as a coordinate triple in the 3D colorspace. There are some well know algorithms [1], each with its own advantages and drawbacks. Task: Take an RGB color image and reduce its colors to some smaller number (< 256). For this task, use the frog as input and reduce colors to 16, and output the resulting colors. The chosen colors should be adaptive to the input image, meaning you should not use a fixed palette such as Web colors or Windows system palette. Dithering is not required. Note: the funny color bar on top of the frog image is intentional.
#Common_Lisp
Common Lisp
(defpackage #:quantize (:use #:cl #:opticl))   (in-package #:quantize)   (defun image->pixels (image) (check-type image 8-bit-rgb-image) (let (pixels) (do-pixels (y x) image (push (pixel* image y x) pixels)) pixels))   (defun greatest-color-range (pixels) (loop for (r g b) in pixels minimize r into r-min minimize g into g-min minimize b into b-min maximize r into r-max maximize g into g-max maximize b into b-max finally (return (let* ((r-range (- r-max r-min)) (g-range (- g-max g-min)) (b-range (- b-max b-min)) (max-range (max r-range g-range b-range))) (cond ((= r-range max-range) 0) ((= g-range max-range) 1) (t 2))))))   (defun median-cut (pixels target-num-colors) (assert (zerop (mod (log target-num-colors 2) 1))) (if (or (= target-num-colors 1) (null (rest pixels))) (list pixels) (let* ((channel (greatest-color-range pixels)) (sorted (sort pixels #'< :key (lambda (pixel) (nth channel pixel)))) (half (floor (length sorted) 2)) (next-target (/ target-num-colors 2))) (nconc (median-cut (subseq sorted 0 half) next-target) (median-cut (subseq sorted half) next-target)))))   (defun quantize-colors (pixels target-num-colors) (let ((color-map (make-hash-table :test #'equal))) (dolist (bucket (median-cut pixels target-num-colors) color-map) (loop for (r g b) in bucket sum r into r-sum sum g into g-sum sum b into b-sum count t into num-pixels finally (let ((average (list (round r-sum num-pixels) (round g-sum num-pixels) (round b-sum num-pixels)))) (dolist (pixel bucket) (setf (gethash pixel color-map) average)))))))   (defun quantize-image (input-file output-file target-num-colors) (let* ((image (read-png-file input-file)) (pixels (image->pixels image)) (color-map (quantize-colors pixels target-num-colors)) (result-image (with-image-bounds (height width) image (make-8-bit-rgb-image height width :initial-element 0)))) (set-pixels (y x) result-image (let* ((original (multiple-value-list (pixel image y x))) (quantized (gethash original color-map))) (values-list quantized))) (write-png-file output-file result-image)))
http://rosettacode.org/wiki/Conway%27s_Game_of_Life
Conway's Game of Life
The Game of Life is a   cellular automaton   devised by the British mathematician   John Horton Conway   in 1970.   It is the best-known example of a cellular automaton. Conway's game of life is described   here: A cell   C   is represented by a   1   when alive,   or   0   when dead,   in an   m-by-m   (or m×m)   square array of cells. We calculate   N   - the sum of live cells in C's   eight-location neighbourhood,   then cell   C   is alive or dead in the next generation based on the following table: C N new C 1 0,1 -> 0 # Lonely 1 4,5,6,7,8 -> 0 # Overcrowded 1 2,3 -> 1 # Lives 0 3 -> 1 # It takes three to give birth! 0 0,1,2,4,5,6,7,8 -> 0 # Barren Assume cells beyond the boundary are always dead. The "game" is actually a zero-player game, meaning that its evolution is determined by its initial state, needing no input from human players.   One interacts with the Game of Life by creating an initial configuration and observing how it evolves. Task Although you should test your implementation on more complex examples such as the   glider   in a larger universe,   show the action of the blinker   (three adjoining cells in a row all alive),   over three generations, in a 3 by 3 grid. References   Its creator John Conway, explains   the game of life.   Video from numberphile on youtube.   John Conway   Inventing Game of Life   - Numberphile video. Related task   Langton's ant   - another well known cellular automaton.
#Vedit_macro_language
Vedit macro language
IT("Generation 0 ") IN IT(".O.") IN IT(".O.") IN IT(".O.")   #9 = 2 // number of generations to calculate #10 = Cur_Line #11 = Cur_Col-1 for (#2 = 1; #2 <= #9; #2++) { Update() Get_Key("Next gen...", STATLINE) Call("calculate") itoa(#2, 20, LEFT) GL(1) GC(12) Reg_Ins(20, OVERWRITE) } EOF Return   // Calculate one generation :calculate: Goto_Line(2) While (At_EOF == 0) { Search("|A",ERRBREAK) // find next living cell #3 = Cur_Line #4 = #7 = #8 = Cur_Col if (#4 > 1) { // increment cell at left #7 = #4-1 Goto_Col(#7) Ins_Char(Cur_Char+1,OVERWRITE) } if (#4 < #11) { // increment cell at right #8 = #4+1 Goto_Col(#8) Ins_Char(Cur_Char+1,OVERWRITE) } if (#3 > 2) { // increment 3 cells above Goto_Line(#3-1) Call("inc_3") } if (#3 < #10) { // increment 3 cells below Goto_Line(#3+1) Call("inc_3") } Goto_Line(#3) Goto_Col(#4+1) }   Replace("[1QR]", "O", REGEXP+BEGIN+ALL) // these cells alive Replace("[/-7P-X]", ".", REGEXP+BEGIN+ALL) // these cells dead Return   // increment values of 3 characters in a row :inc_3: for (#1 = #7; #1 <= #8; #1++) { Goto_Col(#1) Ins_Char(Cur_Char+1,OVERWRITE) } Return
http://rosettacode.org/wiki/Colour_pinstripe/Display
Colour pinstripe/Display
The task is to create 1 pixel wide coloured vertical pinstripes with a sufficient number of pinstripes to span the entire width of the graphics display. The pinstripes should either follow the system palette sequence,   or a sequence that includes: black,   red,   green,   blue,   magenta,   cyan,   yellow,   and   white:   after filling the top quarter, switch to a wider 2 pixel wide vertical pinstripe pattern,   halfway down the display, switch to 3 pixel wide vertical pinstripe,   finally to a 4 pixels wide vertical pinstripe for the last quarter of the display. See also   display black and white   print colour
#Factor
Factor
USING: accessors arrays colors.constants kernel locals math math.ranges opengl sequences ui ui.gadgets ui.render ;   CONSTANT: palette { COLOR: black COLOR: red COLOR: green COLOR: blue COLOR: magenta COLOR: cyan COLOR: yellow COLOR: white }   CONSTANT: bands 4   TUPLE: pinstripe < gadget ;   : <pinstripe> ( -- pinstripe ) pinstripe new ;   M: pinstripe pref-dim* drop { 400 400 } ;   : set-color ( n -- ) palette length mod palette nth gl-color ;   :: draw-pinstripe ( pinstripe n -- ) pinstripe dim>> first2 :> ( w h ) h 4 /i :> quarter quarter n * :> y2 y2 quarter - :> y1 0 w n <range> [| x | x n / set-color x y1 2array x n + y2 2array gl-fill-rect ] each ;   M: pinstripe draw-gadget* bands [1,b] [ draw-pinstripe ] with each ;   <pinstripe> "Color pinstripe" open-window
http://rosettacode.org/wiki/Colour_pinstripe/Display
Colour pinstripe/Display
The task is to create 1 pixel wide coloured vertical pinstripes with a sufficient number of pinstripes to span the entire width of the graphics display. The pinstripes should either follow the system palette sequence,   or a sequence that includes: black,   red,   green,   blue,   magenta,   cyan,   yellow,   and   white:   after filling the top quarter, switch to a wider 2 pixel wide vertical pinstripe pattern,   halfway down the display, switch to 3 pixel wide vertical pinstripe,   finally to a 4 pixels wide vertical pinstripe for the last quarter of the display. See also   display black and white   print colour
#FreeBASIC
FreeBASIC
' version 14-03-2017 ' compile with: fbc -s console ' or compile with: fbc -s gui   Dim As UInteger ps, col, h, w, x, y1, y2 ScreenInfo w, h   ' create display size window, 8bit color (palette), no frame ScreenRes w, h, 8,, 8   h = h \ 4 : y2 = h -1   For ps = 1 To 4 col = 0 For x = 0 To (w - ps -1) Step ps Line (x, y1) - (x + ps -1, y2), col, bf col = (col +1) And 255 Next y1 += h : y2 += h Next   ' empty keyboard buffer While Inkey <> "" : Wend 'Print : Print "hit any key to end program" Sleep End
http://rosettacode.org/wiki/Color_of_a_screen_pixel
Color of a screen pixel
Task Get color information from an arbitrary pixel on the screen, such as the current location of the mouse cursor. The mouse cursor may or may not have to be active in a GUI created by your program. These functions are OS related.
#J
J
GetDC=: 'user32.dll GetDC >i i'&cd NB. hdx: GetDC hwnd GetPixel=: 'gdi32.dll GetPixel >l i i i'&cd NB. rgb: GetPixel hdc x y GetCursorPos=: 'user32.dll GetCursorPos i *i'&cd NB. success: point
http://rosettacode.org/wiki/Color_of_a_screen_pixel
Color of a screen pixel
Task Get color information from an arbitrary pixel on the screen, such as the current location of the mouse cursor. The mouse cursor may or may not have to be active in a GUI created by your program. These functions are OS related.
#Java
Java
public static Color getColorAt(int x, int y){ return new Robot().getPixelColor(x, y); }
http://rosettacode.org/wiki/Color_of_a_screen_pixel
Color of a screen pixel
Task Get color information from an arbitrary pixel on the screen, such as the current location of the mouse cursor. The mouse cursor may or may not have to be active in a GUI created by your program. These functions are OS related.
