task_url
stringlengths
30
116
task_name
stringlengths
2
86
task_description
stringlengths
0
14.4k
language_url
stringlengths
2
53
language_name
stringlengths
1
52
code
stringlengths
0
61.9k
http://rosettacode.org/wiki/QR_decomposition
QR decomposition
Any rectangular m × n {\displaystyle m\times n} matrix A {\displaystyle {\mathit {A}}} can be decomposed to a product of an orthogonal matrix Q {\displaystyle {\mathit {Q}}} and an upper (right) triangular matrix R {\displaystyle {\mathit {R}}} , as described in QR decomposition. Task Demonstrate the QR decomposition on the example matrix from the Wikipedia article: A = ( 12 − 51 4 6 167 − 68 − 4 24 − 41 ) {\displaystyle A={\begin{pmatrix}12&-51&4\\6&167&-68\\-4&24&-41\end{pmatrix}}} and the usage for linear least squares problems on the example from Polynomial regression. The method of Householder reflections should be used: Method Multiplying a given vector a {\displaystyle {\mathit {a}}} , for example the first column of matrix A {\displaystyle {\mathit {A}}} , with the Householder matrix H {\displaystyle {\mathit {H}}} , which is given as H = I − 2 u T u u u T {\displaystyle H=I-{\frac {2}{u^{T}u}}uu^{T}} reflects a {\displaystyle {\mathit {a}}} about a plane given by its normal vector u {\displaystyle {\mathit {u}}} . When the normal vector of the plane u {\displaystyle {\mathit {u}}} is given as u = a − ∥ a ∥ 2 e 1 {\displaystyle u=a-\|a\|_{2}\;e_{1}} then the transformation reflects a {\displaystyle {\mathit {a}}} onto the first standard basis vector e 1 = [ 1 0 0 . . . ] T {\displaystyle e_{1}=[1\;0\;0\;...]^{T}} which means that all entries but the first become zero. To avoid numerical cancellation errors, we should take the opposite sign of a 1 {\displaystyle a_{1}} : u = a + sign ( a 1 ) ∥ a ∥ 2 e 1 {\displaystyle u=a+{\textrm {sign}}(a_{1})\|a\|_{2}\;e_{1}} and normalize with respect to the first element: v = u u 1 {\displaystyle v={\frac {u}{u_{1}}}} The equation for H {\displaystyle H} thus becomes: H = I − 2 v T v v v T {\displaystyle H=I-{\frac {2}{v^{T}v}}vv^{T}} or, in another form H = I − β v v T {\displaystyle H=I-\beta vv^{T}} with β = 2 v T v {\displaystyle \beta ={\frac {2}{v^{T}v}}} Applying H {\displaystyle {\mathit {H}}} on a {\displaystyle {\mathit {a}}} then gives H a = − sign ( a 1 ) ∥ a ∥ 2 e 1 {\displaystyle H\;a=-{\textrm {sign}}(a_{1})\;\|a\|_{2}\;e_{1}} and applying H {\displaystyle {\mathit {H}}} on the matrix A {\displaystyle {\mathit {A}}} zeroes all subdiagonal elements of the first column: H 1 A = ( r 11 r 12 r 13 0 ∗ ∗ 0 ∗ ∗ ) {\displaystyle H_{1}\;A={\begin{pmatrix}r_{11}&r_{12}&r_{13}\\0&*&*\\0&*&*\end{pmatrix}}} In the second step, the second column of A {\displaystyle {\mathit {A}}} , we want to zero all elements but the first two, which means that we have to calculate H {\displaystyle {\mathit {H}}} with the first column of the submatrix (denoted *), not on the whole second column of A {\displaystyle {\mathit {A}}} . To get H 2 {\displaystyle H_{2}} , we then embed the new H {\displaystyle {\mathit {H}}} into an m × n {\displaystyle m\times n} identity: H 2 = ( 1 0 0 0 H 0 ) {\displaystyle H_{2}={\begin{pmatrix}1&0&0\\0&H&\\0&&\end{pmatrix}}} This is how we can, column by column, remove all subdiagonal elements of A {\displaystyle {\mathit {A}}} and thus transform it into R {\displaystyle {\mathit {R}}} . H n . . . H 3 H 2 H 1 A = R {\displaystyle H_{n}\;...\;H_{3}H_{2}H_{1}A=R} The product of all the Householder matrices H {\displaystyle {\mathit {H}}} , for every column, in reverse order, will then yield the orthogonal matrix Q {\displaystyle {\mathit {Q}}} . H 1 H 2 H 3 . . . H n = Q {\displaystyle H_{1}H_{2}H_{3}\;...\;H_{n}=Q} The QR decomposition should then be used to solve linear least squares (Multiple regression) problems A x = b {\displaystyle {\mathit {A}}x=b} by solving R x = Q T b {\displaystyle R\;x=Q^{T}\;b} When R {\displaystyle {\mathit {R}}} is not square, i.e. m > n {\displaystyle m>n} we have to cut off the m − n {\displaystyle {\mathit {m}}-n} zero padded bottom rows. R = ( R 1 0 ) {\displaystyle R={\begin{pmatrix}R_{1}\\0\end{pmatrix}}} and the same for the RHS: Q T b = ( q 1 q 2 ) {\displaystyle Q^{T}\;b={\begin{pmatrix}q_{1}\\q_{2}\end{pmatrix}}} Finally, solve the square upper triangular system by back substitution: R 1 x = q 1 {\displaystyle R_{1}\;x=q_{1}}
#VBA
VBA
Option Base 1 Private Function vtranspose(v As Variant) As Variant '-- transpose a vector of length m into an mx1 matrix, '-- eg {1,2,3} -> {1;2;3} vtranspose = WorksheetFunction.Transpose(v) End Function   Private Function mat_col(a As Variant, col As Integer) As Variant Dim res() As Double ReDim res(UBound(a)) For i = col To UBound(a) res(i) = a(i, col) Next i mat_col = res End Function   Private Function mat_norm(a As Variant) As Double mat_norm = Sqr(WorksheetFunction.SumProduct(a, a)) End Function   Private Function mat_ident(n As Integer) As Variant mat_ident = WorksheetFunction.Munit(n) End Function   Private Function sq_div(a As Variant, p As Double) As Variant Dim res() As Variant ReDim res(UBound(a)) For i = 1 To UBound(a) res(i) = a(i) / p Next i sq_div = res End Function   Private Function sq_mul(p As Double, a As Variant) As Variant Dim res() As Variant ReDim res(UBound(a), UBound(a, 2)) For i = 1 To UBound(a) For j = 1 To UBound(a, 2) res(i, j) = p * a(i, j) Next j Next i sq_mul = res End Function   Private Function sq_sub(x As Variant, y As Variant) As Variant Dim res() As Variant ReDim res(UBound(x), UBound(x, 2)) For i = 1 To UBound(x) For j = 1 To UBound(x, 2) res(i, j) = x(i, j) - y(i, j) Next j Next i sq_sub = res End Function   Private Function matrix_mul(x As Variant, y As Variant) As Variant matrix_mul = WorksheetFunction.MMult(x, y) End Function   Private Function QRHouseholder(ByVal a As Variant) As Variant Dim columns As Integer: columns = UBound(a, 2) Dim rows As Integer: rows = UBound(a) Dim m As Integer: m = WorksheetFunction.Max(columns, rows) Dim n As Integer: n = WorksheetFunction.Min(rows, columns) I_ = mat_ident(m) Q_ = I_ Dim q As Variant Dim u As Variant, v As Variant, j As Integer For j = 1 To WorksheetFunction.Min(m - 1, n) u = mat_col(a, j) u(j) = u(j) - mat_norm(u) v = sq_div(u, mat_norm(u)) q = sq_sub(I_, sq_mul(2, matrix_mul(vtranspose(v), v))) a = matrix_mul(q, a) Q_ = matrix_mul(Q_, q) Next j   '-- Get the upper triangular matrix R. Dim R() As Variant ReDim R(m, n) For i = 1 To m 'in Phix this is n For j = 1 To n 'in Phix this is i to n. starting at 1 to fill zeroes R(i, j) = a(i, j) Next j Next i Dim res(2) As Variant res(1) = Q_ res(2) = R QRHouseholder = res End Function   Private Sub pp(m As Variant) For i = 1 To UBound(m) For j = 1 To UBound(m, 2) Debug.Print Format(m(i, j), "0.#####"), Next j Debug.Print Next i End Sub Public Sub main() a = [{12, -51, 4; 6, 167, -68; -4, 24, -41;-1,1,0;2,0,3}] result = QRHouseholder(a) q = result(1) r_ = result(2) Debug.Print "A" pp a Debug.Print "Q" pp q Debug.Print "R" pp r_ Debug.Print "Q * R" pp matrix_mul(q, r_) End Sub
http://rosettacode.org/wiki/Primality_by_Wilson%27s_theorem
Primality by Wilson's theorem
Task Write a boolean function that tells whether a given integer is prime using Wilson's theorem. By Wilson's theorem, a number p is prime if and only if p divides (p - 1)! + 1. Remember that 1 and all non-positive integers are not prime. See also Cut-the-knot: Wilson's theorem. Wikipedia: Wilson's theorem
#AWK
AWK
  # syntax: GAWK -f PRIMALITY_BY_WILSONS_THEOREM.AWK # converted from FreeBASIC BEGIN { start = 2 stop = 200 for (i=start; i<=stop; i++) { if (is_wilson_prime(i)) { printf("%5d%1s",i,++count%10?"":"\n") } } printf("\nWilson primality test range %d-%d: %d\n",start,stop,count) exit(0) } function is_wilson_prime(n, fct,i) { fct = 1 for (i=2; i<=n-1; i++) { # because (a mod n)*b = (ab mod n) # it is not necessary to calculate the entire factorial fct = (fct * i) % n } return(fct == n-1) }  
http://rosettacode.org/wiki/Primality_by_Wilson%27s_theorem
Primality by Wilson's theorem
Task Write a boolean function that tells whether a given integer is prime using Wilson's theorem. By Wilson's theorem, a number p is prime if and only if p divides (p - 1)! + 1. Remember that 1 and all non-positive integers are not prime. See also Cut-the-knot: Wilson's theorem. Wikipedia: Wilson's theorem
#BASIC
BASIC
function wilson_prime(n) fct = 1 for i = 2 to n-1 fct = (fct * i) mod n next i if fct = n-1 then return True else return False end function   print "Primes below 100" & Chr(10) for i = 2 to 100 if wilson_prime(i) then print i; " "; next i end
http://rosettacode.org/wiki/Pragmatic_directives
Pragmatic directives
Pragmatic directives cause the language to operate in a specific manner,   allowing support for operational variances within the program code   (possibly by the loading of specific or alternative modules). Task List any pragmatic directives supported by the language,   and demonstrate how to activate and deactivate the pragmatic directives and to describe or demonstrate the scope of effect that the pragmatic directives have within a program.
#PL.2FI
PL/I
declare (t(100),i) fixed binary; i=101; t(i)=0;
http://rosettacode.org/wiki/Pragmatic_directives
Pragmatic directives
Pragmatic directives cause the language to operate in a specific manner,   allowing support for operational variances within the program code   (possibly by the loading of specific or alternative modules). Task List any pragmatic directives supported by the language,   and demonstrate how to activate and deactivate the pragmatic directives and to describe or demonstrate the scope of effect that the pragmatic directives have within a program.
#PowerShell
PowerShell
  #Requires -Version <N>[.<n>] #Requires –PSSnapin <PSSnapin-Name> [-Version <N>[.<n>]] #Requires -Modules { <Module-Name> | <Hashtable> } #Requires –ShellId <ShellId> #Requires -RunAsAdministrator  
http://rosettacode.org/wiki/Pragmatic_directives
Pragmatic directives
Pragmatic directives cause the language to operate in a specific manner,   allowing support for operational variances within the program code   (possibly by the loading of specific or alternative modules). Task List any pragmatic directives supported by the language,   and demonstrate how to activate and deactivate the pragmatic directives and to describe or demonstrate the scope of effect that the pragmatic directives have within a program.
#Python
Python
Python 3.2 (r32:88445, Feb 20 2011, 21:30:00) [MSC v.1500 64 bit (AMD64)] on win32 Type "copyright", "credits" or "license()" for more information. >>> import __future__ >>> __future__.all_feature_names ['nested_scopes', 'generators', 'division', 'absolute_import', 'with_statement', 'print_function', 'unicode_literals', 'barry_as_FLUFL'] >>>
http://rosettacode.org/wiki/Pragmatic_directives
Pragmatic directives
Pragmatic directives cause the language to operate in a specific manner,   allowing support for operational variances within the program code   (possibly by the loading of specific or alternative modules). Task List any pragmatic directives supported by the language,   and demonstrate how to activate and deactivate the pragmatic directives and to describe or demonstrate the scope of effect that the pragmatic directives have within a program.
