task_url
stringlengths 30
116
| task_name
stringlengths 2
86
| task_description
stringlengths 0
14.4k
| language_url
stringlengths 2
53
| language_name
stringlengths 1
52
| code
stringlengths 0
61.9k
|
---|---|---|---|---|---|
http://rosettacode.org/wiki/Probabilistic_choice
|
Probabilistic choice
|
Given a mapping between items and their required probability of occurrence, generate a million items randomly subject to the given probabilities and compare the target probability of occurrence versus the generated values.
The total of all the probabilities should equal one. (Because floating point arithmetic is involved, this is subject to rounding errors).
aleph 1/5.0
beth 1/6.0
gimel 1/7.0
daleth 1/8.0
he 1/9.0
waw 1/10.0
zayin 1/11.0
heth 1759/27720 # adjusted so that probabilities add to 1
Related task
Random number generator (device)
|
#AWK
|
AWK
|
#!/usr/bin/awk -f
BEGIN {
ITERATIONS = 1000000
delete symbMap
delete probMap
delete counts
initData();
for (i = 0; i < ITERATIONS; i++) {
distribute(rand())
}
showDistributions()
exit
}
function distribute(rnd, cnt, symNum, sym, symPrb) {
cnt = length(symbMap)
for (symNum = 1; symNum <= cnt; symNum++) {
sym = symbMap[symNum];
symPrb = probMap[sym];
rnd -= symPrb;
if (rnd <= 0) {
counts[sym]++
return;
}
}
}
function showDistributions( s, sym, prb, actSum, expSum, totItr) {
actSum = 0.0
expSum = 0.0
totItr = 0
printf "%-7s %-7s %-5s %-5s\n", "symb", "num.", "act.", "expt."
print "------- ------- ----- -----"
for (s = 1; s <= length(symbMap); s++) {
sym = symbMap[s]
prb = counts[sym]/ITERATIONS
actSum += prb
expSum += probMap[sym]
totItr += counts[sym]
printf "%-7s %7d %1.3f %1.3f\n", sym, counts[sym], prb, probMap[sym]
}
print "------- ------- ----- -----"
printf "Totals: %7d %1.3f %1.3f\n", totItr, actSum, expSum
}
function initData( sym) {
srand()
probMap["aleph"] = 1.0 / 5.0
probMap["beth"] = 1.0 / 6.0
probMap["gimel"] = 1.0 / 7.0
probMap["daleth"] = 1.0 / 8.0
probMap["he"] = 1.0 / 9.0
probMap["waw"] = 1.0 / 10.0
probMap["zyin"] = 1.0 / 11.0
probMap["heth"] = 1759.0 / 27720.0
symbMap[1] = "aleph"
symbMap[2] = "beth"
symbMap[3] = "gimel"
symbMap[4] = "daleth"
symbMap[5] = "he"
symbMap[6] = "waw"
symbMap[7] = "zyin"
symbMap[8] = "heth"
for (sym in probMap)
counts[sym] = 0;
}
|
http://rosettacode.org/wiki/Primes_-_allocate_descendants_to_their_ancestors
|
Primes - allocate descendants to their ancestors
|
The concept, is to add the decomposition into prime factors of a number to get its 'ancestors'.
The objective is to demonstrate that the choice of the algorithm can be crucial in term of performance.
This solution could be compared to the solution that would use the decomposition into primes for all the numbers between 1 and 333.
The problem is to list, for a delimited set of ancestors (from 1 to 99) :
- the total of their own ancestors (LEVEL),
- their own ancestors (ANCESTORS),
- the total of the direct descendants (DESCENDANTS),
- all the direct descendants.
You only have to consider the prime factors < 100.
A grand total of the descendants has to be printed at the end of the list.
The task should be accomplished in a reasonable time-frame.
Example :
46 = 2*23 --> 2+23 = 25, is the parent of 46.
25 = 5*5 --> 5+5 = 10, is the parent of 25.
10 = 2*5 --> 2+5 = 7, is the parent of 10.
7 is a prime factor and, as such, has no parent.
46 has 3 ancestors (7, 10 and 25).
46 has 557 descendants.
The list layout and the output for Parent [46] :
[46] Level: 3
Ancestors: 7, 10, 25
Descendants: 557
129, 205, 246, 493, 518, 529, 740, 806, 888, 999, 1364, 1508, 1748, 2552, 2871, 3128, 3255, 3472, 3519, 3875, 3906, 4263, 4650, 4960, 5075, 5415, 5580, 5776, 5952, 6090, 6279, 6496, 6498, 6696, 6783, 7250, 7308, 7475, 7533, 8075, 8151, 8619, 8700, 8855, 8970, 9280, 9568, 9690, 10115, 10336, 10440, 10626, 10764, 11136, 11495, 11628, 11745, 12103, 12138, 12155, 12528, 12650, 13794, 14094, 14399, 14450, 14586, 15180, 15379, 15778, 16192, 17290, 17303, 17340, 18216, 18496, 20482, 20493, 20570, 20748, 20808, 21658, 21970, 22540, 23409, 24684, 24700, 26026, 26364, 27048, 29260, 29282, 29640, 30429, 30940, 31616, 32200, 33345, 35112, 35568, 36225, 36652, 37128, 37180, 38640, 39501, 40014, 41216, 41769, 41800, 43125, 43470, 44044, 44200, 44616, 46000, 46368, 47025, 49725, 50160, 50193, 51750, 52136, 52164, 52360, 53040, 53504, 55200, 56430, 56576, 58653, 58880, 58905, 59670, 60192, 62100, 62832, 62920, 63648, 66240, 66248, 67716, 69825, 70125, 70656, 70686, 70785, 71604, 74480, 74520, 74529, 74536, 74800, 75504, 79488, 83125, 83790, 83835, 83853, 84150, 84942, 87465, 88725, 89376, 89424, 89760, 93296, 94640, 95744, 99750, 99825, 100548, 100602, 100980, 104125, 104958, 105105, 105625, 106400, 106470, 106480, 107712, 112112, 113568, 118750, 119700, 119790, 121176, 124509, 124950, 125125, 126126, 126750, 127680, 127764, 127776, 133280, 135200, 136192, 136323, 142500, 143640, 143748, 148225, 148750, 149940, 150150, 152000, 152100, 153216, 156065, 159936, 160160, 161595, 162240, 171000, 172368, 173056, 177870, 178500, 178750, 179928, 180180, 182400, 182520, 184877, 187278, 189728, 190400, 192192, 192375, 193914, 194560, 194688, 202419, 205200, 205335, 211750, 212500, 213444, 214200, 214500, 216216, 218880, 219024, 222950, 228480, 228800, 230850, 233472, 240975, 243243, 243712, 246240, 246402, 254100, 255000, 257040, 257400, 262656, 264110, 267540, 271040, 272000, 274176, 274560, 277020, 285376, 286875, 289170, 289575, 292864, 295488, 302500, 304920, 306000, 308448, 308880, 316932, 318500, 321048, 325248, 326400, 329472, 332424, 343035, 344250, 347004, 347490, 348160, 361179, 363000, 365904, 367200, 370656, 373977, 377300, 382200, 387200, 391680, 407680, 408375, 411642, 413100, 416988, 417792, 429975, 435600, 440640, 452760, 455000, 458640, 464640, 470016, 470596, 482944, 489216, 490050, 495616, 495720, 509355, 511875, 515970, 522720, 528768, 539000, 543312, 546000, 550368, 557568, 557685, 582400, 588060, 594864, 606375, 609375, 611226, 614250, 619164, 627264, 646800, 650000, 655200, 669222, 672280, 689920, 698880, 705672, 721875, 727650, 731250, 737100, 745472, 756315, 770000, 776160, 780000, 786240, 793881, 806736, 827904, 832000, 838656, 859375, 866250, 873180, 877500, 884520, 900375, 907578, 924000, 931392, 936000, 943488, 960400, 985600, 995085, 998400, 1031250, 1039500, 1047816, 1053000, 1061424, 1064960, 1071875, 1080450, 1100000, 1108800, 1123200, 1152480, 1178793, 1182720, 1184625, 1194102, 1198080, 1229312, 1237500, 1247400, 1261568, 1263600, 1277952, 1286250, 1296540, 1320000, 1330560, 1347840, 1372000, 1382976, 1403325, 1408000, 1419264, 1421550, 1437696, 1485000, 1496880, 1516320, 1531250, 1543500, 1555848, 1584000, 1596672, 1617408, 1646400, 1670625, 1683990, 1689600, 1705860, 1750329, 1756160, 1782000, 1796256, 1802240, 1819584, 1837500, 1852200, 1900800, 1960000, 1975680, 2004750, 2020788, 2027520, 2047032, 2083725, 2107392, 2138400, 2162688, 2187500, 2205000, 2222640, 2280960, 2302911, 2352000, 2370816, 2405700, 2433024, 2480625, 2500470, 2508800, 2566080, 2625000, 2646000, 2667168, 2737152, 2800000, 2822400, 2886840, 2953125, 2976750, 3000564, 3010560, 3079296, 3125000, 3150000, 3175200, 3211264, 3247695, 3360000, 3386880, 3464208, 3515625, 3543750, 3572100, 3584000, 3612672, 3750000, 3780000, 3810240, 3897234, 4000000, 4032000, 4064256, 4218750, 4252500, 4286520, 4300800, 4500000, 4536000, 4572288, 4587520, 4800000, 4822335, 4838400, 5062500, 5103000, 5120000, 5143824, 5160960, 5400000, 5443200, 5505024, 5740875, 5760000, 5786802, 5806080, 6075000, 6123600, 6144000, 6193152, 6480000, 6531840, 6553600, 6834375, 6889050, 6912000, 6967296, 7290000, 7348320, 7372800, 7776000, 7838208, 7864320, 8201250, 8266860, 8294400, 8388608, 8748000, 8817984, 8847360, 9331200, 9437184, 9841500, 9920232, 9953280, 10497600, 10616832, 11160261, 11197440, 11809800, 11943936, 12597120, 13286025, 13436928, 14171760, 15116544, 15943230, 17006112, 19131876
Some figures :
The biggest descendant number : 3^33 = 5.559.060.566.555.523 (parent 99)
Total Descendants 546.986
|
#Go
|
Go
|
package main
import (
"fmt"
"sort"
)
func getPrimes(max int) []int {
if max < 2 {
return []int{}
}
lprimes := []int{2}
outer:
for x := 3; x <= max; x += 2 {
for _, p := range lprimes {
if x%p == 0 {
continue outer
}
}
lprimes = append(lprimes, x)
}
return lprimes
}
func main() {
const maxSum = 99
descendants := make([][]int64, maxSum+1)
ancestors := make([][]int, maxSum+1)
for i := 0; i <= maxSum; i++ {
descendants[i] = []int64{}
ancestors[i] = []int{}
}
primes := getPrimes(maxSum)
for _, p := range primes {
descendants[p] = append(descendants[p], int64(p))
for s := 1; s < len(descendants)-p; s++ {
temp := make([]int64, len(descendants[s]))
for i := 0; i < len(descendants[s]); i++ {
temp[i] = int64(p) * descendants[s][i]
}
descendants[s+p] = append(descendants[s+p], temp...)
}
}
for _, p := range append(primes, 4) {
le := len(descendants[p])
if le == 0 {
continue
}
descendants[p][le-1] = 0
descendants[p] = descendants[p][:le-1]
}
total := 0
for s := 1; s <= maxSum; s++ {
x := descendants[s]
sort.Slice(x, func(i, j int) bool {
return x[i] < x[j]
})
total += len(descendants[s])
index := 0
for ; index < len(descendants[s]); index++ {
if descendants[s][index] > int64(maxSum) {
break
}
}
for _, d := range descendants[s][:index] {
ancestors[d] = append(ancestors[s], s)
}
if (s >= 21 && s <= 45) || (s >= 47 && s <= 73) || (s >= 75 && s < maxSum) {
continue
}
temp := fmt.Sprintf("%v", ancestors[s])
fmt.Printf("%2d: %d Ancestor(s): %-14s", s, len(ancestors[s]), temp)
le := len(descendants[s])
if le <= 10 {
fmt.Printf("%5d Descendant(s): %v\n", le, descendants[s])
} else {
fmt.Printf("%5d Descendant(s): %v\b ...]\n", le, descendants[s][:10])
}
}
fmt.Println("\nTotal descendants", total)
}
|
http://rosettacode.org/wiki/Priority_queue
|
Priority queue
|
A priority queue is somewhat similar to a queue, with an important distinction: each item is added to a priority queue with a priority level, and will be later removed from the queue with the highest priority element first. That is, the items are (conceptually) stored in the queue in priority order instead of in insertion order.
Task
Create a priority queue. The queue must support at least two operations:
Insertion. An element is added to the queue with a priority (a numeric value).
Top item removal. Deletes the element or one of the elements with the current top priority and return it.
Optionally, other operations may be defined, such as peeking (find what current top priority/top element is), merging (combining two priority queues into one), etc.
To test your implementation, insert a number of elements into the queue, each with some random priority.
Then dequeue them sequentially; now the elements should be sorted by priority.
You can use the following task/priority items as input data:
Priority Task
══════════ ════════════════
3 Clear drains
4 Feed cat
5 Make tea
1 Solve RC tasks
2 Tax return
The implementation should try to be efficient. A typical implementation has O(log n) insertion and extraction time, where n is the number of items in the queue.
You may choose to impose certain limits such as small range of allowed priority levels, limited capacity, etc. If so, discuss the reasons behind it.
|
#Batch_File
|
Batch File
|
@echo off
setlocal enabledelayedexpansion
call :push 10 "item ten"
call :push 2 "item two"
call :push 100 "item one hundred"
call :push 5 "item five"
call :pop & echo !order! !item!
call :pop & echo !order! !item!
call :pop & echo !order! !item!
call :pop & echo !order! !item!
call :pop & echo !order! !item!
goto:eof
:push
set temp=000%1
set queu%temp:~-3%=%2
goto:eof
:pop
set queu >nul 2>nul
if %errorlevel% equ 1 (set order=-1&set item=no more items & goto:eof)
for /f "tokens=1,2 delims==" %%a in ('set queu') do set %%a=& set order=%%a& set item=%%~b& goto:next
:next
set order= %order:~-3%
goto:eof
|
http://rosettacode.org/wiki/Problem_of_Apollonius
|
Problem of Apollonius
|
Task
Implement a solution to the Problem of Apollonius (description on Wikipedia) which is the problem of finding the circle that is tangent to three specified circles (colored black in the diagram below to the right).
There is an algebraic solution which is pretty straightforward.
The solutions to the example in the code are shown in the diagram (below and to the right).
The red circle is "internally tangent" to all three black circles, and the green circle is "externally tangent" to all three black circles.
|
#F.23
|
F#
|
type point = { x:float; y:float }
type circle = { center: point; radius: float; }
let new_circle x y r =
{ center = { x=x; y=y }; radius = r }
let print_circle c =
printfn "Circle(x=%.2f, y=%.2f, r=%.2f)"
c.center.x c.center.y c.radius
let xyr c = c.center.x, c.center.y, c.radius
let solve_apollonius c1 c2 c3
s1 s2 s3 =
let x1, y1, r1 = xyr c1
let x2, y2, r2 = xyr c2
let x3, y3, r3 = xyr c3
let v11 = 2. * x2 - 2. * x1
let v12 = 2. * y2 - 2. * y1
let v13 = x1*x1 - x2*x2 + y1*y1 - y2*y2 - r1*r1 + r2*r2
let v14 = (2. * s2 * r2) - (2. * s1 * r1)
let v21 = 2. * x3 - 2. * x2
let v22 = 2. * y3 - 2. * y2
let v23 = x2*x2 - x3*x3 + y2*y2 - y3*y3 - r2*r2 + r3*r3
let v24 = (2. * s3 * r3) - (2. * s2 * r2)
let w12 = v12 / v11
let w13 = v13 / v11
let w14 = v14 / v11
let w22 = v22 / v21 - w12
let w23 = v23 / v21 - w13
let w24 = v24 / v21 - w14
let p = - w23 / w22
let q = w24 / w22
let m = - w12 * p - w13
let n = w14 - w12 * q
let a = n*n + q*q - 1.
let b = 2.*m*n - 2.*n*x1 + 2.*p*q - 2.*q*y1 + 2.*s1*r1
let c = x1*x1 + m*m - 2.*m*x1 + p*p + y1*y1 - 2.*p*y1 - r1*r1
let d = b * b - 4. * a * c
let rs = (- b - (sqrt d)) / (2. * a)
let xs = m + n * rs
let ys = p + q * rs
new_circle xs ys rs
[<EntryPoint>]
let main argv =
let c1 = new_circle 0. 0. 1.
let c2 = new_circle 4. 0. 1.
let c3 = new_circle 2. 4. 2.
let r1 = solve_apollonius c1 c2 c3 1. 1. 1.
print_circle r1
let r2 = solve_apollonius c1 c2 c3 (-1.) (-1.) (-1.)
print_circle r2
0
|
http://rosettacode.org/wiki/Program_name
|
Program name
|
The task is to programmatically obtain the name used to invoke the program. (For example determine whether the user ran "python hello.py", or "python hellocaller.py", a program importing the code from "hello.py".)
Sometimes a multiline shebang is necessary in order to provide the script name to a language's internal ARGV.
See also Command-line arguments
Examples from GitHub.
|
#Make
|
Make
|
NAME=$(CURDIR)/$(word $(words $(MAKEFILE_LIST)),$(MAKEFILE_LIST))
all:
@echo $(NAME)
|
http://rosettacode.org/wiki/Primorial_numbers
|
Primorial numbers
|
Primorial numbers are those formed by multiplying successive prime numbers.
The primorial number series is:
primorial(0) = 1 (by definition)
primorial(1) = 2 (2)
primorial(2) = 6 (2×3)
primorial(3) = 30 (2×3×5)
primorial(4) = 210 (2×3×5×7)
primorial(5) = 2310 (2×3×5×7×11)
primorial(6) = 30030 (2×3×5×7×11×13)
∙ ∙ ∙
To express this mathematically, primorialn is
the product of the first n (successive) primes:
p
r
i
m
o
r
i
a
l
n
=
∏
k
=
1
n
p
r
i
m
e
k
{\displaystyle primorial_{n}=\prod _{k=1}^{n}prime_{k}}
─── where
p
r
i
m
e
k
{\displaystyle prime_{k}}
is the kth prime number.
In some sense, generating primorial numbers is similar to factorials.
As with factorials, primorial numbers get large quickly.
Task
Show the first ten primorial numbers (0 ──► 9, inclusive).
Show the length of primorial numbers whose index is: 10 100 1,000 10,000 and 100,000.
Show the length of the one millionth primorial number (optional).
Use exact integers, not approximations.
By length (above), it is meant the number of decimal digits in the numbers.
Related tasks
Sequence of primorial primes
Factorial
Fortunate_numbers
See also
the MathWorld webpage: primorial
the Wikipedia webpage: primorial.
the OEIS webpage: A002110.
|
#PicoLisp
|
PicoLisp
|
(de prime? (N Lst)
(let S (sqrt N)
(for D Lst
(T (> D S) T)
(T (=0 (% N D)) NIL) ) ) )
(de take (N)
(let I 1
(make
(link 2)
(do (dec N)
(until (prime? (inc 'I 2) (made)))
(link I) ) ) ) )
# This is a simple approach to calculate primorial may not be the fastest one
(de primorial (N)
(apply * (take N)) )
#print 1st 10 primorial numbers
(for M 10 (prinl "primorial: "(primorial M)))
# print the length of primorial numbers.
[prinl (length (primorial (** 10 1)]
[prinl (length (primorial (** 10 2)]
[prinl (length (primorial (** 10 3)]
[prinl (length (primorial (** 10 4)]
#The last one takes a very long time to compute.
[prinl (length (primorial (** 10 5)]
|
http://rosettacode.org/wiki/Pythagorean_triples
|
Pythagorean triples
|
A Pythagorean triple is defined as three positive integers
(
a
,
b
,
c
)
{\displaystyle (a,b,c)}
where
a
<
b
<
c
{\displaystyle a<b<c}
, and
a
2
+
b
2
=
c
2
.
{\displaystyle a^{2}+b^{2}=c^{2}.}
They are called primitive triples if
a
,
b
,
c
{\displaystyle a,b,c}
are co-prime, that is, if their pairwise greatest common divisors
g
c
d
(
a
,
b
)
=
g
c
d
(
a
,
c
)
=
g
c
d
(
b
,
c
)
=
1
{\displaystyle {\rm {gcd}}(a,b)={\rm {gcd}}(a,c)={\rm {gcd}}(b,c)=1}
.
Because of their relationship through the Pythagorean theorem, a, b, and c are co-prime if a and b are co-prime (
g
c
d
(
a
,
b
)
=
1
{\displaystyle {\rm {gcd}}(a,b)=1}
).
Each triple forms the length of the sides of a right triangle, whose perimeter is
P
=
a
+
b
+
c
{\displaystyle P=a+b+c}
.
Task
The task is to determine how many Pythagorean triples there are with a perimeter no larger than 100 and the number of these that are primitive.
Extra credit
Deal with large values. Can your program handle a maximum perimeter of 1,000,000? What about 10,000,000? 100,000,000?
Note: the extra credit is not for you to demonstrate how fast your language is compared to others; you need a proper algorithm to solve them in a timely manner.
Related tasks
Euler's sum of powers conjecture
List comprehensions
Pythagorean quadruples
|
#MATLAB_.2F_Octave
|
MATLAB / Octave
|
N= 100;
a = 1:N;
b = a(ones(N,1),:).^2;
b = b+b';
b = sqrt(b); [y,x]=find(b==fix(b)); % test
% here some alternative tests
% b = b.^(1/k); [y,x]=find(b==fix(b)); % test 2
% [y,x]=find(b==(fix(b.^(1/k)).^k)); % test 3
% b=b.^(1/k); [y,x]=find(abs(b - round(b)) <= 4*eps*b);
z = sqrt(x.^2+y.^2);
ix = (z+x+y<100) & (x < y) & (y < z);
p = find(gcd(x(ix),y(ix))==1); % find primitive triples
printf('There are %i Pythagorean Triples and %i primitive triples with a perimeter smaller than %i.\n',...
sum(ix), length(p), N);
|
http://rosettacode.org/wiki/Program_termination
|
Program termination
|
Task
Show the syntax for a complete stoppage of a program inside a conditional.
This includes all threads/processes which are part of your program.
Explain the cleanup (or lack thereof) caused by the termination (allocated memory, database connections, open files, object finalizers/destructors, run-on-exit hooks, etc.).
Unless otherwise described, no special cleanup outside that provided by the operating system is provided.
|
#JavaScript
|
JavaScript
|
if (some_condition)
quit();
|
http://rosettacode.org/wiki/Program_termination
|
Program termination
|
Task
Show the syntax for a complete stoppage of a program inside a conditional.
This includes all threads/processes which are part of your program.
Explain the cleanup (or lack thereof) caused by the termination (allocated memory, database connections, open files, object finalizers/destructors, run-on-exit hooks, etc.).
Unless otherwise described, no special cleanup outside that provided by the operating system is provided.
|
#jq
|
jq
|
$ jq -n '"Hello", if 1 then error else 2 end'
"Hello"
|
http://rosettacode.org/wiki/QR_decomposition
|
QR decomposition
|
Any rectangular
m
×
n
{\displaystyle m\times n}
matrix
A
{\displaystyle {\mathit {A}}}
can be decomposed to a product of an orthogonal matrix
Q
{\displaystyle {\mathit {Q}}}
and an upper (right) triangular matrix
R
{\displaystyle {\mathit {R}}}
, as described in QR decomposition.
Task
Demonstrate the QR decomposition on the example matrix from the Wikipedia article:
A
=
(
12
−
51
4
6
167
−
68
−
4
24
−
41
)
{\displaystyle A={\begin{pmatrix}12&-51&4\\6&167&-68\\-4&24&-41\end{pmatrix}}}
and the usage for linear least squares problems on the example from Polynomial regression. The method of Householder reflections should be used:
Method
Multiplying a given vector
a
{\displaystyle {\mathit {a}}}
, for example the first column of matrix
A
{\displaystyle {\mathit {A}}}
, with the Householder matrix
H
{\displaystyle {\mathit {H}}}
, which is given as
H
=
I
−
2
u
T
u
u
u
T
{\displaystyle H=I-{\frac {2}{u^{T}u}}uu^{T}}
reflects
a
{\displaystyle {\mathit {a}}}
about a plane given by its normal vector
u
{\displaystyle {\mathit {u}}}
. When the normal vector of the plane
u
{\displaystyle {\mathit {u}}}
is given as
u
=
a
−
∥
a
∥
2
e
1
{\displaystyle u=a-\|a\|_{2}\;e_{1}}
then the transformation reflects
a
{\displaystyle {\mathit {a}}}
onto the first standard basis vector
e
1
=
[
1
0
0
.
.
.
]
T
{\displaystyle e_{1}=[1\;0\;0\;...]^{T}}
which means that all entries but the first become zero. To avoid numerical cancellation errors, we should take the opposite sign of
a
1
{\displaystyle a_{1}}
:
u
=
a
+
sign
(
a
1
)
∥
a
∥
2
e
1
{\displaystyle u=a+{\textrm {sign}}(a_{1})\|a\|_{2}\;e_{1}}
and normalize with respect to the first element:
v
=
u
u
1
{\displaystyle v={\frac {u}{u_{1}}}}
The equation for
H
{\displaystyle H}
thus becomes:
H
=
I
−
2
v
T
v
v
v
T
{\displaystyle H=I-{\frac {2}{v^{T}v}}vv^{T}}
or, in another form
H
=
I
−
β
v
v
T
{\displaystyle H=I-\beta vv^{T}}
with
β
=
2
v
T
v
{\displaystyle \beta ={\frac {2}{v^{T}v}}}
Applying
H
{\displaystyle {\mathit {H}}}
on
a
{\displaystyle {\mathit {a}}}
then gives
H
a
=
−
sign
(
a
1
)
∥
a
∥
2
e
1
{\displaystyle H\;a=-{\textrm {sign}}(a_{1})\;\|a\|_{2}\;e_{1}}
and applying
H
{\displaystyle {\mathit {H}}}
on the matrix
A
{\displaystyle {\mathit {A}}}
zeroes all subdiagonal elements of the first column:
H
1
A
=
(
r
11
r
12
r
13
0
∗
∗
0
∗
∗
)
{\displaystyle H_{1}\;A={\begin{pmatrix}r_{11}&r_{12}&r_{13}\\0&*&*\\0&*&*\end{pmatrix}}}
In the second step, the second column of
A
{\displaystyle {\mathit {A}}}
, we want to zero all elements but the first two, which means that we have to calculate
H
{\displaystyle {\mathit {H}}}
with the first column of the submatrix (denoted *), not on the whole second column of
A
{\displaystyle {\mathit {A}}}
.
To get
H
2
{\displaystyle H_{2}}
, we then embed the new
H
{\displaystyle {\mathit {H}}}
into an
m
×
n
{\displaystyle m\times n}
identity:
H
2
=
(
1
0
0
0
H
0
)
{\displaystyle H_{2}={\begin{pmatrix}1&0&0\\0&H&\\0&&\end{pmatrix}}}
This is how we can, column by column, remove all subdiagonal elements of
A
{\displaystyle {\mathit {A}}}
and thus transform it into
R
{\displaystyle {\mathit {R}}}
.
H
n
.
.
.
H
3
H
2
H
1
A
=
R
{\displaystyle H_{n}\;...\;H_{3}H_{2}H_{1}A=R}
The product of all the Householder matrices
H
{\displaystyle {\mathit {H}}}
, for every column, in reverse order, will then yield the orthogonal matrix
Q
{\displaystyle {\mathit {Q}}}
.
H
1
H
2
H
3
.
.
.
H
n
=
Q
{\displaystyle H_{1}H_{2}H_{3}\;...\;H_{n}=Q}
The QR decomposition should then be used to solve linear least squares (Multiple regression) problems
A
x
=
b
{\displaystyle {\mathit {A}}x=b}
by solving
R
x
=
Q
T
b
{\displaystyle R\;x=Q^{T}\;b}
When
R
{\displaystyle {\mathit {R}}}
is not square, i.e.
m
>
n
{\displaystyle m>n}
we have to cut off the
m
−
n
{\displaystyle {\mathit {m}}-n}
zero padded bottom rows.