#Julia
Julia
  # Windows GDI version function getpixelcolors(x, y) hdc = ccall((:GetDC, "user32.dll"), UInt32, (UInt32,), 0) pxl = ccall((:GetPixel, "gdi32.dll"), UInt32, (UInt32, Cint, Cint), hdc, Cint(x), Cint(y)) return pxl & 0xff, (pxl >> 8) & 0xff, (pxl >> 16) & 0xff end   const x = 120 const y = 100 cols = getpixelcolors(x, y) println("At screen point (x=$x, y=$y) the color RGB components are red: $(cols[1]), green: $(cols[2]), and blue: $(cols[3])")  
http://rosettacode.org/wiki/Color_wheel
Color wheel
Task Write a function to draw a HSV color wheel completely with code. This is strictly for learning purposes only. It's highly recommended that you use an image in an actual application to actually draw the color wheel   (as procedurally drawing is super slow). This does help you understand how color wheels work and this can easily be used to determine a color value based on a position within a circle.
#M2000_Interpreter
M2000 Interpreter
  Module Check { \\ we use an internal object for Math functions (here for Atan2) Declare Math Math Const tau=2*Pi, Center=2 \\ change console size, and center it ( using ;) to current monitor Window 12, 800*twipsX,600*twipsY; \\ actual size maybe less (so can fit text exactly) Double ' Double height characters Report Center, "Color wheel" Normal ' restore to normal Atan2=Lambda Math (a, b) ->{ Method Math, "Atan2", a, b As ret =ret } \\ brightness=1 for this program hsb2rgb=Lambda (hue, sat) ->{ If sat == 0 Then { = 255, 255, 255 } Else { h=frac(hue+1)*6 f = frac(h) p = Int((1-sat)*255 + 0.5) q = Int((1-sat*f)*255 + 0.5) t = Int((1-sat*(1-f))*255 + 0.5) Select Case Int(h) Case 1 = q, 255, p Case 2 = p, 255, t Case 3 = p, q, 255 Case 4 = t, p, 255 Case 5 = 255, p, q Else Case = 255, t, p End Select } } Let OffsetX=X.twips/2-128*TwipsX, OffsetY=Y.twips/2-128*TwipsY \\ a pixel has a size of TwipsX x TwipsY OffsetX=(OffsetX div TwipsX)*TwipsX OffsetY=(OffsetY div TwipsY)*TwipsY \\ We set hsb2rgb, OffsetX, OffsetY as closures to PrintPixel \\ We send to stack the R G B values using Stack ! array \\ hsb2rgb() return an array of values \\ we pop these values using Number PrintPixel = Lambda hsb2rgb, OffsetX, OffsetY (x,y, theta, sat) -> { Stack ! hsb2rgb(theta,sat) PSet Color(number, number, number), x*TwipsX+offsetX, y*TwipsY+offsetY } \\ set Atan2, tau as closures to HueCircle \\ we can rotate/flip the wheel by changing signs in Atan2() and \\ by changing order of arguments (dx,dy) or (dy,dx). 8 combinations HueCircle= Lambda Atan2, tau (PrintPixel) -> { Let c_width=256, c_height=256 Let cx=c_width/2, cy=c_height/2 Let radius=If(cx<=cy->cx, cy) c_width-- c_height-- dy=-cy For y=0 To c_height { dy++ : dy2=dy*dy : dx=-cx For x=0 To c_width { dx++ : dist=Sqrt(dx^2+dy2) If dist>radius Then continue Call PrintPixel(x,y, Atan2(dx, -dy)/tau, dist/radius) } } } Call HueCircle(PrintPixel) Scr$="" ' we use this string to load an image Move 0,0 \\ scale.x, scale.y are twips height and width, of current layer Copy scale.x, scale.y to Scr$ Clipboard Scr$ ' save window to clipboard } Check  
http://rosettacode.org/wiki/Color_wheel
Color wheel
Task Write a function to draw a HSV color wheel completely with code. This is strictly for learning purposes only. It's highly recommended that you use an image in an actual application to actually draw the color wheel   (as procedurally drawing is super slow). This does help you understand how color wheels work and this can easily be used to determine a color value based on a position within a circle.
#Mathematica.2FWolfram_Language
Mathematica/Wolfram Language
r = 100; Image[Table[ If[x^2 + y^2 <= r^2, angle = Mod[ArcTan[N@x, y]/(2 Pi), 1]; List @@ RGBColor[Hue[angle, Sqrt[x^2 + y^2]/N[r], 1.0]] , {1, 1, 1} ], {x, -r, r}, {y, -r, r}] ]
http://rosettacode.org/wiki/Color_wheel
Color wheel
Task Write a function to draw a HSV color wheel completely with code. This is strictly for learning purposes only. It's highly recommended that you use an image in an actual application to actually draw the color wheel   (as procedurally drawing is super slow). This does help you understand how color wheels work and this can easily be used to determine a color value based on a position within a circle.
#Nim
Nim
import math   import imageman   #---------------------------------------------------------------------------------------------------   func hsvToRgb(h, s, v: float): ColorRGBU = ## Convert HSV values to RGB values.   let hp = h / 60 let c = s * v let x = c * (1 - abs(hp mod 2 - 1)) let m = v - c var r, g, b = 0.0 if hp <= 1: r = c g = x elif hp <= 2: r = x g = c elif hp <= 3: g = c b = x elif hp <= 4: g = x b= c elif hp <= 5: r = x b = c else: r = c b = x r += m g += m b += m result = ColorRGBU [byte(r * 255), byte(g * 255), byte(b * 255)]   #---------------------------------------------------------------------------------------------------   func buildColorWheel(image: var Image) = ## Build a color wheel into the image.   const Margin = 10 let diameter = min(image.w, image.h) - 2 * Margin let xOffset = (image.w - diameter) div 2 let yOffset = (image.h - diameter) div 2 let radius = diameter / 2   for x in 0..diameter: let rx = x.toFloat - radius for y in 0..diameter: let ry = y.toFloat - radius let r = hypot(rx, ry) / radius if r > 1: continue let a = 180 + arctan2(ry, -rx).radToDeg() image[x + xOffset, y + yOffset] = hsvToRgb(a, r, 1)   #———————————————————————————————————————————————————————————————————————————————————————————————————   const Side = 400 Output = "color_wheel.png"   var image = initImage[ColorRGBU](Side, Side) image.buildColorWheel()   image.savePNG(Output, compression = 9)
http://rosettacode.org/wiki/Combinations
Combinations
Task Given non-negative integers   m   and   n,   generate all size   m   combinations   of the integers from   0   (zero)   to   n-1   in sorted order   (each combination is sorted and the entire table is sorted). Example 3   comb   5     is: 0 1 2 0 1 3 0 1 4 0 2 3 0 2 4 0 3 4 1 2 3 1 2 4 1 3 4 2 3 4 If it is more "natural" in your language to start counting from   1   (unity) instead of   0   (zero), the combinations can be of the integers from   1   to   n. See also The number of samples of size k from n objects. With   combinations and permutations   generation tasks. Order Unimportant Order Important Without replacement ( n k ) = n C k = n ( n − 1 ) … ( n − k + 1 ) k ( k − 1 ) … 1 {\displaystyle {\binom {n}{k}}=^{n}\operatorname {C} _{k}={\frac {n(n-1)\ldots (n-k+1)}{k(k-1)\dots 1}}} n P k = n ⋅ ( n − 1 ) ⋅ ( n − 2 ) ⋯ ( n − k + 1 ) {\displaystyle ^{n}\operatorname {P} _{k}=n\cdot (n-1)\cdot (n-2)\cdots (n-k+1)} Task: Combinations Task: Permutations With replacement ( n + k − 1 k ) = n + k − 1 C k = ( n + k − 1 ) ! ( n − 1 ) ! k ! {\displaystyle {\binom {n+k-1}{k}}=^{n+k-1}\operatorname {C} _{k}={(n+k-1)! \over (n-1)!k!}} n k {\displaystyle n^{k}} Task: Combinations with repetitions Task: Permutations with repetitions
#Ada
Ada
with Ada.Text_IO; use Ada.Text_IO;   procedure Test_Combinations is generic type Integers is range <>; package Combinations is type Combination is array (Positive range <>) of Integers; procedure First (X : in out Combination); procedure Next (X : in out Combination); procedure Put (X : Combination); end Combinations;   package body Combinations is procedure First (X : in out Combination) is begin X (1) := Integers'First; for I in 2..X'Last loop X (I) := X (I - 1) + 1; end loop; end First; procedure Next (X : in out Combination) is begin for I in reverse X'Range loop if X (I) < Integers'Val (Integers'Pos (Integers'Last) - X'Last + I) then X (I) := X (I) + 1; for J in I + 1..X'Last loop X (J) := X (J - 1) + 1; end loop; return; end if; end loop; raise Constraint_Error; end Next; procedure Put (X : Combination) is begin for I in X'Range loop Put (Integers'Image (X (I))); end loop; end Put; end Combinations;   type Five is range 0..4; package Fives is new Combinations (Five); use Fives;   X : Combination (1..3); begin First (X); loop Put (X); New_Line; Next (X); end loop; exception when Constraint_Error => null; end Test_Combinations;
http://rosettacode.org/wiki/Conditional_structures
Conditional structures
Control Structures These are examples of control structures. You may also be interested in: Conditional structures Exceptions Flow-control structures Loops Task List the conditional structures offered by a programming language. See Wikipedia: conditionals for descriptions. Common conditional structures include if-then-else and switch. Less common are arithmetic if, ternary operator and Hash-based conditionals. Arithmetic if allows tight control over computed gotos, which optimizers have a hard time to figure out.
#Make
Make
# make -f do.mk C=mycond if C=0   if: -@expr $(C) >/dev/null && make -f do.mk true; exit 0 -@expr $(C) >/dev/null || make -f do.mk false; exit 0   true: @echo "was true."   false: @echo "was false."
http://rosettacode.org/wiki/Comments
Comments
Task Show all ways to include text in a language source file that's completely ignored by the compiler or interpreter. Related tasks   Documentation   Here_document See also   Wikipedia   xkcd (Humor: hand gesture denoting // for "commenting out" people.)
#Objective-C
Objective-C
(* This a comment (* containing nested comment *) *)   (** This an OCamldoc documentation comment *)
http://rosettacode.org/wiki/Comments
Comments
Task Show all ways to include text in a language source file that's completely ignored by the compiler or interpreter. Related tasks   Documentation   Here_document See also   Wikipedia   xkcd (Humor: hand gesture denoting // for "commenting out" people.)