#Racket
Racket
use MONKEY-TYPING; augment class Int { method times (&what) { what() xx self } # pretend like we're Ruby }
http://rosettacode.org/wiki/Prime_conspiracy
Prime conspiracy
A recent discovery, quoted from   Quantamagazine   (March 13, 2016): Two mathematicians have uncovered a simple, previously unnoticed property of prime numbers — those numbers that are divisible only by 1 and themselves. Prime numbers, it seems, have decided preferences about the final digits of the primes that immediately follow them. and This conspiracy among prime numbers seems, at first glance, to violate a longstanding assumption in number theory: that prime numbers behave much like random numbers. ─── (original authors from Stanford University): ─── Kannan Soundararajan and Robert Lemke Oliver The task is to check this assertion, modulo 10. Lets call    i -> j   a transition if    i   is the last decimal digit of a prime, and    j   the last decimal digit of the following prime. Task Considering the first one million primes.   Count, for any pair of successive primes, the number of transitions    i -> j   and print them along with their relative frequency, sorted by    i . You can see that, for a given    i ,   frequencies are not evenly distributed. Observation (Modulo 10),   primes whose last digit is   9   "prefer"   the digit   1   to the digit   9,   as its following prime. Extra credit Do the same for one hundred million primes. Example for 10,000 primes 10000 first primes. Transitions prime % 10 → next-prime % 10. 1 → 1 count: 365 frequency: 3.65 % 1 → 3 count: 833 frequency: 8.33 % 1 → 7 count: 889 frequency: 8.89 % 1 → 9 count: 397 frequency: 3.97 % 2 → 3 count: 1 frequency: 0.01 % 3 → 1 count: 529 frequency: 5.29 % 3 → 3 count: 324 frequency: 3.24 % 3 → 5 count: 1 frequency: 0.01 % 3 → 7 count: 754 frequency: 7.54 % 3 → 9 count: 907 frequency: 9.07 % 5 → 7 count: 1 frequency: 0.01 % 7 → 1 count: 655 frequency: 6.55 % 7 → 3 count: 722 frequency: 7.22 % 7 → 7 count: 323 frequency: 3.23 % 7 → 9 count: 808 frequency: 8.08 % 9 → 1 count: 935 frequency: 9.35 % 9 → 3 count: 635 frequency: 6.35 % 9 → 7 count: 541 frequency: 5.41 % 9 → 9 count: 379 frequency: 3.79 %
#EchoLisp
EchoLisp
  (lib 'math) ;; (in-primes n) stream (decimals 4)   (define (print-trans trans m N) (printf "%d first primes. Transitions prime %% %d → next-prime %% %d." N m m) (define s (// (apply + (vector->list trans)) 100)) (for ((i (* m m)) (t trans)) #:continue (<= t 1) ;; get rid of 2,5 primes (printf " %d → %d count: %10d frequency:  %d %% " (quotient i m) (% i m) t (// t s) )))   ;; can apply to any modulo m ;; (in-primes n) returns a stream of primes   (define (task (m 10) (N 1000_000)) (define trans (make-vector (* m m))) (for ((p1 (in-primes 2)) (p2 (in-primes 3)) (k N)) (vector+= trans (+ (* (% p1 m) m) (% p2 m)) 1)) (print-trans trans m N))  
http://rosettacode.org/wiki/Prime_decomposition
Prime decomposition
The prime decomposition of a number is defined as a list of prime numbers which when all multiplied together, are equal to that number. Example 12 = 2 × 2 × 3, so its prime decomposition is {2, 2, 3} Task Write a function which returns an array or collection which contains the prime decomposition of a given number   n {\displaystyle n}   greater than   1. If your language does not have an isPrime-like function available, you may assume that you have a function which determines whether a number is prime (note its name before your code). If you would like to test code from this task, you may use code from trial division or the Sieve of Eratosthenes. Note: The program must not be limited by the word size of your computer or some other artificial limit; it should work for any number regardless of size (ignoring the physical limits of RAM etc). Related tasks   count in factors   factors of an integer   Sieve of Eratosthenes   primality by trial division   factors of a Mersenne number   trial factoring of a Mersenne number   partition an integer X into N primes   sequence of primes by Trial Division
#360_Assembly
360 Assembly
PRIMEDE CSECT USING PRIMEDE,R13 B 80(R15) skip savearea DC 17F'0' savearea DC CL8'PRIMEDE' STM R14,R12,12(R13) ST R13,4(R15) ST R15,8(R13) LR R13,R15 end prolog LA R2,0 LA R3,1023 LA R4,1024 MR R2,R4 ST R3,N n=1023*1024 LA R5,WBUFFER LA R6,0 L R1,N n XDECO R1,0(R5) LA R5,12(R5) MVC 0(3,R5),=C' : ' LA R5,3(R5) LA R0,2 ST R0,I i=2 WHILE1 EQU * do while(i<=n/2) L R2,N SRA R2,1 L R4,I CR R4,R2 i<=n/2 BH EWHILE1 WHILE2 EQU * do while(n//i=0) L R3,N LA R2,0 D R2,I LTR R2,R2 n//i=0 BNZ EWHILE2 ST R3,N n=n/i ST R3,M m=n L R1,I i XDECO R1,WDECO MVC 0(5,R5),WDECO+7 LA R5,5(R5) MVI OK,X'01' ok B WHILE2 EWHILE2 EQU * L R4,I CH R4,=H'2' if i=2 then BNE NE2 LA R0,3 ST R0,I i=3 B EIFNE2 NE2 L R2,I else LA R2,2(R2) ST R2,I i=i+2 EIFNE2 B WHILE1 EWHILE1 EQU * CLI OK,X'01' if ^ok then BE NOTPRIME MVC 0(7,R5),=C'[prime]' LA R5,7(R5) B EPRIME NOTPRIME L R1,M m XDECO R1,WDECO MVC 0(5,R5),WDECO+7 EPRIME XPRNT WBUFFER,80 put L R13,4(0,R13) epilog LM R14,R12,12(R13) XR R15,R15 BR R14 N DS F I DS F M DS F OK DC X'00' WBUFFER DC CL80' ' WDECO DS CL16 YREGS END PRIMEDE
http://rosettacode.org/wiki/Proper_divisors
Proper divisors
The   proper divisors   of a positive integer N are those numbers, other than N itself, that divide N without remainder. For N > 1 they will always include 1,   but for N == 1 there are no proper divisors. Examples The proper divisors of     6     are   1, 2, and 3. The proper divisors of   100   are   1, 2, 4, 5, 10, 20, 25, and 50. Task Create a routine to generate all the proper divisors of a number. use it to show the proper divisors of the numbers 1 to 10 inclusive. Find a number in the range 1 to 20,000 with the most proper divisors. Show the number and just the count of how many proper divisors it has. Show all output here. Related tasks   Amicable pairs   Abundant, deficient and perfect number classifications   Aliquot sequence classifications   Factors of an integer   Prime decomposition
#C.23
C#
namespace RosettaCode.ProperDivisors { using System; using System.Collections.Generic; using System.Linq;   internal static class Program { private static IEnumerable<int> ProperDivisors(int number) { return Enumerable.Range(1, number / 2) .Where(divisor => number % divisor == 0); }   private static void Main() { foreach (var number in Enumerable.Range(1, 10)) { Console.WriteLine("{0}: {{{1}}}", number, string.Join(", ", ProperDivisors(number))); }   var record = Enumerable.Range(1, 20000).Select(number => new { Number = number, Count = ProperDivisors(number).Count() }).OrderByDescending(currentRecord => currentRecord.Count).First(); Console.WriteLine("{0}: {1}", record.Number, record.Count); } } }
http://rosettacode.org/wiki/Probabilistic_choice
Probabilistic choice
Given a mapping between items and their required probability of occurrence, generate a million items randomly subject to the given probabilities and compare the target probability of occurrence versus the generated values. The total of all the probabilities should equal one. (Because floating point arithmetic is involved, this is subject to rounding errors). aleph 1/5.0 beth 1/6.0 gimel 1/7.0 daleth 1/8.0 he 1/9.0 waw 1/10.0 zayin 1/11.0 heth 1759/27720 # adjusted so that probabilities add to 1 Related task Random number generator (device)
#Clojure
Clojure
(defn to-cdf [pdf] (reduce (fn [acc n] (conj acc (+ (or (last acc) 0) n))) [] pdf))   (defn choose [cdf] (let [r (rand)] (count (filter (partial > r) cdf))))   (def *names* '[aleph beth gimel daleth he waw zayin heth]) (def *pdf* (map double [1/5 1/6 1/7 1/8 1/9 1/10 1/11 1759/27720]))   (let [num-trials 1000000 cdf (to-cdf *pdf*) indexes (range (count *names*)) ;; use integer key internally, not name expected (into (sorted-map) (zipmap indexes *pdf*)) actual (frequencies (repeatedly num-trials #(choose cdf)))] (doseq [[idx exp] expected] (println "Expected number of" (*names* idx) "was" (* num-trials exp) "and actually got" (actual idx))))
http://rosettacode.org/wiki/Primes_-_allocate_descendants_to_their_ancestors
Primes - allocate descendants to their ancestors
The concept, is to add the decomposition into prime factors of a number to get its 'ancestors'. The objective is to demonstrate that the choice of the algorithm can be crucial in term of performance. This solution could be compared to the solution that would use the decomposition into primes for all the numbers between 1 and 333. The problem is to list, for a delimited set of ancestors (from 1 to 99) : - the total of their own ancestors (LEVEL), - their own ancestors (ANCESTORS), - the total of the direct descendants (DESCENDANTS), - all the direct descendants. You only have to consider the prime factors < 100. A grand total of the descendants has to be printed at the end of the list. The task should be accomplished in a reasonable time-frame. Example : 46 = 2*23 --> 2+23 = 25, is the parent of 46. 25 = 5*5 --> 5+5 = 10, is the parent of 25. 10 = 2*5 --> 2+5 = 7, is the parent of 10. 7 is a prime factor and, as such, has no parent. 46 has 3 ancestors (7, 10 and 25). 46 has 557 descendants. The list layout and the output for Parent [46] : [46] Level: 3 Ancestors: 7, 10, 25 Descendants: 557 129, 205, 246, 493, 518, 529, 740, 806, 888, 999, 1364, 1508, 1748, 2552, 2871, 3128, 3255, 3472, 3519, 3875, 3906, 4263, 4650, 4960, 5075, 5415, 5580, 5776, 5952, 6090, 6279, 6496, 6498, 6696, 6783, 7250, 7308, 7475, 7533, 8075, 8151, 8619, 8700, 8855, 8970, 9280, 9568, 9690, 10115, 10336, 10440, 10626, 10764, 11136, 11495, 11628, 11745, 12103, 12138, 12155, 12528, 12650, 13794, 14094, 14399, 14450, 14586, 15180, 15379, 15778, 16192, 17290, 17303, 17340, 18216, 18496, 20482, 20493, 20570, 20748, 20808, 21658, 21970, 22540, 23409, 24684, 24700, 26026, 26364, 27048, 29260, 29282, 29640, 30429, 30940, 31616, 32200, 33345, 35112, 35568, 36225, 36652, 37128, 37180, 38640, 39501, 40014, 41216, 41769, 41800, 43125, 43470, 44044, 44200, 44616, 46000, 46368, 47025, 49725, 50160, 50193, 51750, 52136, 52164, 52360, 53040, 53504, 55200, 56430, 56576, 58653, 58880, 58905, 59670, 60192, 62100, 62832, 62920, 63648, 66240, 66248, 67716, 69825, 70125, 70656, 70686, 70785, 71604, 74480, 74520, 74529, 74536, 74800, 75504, 79488, 83125, 83790, 83835, 83853, 84150, 84942, 87465, 88725, 89376, 89424, 89760, 93296, 94640, 95744, 99750, 99825, 100548, 100602, 100980, 104125, 104958, 105105, 105625, 106400, 106470, 106480, 107712, 112112, 113568, 118750, 119700, 119790, 121176, 124509, 124950, 125125, 126126, 126750, 127680, 127764, 127776, 133280, 135200, 136192, 136323, 142500, 143640, 143748, 148225, 148750, 149940, 150150, 152000, 152100, 153216, 156065, 159936, 160160, 161595, 162240, 171000, 172368, 173056, 177870, 178500, 178750, 179928, 180180, 182400, 182520, 184877, 187278, 189728, 190400, 192192, 192375, 193914, 194560, 194688, 202419, 205200, 205335, 211750, 212500, 213444, 214200, 214500, 216216, 218880, 219024, 222950, 228480, 228800, 230850, 233472, 240975, 243243, 243712, 246240, 246402, 254100, 255000, 257040, 257400, 262656, 264110, 267540, 271040, 272000, 274176, 274560, 277020, 285376, 286875, 289170, 289575, 292864, 295488, 302500, 304920, 306000, 308448, 308880, 316932, 318500, 321048, 325248, 326400, 329472, 332424, 343035, 344250, 347004, 347490, 348160, 361179, 363000, 365904, 367200, 370656, 373977, 377300, 382200, 387200, 391680, 407680, 408375, 411642, 413100, 416988, 417792, 429975, 435600, 440640, 452760, 455000, 458640, 464640, 470016, 470596, 482944, 489216, 490050, 495616, 495720, 509355, 511875, 515970, 522720, 528768, 539000, 543312, 546000, 550368, 557568, 557685, 582400, 588060, 594864, 606375, 609375, 611226, 614250, 619164, 627264, 646800, 650000, 655200, 669222, 672280, 689920, 698880, 705672, 721875, 727650, 731250, 737100, 745472, 756315, 770000, 776160, 780000, 786240, 793881, 806736, 827904, 832000, 838656, 859375, 866250, 873180, 877500, 884520, 900375, 907578, 924000, 931392, 936000, 943488, 960400, 985600, 995085, 998400, 1031250, 1039500, 1047816, 1053000, 1061424, 1064960, 1071875, 1080450, 1100000, 1108800, 1123200, 1152480, 1178793, 1182720, 1184625, 1194102, 1198080, 1229312, 1237500, 1247400, 1261568, 1263600, 1277952, 1286250, 1296540, 1320000, 1330560, 1347840, 1372000, 1382976, 1403325, 1408000, 1419264, 1421550, 1437696, 1485000, 1496880, 1516320, 1531250, 1543500, 1555848, 1584000, 1596672, 1617408, 1646400, 1670625, 1683990, 1689600, 1705860, 1750329, 1756160, 1782000, 1796256, 1802240, 1819584, 1837500, 1852200, 1900800, 1960000, 1975680, 2004750, 2020788, 2027520, 2047032, 2083725, 2107392, 2138400, 2162688, 2187500, 2205000, 2222640, 2280960, 2302911, 2352000, 2370816, 2405700, 2433024, 2480625, 2500470, 2508800, 2566080, 2625000, 2646000, 2667168, 2737152, 2800000, 2822400, 2886840, 2953125, 2976750, 3000564, 3010560, 3079296, 3125000, 3150000, 3175200, 3211264, 3247695, 3360000, 3386880, 3464208, 3515625, 3543750, 3572100, 3584000, 3612672, 3750000, 3780000, 3810240, 3897234, 4000000, 4032000, 4064256, 4218750, 4252500, 4286520, 4300800, 4500000, 4536000, 4572288, 4587520, 4800000, 4822335, 4838400, 5062500, 5103000, 5120000, 5143824, 5160960, 5400000, 5443200, 5505024, 5740875, 5760000, 5786802, 5806080, 6075000, 6123600, 6144000, 6193152, 6480000, 6531840, 6553600, 6834375, 6889050, 6912000, 6967296, 7290000, 7348320, 7372800, 7776000, 7838208, 7864320, 8201250, 8266860, 8294400, 8388608, 8748000, 8817984, 8847360, 9331200, 9437184, 9841500, 9920232, 9953280, 10497600, 10616832, 11160261, 11197440, 11809800, 11943936, 12597120, 13286025, 13436928, 14171760, 15116544, 15943230, 17006112, 19131876 Some figures : The biggest descendant number : 3^33 = 5.559.060.566.555.523 (parent 99) Total Descendants 546.986
#Nim
Nim
import algorithm, strformat, strutils, sugar   const MaxSum = 99   func getPrimes(max: Positive): seq[int] = if max < 2: return result.add 2 for n in countup(3, max, 2): block check: for p in result: if n mod p == 0: break check result.add n   let primes = getPrimes(MaxSum)   var descendants, ancestors = newSeq[seq[int]](MaxSum + 1)   for p in primes: descendants[p].add p for s in 1..(descendants.high - p): descendants[s + p].add collect(newSeq, for pr in descendants[s]: p * pr)   for p in primes & 4: discard descendants[p].pop()   var total = 0 for s in 1..MaxSum: descendants[s].sort() for d in descendants[s]: if d > MaxSum: break ancestors[d] = ancestors[s] & s let dlength = descendants[s].len echo &"[{s}] Level: {ancestors[s].len}" echo "Ancestors: ", if ancestors[s].len != 0: ancestors[s].join(" ") else: "None" echo "Descendants: ", if dlength != 0: $dlength else: "None" if dlength != 0: echo descendants[s].join(", ") echo "" inc total, dlength   echo "Total descendants: ", total
http://rosettacode.org/wiki/Priority_queue
Priority queue
A priority queue is somewhat similar to a queue, with an important distinction: each item is added to a priority queue with a priority level, and will be later removed from the queue with the highest priority element first. That is, the items are (conceptually) stored in the queue in priority order instead of in insertion order. Task Create a priority queue.   The queue must support at least two operations:   Insertion.   An element is added to the queue with a priority (a numeric value).   Top item removal.   Deletes the element or one of the elements with the current top priority and return it. Optionally, other operations may be defined, such as peeking (find what current top priority/top element is), merging (combining two priority queues into one), etc. To test your implementation, insert a number of elements into the queue, each with some random priority. Then dequeue them sequentially; now the elements should be sorted by priority. You can use the following task/priority items as input data: Priority Task ══════════ ════════════════ 3 Clear drains 4 Feed cat 5 Make tea 1 Solve RC tasks 2 Tax return The implementation should try to be efficient.   A typical implementation has   O(log n)   insertion and extraction time,   where   n   is the number of items in the queue. You may choose to impose certain limits such as small range of allowed priority levels, limited capacity, etc.   If so, discuss the reasons behind it.