R
=
(
R
1
0
)
{\displaystyle R={\begin{pmatrix}R_{1}\\0\end{pmatrix}}}
and the same for the RHS:
Q
T
b
=
(
q
1
q
2
)
{\displaystyle Q^{T}\;b={\begin{pmatrix}q_{1}\\q_{2}\end{pmatrix}}}
Finally, solve the square upper triangular system by back substitution:
R
1
x
=
q
1
{\displaystyle R_{1}\;x=q_{1}}
|
#SPAD
|
SPAD
|
signature RADCATFIELD = sig
type real
val zero : real
val one : real
val + : real * real -> real
val - : real * real -> real
val * : real * real -> real
val / : real * real -> real
val sign : real -> real
val sqrt : real -> real
end
functor QR(F: RADCATFIELD) = struct
structure A = struct
local
open Array
in
fun unitVector n = tabulate (n, fn i => if i=0 then F.one else F.zero)
fun map f x = tabulate(length x, fn i => f(sub(x,i)))
fun map2 f (x, y) = tabulate(length x, fn i => f(sub(x,i),sub(y,i)))
val op + = map2 F.+
val op - = map2 F.-
val op * = map2 F.*
fun multc(c,x) = array(length x,c)*x
fun dot (x,y) = foldl F.+ F.zero (x*y)
fun outer f (x,y) =
Array2.tabulate Array2.RowMajor (length x, length y,
fn (i,j) => f(sub(x,i),sub(y,j)))
fun copy x = map (fn x => x) x
fun fromVector v = tabulate(Vector.length v, fn i => Vector.sub(v,i))
fun slice(x,i,sz) =
let open ArraySlice
val s = slice(x,i,sz)
in Array.tabulate(length s, fn i => sub(s,i)) end
end
end
structure M = struct
local
open Array2
in
fun map f x = tabulate RowMajor (nRows x, nCols x, fn (i,j) => f(sub(x,i,j)))
fun map2 f (x, y) =
tabulate RowMajor (nRows x, nCols x, fn (i,j) => f(sub(x,i,j),sub(y,i,j)))
fun scalarMatrix(m, x) = tabulate RowMajor (m,m,fn (i,j) => if i=j then x else F.zero)
fun multc(c, x) = map (fn xij => F.*(c,xij)) x
val op + = map2 F.+
val op - = map2 F.-
fun column(x,i) = A.fromVector(Array2.column(x,i))
fun row(x,i) = A.fromVector(Array2.row(x,i))
fun x*y = tabulate RowMajor (nRows x, nCols y,
fn (i,j) => A.dot(row(x,i), column(y,j)))
fun multa(x,a) = Array.tabulate (nRows x, fn i => A.dot(row(x,i), a))
fun copy x = map (fn x => x) x
fun subMatrix(h, i1, i2, j1, j2) =
tabulate RowMajor (Int.+(Int.-(i2,i1),1),
Int.+(Int.-(j2,j1),1),
fn (a,b) => sub(h,Int.+(i1,a),Int.+(j1,b)))
fun transpose m = tabulate RowMajor (nCols m,
nRows m,
fn (i,j) => sub(m,j,i))
fun updateSubMatrix(h,i,j,s) =
tabulate RowMajor (nRows s, nCols s, fn (a,b) => update(h,Int.+(i,a),Int.+(j,b),sub(s,a,b)))
end
end
fun toList a =
List.tabulate(Array2.nRows a, fn i => List.tabulate(Array2.nCols a, fn j => Array2.sub(a,i,j)))
fun householder a =
let open Array
val m = length a
val len = F.sqrt(A.dot(a,a))
val u = A.+(a, A.multc(F.*(len,F.sign(sub(a,0))), A.unitVector m))
val v = A.multc(F./(F.one,sub(u,0)), u)
val beta = F./(F.+(F.one,F.one),A.dot(v,v))
in
M.-(M.scalarMatrix(m,F.one), M.multc(beta,A.outer F.* (v,v)))
end
fun qr mat =
let open Array2
val (m,n) = dimensions mat
val upperIndex = if m=n then Int.-(n,1) else n
fun loop(i,qm,rm) = if i=upperIndex then {q=qm,r=rm} else
let val x = A.slice(A.fromVector(column(rm,i)),i,NONE)
val h = M.scalarMatrix(m,F.one)
val _ = M.updateSubMatrix(h,i,i,householder x)
in
loop(Int.+(i,1), M.*(qm,h), M.*(h,rm))
end
in
loop(0, M.scalarMatrix(m,F.one), mat)
end
fun solveUpperTriangular(r,b) =
let open Array
val n = Array2.nCols r
val x = array(n, F.zero)
fun loop k =
let val index = Int.min(Int.-(n,1),Int.+(k,1))
val _ = update(x,k,
F./(F.-(sub(b,k),
A.dot(A.slice(x,index,NONE),
A.slice(M.row(r,k),index,NONE))),
Array2.sub(r,k,k)))
in
if k=0 then x else loop(Int.-(k,1))
end
in
loop (Int.-(n,1))
end
fun lsqr(a,b) =
let val {q,r} = qr a
val n = Array2.nCols r
in
solveUpperTriangular(M.subMatrix(r, 0, Int.-(n,1), 0, Int.-(n,1)),
M.multa(M.transpose(q), b))
end
fun pow(x,1) = x
| pow(x,n) = F.*(x,pow(x,Int.-(n,1)))
fun polyfit(x,y,n) =
let open Array2
val a = tabulate RowMajor (Array.length x,
Int.+(n,1),
fn (i,j) => if j=0 then F.one else
pow(Array.sub(x,i),j))
in
lsqr(a,y)
end
end
|
http://rosettacode.org/wiki/Prime_triangle
|
Prime triangle
|
You will require a function f which when given an integer S will return a list of the arrangements of the integers 1 to S such that g1=1 gS=S and generally for n=1 to n=S-1 gn+gn+1 is prime. S=1 is undefined. For S=2 to S=20 print f(S) to form a triangle. Then again for S=2 to S=20 print the number of possible arrangements of 1 to S meeting these requirements.
|
#Raku
|
Raku
|
my @count = 0, 0, 1;
my $lock = Lock.new;
put (1,2);
for 3..17 -> $n {
my @even = (2..^$n).grep: * %% 2;
my @odd = (3..^$n).grep: so * % 2;
@even.permutations.race.map: -> @e {
quietly next if @e[0] == 8|14;
my $nope = 0;
for @odd.permutations -> @o {
quietly next unless (@e[0] + @o[0]).is-prime;
my @list;
for (@list = (flat (roundrobin(@e, @o)), $n)).rotor(2 => -1) {
$nope++ and last unless .sum.is-prime;
}
unless $nope {
put '1 ', @list unless @count[$n];
$lock.protect({ @count[$n]++ });
}
$nope = 0;
}
}
}
put "\n", @count[2..*];
|
http://rosettacode.org/wiki/Primality_by_Wilson%27s_theorem
|
Primality by Wilson's theorem
|
Task
Write a boolean function that tells whether a given integer is prime using Wilson's theorem.
By Wilson's theorem, a number p is prime if and only if p divides (p - 1)! + 1.
Remember that 1 and all non-positive integers are not prime.
See also
Cut-the-knot: Wilson's theorem.
Wikipedia: Wilson's theorem
|
#8086_Assembly
|
8086 Assembly
|
cpu 8086
org 100h
section .text
jmp demo
;;; Wilson primality test of CX.
;;; Zero flag set if CX prime. Destroys AX, BX, DX.
wilson: xor ax,ax ; AX will hold intermediate fac-mod value
inc ax
mov bx,cx ; BX = factorial loop counter
dec bx
.loop: mul bx ; DX:AX = AX*BX
div cx ; modulus goes in DX
mov ax,dx
dec bx ; Next value
jnz .loop ; If not zero yet, go again
inc ax ; fac-mod + 1 equal to input?
cmp ax,cx ; Set flags according to result
ret
;;; Demo: print primes under 256
demo: mov cx,2
.loop: call wilson ; Is it prime?
jnz .next ; If not, try next number
mov ax,cx
call print ; Otherwise, print the number
.next: inc cl ; Next number.
jnz .loop ; If <256, try next number
ret
;;; Print value in AX using DOS syscall
print: mov bp,10 ; Divisor
mov bx,numbuf ; Pointer to buffer
.digit: xor dx,dx
div bp ; Divide AX and get digit in DX
add dl,'0' ; Make ASCII
dec bx ; Store in buffer
mov [bx],dl
test ax,ax ; Done yet?
jnz .digit ; If not, get next digit
mov dx,bx ; Print buffer
mov ah,9 ; 9 = MS-DOS syscall to print a string
int 21h
ret
section .data
db '*****' ; Space to hold ASCII number for output
numbuf: db 13,10,'$'
|
http://rosettacode.org/wiki/Pragmatic_directives
|
Pragmatic directives
|
Pragmatic directives cause the language to operate in a specific manner, allowing support for operational variances within the program code (possibly by the loading of specific or alternative modules).
Task
List any pragmatic directives supported by the language, and demonstrate how to activate and deactivate the pragmatic directives and to describe or demonstrate the scope of effect that the pragmatic directives have within a program.
|
#8086_Assembly
|
8086 Assembly
|
#!/usr/local/bin/a68g --script #
PRAGMAT portcheck PRAGMAT
PR portcheck PR
BEGIN PR heap=256M PR # algol68g pragma #
~
END;
PROC (REAL)REAL s = sin();
SKIP
|
http://rosettacode.org/wiki/Pragmatic_directives
|
Pragmatic directives
|
Pragmatic directives cause the language to operate in a specific manner, allowing support for operational variances within the program code (possibly by the loading of specific or alternative modules).
Task
List any pragmatic directives supported by the language, and demonstrate how to activate and deactivate the pragmatic directives and to describe or demonstrate the scope of effect that the pragmatic directives have within a program.
|
#Ada
|
Ada
|
#!/usr/local/bin/a68g --script #
PRAGMAT portcheck PRAGMAT
PR portcheck PR
BEGIN PR heap=256M PR # algol68g pragma #
~
END;
PROC (REAL)REAL s = sin();
SKIP
|
http://rosettacode.org/wiki/Pragmatic_directives
|
Pragmatic directives
|
Pragmatic directives cause the language to operate in a specific manner, allowing support for operational variances within the program code (possibly by the loading of specific or alternative modules).
Task
List any pragmatic directives supported by the language, and demonstrate how to activate and deactivate the pragmatic directives and to describe or demonstrate the scope of effect that the pragmatic directives have within a program.
|
#ALGOL_68
|
ALGOL 68
|
#!/usr/local/bin/a68g --script #
PRAGMAT portcheck PRAGMAT
PR portcheck PR
BEGIN PR heap=256M PR # algol68g pragma #
~
END;
PROC (REAL)REAL s = sin();
SKIP
|
http://rosettacode.org/wiki/Pragmatic_directives
|
Pragmatic directives
|
Pragmatic directives cause the language to operate in a specific manner, allowing support for operational variances within the program code (possibly by the loading of specific or alternative modules).
Task
List any pragmatic directives supported by the language, and demonstrate how to activate and deactivate the pragmatic directives and to describe or demonstrate the scope of effect that the pragmatic directives have within a program.
|
#BASIC
|
BASIC
|
10 TRON: REM activate system trace pragma
20 TROFF: REM deactivate system trace pragma
|
http://rosettacode.org/wiki/Prime_conspiracy
|
Prime conspiracy
|
A recent discovery, quoted from Quantamagazine (March 13, 2016):
Two mathematicians have uncovered a simple, previously unnoticed property of
prime numbers — those numbers that are divisible only by 1 and themselves.
Prime numbers, it seems, have decided preferences about the final digits of
the primes that immediately follow them.
and
This conspiracy among prime numbers seems, at first glance, to violate a
longstanding assumption in number theory: that prime numbers behave much
like random numbers.
─── (original authors from Stanford University):
─── Kannan Soundararajan and Robert Lemke Oliver
The task is to check this assertion, modulo 10.
Lets call i -> j a transition if i is the last decimal digit of a prime, and j the last decimal digit of the following prime.
Task
Considering the first one million primes. Count, for any pair of successive primes, the number of transitions i -> j and print them along with their relative frequency, sorted by i .
You can see that, for a given i , frequencies are not evenly distributed.
Observation
(Modulo 10), primes whose last digit is 9 "prefer" the digit 1 to the digit 9, as its following prime.
Extra credit
Do the same for one hundred million primes.
Example for 10,000 primes
10000 first primes. Transitions prime % 10 → next-prime % 10.
1 → 1 count: 365 frequency: 3.65 %
1 → 3 count: 833 frequency: 8.33 %
1 → 7 count: 889 frequency: 8.89 %
1 → 9 count: 397 frequency: 3.97 %
2 → 3 count: 1 frequency: 0.01 %
3 → 1 count: 529 frequency: 5.29 %
3 → 3 count: 324 frequency: 3.24 %
3 → 5 count: 1 frequency: 0.01 %
3 → 7 count: 754 frequency: 7.54 %
3 → 9 count: 907 frequency: 9.07 %
5 → 7 count: 1 frequency: 0.01 %
7 → 1 count: 655 frequency: 6.55 %
7 → 3 count: 722 frequency: 7.22 %
7 → 7 count: 323 frequency: 3.23 %
7 → 9 count: 808 frequency: 8.08 %
9 → 1 count: 935 frequency: 9.35 %
9 → 3 count: 635 frequency: 6.35 %
9 → 7 count: 541 frequency: 5.41 %
9 → 9 count: 379 frequency: 3.79 %
|
#C
|
C
|
#include <assert.h>
#include <stdbool.h>
#include <stdio.h>
typedef unsigned char byte;
struct Transition {
byte a, b;
unsigned int c;
} transitions[100];
void init() {
int i, j;
for (i = 0; i < 10; i++) {
for (j = 0; j < 10; j++) {
int idx = i * 10 + j;
transitions[idx].a = i;
transitions[idx].b = j;
transitions[idx].c = 0;
}
}
}
void record(int prev, int curr) {
byte pd = prev % 10;
byte cd = curr % 10;
int i;
for (i = 0; i < 100; i++) {
int z = 0;
if (transitions[i].a == pd) {
int t = 0;
if (transitions[i].b == cd) {
transitions[i].c++;
break;
}
}
}
}
void printTransitions(int limit, int last_prime) {
int i;
printf("%d primes, last prime considered: %d\n", limit, last_prime);
for (i = 0; i < 100; i++) {
if (transitions[i].c > 0) {
printf("%d->%d count: %5d frequency: %.2f\n", transitions[i].a, transitions[i].b, transitions[i].c, 100.0 * transitions[i].c / limit);
}
}
}
bool isPrime(int n) {
int s, t, a1, a2;
if (n % 2 == 0) return n == 2;
if (n % 3 == 0) return n == 3;
if (n % 5 == 0) return n == 5;
if (n % 7 == 0) return n == 7;
if (n % 11 == 0) return n == 11;
if (n % 13 == 0) return n == 13;
if (n % 17 == 0) return n == 17;
if (n % 19 == 0) return n == 19;
// assuming that addition is faster then multiplication
t = 23;
a1 = 96;
a2 = 216;
s = t * t;
while (s <= n) {
if (n % t == 0) return false;
// first increment
s += a1;
t += 2;
a1 += 24;
assert(t * t == s);
if (s <= n) {
if (n % t == 0) return false;
// second increment
s += a2;
t += 4;
a2 += 48;
assert(t * t == s);
}
}
return true;
}
#define LIMIT 1000000
int main() {
int last_prime = 3, n = 5, count = 2;
init();
record(2, 3);
while (count < LIMIT) {
if (isPrime(n)) {
record(last_prime, n);
last_prime = n;
count++;
}
n += 2;
if (count < LIMIT) {
if (isPrime(n)) {
record(last_prime, n);
last_prime = n;
count++;
}
n += 4;
}
}
printTransitions(LIMIT, last_prime);
return 0;
}
|
http://rosettacode.org/wiki/Proper_divisors
|
Proper divisors
|
The proper divisors of a positive integer N are those numbers, other than N itself, that divide N without remainder.
For N > 1 they will always include 1, but for N == 1 there are no proper divisors.
Examples
The proper divisors of 6 are 1, 2, and 3.
The proper divisors of 100 are 1, 2, 4, 5, 10, 20, 25, and 50.
Task
Create a routine to generate all the proper divisors of a number.
use it to show the proper divisors of the numbers 1 to 10 inclusive.
Find a number in the range 1 to 20,000 with the most proper divisors. Show the number and just the count of how many proper divisors it has.
Show all output here.
Related tasks
Amicable pairs
Abundant, deficient and perfect number classifications
Aliquot sequence classifications
Factors of an integer
Prime decomposition
|
#AWK
|
AWK
|
# syntax: GAWK -f PROPER_DIVISORS.AWK
BEGIN {
show = 0 # show divisors: 0=no, 1=yes
print(" N cnt DIVISORS")
for (i=1; i<=20000; i++) {
divisors(i)
if (i <= 10 || i == 100) { # including 100 as it was an example in task description
printf("%5d %3d %s\n",i,Dcnt,Dstr)
}
if (Dcnt < max_cnt) {
continue
}
if (Dcnt > max_cnt) {
rec = ""
max_cnt = Dcnt
}
rec = sprintf("%s%5d %3d %s\n",rec,i,Dcnt,show?Dstr:"divisors not shown")
}
printf("%s",rec)
exit(0)
}
function divisors(n, i) {
if (n == 1) {
Dcnt = 0
Dstr = ""
return
}
Dcnt = Dstr = 1
for (i=2; i<n; i++) {
if (n % i == 0) {
Dcnt++
Dstr = sprintf("%s %s",Dstr,i)
}
}
return
}
|
http://rosettacode.org/wiki/Probabilistic_choice
|
Probabilistic choice
|
Given a mapping between items and their required probability of occurrence, generate a million items randomly subject to the given probabilities and compare the target probability of occurrence versus the generated values.
The total of all the probabilities should equal one. (Because floating point arithmetic is involved, this is subject to rounding errors).
aleph 1/5.0
beth 1/6.0
gimel 1/7.0
daleth 1/8.0
he 1/9.0
waw 1/10.0
zayin 1/11.0
heth 1759/27720 # adjusted so that probabilities add to 1
Related task
Random number generator (device)
|
#BASIC256
|
BASIC256
|
dim letters$ = {"aleph", "beth", "gimel", "daleth", "he", "waw", "zayin", "heth"}
dim actual(8) fill 0 ## all zero by default
dim probs = {1/5.0, 1/6.0, 1/7.0, 1/8.0, 1/9.0, 1/10.0, 1/11.0, 0}
dim cumProbs(8)
cumProbs[0] = probs[0]
for i = 1 to 6
cumProbs[i] = cumProbs[i - 1] + probs[i]
next i
cumProbs[7] = 1.0
probs[7] = 1.0 - cumProbs[6]
n = 1000000
sum = 0.0
for i = 1 to n
rnd = rand ## random number where 0 <= rand < 1
begin case
case rnd <= cumProbs[0]
actual[0] += 1
case rnd <= cumProbs[1]
actual[1] += 1
case rnd <= cumProbs[2]
actual[2] += 1
case rnd <= cumProbs[3]
actual[3] += 1
case rnd <= cumProbs[4]
actual[4] += 1
case rnd <= cumProbs[5]
actual[5] += 1
case rnd <= cumProbs[6]
actual[6] += 1
else
actual[7] += 1
end case
next i
sumActual = 0
print "Letter", " Actual", "Expected"
print "------", "--------", "--------"
for i = 0 to 7
print ljust(letters$[i],14," ");
print ljust(actual[i]/n,8,"0"); " ";
sumActual += actual[i]/n
print ljust(probs[i],8,"0")
next i
print " ", "--------", "--------"
print " ", ljust(sumActual,8,"0"), "1.000000"
end
|
http://rosettacode.org/wiki/Primes_-_allocate_descendants_to_their_ancestors
|
Primes - allocate descendants to their ancestors
|
The concept, is to add the decomposition into prime factors of a number to get its 'ancestors'.
The objective is to demonstrate that the choice of the algorithm can be crucial in term of performance.
This solution could be compared to the solution that would use the decomposition into primes for all the numbers between 1 and 333.
The problem is to list, for a delimited set of ancestors (from 1 to 99) :
- the total of their own ancestors (LEVEL),
- their own ancestors (ANCESTORS),
- the total of the direct descendants (DESCENDANTS),
- all the direct descendants.
You only have to consider the prime factors < 100.
A grand total of the descendants has to be printed at the end of the list.
The task should be accomplished in a reasonable time-frame.
Example :
46 = 2*23 --> 2+23 = 25, is the parent of 46.
25 = 5*5 --> 5+5 = 10, is the parent of 25.
10 = 2*5 --> 2+5 = 7, is the parent of 10.
7 is a prime factor and, as such, has no parent.
46 has 3 ancestors (7, 10 and 25).
46 has 557 descendants.
The list layout and the output for Parent [46] :
[46] Level: 3
Ancestors: 7, 10, 25
Descendants: 557
129, 205, 246, 493, 518, 529, 740, 806, 888, 999, 1364, 1508, 1748, 2552, 2871, 3128, 3255, 3472, 3519, 3875, 3906, 4263, 4650, 4960, 5075, 5415, 5580, 5776, 5952, 6090, 6279, 6496, 6498, 6696, 6783, 7250, 7308, 7475, 7533, 8075, 8151, 8619, 8700, 8855, 8970, 9280, 9568, 9690, 10115, 10336, 10440, 10626, 10764, 11136, 11495, 11628, 11745, 12103, 12138, 12155, 12528, 12650, 13794, 14094, 14399, 14450, 14586, 15180, 15379, 15778, 16192, 17290, 17303, 17340, 18216, 18496, 20482, 20493, 20570, 20748, 20808, 21658, 21970, 22540, 23409, 24684, 24700, 26026, 26364, 27048, 29260, 29282, 29640, 30429, 30940, 31616, 32200, 33345, 35112, 35568, 36225, 36652, 37128, 37180, 38640, 39501, 40014, 41216, 41769, 41800, 43125, 43470, 44044, 44200, 44616, 46000, 46368, 47025, 49725, 50160, 50193, 51750, 52136, 52164, 52360, 53040, 53504, 55200, 56430, 56576, 58653, 58880, 58905, 59670, 60192, 62100, 62832, 62920, 63648, 66240, 66248, 67716, 69825, 70125, 70656, 70686, 70785, 71604, 74480, 74520, 74529, 74536, 74800, 75504, 79488, 83125, 83790, 83835, 83853, 84150, 84942, 87465, 88725, 89376, 89424, 89760, 93296, 94640, 95744, 99750, 99825, 100548, 100602, 100980, 104125, 104958, 105105, 105625, 106400, 106470, 106480, 107712, 112112, 113568, 118750, 119700, 119790, 121176, 124509, 124950, 125125, 126126, 126750, 127680, 127764, 127776, 133280, 135200, 136192, 136323, 142500, 143640, 143748, 148225, 148750, 149940, 150150, 152000, 152100, 153216, 156065, 159936, 160160, 161595, 162240, 171000, 172368, 173056, 177870, 178500, 178750, 179928, 180180, 182400, 182520, 184877, 187278, 189728, 190400, 192192, 192375, 193914, 194560, 194688, 202419, 205200, 205335, 211750, 212500, 213444, 214200, 214500, 216216, 218880, 219024, 222950, 228480, 228800, 230850, 233472, 240975, 243243, 243712, 246240, 246402, 254100, 255000, 257040, 257400, 262656, 264110, 267540, 271040, 272000, 274176, 274560, 277020, 285376, 286875, 289170, 289575, 292864, 295488, 302500, 304920, 306000, 308448, 308880, 316932, 318500, 321048, 325248, 326400, 329472, 332424, 343035, 344250, 347004, 347490, 348160, 361179, 363000, 365904, 367200, 370656, 373977, 377300, 382200, 387200, 391680, 407680, 408375, 411642, 413100, 416988, 417792, 429975, 435600, 440640, 452760, 455000, 458640, 464640, 470016, 470596, 482944, 489216, 490050, 495616, 495720, 509355, 511875, 515970, 522720, 528768, 539000, 543312, 546000, 550368, 557568, 557685, 582400, 588060, 594864, 606375, 609375, 611226, 614250, 619164, 627264, 646800, 650000, 655200, 669222, 672280, 689920, 698880, 705672, 721875, 727650, 731250, 737100, 745472, 756315, 770000, 776160, 780000, 786240, 793881, 806736, 827904, 832000, 838656, 859375, 866250, 873180, 877500, 884520, 900375, 907578, 924000, 931392, 936000, 943488, 960400, 985600, 995085, 998400, 1031250, 1039500, 1047816, 1053000, 1061424, 1064960, 1071875, 1080450, 1100000, 1108800, 1123200, 1152480, 1178793, 1182720, 1184625, 1194102, 1198080, 1229312, 1237500, 1247400, 1261568, 1263600, 1277952, 1286250, 1296540, 1320000, 1330560, 1347840, 1372000, 1382976, 1403325, 1408000, 1419264, 1421550, 1437696, 1485000, 1496880, 1516320, 1531250, 1543500, 1555848, 1584000, 1596672, 1617408, 1646400, 1670625, 1683990, 1689600, 1705860, 1750329, 1756160, 1782000, 1796256, 1802240, 1819584, 1837500, 1852200, 1900800, 1960000, 1975680, 2004750, 2020788, 2027520, 2047032, 2083725, 2107392, 2138400, 2162688, 2187500, 2205000, 2222640, 2280960, 2302911, 2352000, 2370816, 2405700, 2433024, 2480625, 2500470, 2508800, 2566080, 2625000, 2646000, 2667168, 2737152, 2800000, 2822400, 2886840, 2953125, 2976750, 3000564, 3010560, 3079296, 3125000, 3150000, 3175200, 3211264, 3247695, 3360000, 3386880, 3464208, 3515625, 3543750, 3572100, 3584000, 3612672, 3750000, 3780000, 3810240, 3897234, 4000000, 4032000, 4064256, 4218750, 4252500, 4286520, 4300800, 4500000, 4536000, 4572288, 4587520, 4800000, 4822335, 4838400, 5062500, 5103000, 5120000, 5143824, 5160960, 5400000, 5443200, 5505024, 5740875, 5760000, 5786802, 5806080, 6075000, 6123600, 6144000, 6193152, 6480000, 6531840, 6553600, 6834375, 6889050, 6912000, 6967296, 7290000, 7348320, 7372800, 7776000, 7838208, 7864320, 8201250, 8266860, 8294400, 8388608, 8748000, 8817984, 8847360, 9331200, 9437184, 9841500, 9920232, 9953280, 10497600, 10616832, 11160261, 11197440, 11809800, 11943936, 12597120, 13286025, 13436928, 14171760, 15116544, 15943230, 17006112, 19131876
Some figures :
The biggest descendant number : 3^33 = 5.559.060.566.555.523 (parent 99)
Total Descendants 546.986
|
#Haskell
|
Haskell
|
{-# LANGUAGE DeriveFunctor #-}
import Data.Numbers.Primes (isPrime)
import Data.List
------------------------------------------------------------
-- memoization utilities
type Memo2 a = Memo (Memo a)
data Memo a = Node a (Memo a) (Memo a)
deriving Functor
memo :: Integral a => Memo p -> a -> p
memo (Node a l r) n
| n == 0 = a
| odd n = memo l (n `div` 2)
| otherwise = memo r (n `div` 2 - 1)
nats :: Integral a => Memo a
nats = Node 0 ((+1).(*2) <$> nats) ((*2).(+1) <$> nats)
memoize :: Integral a => (a -> b) -> (a -> b)
memoize f = memo (f <$> nats)
memoize2 :: (Integral a, Integral b) => (a -> b -> c) -> (a -> b -> c)
memoize2 f = memoize (memoize . f)
------------------------------------------------------------
partProd = memoize2 partProdM
where
partProdM x p
| p == 0 = []
| x == 0 = [1]
| x < 0 = []
| isPrime p = ((p *) <$> partProdM (x - p) p) ++
partProd x (p - 1)
| otherwise = partProd x (p - 1)
descendants = memoize descendantsM
where
descendantsM x =
if x == 4 then [] else sort (partProd x (x - 1))
ancestors = memoize ancestorsM
where
ancestorsM z = concat [ ancestors x ++ [x]
| x <- [z-1,z-2..1]
, z `elem` descendants x ]
main = do
mapM_ (putStrLn . task1) [1..15]
putStrLn (task2 46)
putStrLn (task2 99)
putStrLn task3
where
task1 n = show n ++
" ancestors:" ++ show (ancestors n) ++
" descendants:" ++ show (descendants n)
task2 n = show n ++ " has " ++
show (length (ancestors n)) ++ " ancestors, " ++
show (length (descendants n)) ++ " descendants."
task3 = "Total ancestors up to 99: " ++
show (sum $ length . ancestors <$> [1..99]) ++
"\nTotal descendants up to 99: " ++
show (sum $ length . descendants <$> [1..99])
|
http://rosettacode.org/wiki/Priority_queue
|
Priority queue
|
A priority queue is somewhat similar to a queue, with an important distinction: each item is added to a priority queue with a priority level, and will be later removed from the queue with the highest priority element first. That is, the items are (conceptually) stored in the queue in priority order instead of in insertion order.
Task
Create a priority queue. The queue must support at least two operations:
Insertion. An element is added to the queue with a priority (a numeric value).
Top item removal. Deletes the element or one of the elements with the current top priority and return it.
Optionally, other operations may be defined, such as peeking (find what current top priority/top element is), merging (combining two priority queues into one), etc.
To test your implementation, insert a number of elements into the queue, each with some random priority.
Then dequeue them sequentially; now the elements should be sorted by priority.
You can use the following task/priority items as input data:
Priority Task
══════════ ════════════════
3 Clear drains
4 Feed cat
5 Make tea
1 Solve RC tasks
2 Tax return
The implementation should try to be efficient. A typical implementation has O(log n) insertion and extraction time, where n is the number of items in the queue.