#OCaml
OCaml
(* This a comment (* containing nested comment *) *)   (** This an OCamldoc documentation comment *)
http://rosettacode.org/wiki/Color_quantization
Color quantization
full color Example: Gimp 16 color Color quantization is the process of reducing number of colors used in an image while trying to maintain the visual appearance of the original image. In general, it is a form of cluster analysis, if each RGB color value is considered as a coordinate triple in the 3D colorspace. There are some well know algorithms [1], each with its own advantages and drawbacks. Task: Take an RGB color image and reduce its colors to some smaller number (< 256). For this task, use the frog as input and reduce colors to 16, and output the resulting colors. The chosen colors should be adaptive to the input image, meaning you should not use a fixed palette such as Web colors or Windows system palette. Dithering is not required. Note: the funny color bar on top of the frog image is intentional.
#D
D
import core.stdc.stdio, std.stdio, std.algorithm, std.typecons, std.math, std.range, std.conv, std.string, bitmap;   struct Col { float r, g, b; } alias Cluster = Tuple!(Col, float, Col, Col[]); enum Axis { R, G, B }   enum round = (in float x) pure nothrow @safe @nogc => cast(int)floor(x + 0.5);   enum roundRGB = (in Col c) pure nothrow @safe @nogc => RGB(cast(ubyte)round(c.r), cast(ubyte)round(c.g), cast(ubyte)round(c.b));   enum addRGB = (in Col c1, in Col c2) pure nothrow @safe @nogc => Col(c1.r + c2.r, c1.g + c2.g, c1.b + c2.b);   Col meanRGB(in Col[] pxList) pure nothrow @safe @nogc { immutable tot = reduce!addRGB(Col(0, 0, 0), pxList); immutable n = pxList.length; return Col(tot.r / n, tot.g / n, tot.b / n); }   enum minC = (in Col c1, in Col c2) pure nothrow @safe @nogc => Col(min(c1.r, c2.r), min(c1.g, c2.g), min(c1.b, c2.b));   enum maxC = (in Col c1, in Col c2) pure nothrow @safe @nogc => Col(max(c1.r, c2.r), max(c1.g, c2.g), max(c1.b, c2.b));   Tuple!(Col, Col) extrems(in Col[] lst) pure nothrow @safe @nogc { enum FI = float.infinity; auto mmRGB = typeof(return)(Col(FI, FI, FI), Col(-FI, -FI, -FI)); return reduce!(minC, maxC)(mmRGB, lst); }   Tuple!(float, Col) volumeAndDims(in Col[] lst) pure nothrow @safe @nogc { immutable e = lst.extrems; immutable r = Col(e[1].r - e[0].r, e[1].g - e[0].g, e[1].b - e[0].b); return typeof(return)(r.r * r.g * r.b, r); }   Cluster makeCluster(Col[] pixelList) pure nothrow @safe @nogc { immutable vol_dims = pixelList.volumeAndDims; immutable int len = pixelList.length; return typeof(return)(pixelList.meanRGB, len * vol_dims[0], vol_dims[1], pixelList); }   enum fCmp = (in float a, in float b) pure nothrow @safe @nogc => (a > b) ? 1 : (a < b ? -1 : 0);   Axis largestAxis(in Col c) pure nothrow @safe @nogc { immutable int r1 = fCmp(c.r, c.g); immutable int r2 = fCmp(c.r, c.b); if (r1 == 1 && r2 == 1) return Axis.R; if (r1 == -1 && r2 == 1) return Axis.G; if (r1 == 1 && r2 == -1) return Axis.B; return (fCmp(c.g, c.b) == 1) ? Axis.G : Axis.B; }   Tuple!(Cluster, Cluster) subdivide(in Col c, in float nVolProd, in Col vol, Col[] pixels) pure nothrow @safe @nogc { Col[] px2; final switch (largestAxis(vol)) { case Axis.R: px2 = pixels.partition!(c1 => c1.r < c.r); break; case Axis.G: px2 = pixels.partition!(c1 => c1.g < c.g); break; case Axis.B: px2 = pixels.partition!(c1 => c1.b < c.b); break; } auto px1 = pixels[0 .. $ - px2.length]; return typeof(return)(px1.makeCluster, px2.makeCluster); }   uint RGB2uint(in RGB c) pure nothrow @safe @nogc { return c.r | (c.g << 8) | (c.b << 16); }   enum uintToRGB = (in uint c) pure nothrow @safe @nogc => RGB(c & 0xFF, (c >> 8) & 0xFF, (c >> 16) & 0xFF);   Image!RGB colorQuantize(in Image!RGB img, in int n) pure nothrow /*@safe*/ { immutable width = img.nx; immutable height = img.ny;   auto cols = new Col[width * height]; foreach (immutable i, ref c; img.image) cols[i] = Col(c.tupleof);   immutable dumb = Col(0, 0, 0); Cluster unused = Cluster(dumb, -float.infinity, dumb, (Col[]).init);   auto clusters = [cols.makeCluster]; while (clusters.length < n) { // Cluster cl = clusters.reduce!(max!q{ a[1] })(unused); Cluster cl = reduce!((c1, c2) => c1[1] > c2[1] ? c1 : c2) (unused, clusters); clusters = [cl[].subdivide[]] ~ clusters.remove!(c => c == cl, SwapStrategy.unstable); //** }   uint[uint] pixMap; // Faster than RGB[RGB]. ubyte[4] u4a, u4b; foreach (const cluster; clusters) { immutable ubyteMean = cluster[0].roundRGB.RGB2uint; foreach (immutable col; cluster[3]) pixMap[col.roundRGB.RGB2uint] = ubyteMean; }   auto result = new Image!RGB; result.allocate(height, width);   foreach (immutable i, immutable p; img.image) { immutable u3a = p.tupleof.RGB; result.image[i] = pixMap[RGB2uint(u3a)].uintToRGB; }   return result; }   void main(in string[] args) { string fileName; int nCols; switch (args.length) { case 1: fileName = "quantum_frog.ppm"; nCols = 16; break; case 3: fileName = args[1]; nCols = args[2].to!int; break; default: "Usage: color_quantization image.ppm ncolors".writeln; return; }   auto im = new Image!RGB; im.loadPPM6(fileName); const imq = colorQuantize(im, nCols); imq.savePPM6("quantum_frog_quantized.ppm"); }
http://rosettacode.org/wiki/Conway%27s_Game_of_Life
Conway's Game of Life
The Game of Life is a   cellular automaton   devised by the British mathematician   John Horton Conway   in 1970.   It is the best-known example of a cellular automaton. Conway's game of life is described   here: A cell   C   is represented by a   1   when alive,   or   0   when dead,   in an   m-by-m   (or m×m)   square array of cells. We calculate   N   - the sum of live cells in C's   eight-location neighbourhood,   then cell   C   is alive or dead in the next generation based on the following table: C N new C 1 0,1 -> 0 # Lonely 1 4,5,6,7,8 -> 0 # Overcrowded 1 2,3 -> 1 # Lives 0 3 -> 1 # It takes three to give birth! 0 0,1,2,4,5,6,7,8 -> 0 # Barren Assume cells beyond the boundary are always dead. The "game" is actually a zero-player game, meaning that its evolution is determined by its initial state, needing no input from human players.   One interacts with the Game of Life by creating an initial configuration and observing how it evolves. Task Although you should test your implementation on more complex examples such as the   glider   in a larger universe,   show the action of the blinker   (three adjoining cells in a row all alive),   over three generations, in a 3 by 3 grid. References   Its creator John Conway, explains   the game of life.   Video from numberphile on youtube.   John Conway   Inventing Game of Life   - Numberphile video. Related task   Langton's ant   - another well known cellular automaton.
#Wortel
Wortel
@let { life &m ~!* m &[a y] ~!* a &[v x] @let { neigh @sum [ @`-x 1 @`-y 1 m @`x @`-y 1 m @`+x 1 @`-y 1 m @`-x 1 @`y m @`+x 1 @`y m @`-x 1 @`+y 1 m @`x @`+y 1 m @`+x 1 @`+y 1 m ] @+ || = neigh 3 && v = neigh 2 }   blinker [ [0 0 0 0 0] [0 0 0 0 0] [0 1 1 1 0] [0 0 0 0 0] [0 0 0 0 0] ]   [[  !^life 0 blinker  !^life 1 blinker  !^life 2 blinker ]] }
http://rosettacode.org/wiki/Colour_pinstripe/Display
Colour pinstripe/Display
The task is to create 1 pixel wide coloured vertical pinstripes with a sufficient number of pinstripes to span the entire width of the graphics display. The pinstripes should either follow the system palette sequence,   or a sequence that includes: black,   red,   green,   blue,   magenta,   cyan,   yellow,   and   white:   after filling the top quarter, switch to a wider 2 pixel wide vertical pinstripe pattern,   halfway down the display, switch to 3 pixel wide vertical pinstripe,   finally to a 4 pixels wide vertical pinstripe for the last quarter of the display. See also   display black and white   print colour
#Gambas
Gambas
'WARNING this takes a time to display   Public Sub Form_Open() Dim iColour As Integer[] = [Color.Black, Color.red, Color.Green, Color.Magenta, Color.Cyan, Color.Yellow, Color.white] Dim hPanel As Panel Dim siCount, siCounter, siSet As Short   With Me .Arrangement = Arrange.Row .Border = False .Height = 1080 .Width = 400 .Fullscreen = True End With   For siCounter = 1 To 4 For siCount = 0 To Desktop.Width Step siCounter hpanel = New Panel(Me) hpanel.Width = siCounter hpanel.Height = Desktop.Height / 4 HPanel.Background = iColour[siSet] Inc siSet If siSet > 6 Then siSet = 0 Next Next   End  
http://rosettacode.org/wiki/Color_of_a_screen_pixel
Color of a screen pixel
Task Get color information from an arbitrary pixel on the screen, such as the current location of the mouse cursor. The mouse cursor may or may not have to be active in a GUI created by your program. These functions are OS related.
#Kotlin
Kotlin
import java.awt.*   fun getMouseColor(): Color { val location = MouseInfo.getPointerInfo().location return getColorAt(location.x, location.y) }   fun getColorAt(x: Int, y: Int): Color { return Robot().getPixelColor(x, y) }
http://rosettacode.org/wiki/Color_of_a_screen_pixel
Color of a screen pixel
Task Get color information from an arbitrary pixel on the screen, such as the current location of the mouse cursor. The mouse cursor may or may not have to be active in a GUI created by your program. These functions are OS related.