#CLU
CLU
prio_queue = cluster [P, T: type] is new, empty, push, pop where P has lt: proctype (P,P) returns (bool)   item = struct[prio: P, val: T] rep = array[item]   new = proc () returns (cvt) return (rep$create(0)) end new   empty = proc (pq: cvt) returns (bool) return (rep$empty(pq)) end empty   parent = proc (k: int) returns (int) return ((k-1)/2) end parent   left = proc (k: int) returns (int) return (2*k + 1) end left   right = proc (k: int) returns (int) return (2*k + 2) end right   swap = proc (pq: rep, a: int, b: int) temp: item := pq[a] pq[a] := pq[b] pq[b] := temp end swap   min_heapify = proc (pq: rep, k: int) l: int := left(k) r: int := right(k)   smallest: int := k if l < rep$size(pq) cand pq[l].prio < pq[smallest].prio then smallest := l end if r < rep$size(pq) cand pq[r].prio < pq[smallest].prio then smallest := r end if smallest ~= k then swap(pq, k, smallest) min_heapify(pq, smallest) end end min_heapify   push = proc (pq: cvt, prio: P, val: T) rep$addh(pq, item${prio: prio, val: val})   i: int := rep$high(pq) while i ~= 0 cand pq[i].prio < pq[parent(i)].prio do swap(pq, i, parent(i)) i := parent(i) end end push   pop = proc (pq: cvt) returns (P, T) signals (empty) if empty(up(pq)) then signal empty end if rep$size(pq) = 1 then i: item := rep$remh(pq) return (i.prio, i.val) end   root: item := pq[0] pq[0] := rep$remh(pq) min_heapify(pq, 0) return (root.prio, root.val) end pop end prio_queue   start_up = proc ()  % use ints for priority and strings for data prioq = prio_queue[int,string]    % make the priority queue pq: prioq := prioq$new()    % add some tasks prioq$push(pq, 3, "Clear drains") prioq$push(pq, 4, "Feed cat") prioq$push(pq, 5, "Make tea") prioq$push(pq, 1, "Solve RC tasks") prioq$push(pq, 2, "Tax return")    % print them all out in order po: stream := stream$primary_output() while ~prioq$empty(pq) do prio: int task: string prio, task := prioq$pop(pq) stream$putl(po, int$unparse(prio) || ": " || task) end end start_up
http://rosettacode.org/wiki/Problem_of_Apollonius
Problem of Apollonius
Task Implement a solution to the Problem of Apollonius   (description on Wikipedia)   which is the problem of finding the circle that is tangent to three specified circles   (colored black in the diagram below to the right). There is an   algebraic solution   which is pretty straightforward. The solutions to the example in the code are shown in the diagram   (below and to the right). The red circle is "internally tangent" to all three black circles,   and the green circle is "externally tangent" to all three black circles.
#Haskell
Haskell
data Circle = Circle { x, y, r :: Double } deriving (Show, Eq) data Tangent = Externally | Internally deriving Eq   {-- Solves the Problem of Apollonius (finding a circle tangent to three other circles in the plane).   Params: c1 = First circle of the problem. c2 = Second circle of the problem. c3 = Third circle of the problem. t1 = How is the solution tangent (externally or internally) to c1. t2 = How is the solution tangent (externally or internally) to c2. t3 = How is the solution tangent (externally or internally) to c3.   Returns: The Circle that is tangent to c1, c2 and c3. --} solveApollonius :: Circle -> Circle -> Circle -> Tangent -> Tangent -> Tangent -> Circle solveApollonius c1 c2 c3 t1 t2 t3 = Circle (m + n * rs) (p + q * rs) rs where s1 = if t1 == Externally then 1.0 else -1.0 s2 = if t2 == Externally then 1.0 else -1.0 s3 = if t3 == Externally then 1.0 else -1.0   v11 = 2 * x c2 - 2 * x c1 v12 = 2 * y c2 - 2 * y c1 v13 = x c1 ^ 2 - x c2 ^ 2 + y c1 ^ 2 - y c2 ^ 2 - r c1 ^ 2 + r c2 ^ 2 v14 = 2 * s2 * r c2 - 2 * s1 * r c1   v21 = 2 * x c3 - 2 * x c2 v22 = 2 * y c3 - 2 * y c2 v23 = x c2 ^ 2 - x c3 ^ 2 + y c2 ^ 2 - y c3 ^ 2 - r c2 ^ 2 + r c3 ^ 2; v24 = 2 * s3 * r c3 - 2 * s2 * r c2   w12 = v12 / v11 w13 = v13 / v11 w14 = v14 / v11   w22 = v22 / v21 - w12 w23 = v23 / v21 - w13 w24 = v24 / v21 - w14   p = -w23 / w22 q = w24 / w22 m = -w12 * p - w13 n = w14 - w12 * q   a = n * n + q ^ 2 - 1 b = 2 * m * n - 2 * n * x c1 + 2 * p * q - 2 * q * y c1 + 2 * s1 * r c1 c = x c1 ^ 2 + m ^ 2 - 2 * m * x c1 + p ^ 2 + y c1 ^ 2 - 2 * p * y c1 - r c1 ^ 2   -- Find a root of a quadratic equation. -- This requires the circle centers not to be e.g. colinear. d = b ^ 2 - 4 * a * c rs = (-b - sqrt d) / (2 * a)   main = do let c1 = Circle 0.0 0.0 1.0 let c2 = Circle 4.0 0.0 1.0 let c3 = Circle 2.0 4.0 2.0 let te = Externally print $ solveApollonius c1 c2 c3 te te te   let ti = Internally print $ solveApollonius c1 c2 c3 ti ti ti
http://rosettacode.org/wiki/Program_name
Program name
The task is to programmatically obtain the name used to invoke the program. (For example determine whether the user ran "python hello.py", or "python hellocaller.py", a program importing the code from "hello.py".) Sometimes a multiline shebang is necessary in order to provide the script name to a language's internal ARGV. See also Command-line arguments Examples from GitHub.
#Oberon-2
Oberon-2
  MODULE ProgramName; IMPORT NPCT:Args, Out; BEGIN Out.Object("Program name: " + Args.Get(0));Out.Ln END ProgramName.  
http://rosettacode.org/wiki/Program_name
Program name
The task is to programmatically obtain the name used to invoke the program. (For example determine whether the user ran "python hello.py", or "python hellocaller.py", a program importing the code from "hello.py".) Sometimes a multiline shebang is necessary in order to provide the script name to a language's internal ARGV. See also Command-line arguments Examples from GitHub.
#Objective-C
Objective-C
#import <Foundation/Foundation.h>   int main(int argc, char **argv) { @autoreleasepool {   char *program = argv[0]; printf("Program: %s\n", program);   // Alternatively: NSString *program2 = [[NSProcessInfo processInfo] processName]; NSLog(@"Program: %@\n", program2);   }   return 0; }
http://rosettacode.org/wiki/Primorial_numbers
Primorial numbers
Primorial numbers are those formed by multiplying successive prime numbers. The primorial number series is:   primorial(0) =         1       (by definition)   primorial(1) =         2       (2)   primorial(2) =         6       (2×3)   primorial(3) =       30       (2×3×5)   primorial(4) =     210       (2×3×5×7)   primorial(5) =   2310       (2×3×5×7×11)   primorial(6) = 30030       (2×3×5×7×11×13)         ∙ ∙ ∙ To express this mathematically,   primorialn   is   the product of the first   n   (successive) primes:   p r i m o r i a l n = ∏ k = 1 n p r i m e k {\displaystyle primorial_{n}=\prod _{k=1}^{n}prime_{k}} ─── where   p r i m e k {\displaystyle prime_{k}}   is the   kth   prime number. In some sense, generating primorial numbers is similar to factorials. As with factorials, primorial numbers get large quickly. Task   Show the first ten primorial numbers   (0 ──► 9,   inclusive).   Show the length of primorial numbers whose index is:   10   100   1,000   10,000   and   100,000.   Show the length of the one millionth primorial number   (optional).   Use exact integers, not approximations. By   length   (above), it is meant the number of decimal digits in the numbers. Related tasks   Sequence of primorial primes   Factorial   Fortunate_numbers See also   the MathWorld webpage:   primorial   the Wikipedia   webpage:   primorial.   the   OEIS   webpage:   A002110.
#Sidef
Sidef
say ( 'First ten primorials: ', {|i| pn_primorial(i) }.map(^10).join(', ') )   { |i| say ("primorial(10^#{i}) has " + pn_primorial(10**i).len + ' digits') } << 1..6
http://rosettacode.org/wiki/Pythagorean_triples
Pythagorean triples
A Pythagorean triple is defined as three positive integers ( a , b , c ) {\displaystyle (a,b,c)} where a < b < c {\displaystyle a<b<c} , and a 2 + b 2 = c 2 . {\displaystyle a^{2}+b^{2}=c^{2}.} They are called primitive triples if a , b , c {\displaystyle a,b,c} are co-prime, that is, if their pairwise greatest common divisors g c d ( a , b ) = g c d ( a , c ) = g c d ( b , c ) = 1 {\displaystyle {\rm {gcd}}(a,b)={\rm {gcd}}(a,c)={\rm {gcd}}(b,c)=1} . Because of their relationship through the Pythagorean theorem, a, b, and c are co-prime if a and b are co-prime ( g c d ( a , b ) = 1 {\displaystyle {\rm {gcd}}(a,b)=1} ).   Each triple forms the length of the sides of a right triangle, whose perimeter is P = a + b + c {\displaystyle P=a+b+c} . Task The task is to determine how many Pythagorean triples there are with a perimeter no larger than 100 and the number of these that are primitive. Extra credit Deal with large values.   Can your program handle a maximum perimeter of 1,000,000?   What about 10,000,000?   100,000,000? Note: the extra credit is not for you to demonstrate how fast your language is compared to others;   you need a proper algorithm to solve them in a timely manner. Related tasks   Euler's sum of powers conjecture   List comprehensions   Pythagorean quadruples
#OCaml
OCaml
let isqrt n = let rec iter t = let d = n - t*t in if (0 <= d) && (d < t+t+1) (* t*t <= n < (t+1)*(t+1) *) then t else iter ((t+(n/t))/2) in iter 1   let rec gcd a b = let t = a mod b in if t = 0 then b else gcd b t   let coprime a b = gcd a b = 1   let num_to ms = let ctr = ref 0 in let prim_ctr = ref 0 in let max_m = isqrt (ms/2) in for m = 2 to max_m do for j = 0 to (m/2) - 1 do let n = m-(2*j+1) in if coprime m n then let s = 2*m*(m+n) in if s <= ms then (ctr := !ctr + (ms/s); incr prim_ctr) done done; (!ctr, !prim_ctr)   let show i = let s, p = num_to i in Printf.printf "For perimeters up to %d there are %d total and %d primitive\n%!" i s p;;   List.iter show [ 100; 1000; 10000; 100000; 1000000; 10000000; 100000000 ]
http://rosettacode.org/wiki/Program_termination
Program termination
Task Show the syntax for a complete stoppage of a program inside a   conditional. This includes all threads/processes which are part of your program. Explain the cleanup (or lack thereof) caused by the termination (allocated memory, database connections, open files, object finalizers/destructors, run-on-exit hooks, etc.). Unless otherwise described, no special cleanup outside that provided by the operating system is provided.
#M2000_Interpreter
M2000 Interpreter
  Module Checkit { For i=1 to 200 Thread { k++ Print "Thread:"; num, "k=";k } as M Thread M Execute { static num=M, k=1000*i } Thread M interval 100+900*rnd next i   Task.Main 20 { if random(10)=1 then Set End } } Checkit  
http://rosettacode.org/wiki/Program_termination
Program termination
Task Show the syntax for a complete stoppage of a program inside a   conditional. This includes all threads/processes which are part of your program. Explain the cleanup (or lack thereof) caused by the termination (allocated memory, database connections, open files, object finalizers/destructors, run-on-exit hooks, etc.). Unless otherwise described, no special cleanup outside that provided by the operating system is provided.
#M4
M4
beginning define(`problem',1) ifelse(problem,1,`m4exit(1)') ending
http://rosettacode.org/wiki/QR_decomposition
QR decomposition
Any rectangular m × n {\displaystyle m\times n} matrix A {\displaystyle {\mathit {A}}} can be decomposed to a product of an orthogonal matrix Q {\displaystyle {\mathit {Q}}} and an upper (right) triangular matrix R {\displaystyle {\mathit {R}}} , as described in QR decomposition. Task Demonstrate the QR decomposition on the example matrix from the Wikipedia article: A = ( 12 − 51 4 6 167 − 68 − 4 24 − 41 ) {\displaystyle A={\begin{pmatrix}12&-51&4\\6&167&-68\\-4&24&-41\end{pmatrix}}} and the usage for linear least squares problems on the example from Polynomial regression. The method of Householder reflections should be used: Method Multiplying a given vector a {\displaystyle {\mathit {a}}} , for example the first column of matrix A {\displaystyle {\mathit {A}}} , with the Householder matrix H {\displaystyle {\mathit {H}}} , which is given as H = I − 2 u T u u u T {\displaystyle H=I-{\frac {2}{u^{T}u}}uu^{T}} reflects a {\displaystyle {\mathit {a}}} about a plane given by its normal vector u {\displaystyle {\mathit {u}}} . When the normal vector of the plane u {\displaystyle {\mathit {u}}} is given as u = a − ∥ a ∥ 2 e 1 {\displaystyle u=a-\|a\|_{2}\;e_{1}} then the transformation reflects a {\displaystyle {\mathit {a}}} onto the first standard basis vector e 1 = [ 1 0 0 . . . ] T {\displaystyle e_{1}=[1\;0\;0\;...]^{T}} which means that all entries but the first become zero. To avoid numerical cancellation errors, we should take the opposite sign of a 1 {\displaystyle a_{1}} : u = a + sign ( a 1 ) ∥ a ∥ 2 e 1 {\displaystyle u=a+{\textrm {sign}}(a_{1})\|a\|_{2}\;e_{1}} and normalize with respect to the first element: v = u u 1 {\displaystyle v={\frac {u}{u_{1}}}} The equation for H {\displaystyle H} thus becomes: H = I − 2 v T v v v T {\displaystyle H=I-{\frac {2}{v^{T}v}}vv^{T}} or, in another form H = I − β v v T {\displaystyle H=I-\beta vv^{T}} with β = 2 v T v {\displaystyle \beta ={\frac {2}{v^{T}v}}} Applying H {\displaystyle {\mathit {H}}} on a {\displaystyle {\mathit {a}}} then gives H a = − sign ( a 1 ) ∥ a ∥ 2 e 1 {\displaystyle H\;a=-{\textrm {sign}}(a_{1})\;\|a\|_{2}\;e_{1}} and applying H {\displaystyle {\mathit {H}}} on the matrix A {\displaystyle {\mathit {A}}} zeroes all subdiagonal elements of the first column: H 1 A = ( r 11 r 12 r 13 0 ∗ ∗ 0 ∗ ∗ ) {\displaystyle H_{1}\;A={\begin{pmatrix}r_{11}&r_{12}&r_{13}\\0&*&*\\0&*&*\end{pmatrix}}} In the second step, the second column of A {\displaystyle {\mathit {A}}} , we want to zero all elements but the first two, which means that we have to calculate H {\displaystyle {\mathit {H}}} with the first column of the submatrix (denoted *), not on the whole second column of A {\displaystyle {\mathit {A}}} . To get H 2 {\displaystyle H_{2}} , we then embed the new H {\displaystyle {\mathit {H}}} into an m × n {\displaystyle m\times n} identity: H 2 = ( 1 0 0 0 H 0 ) {\displaystyle H_{2}={\begin{pmatrix}1&0&0\\0&H&\\0&&\end{pmatrix}}} This is how we can, column by column, remove all subdiagonal elements of A {\displaystyle {\mathit {A}}} and thus transform it into R {\displaystyle {\mathit {R}}} . H n . . . H 3 H 2 H 1 A = R {\displaystyle H_{n}\;...\;H_{3}H_{2}H_{1}A=R} The product of all the Householder matrices H {\displaystyle {\mathit {H}}} , for every column, in reverse order, will then yield the orthogonal matrix Q {\displaystyle {\mathit {Q}}} . H 1 H 2 H 3 . . . H n = Q {\displaystyle H_{1}H_{2}H_{3}\;...\;H_{n}=Q} The QR decomposition should then be used to solve linear least squares (Multiple regression) problems A x = b {\displaystyle {\mathit {A}}x=b} by solving R x = Q T b {\displaystyle R\;x=Q^{T}\;b} When R {\displaystyle {\mathit {R}}} is not square, i.e. m > n {\displaystyle m>n} we have to cut off the m − n {\displaystyle {\mathit {m}}-n} zero padded bottom rows. R = ( R 1 0 ) {\displaystyle R={\begin{pmatrix}R_{1}\\0\end{pmatrix}}} and the same for the RHS: Q T b = ( q 1 q 2 ) {\displaystyle Q^{T}\;b={\begin{pmatrix}q_{1}\\q_{2}\end{pmatrix}}} Finally, solve the square upper triangular system by back substitution: R 1 x = q 1 {\displaystyle R_{1}\;x=q_{1}}