You may choose to impose certain limits such as small range of allowed priority levels, limited capacity, etc. If so, discuss the reasons behind it.
|
#C
|
C
|
#include <stdio.h>
#include <stdlib.h>
typedef struct {
int priority;
char *data;
} node_t;
typedef struct {
node_t *nodes;
int len;
int size;
} heap_t;
void push (heap_t *h, int priority, char *data) {
if (h->len + 1 >= h->size) {
h->size = h->size ? h->size * 2 : 4;
h->nodes = (node_t *)realloc(h->nodes, h->size * sizeof (node_t));
}
int i = h->len + 1;
int j = i / 2;
while (i > 1 && h->nodes[j].priority > priority) {
h->nodes[i] = h->nodes[j];
i = j;
j = j / 2;
}
h->nodes[i].priority = priority;
h->nodes[i].data = data;
h->len++;
}
char *pop (heap_t *h) {
int i, j, k;
if (!h->len) {
return NULL;
}
char *data = h->nodes[1].data;
h->nodes[1] = h->nodes[h->len];
h->len--;
i = 1;
while (i!=h->len+1) {
k = h->len+1;
j = 2 * i;
if (j <= h->len && h->nodes[j].priority < h->nodes[k].priority) {
k = j;
}
if (j + 1 <= h->len && h->nodes[j + 1].priority < h->nodes[k].priority) {
k = j + 1;
}
h->nodes[i] = h->nodes[k];
i = k;
}
return data;
}
int main () {
heap_t *h = (heap_t *)calloc(1, sizeof (heap_t));
push(h, 3, "Clear drains");
push(h, 4, "Feed cat");
push(h, 5, "Make tea");
push(h, 1, "Solve RC tasks");
push(h, 2, "Tax return");
int i;
for (i = 0; i < 5; i++) {
printf("%s\n", pop(h));
}
return 0;
}
|
http://rosettacode.org/wiki/Problem_of_Apollonius
|
Problem of Apollonius
|
Task
Implement a solution to the Problem of Apollonius (description on Wikipedia) which is the problem of finding the circle that is tangent to three specified circles (colored black in the diagram below to the right).
There is an algebraic solution which is pretty straightforward.
The solutions to the example in the code are shown in the diagram (below and to the right).
The red circle is "internally tangent" to all three black circles, and the green circle is "externally tangent" to all three black circles.
|
#Fortran
|
Fortran
|
program Apollonius
implicit none
integer, parameter :: dp = selected_real_kind(15)
type circle
real(dp) :: x
real(dp) :: y
real(dp) :: radius
end type
type(circle) :: c1 , c2, c3, r
c1 = circle(0.0, 0.0, 1.0)
c2 = circle(4.0, 0.0, 1.0)
c3 = circle(2.0, 4.0, 2.0)
write(*, "(a,3f12.8))") "External tangent:", SolveApollonius(c1, c2, c3, 1, 1, 1)
write(*, "(a,3f12.8))") "Internal tangent:", SolveApollonius(c1, c2, c3, -1, -1, -1)
contains
function SolveApollonius(c1, c2, c3, s1, s2, s3) result(res)
type(circle) :: res
type(circle), intent(in) :: c1, c2, c3
integer, intent(in) :: s1, s2, s3
real(dp) :: x1, x2, x3, y1, y2, y3, r1, r2, r3
real(dp) :: v11, v12, v13, v14
real(dp) :: v21, v22, v23, v24
real(dp) :: w12, w13, w14
real(dp) :: w22, w23, w24
real(dp) :: p, q, m, n, a, b, c, det
x1 = c1%x; x2 = c2%x; x3 = c3%x
y1 = c1%y; y2 = c2%y; y3 = c3%y
r1 = c1%radius; r2 = c2%radius; r3 = c3%radius
v11 = 2*x2 - 2*x1
v12 = 2*y2 - 2*y1
v13 = x1*x1 - x2*x2 + y1*y1 - y2*y2 - r1*r1 + r2*r2
v14 = 2*s2*r2 - 2*s1*r1
v21 = 2*x3 - 2*x2
v22 = 2*y3 - 2*y2
v23 = x2*x2 - x3*x3 + y2*y2 - y3*y3 - r2*r2 + r3*r3
v24 = 2*s3*r3 - 2*s2*r2
w12 = v12/v11
w13 = v13/v11
w14 = v14/v11
w22 = v22/v21-w12
w23 = v23/v21-w13
w24 = v24/v21-w14
p = -w23/w22
q = w24/w22
m = -w12*P - w13
n = w14 - w12*q
a = n*n + q*q - 1
b = 2*m*n - 2*n*x1 + 2*p*q - 2*q*y1 + 2*s1*r1
c = x1*x1 + m*m - 2*m*x1 + p*p + y1*y1 - 2*p*y1 - r1*r1
det = b*b - 4*a*c
res%radius = (-b-sqrt(det)) / (2*a)
res%x = m + n*res%radius
res%y = p + q*res%radius
end function
end program
|
http://rosettacode.org/wiki/Program_name
|
Program name
|
The task is to programmatically obtain the name used to invoke the program. (For example determine whether the user ran "python hello.py", or "python hellocaller.py", a program importing the code from "hello.py".)
Sometimes a multiline shebang is necessary in order to provide the script name to a language's internal ARGV.
See also Command-line arguments
Examples from GitHub.
|
#Mathematica.2FWolfram_Language
|
Mathematica/Wolfram Language
|
#!/usr/bin/env MathKernel -script
ScriptName[] = Piecewise[
{
{"Interpreted", Position[$CommandLine, "-script", 1] == {}}
},
$CommandLine[[Position[$CommandLine, "-script", 1][[1,1]] + 1]]
]
Program = ScriptName[];
Print["Program: " <> Program]
|
http://rosettacode.org/wiki/Program_name
|
Program name
|
The task is to programmatically obtain the name used to invoke the program. (For example determine whether the user ran "python hello.py", or "python hellocaller.py", a program importing the code from "hello.py".)
Sometimes a multiline shebang is necessary in order to provide the script name to a language's internal ARGV.
See also Command-line arguments
Examples from GitHub.
|
#Mercury
|
Mercury
|
:- module program_name.
:- interface.
:- import_module io.
:- pred main(io::di, io::uo) is det.
:- implementation.
main(!IO) :-
% The first argument is used as the program name if it is not otherwise
% available. (We could also have used the predicate io.progname_base/4
% if we did not want path preceding the program name.)
io.progname("", ProgName, !IO),
io.print_line(ProgName, !IO).
:- end_module program_name.
|
http://rosettacode.org/wiki/Primorial_numbers
|
Primorial numbers
|
Primorial numbers are those formed by multiplying successive prime numbers.
The primorial number series is:
primorial(0) = 1 (by definition)
primorial(1) = 2 (2)
primorial(2) = 6 (2×3)
primorial(3) = 30 (2×3×5)
primorial(4) = 210 (2×3×5×7)
primorial(5) = 2310 (2×3×5×7×11)
primorial(6) = 30030 (2×3×5×7×11×13)
∙ ∙ ∙
To express this mathematically, primorialn is
the product of the first n (successive) primes:
p
r
i
m
o
r
i
a
l
n
=
∏
k
=
1
n
p
r
i
m
e
k
{\displaystyle primorial_{n}=\prod _{k=1}^{n}prime_{k}}
─── where
p
r
i
m
e
k
{\displaystyle prime_{k}}
is the kth prime number.
In some sense, generating primorial numbers is similar to factorials.
As with factorials, primorial numbers get large quickly.
Task
Show the first ten primorial numbers (0 ──► 9, inclusive).
Show the length of primorial numbers whose index is: 10 100 1,000 10,000 and 100,000.
Show the length of the one millionth primorial number (optional).
Use exact integers, not approximations.
By length (above), it is meant the number of decimal digits in the numbers.
Related tasks
Sequence of primorial primes
Factorial
Fortunate_numbers
See also
the MathWorld webpage: primorial
the Wikipedia webpage: primorial.
the OEIS webpage: A002110.
|
#Python
|
Python
|
from pyprimes import nprimes
from functools import reduce
primelist = list(nprimes(1000001)) # [2, 3, 5, ...]
def primorial(n):
return reduce(int.__mul__, primelist[:n], 1)
if __name__ == '__main__':
print('First ten primorals:', [primorial(n) for n in range(10)])
for e in range(7):
n = 10**e
print('primorial(%i) has %i digits' % (n, len(str(primorial(n)))))
|
http://rosettacode.org/wiki/Primorial_numbers
|
Primorial numbers
|
Primorial numbers are those formed by multiplying successive prime numbers.
The primorial number series is:
primorial(0) = 1 (by definition)
primorial(1) = 2 (2)
primorial(2) = 6 (2×3)
primorial(3) = 30 (2×3×5)
primorial(4) = 210 (2×3×5×7)
primorial(5) = 2310 (2×3×5×7×11)
primorial(6) = 30030 (2×3×5×7×11×13)
∙ ∙ ∙
To express this mathematically, primorialn is
the product of the first n (successive) primes:
p
r
i
m
o
r
i
a
l
n
=
∏
k
=
1
n
p
r
i
m
e
k
{\displaystyle primorial_{n}=\prod _{k=1}^{n}prime_{k}}
─── where
p
r
i
m
e
k
{\displaystyle prime_{k}}
is the kth prime number.
In some sense, generating primorial numbers is similar to factorials.
As with factorials, primorial numbers get large quickly.
Task
Show the first ten primorial numbers (0 ──► 9, inclusive).
Show the length of primorial numbers whose index is: 10 100 1,000 10,000 and 100,000.
Show the length of the one millionth primorial number (optional).
Use exact integers, not approximations.
By length (above), it is meant the number of decimal digits in the numbers.
Related tasks
Sequence of primorial primes
Factorial
Fortunate_numbers
See also
the MathWorld webpage: primorial
the Wikipedia webpage: primorial.
the OEIS webpage: A002110.
|
#Racket
|
Racket
|
#lang racket
(require (except-in math/number-theory nth-prime))
(define-syntax-rule (define/cache (name arg) body ...)
(begin
(define cache (make-hash))
(define (name arg)
(hash-ref! cache arg (lambda () body ...)))))
(define (num-length n)
;warning: this defines (num-length 0) as 0
(if (zero? n)
0
(add1 (num-length (quotient n 10)))))
(define/cache (nth-prime n)
(if (zero? n)
2
(for/first ([p (in-naturals (add1 (nth-prime (sub1 n))))]
#:when (prime? p))
p)))
(define (primorial n)
(if (zero? n)
1
(* (primorial (sub1 n))
(nth-prime (sub1 n)))))
(displayln
(for/list ([i (in-range 10)])
(primorial i)))
(for ([i (in-range 1 6)])
(printf "Primorial(10^~a) has ~a digits.\n"
i
(num-length (primorial (expt 10 i)))))
|
http://rosettacode.org/wiki/Pythagorean_triples
|
Pythagorean triples
|
A Pythagorean triple is defined as three positive integers
(
a
,
b
,
c
)
{\displaystyle (a,b,c)}
where
a
<
b
<
c
{\displaystyle a<b<c}
, and
a
2
+
b
2
=
c
2
.
{\displaystyle a^{2}+b^{2}=c^{2}.}
They are called primitive triples if
a
,
b
,
c
{\displaystyle a,b,c}
are co-prime, that is, if their pairwise greatest common divisors
g
c
d
(
a
,
b
)
=
g
c
d
(
a
,
c
)
=
g
c
d
(
b
,
c
)
=
1
{\displaystyle {\rm {gcd}}(a,b)={\rm {gcd}}(a,c)={\rm {gcd}}(b,c)=1}
.
Because of their relationship through the Pythagorean theorem, a, b, and c are co-prime if a and b are co-prime (
g
c
d
(
a
,
b
)
=
1
{\displaystyle {\rm {gcd}}(a,b)=1}
).
Each triple forms the length of the sides of a right triangle, whose perimeter is
P
=
a
+
b
+
c
{\displaystyle P=a+b+c}
.
Task
The task is to determine how many Pythagorean triples there are with a perimeter no larger than 100 and the number of these that are primitive.
Extra credit
Deal with large values. Can your program handle a maximum perimeter of 1,000,000? What about 10,000,000? 100,000,000?
Note: the extra credit is not for you to demonstrate how fast your language is compared to others; you need a proper algorithm to solve them in a timely manner.
Related tasks
Euler's sum of powers conjecture
List comprehensions
Pythagorean quadruples
|
#Mercury
|
Mercury
|
:- module comprehension.
:- interface.
:- import_module io.
:- import_module int.
:- type triple ---> triple(int, int, int).
:- pred pythTrip(int::in,triple::out) is nondet.
:- pred main(io::di, io::uo) is det.
:- implementation.
:- import_module solutions.
pythTrip(Limit,triple(X,Y,Z)) :-
nondet_int_in_range(1,Limit,X),
nondet_int_in_range(X,Limit,Y),
nondet_int_in_range(Y,Limit,Z),
pow(Z,2) = pow(X,2) + pow(Y,2).
main(!IO) :-
solutions((pred(Triple::out) is nondet :- pythTrip(20,Triple)),Result),
write(Result,!IO).
|
http://rosettacode.org/wiki/Program_termination
|
Program termination
|
Task
Show the syntax for a complete stoppage of a program inside a conditional.
This includes all threads/processes which are part of your program.
Explain the cleanup (or lack thereof) caused by the termination (allocated memory, database connections, open files, object finalizers/destructors, run-on-exit hooks, etc.).
Unless otherwise described, no special cleanup outside that provided by the operating system is provided.
|
#Jsish
|
Jsish
|
assert(0 == 1);
if (problem) exit(1);
|
http://rosettacode.org/wiki/Program_termination
|
Program termination
|
Task
Show the syntax for a complete stoppage of a program inside a conditional.
This includes all threads/processes which are part of your program.
Explain the cleanup (or lack thereof) caused by the termination (allocated memory, database connections, open files, object finalizers/destructors, run-on-exit hooks, etc.).
Unless otherwise described, no special cleanup outside that provided by the operating system is provided.
|
#Julia
|
Julia
|
quit() # terminates program normally, with its child processes. See also exit(0).
|
http://rosettacode.org/wiki/QR_decomposition
|
QR decomposition
|
Any rectangular
m
×
n
{\displaystyle m\times n}
matrix
A
{\displaystyle {\mathit {A}}}
can be decomposed to a product of an orthogonal matrix
Q
{\displaystyle {\mathit {Q}}}
and an upper (right) triangular matrix
R
{\displaystyle {\mathit {R}}}
, as described in QR decomposition.
Task
Demonstrate the QR decomposition on the example matrix from the Wikipedia article:
A
=
(
12
−
51
4
6
167
−
68
−
4
24
−
41
)
{\displaystyle A={\begin{pmatrix}12&-51&4\\6&167&-68\\-4&24&-41\end{pmatrix}}}
and the usage for linear least squares problems on the example from Polynomial regression. The method of Householder reflections should be used:
Method
Multiplying a given vector
a
{\displaystyle {\mathit {a}}}
, for example the first column of matrix
A
{\displaystyle {\mathit {A}}}
, with the Householder matrix
H
{\displaystyle {\mathit {H}}}
, which is given as
H
=
I
−
2
u
T
u
u
u
T
{\displaystyle H=I-{\frac {2}{u^{T}u}}uu^{T}}
reflects
a
{\displaystyle {\mathit {a}}}
about a plane given by its normal vector
u
{\displaystyle {\mathit {u}}}
. When the normal vector of the plane
u
{\displaystyle {\mathit {u}}}
is given as
u
=
a
−
∥
a
∥
2
e
1
{\displaystyle u=a-\|a\|_{2}\;e_{1}}
then the transformation reflects
a
{\displaystyle {\mathit {a}}}
onto the first standard basis vector
e
1
=
[
1
0
0
.
.
.
]
T
{\displaystyle e_{1}=[1\;0\;0\;...]^{T}}
which means that all entries but the first become zero. To avoid numerical cancellation errors, we should take the opposite sign of
a
1
{\displaystyle a_{1}}
:
u
=
a
+
sign
(
a
1
)
∥
a
∥
2
e
1
{\displaystyle u=a+{\textrm {sign}}(a_{1})\|a\|_{2}\;e_{1}}
and normalize with respect to the first element:
v
=
u
u
1
{\displaystyle v={\frac {u}{u_{1}}}}
The equation for
H
{\displaystyle H}
thus becomes:
H
=
I
−
2
v
T
v
v
v
T
{\displaystyle H=I-{\frac {2}{v^{T}v}}vv^{T}}
or, in another form
H
=
I
−
β
v
v
T
{\displaystyle H=I-\beta vv^{T}}
with
β
=
2
v
T
v
{\displaystyle \beta ={\frac {2}{v^{T}v}}}
Applying
H
{\displaystyle {\mathit {H}}}
on
a
{\displaystyle {\mathit {a}}}
then gives
H
a
=
−
sign
(
a
1
)
∥
a
∥
2
e
1
{\displaystyle H\;a=-{\textrm {sign}}(a_{1})\;\|a\|_{2}\;e_{1}}
and applying
H
{\displaystyle {\mathit {H}}}
on the matrix
A
{\displaystyle {\mathit {A}}}
zeroes all subdiagonal elements of the first column:
H
1
A
=
(
r
11
r
12
r
13
0
∗
∗
0
∗
∗
)
{\displaystyle H_{1}\;A={\begin{pmatrix}r_{11}&r_{12}&r_{13}\\0&*&*\\0&*&*\end{pmatrix}}}
In the second step, the second column of
A
{\displaystyle {\mathit {A}}}
, we want to zero all elements but the first two, which means that we have to calculate
H
{\displaystyle {\mathit {H}}}
with the first column of the submatrix (denoted *), not on the whole second column of
A
{\displaystyle {\mathit {A}}}
.
To get
H
2
{\displaystyle H_{2}}
, we then embed the new
H
{\displaystyle {\mathit {H}}}
into an
m
×
n
{\displaystyle m\times n}
identity:
H
2
=
(
1
0
0
0
H
0
)
{\displaystyle H_{2}={\begin{pmatrix}1&0&0\\0&H&\\0&&\end{pmatrix}}}
This is how we can, column by column, remove all subdiagonal elements of
A
{\displaystyle {\mathit {A}}}
and thus transform it into
R
{\displaystyle {\mathit {R}}}
.
H
n
.
.
.
H
3
H
2
H
1
A
=
R
{\displaystyle H_{n}\;...\;H_{3}H_{2}H_{1}A=R}
The product of all the Householder matrices
H
{\displaystyle {\mathit {H}}}
, for every column, in reverse order, will then yield the orthogonal matrix
Q
{\displaystyle {\mathit {Q}}}
.
H
1
H
2
H
3
.
.
.
H
n
=
Q
{\displaystyle H_{1}H_{2}H_{3}\;...\;H_{n}=Q}
The QR decomposition should then be used to solve linear least squares (Multiple regression) problems
A
x
=
b
{\displaystyle {\mathit {A}}x=b}
by solving
R
x
=
Q
T
b
{\displaystyle R\;x=Q^{T}\;b}
When
R
{\displaystyle {\mathit {R}}}
is not square, i.e.
m
>
n
{\displaystyle m>n}
we have to cut off the
m
−
n
{\displaystyle {\mathit {m}}-n}
zero padded bottom rows.
R
=
(
R
1
0
)
{\displaystyle R={\begin{pmatrix}R_{1}\\0\end{pmatrix}}}
and the same for the RHS:
Q
T
b
=
(
q
1
q
2
)
{\displaystyle Q^{T}\;b={\begin{pmatrix}q_{1}\\q_{2}\end{pmatrix}}}
Finally, solve the square upper triangular system by back substitution:
R
1
x
=
q
1
{\displaystyle R_{1}\;x=q_{1}}
|
#Standard_ML
|
Standard ML
|
signature RADCATFIELD = sig
type real
val zero : real
val one : real
val + : real * real -> real
val - : real * real -> real
val * : real * real -> real
val / : real * real -> real
val sign : real -> real
val sqrt : real -> real
end
functor QR(F: RADCATFIELD) = struct
structure A = struct
local
open Array
in
fun unitVector n = tabulate (n, fn i => if i=0 then F.one else F.zero)
fun map f x = tabulate(length x, fn i => f(sub(x,i)))
fun map2 f (x, y) = tabulate(length x, fn i => f(sub(x,i),sub(y,i)))
val op + = map2 F.+
val op - = map2 F.-
val op * = map2 F.*
fun multc(c,x) = array(length x,c)*x
fun dot (x,y) = foldl F.+ F.zero (x*y)
fun outer f (x,y) =
Array2.tabulate Array2.RowMajor (length x, length y,
fn (i,j) => f(sub(x,i),sub(y,j)))
fun copy x = map (fn x => x) x
fun fromVector v = tabulate(Vector.length v, fn i => Vector.sub(v,i))
fun slice(x,i,sz) =
let open ArraySlice
val s = slice(x,i,sz)
in Array.tabulate(length s, fn i => sub(s,i)) end
end
end
structure M = struct
local
open Array2
in
fun map f x = tabulate RowMajor (nRows x, nCols x, fn (i,j) => f(sub(x,i,j)))
fun map2 f (x, y) =
tabulate RowMajor (nRows x, nCols x, fn (i,j) => f(sub(x,i,j),sub(y,i,j)))
fun scalarMatrix(m, x) = tabulate RowMajor (m,m,fn (i,j) => if i=j then x else F.zero)
fun multc(c, x) = map (fn xij => F.*(c,xij)) x
val op + = map2 F.+
val op - = map2 F.-
fun column(x,i) = A.fromVector(Array2.column(x,i))
fun row(x,i) = A.fromVector(Array2.row(x,i))
fun x*y = tabulate RowMajor (nRows x, nCols y,
fn (i,j) => A.dot(row(x,i), column(y,j)))
fun multa(x,a) = Array.tabulate (nRows x, fn i => A.dot(row(x,i), a))
fun copy x = map (fn x => x) x
fun subMatrix(h, i1, i2, j1, j2) =
tabulate RowMajor (Int.+(Int.-(i2,i1),1),
Int.+(Int.-(j2,j1),1),
fn (a,b) => sub(h,Int.+(i1,a),Int.+(j1,b)))
fun transpose m = tabulate RowMajor (nCols m,
nRows m,
fn (i,j) => sub(m,j,i))
fun updateSubMatrix(h,i,j,s) =
tabulate RowMajor (nRows s, nCols s, fn (a,b) => update(h,Int.+(i,a),Int.+(j,b),sub(s,a,b)))
end
end
fun toList a =
List.tabulate(Array2.nRows a, fn i => List.tabulate(Array2.nCols a, fn j => Array2.sub(a,i,j)))
fun householder a =
let open Array
val m = length a
val len = F.sqrt(A.dot(a,a))
val u = A.+(a, A.multc(F.*(len,F.sign(sub(a,0))), A.unitVector m))
val v = A.multc(F./(F.one,sub(u,0)), u)
val beta = F./(F.+(F.one,F.one),A.dot(v,v))
in
M.-(M.scalarMatrix(m,F.one), M.multc(beta,A.outer F.* (v,v)))
end
fun qr mat =
let open Array2
val (m,n) = dimensions mat
val upperIndex = if m=n then Int.-(n,1) else n
fun loop(i,qm,rm) = if i=upperIndex then {q=qm,r=rm} else
let val x = A.slice(A.fromVector(column(rm,i)),i,NONE)
val h = M.scalarMatrix(m,F.one)
val _ = M.updateSubMatrix(h,i,i,householder x)
in
loop(Int.+(i,1), M.*(qm,h), M.*(h,rm))
end
in
loop(0, M.scalarMatrix(m,F.one), mat)
end
fun solveUpperTriangular(r,b) =
let open Array
val n = Array2.nCols r
val x = array(n, F.zero)
fun loop k =
let val index = Int.min(Int.-(n,1),Int.+(k,1))
val _ = update(x,k,
F./(F.-(sub(b,k),
A.dot(A.slice(x,index,NONE),
A.slice(M.row(r,k),index,NONE))),
Array2.sub(r,k,k)))
in
if k=0 then x else loop(Int.-(k,1))
end
in
loop (Int.-(n,1))
end
fun lsqr(a,b) =
let val {q,r} = qr a
val n = Array2.nCols r
in
solveUpperTriangular(M.subMatrix(r, 0, Int.-(n,1), 0, Int.-(n,1)),
M.multa(M.transpose(q), b))
end
fun pow(x,1) = x
| pow(x,n) = F.*(x,pow(x,Int.-(n,1)))
fun polyfit(x,y,n) =
let open Array2
val a = tabulate RowMajor (Array.length x,
Int.+(n,1),
fn (i,j) => if j=0 then F.one else
pow(Array.sub(x,i),j))
in
lsqr(a,y)
end
end
|
http://rosettacode.org/wiki/Prime_triangle
|
Prime triangle
|
You will require a function f which when given an integer S will return a list of the arrangements of the integers 1 to S such that g1=1 gS=S and generally for n=1 to n=S-1 gn+gn+1 is prime. S=1 is undefined. For S=2 to S=20 print f(S) to form a triangle. Then again for S=2 to S=20 print the number of possible arrangements of 1 to S meeting these requirements.
|
#Rust
|
Rust
|
fn is_prime(n: u32) -> bool {
assert!(n < 64);
((1u64 << n) & 0x28208a20a08a28ac) != 0
}
fn prime_triangle_row(a: &mut [u32]) -> bool {
if a.len() == 2 {
return is_prime(a[0] + a[1]);
}
for i in (1..a.len() - 1).step_by(2) {
if is_prime(a[0] + a[i]) {
a.swap(i, 1);
if prime_triangle_row(&mut a[1..]) {
return true;
}
a.swap(i, 1);
}
}
false
}
fn prime_triangle_count(a: &mut [u32]) -> u32 {
let mut count = 0;
if a.len() == 2 {
if is_prime(a[0] + a[1]) {
count += 1;
}
} else {
for i in (1..a.len() - 1).step_by(2) {
if is_prime(a[0] + a[i]) {
a.swap(i, 1);
count += prime_triangle_count(&mut a[1..]);
a.swap(i, 1);
}
}
}
count
}
fn print(a: &[u32]) {
if a.is_empty() {
return;
}
print!("{:2}", a[0]);
for x in &a[1..] {
print!(" {:2}", x);
}
println!();
}
fn main() {
use std::time::Instant;
let start = Instant::now();
for n in 2..21 {
let mut a: Vec<u32> = (1..=n).collect();
if prime_triangle_row(&mut a) {
print(&a);
}
}
println!();
for n in 2..21 {
let mut a: Vec<u32> = (1..=n).collect();
if n > 2 {
print!(" ");
}
print!("{}", prime_triangle_count(&mut a));
}
println!();
let time = start.elapsed();
println!("\nElapsed time: {} milliseconds", time.as_millis());
}
|
http://rosettacode.org/wiki/Prime_triangle
|
Prime triangle
|
You will require a function f which when given an integer S will return a list of the arrangements of the integers 1 to S such that g1=1 gS=S and generally for n=1 to n=S-1 gn+gn+1 is prime. S=1 is undefined. For S=2 to S=20 print f(S) to form a triangle. Then again for S=2 to S=20 print the number of possible arrangements of 1 to S meeting these requirements.
|
#Swift
|
Swift
|
import Foundation
func isPrime(_ n: Int) -> Bool {
guard n > 0 && n < 64 else {
return false
}
return ((UInt64(1) << n) & 0x28208a20a08a28ac) != 0
}
func primeTriangleRow(_ a: inout [Int], start: Int, length: Int) -> Bool {
if length == 2 {
return isPrime(a[start] + a[start + 1])
}
for i in stride(from: 1, to: length - 1, by: 2) {
let index = start + i
if isPrime(a[start] + a[index]) {
a.swapAt(index, start + 1)
if primeTriangleRow(&a, start: start + 1, length: length - 1) {
return true
}
a.swapAt(index, start + 1)
}
}
return false
}
func primeTriangleCount(_ a: inout [Int], start: Int, length: Int) -> Int {
var count = 0
if length == 2 {
if isPrime(a[start] + a[start + 1]) {
count += 1
}
} else {
for i in stride(from: 1, to: length - 1, by: 2) {
let index = start + i
if isPrime(a[start] + a[index]) {
a.swapAt(index, start + 1)
count += primeTriangleCount(&a, start: start + 1, length: length - 1)
a.swapAt(index, start + 1)
}
}
}
return count
}
func printRow(_ a: [Int]) {
if a.count == 0 {
return
}
print(String(format: "%2d", a[0]), terminator: "")
for x in a[1...] {
print(String(format: " %2d", x), terminator: "")
}
print()
}
let startTime = CFAbsoluteTimeGetCurrent()
for n in 2...20 {
var a = Array(1...n)
if primeTriangleRow(&a, start: 0, length: n) {
printRow(a)
}
}
print()
for n in 2...20 {
var a = Array(1...n)
if n > 2 {
print(" ", terminator: "")
}
print("\(primeTriangleCount(&a, start: 0, length: n))", terminator: "")
}
print()
let endTime = CFAbsoluteTimeGetCurrent()
print("\nElapsed time: \(endTime - startTime) seconds")
|
http://rosettacode.org/wiki/Primality_by_Wilson%27s_theorem
|
Primality by Wilson's theorem
|
Task
Write a boolean function that tells whether a given integer is prime using Wilson's theorem.
By Wilson's theorem, a number p is prime if and only if p divides (p - 1)! + 1.
Remember that 1 and all non-positive integers are not prime.
See also
Cut-the-knot: Wilson's theorem.
Wikipedia: Wilson's theorem
|
#Ada
|
Ada
|
--
-- Determine primality using Wilon's theorem.
-- Uses the approach from Algol W
-- allowing large primes without the use of big numbers.