#Lingo
Lingo
on getScreenPixelColor (x, y) sx = xtra("ScrnXtra3").new() img = sx.ScreenToImage(rect(x, y, x+1, y+1)) return img.getPixel(0, 0) end
http://rosettacode.org/wiki/Color_wheel
Color wheel
Task Write a function to draw a HSV color wheel completely with code. This is strictly for learning purposes only. It's highly recommended that you use an image in an actual application to actually draw the color wheel   (as procedurally drawing is super slow). This does help you understand how color wheels work and this can easily be used to determine a color value based on a position within a circle.
#Perl
Perl
use Imager; use Math::Complex qw(cplx i pi);   my ($width, $height) = (300, 300); my $center = cplx($width/2, $height/2);   my $img = Imager->new(xsize => $width, ysize => $height);   foreach my $y (0 .. $height - 1) { foreach my $x (0 .. $width - 1) {   my $vec = $center - $x - $y * i; my $mag = 2 * abs($vec) / $width; my $dir = (pi + atan2($vec->Re, $vec->Im)) / (2 * pi);   $img->setpixel(x => $x, y => $y, color => {hsv => [360 * $dir, $mag, $mag < 1 ? 1 : 0]}); } }   $img->write(file => 'color_wheel.png');
http://rosettacode.org/wiki/Combinations
Combinations
Task Given non-negative integers   m   and   n,   generate all size   m   combinations   of the integers from   0   (zero)   to   n-1   in sorted order   (each combination is sorted and the entire table is sorted). Example 3   comb   5     is: 0 1 2 0 1 3 0 1 4 0 2 3 0 2 4 0 3 4 1 2 3 1 2 4 1 3 4 2 3 4 If it is more "natural" in your language to start counting from   1   (unity) instead of   0   (zero), the combinations can be of the integers from   1   to   n. See also The number of samples of size k from n objects. With   combinations and permutations   generation tasks. Order Unimportant Order Important Without replacement ( n k ) = n C k = n ( n − 1 ) … ( n − k + 1 ) k ( k − 1 ) … 1 {\displaystyle {\binom {n}{k}}=^{n}\operatorname {C} _{k}={\frac {n(n-1)\ldots (n-k+1)}{k(k-1)\dots 1}}} n P k = n ⋅ ( n − 1 ) ⋅ ( n − 2 ) ⋯ ( n − k + 1 ) {\displaystyle ^{n}\operatorname {P} _{k}=n\cdot (n-1)\cdot (n-2)\cdots (n-k+1)} Task: Combinations Task: Permutations With replacement ( n + k − 1 k ) = n + k − 1 C k = ( n + k − 1 ) ! ( n − 1 ) ! k ! {\displaystyle {\binom {n+k-1}{k}}=^{n+k-1}\operatorname {C} _{k}={(n+k-1)! \over (n-1)!k!}} n k {\displaystyle n^{k}} Task: Combinations with repetitions Task: Permutations with repetitions
#ALGOL_68
ALGOL 68
# -*- coding: utf-8 -*- #   COMMENT REQUIRED BY "prelude_combinations_generative.a68" MODE COMBDATA = ~; PROVIDES: # COMBDATA*=~* # # comb*=~ list* # END COMMENT   MODE COMBDATALIST = REF[]COMBDATA; MODE COMBDATALISTYIELD = PROC(COMBDATALIST)VOID;   PROC comb gen combinations = (INT m, COMBDATALIST list, COMBDATALISTYIELD yield)VOID:( CASE m IN # case 1: transpose list # FOR i TO UPB list DO yield(list[i]) OD OUT [m + LWB list - 1]COMBDATA out; INT index out := 1; FOR i TO UPB list DO COMBDATA first = list[i]; # FOR COMBDATALIST sub recombination IN # comb gen combinations(m - 1, list[i+1:] #) DO (#, ## (COMBDATALIST sub recombination)VOID:( out[LWB list ] := first; out[LWB list+1:] := sub recombination; yield(out) # OD #)) OD ESAC );   SKIP
http://rosettacode.org/wiki/Conditional_structures
Conditional structures
Control Structures These are examples of control structures. You may also be interested in: Conditional structures Exceptions Flow-control structures Loops Task List the conditional structures offered by a programming language. See Wikipedia: conditionals for descriptions. Common conditional structures include if-then-else and switch. Less common are arithmetic if, ternary operator and Hash-based conditionals. Arithmetic if allows tight control over computed gotos, which optimizers have a hard time to figure out.
#Maple
Maple
if x > 0 then res := x; else res := -x; end if;
http://rosettacode.org/wiki/Comments
Comments
Task Show all ways to include text in a language source file that's completely ignored by the compiler or interpreter. Related tasks   Documentation   Here_document See also   Wikipedia   xkcd (Humor: hand gesture denoting // for "commenting out" people.)
#Octave
Octave
# I am a comment till the end of line % I am a comment till the end of line %{ This comment spans multiple lines %}  
http://rosettacode.org/wiki/Comments
Comments
Task Show all ways to include text in a language source file that's completely ignored by the compiler or interpreter. Related tasks   Documentation   Here_document See also   Wikipedia   xkcd (Humor: hand gesture denoting // for "commenting out" people.)
#Oforth
Oforth
// This is a comment...
http://rosettacode.org/wiki/Color_quantization
Color quantization
full color Example: Gimp 16 color Color quantization is the process of reducing number of colors used in an image while trying to maintain the visual appearance of the original image. In general, it is a form of cluster analysis, if each RGB color value is considered as a coordinate triple in the 3D colorspace. There are some well know algorithms [1], each with its own advantages and drawbacks. Task: Take an RGB color image and reduce its colors to some smaller number (< 256). For this task, use the frog as input and reduce colors to 16, and output the resulting colors. The chosen colors should be adaptive to the input image, meaning you should not use a fixed palette such as Web colors or Windows system palette. Dithering is not required. Note: the funny color bar on top of the frog image is intentional.
#Go
Go
package main   import ( "container/heap" "image" "image/color" "image/png" "log" "math" "os" "sort" )   func main() { f, err := os.Open("Quantum_frog.png") if err != nil { log.Fatal(err) } img, err := png.Decode(f) if ec := f.Close(); err != nil { log.Fatal(err) } else if ec != nil { log.Fatal(ec) } fq, err := os.Create("frog16.png") if err != nil { log.Fatal(err) } if err = png.Encode(fq, quant(img, 16)); err != nil { log.Fatal(err) } }   // Organize quatization in some logical steps. func quant(img image.Image, nq int) image.Image { qz := newQuantizer(img, nq) // set up a work space qz.cluster() // cluster pixels by color return qz.Paletted() // generate paletted image from clusters }   // A workspace with members that can be accessed by methods. type quantizer struct { img image.Image // original image cs []cluster // len is the desired number of colors px []point // list of all points in the image ch chValues // buffer for computing median eq []point // additional buffer used when splitting cluster }   type cluster struct { px []point // list of points in the cluster widestCh int // rx, gx, bx const for channel with widest value range chRange uint32 // value range (vmax-vmin) of widest channel }   type point struct{ x, y int } type chValues []uint32 type queue []*cluster   const ( rx = iota gx bx )   func newQuantizer(img image.Image, nq int) *quantizer { b := img.Bounds() npx := (b.Max.X - b.Min.X) * (b.Max.Y - b.Min.Y) // Create work space. qz := &quantizer{ img: img, ch: make(chValues, npx), cs: make([]cluster, nq), } // Populate initial cluster with all pixels from image. c := &qz.cs[0] px := make([]point, npx) c.px = px i := 0 for y := b.Min.Y; y < b.Max.Y; y++ { for x := b.Min.X; x < b.Max.X; x++ { px[i].x = x px[i].y = y i++ } } return qz }   func (qz *quantizer) cluster() { // Cluster by repeatedly splitting clusters. // Use a heap as priority queue for picking clusters to split. // The rule will be to spilt the cluster with the most pixels. // Terminate when the desired number of clusters has been populated // or when clusters cannot be further split. pq := new(queue) // Initial cluster. populated at this point, but not analyzed. c := &qz.cs[0] for i := 1; ; { qz.setColorRange(c) // Cluster cannot be split if all pixels are the same color. // Only enqueue clusters that can be split. if c.chRange > 0 { heap.Push(pq, c) // add new cluster to queue } // If no clusters have any color variation, mark the end of the // cluster list and quit early. if len(*pq) == 0 { qz.cs = qz.cs[:i] break } s := heap.Pop(pq).