#Wren
Wren
import "/matrix" for Matrix import "/fmt" for Fmt   var minor = Fn.new { |x, d| var nr = x.numRows var nc = x.numCols var m = Matrix.new(nr, nc) for (i in 0...d) m[i, i] = 1 for (i in d...nr) { for (j in d...nc) m[i, j] = x[i, j] } return m }   var vmadd = Fn.new { |a, b, s| var n = a.count var c = List.filled(n, 0) for (i in 0...n) c[i] = a[i] + s * b[i] return c }   var vmul = Fn.new { |v| var n = v.count var x = Matrix.new(n, n) for (i in 0...n) { for (j in 0...n) x[i, j] = -2 * v[i] * v[j] } for (i in 0...n) x[i, i] = x[i, i] + 1 return x }   var vnorm = Fn.new { |x| var n = x.count var sum = 0 for (i in 0...n) sum = sum + x[i] * x[i] return sum.sqrt }   var vdiv = Fn.new { |x, d| var n = x.count var y = List.filled(n, 0) for (i in 0...n) y[i] = x[i] / d return y }   var mcol = Fn.new { |m, c| var n = m.numRows var v = List.filled(n, 0) for (i in 0...n) v[i] = m[i, c] return v }   var householder = Fn.new { |m| var nr = m.numRows var nc = m.numCols var q = List.filled(nr, null) var z = m.copy() var k = 0 while (k < nc && k < nr-1) { var e = List.filled(nr, 0) z = minor.call(z, k) var x = mcol.call(z, k) var a = vnorm.call(x) if (m[k, k] > 0) a = -a for (i in 0...nr) e[i] = (i == k) ? 1 : 0 e = vmadd.call(x, e, a) e = vdiv.call(e, vnorm.call(e)) q[k] = vmul.call(e) z = q[k] * z k = k + 1 } var Q = q[0] var R = q[0] * m var i = 1 while (i < nc && i < nr-1) { Q = q[i] * Q i = i + 1 } R = Q * m Q = Q.transpose return [Q, R] }   var inp = [ [12, -51, 4], [ 6, 167, -68], [-4, 24, -41], [-1, 1, 0], [ 2, 0, 3] ] var x = Matrix.new(inp) var res = householder.call(x) var Q = res[0] var R = res[1] var m = Q * R System.print("Q:") Fmt.mprint(Q, 8, 3) System.print("\nR:") Fmt.mprint(R, 8, 3) System.print("\nQ * R:") Fmt.mprint(m, 8, 3)
http://rosettacode.org/wiki/Primality_by_Wilson%27s_theorem
Primality by Wilson's theorem
Task Write a boolean function that tells whether a given integer is prime using Wilson's theorem. By Wilson's theorem, a number p is prime if and only if p divides (p - 1)! + 1. Remember that 1 and all non-positive integers are not prime. See also Cut-the-knot: Wilson's theorem. Wikipedia: Wilson's theorem
#C
C
#include <stdbool.h> #include <stdint.h> #include <stdio.h>   uint64_t factorial(uint64_t n) { uint64_t product = 1;   if (n < 2) { return 1; }   for (; n > 0; n--) { uint64_t prev = product; product *= n; if (product < prev) { fprintf(stderr, "Overflowed\n"); return product; } }   return product; }   // uses wilson's theorem bool isPrime(uint64_t n) { uint64_t large = factorial(n - 1) + 1; return (large % n) == 0; }   int main() { uint64_t n;   // Can check up to 21, more will require a big integer library for (n = 2; n < 22; n++) { printf("Is %llu prime: %d\n", n, isPrime(n)); }   return 0; }
http://rosettacode.org/wiki/Primality_by_Wilson%27s_theorem
Primality by Wilson's theorem
Task Write a boolean function that tells whether a given integer is prime using Wilson's theorem. By Wilson's theorem, a number p is prime if and only if p divides (p - 1)! + 1. Remember that 1 and all non-positive integers are not prime. See also Cut-the-knot: Wilson's theorem. Wikipedia: Wilson's theorem
#C.23
C#
using System; using System.Linq; using System.Collections; using static System.Console; using System.Collections.Generic; using BI = System.Numerics.BigInteger;   class Program {   // initialization const int fst = 120, skp = 1000, max = 1015; static double et1, et2; static DateTime st; static string ms1 = "Wilson's theorem method", ms2 = "Sieve of Eratosthenes method", fmt = "--- {0} ---\n\nThe first {1} primes are:", fm2 = "{0} prime thru the {1} prime:"; static List<int> lst = new List<int>();   // dumps a chunk of the prime list (lst) static void Dump(int s, int t, string f) { foreach (var item in lst.Skip(s).Take(t)) Write(f, item); WriteLine("\n"); }   // returns the ordinal string representation of a number static string Ord(int x, string fmt = "{0:n0}") { var y = x % 10; if ((x % 100) / 10 == 10 || y > 3) y = 0; return string.Format(fmt, x) + "thstndrd".Substring(y << 1, 2); }   // shows the results of one type of prime tabulation static void ShowOne(string title, ref double et) { WriteLine(fmt, title, fst); Dump(0, fst, "{0,-3} "); WriteLine(fm2, Ord(skp), Ord(max)); Dump(skp - 1, max - skp + 1, "{0,4} "); WriteLine("Time taken: {0}ms\n", et = (DateTime.Now - st).TotalMilliseconds); }   // for stand-alone computation static BI factorial(int n) { BI res = 1; if (n < 2) return res; while (n > 0) res *= n--; return res; }   static bool WTisPrimeSA(int n) { return ((factorial(n - 1) + 1) % n) == 0; }   static BI[] facts;   static void initFacts(int n) { facts = new BI[n]; facts[0] = facts[1] = 1; for (int i = 1, j = 2; j < n; i = j++) facts[j] = facts[i] * j; }   static bool WTisPrime(int n) { return ((facts[n - 1] + 1) % n) == 0; } // end stand-alone   static void Main(string[] args) { st = DateTime.Now; BI f = 1; for (int n = 2; lst.Count < max; f *= n++) if ((f + 1) % n == 0) lst.Add(n); ShowOne(ms1, ref et1); st = DateTime.Now; int lmt = lst.Last(); lst.Clear(); BitArray flags = new BitArray(lmt + 1); for (int n = 2; n <= lmt; n+=n==2?1:2) if (!flags[n]) { lst.Add(n); for (int k = n * n, n2=n<<1; k <= lmt; k += n2) flags[k] = true; } ShowOne(ms2, ref et2); WriteLine("{0} was {1:0.0} times slower than the {2}.", ms1, et1 / et2, ms2);   // stand-alone computation WriteLine("\n" + ms1 + " stand-alone computation:"); WriteLine("factorial computed for each item"); st = DateTime.Now; for (int x = lst[skp - 1]; x <= lst[max - 1]; x++) if (WTisPrimeSA(x)) Write("{0,4} ", x); WriteLine(); WriteLine("\nTime taken: {0}ms\n", (DateTime.Now - st).TotalMilliseconds);   WriteLine("factorials precomputed up to highest item"); st = DateTime.Now; initFacts(lst[max - 1]); for (int x = lst[skp - 1]; x <= lst[max - 1]; x++) if (WTisPrime(x)) Write("{0,4} ", x); WriteLine(); WriteLine("\nTime taken: {0}ms\n", (DateTime.Now - st).TotalMilliseconds); } }
http://rosettacode.org/wiki/Pragmatic_directives
Pragmatic directives
Pragmatic directives cause the language to operate in a specific manner,   allowing support for operational variances within the program code   (possibly by the loading of specific or alternative modules). Task List any pragmatic directives supported by the language,   and demonstrate how to activate and deactivate the pragmatic directives and to describe or demonstrate the scope of effect that the pragmatic directives have within a program.
#Raku
Raku
use MONKEY-TYPING; augment class Int { method times (&what) { what() xx self } # pretend like we're Ruby }
http://rosettacode.org/wiki/Pragmatic_directives
Pragmatic directives
Pragmatic directives cause the language to operate in a specific manner,   allowing support for operational variances within the program code   (possibly by the loading of specific or alternative modules). Task List any pragmatic directives supported by the language,   and demonstrate how to activate and deactivate the pragmatic directives and to describe or demonstrate the scope of effect that the pragmatic directives have within a program.
#REXX
REXX
The REXX language has several pragmatic statements: ∙   NUMERIC DIGITS   {nnn} ∙   NUMERIC FORM     {ENGINEERING │ SCIENTIFIC} ∙   NUMERIC FUZZ     {nnn} ∙   OPTIONS         {xxx yyy zzz} ∙   TRACE         {options} ∙   SIGNAL         {ON │ OFF}   LOSTDIGITS ∙   SIGNAL         {ON │ OFF}   NOVALUE ∙   SIGNAL         {ON │ OFF}   SYNTAX ∙   SIGNAL │ CALL   {ON │ OFF}   ERROR ∙   SIGNAL │ CALL   {ON │ OFF}   FAILURE ∙   SIGNAL │ CALL   {ON │ OFF}   HALT ∙   SIGNAL │ CALL   {ON │ OFF}   NOTREADY
http://rosettacode.org/wiki/Pragmatic_directives
Pragmatic directives
Pragmatic directives cause the language to operate in a specific manner,   allowing support for operational variances within the program code   (possibly by the loading of specific or alternative modules). Task List any pragmatic directives supported by the language,   and demonstrate how to activate and deactivate the pragmatic directives and to describe or demonstrate the scope of effect that the pragmatic directives have within a program.
#Scala
Scala
@inline @tailrec
http://rosettacode.org/wiki/Pragmatic_directives
Pragmatic directives
Pragmatic directives cause the language to operate in a specific manner,   allowing support for operational variances within the program code   (possibly by the loading of specific or alternative modules). Task List any pragmatic directives supported by the language,   and demonstrate how to activate and deactivate the pragmatic directives and to describe or demonstrate the scope of effect that the pragmatic directives have within a program.
#Tcl
Tcl
set -vx # Activate both script line output and command line arguments pragma set +vx # Deactivate both pragmatic directives
http://rosettacode.org/wiki/Pragmatic_directives
Pragmatic directives
Pragmatic directives cause the language to operate in a specific manner,   allowing support for operational variances within the program code   (possibly by the loading of specific or alternative modules). Task List any pragmatic directives supported by the language,   and demonstrate how to activate and deactivate the pragmatic directives and to describe or demonstrate the scope of effect that the pragmatic directives have within a program.
#UNIX_Shell
UNIX Shell
set -vx # Activate both script line output and command line arguments pragma set +vx # Deactivate both pragmatic directives
http://rosettacode.org/wiki/Prime_conspiracy
Prime conspiracy
A recent discovery, quoted from   Quantamagazine   (March 13, 2016): Two mathematicians have uncovered a simple, previously unnoticed property of prime numbers — those numbers that are divisible only by 1 and themselves. Prime numbers, it seems, have decided preferences about the final digits of the primes that immediately follow them. and This conspiracy among prime numbers seems, at first glance, to violate a longstanding assumption in number theory: that prime numbers behave much like random numbers. ─── (original authors from Stanford University): ─── Kannan Soundararajan and Robert Lemke Oliver The task is to check this assertion, modulo 10. Lets call    i -> j   a transition if    i   is the last decimal digit of a prime, and    j   the last decimal digit of the following prime. Task Considering the first one million primes.   Count, for any pair of successive primes, the number of transitions    i -> j   and print them along with their relative frequency, sorted by    i . You can see that, for a given    i ,   frequencies are not evenly distributed. Observation (Modulo 10),   primes whose last digit is   9   "prefer"   the digit   1   to the digit   9,   as its following prime. Extra credit Do the same for one hundred million primes. Example for 10,000 primes 10000 first primes. Transitions prime % 10 → next-prime % 10. 1 → 1 count: 365 frequency: 3.65 % 1 → 3 count: 833 frequency: 8.33 % 1 → 7 count: 889 frequency: 8.89 % 1 → 9 count: 397 frequency: 3.97 % 2 → 3 count: 1 frequency: 0.01 % 3 → 1 count: 529 frequency: 5.29 % 3 → 3 count: 324 frequency: 3.24 % 3 → 5 count: 1 frequency: 0.01 % 3 → 7 count: 754 frequency: 7.54 % 3 → 9 count: 907 frequency: 9.07 % 5 → 7 count: 1 frequency: 0.01 % 7 → 1 count: 655 frequency: 6.55 % 7 → 3 count: 722 frequency: 7.22 % 7 → 7 count: 323 frequency: 3.23 % 7 → 9 count: 808 frequency: 8.08 % 9 → 1 count: 935 frequency: 9.35 % 9 → 3 count: 635 frequency: 6.35 % 9 → 7 count: 541 frequency: 5.41 % 9 → 9 count: 379 frequency: 3.79 %
#Elixir
Elixir
defmodule Prime do def conspiracy(m) do IO.puts "#{m} first primes. Transitions prime % 10 → next-prime % 10." Enum.map(prime(m), &rem(&1, 10)) |> Enum.chunk(2,1) |> Enum.reduce(Map.new, fn [a,b],acc -> Map.update(acc, {a,b}, 1, &(&1+1)) end) |> Enum.sort |> Enum.each(fn {{a,b},v} -> sv = to_string(v) |> String.rjust(10) sf = Float.to_string(100.0*v/m, [decimals: 4]) IO.puts "#{a} → #{b} count:#{sv} frequency:#{sf} %" end) end   def prime(n) do max = n * :math.log(n * :math.log(n)) |> trunc # from Rosser's theorem Enum.to_list(2..max) |> prime(:math.sqrt(max), []) |> Enum.take(n) end defp prime([h|t], limit, result) when h>limit, do: Enum.reverse(result, [h|t]) defp prime([h|t], limit, result) do prime((for x <- t, rem(x,h)>0, do: x), limit, [h|result]) end end   Prime.conspiracy(1000000)
http://rosettacode.org/wiki/Prime_conspiracy
Prime conspiracy
A recent discovery, quoted from   Quantamagazine   (March 13, 2016): Two mathematicians have uncovered a simple, previously unnoticed property of prime numbers — those numbers that are divisible only by 1 and themselves. Prime numbers, it seems, have decided preferences about the final digits of the primes that immediately follow them. and This conspiracy among prime numbers seems, at first glance, to violate a longstanding assumption in number theory: that prime numbers behave much like random numbers. ─── (original authors from Stanford University): ─── Kannan Soundararajan and Robert Lemke Oliver The task is to check this assertion, modulo 10. Lets call    i -> j   a transition if    i   is the last decimal digit of a prime, and    j   the last decimal digit of the following prime. Task Considering the first one million primes.   Count, for any pair of successive primes, the number of transitions    i -> j   and print them along with their relative frequency, sorted by    i . You can see that, for a given    i ,   frequencies are not evenly distributed. Observation (Modulo 10),   primes whose last digit is   9   "prefer"   the digit   1   to the digit   9,   as its following prime. Extra credit Do the same for one hundred million primes. Example for 10,000 primes 10000 first primes. Transitions prime % 10 → next-prime % 10. 1 → 1 count: 365 frequency: 3.65 % 1 → 3 count: 833 frequency: 8.33 % 1 → 7 count: 889 frequency: 8.89 % 1 → 9 count: 397 frequency: 3.97 % 2 → 3 count: 1 frequency: 0.01 % 3 → 1 count: 529 frequency: 5.29 % 3 → 3 count: 324 frequency: 3.24 % 3 → 5 count: 1 frequency: 0.01 % 3 → 7 count: 754 frequency: 7.54 % 3 → 9 count: 907 frequency: 9.07 % 5 → 7 count: 1 frequency: 0.01 % 7 → 1 count: 655 frequency: 6.55 % 7 → 3 count: 722 frequency: 7.22 % 7 → 7 count: 323 frequency: 3.23 % 7 → 9 count: 808 frequency: 8.08 % 9 → 1 count: 935 frequency: 9.35 % 9 → 3 count: 635 frequency: 6.35 % 9 → 7 count: 541 frequency: 5.41 % 9 → 9 count: 379 frequency: 3.79 %