--
with Ada.Text_IO; use Ada.Text_IO;
procedure Main is
type u_64 is mod 2**64;
package u_64_io is new modular_io (u_64);
use u_64_io;
function Is_Prime (n : u_64) return Boolean is
fact_Mod_n : u_64 := 1;
begin
if n < 2 then
return False;
end if;
for i in 2 .. n - 1 loop
fact_Mod_n := (fact_Mod_n * i) rem n;
end loop;
return fact_Mod_n = n - 1;
end Is_Prime;
num : u_64 := 1;
type cols is mod 12;
count : cols := 0;
begin
while num < 500 loop
if Is_Prime (num) then
if count = 0 then
New_Line;
end if;
Put (Item => num, Width => 6);
count := count + 1;
end if;
num := num + 1;
end loop;
end Main;
|
http://rosettacode.org/wiki/Primality_by_Wilson%27s_theorem
|
Primality by Wilson's theorem
|
Task
Write a boolean function that tells whether a given integer is prime using Wilson's theorem.
By Wilson's theorem, a number p is prime if and only if p divides (p - 1)! + 1.
Remember that 1 and all non-positive integers are not prime.
See also
Cut-the-knot: Wilson's theorem.
Wikipedia: Wilson's theorem
|
#ALGOL_68
|
ALGOL 68
|
BEGIN
# find primes using Wilson's theorem: #
# p is prime if ( ( p - 1 )! + 1 ) mod p = 0 #
# returns true if p is a prime by Wilson's theorem, false otherwise #
# computes the factorial mod p at each stage, so as to #
# allow numbers whose factorial won't fit in 32 bits #
PROC is wilson prime = ( INT p )BOOL:
BEGIN
INT factorial mod p := 1;
FOR i FROM 2 TO p - 1 DO factorial mod p *:= i MODAB p OD;
factorial mod p = p - 1
END # is wilson prime # ;
FOR i TO 100 DO IF is wilson prime( i ) THEN print( ( " ", whole( i, 0 ) ) ) FI OD
END
|
http://rosettacode.org/wiki/Pragmatic_directives
|
Pragmatic directives
|
Pragmatic directives cause the language to operate in a specific manner, allowing support for operational variances within the program code (possibly by the loading of specific or alternative modules).
Task
List any pragmatic directives supported by the language, and demonstrate how to activate and deactivate the pragmatic directives and to describe or demonstrate the scope of effect that the pragmatic directives have within a program.
|
#C
|
C
|
/*Almost every C program has the below line,
the #include preprocessor directive is used to
instruct the compiler which files to load before compiling the program.
All preprocessor commands begin with #
*/
#include<stdio.h>
/*The #define preprocessor directive is often used to create abbreviations for code segments*/
#define Hi printf("Hi There.");
/*It can be used, or misused, for rather innovative uses*/
#define start int main(){
#define end return 0;}
start
Hi
/*And here's the nice part, want your compiler to talk to you ?
Just use the #warning pragma if you are using a C99 compliant compiler
like GCC*/
#warning "Don't you have anything better to do ?"
#ifdef __unix__
#warning "What are you doing still working on Unix ?"
printf("\nThis is an Unix system.");
#elif _WIN32
#warning "You couldn't afford a 64 bit ?"
printf("\nThis is a 32 bit Windows system.");
#elif _WIN64
#warning "You couldn't afford an Apple ?"
printf("\nThis is a 64 bit Windows system.");
#endif
end
/*Enlightened ?*/
|
http://rosettacode.org/wiki/Pragmatic_directives
|
Pragmatic directives
|
Pragmatic directives cause the language to operate in a specific manner, allowing support for operational variances within the program code (possibly by the loading of specific or alternative modules).
Task
List any pragmatic directives supported by the language, and demonstrate how to activate and deactivate the pragmatic directives and to describe or demonstrate the scope of effect that the pragmatic directives have within a program.
|
#Common_Lisp
|
Common Lisp
|
? *features*
(:EASYGUI :ASDF2 :ASDF :HEMLOCK :APPLE-OBJC-2.0 :APPLE-OBJC :PRIMARY-CLASSES :COMMON-LISP :OPENMCL :CCL :CCL-1.2 :CCL-1.3 :CCL-1.4 :CCL-1.5 :CCL-1.6 :CCL-1.7 :CCL-1.8 :CLOZURE :CLOZURE-COMMON-LISP :ANSI-CL :UNIX :OPENMCL-UNICODE-STRINGS :OPENMCL-NATIVE-THREADS :OPENMCL-PARTIAL-MOP :MCL-COMMON-MOP-SUBSET :OPENMCL-MOP-2 :OPENMCL-PRIVATE-HASH-TABLES :X86-64 :X86_64 :X86-TARGET :X86-HOST :X8664-TARGET :X8664-HOST :DARWIN-HOST :DARWIN-TARGET :DARWINX86-TARGET :DARWINX8664-TARGET :DARWINX8664-HOST :64-BIT-TARGET :64-BIT-HOST :DARWIN :LITTLE-ENDIAN-TARGET :LITTLE-ENDIAN-HOST)
|
http://rosettacode.org/wiki/Pragmatic_directives
|
Pragmatic directives
|
Pragmatic directives cause the language to operate in a specific manner, allowing support for operational variances within the program code (possibly by the loading of specific or alternative modules).
Task
List any pragmatic directives supported by the language, and demonstrate how to activate and deactivate the pragmatic directives and to describe or demonstrate the scope of effect that the pragmatic directives have within a program.
|
#D
|
D
|
-compile( [compressed, {inline,[pi/0]}] ).
|
http://rosettacode.org/wiki/Pragmatic_directives
|
Pragmatic directives
|
Pragmatic directives cause the language to operate in a specific manner, allowing support for operational variances within the program code (possibly by the loading of specific or alternative modules).
Task
List any pragmatic directives supported by the language, and demonstrate how to activate and deactivate the pragmatic directives and to describe or demonstrate the scope of effect that the pragmatic directives have within a program.
|
#Erlang
|
Erlang
|
-compile( [compressed, {inline,[pi/0]}] ).
|
http://rosettacode.org/wiki/Pragmatic_directives
|
Pragmatic directives
|
Pragmatic directives cause the language to operate in a specific manner, allowing support for operational variances within the program code (possibly by the loading of specific or alternative modules).
Task
List any pragmatic directives supported by the language, and demonstrate how to activate and deactivate the pragmatic directives and to describe or demonstrate the scope of effect that the pragmatic directives have within a program.
|
#Factor
|
Factor
|
// +build <expression>
|
http://rosettacode.org/wiki/Prime_conspiracy
|
Prime conspiracy
|
A recent discovery, quoted from Quantamagazine (March 13, 2016):
Two mathematicians have uncovered a simple, previously unnoticed property of
prime numbers — those numbers that are divisible only by 1 and themselves.
Prime numbers, it seems, have decided preferences about the final digits of
the primes that immediately follow them.
and
This conspiracy among prime numbers seems, at first glance, to violate a
longstanding assumption in number theory: that prime numbers behave much
like random numbers.
─── (original authors from Stanford University):
─── Kannan Soundararajan and Robert Lemke Oliver
The task is to check this assertion, modulo 10.
Lets call i -> j a transition if i is the last decimal digit of a prime, and j the last decimal digit of the following prime.
Task
Considering the first one million primes. Count, for any pair of successive primes, the number of transitions i -> j and print them along with their relative frequency, sorted by i .
You can see that, for a given i , frequencies are not evenly distributed.
Observation
(Modulo 10), primes whose last digit is 9 "prefer" the digit 1 to the digit 9, as its following prime.
Extra credit
Do the same for one hundred million primes.
Example for 10,000 primes
10000 first primes. Transitions prime % 10 → next-prime % 10.
1 → 1 count: 365 frequency: 3.65 %
1 → 3 count: 833 frequency: 8.33 %
1 → 7 count: 889 frequency: 8.89 %
1 → 9 count: 397 frequency: 3.97 %
2 → 3 count: 1 frequency: 0.01 %
3 → 1 count: 529 frequency: 5.29 %
3 → 3 count: 324 frequency: 3.24 %
3 → 5 count: 1 frequency: 0.01 %
3 → 7 count: 754 frequency: 7.54 %
3 → 9 count: 907 frequency: 9.07 %
5 → 7 count: 1 frequency: 0.01 %
7 → 1 count: 655 frequency: 6.55 %
7 → 3 count: 722 frequency: 7.22 %
7 → 7 count: 323 frequency: 3.23 %
7 → 9 count: 808 frequency: 8.08 %
9 → 1 count: 935 frequency: 9.35 %
9 → 3 count: 635 frequency: 6.35 %
9 → 7 count: 541 frequency: 5.41 %
9 → 9 count: 379 frequency: 3.79 %
|
#C.23
|
C#
|
using System;
namespace PrimeConspiracy {
class Program {
static void Main(string[] args) {
const int limit = 1_000_000;
const int sieveLimit = 15_500_000;
int[,] buckets = new int[10, 10];
int prevDigit = 2;
bool[] notPrime = Sieve(sieveLimit);
for (int n = 3, primeCount = 1; primeCount < limit; n++) {
if (notPrime[n]) continue;
int digit = n % 10;
buckets[prevDigit, digit]++;
prevDigit = digit;
primeCount++;
}
for (int i = 0; i < 10; i++) {
for (int j = 0; j < 10; j++) {
if (buckets[i, j] != 0) {
Console.WriteLine("{0} -> {1} count: {2,5:d} frequency : {3,6:0.00%}", i, j, buckets[i, j], 1.0 * buckets[i, j] / limit);
}
}
}
}
public static bool[] Sieve(int limit) {
bool[] composite = new bool[limit];
composite[0] = composite[1] = true;
int max = (int)Math.Sqrt(limit);
for (int n = 2; n <= max; n++) {
if (!composite[n]) {
for (int k = n * n; k < limit; k += n) {
composite[k] = true;
}
}
}
return composite;
}
}
}
|
http://rosettacode.org/wiki/Proper_divisors
|
Proper divisors
|
The proper divisors of a positive integer N are those numbers, other than N itself, that divide N without remainder.
For N > 1 they will always include 1, but for N == 1 there are no proper divisors.
Examples
The proper divisors of 6 are 1, 2, and 3.
The proper divisors of 100 are 1, 2, 4, 5, 10, 20, 25, and 50.
Task
Create a routine to generate all the proper divisors of a number.
use it to show the proper divisors of the numbers 1 to 10 inclusive.
Find a number in the range 1 to 20,000 with the most proper divisors. Show the number and just the count of how many proper divisors it has.
Show all output here.
Related tasks
Amicable pairs
Abundant, deficient and perfect number classifications
Aliquot sequence classifications
Factors of an integer
Prime decomposition
|
#BASIC
|
BASIC
|
FUNCTION CountProperDivisors (number)
IF number < 2 THEN CountProperDivisors = 0
count = 0
FOR i = 1 TO number \ 2
IF number MOD i = 0 THEN count = count + 1
NEXT i
CountProperDivisors = count
END FUNCTION
SUB ListProperDivisors (limit)
IF limit < 1 THEN EXIT SUB
FOR i = 1 TO limit
PRINT USING "## ->"; i;
IF i = 1 THEN PRINT " (None)";
FOR j = 1 TO i \ 2
IF i MOD j = 0 THEN PRINT " "; j;
NEXT j
PRINT
NEXT i
END SUB
most = 1
maxCount = 0
PRINT "The proper divisors of the following numbers are: "; CHR$(10)
ListProperDivisors (10)
FOR n = 2 TO 20000
'' It is extremely slow in this loop
count = CountProperDivisors(n)
IF count > maxCount THEN
maxCount = count
most = n
END IF
NEXT n
PRINT
PRINT most; " has the most proper divisors, namely "; maxCount
END
|
http://rosettacode.org/wiki/Probabilistic_choice
|
Probabilistic choice
|
Given a mapping between items and their required probability of occurrence, generate a million items randomly subject to the given probabilities and compare the target probability of occurrence versus the generated values.
The total of all the probabilities should equal one. (Because floating point arithmetic is involved, this is subject to rounding errors).
aleph 1/5.0
beth 1/6.0
gimel 1/7.0
daleth 1/8.0
he 1/9.0
waw 1/10.0
zayin 1/11.0
heth 1759/27720 # adjusted so that probabilities add to 1
Related task
Random number generator (device)
|
#BBC_BASIC
|
BBC BASIC
|
DIM item$(7), prob(7), cnt%(7)
item$() = "aleph","beth","gimel","daleth","he","waw","zayin","heth"
prob() = 1/5.0, 1/6.0, 1/7.0, 1/8.0, 1/9.0, 1/10.0, 1/11.0, 1759/27720
IF ABS(SUM(prob())-1) > 1E-6 ERROR 100, "Probabilities don't sum to 1"
FOR trial% = 1 TO 1E6
r = RND(1)
p = 0
FOR i% = 0 TO DIM(prob(),1)
p += prob(i%)
IF r < p cnt%(i%) += 1 : EXIT FOR
NEXT
NEXT
@% = &2060A
PRINT "Item actual theoretical"
FOR i% = 0 TO DIM(item$(),1)
PRINT item$(i%), cnt%(i%)/1E6, prob(i%)
NEXT
|
http://rosettacode.org/wiki/Probabilistic_choice
|
Probabilistic choice
|
Given a mapping between items and their required probability of occurrence, generate a million items randomly subject to the given probabilities and compare the target probability of occurrence versus the generated values.
The total of all the probabilities should equal one. (Because floating point arithmetic is involved, this is subject to rounding errors).
aleph 1/5.0
beth 1/6.0
gimel 1/7.0
daleth 1/8.0
he 1/9.0
waw 1/10.0
zayin 1/11.0
heth 1759/27720 # adjusted so that probabilities add to 1
Related task
Random number generator (device)
|
#C
|
C
|
#include <stdio.h>
#include <stdlib.h>
/* pick a random index from 0 to n-1, according to probablities listed
in p[] which is assumed to have a sum of 1. The values in the probablity
list matters up to the point where the sum goes over 1 */
int rand_idx(double *p, int n)
{
double s = rand() / (RAND_MAX + 1.0);
int i;
for (i = 0; i < n - 1 && (s -= p[i]) >= 0; i++);
return i;
}
#define LEN 8
#define N 1000000
int main()
{
const char *names[LEN] = { "aleph", "beth", "gimel", "daleth",
"he", "waw", "zayin", "heth" };
double s, p[LEN] = { 1./5, 1./6, 1./7, 1./8, 1./9, 1./10, 1./11, 1e300 };
int i, count[LEN] = {0};
for (i = 0; i < N; i++) count[rand_idx(p, LEN)] ++;
printf(" Name Count Ratio Expected\n");
for (i = 0, s = 1; i < LEN; s -= p[i++])
printf("%6s%7d %7.4f%% %7.4f%%\n",
names[i], count[i],
(double)count[i] / N * 100,
((i < LEN - 1) ? p[i] : s) * 100);
return 0;
}
|
http://rosettacode.org/wiki/Primes_-_allocate_descendants_to_their_ancestors
|
Primes - allocate descendants to their ancestors
|
The concept, is to add the decomposition into prime factors of a number to get its 'ancestors'.
The objective is to demonstrate that the choice of the algorithm can be crucial in term of performance.
This solution could be compared to the solution that would use the decomposition into primes for all the numbers between 1 and 333.
The problem is to list, for a delimited set of ancestors (from 1 to 99) :
- the total of their own ancestors (LEVEL),
- their own ancestors (ANCESTORS),
- the total of the direct descendants (DESCENDANTS),
- all the direct descendants.
You only have to consider the prime factors < 100.
A grand total of the descendants has to be printed at the end of the list.
The task should be accomplished in a reasonable time-frame.
Example :
46 = 2*23 --> 2+23 = 25, is the parent of 46.
25 = 5*5 --> 5+5 = 10, is the parent of 25.
10 = 2*5 --> 2+5 = 7, is the parent of 10.
7 is a prime factor and, as such, has no parent.
46 has 3 ancestors (7, 10 and 25).
46 has 557 descendants.
The list layout and the output for Parent [46] :
[46] Level: 3
Ancestors: 7, 10, 25
Descendants: 557
129, 205, 246, 493, 518, 529, 740, 806, 888, 999, 1364, 1508, 1748, 2552, 2871, 3128, 3255, 3472, 3519, 3875, 3906, 4263, 4650, 4960, 5075, 5415, 5580, 5776, 5952, 6090, 6279, 6496, 6498, 6696, 6783, 7250, 7308, 7475, 7533, 8075, 8151, 8619, 8700, 8855, 8970, 9280, 9568, 9690, 10115, 10336, 10440, 10626, 10764, 11136, 11495, 11628, 11745, 12103, 12138, 12155, 12528, 12650, 13794, 14094, 14399, 14450, 14586, 15180, 15379, 15778, 16192, 17290, 17303, 17340, 18216, 18496, 20482, 20493, 20570, 20748, 20808, 21658, 21970, 22540, 23409, 24684, 24700, 26026, 26364, 27048, 29260, 29282, 29640, 30429, 30940, 31616, 32200, 33345, 35112, 35568, 36225, 36652, 37128, 37180, 38640, 39501, 40014, 41216, 41769, 41800, 43125, 43470, 44044, 44200, 44616, 46000, 46368, 47025, 49725, 50160, 50193, 51750, 52136, 52164, 52360, 53040, 53504, 55200, 56430, 56576, 58653, 58880, 58905, 59670, 60192, 62100, 62832, 62920, 63648, 66240, 66248, 67716, 69825, 70125, 70656, 70686, 70785, 71604, 74480, 74520, 74529, 74536, 74800, 75504, 79488, 83125, 83790, 83835, 83853, 84150, 84942, 87465, 88725, 89376, 89424, 89760, 93296, 94640, 95744, 99750, 99825, 100548, 100602, 100980, 104125, 104958, 105105, 105625, 106400, 106470, 106480, 107712, 112112, 113568, 118750, 119700, 119790, 121176, 124509, 124950, 125125, 126126, 126750, 127680, 127764, 127776, 133280, 135200, 136192, 136323, 142500, 143640, 143748, 148225, 148750, 149940, 150150, 152000, 152100, 153216, 156065, 159936, 160160, 161595, 162240, 171000, 172368, 173056, 177870, 178500, 178750, 179928, 180180, 182400, 182520, 184877, 187278, 189728, 190400, 192192, 192375, 193914, 194560, 194688, 202419, 205200, 205335, 211750, 212500, 213444, 214200, 214500, 216216, 218880, 219024, 222950, 228480, 228800, 230850, 233472, 240975, 243243, 243712, 246240, 246402, 254100, 255000, 257040, 257400, 262656, 264110, 267540, 271040, 272000, 274176, 274560, 277020, 285376, 286875, 289170, 289575, 292864, 295488, 302500, 304920, 306000, 308448, 308880, 316932, 318500, 321048, 325248, 326400, 329472, 332424, 343035, 344250, 347004, 347490, 348160, 361179, 363000, 365904, 367200, 370656, 373977, 377300, 382200, 387200, 391680, 407680, 408375, 411642, 413100, 416988, 417792, 429975, 435600, 440640, 452760, 455000, 458640, 464640, 470016, 470596, 482944, 489216, 490050, 495616, 495720, 509355, 511875, 515970, 522720, 528768, 539000, 543312, 546000, 550368, 557568, 557685, 582400, 588060, 594864, 606375, 609375, 611226, 614250, 619164, 627264, 646800, 650000, 655200, 669222, 672280, 689920, 698880, 705672, 721875, 727650, 731250, 737100, 745472, 756315, 770000, 776160, 780000, 786240, 793881, 806736, 827904, 832000, 838656, 859375, 866250, 873180, 877500, 884520, 900375, 907578, 924000, 931392, 936000, 943488, 960400, 985600, 995085, 998400, 1031250, 1039500, 1047816, 1053000, 1061424, 1064960, 1071875, 1080450, 1100000, 1108800, 1123200, 1152480, 1178793, 1182720, 1184625, 1194102, 1198080, 1229312, 1237500, 1247400, 1261568, 1263600, 1277952, 1286250, 1296540, 1320000, 1330560, 1347840, 1372000, 1382976, 1403325, 1408000, 1419264, 1421550, 1437696, 1485000, 1496880, 1516320, 1531250, 1543500, 1555848, 1584000, 1596672, 1617408, 1646400, 1670625, 1683990, 1689600, 1705860, 1750329, 1756160, 1782000, 1796256, 1802240, 1819584, 1837500, 1852200, 1900800, 1960000, 1975680, 2004750, 2020788, 2027520, 2047032, 2083725, 2107392, 2138400, 2162688, 2187500, 2205000, 2222640, 2280960, 2302911, 2352000, 2370816, 2405700, 2433024, 2480625, 2500470, 2508800, 2566080, 2625000, 2646000, 2667168, 2737152, 2800000, 2822400, 2886840, 2953125, 2976750, 3000564, 3010560, 3079296, 3125000, 3150000, 3175200, 3211264, 3247695, 3360000, 3386880, 3464208, 3515625, 3543750, 3572100, 3584000, 3612672, 3750000, 3780000, 3810240, 3897234, 4000000, 4032000, 4064256, 4218750, 4252500, 4286520, 4300800, 4500000, 4536000, 4572288, 4587520, 4800000, 4822335, 4838400, 5062500, 5103000, 5120000, 5143824, 5160960, 5400000, 5443200, 5505024, 5740875, 5760000, 5786802, 5806080, 6075000, 6123600, 6144000, 6193152, 6480000, 6531840, 6553600, 6834375, 6889050, 6912000, 6967296, 7290000, 7348320, 7372800, 7776000, 7838208, 7864320, 8201250, 8266860, 8294400, 8388608, 8748000, 8817984, 8847360, 9331200, 9437184, 9841500, 9920232, 9953280, 10497600, 10616832, 11160261, 11197440, 11809800, 11943936, 12597120, 13286025, 13436928, 14171760, 15116544, 15943230, 17006112, 19131876
Some figures :
The biggest descendant number : 3^33 = 5.559.060.566.555.523 (parent 99)
Total Descendants 546.986
|
#J
|
J
|
require'strings files'
family=:3 :0 M.
if. 2>y do.
i.0 NB. no primes less than 2
else.
p=. i.&.(p:inv) y
(y#~1 p:y),~.;p (* family)&.>y-p
end.
)
familytree=: +/@q:^:a: ::(''"_)
descendants=: family -. ]
ancestors=: 1 }. familytree
level=: #@ancestors"0
taskfmt=:'None'"_^:(0=#)@rplc&(' ';', ')@":
task1=:3 :0
text=. '[',(":y),'] Level: ',(":level y),LF
text=. text,'Ancestors: ',(taskfmt /:~ancestors y),LF
if. #descendants y do.
text=. text,'Descendants: ',(":#descendants y),LF
text=. text,(taskfmt /:~descendants y),LF
else.
text=. text,'Descendants: None',LF
end.
text=. text,LF
)
task=:3 :0
tot=. 'Total descendants ',(":#@; descendants&.> 1+i.y),LF
((;task1&.>1+i.y),tot) fwrite jpath '~user/temp/Ancestors.txt'
)
task 99
|
http://rosettacode.org/wiki/Priority_queue
|
Priority queue
|
A priority queue is somewhat similar to a queue, with an important distinction: each item is added to a priority queue with a priority level, and will be later removed from the queue with the highest priority element first. That is, the items are (conceptually) stored in the queue in priority order instead of in insertion order.
Task
Create a priority queue. The queue must support at least two operations:
Insertion. An element is added to the queue with a priority (a numeric value).
Top item removal. Deletes the element or one of the elements with the current top priority and return it.
Optionally, other operations may be defined, such as peeking (find what current top priority/top element is), merging (combining two priority queues into one), etc.
To test your implementation, insert a number of elements into the queue, each with some random priority.
Then dequeue them sequentially; now the elements should be sorted by priority.
You can use the following task/priority items as input data:
Priority Task
══════════ ════════════════
3 Clear drains
4 Feed cat
5 Make tea
1 Solve RC tasks
2 Tax return
The implementation should try to be efficient. A typical implementation has O(log n) insertion and extraction time, where n is the number of items in the queue.
You may choose to impose certain limits such as small range of allowed priority levels, limited capacity, etc. If so, discuss the reasons behind it.
|
#C.23
|
C#
|
using System;
using System.Collections.Generic;
namespace PriorityQueueExample
{
class Program
{
static void Main(string[] args)
{
// Starting with .NET 6.0 preview 2 (released March 11th, 2021), there's a built-in priority queue
var p = new PriorityQueue<string, int>();
p.Enqueue("Clear drains", 3);
p.Enqueue("Feed cat", 4);
p.Enqueue("Make tea", 5);
p.Enqueue("Solve RC tasks", 1);
p.Enqueue("Tax return", 2);
while (p.TryDequeue(out string task, out int priority))
{
Console.WriteLine($"{priority}\t{task}");
}
}
}
}
/* Output:
1 Solve RC tasks
2 Tax return
3 Clear drains
4 Feed cat
5 Make tea
*/
|
http://rosettacode.org/wiki/Problem_of_Apollonius
|
Problem of Apollonius
|
Task
Implement a solution to the Problem of Apollonius (description on Wikipedia) which is the problem of finding the circle that is tangent to three specified circles (colored black in the diagram below to the right).
There is an algebraic solution which is pretty straightforward.
The solutions to the example in the code are shown in the diagram (below and to the right).
The red circle is "internally tangent" to all three black circles, and the green circle is "externally tangent" to all three black circles.
|
#FreeBASIC
|
FreeBASIC
|
Dim As String circle1 = " 0.000, 0.000, 1.000"
Dim As String circle2 = " 4.000, 0.000, 1.000"
Dim As String circle3 = " 2.000, 4.000, 2.000"
Sub ApolloniusSolver(c1 As String, c2 As String, c3 As String, s1 As Single, s2 As Single, s3 As Single)
Dim As Single x1, x2, x3, y1, y2, y3, r1, r2, r3
Dim As Single v11, v12, v13, v14, v21, v22, v23, v24, w12, w13, w14
Dim As Single w22, w23, w24,P, Q, M, N, a, b, c, D
Dim As Single Radius, XPos, YPos
x1 = Val(Mid(c1, 3, 1)): y1 = Val(Mid(c1, 11, 1)): r1 = Val(Mid(c1, 19, 1))
x2 = Val(Mid(c2, 3, 1)): y2 = Val(Mid(c2, 11, 1)): r2 = Val(Mid(c2, 19, 1))
x3 = Val(Mid(c3, 3, 1)): y3 = Val(Mid(c3, 11, 1)): r3 = Val(Mid(c3, 19, 1))
v11 = 2 * x2 - 2 * x1
v12 = 2 * y2 - 2* y1
v13 = x1 * x1 - x2 * x2 + y1 * y1 - y2 * y2 - r1 * r1 + r2 * r2
v14 = 2 * s2 * r2 - 2 * s1 * r1
v21 = 2 * x3 - 2 * x2
v22 = 2 * y3 - 2 * y2
v23 = x2 * x2 - x3 * x3 + y2 * y2 - y3 * y3 - r2 * r2 + r3 * r3
v24 = 2 * s3 * r3 - 2 * s2 * r2
w12 = v12 / v11
w13 = v13 / v11
w14 = v14 / v11
w22 = v22 / v21 - w12
w23 = v23 / v21 - w13
w24 = v24 / v21 - w14
P = 0 - w23 / w22
Q = w24 / w22
M = 0 - w12 * P - w13
N = w14 - w12 * Q
a = N * N + Q * Q - 1
b = 2 * M * N - 2 * N * x1 + 2 * P * Q - 2 * Q * y1 + 2 * s1 * r1
c = x1 * x1 + M * M -2 * M * x1 + P * P + y1 * y1 - 2 * P * y1 - r1 * r1
D = b * b - 4 * a * c
Radius = (0 - b - Sqr(D)) / (2 * a)
XPos = M + N * Radius
YPos = P + Q * Radius
Print Using " ##.###, ##.###, ##.###"; XPos; YPos; Radius
End Sub
Print " x_pos y_pos radius"
Print circle1
Print circle2
Print circle3
Print
Print "R1: " : ApolloniusSolver(circle1, circle2, circle3, 1, 1, 1)
Print "R2: " : ApolloniusSolver(circle1, circle2, circle3, -1, -1, -1)
Sleep
|
http://rosettacode.org/wiki/Program_name
|
Program name
|
The task is to programmatically obtain the name used to invoke the program. (For example determine whether the user ran "python hello.py", or "python hellocaller.py", a program importing the code from "hello.py".)
Sometimes a multiline shebang is necessary in order to provide the script name to a language's internal ARGV.
See also Command-line arguments
Examples from GitHub.
|
#Mozart.2FOz
|
Mozart/Oz
|
all: test
test: scriptname
./scriptname
scriptname: scriptname.oz
ozc -x scriptname.oz
clean:
-rm scriptname
-rm *.exe
|
http://rosettacode.org/wiki/Program_name
|
Program name
|
The task is to programmatically obtain the name used to invoke the program. (For example determine whether the user ran "python hello.py", or "python hellocaller.py", a program importing the code from "hello.py".)
Sometimes a multiline shebang is necessary in order to provide the script name to a language's internal ARGV.
See also Command-line arguments
Examples from GitHub.
|
#Nanoquery
|
Nanoquery
|
println args[1]
|
http://rosettacode.org/wiki/Primorial_numbers
|
Primorial numbers
|
Primorial numbers are those formed by multiplying successive prime numbers.