(*cluster) // get cluster to split c = &qz.cs[i] // set c to new cluster i++ m := qz.Median(s) qz.Split(s, c, m) // split s into c and s // If that was the last cluster, we're done. if i == len(qz.cs) { break } qz.setColorRange(s) if s.chRange > 0 { heap.Push(pq, s) // return to queue } } }   func (q *quantizer) setColorRange(c *cluster) { // Find extents of color values in each channel. var maxR, maxG, maxB uint32 minR := uint32(math.MaxUint32) minG := uint32(math.MaxUint32) minB := uint32(math.MaxUint32) for _, p := range c.px { r, g, b, _ := q.img.At(p.x, p.y).RGBA() if r < minR { minR = r } if r > maxR { maxR = r } if g < minG { minG = g } if g > maxG { maxG = g } if b < minB { minB = b } if b > maxB { maxB = b } } // See which channel had the widest range. s := gx min := minG max := maxG if maxR-minR > max-min { s = rx min = minR max = maxR } if maxB-minB > max-min { s = bx min = minB max = maxB } c.widestCh = s c.chRange = max - min // also store the range of that channel }   func (q *quantizer) Median(c *cluster) uint32 { px := c.px ch := q.ch[:len(px)] // Copy values from appropriate channel to buffer for computing median. switch c.widestCh { case rx: for i, p := range c.px { ch[i], _, _, _ = q.img.At(p.x, p.y).RGBA() } case gx: for i, p := range c.px { _, ch[i], _, _ = q.img.At(p.x, p.y).RGBA() } case bx: for i, p := range c.px { _, _, ch[i], _ = q.img.At(p.x, p.y).RGBA() } } // Median algorithm. sort.Sort(ch) half := len(ch) / 2 m := ch[half] if len(ch)%2 == 0 { m = (m + ch[half-1]) / 2 } return m }   func (q *quantizer) Split(s, c *cluster, m uint32) { px := s.px var v uint32 i := 0 lt := 0 gt := len(px) - 1 eq := q.eq[:0] // reuse any existing buffer for i <= gt { // Get pixel value of appropriate channel. r, g, b, _ := q.img.At(px[i].x, px[i].y).RGBA() switch s.widestCh { case rx: v = r case gx: v = g case bx: v = b } // Categorize each pixel as either <, >, or == median. switch { case v < m: px[lt] = px[i] lt++ i++ case v > m: px[gt], px[i] = px[i], px[gt] gt-- default: eq = append(eq, px[i]) i++ } } // Handle values equal to the median. if len(eq) > 0 { copy(px[lt:], eq) // move them back between the lt and gt values. // Then, if the number of gt values is < the number of lt values, // fix up i so that the split will include the eq values with // the gt values. if len(px)-i < lt { i = lt } q.eq = eq // squirrel away (possibly expanded) buffer for reuse } // Split the pixel list. s.px = px[:i] c.px = px[i:] }   func (qz *quantizer) Paletted() *image.Paletted { cp := make(color.Palette, len(qz.cs)) pi := image.NewPaletted(qz.img.Bounds(), cp) for i := range qz.cs { px := qz.cs[i].px // Average values in cluster to get palette color. var rsum, gsum, bsum int64 for _, p := range px { r, g, b, _ := qz.img.At(p.x, p.y).RGBA() rsum += int64(r) gsum += int64(g) bsum += int64(b) } n64 := int64(len(px)) cp[i] = color.NRGBA64{ uint16(rsum / n64), uint16(gsum / n64), uint16(bsum / n64), 0xffff, } // set image pixels for _, p := range px { pi.SetColorIndex(p.x, p.y, uint8(i)) } } return pi }   // Implement sort.Interface for sort in median algorithm. func (c chValues) Len() int { return len(c) } func (c chValues) Less(i, j int) bool { return c[i] < c[j] } func (c chValues) Swap(i, j int) { c[i], c[j] = c[j], c[i] }   // Implement heap.Interface for priority queue of clusters. func (q queue) Len() int { return len(q) }   // Less implements rule to select cluster with greatest number of pixels. func (q queue) Less(i, j int) bool { return len(q[j].px) < len(q[i].px) }   func (q queue) Swap(i, j int) { q[i], q[j] = q[j], q[i] } func (pq *queue) Push(x interface{}) { c := x.(*cluster) *pq = append(*pq, c) } func (pq *queue) Pop() interface{} { q := *pq n := len(q) - 1 c := q[n] *pq = q[:n] return c }
http://rosettacode.org/wiki/Conway%27s_Game_of_Life
Conway's Game of Life
The Game of Life is a   cellular automaton   devised by the British mathematician   John Horton Conway   in 1970.   It is the best-known example of a cellular automaton. Conway's game of life is described   here: A cell   C   is represented by a   1   when alive,   or   0   when dead,   in an   m-by-m   (or m×m)   square array of cells. We calculate   N   - the sum of live cells in C's   eight-location neighbourhood,   then cell   C   is alive or dead in the next generation based on the following table: C N new C 1 0,1 -> 0 # Lonely 1 4,5,6,7,8 -> 0 # Overcrowded 1 2,3 -> 1 # Lives 0 3 -> 1 # It takes three to give birth! 0 0,1,2,4,5,6,7,8 -> 0 # Barren Assume cells beyond the boundary are always dead. The "game" is actually a zero-player game, meaning that its evolution is determined by its initial state, needing no input from human players.   One interacts with the Game of Life by creating an initial configuration and observing how it evolves. Task Although you should test your implementation on more complex examples such as the   glider   in a larger universe,   show the action of the blinker   (three adjoining cells in a row all alive),   over three generations, in a 3 by 3 grid. References   Its creator John Conway, explains   the game of life.   Video from numberphile on youtube.   John Conway   Inventing Game of Life   - Numberphile video. Related task   Langton's ant   - another well known cellular automaton.
#VBScript
VBScript
  option explicit const tlcr=3, tlcc=3 const maxdim=15   dim a(15,15) dim b(15,15) dim ans0:ans0=chr(27)&"[" dim gen,n   erase a 'glider a(0,1)=true:a(1,2)=true:a(2,0)=true:a(2,1)=true:a(2,2)=true 'blinker a(3,13)=true:a(4,13)=true:a(5,13)=true 'beacon a(11,1)=true:a(11,2)=true: a(12,1)=true:a(12,2)=true a(13,3)=true:a(13,4)=true: a(14,3)=true:a(14,4)=true   gen=0 doframe   do display wscript.sleep(100) n=newgen loop until n=0 display   sub cls() wscript.StdOut.Write ans0 &"2J"&ans0 &"?25l":end sub 'hide cursor too sub toxy(r,c,s) wscript.StdOut.Write ans0 & r & ";" & c & "f" & s :end sub function iif(a,b,c) if a then iif=b else iif=c end if :end function   sub doframe dim r,c,s const frame="@" cls toxy 1,tlcc-1, "Conway's Game of Life" toxy tlcr-1,tlcc-1,string(maxdim+3,frame) s=frame&space(maxdim+1)&frame for r=0 to maxdim toxy tlcr+r,tlcc-1,s next toxy tlcr+maxdim+1,tlcc-1,string(maxdim+3,frame) end sub   sub display dim r,c const pix="#" for r=0 to maxdim for c=0 to maxdim toxy tlcr+r,tlcc+c,iif (a(r,c),pix," ") next next toxy tlcr+maxdim+2,tlcc-1,gen & " " & n toxy tlcr+maxdim+3,tlcc-1,"" gen=gen+1 end sub   function newgen dim r,c,cnt,cp,cm,rp,rm for r=0 to maxdim for c=0 to maxdim cp=(c+1) and maxdim 'wrap around cm=(c-1) and maxdim rp=(r+1) and maxdim rm=(r-1) and maxdim cnt=0 cnt=- a(rp,cp) - a(rp,c) - a(rp,cm) 'true =-1 cnt=cnt- a(r,cp)- a(r,cm) cnt=cnt- a(rm,cp)- a(rm,c) - a(rm,cm)   if a(r,c) then b(r,c)=iif (cnt=2 or cnt=3,true,false) else b(r,c)=iif (cnt=3,true,false) end if next next for r=0 to maxdim for c=0 to maxdim a(r,c)=b(r,c) newgen=newgen- b(r,c) next next end function  
http://rosettacode.org/wiki/Colour_pinstripe/Display
Colour pinstripe/Display
The task is to create 1 pixel wide coloured vertical pinstripes with a sufficient number of pinstripes to span the entire width of the graphics display. The pinstripes should either follow the system palette sequence,   or a sequence that includes: black,   red,   green,   blue,   magenta,   cyan,   yellow,   and   white:   after filling the top quarter, switch to a wider 2 pixel wide vertical pinstripe pattern,   halfway down the display, switch to 3 pixel wide vertical pinstripe,   finally to a 4 pixels wide vertical pinstripe for the last quarter of the display. See also   display black and white   print colour
#Go
Go
package main   import "github.com/fogleman/gg"   var palette = [8]string{ "000000", // black "FF0000", // red "00FF00", // green "0000FF", // blue "FF00FF", // magenta "00FFFF", // cyan "FFFF00", // yellow "FFFFFF", // white }   func pinstripe(dc *gg.Context) { w := dc.Width() h := dc.Height() / 4 for b := 1; b <= 4; b++ { for x, ci := 0, 0; x < w; x, ci = x+b, ci+1 { dc.SetHexColor(palette[ci%8]) y := h * (b - 1) dc.DrawRectangle(float64(x), float64(y), float64(b), float64(h)) dc.Fill() } } }   func main() { dc := gg.NewContext(900, 600) pinstripe(dc) dc.SavePNG("color_pinstripe.png") }
http://rosettacode.org/wiki/Colour_pinstripe/Display
Colour pinstripe/Display
The task is to create 1 pixel wide coloured vertical pinstripes with a sufficient number of pinstripes to span the entire width of the graphics display. The pinstripes should either follow the system palette sequence,   or a sequence that includes: black,   red,   green,   blue,   magenta,   cyan,   yellow,   and   white:   after filling the top quarter, switch to a wider 2 pixel wide vertical pinstripe pattern,   halfway down the display, switch to 3 pixel wide vertical pinstripe,   finally to a 4 pixels wide vertical pinstripe for the last quarter of the display. See also   display black and white   print colour
#Icon_and_Unicon
Icon and Unicon
link graphics,numbers,printf   procedure main() # pinstripe   &window := open("Colour Pinstripe","g","bg=black") | stop("Unable to open window")   WAttrib("canvas=hidden") WAttrib(sprintf("size=%d,%d",WAttrib("displaywidth"),WAttrib("displayheight"))) WAttrib("canvas=maximal")   Colours := ["black", "red", "green", "blue", "magenta", "cyan", "yellow", "white"] height := WAttrib("height") width := WAttrib("width")   maxbands := 4 # bands to draw bandheight := height / maxbands # height of each band every bands := 1 to maxbands do { # for each band top := 1 + bandheight * (bands-1) # .. top of band every c := 1 to width do { colour := Colours[ceil((c+0.)/bands)%*Colours+1] if colour == "black" then next # skip black else { Fg(colour) DrawLine(c,top,c,top+bandheight-1) } } } WDone() end
http://rosettacode.org/wiki/Color_of_a_screen_pixel
Color of a screen pixel
Task Get color information from an arbitrary pixel on the screen, such as the current location of the mouse cursor. The mouse cursor may or may not have to be active in a GUI created by your program. These functions are OS related.
#Logo
Logo
CLEARSCREEN SHOW PIXEL [255 255 255]
http://rosettacode.org/wiki/Color_of_a_screen_pixel
Color of a screen pixel
Task Get color information from an arbitrary pixel on the screen, such as the current location of the mouse cursor. The mouse cursor may or may not have to be active in a GUI created by your program. These functions are OS related.