#F.23
F#
  // Prime Conspiracy. Nigel Galloway: March 27th., 2018 primes|>Seq.take 10000|>Seq.map(fun n->n%10)|>Seq.pairwise|>Seq.countBy id|>Seq.groupBy(fun((n,_),_)->n)|>Seq.sortBy(fst) |>Seq.iter(fun(_,n)->Seq.sortBy(fun((_,n),_)->n) n|>Seq.iter(fun((n,g),z)->printfn "%d -> %d ocurred %3d times" n g z))  
http://rosettacode.org/wiki/Prime_decomposition
Prime decomposition
The prime decomposition of a number is defined as a list of prime numbers which when all multiplied together, are equal to that number. Example 12 = 2 × 2 × 3, so its prime decomposition is {2, 2, 3} Task Write a function which returns an array or collection which contains the prime decomposition of a given number   n {\displaystyle n}   greater than   1. If your language does not have an isPrime-like function available, you may assume that you have a function which determines whether a number is prime (note its name before your code). If you would like to test code from this task, you may use code from trial division or the Sieve of Eratosthenes. Note: The program must not be limited by the word size of your computer or some other artificial limit; it should work for any number regardless of size (ignoring the physical limits of RAM etc). Related tasks   count in factors   factors of an integer   Sieve of Eratosthenes   primality by trial division   factors of a Mersenne number   trial factoring of a Mersenne number   partition an integer X into N primes   sequence of primes by Trial Division
#AArch64_Assembly
AArch64 Assembly
  /* ARM assembly AARCH64 Raspberry PI 3B */ /* program primeDecomp64.s */   /*******************************************/ /* Constantes file */ /*******************************************/ /* for this file see task include a file in language AArch64 assembly*/ .include "../includeConstantesARM64.inc" .equ NBFACT, 100   /*******************************************/ /* Structures */ /********************************************/ /* structurea area factors */ .struct 0 fac_value: // factor .struct fac_value + 8 fac_number: // number of identical factors .struct fac_number + 8 fac_end: /*******************************************/ /* Initialized data */ /*******************************************/ .data szMessStartPgm: .asciz "Program start \n" szMessEndPgm: .asciz "Program normal end.\n" szMessNotPrime: .asciz "Not prime.\n" szMessPrime: .asciz "Prime\n" szCarriageReturn: .asciz "\n" szSpaces: .asciz " " szMessNumber: .asciz " The factors of @ are :\n" /*******************************************/ /* UnInitialized data */ /*******************************************/ .bss sZoneConv: .skip 32 .align 4 tbZoneDecom: .skip fac_end * NBFACT /*******************************************/ /* code section */ /*******************************************/ .text .global main main: // program start ldr x0,qAdrszMessStartPgm // display start message bl affichageMess ldr x20,qVal //mov x20,17 mov x0,x20 ldr x1,qAdrtbZoneDecom bl decompFact // decomposition cmp x0,#0 beq 1f mov x2,x0 mov x0,x20 ldr x1,qAdrtbZoneDecom bl displayFactors // display factors b 2f 1: ldr x0,qAdrszMessPrime // prime bl affichageMess   2:   ldr x0,qAdrszMessEndPgm // display end message bl affichageMess   100: // standard end of the program mov x0,0 // return code mov x8,EXIT // request to exit program svc 0 // perform system call qAdrszMessStartPgm: .quad szMessStartPgm qAdrszMessEndPgm: .quad szMessEndPgm qAdrszCarriageReturn: .quad szCarriageReturn qAdrszMessNotPrime: .quad szMessNotPrime qAdrszMessPrime: .quad szMessPrime qAdrtbZoneDecom: .quad tbZoneDecom //qVal: .quad 2 <<31 qVal: .quad 1047552 // test not prime //qVal: .quad 1429671721 // test not prime (37811 * 37811)   /******************************************************************/ /* prime decomposition */ /******************************************************************/ /* x0 contains the number */ /* x1 contains address factors array */ /* REMARK no save register x9-x19 */ decompFact: stp x1,lr,[sp,-16]! // save registers mov x12,x0 // save number bl isPrime // prime ? cbnz x0,12f // yes -> no decomposition mov x19,fac_end // element area size mov x18,0 // raz indice mov x16,0 // prev divisor mov x17,0 // number of identical divisors mov x13,2 // first divisor 2: cmp x12,1 beq 10f udiv x14,x12,x13 // division msub x15,x14,x13,x12 // remainder = x12 -(x13*x14) cbnz x15,5f // if remainder <> zero x13 not divisor mov x12,x14 // quotient -> new dividende cmp x13,x16 // same divisor ? beq 4f // yes cbz x16,3f // yes it is first divisor ? madd x11,x18,x19,x1 // no -> store prev divisor in the area str x16,[x11,fac_value] str x17,[x11,fac_number] // and store number of same factor add x18,x18,1 // increment indice mov x17,0 // raz number of same factor 3: mov x16,x13 // save new divisor 4: add x17,x17,1 // increment number of same factor mov x0,x12 // the new dividende is prime ? bl isPrime cbnz x0,10f // yes b 2b // else loop 5: // divisor is not a factor cmp x13,2 // begin ? cinc x13,x13,ne // if divisor <> 2 add 1 add x13,x13,1 b 2b // and loop   10: // new dividende is prime cmp x16,x12 // divisor = dividende ? cinc x17,x17,eq //add 1 if last dividende = diviseur madd x11,x18,x19,x1 str x16,[x11,fac_value] // store divisor in area str x17,[x11,fac_number] // and store number add x18,x18,1 // increment indice cmp x16,x12 //store last dividende if <> diviseur beq 11f madd x11,x18,x19,x1 str x12,[x11,fac_value] // sinon stockage dans la table mov x17,1 str x17,[x11,fac_number] // store 1 in number add x18,x18,1 11: mov x0,x18 // return nb factors b 100f 12: mov x0,#0 // number is prime b 100f   100: ldp x1,lr,[sp],16 // restaur des 2 registres ret // retour adresse lr x30 /******************************************************************/ /* prime decomposition */ /******************************************************************/ /* x0 contains the number */ /* x1 contains address factors array */ /* x2 number of factors */ displayFactors: stp x1,lr,[sp,-16]! // save registres mov x19,fac_end // element area size mov x13,x1 // save area address ldr x1,qAdrsZoneConv // load zone conversion address bl conversion10 ldr x0,qAdrszMessNumber bl strInsertAtCharInc // insert result at Second @ character bl affichageMess mov x9,0 // indice 1: madd x10,x9,x19,x13 // compute address area element ldr x0,[x10,fac_value] ldr x12,[x10,fac_number] bl conversion10 // decimal conversion 2: mov x0,x1 bl affichageMess ldr x0,qAdrszSpaces bl affichageMess subs x12,x12,#1 bgt 2b add x9,x9,1 cmp x9,x2 blt 1b ldr x0,qAdrszCarriageReturn bl affichageMess 100: ldp x1,lr,[sp],16 // restaur des 2 registres ret // retour adresse lr x30 qAdrsZoneConv: .quad sZoneConv qAdrszSpaces: .quad szSpaces qAdrszMessNumber: .quad szMessNumber /******************************************************************/ /* test if number is prime */ /******************************************************************/ /* x0 contains the number */ /* x0 return 1 if prime else return 0 */ isPrime: stp x1,lr,[sp,-16]! // save registers cmp x0,1 // <= 1 ? ble 98f cmp x0,3 // 2 and 3 prime ble 97f tst x0,1 // even ? beq 98f mov x9,3 // first divisor 1: udiv x11,x0,x9 msub x10,x11,x9,x0 // compute remainder cbz x10,98f // end if zero add x9,x9,#2 // increment divisor cmp x9,x11 // divisors<=quotient ? ble 1b // loop 97: mov x0,1 // return prime b 100f 98: mov x0,0 // not prime b 100f 100: ldp x1,lr,[sp],16 // restaur 2 registers ret // return to address lr x30 /********************************************************/ /* File Include fonctions */ /********************************************************/ /* for this file see task include a file in language AArch64 assembly */ .include "../includeARM64.inc"    
http://rosettacode.org/wiki/Proper_divisors
Proper divisors
The   proper divisors   of a positive integer N are those numbers, other than N itself, that divide N without remainder. For N > 1 they will always include 1,   but for N == 1 there are no proper divisors. Examples The proper divisors of     6     are   1, 2, and 3. The proper divisors of   100   are   1, 2, 4, 5, 10, 20, 25, and 50. Task Create a routine to generate all the proper divisors of a number. use it to show the proper divisors of the numbers 1 to 10 inclusive. Find a number in the range 1 to 20,000 with the most proper divisors. Show the number and just the count of how many proper divisors it has. Show all output here. Related tasks   Amicable pairs   Abundant, deficient and perfect number classifications   Aliquot sequence classifications   Factors of an integer   Prime decomposition
#C.2B.2B
C++
#include <vector> #include <iostream> #include <algorithm>   std::vector<int> properDivisors ( int number ) { std::vector<int> divisors ; for ( int i = 1 ; i < number / 2 + 1 ; i++ ) if ( number % i == 0 ) divisors.push_back( i ) ; return divisors ; }   int main( ) { std::vector<int> divisors ; unsigned int maxdivisors = 0 ; int corresponding_number = 0 ; for ( int i = 1 ; i < 11 ; i++ ) { divisors = properDivisors ( i ) ; std::cout << "Proper divisors of " << i << ":\n" ; for ( int number : divisors ) { std::cout << number << " " ; } std::cout << std::endl ; divisors.clear( ) ; } for ( int i = 11 ; i < 20001 ; i++ ) { divisors = properDivisors ( i ) ; if ( divisors.size( ) > maxdivisors ) { maxdivisors = divisors.size( ) ; corresponding_number = i ; } divisors.clear( ) ; }   std::cout << "Most divisors has " << corresponding_number << " , it has " << maxdivisors << " divisors!\n" ; return 0 ; }  
http://rosettacode.org/wiki/Probabilistic_choice
Probabilistic choice
Given a mapping between items and their required probability of occurrence, generate a million items randomly subject to the given probabilities and compare the target probability of occurrence versus the generated values. The total of all the probabilities should equal one. (Because floating point arithmetic is involved, this is subject to rounding errors). aleph 1/5.0 beth 1/6.0 gimel 1/7.0 daleth 1/8.0 he 1/9.0 waw 1/10.0 zayin 1/11.0 heth 1759/27720 # adjusted so that probabilities add to 1 Related task Random number generator (device)
#Common_Lisp
Common Lisp
(defvar *probabilities* '((aleph 1/5) (beth 1/6) (gimel 1/7) (daleth 1/8) (he 1/9) (waw 1/10) (zayin 1/11) (heth 1759/27720))) (defun calculate-probabilities (choices &key (repetitions 1000000)) (assert (= 1 (reduce #'+ choices :key #'second))) (labels ((make-ranges () (loop for (datum probability) in choices sum (coerce probability 'double-float) into total collect (list datum total))) (pick (ranges) (declare (optimize (speed 3) (safety 0) (debug 0))) (loop with random = (random 1.0d0) for (datum below) of-type (t double-float) in ranges when (< random below) do (return datum))) (populate-hash (ranges) (declare (optimize (speed 3) (safety 0) (debug 0))) (loop repeat (the fixnum repetitions) with hash = (make-hash-table) do (incf (the fixnum (gethash (pick ranges) hash 0))) finally (return hash))) (make-table-data (hash) (loop for (datum probability) in choices collect (list datum (float (/ (gethash datum hash) repetitions)) (float probability))))) (format t "Datum~10,2TOccured~20,2TExpected~%") (format t "~{~{~A~10,2T~F~20,2T~F~}~%~}" (make-table-data (populate-hash (make-ranges))))))   CL-USER> (calculate-probabilities *probabilities*) Datum Occured Expected ALEPH 0.200156 0.2 BETH 0.166521 0.16666667 GIMEL 0.142936 0.14285715 DALETH 0.124779 0.125 HE 0.111601 0.11111111 WAW 0.100068 0.1 ZAYIN 0.090458 0.09090909 HETH 0.063481 0.06345599
http://rosettacode.org/wiki/Primes_-_allocate_descendants_to_their_ancestors
Primes - allocate descendants to their ancestors