The primorial number series is:
primorial(0) = 1 (by definition)
primorial(1) = 2 (2)
primorial(2) = 6 (2×3)
primorial(3) = 30 (2×3×5)
primorial(4) = 210 (2×3×5×7)
primorial(5) = 2310 (2×3×5×7×11)
primorial(6) = 30030 (2×3×5×7×11×13)
∙ ∙ ∙
To express this mathematically, primorialn is
the product of the first n (successive) primes:
p
r
i
m
o
r
i
a
l
n
=
∏
k
=
1
n
p
r
i
m
e
k
{\displaystyle primorial_{n}=\prod _{k=1}^{n}prime_{k}}
─── where
p
r
i
m
e
k
{\displaystyle prime_{k}}
is the kth prime number.
In some sense, generating primorial numbers is similar to factorials.
As with factorials, primorial numbers get large quickly.
Task
Show the first ten primorial numbers (0 ──► 9, inclusive).
Show the length of primorial numbers whose index is: 10 100 1,000 10,000 and 100,000.
Show the length of the one millionth primorial number (optional).
Use exact integers, not approximations.
By length (above), it is meant the number of decimal digits in the numbers.
Related tasks
Sequence of primorial primes
Factorial
Fortunate_numbers
See also
the MathWorld webpage: primorial
the Wikipedia webpage: primorial.
the OEIS webpage: A002110.
|
#Raku
|
Raku
|
use Math::Primesieve;
my $sieve = Math::Primesieve.new;
my @primes = $sieve.primes(10_000_000);
sub primorial($n) { [*] @primes[^$n] }
say "First ten primorials: {(primorial $_ for ^10)}";
say "primorial(10^$_) has {primorial(10**$_).chars} digits" for 1..5;
|
http://rosettacode.org/wiki/Primorial_numbers
|
Primorial numbers
|
Primorial numbers are those formed by multiplying successive prime numbers.
The primorial number series is:
primorial(0) = 1 (by definition)
primorial(1) = 2 (2)
primorial(2) = 6 (2×3)
primorial(3) = 30 (2×3×5)
primorial(4) = 210 (2×3×5×7)
primorial(5) = 2310 (2×3×5×7×11)
primorial(6) = 30030 (2×3×5×7×11×13)
∙ ∙ ∙
To express this mathematically, primorialn is
the product of the first n (successive) primes:
p
r
i
m
o
r
i
a
l
n
=
∏
k
=
1
n
p
r
i
m
e
k
{\displaystyle primorial_{n}=\prod _{k=1}^{n}prime_{k}}
─── where
p
r
i
m
e
k
{\displaystyle prime_{k}}
is the kth prime number.
In some sense, generating primorial numbers is similar to factorials.
As with factorials, primorial numbers get large quickly.
Task
Show the first ten primorial numbers (0 ──► 9, inclusive).
Show the length of primorial numbers whose index is: 10 100 1,000 10,000 and 100,000.
Show the length of the one millionth primorial number (optional).
Use exact integers, not approximations.
By length (above), it is meant the number of decimal digits in the numbers.
Related tasks
Sequence of primorial primes
Factorial
Fortunate_numbers
See also
the MathWorld webpage: primorial
the Wikipedia webpage: primorial.
the OEIS webpage: A002110.
|
#REXX
|
REXX
|
/*REXX program computes some primorial numbers for low numbers, and for various 10^n.*/
parse arg N H . /*get optional arguments: N, L, H */
if N=='' | N==',' then N= 10 /*Not specified? Then use the default.*/
if H=='' | H==',' then H= 100000 /* " " " " " " */
numeric digits 600000 /*be able to handle gihugic numbers. */
w= length( commas( digits() ) ) /*W: width of the largest commatized #*/
@.=.; @.0= 1; @.1= 2; @.2= 3; @.3= 5; @.4= 7; @.5= 11; @.6= 13 /*some low primes.*/
s.1= 4; s.2= 9; s.3= 25; s.4= 49; s.5= 121; s.6= 169 /*squared primes. */
#= 6 /*number of primes*/
do j=0 for N /*calculate the first N primorial #s.*/
say right(j, length(N))th(j) " primorial is: " right(commas(primorial(j) ), N+2)
end /*j*/
say
iw= length( commas(H) ) + 2 /*IW: width of largest commatized index*/
p= 1 /*initialize the first multiplier for P*/
do k=1 for H /*process a large range of numbers. */
p= p * prime(k) /*calculate the next primorial number. */
parse var k L 2 '' -1 R /*get the left and rightmost dec digits*/
if R\==0 then iterate /*if right─most decimal digit\==0, skip*/
if L\==1 then iterate /* " left─most " " \==1, " */
if strip(k, , 0)\==1 then iterate /*Not a power of 10? Then skip this K.*/
say right( commas(k), iw)th(k) ' primorial number length in decimal digits is:' ,
right( commas( length(p) ), w)
end /*k*/
exit /*stick a fork in it, we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
commas: parse arg _; do ?=length(_)-3 to 1 by -3; _=insert(',', _, ?); end; return _
th: parse arg th; return word('th st nd rd', 1+ (th//10)*(th//100%10\==1)*(th//10<4))
/*──────────────────────────────────────────────────────────────────────────────────────*/
primorial: procedure expose @. s. #; parse arg y; != 1 /*obtain the arg Y. */
do p=0 to y; != ! * prime(p) /*calculate product. */
end /*p*/; return ! /*return with the #. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
prime: procedure expose @. s. #; parse arg n; if @.n\==. then return @.n
numeric digits 9 /*limit digs to min.*/
do j=@.#+2 by 2 /*start looking at #*/
if j//2==0 then iterate; if j//3==0 then iterate /*divisible by 2│3 ?*/
parse var j '' -1 _; if _==5 then iterate /*right─most dig≡5? */
if j//7==0 then iterate; if j//11==0 then iterate /*divisible by 7│11?*/
do k=6 while s.k<=j; if j//@.k==0 then iterate j /*divide by primes. */
end /*k*/
#= # + 1; @.#= j; s.#= j * j; return j /*next prime; return*/
end /*j*/
|
http://rosettacode.org/wiki/Pythagorean_triples
|
Pythagorean triples
|
A Pythagorean triple is defined as three positive integers
(
a
,
b
,
c
)
{\displaystyle (a,b,c)}
where
a
<
b
<
c
{\displaystyle a<b<c}
, and
a
2
+
b
2
=
c
2
.
{\displaystyle a^{2}+b^{2}=c^{2}.}
They are called primitive triples if
a
,
b
,
c
{\displaystyle a,b,c}
are co-prime, that is, if their pairwise greatest common divisors
g
c
d
(
a
,
b
)
=
g
c
d
(
a
,
c
)
=
g
c
d
(
b
,
c
)
=
1
{\displaystyle {\rm {gcd}}(a,b)={\rm {gcd}}(a,c)={\rm {gcd}}(b,c)=1}
.
Because of their relationship through the Pythagorean theorem, a, b, and c are co-prime if a and b are co-prime (
g
c
d
(
a
,
b
)
=
1
{\displaystyle {\rm {gcd}}(a,b)=1}
).
Each triple forms the length of the sides of a right triangle, whose perimeter is
P
=
a
+
b
+
c
{\displaystyle P=a+b+c}
.
Task
The task is to determine how many Pythagorean triples there are with a perimeter no larger than 100 and the number of these that are primitive.
Extra credit
Deal with large values. Can your program handle a maximum perimeter of 1,000,000? What about 10,000,000? 100,000,000?
Note: the extra credit is not for you to demonstrate how fast your language is compared to others; you need a proper algorithm to solve them in a timely manner.
Related tasks
Euler's sum of powers conjecture
List comprehensions
Pythagorean quadruples
|
#Modula-3
|
Modula-3
|
MODULE PyTriple64 EXPORTS Main;
IMPORT IO, Fmt;
VAR tcnt, pcnt, max, i: INTEGER;
PROCEDURE NewTriangle(a, b, c: INTEGER; VAR tcount, pcount: INTEGER) =
VAR perim := a + b + c;
BEGIN
IF perim <= max THEN
pcount := pcount + 1;
tcount := tcount + max DIV perim;
NewTriangle(a-2*b+2*c, 2*a-b+2*c, 2*a-2*b+3*c, tcount, pcount);
NewTriangle(a+2*b+2*c, 2*a+b+2*c, 2*a+2*b+3*c, tcount, pcount);
NewTriangle(2*b+2*c-a, b+2*c-2*a, 2*b+3*c-2*a, tcount, pcount);
END;
END NewTriangle;
BEGIN
i := 100;
REPEAT
max := i;
tcnt := 0;
pcnt := 0;
NewTriangle(3, 4, 5, tcnt, pcnt);
IO.Put(Fmt.Int(i) & ": " & Fmt.Int(tcnt) & " Triples, " &
Fmt.Int(pcnt) & " Primitives\n");
i := i * 10;
UNTIL i = 10000000;
END PyTriple64.
|
http://rosettacode.org/wiki/Program_termination
|
Program termination
|
Task
Show the syntax for a complete stoppage of a program inside a conditional.
This includes all threads/processes which are part of your program.
Explain the cleanup (or lack thereof) caused by the termination (allocated memory, database connections, open files, object finalizers/destructors, run-on-exit hooks, etc.).
Unless otherwise described, no special cleanup outside that provided by the operating system is provided.
|
#Kotlin
|
Kotlin
|
// version 1.0.6
fun main(args: Array<String>) {
val problem = true
if (problem) System.exit(1) // non-zero code passed to OS to indicate a problem
println("Program terminating normally") // this line will not be executed
}
|
http://rosettacode.org/wiki/Program_termination
|
Program termination
|
Task
Show the syntax for a complete stoppage of a program inside a conditional.
This includes all threads/processes which are part of your program.
Explain the cleanup (or lack thereof) caused by the termination (allocated memory, database connections, open files, object finalizers/destructors, run-on-exit hooks, etc.).
Unless otherwise described, no special cleanup outside that provided by the operating system is provided.
|
#Lasso
|
Lasso
|
#!/usr/bin/lasso9
//[
handle => {
stdoutnl('The end is here')
}
stdoutnl('Starting execution')
abort
stdoutnl('Ending execution')
|
http://rosettacode.org/wiki/QR_decomposition
|
QR decomposition
|
Any rectangular
m
×
n
{\displaystyle m\times n}
matrix
A
{\displaystyle {\mathit {A}}}
can be decomposed to a product of an orthogonal matrix
Q
{\displaystyle {\mathit {Q}}}
and an upper (right) triangular matrix
R
{\displaystyle {\mathit {R}}}
, as described in QR decomposition.
Task
Demonstrate the QR decomposition on the example matrix from the Wikipedia article:
A
=
(
12
−
51
4
6
167
−
68
−
4
24
−
41
)
{\displaystyle A={\begin{pmatrix}12&-51&4\\6&167&-68\\-4&24&-41\end{pmatrix}}}
and the usage for linear least squares problems on the example from Polynomial regression. The method of Householder reflections should be used:
Method
Multiplying a given vector
a
{\displaystyle {\mathit {a}}}
, for example the first column of matrix
A
{\displaystyle {\mathit {A}}}
, with the Householder matrix
H
{\displaystyle {\mathit {H}}}
, which is given as
H
=
I
−
2
u
T
u
u
u
T
{\displaystyle H=I-{\frac {2}{u^{T}u}}uu^{T}}
reflects
a
{\displaystyle {\mathit {a}}}
about a plane given by its normal vector
u
{\displaystyle {\mathit {u}}}
. When the normal vector of the plane
u
{\displaystyle {\mathit {u}}}
is given as
u
=
a
−
∥
a
∥
2
e
1
{\displaystyle u=a-\|a\|_{2}\;e_{1}}
then the transformation reflects
a
{\displaystyle {\mathit {a}}}
onto the first standard basis vector
e
1
=
[
1
0
0
.
.
.
]
T
{\displaystyle e_{1}=[1\;0\;0\;...]^{T}}
which means that all entries but the first become zero. To avoid numerical cancellation errors, we should take the opposite sign of
a
1
{\displaystyle a_{1}}
:
u
=
a
+
sign
(
a
1
)
∥
a
∥
2
e
1
{\displaystyle u=a+{\textrm {sign}}(a_{1})\|a\|_{2}\;e_{1}}
and normalize with respect to the first element:
v
=
u
u
1
{\displaystyle v={\frac {u}{u_{1}}}}
The equation for
H
{\displaystyle H}
thus becomes:
H
=
I
−
2
v
T
v
v
v
T
{\displaystyle H=I-{\frac {2}{v^{T}v}}vv^{T}}
or, in another form
H
=
I
−
β
v
v
T
{\displaystyle H=I-\beta vv^{T}}
with
β
=
2
v
T
v
{\displaystyle \beta ={\frac {2}{v^{T}v}}}
Applying
H
{\displaystyle {\mathit {H}}}
on
a
{\displaystyle {\mathit {a}}}
then gives
H
a
=
−
sign
(
a
1
)
∥
a
∥
2
e
1
{\displaystyle H\;a=-{\textrm {sign}}(a_{1})\;\|a\|_{2}\;e_{1}}
and applying
H
{\displaystyle {\mathit {H}}}
on the matrix
A
{\displaystyle {\mathit {A}}}
zeroes all subdiagonal elements of the first column:
H
1
A
=
(
r
11
r
12
r
13
0
∗
∗
0
∗
∗
)
{\displaystyle H_{1}\;A={\begin{pmatrix}r_{11}&r_{12}&r_{13}\\0&*&*\\0&*&*\end{pmatrix}}}
In the second step, the second column of
A
{\displaystyle {\mathit {A}}}
, we want to zero all elements but the first two, which means that we have to calculate
H
{\displaystyle {\mathit {H}}}
with the first column of the submatrix (denoted *), not on the whole second column of
A
{\displaystyle {\mathit {A}}}
.
To get
H
2
{\displaystyle H_{2}}
, we then embed the new
H
{\displaystyle {\mathit {H}}}
into an
m
×
n
{\displaystyle m\times n}
identity:
H
2
=
(
1
0
0
0
H
0
)
{\displaystyle H_{2}={\begin{pmatrix}1&0&0\\0&H&\\0&&\end{pmatrix}}}
This is how we can, column by column, remove all subdiagonal elements of
A
{\displaystyle {\mathit {A}}}
and thus transform it into
R
{\displaystyle {\mathit {R}}}
.
H
n
.
.
.
H
3
H
2
H
1
A
=
R
{\displaystyle H_{n}\;...\;H_{3}H_{2}H_{1}A=R}
The product of all the Householder matrices
H
{\displaystyle {\mathit {H}}}
, for every column, in reverse order, will then yield the orthogonal matrix
Q
{\displaystyle {\mathit {Q}}}
.
H
1
H
2
H
3
.
.
.
H
n
=
Q
{\displaystyle H_{1}H_{2}H_{3}\;...\;H_{n}=Q}
The QR decomposition should then be used to solve linear least squares (Multiple regression) problems
A
x
=
b
{\displaystyle {\mathit {A}}x=b}
by solving
R
x
=
Q
T
b
{\displaystyle R\;x=Q^{T}\;b}
When
R
{\displaystyle {\mathit {R}}}
is not square, i.e.
m
>
n
{\displaystyle m>n}
we have to cut off the
m
−
n
{\displaystyle {\mathit {m}}-n}
zero padded bottom rows.
R
=
(
R
1
0
)
{\displaystyle R={\begin{pmatrix}R_{1}\\0\end{pmatrix}}}
and the same for the RHS:
Q
T
b
=
(
q
1
q
2
)
{\displaystyle Q^{T}\;b={\begin{pmatrix}q_{1}\\q_{2}\end{pmatrix}}}
Finally, solve the square upper triangular system by back substitution:
R
1
x
=
q
1
{\displaystyle R_{1}\;x=q_{1}}
|
#Stata
|
Stata
|
mata
: qrd(a=(12,-51,4\6,167,-68\-4,24,-41),q=.,r=.)
: a
1 2 3
+-------------------+
1 | 12 -51 4 |
2 | 6 167 -68 |
3 | -4 24 -41 |
+-------------------+
: q
1 2 3
+----------------------------------------------+
1 | -.8571428571 .3942857143 .3314285714 |
2 | -.4285714286 -.9028571429 -.0342857143 |
3 | .2857142857 -.1714285714 .9428571429 |
+----------------------------------------------+
: r
1 2 3
+----------------------+
1 | -14 -21 14 |
2 | 0 -175 70 |
3 | 0 0 -35 |
+----------------------+
|
http://rosettacode.org/wiki/Prime_triangle
|
Prime triangle
|
You will require a function f which when given an integer S will return a list of the arrangements of the integers 1 to S such that g1=1 gS=S and generally for n=1 to n=S-1 gn+gn+1 is prime. S=1 is undefined. For S=2 to S=20 print f(S) to form a triangle. Then again for S=2 to S=20 print the number of possible arrangements of 1 to S meeting these requirements.
|
#Visual_Basic_.NET
|
Visual Basic .NET
|
Option Strict On
Option Explicit On
Imports System.IO
''' <summary>Find solutions to the "Prime Triangle" - a triangle of numbers that sum to primes.</summary>
Module vMain
Public Const maxNumber As Integer = 20 ' Largest number we will consider.
Dim prime(2 * maxNumber) As Boolean ' prime sieve.
''' <returns>The number of possible arrangements of the integers for a row in the prime triangle.</returns>
Public Function countArrangements(ByVal n As Integer) As Integer
If n < 2 Then ' No solutions for n < 2.
Return 0
ElseIf n < 4 Then
' For 2 and 3. there is only 1 solution: 1, 2 and 1, 2, 3.
For i As Integer = 1 To n
Console.Out.Write(i.ToString.PadLeft(3))
Next i
Console.Out.WriteLine()
Return 1
Else
' 4 or more - must find the solutions.
Dim printSolution As Boolean = true
Dim used(n) As Boolean
Dim number(n) As Integer
' The triangle row must have 1 in the leftmost and n in the rightmost elements.
' The numbers must alternate between even and odd in order for the sums to be prime.
For i As Integer = 0 To n - 1
number(i) = i Mod 2
Next i
used(1) = True
number(n) = n
used(n) = True
' Find the intervening numbers and count the solutions.
Dim count As Integer = 0
Dim p As Integer = 2
Do While p > 0
Dim p1 As Integer = number(p - 1)
Dim current As Integer = number(p)
Dim [next] As Integer = current + 2
Do While [next] < n AndAlso (Not prime(p1 + [next]) Or used([next]))
[next] += 2
Loop
If [next] >= n Then
[next] = 0
End If
If p = n - 1 Then
' We are at the final number before n.
' It must be the final even/odd number preceded by the final odd/even number.
If [next] <> 0 Then
' Possible solution.
If prime([next] + n) Then
' Found a solution.
count += 1
If printSolution Then
For i As Integer = 1 To n - 2
Console.Out.Write(number(i).ToString.PadLeft(3))
Next i
Console.Out.WriteLine([next].ToString.PadLeft(3) & n.ToString.PadLeft(3))
printSolution = False
End If
End If
[next] = 0
End If
' Backtrack for more solutions.
p -= 1
' There will be a further backtrack as next is 0 ( there could only be one possible number at p - 1 ).
End If
If [next] <> 0 Then
' have a/another number that can appear at p.
used(current) = False
used([next]) = True
number(p) = [next]
' Haven't found all the intervening digits yet.
p += 1
ElseIf p <= 2 Then
' No more solutions.
p = 0
Else
' Can't find a number for this position, backtrack.
used(number(p)) = False
number(p) = p Mod 2
p -= 1
End If
Loop
Return count
End If
End Function
Public Sub Main
prime(2) = True
For i As Integer = 3 To UBound(prime) Step 2
prime(i) = True
Next i
For i As Integer = 3 To Convert.ToInt32(Math.Floor(Math.Sqrt(Ubound(prime)))) Step 2
If prime(i) Then
For s As Integer = i * i To Ubound(prime) Step i + i
prime(s) = False
Next s
End If
Next i
Dim arrangements(maxNumber) As Integer
For n As Integer = 2 To UBound(arrangements)
arrangements(n) = countArrangements(n)
Next n
For n As Integer = 2 To UBound(arrangements)
Console.Out.Write(" " & arrangements(n))
Next n
Console.Out.WriteLine()
End Sub
End Module
|
http://rosettacode.org/wiki/Primality_by_Wilson%27s_theorem
|
Primality by Wilson's theorem
|
Task
Write a boolean function that tells whether a given integer is prime using Wilson's theorem.
By Wilson's theorem, a number p is prime if and only if p divides (p - 1)! + 1.
Remember that 1 and all non-positive integers are not prime.
See also
Cut-the-knot: Wilson's theorem.
Wikipedia: Wilson's theorem
|
#ALGOL_W
|
ALGOL W
|
begin
% find primes using Wilson's theorem: %
% p is prime if ( ( p - 1 )! + 1 ) mod p = 0 %
% returns true if n is a prime by Wilson's theorem, false otherwise %
% computes the factorial mod p at each stage, so as to %
% allow numbers whose factorial won't fit in 32 bits %
logical procedure isWilsonPrime ( integer value n ) ;
begin
integer factorialModN;
factorialModN := 1;
for i := 2 until n - 1 do factorialModN := ( factorialModN * i ) rem n;
factorialModN = n - 1
end isWilsonPrime ;
for i := 1 until 100 do if isWilsonPrime( i ) then writeon( i_w := 1, s_w := 0, " ", i );
end.
|
http://rosettacode.org/wiki/Primality_by_Wilson%27s_theorem
|
Primality by Wilson's theorem
|
Task
Write a boolean function that tells whether a given integer is prime using Wilson's theorem.
By Wilson's theorem, a number p is prime if and only if p divides (p - 1)! + 1.
Remember that 1 and all non-positive integers are not prime.
See also
Cut-the-knot: Wilson's theorem.
Wikipedia: Wilson's theorem
|
#APL
|
APL
|
wilson ← {⍵<2:0 ⋄ (⍵-1)=(⍵|×)/⍳⍵-1}
|
http://rosettacode.org/wiki/Pragmatic_directives
|
Pragmatic directives
|
Pragmatic directives cause the language to operate in a specific manner, allowing support for operational variances within the program code (possibly by the loading of specific or alternative modules).
Task
List any pragmatic directives supported by the language, and demonstrate how to activate and deactivate the pragmatic directives and to describe or demonstrate the scope of effect that the pragmatic directives have within a program.
|
#Go
|
Go
|
// +build <expression>
|
http://rosettacode.org/wiki/Pragmatic_directives
|
Pragmatic directives
|
Pragmatic directives cause the language to operate in a specific manner, allowing support for operational variances within the program code (possibly by the loading of specific or alternative modules).
Task
List any pragmatic directives supported by the language, and demonstrate how to activate and deactivate the pragmatic directives and to describe or demonstrate the scope of effect that the pragmatic directives have within a program.
|
#Icon_and_Unicon
|
Icon and Unicon
|
&trace # controls execution tracing
&error # controls error handling
|
http://rosettacode.org/wiki/Pragmatic_directives
|
Pragmatic directives
|
Pragmatic directives cause the language to operate in a specific manner, allowing support for operational variances within the program code (possibly by the loading of specific or alternative modules).
Task
List any pragmatic directives supported by the language, and demonstrate how to activate and deactivate the pragmatic directives and to describe or demonstrate the scope of effect that the pragmatic directives have within a program.
|
#J
|
J
|
9!:1 random seed (incomplete specification of state -- see 9!:45)
9!:3 default display for non-nouns
9!:7 box drawing characters
9!:9 error messages
9!:11 print precision
9!:17 centering (or not) when box contents are smaller than boxes
9!:19 comparison tolerance
9!:21 memory limit
9!:25 security level
9!:27 text of immediate execution phrase
9!:29 enable immediate execution phrase
9!:33 execution time limit
9!:35 disable (or re-enable) assertions
9!:37 output control
9!:39 locales' hash table size
9!:41 retain (or not) whitespace and comments in explicit definitions
9!:43 which random number generator to use?
9!:45 what is the current state of that rng?
9!:49 enable reserved words for argument names
|
http://rosettacode.org/wiki/Pragmatic_directives
|
Pragmatic directives
|
Pragmatic directives cause the language to operate in a specific manner, allowing support for operational variances within the program code (possibly by the loading of specific or alternative modules).
Task
List any pragmatic directives supported by the language, and demonstrate how to activate and deactivate the pragmatic directives and to describe or demonstrate the scope of effect that the pragmatic directives have within a program.
|
#Julia
|
Julia
|
x = rand(100, 100)
y = rand(100, 100)
@inbounds begin
for i = 1:100
for j = 1:100
x[i, j] *= y[i, j]
y[i, j] += x[i, j]
end
end
end
|
http://rosettacode.org/wiki/Pragmatic_directives
|
Pragmatic directives
|
Pragmatic directives cause the language to operate in a specific manner, allowing support for operational variances within the program code (possibly by the loading of specific or alternative modules).
Task
List any pragmatic directives supported by the language, and demonstrate how to activate and deactivate the pragmatic directives and to describe or demonstrate the scope of effect that the pragmatic directives have within a program.
|
#Kotlin
|
Kotlin
|
// version 1.0.6
@Suppress("UNUSED_VARIABLE")
fun main(args: Array<String>) {
val s = "To be suppressed"
}
|
http://rosettacode.org/wiki/Pragmatic_directives
|
Pragmatic directives
|
Pragmatic directives cause the language to operate in a specific manner, allowing support for operational variances within the program code (possibly by the loading of specific or alternative modules).
Task
List any pragmatic directives supported by the language, and demonstrate how to activate and deactivate the pragmatic directives and to describe or demonstrate the scope of effect that the pragmatic directives have within a program.
|
#Lua
|
Lua
|
ffi = require("ffi")
ffi.cdef[[
#pragma pack(1)
typedef struct { char c; int i; } foo;
#pragma pack(4)
typedef struct { char c; int i; } bar;
]]
print(ffi.sizeof(ffi.new("foo")))
print(ffi.sizeof(ffi.new("bar")))
|
http://rosettacode.org/wiki/Prime_conspiracy
|
Prime conspiracy
|
A recent discovery, quoted from Quantamagazine (March 13, 2016):
Two mathematicians have uncovered a simple, previously unnoticed property of
prime numbers — those numbers that are divisible only by 1 and themselves.
Prime numbers, it seems, have decided preferences about the final digits of
the primes that immediately follow them.
and
This conspiracy among prime numbers seems, at first glance, to violate a
longstanding assumption in number theory: that prime numbers behave much
like random numbers.
─── (original authors from Stanford University):
─── Kannan Soundararajan and Robert Lemke Oliver
The task is to check this assertion, modulo 10.
Lets call i -> j a transition if i is the last decimal digit of a prime, and j the last decimal digit of the following prime.
Task
Considering the first one million primes. Count, for any pair of successive primes, the number of transitions i -> j and print them along with their relative frequency, sorted by i .
You can see that, for a given i , frequencies are not evenly distributed.
Observation
(Modulo 10), primes whose last digit is 9 "prefer" the digit 1 to the digit 9, as its following prime.
Extra credit
Do the same for one hundred million primes.
Example for 10,000 primes
10000 first primes. Transitions prime % 10 → next-prime % 10.
1 → 1 count: 365 frequency: 3.65 %
1 → 3 count: 833 frequency: 8.33 %
1 → 7 count: 889 frequency: 8.89 %
1 → 9 count: 397 frequency: 3.97 %
2 → 3 count: 1 frequency: 0.01 %
3 → 1 count: 529 frequency: 5.29 %
3 → 3 count: 324 frequency: 3.24 %
3 → 5 count: 1 frequency: 0.01 %
3 → 7 count: 754 frequency: 7.54 %
3 → 9 count: 907 frequency: 9.07 %
5 → 7 count: 1 frequency: 0.01 %
7 → 1 count: 655 frequency: 6.55 %
7 → 3 count: 722 frequency: 7.22 %
7 → 7 count: 323 frequency: 3.23 %
7 → 9 count: 808 frequency: 8.08 %
9 → 1 count: 935 frequency: 9.35 %
9 → 3 count: 635 frequency: 6.35 %
9 → 7 count: 541 frequency: 5.41 %
9 → 9 count: 379 frequency: 3.79 %
|
#C.2B.2B
|
C++
|
#include <vector>
#include <iostream>
#include <cmath>
#include <utility>
#include <map>
#include <iomanip>
bool isPrime( int i ) {
int stop = std::sqrt( static_cast<double>( i ) ) ;
for ( int d = 2 ; d <= stop ; d++ )
if ( i % d == 0 )
return false ;
return true ;
}
class Compare {
public :
Compare( ) {
}
bool operator( ) ( const std::pair<int , int> & a , const std::pair<int, int> & b ) {
if ( a.first != b.first )
return a.first < b.first ;
else
return a.second < b.second ;
}
};
int main( ) {
std::vector<int> primes {2} ;
int current = 3 ;
while ( primes.size( ) < 1000000 ) {
if ( isPrime( current ) )
primes.push_back( current ) ;
current += 2 ;
}
Compare myComp ;
std::map<std::pair<int, int>, int , Compare> conspiracy (myComp) ;
for ( int i = 0 ; i < primes.size( ) -1 ; i++ ) {
int a = primes[i] % 10 ;
int b = primes[ i + 1 ] % 10 ;
std::pair<int , int> numbers { a , b} ;
conspiracy[numbers]++ ;
}
std::cout << "1000000 first primes. Transitions prime % 10 → next-prime % 10.\n" ;
for ( auto it = conspiracy.begin( ) ; it != conspiracy.end( ) ; it++ ) {
std::cout << (it->first).first << " -> " << (it->first).second << " count:" ;
int frequency = it->second ;
std::cout << std::right << std::setw( 15 ) << frequency << " frequency: " ;
std::cout.setf(std::ios::fixed, std::ios::floatfield ) ;
std::cout.precision( 2 ) ;
std::cout << (static_cast<double>(frequency) / 1000000.0) * 100 << " %\n" ;
}
return 0 ;
}
|
http://rosettacode.org/wiki/Proper_divisors
|
Proper divisors
|
The proper divisors of a positive integer N are those numbers, other than N itself, that divide N without remainder.