#M2000_Interpreter
M2000 Interpreter
  Module CheckColor { \\ Print hex code for color, and html code for color Every 25 { move mouse.x, mouse.y color$=Hex$(-point, 3) ' point has a negative value Print Over "0x"+color$+", #"+Right$(color$,2)+Mid$(color$, 3,2)+Left$(color$,2) if mouse<>0 then exit } Print } CheckColor  
http://rosettacode.org/wiki/Color_of_a_screen_pixel
Color of a screen pixel
Task Get color information from an arbitrary pixel on the screen, such as the current location of the mouse cursor. The mouse cursor may or may not have to be active in a GUI created by your program. These functions are OS related.
#Mathematica.2FWolfram_Language
Mathematica/Wolfram Language
getPixel[{x_?NumberQ, y_?NumberQ}, screenNumber_Integer: 1] := ImageValue[CurrentScreenImage[n], {x, y}]
http://rosettacode.org/wiki/Color_wheel
Color wheel
Task Write a function to draw a HSV color wheel completely with code. This is strictly for learning purposes only. It's highly recommended that you use an image in an actual application to actually draw the color wheel   (as procedurally drawing is super slow). This does help you understand how color wheels work and this can easily be used to determine a color value based on a position within a circle.
#Phix
Phix
-- -- demo\rosetta\Colour_wheel.exw -- ============================= -- -- Note: Made non-resizeable since maximising this is far too slow. -- with javascript_semantics include pGUI.e constant title = "Colour wheel" Ihandle dlg, canvas cdCanvas cddbuffer, cdcanvas function redraw_cb(Ihandle /*ih*/, integer /*posx*/, /*posy*/) integer {w, h} = IupGetIntInt(canvas, "DRAWSIZE") cdCanvasActivate(cddbuffer) integer radius = floor(min(w,h)/2) integer cx = floor(w/2), cy = floor(h/2) for x=1 to w do for y=1 to h do integer rx = x - cx, ry = y - cy atom s = sqrt(rx*rx+ry*ry) / radius if s <= 1.0 then atom hue = ((atan2(ry, rx) / PI) + 1.0) / 2.0 cdCanvasPixel(cddbuffer, x, h-y, hsv_to_rgb(hue, s, 1)) end if end for end for cdCanvasFlush(cddbuffer) return IUP_DEFAULT end function function map_cb(Ihandle ih) cdcanvas = cdCreateCanvas(CD_IUP, ih) cddbuffer = cdCreateCanvas(CD_DBUFFER, cdcanvas) cdCanvasSetBackground(cddbuffer, CD_WHITE) cdCanvasSetForeground(cddbuffer, CD_MAGENTA) return IUP_DEFAULT end function procedure main() IupOpen() canvas = IupCanvas(NULL) IupSetAttribute(canvas, "RASTERSIZE", "300x300") IupSetCallback(canvas, "MAP_CB", Icallback("map_cb")) dlg = IupDialog(canvas,`TITLE="%s",RESIZE=NO`,{title}) IupSetCallback(canvas, "ACTION", Icallback("redraw_cb")) IupShowXY(dlg,IUP_CENTER,IUP_CENTER) if platform()!=JS then IupMainLoop() IupClose() end if end procedure main()
http://rosettacode.org/wiki/Combinations
Combinations
Task Given non-negative integers   m   and   n,   generate all size   m   combinations   of the integers from   0   (zero)   to   n-1   in sorted order   (each combination is sorted and the entire table is sorted). Example 3   comb   5     is: 0 1 2 0 1 3 0 1 4 0 2 3 0 2 4 0 3 4 1 2 3 1 2 4 1 3 4 2 3 4 If it is more "natural" in your language to start counting from   1   (unity) instead of   0   (zero), the combinations can be of the integers from   1   to   n. See also The number of samples of size k from n objects. With   combinations and permutations   generation tasks. Order Unimportant Order Important Without replacement ( n k ) = n C k = n ( n − 1 ) … ( n − k + 1 ) k ( k − 1 ) … 1 {\displaystyle {\binom {n}{k}}=^{n}\operatorname {C} _{k}={\frac {n(n-1)\ldots (n-k+1)}{k(k-1)\dots 1}}} n P k = n ⋅ ( n − 1 ) ⋅ ( n − 2 ) ⋯ ( n − k + 1 ) {\displaystyle ^{n}\operatorname {P} _{k}=n\cdot (n-1)\cdot (n-2)\cdots (n-k+1)} Task: Combinations Task: Permutations With replacement ( n + k − 1 k ) = n + k − 1 C k = ( n + k − 1 ) ! ( n − 1 ) ! k ! {\displaystyle {\binom {n+k-1}{k}}=^{n+k-1}\operatorname {C} _{k}={(n+k-1)! \over (n-1)!k!}} n k {\displaystyle n^{k}} Task: Combinations with repetitions Task: Permutations with repetitions
#AppleScript
AppleScript
on comb(n, k) set c to {} repeat with i from 1 to k set end of c to i's contents end repeat set r to {c's contents} repeat while my next_comb(c, k, n) set end of r to c's contents end repeat return r end comb   on next_comb(c, k, n) set i to k set c's item i to (c's item i) + 1 repeat while (i > 1 and c's item i ≥ n - k + 1 + i) set i to i - 1 set c's item i to (c's item i) + 1 end repeat if (c's item 1 > n - k + 1) then return false repeat with i from i + 1 to k set c's item i to (c's item (i - 1)) + 1 end repeat return true end next_comb   return comb(5, 3)
http://rosettacode.org/wiki/Conditional_structures
Conditional structures
Control Structures These are examples of control structures. You may also be interested in: Conditional structures Exceptions Flow-control structures Loops Task List the conditional structures offered by a programming language. See Wikipedia: conditionals for descriptions. Common conditional structures include if-then-else and switch. Less common are arithmetic if, ternary operator and Hash-based conditionals. Arithmetic if allows tight control over computed gotos, which optimizers have a hard time to figure out.
#Mathematica.2FWolfram_Language
Mathematica/Wolfram Language
if x == 1 disp 'x==1'; elseif x > 1 disp 'x>1'; else disp 'x<1'; end
http://rosettacode.org/wiki/Comments
Comments
Task Show all ways to include text in a language source file that's completely ignored by the compiler or interpreter. Related tasks   Documentation   Here_document See also   Wikipedia   xkcd (Humor: hand gesture denoting // for "commenting out" people.)
#ooRexx
ooRexx
/* Multi-line comment block */   -- this type of comment works in ooRexx, NetRexx and some of the more popular REXX implementations like Regina   hour = 0 -- which is, like midnight, dude.   hour = 12 /* time for lunch! works as well (and really everywhere) */    
http://rosettacode.org/wiki/Comments
Comments
Task Show all ways to include text in a language source file that's completely ignored by the compiler or interpreter. Related tasks   Documentation   Here_document See also   Wikipedia   xkcd (Humor: hand gesture denoting // for "commenting out" people.)
#Openscad
Openscad
  // This is a single line comment   /* This comment spans multiple lines */    
http://rosettacode.org/wiki/Color_quantization
Color quantization
full color Example: Gimp 16 color Color quantization is the process of reducing number of colors used in an image while trying to maintain the visual appearance of the original image. In general, it is a form of cluster analysis, if each RGB color value is considered as a coordinate triple in the 3D colorspace. There are some well know algorithms [1], each with its own advantages and drawbacks. Task: Take an RGB color image and reduce its colors to some smaller number (< 256). For this task, use the frog as input and reduce colors to 16, and output the resulting colors. The chosen colors should be adaptive to the input image, meaning you should not use a fixed palette such as Web colors or Windows system palette. Dithering is not required. Note: the funny color bar on top of the frog image is intentional.