The concept, is to add the decomposition into prime factors of a number to get its 'ancestors'. The objective is to demonstrate that the choice of the algorithm can be crucial in term of performance. This solution could be compared to the solution that would use the decomposition into primes for all the numbers between 1 and 333. The problem is to list, for a delimited set of ancestors (from 1 to 99) : - the total of their own ancestors (LEVEL), - their own ancestors (ANCESTORS), - the total of the direct descendants (DESCENDANTS), - all the direct descendants. You only have to consider the prime factors < 100. A grand total of the descendants has to be printed at the end of the list. The task should be accomplished in a reasonable time-frame. Example : 46 = 2*23 --> 2+23 = 25, is the parent of 46. 25 = 5*5 --> 5+5 = 10, is the parent of 25. 10 = 2*5 --> 2+5 = 7, is the parent of 10. 7 is a prime factor and, as such, has no parent. 46 has 3 ancestors (7, 10 and 25). 46 has 557 descendants. The list layout and the output for Parent [46] : [46] Level: 3 Ancestors: 7, 10, 25 Descendants: 557 129, 205, 246, 493, 518, 529, 740, 806, 888, 999, 1364, 1508, 1748, 2552, 2871, 3128, 3255, 3472, 3519, 3875, 3906, 4263, 4650, 4960, 5075, 5415, 5580, 5776, 5952, 6090, 6279, 6496, 6498, 6696, 6783, 7250, 7308, 7475, 7533, 8075, 8151, 8619, 8700, 8855, 8970, 9280, 9568, 9690, 10115, 10336, 10440, 10626, 10764, 11136, 11495, 11628, 11745, 12103, 12138, 12155, 12528, 12650, 13794, 14094, 14399, 14450, 14586, 15180, 15379, 15778, 16192, 17290, 17303, 17340, 18216, 18496, 20482, 20493, 20570, 20748, 20808, 21658, 21970, 22540, 23409, 24684, 24700, 26026, 26364, 27048, 29260, 29282, 29640, 30429, 30940, 31616, 32200, 33345, 35112, 35568, 36225, 36652, 37128, 37180, 38640, 39501, 40014, 41216, 41769, 41800, 43125, 43470, 44044, 44200, 44616, 46000, 46368, 47025, 49725, 50160, 50193, 51750, 52136, 52164, 52360, 53040, 53504, 55200, 56430, 56576, 58653, 58880, 58905, 59670, 60192, 62100, 62832, 62920, 63648, 66240, 66248, 67716, 69825, 70125, 70656, 70686, 70785, 71604, 74480, 74520, 74529, 74536, 74800, 75504, 79488, 83125, 83790, 83835, 83853, 84150, 84942, 87465, 88725, 89376, 89424, 89760, 93296, 94640, 95744, 99750, 99825, 100548, 100602, 100980, 104125, 104958, 105105, 105625, 106400, 106470, 106480, 107712, 112112, 113568, 118750, 119700, 119790, 121176, 124509, 124950, 125125, 126126, 126750, 127680, 127764, 127776, 133280, 135200, 136192, 136323, 142500, 143640, 143748, 148225, 148750, 149940, 150150, 152000, 152100, 153216, 156065, 159936, 160160, 161595, 162240, 171000, 172368, 173056, 177870, 178500, 178750, 179928, 180180, 182400, 182520, 184877, 187278, 189728, 190400, 192192, 192375, 193914, 194560, 194688, 202419, 205200, 205335, 211750, 212500, 213444, 214200, 214500, 216216, 218880, 219024, 222950, 228480, 228800, 230850, 233472, 240975, 243243, 243712, 246240, 246402, 254100, 255000, 257040, 257400, 262656, 264110, 267540, 271040, 272000, 274176, 274560, 277020, 285376, 286875, 289170, 289575, 292864, 295488, 302500, 304920, 306000, 308448, 308880, 316932, 318500, 321048, 325248, 326400, 329472, 332424, 343035, 344250, 347004, 347490, 348160, 361179, 363000, 365904, 367200, 370656, 373977, 377300, 382200, 387200, 391680, 407680, 408375, 411642, 413100, 416988, 417792, 429975, 435600, 440640, 452760, 455000, 458640, 464640, 470016, 470596, 482944, 489216, 490050, 495616, 495720, 509355, 511875, 515970, 522720, 528768, 539000, 543312, 546000, 550368, 557568, 557685, 582400, 588060, 594864, 606375, 609375, 611226, 614250, 619164, 627264, 646800, 650000, 655200, 669222, 672280, 689920, 698880, 705672, 721875, 727650, 731250, 737100, 745472, 756315, 770000, 776160, 780000, 786240, 793881, 806736, 827904, 832000, 838656, 859375, 866250, 873180, 877500, 884520, 900375, 907578, 924000, 931392, 936000, 943488, 960400, 985600, 995085, 998400, 1031250, 1039500, 1047816, 1053000, 1061424, 1064960, 1071875, 1080450, 1100000, 1108800, 1123200, 1152480, 1178793, 1182720, 1184625, 1194102, 1198080, 1229312, 1237500, 1247400, 1261568, 1263600, 1277952, 1286250, 1296540, 1320000, 1330560, 1347840, 1372000, 1382976, 1403325, 1408000, 1419264, 1421550, 1437696, 1485000, 1496880, 1516320, 1531250, 1543500, 1555848, 1584000, 1596672, 1617408, 1646400, 1670625, 1683990, 1689600, 1705860, 1750329, 1756160, 1782000, 1796256, 1802240, 1819584, 1837500, 1852200, 1900800, 1960000, 1975680, 2004750, 2020788, 2027520, 2047032, 2083725, 2107392, 2138400, 2162688, 2187500, 2205000, 2222640, 2280960, 2302911, 2352000, 2370816, 2405700, 2433024, 2480625, 2500470, 2508800, 2566080, 2625000, 2646000, 2667168, 2737152, 2800000, 2822400, 2886840, 2953125, 2976750, 3000564, 3010560, 3079296, 3125000, 3150000, 3175200, 3211264, 3247695, 3360000, 3386880, 3464208, 3515625, 3543750, 3572100, 3584000, 3612672, 3750000, 3780000, 3810240, 3897234, 4000000, 4032000, 4064256, 4218750, 4252500, 4286520, 4300800, 4500000, 4536000, 4572288, 4587520, 4800000, 4822335, 4838400, 5062500, 5103000, 5120000, 5143824, 5160960, 5400000, 5443200, 5505024, 5740875, 5760000, 5786802, 5806080, 6075000, 6123600, 6144000, 6193152, 6480000, 6531840, 6553600, 6834375, 6889050, 6912000, 6967296, 7290000, 7348320, 7372800, 7776000, 7838208, 7864320, 8201250, 8266860, 8294400, 8388608, 8748000, 8817984, 8847360, 9331200, 9437184, 9841500, 9920232, 9953280, 10497600, 10616832, 11160261, 11197440, 11809800, 11943936, 12597120, 13286025, 13436928, 14171760, 15116544, 15943230, 17006112, 19131876 Some figures : The biggest descendant number : 3^33 = 5.559.060.566.555.523 (parent 99) Total Descendants 546.986
#Perl
Perl
use List::Util qw(sum uniq); use ntheory qw(nth_prime);   my $max = 99; my %tree;   sub allocate { my($n, $i, $sum,, $prod) = @_; $i //= 0; $sum //= 0; $prod //= 1;   for my $k (0..$max) { next if $k < $i; my $p = nth_prime($k+1); if (($sum + $p) <= $max) { allocate($n, $k, $sum + $p, $prod * $p); } else { last if $sum == $prod; $tree{$sum}{descendants}{$prod} = 1; $tree{$prod}{ancestor} = [uniq $sum, @{$tree{$sum}{ancestor}}] unless $prod > $max || $sum == 0; last; } } }   sub abbrev { # abbreviate long lists to first and last 5 elements my(@d) = @_; return @d if @d < 11; @d[0 .. 4], '...', @d[-5 .. -1]; }   allocate($_) for 1 .. $max;   for (1 .. 15, 46, $max) { printf "%2d, %2d Ancestors: %-15s", $_, (scalar uniq @{$tree{$_}{ancestor}}), '[' . join(' ',uniq @{$tree{$_}{ancestor}}) . ']'; my $dn = 0; my $dl = ''; if ($tree{$_}{descendants}) { $dn = keys %{$tree{$_}{descendants}}; $dl = join ' ', abbrev(sort { $a <=> $b } keys %{$tree{$_}{descendants}}); } printf "%5d Descendants: %s", $dn, "[$dl]\n"; }   map { for my $k (keys %{$tree{$_}{descendants}}) { $total += $tree{$_}{descendants}{$k} } } 1..$max; print "\nTotal descendants: $total\n";
http://rosettacode.org/wiki/Priority_queue
Priority queue
A priority queue is somewhat similar to a queue, with an important distinction: each item is added to a priority queue with a priority level, and will be later removed from the queue with the highest priority element first. That is, the items are (conceptually) stored in the queue in priority order instead of in insertion order. Task Create a priority queue.   The queue must support at least two operations:   Insertion.   An element is added to the queue with a priority (a numeric value).   Top item removal.   Deletes the element or one of the elements with the current top priority and return it. Optionally, other operations may be defined, such as peeking (find what current top priority/top element is), merging (combining two priority queues into one), etc. To test your implementation, insert a number of elements into the queue, each with some random priority. Then dequeue them sequentially; now the elements should be sorted by priority. You can use the following task/priority items as input data: Priority Task ══════════ ════════════════ 3 Clear drains 4 Feed cat 5 Make tea 1 Solve RC tasks 2 Tax return The implementation should try to be efficient.   A typical implementation has   O(log n)   insertion and extraction time,   where   n   is the number of items in the queue. You may choose to impose certain limits such as small range of allowed priority levels, limited capacity, etc.   If so, discuss the reasons behind it.
#CoffeeScript
CoffeeScript
  PriorityQueue = -> # Use closure style for object creation (so no "new" required). # Private variables are toward top. h = []   better = (a, b) -> h[a].priority < h[b].priority   swap = (a, b) -> [h[a], h[b]] = [h[b], h[a]]   sift_down = -> max = h.length n = 0 while n < max c1 = 2*n + 1 c2 = c1 + 1 best = n best = c1 if c1 < max and better(c1, best) best = c2 if c2 < max and better(c2, best) return if best == n swap n, best n = best   sift_up = -> n = h.length - 1 while n > 0 parent = Math.floor((n-1) / 2) return if better parent, n swap n, parent n = parent   # now return the public interface, which is an object that only # has functions on it self = size: -> h.length   push: (priority, value) -> elem = priority: priority value: value h.push elem sift_up()   pop: -> throw Error("cannot pop from empty queue") if h.length == 0 value = h[0].value last = h.pop() if h.length > 0 h[0] = last sift_down() value   # test do -> pq = PriorityQueue() pq.push 3, "Clear drains" pq.push 4, "Feed cat" pq.push 5, "Make tea" pq.push 1, "Solve RC tasks" pq.push 2, "Tax return"   while pq.size() > 0 console.log pq.pop()   # test high performance for n in [1..100000] priority = Math.random() pq.push priority, priority   v = pq.pop() console.log "First random element was #{v}" while pq.size() > 0 new_v = pq.pop() throw Error "Queue broken" if new_v < v v = new_v console.log "Final random element was #{v}"  
http://rosettacode.org/wiki/Problem_of_Apollonius
Problem of Apollonius
Task Implement a solution to the Problem of Apollonius   (description on Wikipedia)   which is the problem of finding the circle that is tangent to three specified circles   (colored black in the diagram below to the right). There is an   algebraic solution   which is pretty straightforward. The solutions to the example in the code are shown in the diagram   (below and to the right). The red circle is "internally tangent" to all three black circles,   and the green circle is "externally tangent" to all three black circles.
#Icon_and_Unicon
Icon and Unicon
link graphics   record circle(x,y,r) global scale,xoffset,yoffset,yadjust   procedure main()   WOpen("size=400,400") | stop("Unable to open Window") scale := 28 xoffset := WAttrib("width") / 2 yoffset := ( yadjust := WAttrib("height")) / 2     WC(c1 := circle(0,0,1),"black") WC(c2 := circle(4,0,1),"black") WC(c3 := circle(2,4,2),"black") WC(c4 := Apollonius(c1,c2,c3,1,1,1),"green") #/ Expects "Circle[x=2.00,y=2.10,r=3.90]" (green circle in image) WC(c5 := Apollonius(c1,c2,c3,-1,-1,-1),"red") #/ Expects "Circle[x=2.00,y=0.83,r=1.17]" (red circle in image)     WAttrib("fg=blue") DrawLine( 0*scale+xoffset, yadjust-(-1*scale+yoffset), 0*scale+xoffset, yadjust-(4*scale+yoffset) ) DrawLine( -1*scale+xoffset, yadjust-(0*scale+yoffset), 4*scale+xoffset, yadjust-(0*scale+yoffset) ) WDone() end   procedure WC(c,fg) # write and plot circle WAttrib("fg="||fg) DrawCircle(c.x*scale+xoffset, yadjust-(c.y*scale+yoffset), c.r*scale) return write("Circle(x,y,r) := (",c.x,", ",c.y,", ",c.r,")") end   procedure Apollonius(c1,c2,c3,s1,s2,s3) # solve Apollonius   v11 := 2.*(c2.x - c1.x) v12 := 2.*(c2.y - c1.y) v13 := c1.x^2 - c2.x^2 + c1.y^2 - c2.y^2 - c1.r^2 + c2.r^2 v14 := 2.*(s2*c2.r - s1*c1.r)   v21 := 2.*(c3.x - c2.x) v22 := 2.*(c3.y - c2.y) v23 := c2.x^2 - c3.x^2 + c2.y^2 - c3.y^2 - c2.r^2 + c3.r^2 v24 := 2.*(s3*c3.r - s2*c2.r)   w12 := v12/v11 w13 := v13/v11 w14 := v14/v11   w22 := v22/v21-w12 w23 := v23/v21-w13 w24 := v24/v21-w14   P := -w23/w22 Q := w24/w22 M := -w12*P-w13 N := w14 - w12*Q   a := N*N + Q*Q - 1 b := 2*M*N - 2*N*c1.x + 2*P*Q - 2*Q*c1.y + 2*s1*c1.r c := c1.x*c1.x + M*M - 2*M*c1.x + P*P + c1.y*c1.y - 2*P*c1.y - c1.r*c1.r   #// Find a root of a quadratic equation. This requires the circle centers not to be e.g. colinear D := b*b-4*a*c rs := (-b-sqrt(D))/(2*a) xs := M + N * rs ys := P + Q * rs return circle(xs,ys,rs) end
http://rosettacode.org/wiki/Program_name
Program name
The task is to programmatically obtain the name used to invoke the program. (For example determine whether the user ran "python hello.py", or "python hellocaller.py", a program importing the code from "hello.py".) Sometimes a multiline shebang is necessary in order to provide the script name to a language's internal ARGV. See also Command-line arguments Examples from GitHub.
#OCaml
OCaml
let () = print_endline Sys.executable_name; print_endline Sys.argv.(0)
http://rosettacode.org/wiki/Program_name
Program name
The task is to programmatically obtain the name used to invoke the program. (For example determine whether the user ran "python hello.py", or "python hellocaller.py", a program importing the code from "hello.py".) Sometimes a multiline shebang is necessary in order to provide the script name to a language's internal ARGV. See also Command-line arguments Examples from GitHub.
#Octave
Octave
function main() program = program_name(); printf("Program: %s", program); endfunction   main();
http://rosettacode.org/wiki/Primorial_numbers
Primorial numbers
Primorial numbers are those formed by multiplying successive prime numbers. The primorial number series is:   primorial(0) =         1       (by definition)   primorial(1) =         2       (2)   primorial(2) =         6       (2×3)   primorial(3) =       30       (2×3×5)   primorial(4) =     210       (2×3×5×7)   primorial(5) =   2310       (2×3×5×7×11)   primorial(6) = 30030       (2×3×5×7×11×13)         ∙ ∙ ∙ To express this mathematically,   primorialn   is   the product of the first   n   (successive) primes:   p r i m o r i a l n = ∏ k = 1 n p r i m e k {\displaystyle primorial_{n}=\prod _{k=1}^{n}prime_{k}} ─── where   p r i m e k {\displaystyle prime_{k}}   is the   kth   prime number. In some sense, generating primorial numbers is similar to factorials. As with factorials, primorial numbers get large quickly. Task   Show the first ten primorial numbers   (0 ──► 9,   inclusive).   Show the length of primorial numbers whose index is:   10   100   1,000   10,000   and   100,000.   Show the length of the one millionth primorial number   (optional).   Use exact integers, not approximations. By   length   (above), it is meant the number of decimal digits in the numbers. Related tasks   Sequence of primorial primes   Factorial   Fortunate_numbers See also   the MathWorld webpage:   primorial   the Wikipedia   webpage:   primorial.   the   OEIS   webpage:   A002110.
#Smalltalk
Smalltalk
 
http://rosettacode.org/wiki/Primorial_numbers
Primorial numbers
Primorial numbers are those formed by multiplying successive prime numbers. The primorial number series is:   primorial(0) =         1       (by definition)   primorial(1) =         2       (2)   primorial(2) =         6       (2×3)   primorial(3) =       30       (2×3×5)   primorial(4) =     210       (2×3×5×7)   primorial(5) =   2310       (2×3×5×7×11)   primorial(6) = 30030       (2×3×5×7×11×13)         ∙ ∙ ∙ To express this mathematically,   primorialn   is   the product of the first   n   (successive) primes:   p r i m o r i a l n = ∏ k = 1 n p r i m e k {\displaystyle primorial_{n}=\prod _{k=1}^{n}prime_{k}} ─── where   p r i m e k {\displaystyle prime_{k}}   is the   kth   prime number. In some sense, generating primorial numbers is similar to factorials. As with factorials, primorial numbers get large quickly. Task   Show the first ten primorial numbers   (0 ──► 9,   inclusive).   Show the length of primorial numbers whose index is:   10   100   1,000   10,000   and   100,000.   Show the length of the one millionth primorial number   (optional).   Use exact integers, not approximations. By   length   (above), it is meant the number of decimal digits in the numbers. Related tasks   Sequence of primorial primes   Factorial   Fortunate_numbers See also   the MathWorld webpage:   primorial   the Wikipedia   webpage:   primorial.   the   OEIS   webpage:   A002110.