For N > 1 they will always include 1, but for N == 1 there are no proper divisors.
Examples
The proper divisors of 6 are 1, 2, and 3.
The proper divisors of 100 are 1, 2, 4, 5, 10, 20, 25, and 50.
Task
Create a routine to generate all the proper divisors of a number.
use it to show the proper divisors of the numbers 1 to 10 inclusive.
Find a number in the range 1 to 20,000 with the most proper divisors. Show the number and just the count of how many proper divisors it has.
Show all output here.
Related tasks
Amicable pairs
Abundant, deficient and perfect number classifications
Aliquot sequence classifications
Factors of an integer
Prime decomposition
|
#BaCon
|
BaCon
|
FUNCTION ProperDivisor(nr, show)
LOCAL probe, total
FOR probe = 1 TO nr-1
IF MOD(nr, probe) = 0 THEN
IF show THEN PRINT " ", probe;
INCR total
END IF
NEXT
RETURN total
END FUNCTION
FOR x = 1 TO 10
PRINT x, ":";
IF ProperDivisor(x, 1) = 0 THEN PRINT " 0";
PRINT
NEXT
FOR x = 1 TO 20000
DivisorCount = ProperDivisor(x, 0)
IF DivisorCount > MaxDivisors THEN
MaxDivisors = DivisorCount
MagicNumber = x
END IF
NEXT
PRINT "Most proper divisors for number in the range 1-20000: ", MagicNumber, " with ", MaxDivisors, " divisors."
|
http://rosettacode.org/wiki/Probabilistic_choice
|
Probabilistic choice
|
Given a mapping between items and their required probability of occurrence, generate a million items randomly subject to the given probabilities and compare the target probability of occurrence versus the generated values.
The total of all the probabilities should equal one. (Because floating point arithmetic is involved, this is subject to rounding errors).
aleph 1/5.0
beth 1/6.0
gimel 1/7.0
daleth 1/8.0
he 1/9.0
waw 1/10.0
zayin 1/11.0
heth 1759/27720 # adjusted so that probabilities add to 1
Related task
Random number generator (device)
|
#C.23
|
C#
|
using System;
class Program
{
static long TRIALS = 1000000L;
private class Expv
{
public string name;
public int probcount;
public double expect;
public double mapping;
public Expv(string name, int probcount, double expect, double mapping)
{
this.name = name;
this.probcount = probcount;
this.expect = expect;
this.mapping = mapping;
}
}
static Expv[] items = {
new Expv("aleph", 0, 0.0, 0.0), new Expv("beth", 0, 0.0, 0.0),
new Expv("gimel", 0, 0.0, 0.0), new Expv("daleth", 0, 0.0, 0.0),
new Expv("he", 0, 0.0, 0.0), new Expv("waw", 0, 0.0, 0.0),
new Expv("zayin", 0, 0.0, 0.0), new Expv("heth", 0, 0.0, 0.0)
};
static void Main(string[] args)
{
double rnum, tsum = 0.0;
Random random = new Random();
for (int i = 0, rnum = 5.0; i < 7; i++, rnum += 1.0)
{
items[i].expect = 1.0 / rnum;
tsum += items[i].expect;
}
items[7].expect = 1.0 - tsum;
items[0].mapping = 1.0 / 5.0;
for (int i = 1; i < 7; i++)
items[i].mapping = items[i - 1].mapping + 1.0 / ((double)i + 5.0);
items[7].mapping = 1.0;
for (int i = 0; i < TRIALS; i++)
{
rnum = random.NextDouble();
for (int j = 0; j < 8; j++)
if (rnum < items[j].mapping)
{
items[j].probcount++;
break;
}
}
Console.WriteLine("Trials: {0}", TRIALS);
Console.Write("Items: ");
for (int i = 0; i < 8; i++)
Console.Write(items[i].name.PadRight(9));
Console.WriteLine();
Console.Write("Target prob.: ");
for (int i = 0; i < 8; i++)
Console.Write("{0:0.000000} ", items[i].expect);
Console.WriteLine();
Console.Write("Attained prob.: ");
for (int i = 0; i < 8; i++)
Console.Write("{0:0.000000} ", (double)items[i].probcount / (double)TRIALS);
Console.WriteLine();
}
}
|
http://rosettacode.org/wiki/Primes_-_allocate_descendants_to_their_ancestors
|
Primes - allocate descendants to their ancestors
|
The concept, is to add the decomposition into prime factors of a number to get its 'ancestors'.
The objective is to demonstrate that the choice of the algorithm can be crucial in term of performance.
This solution could be compared to the solution that would use the decomposition into primes for all the numbers between 1 and 333.
The problem is to list, for a delimited set of ancestors (from 1 to 99) :
- the total of their own ancestors (LEVEL),
- their own ancestors (ANCESTORS),
- the total of the direct descendants (DESCENDANTS),
- all the direct descendants.
You only have to consider the prime factors < 100.
A grand total of the descendants has to be printed at the end of the list.
The task should be accomplished in a reasonable time-frame.
Example :
46 = 2*23 --> 2+23 = 25, is the parent of 46.
25 = 5*5 --> 5+5 = 10, is the parent of 25.
10 = 2*5 --> 2+5 = 7, is the parent of 10.
7 is a prime factor and, as such, has no parent.
46 has 3 ancestors (7, 10 and 25).
46 has 557 descendants.
The list layout and the output for Parent [46] :
[46] Level: 3
Ancestors: 7, 10, 25
Descendants: 557
129, 205, 246, 493, 518, 529, 740, 806, 888, 999, 1364, 1508, 1748, 2552, 2871, 3128, 3255, 3472, 3519, 3875, 3906, 4263, 4650, 4960, 5075, 5415, 5580, 5776, 5952, 6090, 6279, 6496, 6498, 6696, 6783, 7250, 7308, 7475, 7533, 8075, 8151, 8619, 8700, 8855, 8970, 9280, 9568, 9690, 10115, 10336, 10440, 10626, 10764, 11136, 11495, 11628, 11745, 12103, 12138, 12155, 12528, 12650, 13794, 14094, 14399, 14450, 14586, 15180, 15379, 15778, 16192, 17290, 17303, 17340, 18216, 18496, 20482, 20493, 20570, 20748, 20808, 21658, 21970, 22540, 23409, 24684, 24700, 26026, 26364, 27048, 29260, 29282, 29640, 30429, 30940, 31616, 32200, 33345, 35112, 35568, 36225, 36652, 37128, 37180, 38640, 39501, 40014, 41216, 41769, 41800, 43125, 43470, 44044, 44200, 44616, 46000, 46368, 47025, 49725, 50160, 50193, 51750, 52136, 52164, 52360, 53040, 53504, 55200, 56430, 56576, 58653, 58880, 58905, 59670, 60192, 62100, 62832, 62920, 63648, 66240, 66248, 67716, 69825, 70125, 70656, 70686, 70785, 71604, 74480, 74520, 74529, 74536, 74800, 75504, 79488, 83125, 83790, 83835, 83853, 84150, 84942, 87465, 88725, 89376, 89424, 89760, 93296, 94640, 95744, 99750, 99825, 100548, 100602, 100980, 104125, 104958, 105105, 105625, 106400, 106470, 106480, 107712, 112112, 113568, 118750, 119700, 119790, 121176, 124509, 124950, 125125, 126126, 126750, 127680, 127764, 127776, 133280, 135200, 136192, 136323, 142500, 143640, 143748, 148225, 148750, 149940, 150150, 152000, 152100, 153216, 156065, 159936, 160160, 161595, 162240, 171000, 172368, 173056, 177870, 178500, 178750, 179928, 180180, 182400, 182520, 184877, 187278, 189728, 190400, 192192, 192375, 193914, 194560, 194688, 202419, 205200, 205335, 211750, 212500, 213444, 214200, 214500, 216216, 218880, 219024, 222950, 228480, 228800, 230850, 233472, 240975, 243243, 243712, 246240, 246402, 254100, 255000, 257040, 257400, 262656, 264110, 267540, 271040, 272000, 274176, 274560, 277020, 285376, 286875, 289170, 289575, 292864, 295488, 302500, 304920, 306000, 308448, 308880, 316932, 318500, 321048, 325248, 326400, 329472, 332424, 343035, 344250, 347004, 347490, 348160, 361179, 363000, 365904, 367200, 370656, 373977, 377300, 382200, 387200, 391680, 407680, 408375, 411642, 413100, 416988, 417792, 429975, 435600, 440640, 452760, 455000, 458640, 464640, 470016, 470596, 482944, 489216, 490050, 495616, 495720, 509355, 511875, 515970, 522720, 528768, 539000, 543312, 546000, 550368, 557568, 557685, 582400, 588060, 594864, 606375, 609375, 611226, 614250, 619164, 627264, 646800, 650000, 655200, 669222, 672280, 689920, 698880, 705672, 721875, 727650, 731250, 737100, 745472, 756315, 770000, 776160, 780000, 786240, 793881, 806736, 827904, 832000, 838656, 859375, 866250, 873180, 877500, 884520, 900375, 907578, 924000, 931392, 936000, 943488, 960400, 985600, 995085, 998400, 1031250, 1039500, 1047816, 1053000, 1061424, 1064960, 1071875, 1080450, 1100000, 1108800, 1123200, 1152480, 1178793, 1182720, 1184625, 1194102, 1198080, 1229312, 1237500, 1247400, 1261568, 1263600, 1277952, 1286250, 1296540, 1320000, 1330560, 1347840, 1372000, 1382976, 1403325, 1408000, 1419264, 1421550, 1437696, 1485000, 1496880, 1516320, 1531250, 1543500, 1555848, 1584000, 1596672, 1617408, 1646400, 1670625, 1683990, 1689600, 1705860, 1750329, 1756160, 1782000, 1796256, 1802240, 1819584, 1837500, 1852200, 1900800, 1960000, 1975680, 2004750, 2020788, 2027520, 2047032, 2083725, 2107392, 2138400, 2162688, 2187500, 2205000, 2222640, 2280960, 2302911, 2352000, 2370816, 2405700, 2433024, 2480625, 2500470, 2508800, 2566080, 2625000, 2646000, 2667168, 2737152, 2800000, 2822400, 2886840, 2953125, 2976750, 3000564, 3010560, 3079296, 3125000, 3150000, 3175200, 3211264, 3247695, 3360000, 3386880, 3464208, 3515625, 3543750, 3572100, 3584000, 3612672, 3750000, 3780000, 3810240, 3897234, 4000000, 4032000, 4064256, 4218750, 4252500, 4286520, 4300800, 4500000, 4536000, 4572288, 4587520, 4800000, 4822335, 4838400, 5062500, 5103000, 5120000, 5143824, 5160960, 5400000, 5443200, 5505024, 5740875, 5760000, 5786802, 5806080, 6075000, 6123600, 6144000, 6193152, 6480000, 6531840, 6553600, 6834375, 6889050, 6912000, 6967296, 7290000, 7348320, 7372800, 7776000, 7838208, 7864320, 8201250, 8266860, 8294400, 8388608, 8748000, 8817984, 8847360, 9331200, 9437184, 9841500, 9920232, 9953280, 10497600, 10616832, 11160261, 11197440, 11809800, 11943936, 12597120, 13286025, 13436928, 14171760, 15116544, 15943230, 17006112, 19131876
Some figures :
The biggest descendant number : 3^33 = 5.559.060.566.555.523 (parent 99)
Total Descendants 546.986
|
#Java
|
Java
|
import java.io.*;
import java.util.*;
public class PrimeDescendants {
public static void main(String[] args) {
try (Writer writer = new BufferedWriter(new OutputStreamWriter(System.out))) {
printPrimeDesc(writer, 100);
} catch (IOException ex) {
ex.printStackTrace();
}
}
private static void printPrimeDesc(Writer writer, int limit) throws IOException {
List<Long> primes = findPrimes(limit);
List<Long> ancestor = new ArrayList<>(limit);
List<List<Long>> descendants = new ArrayList<>(limit);
for (int i = 0; i < limit; ++i) {
ancestor.add(Long.valueOf(0));
descendants.add(new ArrayList<Long>());
}
for (Long prime : primes) {
int p = prime.intValue();
descendants.get(p).add(prime);
for (int i = 0; i + p < limit; ++i) {
int s = i + p;
for (Long n : descendants.get(i)) {
Long prod = n * p;
descendants.get(s).add(prod);
if (prod < limit)
ancestor.set(prod.intValue(), Long.valueOf(s));
}
}
}
// print the results
int totalDescendants = 0;
for (int i = 1; i < limit; ++i) {
List<Long> ancestors = getAncestors(ancestor, i);
writer.write("[" + i + "] Level: " + ancestors.size() + "\n");
writer.write("Ancestors: ");
Collections.sort(ancestors);
print(writer, ancestors);
writer.write("Descendants: ");
List<Long> desc = descendants.get(i);
if (!desc.isEmpty()) {
Collections.sort(desc);
if (desc.get(0) == i)
desc.remove(0);
}
writer.write(desc.size() + "\n");
totalDescendants += desc.size();
if (!desc.isEmpty())
print(writer, desc);
writer.write("\n");
}
writer.write("Total descendants: " + totalDescendants + "\n");
}
// find the prime numbers up to limit
private static List<Long> findPrimes(int limit) {
boolean[] isprime = new boolean[limit];
Arrays.fill(isprime, true);
isprime[0] = isprime[1] = false;
for (int p = 2; p * p < limit; ++p) {
if (isprime[p]) {
for (int i = p * p; i < limit; i += p)
isprime[i] = false;
}
}
List<Long> primes = new ArrayList<>();
for (int p = 2; p < limit; ++p) {
if (isprime[p])
primes.add(Long.valueOf(p));
}
return primes;
}
// returns all ancestors of n. n is not its own ancestor.
private static List<Long> getAncestors(List<Long> ancestor, int n) {
List<Long> result = new ArrayList<>();
for (Long a = ancestor.get(n); a != 0 && a != n; ) {
n = a.intValue();
a = ancestor.get(n);
result.add(Long.valueOf(n));
}
return result;
}
private static void print(Writer writer, List<Long> list) throws IOException {
if (list.isEmpty()) {
writer.write("none\n");
return;
}
int i = 0;
writer.write(String.valueOf(list.get(i++)));
for (; i != list.size(); ++i)
writer.write(", " + list.get(i));
writer.write("\n");
}
}
|
http://rosettacode.org/wiki/Priority_queue
|
Priority queue
|
A priority queue is somewhat similar to a queue, with an important distinction: each item is added to a priority queue with a priority level, and will be later removed from the queue with the highest priority element first. That is, the items are (conceptually) stored in the queue in priority order instead of in insertion order.
Task
Create a priority queue. The queue must support at least two operations:
Insertion. An element is added to the queue with a priority (a numeric value).
Top item removal. Deletes the element or one of the elements with the current top priority and return it.
Optionally, other operations may be defined, such as peeking (find what current top priority/top element is), merging (combining two priority queues into one), etc.
To test your implementation, insert a number of elements into the queue, each with some random priority.
Then dequeue them sequentially; now the elements should be sorted by priority.
You can use the following task/priority items as input data:
Priority Task
══════════ ════════════════
3 Clear drains
4 Feed cat
5 Make tea
1 Solve RC tasks
2 Tax return
The implementation should try to be efficient. A typical implementation has O(log n) insertion and extraction time, where n is the number of items in the queue.
You may choose to impose certain limits such as small range of allowed priority levels, limited capacity, etc. If so, discuss the reasons behind it.
|
#C.2B.2B
|
C++
|
#include <iostream>
#include <string>
#include <queue>
#include <utility>
int main() {
std::priority_queue<std::pair<int, std::string> > pq;
pq.push(std::make_pair(3, "Clear drains"));
pq.push(std::make_pair(4, "Feed cat"));
pq.push(std::make_pair(5, "Make tea"));
pq.push(std::make_pair(1, "Solve RC tasks"));
pq.push(std::make_pair(2, "Tax return"));
while (!pq.empty()) {
std::cout << pq.top().first << ", " << pq.top().second << std::endl;
pq.pop();
}
return 0;
}
|
http://rosettacode.org/wiki/Problem_of_Apollonius
|
Problem of Apollonius
|
Task
Implement a solution to the Problem of Apollonius (description on Wikipedia) which is the problem of finding the circle that is tangent to three specified circles (colored black in the diagram below to the right).
There is an algebraic solution which is pretty straightforward.
The solutions to the example in the code are shown in the diagram (below and to the right).
The red circle is "internally tangent" to all three black circles, and the green circle is "externally tangent" to all three black circles.
|
#FutureBasic
|
FutureBasic
|
Problem of Apollonius
include "NSLog.incl"
begin record Circle
CGPoint center
double radius
CFStringRef locator
end record
local fn CircleToString( c as Circle ) as CFStringRef
end fn = fn StringWithFormat( @"%@ Circle( x = %0.3f, y = %0.3f, radius = %0.3f )", c.locator, c.center.x, c.center.y, c.radius )
local fn SolveApollonius( c1 as Circle, c2 as Circle, c3 as Circle, s1 as Double, s2 as Double, s3 as Double ) as Circle
'~'1
Circle result
double x1 = c1.center.x
double y1 = c1.center.y
double r1 = c1.radius
double x2 = c2.center.x
double y2 = c2.center.y
double r2 = c2.radius
double x3 = c3.center.x
double y3 = c3.center.y
double r3 = c3.radius
double v11 = 2*x2 - 2*x1
double v12 = 2*y2 - 2*y1
double v13 = x1*x1 - x2*x2 + y1*y1 - y2*y2 - r1*r1 + r2*r2
double v14 = 2*s2*r2 - 2*s1*r1
double v21 = 2*x3 - 2*x2
double v22 = 2*y3 - 2*y2
double v23 = x2*x2 - x3*x3 + y2*y2 - y3*y3 - r2*r2 + r3*r3
double v24 = 2*s3*r3 - 2*s2*r2
double w12 = v12/v11
double w13 = v13/v11
double w14 = v14/v11
double w22 = v22/v21-w12
double w23 = v23/v21-w13
double w24 = v24/v21-w14
double P = -w23/w22
double Q = w24/w22
double M = -w12*P-w13
double N = w14 - w12*Q
double a = N*N + Q*Q - 1
double b = 2*M*N - 2*N*x1 + 2*P*Q - 2*Q*y1 + 2*s1*r1
double c = x1*x1 + M*M - 2*M*x1 + P*P + y1*y1 - 2*P*y1 - r1*r1
double D = b*b-4*a*c
double rs = (-b - sqr(D)) / (2*a)
double xs = M + N * rs
double ys = P + Q * rs
result.center.x = xs
result.center.y = ys
result.radius = rs
if ( s1 < 1 )
result.locator = @"Internal Tangent:"
else
result.locator = @"External Tangent:"
end if
end fn = result
Circle c1, c2, c3, c
c1.center.x = 0.0 : c1.center.y = 0.0 : c1.radius = 1.0
c2.center.x = 4.0 : c2.center.y = 0.0 : c2.radius = 1.0
c3.center.x = 2.0 : c3.center.y = 4.0 : c3.radius = 2.0
// External tangent
c = fn SolveApollonius( c1, c2, c3, 1, 1, 1 )
NSLog( @"%@", fn CircleToString( c ) )
// Internal tangent
c = fn SolveApollonius( c1, c2, c3, -1, -1, -1 )
NSLog( @"%@", fn CircleToString( c ) )
HandleEvents
|
http://rosettacode.org/wiki/Program_name
|
Program name
|
The task is to programmatically obtain the name used to invoke the program. (For example determine whether the user ran "python hello.py", or "python hellocaller.py", a program importing the code from "hello.py".)
Sometimes a multiline shebang is necessary in order to provide the script name to a language's internal ARGV.
See also Command-line arguments
Examples from GitHub.
|
#Nemerle
|
Nemerle
|
using System.Environment;
...
def program_name = GetCommandLineArgs()[0];
...
|
http://rosettacode.org/wiki/Program_name
|
Program name
|
The task is to programmatically obtain the name used to invoke the program. (For example determine whether the user ran "python hello.py", or "python hellocaller.py", a program importing the code from "hello.py".)
Sometimes a multiline shebang is necessary in order to provide the script name to a language's internal ARGV.
See also Command-line arguments
Examples from GitHub.
|
#NetRexx
|
NetRexx
|
/* NetRexx */
options replace format comments java crossref symbols nobinary
package org.rosettacode.samples
say 'Source: ' source
say 'Program:' System.getProperty('sun.java.command')
return
|
http://rosettacode.org/wiki/Primorial_numbers
|
Primorial numbers
|
Primorial numbers are those formed by multiplying successive prime numbers.
The primorial number series is:
primorial(0) = 1 (by definition)
primorial(1) = 2 (2)
primorial(2) = 6 (2×3)
primorial(3) = 30 (2×3×5)
primorial(4) = 210 (2×3×5×7)
primorial(5) = 2310 (2×3×5×7×11)
primorial(6) = 30030 (2×3×5×7×11×13)
∙ ∙ ∙
To express this mathematically, primorialn is
the product of the first n (successive) primes:
p
r
i
m
o
r
i
a
l
n
=
∏
k
=
1
n
p
r
i
m
e
k
{\displaystyle primorial_{n}=\prod _{k=1}^{n}prime_{k}}
─── where
p
r
i
m
e
k
{\displaystyle prime_{k}}
is the kth prime number.
In some sense, generating primorial numbers is similar to factorials.
As with factorials, primorial numbers get large quickly.
Task
Show the first ten primorial numbers (0 ──► 9, inclusive).
Show the length of primorial numbers whose index is: 10 100 1,000 10,000 and 100,000.
Show the length of the one millionth primorial number (optional).
Use exact integers, not approximations.
By length (above), it is meant the number of decimal digits in the numbers.
Related tasks
Sequence of primorial primes
Factorial
Fortunate_numbers
See also
the MathWorld webpage: primorial
the Wikipedia webpage: primorial.
the OEIS webpage: A002110.
|
#Ring
|
Ring
|
# Project: Primorial numbers
load "bignumber.ring"
decimals(0)
num = 0
prim = 0
limit = 10000000
see "working..." + nl
see "wait for done..." + nl
while num < 100001
prim = prim + 1
prime = []
primorial(prim)
end
see "done..." + nl
func primorial(pr)
n = 1
n2 = 0
flag = 1
while flag = 1 and n < limit
nr = isPrime(n)
if n=1
nr=1
ok
if nr=1
n2 = n2 + 1
add(prime,n)
ok
if n2=pr
flag=0
num = num + 1
ok
n = n + 1
end
pro = 1
str = ""
for n=1 to len(prime)
pro = FuncMultiply("" + pro,"" + prime[n])
str = str + prime[n] + "*"
next
str = left(str,len(str)-1)
if pr < 11
see "primorial(" + string(pr-1) + ") : " + pro + nl
ok
if pr = 11
see "primorial(" + string(pr-1) + ") " + "has " + len(pro) + " digits"+ nl
but pr = 101
see "primorial(" + string(pr-1) + ") " + "has " + len(pro) + " digits"+ nl
but pr = 1001
see "primorial(" + string(pr-1) + ") " + "has " + len(pro) + " digits"+ nl
but pr = 10001
see "primorial(" + string(pr-1) + ") " + "has " + len(pro) + " digits"+ nl
but pr = 100001
see "primorial(" + string(pr-1) + ") " + "has " + len(pro) + " digits"+ nl
ok
|
http://rosettacode.org/wiki/Primorial_numbers
|
Primorial numbers
|
Primorial numbers are those formed by multiplying successive prime numbers.
The primorial number series is:
primorial(0) = 1 (by definition)
primorial(1) = 2 (2)
primorial(2) = 6 (2×3)
primorial(3) = 30 (2×3×5)
primorial(4) = 210 (2×3×5×7)
primorial(5) = 2310 (2×3×5×7×11)
primorial(6) = 30030 (2×3×5×7×11×13)
∙ ∙ ∙
To express this mathematically, primorialn is
the product of the first n (successive) primes:
p
r
i
m
o
r
i
a
l
n
=
∏
k
=
1
n
p
r
i
m
e
k
{\displaystyle primorial_{n}=\prod _{k=1}^{n}prime_{k}}
─── where
p
r
i
m
e
k
{\displaystyle prime_{k}}
is the kth prime number.
In some sense, generating primorial numbers is similar to factorials.
As with factorials, primorial numbers get large quickly.
Task
Show the first ten primorial numbers (0 ──► 9, inclusive).
Show the length of primorial numbers whose index is: 10 100 1,000 10,000 and 100,000.
Show the length of the one millionth primorial number (optional).
Use exact integers, not approximations.
By length (above), it is meant the number of decimal digits in the numbers.
Related tasks
Sequence of primorial primes
Factorial
Fortunate_numbers
See also
the MathWorld webpage: primorial
the Wikipedia webpage: primorial.
the OEIS webpage: A002110.
|
#Ruby
|
Ruby
|
require 'prime'
def primorial_number(n)
pgen = Prime.each
(1..n).inject(1){|p,_| p*pgen.next}
end
puts "First ten primorials: #{(0..9).map{|n| primorial_number(n)}}"
(1..5).each do |n|
puts "primorial(10**#{n}) has #{primorial_number(10**n).to_s.size} digits"
end
|
http://rosettacode.org/wiki/Pythagorean_triples
|
Pythagorean triples
|
A Pythagorean triple is defined as three positive integers
(
a
,
b
,
c
)
{\displaystyle (a,b,c)}
where
a
<
b
<
c
{\displaystyle a<b<c}
, and
a
2
+
b
2
=
c
2
.
{\displaystyle a^{2}+b^{2}=c^{2}.}
They are called primitive triples if
a
,
b
,
c
{\displaystyle a,b,c}
are co-prime, that is, if their pairwise greatest common divisors
g
c
d
(
a
,
b
)
=
g
c
d
(
a
,
c
)
=
g
c
d
(
b
,
c
)
=
1
{\displaystyle {\rm {gcd}}(a,b)={\rm {gcd}}(a,c)={\rm {gcd}}(b,c)=1}
.
Because of their relationship through the Pythagorean theorem, a, b, and c are co-prime if a and b are co-prime (
g
c
d
(
a
,
b
)
=
1
{\displaystyle {\rm {gcd}}(a,b)=1}
).
Each triple forms the length of the sides of a right triangle, whose perimeter is
P
=
a
+
b
+
c
{\displaystyle P=a+b+c}
.
Task
The task is to determine how many Pythagorean triples there are with a perimeter no larger than 100 and the number of these that are primitive.
Extra credit
Deal with large values. Can your program handle a maximum perimeter of 1,000,000? What about 10,000,000? 100,000,000?
Note: the extra credit is not for you to demonstrate how fast your language is compared to others; you need a proper algorithm to solve them in a timely manner.
Related tasks
Euler's sum of powers conjecture
List comprehensions
Pythagorean quadruples
|
#Nanoquery
|
Nanoquery
|
import math
// a function to check if three numbers are a valid triple
def is_triple(a, b, c)
if not (a < b) and (b < c)
return false
end
return (a^2 + b^2) = c^2
end
// a function to check if the numbers are coprime
def is_coprime(a, b, c)
global math
return (math.gcd(a, b)=1) && (math.gcd(a, c)=1) && (math.gcd(b, c)=1)
end
// the maximum perimeter to check
perimeter = 100
perimeter2 = int(perimeter / 2) - 1
perimeter3 = int(perimeter / 3) - 1
// loop though and look for pythagorean triples
ts = 0
ps = 0
for a in range(1, perimeter3)
for b in range(a + 1, perimeter2)
for c in range(b + 1, perimeter2)
if (a + b + c) <= perimeter
if is_triple(a,b,c)
ts += 1
print a + ", " + b + ", " + c
if is_coprime(a,b,c)
ps += 1
print " primitive"
end
println
end
end
end
end
end
print "Up to a perimeter of " + perimeter + ", there are " + ts
println " triples, of which " + ps + " are primitive."
|
http://rosettacode.org/wiki/Program_termination
|
Program termination
|
Task
Show the syntax for a complete stoppage of a program inside a conditional.
This includes all threads/processes which are part of your program.
Explain the cleanup (or lack thereof) caused by the termination (allocated memory, database connections, open files, object finalizers/destructors, run-on-exit hooks, etc.).
Unless otherwise described, no special cleanup outside that provided by the operating system is provided.
|
#Liberty_BASIC
|
Liberty BASIC
|
if 2 =2 then end
|
http://rosettacode.org/wiki/QR_decomposition
|
QR decomposition
|
Any rectangular
m
×
n
{\displaystyle m\times n}
matrix
A
{\displaystyle {\mathit {A}}}
can be decomposed to a product of an orthogonal matrix
Q
{\displaystyle {\mathit {Q}}}
and an upper (right) triangular matrix
R
{\displaystyle {\mathit {R}}}
, as described in QR decomposition.