#Haskell
Haskell
import qualified Data.ByteString.Lazy as BS import qualified Data.Foldable as Fold import qualified Data.List as List import Data.Ord import qualified Data.Sequence as Seq import Data.Word import System.Environment   import Codec.Picture import Codec.Picture.Types   type Accessor = PixelRGB8 -> Pixel8   -- Getters for pixel components, as the constructor does not -- provide any public ones. red, blue, green :: Accessor red (PixelRGB8 r _ _) = r green (PixelRGB8 _ g _) = g blue (PixelRGB8 _ _ b) = b   -- Get all of the pixels in the image in list form. getPixels :: Pixel a => Image a -> [a] getPixels image = [pixelAt image x y | x <- [0..(imageWidth image - 1)] , y <- [0..(imageHeight image - 1)]]   -- Compute the color-space extents of a list of pixels. extents :: [PixelRGB8] -> (PixelRGB8, PixelRGB8) extents pixels = (extent minimum, extent maximum) where bound f g = f $ map g pixels extent f = PixelRGB8 (bound f red) (bound f green) (bound f blue)   -- Compute the average value of a list of pixels. average :: [PixelRGB8] -> PixelRGB8 average pixels = PixelRGB8 (avg red) (avg green) (avg blue) where len = toInteger $ length pixels avg c = fromIntegral $ (sum $ map (toInteger . c) pixels) `div` len   -- Perform a componentwise pixel operation. compwise :: (Word8 -> Word8 -> Word8) -> PixelRGB8 -> PixelRGB8 -> PixelRGB8 compwise f (PixelRGB8 ra ga ba) (PixelRGB8 rb gb bb) = PixelRGB8 (f ra rb) (f ga gb) (f ba bb)   -- Compute the absolute difference of two pixels. diffPixel :: PixelRGB8 -> PixelRGB8 -> PixelRGB8 diffPixel = compwise (\x y -> max x y - min x y)   -- Compute the Euclidean distance squared between two pixels. distPixel :: PixelRGB8 -> PixelRGB8 -> Integer distPixel x y = (rr ^ 2) + (gg ^ 2) + (bb ^ 2) where PixelRGB8 r g b = diffPixel x y rr = toInteger r gg = toInteger g bb = toInteger b   -- Determine the dimension of the longest axis of the extents. longestAccessor :: (PixelRGB8, PixelRGB8) -> Accessor longestAccessor (l, h) = snd $ Fold.maximumBy (comparing fst) $ zip [r, g, b] [red, green, blue] where PixelRGB8 r g b = diffPixel h l   -- Find the index of a pixel to its respective palette. nearestIdx :: PixelRGB8 -> [PixelRGB8] -> Int nearestIdx pixel px = ans where Just ans = List.findIndex (== near) px near = List.foldl1 comp px comp a b = if distPixel a pixel <= distPixel b pixel then a else b   -- Sort a list of pixels on its longest axis and then split by the mean. -- It is intentional that the mean is chosen by all dimensions -- instead of the given one. meanSplit :: [PixelRGB8] -> Accessor -> ([PixelRGB8], [PixelRGB8]) meanSplit l f = List.splitAt index sorted where sorted = List.sortBy (comparing f) l index = nearestIdx (average l) sorted   -- Perform the Median Cut algorithm on an image producing -- an index map image and its respective palette. meanCutQuant :: Image PixelRGB8 -> Int -> (Image Pixel8, Palette) meanCutQuant image numRegions = (indexmap, palette) where extentsP p = (p, extents p) regions = map (\(p, e) -> (average p, e)) $ search $ Seq.singleton $ extentsP $ getPixels image palette = snd $ generateFoldImage (\(x:xs) _ _ -> (xs, x)) (map fst regions) numRegions 1 indexmap = pixelMap (\pixel -> fromIntegral $ nearestIdx pixel $ map fst regions) image search queue = case Seq.viewl queue of (pixels, extent) Seq.:< queueB -> let (left, right) = meanSplit pixels $ longestAccessor extent queueC = Fold.foldl (Seq.|>) queueB $ map extentsP [left, right] in if Seq.length queueC >= numRegions then List.take numRegions $ Fold.toList queueC else search queueC Seq.EmptyL -> error "Queue should never be empty."   quantizeIO :: FilePath -> FilePath -> Int -> IO () quantizeIO path outpath numRegions = do dynimage <- readImage path case dynimage of Left err -> putStrLn err Right (ImageRGB8 image) -> doImage image Right (ImageRGBA8 image) -> doImage (pixelMap dropTransparency image) _ -> putStrLn "Expecting RGB8 or RGBA8 image" where doImage image = do let (indexmap, palette) = meanCutQuant image numRegions case encodePalettedPng palette indexmap of Left err -> putStrLn err Right bstring -> BS.writeFile outpath bstring   main :: IO () main = do args <- getArgs prog <- getProgName case args of [path, outpath] -> quantizeIO path outpath 16 _ -> putStrLn $ "Usage: " ++ prog ++ " <image-file> <out-file.png>"
http://rosettacode.org/wiki/Conway%27s_Game_of_Life
Conway's Game of Life
The Game of Life is a   cellular automaton   devised by the British mathematician   John Horton Conway   in 1970.   It is the best-known example of a cellular automaton. Conway's game of life is described   here: A cell   C   is represented by a   1   when alive,   or   0   when dead,   in an   m-by-m   (or m×m)   square array of cells. We calculate   N   - the sum of live cells in C's   eight-location neighbourhood,   then cell   C   is alive or dead in the next generation based on the following table: C N new C 1 0,1 -> 0 # Lonely 1 4,5,6,7,8 -> 0 # Overcrowded 1 2,3 -> 1 # Lives 0 3 -> 1 # It takes three to give birth! 0 0,1,2,4,5,6,7,8 -> 0 # Barren Assume cells beyond the boundary are always dead. The "game" is actually a zero-player game, meaning that its evolution is determined by its initial state, needing no input from human players.   One interacts with the Game of Life by creating an initial configuration and observing how it evolves. Task Although you should test your implementation on more complex examples such as the   glider   in a larger universe,   show the action of the blinker   (three adjoining cells in a row all alive),   over three generations, in a 3 by 3 grid. References   Its creator John Conway, explains   the game of life.   Video from numberphile on youtube.   John Conway   Inventing Game of Life   - Numberphile video. Related task   Langton's ant   - another well known cellular automaton.
#Vlang
Vlang
import rand import strings import time   struct Field { mut: s [][]bool w int h int }   fn new_field(w int, h int) Field { s := [][]bool{len: h, init: []bool{len: w}} return Field{s, w, h} }   fn (mut f Field) set(x int, y int, b bool) { f.s[y][x] = b }   fn (f Field) next(x int, y int) bool { mut on := 0 for i := -1; i <= 1; i++ { for j := -1; j <= 1; j++ { if f.state(x+i, y+j) && !(j == 0 && i == 0) { on++ } } } return on == 3 || (on == 2 && f.state(x, y)) }   fn (f Field) state(xx int, yy int) bool { mut x, mut y := xx, yy for y < 0 { y += f.h } for x < 0 { x += f.w } return f.s[y%f.h][x%f.w] }   struct Life { mut: w int h int a Field b Field }   fn new_life(w int, h int) Life { mut a := new_field(w, h) for _ in 0..(w * h / 2) { a.set(rand.intn(w) or {0}, rand.intn(h) or {0}, true) } return Life{ a: a, b: new_field(w, h), w: w h: h, } }   fn (mut l Life) step() { for y in 0..l.h { for x in 0.. l.w { l.b.set(x, y, l.a.next(x, y)) } } l.a, l.b = l.b, l.a }   fn (l Life) str() string { mut buf := strings.new_builder(128) for y in 0..l.h { for x in 0..l.w { mut b := ' ' if l.a.state(x, y) { b = '*' } buf.write_string(b) } buf.write_string('\n') } return buf.str() }   fn main() { mut l := new_life(80, 15) for i := 0; i < 300; i++ { l.step() //println("------------------------------------------------") print('\x0c') println(l) time.sleep(time.second / 30) } }
http://rosettacode.org/wiki/Colour_pinstripe/Display
Colour pinstripe/Display
The task is to create 1 pixel wide coloured vertical pinstripes with a sufficient number of pinstripes to span the entire width of the graphics display. The pinstripes should either follow the system palette sequence,   or a sequence that includes: black,   red,   green,   blue,   magenta,   cyan,   yellow,   and   white:   after filling the top quarter, switch to a wider 2 pixel wide vertical pinstripe pattern,   halfway down the display, switch to 3 pixel wide vertical pinstripe,   finally to a 4 pixels wide vertical pinstripe for the last quarter of the display. See also   display black and white   print colour
#J
J
load 'viewmat' size=. 2{.".wd'qm' NB. J6 size=. getscreenwh_jgtk_ '' NB. J7 'rgb'viewmat (4<.@%~{:size)# ({.size) $&> 1 2 3 4#&.> <256#.255*#:i.8
http://rosettacode.org/wiki/Colour_pinstripe/Display
Colour pinstripe/Display
The task is to create 1 pixel wide coloured vertical pinstripes with a sufficient number of pinstripes to span the entire width of the graphics display. The pinstripes should either follow the system palette sequence,   or a sequence that includes: black,   red,   green,   blue,   magenta,   cyan,   yellow,   and   white:   after filling the top quarter, switch to a wider 2 pixel wide vertical pinstripe pattern,   halfway down the display, switch to 3 pixel wide vertical pinstripe,   finally to a 4 pixels wide vertical pinstripe for the last quarter of the display. See also   display black and white   print colour
#Java
Java
import java.awt.*; import static java.awt.Color.*; import javax.swing.*;   public class ColourPinstripeDisplay extends JPanel { final static Color[] palette = {black, red, green, blue, magenta,cyan, yellow, white};   final int bands = 4;   public ColourPinstripeDisplay() { setPreferredSize(new Dimension(900, 600)); }   @Override public void paintComponent(Graphics g) { super.paintComponent(g); int h = getHeight(); for (int b = 1; b <= bands; b++) { for (int x = 0, colIndex = 0; x < getWidth(); x += b, colIndex++) { g.setColor(palette[colIndex % palette.length]); g.fillRect(x, (b - 1) * (h / bands), x + b, b * (h / bands)); } } }   public static void main(String[] args) { SwingUtilities.invokeLater(() -> { JFrame f = new JFrame(); f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); f.setTitle("ColourPinstripeDisplay"); f.add(new ColourPinstripeDisplay(), BorderLayout.CENTER); f.pack(); f.setLocationRelativeTo(null); f.setVisible(true); }); } }
http://rosettacode.org/wiki/Color_of_a_screen_pixel
Color of a screen pixel
Task Get color information from an arbitrary pixel on the screen, such as the current location of the mouse cursor. The mouse cursor may or may not have to be active in a GUI created by your program. These functions are OS related.
#Nim
Nim
import gtk2, gdk2, gdk2pixbuf   type Color = tuple[r, g, b: byte]   gtk2.nim_init()   proc getPixelColor(x, y: int32): Color = var p = pixbufNew(COLORSPACE_RGB, false, 8, 1, 1) discard p.getFromDrawable(getDefaultRootWindow().Drawable, getDefaultScreen().getSystemColormap(), x, y, 0, 0, 1, 1) result = cast[ptr Color](p.getPixels)[]   echo getPixelColor(0, 0)
http://rosettacode.org/wiki/Color_of_a_screen_pixel
Color of a screen pixel
Task Get color information from an arbitrary pixel on the screen, such as the current location of the mouse cursor. The mouse cursor may or may not have to be active in a GUI created by your program. These functions are OS related.
#Perl
Perl
use strict; use warnings; use GD;   my $file = '/tmp/one-pixel-screen-capture.png';   system "screencapture -R 123,456,1,1 $file";   my $image = GD::Image->newFromPng($file); my $index = $image->getPixel(0,0); my($red,$green,$blue) = $image->rgb($index); print "RGB: $red, $green, $blue\n";   unlink $file;
http://rosettacode.org/wiki/Color_wheel
Color wheel
Task Write a function to draw a HSV color wheel completely with code. This is strictly for learning purposes only. It's highly recommended that you use an image in an actual application to actually draw the color wheel   (as procedurally drawing is super slow). This does help you understand how color wheels work and this can easily be used to determine a color value based on a position within a circle.
#Processing
Processing
size(300, 300); background(0); float radius = min(width, height) / 2.0; float cx = width / 2; float cy = width / 2; for (int x = 0; x < width; x++) { for (int y = 0; y < width; y++) { float rx = x - cx; float ry = y - cy; float s = sqrt(sq(rx) + sq(ry)) / radius; if (s <= 1.0) { float h = ((atan2(ry, rx) / PI) + 1.0) / 2.0; colorMode(HSB); color c = color(int(h * 255), int(s * 255), 255); set(x, y, c); } } }
http://rosettacode.org/wiki/Color_wheel
Color wheel
Task Write a function to draw a HSV color wheel completely with code. This is strictly for learning purposes only. It's highly recommended that you use an image in an actual application to actually draw the color wheel   (as procedurally drawing is super slow). This does help you understand how color wheels work and this can easily be used to determine a color value based on a position within a circle.