#Wren
Wren
import "/big" for BigInt import "/math" for Int import "/fmt" for Fmt   var vecprod = Fn.new { |primes| var le = primes.count if (le == 0) return BigInt.one var s = List.filled(le, null) for (i in 0...le) s[i] = BigInt.new(primes[i]) while (le > 1) { var c = (le/2).floor for(i in 0...c) s[i] = s[i] * s[le-i-1] if (le & 1 == 1) c = c + 1 le = c } return s[0] }   var primes = Int.primeSieve(1.3e6) // enough to generate first 100,000 primes var prod = 1 System.print("The first ten primorial numbers are:") for (i in 0..9) { System.print("%(i):  %(prod)") prod = prod * primes[i] }   System.print("\nThe following primorials have the lengths shown:") // first multiply the first 100,000 primes together in pairs to reduce BigInt conversions needed var primes2 = List.filled(50000, 0) for (i in 0...50000) primes2[i] = primes[2*i] * primes[2*i+1] for (i in [10, 100, 1000, 10000, 100000]) { Fmt.print("$6d: $d", i, vecprod.call(primes2[0...i/2]).toString.count) }
http://rosettacode.org/wiki/Pythagorean_triples
Pythagorean triples
A Pythagorean triple is defined as three positive integers ( a , b , c ) {\displaystyle (a,b,c)} where a < b < c {\displaystyle a<b<c} , and a 2 + b 2 = c 2 . {\displaystyle a^{2}+b^{2}=c^{2}.} They are called primitive triples if a , b , c {\displaystyle a,b,c} are co-prime, that is, if their pairwise greatest common divisors g c d ( a , b ) = g c d ( a , c ) = g c d ( b , c ) = 1 {\displaystyle {\rm {gcd}}(a,b)={\rm {gcd}}(a,c)={\rm {gcd}}(b,c)=1} . Because of their relationship through the Pythagorean theorem, a, b, and c are co-prime if a and b are co-prime ( g c d ( a , b ) = 1 {\displaystyle {\rm {gcd}}(a,b)=1} ).   Each triple forms the length of the sides of a right triangle, whose perimeter is P = a + b + c {\displaystyle P=a+b+c} . Task The task is to determine how many Pythagorean triples there are with a perimeter no larger than 100 and the number of these that are primitive. Extra credit Deal with large values.   Can your program handle a maximum perimeter of 1,000,000?   What about 10,000,000?   100,000,000? Note: the extra credit is not for you to demonstrate how fast your language is compared to others;   you need a proper algorithm to solve them in a timely manner. Related tasks   Euler's sum of powers conjecture   List comprehensions   Pythagorean quadruples
#Ol
Ol
  ; triples generator based on Euclid's formula, creates lazy list (define (euclid-formula max) (let loop ((a 3) (b 4) (c 5) (tail #null)) (if (<= (+ a b c) max) (cons (tuple a b c) (lambda () (let ((d (- b)) (z (- a))) (loop (+ a d d c c) (+ a a d c c) (+ a a d d c c c) (lambda () (loop (+ a b b c c) (+ a a b c c) (+ a a b b c c c) (lambda () (loop (+ z b b c c) (+ z z b c c) (+ z z b b c c c) tail)))))))) tail)))   ; let's do calculations (define (calculate max) (let loop ((p 0) (t 0) (ll (euclid-formula max))) (cond ((null? ll) (cons p t)) ((function? ll) (loop p t (ll))) (else (let ((triple (car ll))) (loop (+ p 1) (+ t (div max (apply + triple))) (cdr ll)))))))   ; print values for 10..100000 (for-each (lambda (max) (print max ": " (calculate max))) (map (lambda (n) (expt 10 n)) (iota 6 1)))  
http://rosettacode.org/wiki/Program_termination
Program termination
Task Show the syntax for a complete stoppage of a program inside a   conditional. This includes all threads/processes which are part of your program. Explain the cleanup (or lack thereof) caused by the termination (allocated memory, database connections, open files, object finalizers/destructors, run-on-exit hooks, etc.). Unless otherwise described, no special cleanup outside that provided by the operating system is provided.
#Mathematica.2FWolfram_Language
Mathematica/Wolfram Language
If[problem, Abort[]];
http://rosettacode.org/wiki/Program_termination
Program termination
Task Show the syntax for a complete stoppage of a program inside a   conditional. This includes all threads/processes which are part of your program. Explain the cleanup (or lack thereof) caused by the termination (allocated memory, database connections, open files, object finalizers/destructors, run-on-exit hooks, etc.). Unless otherwise described, no special cleanup outside that provided by the operating system is provided.
#MATLAB
MATLAB
if condition return end
http://rosettacode.org/wiki/QR_decomposition
QR decomposition
Any rectangular m × n {\displaystyle m\times n} matrix A {\displaystyle {\mathit {A}}} can be decomposed to a product of an orthogonal matrix Q {\displaystyle {\mathit {Q}}} and an upper (right) triangular matrix R {\displaystyle {\mathit {R}}} , as described in QR decomposition. Task Demonstrate the QR decomposition on the example matrix from the Wikipedia article: A = ( 12 − 51 4 6 167 − 68 − 4 24 − 41 ) {\displaystyle A={\begin{pmatrix}12&-51&4\\6&167&-68\\-4&24&-41\end{pmatrix}}} and the usage for linear least squares problems on the example from Polynomial regression. The method of Householder reflections should be used: Method Multiplying a given vector a {\displaystyle {\mathit {a}}} , for example the first column of matrix A {\displaystyle {\mathit {A}}} , with the Householder matrix H {\displaystyle {\mathit {H}}} , which is given as H = I − 2 u T u u u T {\displaystyle H=I-{\frac {2}{u^{T}u}}uu^{T}} reflects a {\displaystyle {\mathit {a}}} about a plane given by its normal vector u {\displaystyle {\mathit {u}}} . When the normal vector of the plane u {\displaystyle {\mathit {u}}} is given as u = a − ∥ a ∥ 2 e 1 {\displaystyle u=a-\|a\|_{2}\;e_{1}} then the transformation reflects a {\displaystyle {\mathit {a}}} onto the first standard basis vector e 1 = [ 1 0 0 . . . ] T {\displaystyle e_{1}=[1\;0\;0\;...]^{T}} which means that all entries but the first become zero. To avoid numerical cancellation errors, we should take the opposite sign of a 1 {\displaystyle a_{1}} : u = a + sign ( a 1 ) ∥ a ∥ 2 e 1 {\displaystyle u=a+{\textrm {sign}}(a_{1})\|a\|_{2}\;e_{1}} and normalize with respect to the first element: v = u u 1 {\displaystyle v={\frac {u}{u_{1}}}} The equation for H {\displaystyle H} thus becomes: H = I − 2 v T v v v T {\displaystyle H=I-{\frac {2}{v^{T}v}}vv^{T}} or, in another form H = I − β v v T {\displaystyle H=I-\beta vv^{T}} with β = 2 v T v {\displaystyle \beta ={\frac {2}{v^{T}v}}} Applying H {\displaystyle {\mathit {H}}} on a {\displaystyle {\mathit {a}}} then gives H a = − sign ( a 1 ) ∥ a ∥ 2 e 1 {\displaystyle H\;a=-{\textrm {sign}}(a_{1})\;\|a\|_{2}\;e_{1}} and applying H {\displaystyle {\mathit {H}}} on the matrix A {\displaystyle {\mathit {A}}} zeroes all subdiagonal elements of the first column: H 1 A = ( r 11 r 12 r 13 0 ∗ ∗ 0 ∗ ∗ ) {\displaystyle H_{1}\;A={\begin{pmatrix}r_{11}&r_{12}&r_{13}\\0&*&*\\0&*&*\end{pmatrix}}} In the second step, the second column of A {\displaystyle {\mathit {A}}} , we want to zero all elements but the first two, which means that we have to calculate H {\displaystyle {\mathit {H}}} with the first column of the submatrix (denoted *), not on the whole second column of A {\displaystyle {\mathit {A}}} . To get H 2 {\displaystyle H_{2}} , we then embed the new H {\displaystyle {\mathit {H}}} into an m × n {\displaystyle m\times n} identity: H 2 = ( 1 0 0 0 H 0 ) {\displaystyle H_{2}={\begin{pmatrix}1&0&0\\0&H&\\0&&\end{pmatrix}}} This is how we can, column by column, remove all subdiagonal elements of A {\displaystyle {\mathit {A}}} and thus transform it into R {\displaystyle {\mathit {R}}} . H n . . . H 3 H 2 H 1 A = R {\displaystyle H_{n}\;...\;H_{3}H_{2}H_{1}A=R} The product of all the Householder matrices H {\displaystyle {\mathit {H}}} , for every column, in reverse order, will then yield the orthogonal matrix Q {\displaystyle {\mathit {Q}}} . H 1 H 2 H 3 . . . H n = Q {\displaystyle H_{1}H_{2}H_{3}\;...\;H_{n}=Q} The QR decomposition should then be used to solve linear least squares (Multiple regression) problems A x = b {\displaystyle {\mathit {A}}x=b} by solving R x = Q T b {\displaystyle R\;x=Q^{T}\;b} When R {\displaystyle {\mathit {R}}} is not square, i.e. m > n {\displaystyle m>n} we have to cut off the m − n {\displaystyle {\mathit {m}}-n} zero padded bottom rows. R = ( R 1 0 ) {\displaystyle R={\begin{pmatrix}R_{1}\\0\end{pmatrix}}} and the same for the RHS: Q T b = ( q 1 q 2 ) {\displaystyle Q^{T}\;b={\begin{pmatrix}q_{1}\\q_{2}\end{pmatrix}}} Finally, solve the square upper triangular system by back substitution: R 1 x = q 1 {\displaystyle R_{1}\;x=q_{1}}
#zkl
zkl
var [const] GSL=Import("zklGSL"); // libGSL (GNU Scientific Library) A:=GSL.Matrix(3,3).set(12.0, -51.0, 4.0, 6.0, 167.0, -68.0, 4.0, 24.0, -41.0); Q,R:=A.QRDecomp(); println("Q:\n",Q.format()); println("R:\n",R.format()); println("Q*R:\n",(Q*R).format());
http://rosettacode.org/wiki/Primality_by_Wilson%27s_theorem
Primality by Wilson's theorem
Task Write a boolean function that tells whether a given integer is prime using Wilson's theorem. By Wilson's theorem, a number p is prime if and only if p divides (p - 1)! + 1. Remember that 1 and all non-positive integers are not prime. See also Cut-the-knot: Wilson's theorem. Wikipedia: Wilson's theorem
#C.2B.2B
C++
#include <iomanip> #include <iostream>   int factorial_mod(int n, int p) { int f = 1; for (; n > 0 && f != 0; --n) f = (f * n) % p; return f; }   bool is_prime(int p) { return p > 1 && factorial_mod(p - 1, p) == p - 1; }   int main() { std::cout << " n | prime?\n------------\n"; std::cout << std::boolalpha; for (int p : {2, 3, 9, 15, 29, 37, 47, 57, 67, 77, 87, 97, 237, 409, 659}) std::cout << std::setw(3) << p << " | " << is_prime(p) << '\n';   std::cout << "\nFirst 120 primes by Wilson's theorem:\n"; int n = 0, p = 1; for (; n < 120; ++p) { if (is_prime(p)) std::cout << std::setw(3) << p << (++n % 20 == 0 ? '\n' : ' '); }   std::cout << "\n1000th through 1015th primes:\n"; for (int i = 0; n < 1015; ++p) { if (is_prime(p)) { if (++n >= 1000) std::cout << std::setw(4) << p << (++i % 16 == 0 ? '\n' : ' '); } } }
http://rosettacode.org/wiki/Pragmatic_directives
Pragmatic directives
Pragmatic directives cause the language to operate in a specific manner,   allowing support for operational variances within the program code   (possibly by the loading of specific or alternative modules). Task List any pragmatic directives supported by the language,   and demonstrate how to activate and deactivate the pragmatic directives and to describe or demonstrate the scope of effect that the pragmatic directives have within a program.
#Wren
Wren
/* windows.wren */   class Windows { static message { "Using Windows" } static lineSeparator { "\\r\\n" } }
http://rosettacode.org/wiki/Pragmatic_directives
Pragmatic directives
Pragmatic directives cause the language to operate in a specific manner,   allowing support for operational variances within the program code   (possibly by the loading of specific or alternative modules). Task List any pragmatic directives supported by the language,   and demonstrate how to activate and deactivate the pragmatic directives and to describe or demonstrate the scope of effect that the pragmatic directives have within a program.
#XPL0
XPL0
string 0; \makes all following strings in the code zero-terminated string 1; \(or any non-zero argument) reverts to MSB termination
http://rosettacode.org/wiki/Prime_conspiracy
Prime conspiracy
A recent discovery, quoted from   Quantamagazine   (March 13, 2016): Two mathematicians have uncovered a simple, previously unnoticed property of prime numbers — those numbers that are divisible only by 1 and themselves. Prime numbers, it seems, have decided preferences about the final digits of the primes that immediately follow them. and This conspiracy among prime numbers seems, at first glance, to violate a longstanding assumption in number theory: that prime numbers behave much like random numbers. ─── (original authors from Stanford University): ─── Kannan Soundararajan and Robert Lemke Oliver The task is to check this assertion, modulo 10. Lets call    i -> j   a transition if    i   is the last decimal digit of a prime, and    j   the last decimal digit of the following prime. Task Considering the first one million primes.   Count, for any pair of successive primes, the number of transitions    i -> j   and print them along with their relative frequency, sorted by    i . You can see that, for a given    i ,   frequencies are not evenly distributed. Observation (Modulo 10),   primes whose last digit is   9   "prefer"   the digit   1   to the digit   9,   as its following prime. Extra credit Do the same for one hundred million primes. Example for 10,000 primes 10000 first primes. Transitions prime % 10 → next-prime % 10. 1 → 1 count: 365 frequency: 3.65 % 1 → 3 count: 833 frequency: 8.33 % 1 → 7 count: 889 frequency: 8.89 % 1 → 9 count: 397 frequency: 3.97 % 2 → 3 count: 1 frequency: 0.01 % 3 → 1 count: 529 frequency: 5.29 % 3 → 3 count: 324 frequency: 3.24 % 3 → 5 count: 1 frequency: 0.01 % 3 → 7 count: 754 frequency: 7.54 % 3 → 9 count: 907 frequency: 9.07 % 5 → 7 count: 1 frequency: 0.01 % 7 → 1 count: 655 frequency: 6.55 % 7 → 3 count: 722 frequency: 7.22 % 7 → 7 count: 323 frequency: 3.23 % 7 → 9 count: 808 frequency: 8.08 % 9 → 1 count: 935 frequency: 9.35 % 9 → 3 count: 635 frequency: 6.35 % 9 → 7 count: 541 frequency: 5.41 % 9 → 9 count: 379 frequency: 3.79 %
#Factor
Factor
USING: assocs formatting grouping kernel math math.primes math.statistics sequences sorting ; IN: rosetta-code.prime-conspiracy   : transitions ( n -- alist ) nprimes [ 10 mod ] map 2 clump histogram >alist natural-sort ;   : t-values ( transition -- i j count freq ) first2 [ first2 ] dip dup 10000. / ;   : print-trans ( transition -- ) t-values "%d -> %d count: %5d frequency: %5.2f%%\n" printf ;   : header ( n -- ) "First %d primes. Transitions prime %% 10 -> next-prime %% 10.\n" printf ;   : main ( -- ) 1,000,000 dup header transitions [ print-trans ] each ;   MAIN: main
http://rosettacode.org/wiki/Prime_conspiracy
Prime conspiracy
A recent discovery, quoted from   Quantamagazine   (March 13, 2016): Two mathematicians have uncovered a simple, previously unnoticed property of prime numbers — those numbers that are divisible only by 1 and themselves. Prime numbers, it seems, have decided preferences about the final digits of the primes that immediately follow them. and This conspiracy among prime numbers seems, at first glance, to violate a longstanding assumption in number theory: that prime numbers behave much like random numbers. ─── (original authors from Stanford University): ─── Kannan Soundararajan and Robert Lemke Oliver The task is to check this assertion, modulo 10. Lets call    i -> j   a transition if    i   is the last decimal digit of a prime, and    j   the last decimal digit of the following prime. Task Considering the first one million primes.   Count, for any pair of successive primes, the number of transitions    i -> j   and print them along with their relative frequency, sorted by    i . You can see that, for a given    i ,   frequencies are not evenly distributed. Observation (Modulo 10),   primes whose last digit is   9   "prefer"   the digit   1   to the digit   9,   as its following prime. Extra credit Do the same for one hundred million primes. Example for 10,000 primes 10000 first primes. Transitions prime % 10 → next-prime % 10. 1 → 1 count: 365 frequency: 3.65 % 1 → 3 count: 833 frequency: 8.33 % 1 → 7 count: 889 frequency: 8.89 % 1 → 9 count: 397 frequency: 3.97 % 2 → 3 count: 1 frequency: 0.01 % 3 → 1 count: 529 frequency: 5.29 % 3 → 3 count: 324 frequency: 3.24 % 3 → 5 count: 1 frequency: 0.01 % 3 → 7 count: 754 frequency: 7.54 % 3 → 9 count: 907 frequency: 9.07 % 5 → 7 count: 1 frequency: 0.01 % 7 → 1 count: 655 frequency: 6.55 % 7 → 3 count: 722 frequency: 7.22 % 7 → 7 count: 323 frequency: 3.23 % 7 → 9 count: 808 frequency: 8.08 % 9 → 1 count: 935 frequency: 9.35 % 9 → 3 count: 635 frequency: 6.35 % 9 → 7 count: 541 frequency: 5.41 % 9 → 9 count: 379 frequency: 3.79 %
#Fortran
Fortran
PROGRAM INHERIT !Last digit persistence in successive prime numbers. USE PRIMEBAG !Inherit this also. INTEGER MBASE,P0,NHIC !Problem bounds. PARAMETER (MBASE = 13, P0 = 2, NHIC = 100000000) !This should do. INTEGER N(0:MBASE - 1,0:MBASE - 1,2:MBASE) !The counts. A triangular shape would be better. INTEGER I,B,D1,D2 !Assistants. INTEGER P,PP !Prime, and Previous Prime.   MSG = 6 !Standard output. WRITE (MSG,1) MBASE,P0,NHIC !Announce intent. 1 FORMAT ("Working in base 2 to ",I0," count the transitions " 1 "from the low-order digit of one prime number ",/, 2 "to the low-order digit of its successor. Starting with ",I0, 3 " and making ",I0," advances.") IF (.NOT.GRASPPRIMEBAG(66)) STOP "Gan't grab my file!" !Attempt in hope.   Chug through the primes. 10 N = 0 !Clear all my counts! P = P0 !Start with the starting prime. DO I = 1,NHIC !Make the specified number of advances. PP = P !Thus, remember the previous prime. P = NEXTPRIME(P) !And obtain the current prime. DO B = 2,MBASE !For these, step through the relevant bases. D1 = MOD(PP,B) !Last digit of the previous prime. D2 = MOD(P,B) !In the base of the moment. N(D1,D2,B) = N(D1,D2,B) + 1 !Whee! END DO !On to the next base. END DO !And the next advance. WRITE (MSG,11) P !Might as well announce where we got to. 11 FORMAT ("Ending with ",I0) !Hopefully, no overflow.   Cast forth the results. 20 DO B = 2,MBASE !Present results for each base. WRITE (MSG,21) B !Announce it. 21 FORMAT (/,"For base ",I0) !Set off with a blank line. WRITE (MSG,22) (D1, D1 = 0,B - 1) !The heading. 22 FORMAT (" Last digit ending ",I2,66I9) !Alignment to match FORMAT 23. DO D2 = 0,B - 1 !For a given base, these are the possible ending digits of the successor. IF (ALL(N(0:B - 1,D2,B).EQ.0)) CYCLE !No progenitor advanced to this successor digit? WRITE (MSG,23) D2,N(0:B - 1,D2,B) !Otherwise, show the counts for the progenitor's digits. 23 FORMAT (" next prime ends",I3,":",I2,66I9) !Ah, layout. END DO !On to the next successor digit. END DO !On to the next base. END !That was easy.