Task
Demonstrate the QR decomposition on the example matrix from the Wikipedia article:
A
=
(
12
−
51
4
6
167
−
68
−
4
24
−
41
)
{\displaystyle A={\begin{pmatrix}12&-51&4\\6&167&-68\\-4&24&-41\end{pmatrix}}}
and the usage for linear least squares problems on the example from Polynomial regression. The method of Householder reflections should be used:
Method
Multiplying a given vector
a
{\displaystyle {\mathit {a}}}
, for example the first column of matrix
A
{\displaystyle {\mathit {A}}}
, with the Householder matrix
H
{\displaystyle {\mathit {H}}}
, which is given as
H
=
I
−
2
u
T
u
u
u
T
{\displaystyle H=I-{\frac {2}{u^{T}u}}uu^{T}}
reflects
a
{\displaystyle {\mathit {a}}}
about a plane given by its normal vector
u
{\displaystyle {\mathit {u}}}
. When the normal vector of the plane
u
{\displaystyle {\mathit {u}}}
is given as
u
=
a
−
∥
a
∥
2
e
1
{\displaystyle u=a-\|a\|_{2}\;e_{1}}
then the transformation reflects
a
{\displaystyle {\mathit {a}}}
onto the first standard basis vector
e
1
=
[
1
0
0
.
.
.
]
T
{\displaystyle e_{1}=[1\;0\;0\;...]^{T}}
which means that all entries but the first become zero. To avoid numerical cancellation errors, we should take the opposite sign of
a
1
{\displaystyle a_{1}}
:
u
=
a
+
sign
(
a
1
)
∥
a
∥
2
e
1
{\displaystyle u=a+{\textrm {sign}}(a_{1})\|a\|_{2}\;e_{1}}
and normalize with respect to the first element:
v
=
u
u
1
{\displaystyle v={\frac {u}{u_{1}}}}
The equation for
H
{\displaystyle H}
thus becomes:
H
=
I
−
2
v
T
v
v
v
T
{\displaystyle H=I-{\frac {2}{v^{T}v}}vv^{T}}
or, in another form
H
=
I
−
β
v
v
T
{\displaystyle H=I-\beta vv^{T}}
with
β
=
2
v
T
v
{\displaystyle \beta ={\frac {2}{v^{T}v}}}
Applying
H
{\displaystyle {\mathit {H}}}
on
a
{\displaystyle {\mathit {a}}}
then gives
H
a
=
−
sign
(
a
1
)
∥
a
∥
2
e
1
{\displaystyle H\;a=-{\textrm {sign}}(a_{1})\;\|a\|_{2}\;e_{1}}
and applying
H
{\displaystyle {\mathit {H}}}
on the matrix
A
{\displaystyle {\mathit {A}}}
zeroes all subdiagonal elements of the first column:
H
1
A
=
(
r
11
r
12
r
13
0
∗
∗
0
∗
∗
)
{\displaystyle H_{1}\;A={\begin{pmatrix}r_{11}&r_{12}&r_{13}\\0&*&*\\0&*&*\end{pmatrix}}}
In the second step, the second column of
A
{\displaystyle {\mathit {A}}}
, we want to zero all elements but the first two, which means that we have to calculate
H
{\displaystyle {\mathit {H}}}
with the first column of the submatrix (denoted *), not on the whole second column of
A
{\displaystyle {\mathit {A}}}
.
To get
H
2
{\displaystyle H_{2}}
, we then embed the new
H
{\displaystyle {\mathit {H}}}
into an
m
×
n
{\displaystyle m\times n}
identity:
H
2
=
(
1
0
0
0
H
0
)
{\displaystyle H_{2}={\begin{pmatrix}1&0&0\\0&H&\\0&&\end{pmatrix}}}
This is how we can, column by column, remove all subdiagonal elements of
A
{\displaystyle {\mathit {A}}}
and thus transform it into
R
{\displaystyle {\mathit {R}}}
.
H
n
.
.
.
H
3
H
2
H
1
A
=
R
{\displaystyle H_{n}\;...\;H_{3}H_{2}H_{1}A=R}
The product of all the Householder matrices
H
{\displaystyle {\mathit {H}}}
, for every column, in reverse order, will then yield the orthogonal matrix
Q
{\displaystyle {\mathit {Q}}}
.
H
1
H
2
H
3
.
.
.
H
n
=
Q
{\displaystyle H_{1}H_{2}H_{3}\;...\;H_{n}=Q}
The QR decomposition should then be used to solve linear least squares (Multiple regression) problems
A
x
=
b
{\displaystyle {\mathit {A}}x=b}
by solving
R
x
=
Q
T
b
{\displaystyle R\;x=Q^{T}\;b}
When
R
{\displaystyle {\mathit {R}}}
is not square, i.e.
m
>
n
{\displaystyle m>n}
we have to cut off the
m
−
n
{\displaystyle {\mathit {m}}-n}
zero padded bottom rows.
R
=
(
R
1
0
)
{\displaystyle R={\begin{pmatrix}R_{1}\\0\end{pmatrix}}}
and the same for the RHS:
Q
T
b
=
(
q
1
q
2
)
{\displaystyle Q^{T}\;b={\begin{pmatrix}q_{1}\\q_{2}\end{pmatrix}}}
Finally, solve the square upper triangular system by back substitution:
R
1
x
=
q
1
{\displaystyle R_{1}\;x=q_{1}}
|
#Tcl
|
Tcl
|
package require Tcl 8.5
namespace path {::tcl::mathfunc ::tcl::mathop}
proc sign x {expr {$x == 0 ? 0 : $x < 0 ? -1 : 1}}
proc norm vec {
set s 0
foreach x $vec {set s [expr {$s + $x**2}]}
return [sqrt $s]
}
proc unitvec n {
set v [lrepeat $n 0.0]
lset v 0 1.0
return $v
}
proc I n {
set m [lrepeat $n [lrepeat $n 0.0]]
for {set i 0} {$i < $n} {incr i} {lset m $i $i 1.0}
return $m
}
proc arrayEmbed {A B row col} {
# $A will be copied automatically; Tcl values are copy-on-write
lassign [size $B] mb nb
for {set i 0} {$i < $mb} {incr i} {
for {set j 0} {$j < $nb} {incr j} {
lset A [expr {$row + $i}] [expr {$col + $j}] [lindex $B $i $j]
}
}
return $A
}
# Unlike the Common Lisp version, here we use a specialist subcolumn
# extraction function: like that, there's a lot less intermediate memory allocation
# and the code is actually clearer.
proc subcolumn {A size column} {
for {set i $column} {$i < $size} {incr i} {lappend x [lindex $A $i $column]}
return $x
}
proc householder A {
lassign [size $A] m
set U [m+ $A [.* [unitvec $m] [expr {[norm $A] * [sign [lindex $A 0 0]]}]]]
set V [./ $U [lindex $U 0 0]]
set beta [expr {2.0 / [lindex [matrix_multiply [transpose $V] $V] 0 0]}]
return [m- [I $m] [.* [matrix_multiply $V [transpose $V]] $beta]]
}
proc qrDecompose A {
lassign [size $A] m n
set Q [I $m]
for {set i 0} {$i < ($m==$n ? $n-1 : $n)} {incr i} {
# Construct the Householder matrix
set H [arrayEmbed [I $m] [householder [subcolumn $A $n $i]] $i $i]
# Apply to build the decomposition
set Q [matrix_multiply $Q $H]
set A [matrix_multiply $H $A]
}
return [list $Q $A]
}
|
http://rosettacode.org/wiki/Prime_triangle
|
Prime triangle
|
You will require a function f which when given an integer S will return a list of the arrangements of the integers 1 to S such that g1=1 gS=S and generally for n=1 to n=S-1 gn+gn+1 is prime. S=1 is undefined. For S=2 to S=20 print f(S) to form a triangle. Then again for S=2 to S=20 print the number of possible arrangements of 1 to S meeting these requirements.
|
#Wren
|
Wren
|
import "./fmt" for Fmt
var canFollow = []
var arrang = []
var bFirst = true
var pmap = {}
for (i in [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37]) {
pmap[i] = true
}
var ptrs
ptrs = Fn.new { |res, n, done|
var ad = arrang[done-1]
if (n - done <= 1) {
if (canFollow[ad-1][n-1]) {
if (bFirst) {
Fmt.print("$2d", arrang)
bFirst = false
}
res = res + 1
}
} else {
done = done + 1
var i = done - 1
while (i <= n-2) {
var ai = arrang[i]
if (canFollow[ad-1][ai-1]) {
arrang.swap(i, done-1)
res = ptrs.call(res, n, done)
arrang.swap(i, done-1)
}
i = i + 2
}
}
return res
}
var primeTriangle = Fn.new { |n|
canFollow = List.filled(n, null)
for (i in 0...n) {
canFollow[i] = List.filled(n, false)
for (j in 0...n) canFollow[i][j] = pmap.containsKey(i+j+2)
}
bFirst = true
arrang = (1..n).toList
return ptrs.call(0, n, 1)
}
var counts = []
for (i in 2..20) {
counts.add(primeTriangle.call(i))
}
System.print()
System.print(counts.join(" "))
|
http://rosettacode.org/wiki/Primality_by_Wilson%27s_theorem
|
Primality by Wilson's theorem
|
Task
Write a boolean function that tells whether a given integer is prime using Wilson's theorem.
By Wilson's theorem, a number p is prime if and only if p divides (p - 1)! + 1.
Remember that 1 and all non-positive integers are not prime.
See also
Cut-the-knot: Wilson's theorem.
Wikipedia: Wilson's theorem
|
#AppleScript
|
AppleScript
|
on isPrime(n)
if (n < 2) then return false
set f to n - 1
repeat with i from (n - 2) to 2 by -1
set f to f * i mod n
end repeat
return ((f + 1) mod n = 0)
end isPrime
local output, n
set output to {}
repeat with n from 0 to 500
if (isPrime(n)) then set end of output to n
end repeat
output
|
http://rosettacode.org/wiki/Primality_by_Wilson%27s_theorem
|
Primality by Wilson's theorem
|
Task
Write a boolean function that tells whether a given integer is prime using Wilson's theorem.
By Wilson's theorem, a number p is prime if and only if p divides (p - 1)! + 1.
Remember that 1 and all non-positive integers are not prime.
See also
Cut-the-knot: Wilson's theorem.
Wikipedia: Wilson's theorem
|
#Arturo
|
Arturo
|
factorial: function [x]-> product 1..x
wprime?: function [n][
if n < 2 -> return false
zero? mod add factorial sub n 1 1 n
]
print "Primes below 20 via Wilson's theorem:"
print select 1..20 => wprime?
|
http://rosettacode.org/wiki/Pragmatic_directives
|
Pragmatic directives
|
Pragmatic directives cause the language to operate in a specific manner, allowing support for operational variances within the program code (possibly by the loading of specific or alternative modules).
Task
List any pragmatic directives supported by the language, and demonstrate how to activate and deactivate the pragmatic directives and to describe or demonstrate the scope of effect that the pragmatic directives have within a program.
|
#Mathematica.2FWolfram_Language
|
Mathematica/Wolfram Language
|
{.checks: off, optimization: speed.} # Checks are deactivated and code is generated for speed.
# Define a type Color as pure which implies that value names are declared in their own scope
# and may/should be accessed with their type qualifier (as Color.Red).
type Color {.pure.} = enum Red, Green, Blue
# Declare a procedure to inline if possible.
proc odd(x: int): bool {.inline.} = (x and 1) != 0
# Declaration of a C external procedure.
proc printf(formatstr: cstring) {.header: "<stdio.h>", importc: "printf", varargs.}
# Declaration of a deprecated procedure. If not used, no warning will be emitted.
proc notUsed(x: int) {.used, deprecated.} = echo x
# Declaration of a type with an alignment constraint.
type SseType = object
sseData {.align(16).}: array[4, float32]
# Declaration of a procedure containing a variable to store in register, if possible, and a variable to store as global.
proc p() =
var x {.register.}: int
var y {.global.} = "abcdef"
{.push checks: on.}
# From here, checks are activated.
...
{.pop.}
# From here, checks are deactivated again.
|
http://rosettacode.org/wiki/Pragmatic_directives
|
Pragmatic directives
|
Pragmatic directives cause the language to operate in a specific manner, allowing support for operational variances within the program code (possibly by the loading of specific or alternative modules).
Task
List any pragmatic directives supported by the language, and demonstrate how to activate and deactivate the pragmatic directives and to describe or demonstrate the scope of effect that the pragmatic directives have within a program.
|
#NetRexx
|
NetRexx
|
{.checks: off, optimization: speed.} # Checks are deactivated and code is generated for speed.
# Define a type Color as pure which implies that value names are declared in their own scope
# and may/should be accessed with their type qualifier (as Color.Red).
type Color {.pure.} = enum Red, Green, Blue
# Declare a procedure to inline if possible.
proc odd(x: int): bool {.inline.} = (x and 1) != 0
# Declaration of a C external procedure.
proc printf(formatstr: cstring) {.header: "<stdio.h>", importc: "printf", varargs.}
# Declaration of a deprecated procedure. If not used, no warning will be emitted.
proc notUsed(x: int) {.used, deprecated.} = echo x
# Declaration of a type with an alignment constraint.
type SseType = object
sseData {.align(16).}: array[4, float32]
# Declaration of a procedure containing a variable to store in register, if possible, and a variable to store as global.
proc p() =
var x {.register.}: int
var y {.global.} = "abcdef"
{.push checks: on.}
# From here, checks are activated.
...
{.pop.}
# From here, checks are deactivated again.
|
http://rosettacode.org/wiki/Pragmatic_directives
|
Pragmatic directives
|
Pragmatic directives cause the language to operate in a specific manner, allowing support for operational variances within the program code (possibly by the loading of specific or alternative modules).
Task
List any pragmatic directives supported by the language, and demonstrate how to activate and deactivate the pragmatic directives and to describe or demonstrate the scope of effect that the pragmatic directives have within a program.
|
#Nim
|
Nim
|
{.checks: off, optimization: speed.} # Checks are deactivated and code is generated for speed.
# Define a type Color as pure which implies that value names are declared in their own scope
# and may/should be accessed with their type qualifier (as Color.Red).
type Color {.pure.} = enum Red, Green, Blue
# Declare a procedure to inline if possible.
proc odd(x: int): bool {.inline.} = (x and 1) != 0
# Declaration of a C external procedure.
proc printf(formatstr: cstring) {.header: "<stdio.h>", importc: "printf", varargs.}
# Declaration of a deprecated procedure. If not used, no warning will be emitted.
proc notUsed(x: int) {.used, deprecated.} = echo x
# Declaration of a type with an alignment constraint.
type SseType = object
sseData {.align(16).}: array[4, float32]
# Declaration of a procedure containing a variable to store in register, if possible, and a variable to store as global.
proc p() =
var x {.register.}: int
var y {.global.} = "abcdef"
{.push checks: on.}
# From here, checks are activated.
...
{.pop.}
# From here, checks are deactivated again.
|
http://rosettacode.org/wiki/Pragmatic_directives
|
Pragmatic directives
|
Pragmatic directives cause the language to operate in a specific manner, allowing support for operational variances within the program code (possibly by the loading of specific or alternative modules).
Task
List any pragmatic directives supported by the language, and demonstrate how to activate and deactivate the pragmatic directives and to describe or demonstrate the scope of effect that the pragmatic directives have within a program.
|
#Perl
|
Perl
|
use warnings; # use warnings pragma module
use strict; # use strict pragma module
|
http://rosettacode.org/wiki/Pragmatic_directives
|
Pragmatic directives
|
Pragmatic directives cause the language to operate in a specific manner, allowing support for operational variances within the program code (possibly by the loading of specific or alternative modules).
Task
List any pragmatic directives supported by the language, and demonstrate how to activate and deactivate the pragmatic directives and to describe or demonstrate the scope of effect that the pragmatic directives have within a program.
|
#Phix
|
Phix
|
requires(JS)
--requires(WINDOWS) -- (one of only, or
--requires(LINUX) -- a special combo)
requires("1.0.2")
requires(32) -- or 64
|
http://rosettacode.org/wiki/Pragmatic_directives
|
Pragmatic directives
|
Pragmatic directives cause the language to operate in a specific manner, allowing support for operational variances within the program code (possibly by the loading of specific or alternative modules).
Task
List any pragmatic directives supported by the language, and demonstrate how to activate and deactivate the pragmatic directives and to describe or demonstrate the scope of effect that the pragmatic directives have within a program.
|
#PicoLisp
|
PicoLisp
|
declare (t(100),i) fixed binary;
i=101;
t(i)=0;
|
http://rosettacode.org/wiki/Prime_conspiracy
|
Prime conspiracy
|
A recent discovery, quoted from Quantamagazine (March 13, 2016):
Two mathematicians have uncovered a simple, previously unnoticed property of
prime numbers — those numbers that are divisible only by 1 and themselves.
Prime numbers, it seems, have decided preferences about the final digits of
the primes that immediately follow them.
and
This conspiracy among prime numbers seems, at first glance, to violate a
longstanding assumption in number theory: that prime numbers behave much
like random numbers.
─── (original authors from Stanford University):
─── Kannan Soundararajan and Robert Lemke Oliver
The task is to check this assertion, modulo 10.
Lets call i -> j a transition if i is the last decimal digit of a prime, and j the last decimal digit of the following prime.
Task
Considering the first one million primes. Count, for any pair of successive primes, the number of transitions i -> j and print them along with their relative frequency, sorted by i .
You can see that, for a given i , frequencies are not evenly distributed.
Observation
(Modulo 10), primes whose last digit is 9 "prefer" the digit 1 to the digit 9, as its following prime.
Extra credit
Do the same for one hundred million primes.
Example for 10,000 primes
10000 first primes. Transitions prime % 10 → next-prime % 10.
1 → 1 count: 365 frequency: 3.65 %
1 → 3 count: 833 frequency: 8.33 %
1 → 7 count: 889 frequency: 8.89 %
1 → 9 count: 397 frequency: 3.97 %
2 → 3 count: 1 frequency: 0.01 %
3 → 1 count: 529 frequency: 5.29 %
3 → 3 count: 324 frequency: 3.24 %
3 → 5 count: 1 frequency: 0.01 %
3 → 7 count: 754 frequency: 7.54 %
3 → 9 count: 907 frequency: 9.07 %
5 → 7 count: 1 frequency: 0.01 %
7 → 1 count: 655 frequency: 6.55 %
7 → 3 count: 722 frequency: 7.22 %
7 → 7 count: 323 frequency: 3.23 %
7 → 9 count: 808 frequency: 8.08 %
9 → 1 count: 935 frequency: 9.35 %
9 → 3 count: 635 frequency: 6.35 %
9 → 7 count: 541 frequency: 5.41 %
9 → 9 count: 379 frequency: 3.79 %
|
#D
|
D
|
import std.algorithm;
import std.range;
import std.stdio;
import std.typecons;
alias Transition = Tuple!(int, int);
bool isPrime(int n) {
if (n < 2) return false;
if (n % 2 == 0) return n == 2;
if (n % 3 == 0) return n == 3;
int d = 5;
while (d*d <= n) {
if (n%d == 0) return false;
d += 2;
if (n%d == 0) return false;
d += 4;
}
return true;
}
auto generatePrimes() {
import std.concurrency;
return new Generator!int({
yield(2);
int p = 3;
while (p > 0) {
if (isPrime(p)) {
yield(p);
}
p += 2;
}
});
}
void main() {
auto primes = generatePrimes().take(1_000_000).array;
int[Transition] transMap;
foreach (i; 0 .. primes.length - 1) {
auto transition = Transition(primes[i] % 10, primes[i + 1] % 10);
if (transition in transMap) {
transMap[transition] += 1;
} else {
transMap[transition] = 1;
}
}
auto sortedTransitions = transMap.keys.multiSort!(q{a[0] < b[0]}, q{a[1] < b[1]});
writeln("First 1,000,000 primes. Transitions prime % 10 -> next-prime % 10.");
foreach (trans; sortedTransitions) {
writef("%s -> %s count: %5d", trans[0], trans[1], transMap[trans]);
writefln(" frequency: %4.2f%%", transMap[trans] / 10_000.0);
}
}
|
http://rosettacode.org/wiki/Prime_decomposition
|
Prime decomposition
|
The prime decomposition of a number is defined as a list of prime numbers
which when all multiplied together, are equal to that number.
Example
12 = 2 × 2 × 3, so its prime decomposition is {2, 2, 3}
Task
Write a function which returns an array or collection which contains the prime decomposition of a given number
n
{\displaystyle n}
greater than 1.
If your language does not have an isPrime-like function available,
you may assume that you have a function which determines
whether a number is prime (note its name before your code).
If you would like to test code from this task, you may use code from trial division or the Sieve of Eratosthenes.
Note: The program must not be limited by the word size of your computer or some other artificial limit; it should work for any number regardless of size (ignoring the physical limits of RAM etc).
Related tasks
count in factors
factors of an integer
Sieve of Eratosthenes
primality by trial division
factors of a Mersenne number
trial factoring of a Mersenne number
partition an integer X into N primes
sequence of primes by Trial Division
|
#11l
|
11l
|
F decompose(BigInt number)
[BigInt] result
V n = number
BigInt i = 2
L n % i == 0
result.append(i)
n I/= i
i = 3
L n >= i * i
L n % i == 0
result.append(i)
n I/= i
i += 2
I n != 1
result.append(n)
R result
L(i) 2..9
print(decompose(i))
print(decompose(1023 * 1024))
print(decompose(2 * 3 * 5 * 7 * 11 * 11 * 13 * 17))
print(decompose(BigInt(16860167264933) * 179951))
|
http://rosettacode.org/wiki/Proper_divisors
|
Proper divisors
|
The proper divisors of a positive integer N are those numbers, other than N itself, that divide N without remainder.
For N > 1 they will always include 1, but for N == 1 there are no proper divisors.
Examples
The proper divisors of 6 are 1, 2, and 3.
The proper divisors of 100 are 1, 2, 4, 5, 10, 20, 25, and 50.
Task
Create a routine to generate all the proper divisors of a number.
use it to show the proper divisors of the numbers 1 to 10 inclusive.
Find a number in the range 1 to 20,000 with the most proper divisors. Show the number and just the count of how many proper divisors it has.
Show all output here.
Related tasks
Amicable pairs
Abundant, deficient and perfect number classifications
Aliquot sequence classifications
Factors of an integer
Prime decomposition
|
#C
|
C
|
#include <stdio.h>
#include <stdbool.h>
int proper_divisors(const int n, bool print_flag)
{
int count = 0;
for (int i = 1; i < n; ++i) {
if (n % i == 0) {
count++;
if (print_flag)
printf("%d ", i);
}
}
if (print_flag)
printf("\n");
return count;
}
int main(void)
{
for (int i = 1; i <= 10; ++i) {
printf("%d: ", i);
proper_divisors(i, true);
}
int max = 0;
int max_i = 1;
for (int i = 1; i <= 20000; ++i) {
int v = proper_divisors(i, false);
if (v >= max) {
max = v;
max_i = i;
}
}
printf("%d with %d divisors\n", max_i, max);
return 0;
}
|
http://rosettacode.org/wiki/Probabilistic_choice
|
Probabilistic choice
|
Given a mapping between items and their required probability of occurrence, generate a million items randomly subject to the given probabilities and compare the target probability of occurrence versus the generated values.
The total of all the probabilities should equal one. (Because floating point arithmetic is involved, this is subject to rounding errors).
aleph 1/5.0
beth 1/6.0
gimel 1/7.0
daleth 1/8.0
he 1/9.0
waw 1/10.0
zayin 1/11.0
heth 1759/27720 # adjusted so that probabilities add to 1
Related task
Random number generator (device)
|
#C.2B.2B
|
C++
|
#include <cstdlib>
#include <iostream>
#include <vector>
#include <utility>
#include <algorithm>
#include <ctime>
#include <iomanip>
int main( ) {
typedef std::vector<std::pair<std::string, double> >::const_iterator SPI ;
typedef std::vector<std::pair<std::string , double> > ProbType ;
ProbType probabilities ;
probabilities.push_back( std::make_pair( "aleph" , 1/5.0 ) ) ;
probabilities.push_back( std::make_pair( "beth" , 1/6.0 ) ) ;
probabilities.push_back( std::make_pair( "gimel" , 1/7.0 ) ) ;
probabilities.push_back( std::make_pair( "daleth" , 1/8.0 ) ) ;
probabilities.push_back( std::make_pair( "he" , 1/9.0 ) ) ;
probabilities.push_back( std::make_pair( "waw" , 1/10.0 ) ) ;
probabilities.push_back( std::make_pair( "zayin" , 1/11.0 ) ) ;
probabilities.push_back( std::make_pair( "heth" , 1759/27720.0 ) ) ;
std::vector<std::string> generated ; //for the strings that are generatod
std::vector<int> decider ; //holds the numbers that determine the choice of letters
for ( int i = 0 ; i < probabilities.size( ) ; i++ ) {
if ( i == 0 ) {
decider.push_back( 27720 * (probabilities[ i ].second) ) ;
}
else {
int number = 0 ;
for ( int j = 0 ; j < i ; j++ ) {
number += 27720 * ( probabilities[ j ].second ) ;
}
number += 27720 * probabilities[ i ].second ;
decider.push_back( number ) ;
}
}
srand( time( 0 ) ) ;
for ( int i = 0 ; i < 1000000 ; i++ ) {
int randnumber = rand( ) % 27721 ;
int j = 0 ;
while ( randnumber > decider[ j ] )
j++ ;
generated.push_back( ( probabilities[ j ]).first ) ;
}
std::cout << "letter frequency attained frequency expected\n" ;
for ( SPI i = probabilities.begin( ) ; i != probabilities.end( ) ; i++ ) {
std::cout << std::left << std::setw( 8 ) << i->first ;
int found = std::count ( generated.begin( ) , generated.end( ) , i->first ) ;
std::cout << std::left << std::setw( 21 ) << found / 1000000.0 ;
std::cout << std::left << std::setw( 17 ) << i->second << '\n' ;
}
return 0 ;
}
|
http://rosettacode.org/wiki/Primes_-_allocate_descendants_to_their_ancestors
|
Primes - allocate descendants to their ancestors
|
The concept, is to add the decomposition into prime factors of a number to get its 'ancestors'.
The objective is to demonstrate that the choice of the algorithm can be crucial in term of performance.
This solution could be compared to the solution that would use the decomposition into primes for all the numbers between 1 and 333.
The problem is to list, for a delimited set of ancestors (from 1 to 99) :
- the total of their own ancestors (LEVEL),
- their own ancestors (ANCESTORS),
- the total of the direct descendants (DESCENDANTS),
- all the direct descendants.
You only have to consider the prime factors < 100.
A grand total of the descendants has to be printed at the end of the list.
The task should be accomplished in a reasonable time-frame.
Example :
46 = 2*23 --> 2+23 = 25, is the parent of 46.
25 = 5*5 --> 5+5 = 10, is the parent of 25.
10 = 2*5 --> 2+5 = 7, is the parent of 10.
7 is a prime factor and, as such, has no parent.
46 has 3 ancestors (7, 10 and 25).
46 has 557 descendants.