#Python
Python
from PIL import Image import colorsys import math   if __name__ == "__main__":   im = Image.new("RGB", (300,300)) radius = min(im.size)/2.0 cx, cy = im.size[0]/2, im.size[1]/2 pix = im.load()   for x in range(im.width): for y in range(im.height): rx = x - cx ry = y - cy s = (rx ** 2.0 + ry ** 2.0) ** 0.5 / radius if s <= 1.0: h = ((math.atan2(ry, rx) / math.pi) + 1.0) / 2.0 rgb = colorsys.hsv_to_rgb(h, s, 1.0) pix[x,y] = tuple([int(round(c*255.0)) for c in rgb])   im.show()
http://rosettacode.org/wiki/Combinations
Combinations
Task Given non-negative integers   m   and   n,   generate all size   m   combinations   of the integers from   0   (zero)   to   n-1   in sorted order   (each combination is sorted and the entire table is sorted). Example 3   comb   5     is: 0 1 2 0 1 3 0 1 4 0 2 3 0 2 4 0 3 4 1 2 3 1 2 4 1 3 4 2 3 4 If it is more "natural" in your language to start counting from   1   (unity) instead of   0   (zero), the combinations can be of the integers from   1   to   n. See also The number of samples of size k from n objects. With   combinations and permutations   generation tasks. Order Unimportant Order Important Without replacement ( n k ) = n C k = n ( n − 1 ) … ( n − k + 1 ) k ( k − 1 ) … 1 {\displaystyle {\binom {n}{k}}=^{n}\operatorname {C} _{k}={\frac {n(n-1)\ldots (n-k+1)}{k(k-1)\dots 1}}} n P k = n ⋅ ( n − 1 ) ⋅ ( n − 2 ) ⋯ ( n − k + 1 ) {\displaystyle ^{n}\operatorname {P} _{k}=n\cdot (n-1)\cdot (n-2)\cdots (n-k+1)} Task: Combinations Task: Permutations With replacement ( n + k − 1 k ) = n + k − 1 C k = ( n + k − 1 ) ! ( n − 1 ) ! k ! {\displaystyle {\binom {n+k-1}{k}}=^{n+k-1}\operatorname {C} _{k}={(n+k-1)! \over (n-1)!k!}} n k {\displaystyle n^{k}} Task: Combinations with repetitions Task: Permutations with repetitions
#AutoHotkey
AutoHotkey
MsgBox % Comb(1,1) MsgBox % Comb(3,3) MsgBox % Comb(3,2) MsgBox % Comb(2,3) MsgBox % Comb(5,3)   Comb(n,t) { ; Generate all n choose t combinations of 1..n, lexicographically IfLess n,%t%, Return Loop %t% c%A_Index% := A_Index i := t+1, c%i% := n+1   Loop { Loop %t% i := t+1-A_Index, c .= c%i% " " c .= "`n" ; combinations in new lines j := 1, i := 2 Loop If (c%j%+1 = c%i%) c%j% := j, ++j, ++i Else Break If (j > t) Return c c%j% += 1 } }
http://rosettacode.org/wiki/Conditional_structures
Conditional structures
Control Structures These are examples of control structures. You may also be interested in: Conditional structures Exceptions Flow-control structures Loops Task List the conditional structures offered by a programming language. See Wikipedia: conditionals for descriptions. Common conditional structures include if-then-else and switch. Less common are arithmetic if, ternary operator and Hash-based conditionals. Arithmetic if allows tight control over computed gotos, which optimizers have a hard time to figure out.
#MATLAB
MATLAB
if x == 1 disp 'x==1'; elseif x > 1 disp 'x>1'; else disp 'x<1'; end
http://rosettacode.org/wiki/Comments
Comments
Task Show all ways to include text in a language source file that's completely ignored by the compiler or interpreter. Related tasks   Documentation   Here_document See also   Wikipedia   xkcd (Humor: hand gesture denoting // for "commenting out" people.)
#OxygenBasic
OxygenBasic
  ' Basic line comment ; Assembly code line comment // C line comment /* C block comment */  
http://rosettacode.org/wiki/Comments
Comments
Task Show all ways to include text in a language source file that's completely ignored by the compiler or interpreter. Related tasks   Documentation   Here_document See also   Wikipedia   xkcd (Humor: hand gesture denoting // for "commenting out" people.)
#Oz
Oz
% one line comment   %% often with double "%" because then the indentation is correct in Emacs   /* multi line comment */  
http://rosettacode.org/wiki/Color_quantization
Color quantization
full color Example: Gimp 16 color Color quantization is the process of reducing number of colors used in an image while trying to maintain the visual appearance of the original image. In general, it is a form of cluster analysis, if each RGB color value is considered as a coordinate triple in the 3D colorspace. There are some well know algorithms [1], each with its own advantages and drawbacks. Task: Take an RGB color image and reduce its colors to some smaller number (< 256). For this task, use the frog as input and reduce colors to 16, and output the resulting colors. The chosen colors should be adaptive to the input image, meaning you should not use a fixed palette such as Web colors or Windows system palette. Dithering is not required. Note: the funny color bar on top of the frog image is intentional.
#J
J
kmcL=:4 :0 C=. /:~ 256 #.inv ,y NB. colors G=. x (i.@] <.@* %) #C NB. groups (initial) Q=. _ NB. quantized list of colors (initial whilst.-. Q-:&<.&(x&*)Q0 do. Q0=. Q Q=. /:~C (+/ % #)/.~ G G=. (i. <./)"1 C +/&.:*: .- |:Q end.Q )
http://rosettacode.org/wiki/Color_quantization
Color quantization
full color Example: Gimp 16 color Color quantization is the process of reducing number of colors used in an image while trying to maintain the visual appearance of the original image. In general, it is a form of cluster analysis, if each RGB color value is considered as a coordinate triple in the 3D colorspace. There are some well know algorithms [1], each with its own advantages and drawbacks. Task: Take an RGB color image and reduce its colors to some smaller number (< 256). For this task, use the frog as input and reduce colors to 16, and output the resulting colors. The chosen colors should be adaptive to the input image, meaning you should not use a fixed palette such as Web colors or Windows system palette. Dithering is not required. Note: the funny color bar on top of the frog image is intentional.
#Julia
Julia
  const execstring =`convert Quantum_frog.png -dither None -colors 16 Quantum_frog_new.png` run(execstring)  
http://rosettacode.org/wiki/Conway%27s_Game_of_Life
Conway's Game of Life
The Game of Life is a   cellular automaton   devised by the British mathematician   John Horton Conway   in 1970.   It is the best-known example of a cellular automaton. Conway's game of life is described   here: A cell   C   is represented by a   1   when alive,   or   0   when dead,   in an   m-by-m   (or m×m)   square array of cells. We calculate   N   - the sum of live cells in C's   eight-location neighbourhood,   then cell   C   is alive or dead in the next generation based on the following table: C N new C 1 0,1 -> 0 # Lonely 1 4,5,6,7,8 -> 0 # Overcrowded 1 2,3 -> 1 # Lives 0 3 -> 1 # It takes three to give birth! 0 0,1,2,4,5,6,7,8 -> 0 # Barren Assume cells beyond the boundary are always dead. The "game" is actually a zero-player game, meaning that its evolution is determined by its initial state, needing no input from human players.   One interacts with the Game of Life by creating an initial configuration and observing how it evolves. Task Although you should test your implementation on more complex examples such as the   glider   in a larger universe,   show the action of the blinker   (three adjoining cells in a row all alive),   over three generations, in a 3 by 3 grid. References   Its creator John Conway, explains   the game of life.   Video from numberphile on youtube.   John Conway   Inventing Game of Life   - Numberphile video. Related task   Langton's ant   - another well known cellular automaton.
#Wren
Wren
import "random" for Random import "timer" for Timer   var Rand = Random.new(0) // using a constant seed to produce same output on each run   // patterns var BLINKER = 0 var GLIDER = 1 var RANDOM = 2   class Field { construct new(w, h) { _w = w _h = h _s = List.filled(h, null) for (i in 0...h) _s[i] = List.filled(w, false) }   [x, y]=(b) { _s[y][x] = b }   state(x, y) { if (!(0..._w).contains(x) || !(0..._h).contains(y)) return false return _s[y][x] }   next(x, y) { var on = 0 for (i in -1..1) { for (j in -1..1) { if (state(x + i, y + j) && !(j == 0 && i == 0)) on = on + 1 } } return on == 3 || (on == 2 && state(x, y)) } }   class Life { construct new(pattern) { if (pattern == BLINKER) { _w = 3 _h = 3 _a = Field.new(_w, _h) _b = Field.new(_w, _h) _a[0, 1] = true _a[1, 1] = true _a[2, 1] = true } else if (pattern == GLIDER) { _w = 4 _h = 4 _a = Field.new(_w, _h) _b = Field.new(_w, _h) _a[1, 0] = true _a[2, 1] = true for (i in 0..2) _a[i, 2] = true } else if(pattern == RANDOM) { _w = 80 _h = 15 _a = Field.new(_w, _h) _b = Field.new(_w, _h) for (i in 0...(_w * _h).floor / 2) { _a[Rand.int(_w), Rand.int(_h)] = true } } }   step() { for (y in 0..._h) { for (x in 0..._w) _b[x, y] = _a.next(x, y) } var t = _a _a = _b _b = t }   toString { var sb = "" for (y in 0..._h) { for (x in 0..._w) { var c = _a.state(x, y) ? "#" : "." sb = sb + c } sb = sb + "\n" } return sb } }   var lives = [ [Life.new(BLINKER), 3, "BLINKER"], [Life.new(GLIDER), 4, "GLIDER" ], [Life.new(RANDOM), 100, "RANDOM" ] ]   for (t in lives) { var game = t[0] var gens = t[1] var title = t[2] System.print("%(title):\n") for (i in 0..gens) { System.print("Generation: %(i)\n%(game)") Timer.sleep(30) game.step() } System.print() }