The list layout and the output for Parent [46] :
[46] Level: 3
Ancestors: 7, 10, 25
Descendants: 557
129, 205, 246, 493, 518, 529, 740, 806, 888, 999, 1364, 1508, 1748, 2552, 2871, 3128, 3255, 3472, 3519, 3875, 3906, 4263, 4650, 4960, 5075, 5415, 5580, 5776, 5952, 6090, 6279, 6496, 6498, 6696, 6783, 7250, 7308, 7475, 7533, 8075, 8151, 8619, 8700, 8855, 8970, 9280, 9568, 9690, 10115, 10336, 10440, 10626, 10764, 11136, 11495, 11628, 11745, 12103, 12138, 12155, 12528, 12650, 13794, 14094, 14399, 14450, 14586, 15180, 15379, 15778, 16192, 17290, 17303, 17340, 18216, 18496, 20482, 20493, 20570, 20748, 20808, 21658, 21970, 22540, 23409, 24684, 24700, 26026, 26364, 27048, 29260, 29282, 29640, 30429, 30940, 31616, 32200, 33345, 35112, 35568, 36225, 36652, 37128, 37180, 38640, 39501, 40014, 41216, 41769, 41800, 43125, 43470, 44044, 44200, 44616, 46000, 46368, 47025, 49725, 50160, 50193, 51750, 52136, 52164, 52360, 53040, 53504, 55200, 56430, 56576, 58653, 58880, 58905, 59670, 60192, 62100, 62832, 62920, 63648, 66240, 66248, 67716, 69825, 70125, 70656, 70686, 70785, 71604, 74480, 74520, 74529, 74536, 74800, 75504, 79488, 83125, 83790, 83835, 83853, 84150, 84942, 87465, 88725, 89376, 89424, 89760, 93296, 94640, 95744, 99750, 99825, 100548, 100602, 100980, 104125, 104958, 105105, 105625, 106400, 106470, 106480, 107712, 112112, 113568, 118750, 119700, 119790, 121176, 124509, 124950, 125125, 126126, 126750, 127680, 127764, 127776, 133280, 135200, 136192, 136323, 142500, 143640, 143748, 148225, 148750, 149940, 150150, 152000, 152100, 153216, 156065, 159936, 160160, 161595, 162240, 171000, 172368, 173056, 177870, 178500, 178750, 179928, 180180, 182400, 182520, 184877, 187278, 189728, 190400, 192192, 192375, 193914, 194560, 194688, 202419, 205200, 205335, 211750, 212500, 213444, 214200, 214500, 216216, 218880, 219024, 222950, 228480, 228800, 230850, 233472, 240975, 243243, 243712, 246240, 246402, 254100, 255000, 257040, 257400, 262656, 264110, 267540, 271040, 272000, 274176, 274560, 277020, 285376, 286875, 289170, 289575, 292864, 295488, 302500, 304920, 306000, 308448, 308880, 316932, 318500, 321048, 325248, 326400, 329472, 332424, 343035, 344250, 347004, 347490, 348160, 361179, 363000, 365904, 367200, 370656, 373977, 377300, 382200, 387200, 391680, 407680, 408375, 411642, 413100, 416988, 417792, 429975, 435600, 440640, 452760, 455000, 458640, 464640, 470016, 470596, 482944, 489216, 490050, 495616, 495720, 509355, 511875, 515970, 522720, 528768, 539000, 543312, 546000, 550368, 557568, 557685, 582400, 588060, 594864, 606375, 609375, 611226, 614250, 619164, 627264, 646800, 650000, 655200, 669222, 672280, 689920, 698880, 705672, 721875, 727650, 731250, 737100, 745472, 756315, 770000, 776160, 780000, 786240, 793881, 806736, 827904, 832000, 838656, 859375, 866250, 873180, 877500, 884520, 900375, 907578, 924000, 931392, 936000, 943488, 960400, 985600, 995085, 998400, 1031250, 1039500, 1047816, 1053000, 1061424, 1064960, 1071875, 1080450, 1100000, 1108800, 1123200, 1152480, 1178793, 1182720, 1184625, 1194102, 1198080, 1229312, 1237500, 1247400, 1261568, 1263600, 1277952, 1286250, 1296540, 1320000, 1330560, 1347840, 1372000, 1382976, 1403325, 1408000, 1419264, 1421550, 1437696, 1485000, 1496880, 1516320, 1531250, 1543500, 1555848, 1584000, 1596672, 1617408, 1646400, 1670625, 1683990, 1689600, 1705860, 1750329, 1756160, 1782000, 1796256, 1802240, 1819584, 1837500, 1852200, 1900800, 1960000, 1975680, 2004750, 2020788, 2027520, 2047032, 2083725, 2107392, 2138400, 2162688, 2187500, 2205000, 2222640, 2280960, 2302911, 2352000, 2370816, 2405700, 2433024, 2480625, 2500470, 2508800, 2566080, 2625000, 2646000, 2667168, 2737152, 2800000, 2822400, 2886840, 2953125, 2976750, 3000564, 3010560, 3079296, 3125000, 3150000, 3175200, 3211264, 3247695, 3360000, 3386880, 3464208, 3515625, 3543750, 3572100, 3584000, 3612672, 3750000, 3780000, 3810240, 3897234, 4000000, 4032000, 4064256, 4218750, 4252500, 4286520, 4300800, 4500000, 4536000, 4572288, 4587520, 4800000, 4822335, 4838400, 5062500, 5103000, 5120000, 5143824, 5160960, 5400000, 5443200, 5505024, 5740875, 5760000, 5786802, 5806080, 6075000, 6123600, 6144000, 6193152, 6480000, 6531840, 6553600, 6834375, 6889050, 6912000, 6967296, 7290000, 7348320, 7372800, 7776000, 7838208, 7864320, 8201250, 8266860, 8294400, 8388608, 8748000, 8817984, 8847360, 9331200, 9437184, 9841500, 9920232, 9953280, 10497600, 10616832, 11160261, 11197440, 11809800, 11943936, 12597120, 13286025, 13436928, 14171760, 15116544, 15943230, 17006112, 19131876
Some figures :
The biggest descendant number : 3^33 = 5.559.060.566.555.523 (parent 99)
Total Descendants 546.986
|
#Julia
|
Julia
|
using Primes
function ancestraldecendants(maxsum)
aprimes = primes(maxsum)
descendants = [Vector{Int}() for _ in 1:maxsum + 1]
ancestors = [Vector{Int}() for _ in 1:maxsum + 1]
for p in aprimes
push!(descendants[p + 1], p)
foreach(s -> append!(descendants[s + p], [p * pr for pr in descendants[s]]),
2:length(descendants) - p)
end
foreach(p -> pop!(descendants[p + 1]), vcat(aprimes, [4]))
total = 0
for s in 1:maxsum
sort!(descendants[s + 1])
dstlen = length(descendants[s + 1])
total += dstlen
idx = findfirst(x -> x > maxsum, descendants[s + 1])
idx = (idx == nothing) ? dstlen : idx - 1
foreach(d -> ancestors[d] = vcat(ancestors[s + 1], [s]), descendants[s + 1][1:idx])
if s in vcat(collect(0:20), 46, 74, 99)
print(lpad(s, 3), ":", lpad("$(length(ancestors[s + 1]))", 2))
print(" Ancestor(s):", rpad("$(ancestors[s + 1])", 18))
print(lpad("$(length(descendants[s + 1]))", 5), " Descendant(s): ")
println(rpad(dstlen <= 10 ? "$(descendants[s + 1])" : "$(descendants[s + 1][1:10])\b, ...]", 40))
end
end
print("Total descendants: ", total)
end
ancestraldecendants(99)
|
http://rosettacode.org/wiki/Primes_-_allocate_descendants_to_their_ancestors
|
Primes - allocate descendants to their ancestors
|
The concept, is to add the decomposition into prime factors of a number to get its 'ancestors'.
The objective is to demonstrate that the choice of the algorithm can be crucial in term of performance.
This solution could be compared to the solution that would use the decomposition into primes for all the numbers between 1 and 333.
The problem is to list, for a delimited set of ancestors (from 1 to 99) :
- the total of their own ancestors (LEVEL),
- their own ancestors (ANCESTORS),
- the total of the direct descendants (DESCENDANTS),
- all the direct descendants.
You only have to consider the prime factors < 100.
A grand total of the descendants has to be printed at the end of the list.
The task should be accomplished in a reasonable time-frame.
Example :
46 = 2*23 --> 2+23 = 25, is the parent of 46.
25 = 5*5 --> 5+5 = 10, is the parent of 25.
10 = 2*5 --> 2+5 = 7, is the parent of 10.
7 is a prime factor and, as such, has no parent.
46 has 3 ancestors (7, 10 and 25).
46 has 557 descendants.
The list layout and the output for Parent [46] :
[46] Level: 3
Ancestors: 7, 10, 25
Descendants: 557
129, 205, 246, 493, 518, 529, 740, 806, 888, 999, 1364, 1508, 1748, 2552, 2871, 3128, 3255, 3472, 3519, 3875, 3906, 4263, 4650, 4960, 5075, 5415, 5580, 5776, 5952, 6090, 6279, 6496, 6498, 6696, 6783, 7250, 7308, 7475, 7533, 8075, 8151, 8619, 8700, 8855, 8970, 9280, 9568, 9690, 10115, 10336, 10440, 10626, 10764, 11136, 11495, 11628, 11745, 12103, 12138, 12155, 12528, 12650, 13794, 14094, 14399, 14450, 14586, 15180, 15379, 15778, 16192, 17290, 17303, 17340, 18216, 18496, 20482, 20493, 20570, 20748, 20808, 21658, 21970, 22540, 23409, 24684, 24700, 26026, 26364, 27048, 29260, 29282, 29640, 30429, 30940, 31616, 32200, 33345, 35112, 35568, 36225, 36652, 37128, 37180, 38640, 39501, 40014, 41216, 41769, 41800, 43125, 43470, 44044, 44200, 44616, 46000, 46368, 47025, 49725, 50160, 50193, 51750, 52136, 52164, 52360, 53040, 53504, 55200, 56430, 56576, 58653, 58880, 58905, 59670, 60192, 62100, 62832, 62920, 63648, 66240, 66248, 67716, 69825, 70125, 70656, 70686, 70785, 71604, 74480, 74520, 74529, 74536, 74800, 75504, 79488, 83125, 83790, 83835, 83853, 84150, 84942, 87465, 88725, 89376, 89424, 89760, 93296, 94640, 95744, 99750, 99825, 100548, 100602, 100980, 104125, 104958, 105105, 105625, 106400, 106470, 106480, 107712, 112112, 113568, 118750, 119700, 119790, 121176, 124509, 124950, 125125, 126126, 126750, 127680, 127764, 127776, 133280, 135200, 136192, 136323, 142500, 143640, 143748, 148225, 148750, 149940, 150150, 152000, 152100, 153216, 156065, 159936, 160160, 161595, 162240, 171000, 172368, 173056, 177870, 178500, 178750, 179928, 180180, 182400, 182520, 184877, 187278, 189728, 190400, 192192, 192375, 193914, 194560, 194688, 202419, 205200, 205335, 211750, 212500, 213444, 214200, 214500, 216216, 218880, 219024, 222950, 228480, 228800, 230850, 233472, 240975, 243243, 243712, 246240, 246402, 254100, 255000, 257040, 257400, 262656, 264110, 267540, 271040, 272000, 274176, 274560, 277020, 285376, 286875, 289170, 289575, 292864, 295488, 302500, 304920, 306000, 308448, 308880, 316932, 318500, 321048, 325248, 326400, 329472, 332424, 343035, 344250, 347004, 347490, 348160, 361179, 363000, 365904, 367200, 370656, 373977, 377300, 382200, 387200, 391680, 407680, 408375, 411642, 413100, 416988, 417792, 429975, 435600, 440640, 452760, 455000, 458640, 464640, 470016, 470596, 482944, 489216, 490050, 495616, 495720, 509355, 511875, 515970, 522720, 528768, 539000, 543312, 546000, 550368, 557568, 557685, 582400, 588060, 594864, 606375, 609375, 611226, 614250, 619164, 627264, 646800, 650000, 655200, 669222, 672280, 689920, 698880, 705672, 721875, 727650, 731250, 737100, 745472, 756315, 770000, 776160, 780000, 786240, 793881, 806736, 827904, 832000, 838656, 859375, 866250, 873180, 877500, 884520, 900375, 907578, 924000, 931392, 936000, 943488, 960400, 985600, 995085, 998400, 1031250, 1039500, 1047816, 1053000, 1061424, 1064960, 1071875, 1080450, 1100000, 1108800, 1123200, 1152480, 1178793, 1182720, 1184625, 1194102, 1198080, 1229312, 1237500, 1247400, 1261568, 1263600, 1277952, 1286250, 1296540, 1320000, 1330560, 1347840, 1372000, 1382976, 1403325, 1408000, 1419264, 1421550, 1437696, 1485000, 1496880, 1516320, 1531250, 1543500, 1555848, 1584000, 1596672, 1617408, 1646400, 1670625, 1683990, 1689600, 1705860, 1750329, 1756160, 1782000, 1796256, 1802240, 1819584, 1837500, 1852200, 1900800, 1960000, 1975680, 2004750, 2020788, 2027520, 2047032, 2083725, 2107392, 2138400, 2162688, 2187500, 2205000, 2222640, 2280960, 2302911, 2352000, 2370816, 2405700, 2433024, 2480625, 2500470, 2508800, 2566080, 2625000, 2646000, 2667168, 2737152, 2800000, 2822400, 2886840, 2953125, 2976750, 3000564, 3010560, 3079296, 3125000, 3150000, 3175200, 3211264, 3247695, 3360000, 3386880, 3464208, 3515625, 3543750, 3572100, 3584000, 3612672, 3750000, 3780000, 3810240, 3897234, 4000000, 4032000, 4064256, 4218750, 4252500, 4286520, 4300800, 4500000, 4536000, 4572288, 4587520, 4800000, 4822335, 4838400, 5062500, 5103000, 5120000, 5143824, 5160960, 5400000, 5443200, 5505024, 5740875, 5760000, 5786802, 5806080, 6075000, 6123600, 6144000, 6193152, 6480000, 6531840, 6553600, 6834375, 6889050, 6912000, 6967296, 7290000, 7348320, 7372800, 7776000, 7838208, 7864320, 8201250, 8266860, 8294400, 8388608, 8748000, 8817984, 8847360, 9331200, 9437184, 9841500, 9920232, 9953280, 10497600, 10616832, 11160261, 11197440, 11809800, 11943936, 12597120, 13286025, 13436928, 14171760, 15116544, 15943230, 17006112, 19131876
Some figures :
The biggest descendant number : 3^33 = 5.559.060.566.555.523 (parent 99)
Total Descendants 546.986
|
#Kotlin
|
Kotlin
|
// version 1.1.2
const val MAXSUM = 99
fun getPrimes(max: Int): List<Int> {
if (max < 2) return emptyList<Int>()
val lprimes = mutableListOf(2)
outer@ for (x in 3..max step 2) {
for (p in lprimes) if (x % p == 0) continue@outer
lprimes.add(x)
}
return lprimes
}
fun main(args: Array<String>) {
val descendants = Array(MAXSUM + 1) { mutableListOf<Long>() }
val ancestors = Array(MAXSUM + 1) { mutableListOf<Int>() }
val primes = getPrimes(MAXSUM)
for (p in primes) {
descendants[p].add(p.toLong())
for (s in 1 until descendants.size - p) {
val temp = descendants[s + p] + descendants[s].map { p * it }
descendants[s + p] = temp.toMutableList()
}
}
for (p in primes + 4) descendants[p].removeAt(descendants[p].lastIndex)
var total = 0
for (s in 1..MAXSUM) {
descendants[s].sort()
total += descendants[s].size
for (d in descendants[s].takeWhile { it <= MAXSUM.toLong() }) {
ancestors[d.toInt()] = (ancestors[s] + s).toMutableList()
}
if (s in 21..45 || s in 47..73 || s in 75 until MAXSUM) continue
print("${"%2d".format(s)}: ${ancestors[s].size} Ancestor(s): ")
print(ancestors[s].toString().padEnd(18))
print("${"%5d".format(descendants[s].size)} Descendant(s): ")
println("${descendants[s].joinToString(", ", "[", "]", 10)}")
}
println("\nTotal descendants $total")
}
|
http://rosettacode.org/wiki/Priority_queue
|
Priority queue
|
A priority queue is somewhat similar to a queue, with an important distinction: each item is added to a priority queue with a priority level, and will be later removed from the queue with the highest priority element first. That is, the items are (conceptually) stored in the queue in priority order instead of in insertion order.
Task
Create a priority queue. The queue must support at least two operations:
Insertion. An element is added to the queue with a priority (a numeric value).
Top item removal. Deletes the element or one of the elements with the current top priority and return it.
Optionally, other operations may be defined, such as peeking (find what current top priority/top element is), merging (combining two priority queues into one), etc.
To test your implementation, insert a number of elements into the queue, each with some random priority.
Then dequeue them sequentially; now the elements should be sorted by priority.
You can use the following task/priority items as input data:
Priority Task
══════════ ════════════════
3 Clear drains
4 Feed cat
5 Make tea
1 Solve RC tasks
2 Tax return
The implementation should try to be efficient. A typical implementation has O(log n) insertion and extraction time, where n is the number of items in the queue.
You may choose to impose certain limits such as small range of allowed priority levels, limited capacity, etc. If so, discuss the reasons behind it.
|
#Clojure
|
Clojure
|
user=> (use 'clojure.data.priority-map)
; priority-map can be used as a priority queue
user=> (def p (priority-map "Clear drains" 3, "Feed cat" 4, "Make tea" 5, "Solve RC tasks" 1))
#'user/p
user=> p
{"Solve RC tasks" 1, "Clear drains" 3, "Feed cat" 4, "Make tea" 5}
; You can use assoc or conj to add items
user=> (assoc p "Tax return" 2)
{"Solve RC tasks" 1, "Tax return" 2, "Clear drains" 3, "Feed cat" 4, "Make tea" 5}
; peek to get first item, pop to give you back the priority-map with the first item removed
user=> (peek p)
["Solve RC tasks" 1]
; Merge priority-maps together
user=> (into p [["Wax Car" 4]["Paint Fence" 1]["Sand Floor" 3]])
{"Solve RC tasks" 1, "Paint Fence" 1, "Clear drains" 3, "Sand Floor" 3, "Wax Car" 4, "Feed cat" 4, "Make tea" 5}
|
http://rosettacode.org/wiki/Problem_of_Apollonius
|
Problem of Apollonius
|
Task
Implement a solution to the Problem of Apollonius (description on Wikipedia) which is the problem of finding the circle that is tangent to three specified circles (colored black in the diagram below to the right).
There is an algebraic solution which is pretty straightforward.
The solutions to the example in the code are shown in the diagram (below and to the right).
The red circle is "internally tangent" to all three black circles, and the green circle is "externally tangent" to all three black circles.
|
#Go
|
Go
|
package main
import (
"fmt"
"math"
)
type circle struct {
x, y, r float64
}
func main() {
c1 := circle{0, 0, 1}
c2 := circle{4, 0, 1}
c3 := circle{2, 4, 2}
fmt.Println(ap(c1, c2, c3, true))
fmt.Println(ap(c1, c2, c3, false))
}
func ap(c1, c2, c3 circle, s bool) circle {
x1sq := c1.x * c1.x
y1sq := c1.y * c1.y
r1sq := c1.r * c1.r
x2sq := c2.x * c2.x
y2sq := c2.y * c2.y
r2sq := c2.r * c2.r
x3sq := c3.x * c3.x
y3sq := c3.y * c3.y
r3sq := c3.r * c3.r
v11 := 2 * (c2.x - c1.x)
v12 := 2 * (c2.y - c1.y)
v13 := x1sq - x2sq + y1sq - y2sq - r1sq + r2sq
v14 := 2 * (c2.r - c1.r)
v21 := 2 * (c3.x - c2.x)
v22 := 2 * (c3.y - c2.y)
v23 := x2sq - x3sq + y2sq - y3sq - r2sq + r3sq
v24 := 2 * (c3.r - c2.r)
if s {
v14 = -v14
v24 = -v24
}
w12 := v12 / v11
w13 := v13 / v11
w14 := v14 / v11
w22 := v22/v21 - w12
w23 := v23/v21 - w13
w24 := v24/v21 - w14
p := -w23 / w22
q := w24 / w22
m := -w12*p - w13
n := w14 - w12*q
a := n*n + q*q - 1
b := m*n - n*c1.x + p*q - q*c1.y
if s {
b -= c1.r
} else {
b += c1.r
}
b *= 2
c := x1sq + m*m - 2*m*c1.x + p*p + y1sq - 2*p*c1.y - r1sq
d := b*b - 4*a*c
rs := (-b - math.Sqrt(d)) / (2 * a)
return circle{m + n*rs, p + q*rs, rs}
}
|
http://rosettacode.org/wiki/Program_name
|
Program name
|
The task is to programmatically obtain the name used to invoke the program. (For example determine whether the user ran "python hello.py", or "python hellocaller.py", a program importing the code from "hello.py".)
Sometimes a multiline shebang is necessary in order to provide the script name to a language's internal ARGV.
See also Command-line arguments
Examples from GitHub.
|
#newLISP
|
newLISP
|
#!/usr/bin/env newlisp
(let ((program (main-args 1)))
(println (format "Program: %s" program))
(exit))
|
http://rosettacode.org/wiki/Program_name
|
Program name
|
The task is to programmatically obtain the name used to invoke the program. (For example determine whether the user ran "python hello.py", or "python hellocaller.py", a program importing the code from "hello.py".)
Sometimes a multiline shebang is necessary in order to provide the script name to a language's internal ARGV.
See also Command-line arguments
Examples from GitHub.
|
#Nim
|
Nim
|
import os
echo getAppFilename() # Prints the full path of the executed file
echo paramStr(0) # Prints argv[0]
|
http://rosettacode.org/wiki/Primorial_numbers
|
Primorial numbers
|
Primorial numbers are those formed by multiplying successive prime numbers.
The primorial number series is:
primorial(0) = 1 (by definition)
primorial(1) = 2 (2)
primorial(2) = 6 (2×3)
primorial(3) = 30 (2×3×5)
primorial(4) = 210 (2×3×5×7)
primorial(5) = 2310 (2×3×5×7×11)
primorial(6) = 30030 (2×3×5×7×11×13)
∙ ∙ ∙
To express this mathematically, primorialn is
the product of the first n (successive) primes:
p
r
i
m
o
r
i
a
l
n
=
∏
k
=
1
n
p
r
i
m
e
k
{\displaystyle primorial_{n}=\prod _{k=1}^{n}prime_{k}}
─── where
p
r
i
m
e
k
{\displaystyle prime_{k}}
is the kth prime number.
In some sense, generating primorial numbers is similar to factorials.
As with factorials, primorial numbers get large quickly.
Task
Show the first ten primorial numbers (0 ──► 9, inclusive).
Show the length of primorial numbers whose index is: 10 100 1,000 10,000 and 100,000.
Show the length of the one millionth primorial number (optional).
Use exact integers, not approximations.
By length (above), it is meant the number of decimal digits in the numbers.
Related tasks
Sequence of primorial primes
Factorial
Fortunate_numbers
See also
the MathWorld webpage: primorial
the Wikipedia webpage: primorial.
the OEIS webpage: A002110.
|
#Rust
|
Rust
|
extern crate primal;
extern crate rayon;
extern crate rug;
use rayon::prelude::*;
use rug::Integer;
fn partial(p1 : usize, p2 : usize) -> String {
let mut aux = Integer::from(1);
let (_, hi) = primal::estimate_nth_prime(p2 as u64);
let sieve = primal::Sieve::new(hi as usize);
let prime1 = sieve.nth_prime(p1);
let prime2 = sieve.nth_prime(p2);
for i in sieve.primes_from(prime1).take_while(|i| *i <= prime2) {
aux = Integer::from(aux * i as u32);
}
aux.to_string_radix(10)
}
fn main() {
let mut j1 = Integer::new();
for k in [2,3,5,7,11,13,17,19,23,29].iter() {
j1.assign_primorial(*k);
println!("Primorial : {}", j1);
}
println!("Digits of primorial 10 : {}", partial(1, 10).chars().fold(0, |n, _| n + 1));
println!("Digits of primorial 100 : {}", partial(1, 100).chars().fold(0, |n, _| n + 1));
println!("Digits of primorial 1_000 : {}", partial(1, 1_000).chars().fold(0, |n, _| n + 1));
println!("Digits of primorial 10_000 : {}", partial(1, 10_000).chars().fold(0, |n, _| n + 1));
println!("Digits of primorial 100_000 : {}", partial(1, 100_000).chars().fold(0, |n, _| n + 1));
let mut auxi = Integer::from(1);
let ranges = vec![[1, 300_000], [300_001, 550_000], [550_001, 800_000], [800_001, 1_000_000]];
let v = ranges.par_iter().map(|value| partial(value[0], value[1])).collect::<Vec<_>>();
for i in v.iter() {
auxi =Integer::from(&auxi * i.parse::<Integer>().unwrap());
}
let result = auxi.to_string_radix(10).chars().fold(0, |n, _| n+1);
println!("Digits of primorial 1_000_000 : {}",result);
}
|
http://rosettacode.org/wiki/Primorial_numbers
|
Primorial numbers
|
Primorial numbers are those formed by multiplying successive prime numbers.
The primorial number series is:
primorial(0) = 1 (by definition)
primorial(1) = 2 (2)
primorial(2) = 6 (2×3)
primorial(3) = 30 (2×3×5)
primorial(4) = 210 (2×3×5×7)
primorial(5) = 2310 (2×3×5×7×11)
primorial(6) = 30030 (2×3×5×7×11×13)
∙ ∙ ∙
To express this mathematically, primorialn is
the product of the first n (successive) primes:
p
r
i
m
o
r
i
a
l
n
=
∏
k
=
1
n
p
r
i
m
e
k
{\displaystyle primorial_{n}=\prod _{k=1}^{n}prime_{k}}
─── where
p
r
i
m
e
k
{\displaystyle prime_{k}}
is the kth prime number.
In some sense, generating primorial numbers is similar to factorials.
As with factorials, primorial numbers get large quickly.
Task
Show the first ten primorial numbers (0 ──► 9, inclusive).
Show the length of primorial numbers whose index is: 10 100 1,000 10,000 and 100,000.
Show the length of the one millionth primorial number (optional).
Use exact integers, not approximations.
By length (above), it is meant the number of decimal digits in the numbers.
Related tasks
Sequence of primorial primes
Factorial
Fortunate_numbers
See also
the MathWorld webpage: primorial
the Wikipedia webpage: primorial.
the OEIS webpage: A002110.
|
#Scala
|
Scala
|
import spire.math.SafeLong
import spire.implicits._
import scala.collection.parallel.immutable.ParVector
object Primorial {
def main(args: Array[String]): Unit = {
println(
s"""|First 10 Primorials:
|${LazyList.range(0, 10).map(n => f"$n: ${primorial(n).toBigInt}%,d").mkString("\n")}
|
|Lengths of Primorials:
|${LazyList.range(1, 7).map(math.pow(10, _).toInt).map(i => f"$i%,d: ${primorial(i).toString.length}%,d").mkString("\n")}
|""".stripMargin)
}
def primorial(num: Int): SafeLong = if(num == 0) 1 else primesSL.take(num).to(ParVector).reduce(_*_)
lazy val primesSL: Vector[SafeLong] = 2 +: ParVector.range(3, 20000000, 2).filter(n => !Iterator.range(3, math.sqrt(n).toInt + 1, 2).exists(n%_ == 0)).toVector.sorted.map(SafeLong(_))
}
|
http://rosettacode.org/wiki/Pythagorean_triples
|
Pythagorean triples
|
A Pythagorean triple is defined as three positive integers
(
a
,
b
,
c
)
{\displaystyle (a,b,c)}
where
a
<
b
<
c
{\displaystyle a<b<c}
, and
a
2
+
b
2
=
c
2
.
{\displaystyle a^{2}+b^{2}=c^{2}.}
They are called primitive triples if
a
,
b
,
c
{\displaystyle a,b,c}
are co-prime, that is, if their pairwise greatest common divisors
g
c
d
(
a
,
b
)
=
g
c
d
(
a
,
c
)
=
g
c
d
(
b
,
c
)
=
1
{\displaystyle {\rm {gcd}}(a,b)={\rm {gcd}}(a,c)={\rm {gcd}}(b,c)=1}
.
Because of their relationship through the Pythagorean theorem, a, b, and c are co-prime if a and b are co-prime (
g
c
d
(
a
,
b
)
=
1
{\displaystyle {\rm {gcd}}(a,b)=1}
).
Each triple forms the length of the sides of a right triangle, whose perimeter is
P
=
a
+
b
+
c
{\displaystyle P=a+b+c}
.
Task
The task is to determine how many Pythagorean triples there are with a perimeter no larger than 100 and the number of these that are primitive.
Extra credit
Deal with large values. Can your program handle a maximum perimeter of 1,000,000? What about 10,000,000? 100,000,000?
Note: the extra credit is not for you to demonstrate how fast your language is compared to others; you need a proper algorithm to solve them in a timely manner.
Related tasks
Euler's sum of powers conjecture
List comprehensions
Pythagorean quadruples
|
#Nim
|
Nim
|
const u = [[ 1, -2, 2, 2, -1, 2, 2, -2, 3],
[ 1, 2, 2, 2, 1, 2, 2, 2, 3],
[-1, 2, 2, -2, 1, 2, -2, 2, 3]]
var
total, prim = 0
maxPeri = 10
proc newTri(ins: array[0..2, int]) =
var p = ins[0] + ins[1] + ins[2]
if p > maxPeri: return
inc(prim)
total += maxPeri div p
for i in 0..2:
newTri([u[i][0] * ins[0] + u[i][1] * ins[1] + u[i][2] * ins[2],
u[i][3] * ins[0] + u[i][4] * ins[1] + u[i][5] * ins[2],
u[i][6] * ins[0] + u[i][7] * ins[1] + u[i][8] * ins[2]])
while maxPeri <= 100_000_000:
total = 0
prim = 0
newTri([3, 4, 5])
echo "Up to ", maxPeri, ": ", total, " triples, ", prim, " primitives"
maxPeri *= 10
|
http://rosettacode.org/wiki/Program_termination
|
Program termination
|
Task
Show the syntax for a complete stoppage of a program inside a conditional.
This includes all threads/processes which are part of your program.
Explain the cleanup (or lack thereof) caused by the termination (allocated memory, database connections, open files, object finalizers/destructors, run-on-exit hooks, etc.).
Unless otherwise described, no special cleanup outside that provided by the operating system is provided.
|
#Logo
|
Logo
|
bye ; exits to shell
throw "toplevel ; exits to interactive prompt
pause ; escapes to interactive prompt for debugging
continue ; resumes after a PAUSE
|
http://rosettacode.org/wiki/Program_termination
|
Program termination
|
Task
Show the syntax for a complete stoppage of a program inside a conditional.
This includes all threads/processes which are part of your program.
Explain the cleanup (or lack thereof) caused by the termination (allocated memory, database connections, open files, object finalizers/destructors, run-on-exit hooks, etc.).
Unless otherwise described, no special cleanup outside that provided by the operating system is provided.
|
#Lua
|
Lua
|
if some_condition then
os.exit( number )
end
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.