http://rosettacode.org/wiki/Prime_decomposition
Prime decomposition
The prime decomposition of a number is defined as a list of prime numbers which when all multiplied together, are equal to that number. Example 12 = 2 × 2 × 3, so its prime decomposition is {2, 2, 3} Task Write a function which returns an array or collection which contains the prime decomposition of a given number   n {\displaystyle n}   greater than   1. If your language does not have an isPrime-like function available, you may assume that you have a function which determines whether a number is prime (note its name before your code). If you would like to test code from this task, you may use code from trial division or the Sieve of Eratosthenes. Note: The program must not be limited by the word size of your computer or some other artificial limit; it should work for any number regardless of size (ignoring the physical limits of RAM etc). Related tasks   count in factors   factors of an integer   Sieve of Eratosthenes   primality by trial division   factors of a Mersenne number   trial factoring of a Mersenne number   partition an integer X into N primes   sequence of primes by Trial Division
#ABAP
ABAP
class ZMLA_ROSETTA definition public create public .   public section.   types: enumber TYPE N LENGTH 60, listof_enumber TYPE TABLE OF enumber .   class-methods FACTORS importing value(N) type ENUMBER exporting value(ORET) type LISTOF_ENUMBER . protected section. private section. ENDCLASS.       CLASS ZMLA_ROSETTA IMPLEMENTATION.     * <SIGNATURE>---------------------------------------------------------------------------------------+ * | Static Public Method ZMLA_ROSETTA=>FACTORS * +-------------------------------------------------------------------------------------------------+ * | [--->] N TYPE ENUMBER * | [<---] ORET TYPE LISTOF_ENUMBER * +--------------------------------------------------------------------------------------</SIGNATURE> method FACTORS. CLEAR oret. WHILE n mod 2 = 0. n = n / 2. APPEND 2 to oret. ENDWHILE. DATA: lim type enumber, i type enumber. lim = sqrt( n ). i = 3. WHILE i <= lim. WHILE n mod i = 0. APPEND i to oret. n = n / i. lim = sqrt( n ). ENDWHILE. i = i + 2. ENDWHILE. IF n > 1. APPEND n to oret. ENDIF. endmethod. ENDCLASS.
http://rosettacode.org/wiki/Primality_by_trial_division
Primality by trial division
Task Write a boolean function that tells whether a given integer is prime. Remember that   1   and all non-positive numbers are not prime. Use trial division. Even numbers greater than   2   may be eliminated right away. A loop from   3   to   √ n    will suffice,   but other loops are allowed. Related tasks   count in factors   prime decomposition   AKS test for primes   factors of an integer   Sieve of Eratosthenes   factors of a Mersenne number   trial factoring of a Mersenne number   partition an integer X into N primes   sequence of primes by Trial Division
#11l
11l
F is_prime(n) I n < 2 R 0B L(i) 2..Int(sqrt(n)) I n % i == 0 R 0B R 1B
http://rosettacode.org/wiki/Price_fraction
Price fraction
A friend of mine runs a pharmacy.   He has a specialized function in his Dispensary application which receives a decimal value of currency and replaces it to a standard value.   This value is regulated by a government department. Task Given a floating point value between   0.00   and   1.00,   rescale according to the following table: >= 0.00 < 0.06  := 0.10 >= 0.06 < 0.11  := 0.18 >= 0.11 < 0.16  := 0.26 >= 0.16 < 0.21  := 0.32 >= 0.21 < 0.26  := 0.38 >= 0.26 < 0.31  := 0.44 >= 0.31 < 0.36  := 0.50 >= 0.36 < 0.41  := 0.54 >= 0.41 < 0.46  := 0.58 >= 0.46 < 0.51  := 0.62 >= 0.51 < 0.56  := 0.66 >= 0.56 < 0.61  := 0.70 >= 0.61 < 0.66  := 0.74 >= 0.66 < 0.71  := 0.78 >= 0.71 < 0.76  := 0.82 >= 0.76 < 0.81  := 0.86 >= 0.81 < 0.86  := 0.90 >= 0.86 < 0.91  := 0.94 >= 0.91 < 0.96  := 0.98 >= 0.96 < 1.01  := 1.00
#11l
11l
F bisect_right(a, x) V lo = 0 V hi = a.len L lo < hi V mid = (lo + hi) I/ 2 I x < a[mid] hi = mid E lo = mid + 1 R lo   V _cin = [0.06, 0.11, 0.16, 0.21, 0.26, 0.31, 0.36, 0.41, 0.46, 0.51, 0.56, 0.61, 0.66, 0.71, 0.76, 0.81, 0.86, 0.91, 0.96, 1.01] V _cout = [0.10, 0.18, 0.26, 0.32, 0.38, 0.44, 0.50, 0.54, 0.58, 0.62, 0.66, 0.70, 0.74, 0.78, 0.82, 0.86, 0.90, 0.94, 0.98, 1.00] F pricerounder(pricein) R :_cout[bisect_right(:_cin, pricein)]   L(i) 0..10 print(‘#.2 #.2’.format(i / 10, pricerounder(i / 10)))
http://rosettacode.org/wiki/Proper_divisors
Proper divisors
The   proper divisors   of a positive integer N are those numbers, other than N itself, that divide N without remainder. For N > 1 they will always include 1,   but for N == 1 there are no proper divisors. Examples The proper divisors of     6     are   1, 2, and 3. The proper divisors of   100   are   1, 2, 4, 5, 10, 20, 25, and 50. Task Create a routine to generate all the proper divisors of a number. use it to show the proper divisors of the numbers 1 to 10 inclusive. Find a number in the range 1 to 20,000 with the most proper divisors. Show the number and just the count of how many proper divisors it has. Show all output here. Related tasks   Amicable pairs   Abundant, deficient and perfect number classifications   Aliquot sequence classifications   Factors of an integer   Prime decomposition
#Ceylon
Ceylon
shared void run() {   function divisors(Integer int) => if(int <= 1) then {} else (1..int / 2).filter((Integer element) => element.divides(int));   for(i in 1..10) { print("``i`` => ``divisors(i)``"); }   value start = 1; value end = 20k;   value mostDivisors = map {for(i in start..end) i->divisors(i).size} .inverse() .max(byKey(byIncreasing(Integer.magnitude)));   print("the number(s) with the most divisors between ``start`` and ``end`` is/are: ``mostDivisors?.item else "nothing"`` with ``mostDivisors?.key else "no"`` divisors"); }
http://rosettacode.org/wiki/Probabilistic_choice
Probabilistic choice
Given a mapping between items and their required probability of occurrence, generate a million items randomly subject to the given probabilities and compare the target probability of occurrence versus the generated values. The total of all the probabilities should equal one. (Because floating point arithmetic is involved, this is subject to rounding errors). aleph 1/5.0 beth 1/6.0 gimel 1/7.0 daleth 1/8.0 he 1/9.0 waw 1/10.0 zayin 1/11.0 heth 1759/27720 # adjusted so that probabilities add to 1 Related task Random number generator (device)
#D
D
void main() { import std.stdio, std.random, std.string, std.range;   enum int nTrials = 1_000_000; const items = "aleph beth gimel daleth he waw zayin heth".split; const pr = [1/5., 1/6., 1/7., 1/8., 1/9., 1/10., 1/11., 1759/27720.];   double[pr.length] counts = 0.0; foreach (immutable _; 0 .. nTrials) counts[pr.dice]++;   writeln("Item Target prob Attained prob"); foreach (name, p, co; zip(items, pr, counts[])) writefln("%-7s %.8f  %.8f", name, p, co / nTrials); }
http://rosettacode.org/wiki/Primes_-_allocate_descendants_to_their_ancestors
Primes - allocate descendants to their ancestors
The concept, is to add the decomposition into prime factors of a number to get its 'ancestors'. The objective is to demonstrate that the choice of the algorithm can be crucial in term of performance. This solution could be compared to the solution that would use the decomposition into primes for all the numbers between 1 and 333. The problem is to list, for a delimited set of ancestors (from 1 to 99) : - the total of their own ancestors (LEVEL), - their own ancestors (ANCESTORS), - the total of the direct descendants (DESCENDANTS), - all the direct descendants. You only have to consider the prime factors < 100. A grand total of the descendants has to be printed at the end of the list. The task should be accomplished in a reasonable time-frame. Example : 46 = 2*23 --> 2+23 = 25, is the parent of 46. 25 = 5*5 --> 5+5 = 10, is the parent of 25. 10 = 2*5 --> 2+5 = 7, is the parent of 10. 7 is a prime factor and, as such, has no parent. 46 has 3 ancestors (7, 10 and 25). 46 has 557 descendants. The list layout and the output for Parent [46] : [46] Level: 3 Ancestors: 7, 10, 25 Descendants: 557 129, 205, 246, 493, 518, 529, 740, 806, 888, 999, 1364, 1508, 1748, 2552, 2871, 3128, 3255, 3472, 3519, 3875, 3906, 4263, 4650, 4960, 5075, 5415, 5580, 5776, 5952, 6090, 6279, 6496, 6498, 6696, 6783, 7250, 7308, 7475, 7533, 8075, 8151, 8619, 8700, 8855, 8970, 9280, 9568, 9690, 10115, 10336, 10440, 10626, 10764, 11136, 11495, 11628, 11745, 12103, 12138, 12155, 12528, 12650, 13794, 14094, 14399, 14450, 14586, 15180, 15379, 15778, 16192, 17290, 17303, 17340, 18216, 18496, 20482, 20493, 20570, 20748, 20808, 21658, 21970, 22540, 23409, 24684, 24700, 26026, 26364, 27048, 29260, 29282, 29640, 30429, 30940, 31616, 32200, 33345, 35112, 35568, 36225, 36652, 37128, 37180, 38640, 39501, 40014, 41216, 41769, 41800, 43125, 43470, 44044, 44200, 44616, 46000, 46368, 47025, 49725, 50160, 50193, 51750, 52136, 52164, 52360, 53040, 53504, 55200, 56430, 56576, 58653, 58880, 58905, 59670, 60192, 62100, 62832, 62920, 63648, 66240, 66248, 67716, 69825, 70125, 70656, 70686, 70785, 71604, 74480, 74520, 74529, 74536, 74800, 75504, 79488, 83125, 83790, 83835, 83853, 84150, 84942, 87465, 88725, 89376, 89424, 89760, 93296, 94640, 95744, 99750, 99825, 100548, 100602, 100980, 104125, 104958, 105105, 105625, 106400, 106470, 106480, 107712, 112112, 113568, 118750, 119700, 119790, 121176, 124509, 124950, 125125, 126126, 126750, 127680, 127764, 127776, 133280, 135200, 136192, 136323, 142500, 143640, 143748, 148225, 148750, 149940, 150150, 152000, 152100, 153216, 156065, 159936, 160160, 161595, 162240, 171000, 172368, 173056, 177870, 178500, 178750, 179928, 180180, 182400, 182520, 184877, 187278, 189728, 190400, 192192, 192375, 193914, 194560, 194688, 202419, 205200, 205335, 211750, 212500, 213444, 214200, 214500, 216216, 218880, 219024, 222950, 228480, 228800, 230850, 233472, 240975, 243243, 243712, 246240, 246402, 254100, 255000, 257040, 257400, 262656, 264110, 267540, 271040, 272000, 274176, 274560, 277020, 285376, 286875, 289170, 289575, 292864, 295488, 302500, 304920, 306000, 308448, 308880, 316932, 318500, 321048, 325248, 326400, 329472, 332424, 343035, 344250, 347004, 347490, 348160, 361179, 363000, 365904, 367200, 370656, 373977, 377300, 382200, 387200, 391680, 407680, 408375, 411642, 413100, 416988, 417792, 429975, 435600, 440640, 452760, 455000, 458640, 464640, 470016, 470596, 482944, 489216, 490050, 495616, 495720, 509355, 511875, 515970, 522720, 528768, 539000, 543312, 546000, 550368, 557568, 557685, 582400, 588060, 594864, 606375, 609375, 611226, 614250, 619164, 627264, 646800, 650000, 655200, 669222, 672280, 689920, 698880, 705672, 721875, 727650, 731250, 737100, 745472, 756315, 770000, 776160, 780000, 786240, 793881, 806736, 827904, 832000, 838656, 859375, 866250, 873180, 877500, 884520, 900375, 907578, 924000, 931392, 936000, 943488, 960400, 985600, 995085, 998400, 1031250, 1039500, 1047816, 1053000, 1061424, 1064960, 1071875, 1080450, 1100000, 1108800, 1123200, 1152480, 1178793, 1182720, 1184625, 1194102, 1198080, 1229312, 1237500, 1247400, 1261568, 1263600, 1277952, 1286250, 1296540, 1320000, 1330560, 1347840, 1372000, 1382976, 1403325, 1408000, 1419264, 1421550, 1437696, 1485000, 1496880, 1516320, 1531250, 1543500, 1555848, 1584000, 1596672, 1617408, 1646400, 1670625, 1683990, 1689600, 1705860, 1750329, 1756160, 1782000, 1796256, 1802240, 1819584, 1837500, 1852200, 1900800, 1960000, 1975680, 2004750, 2020788, 2027520, 2047032, 2083725, 2107392, 2138400, 2162688, 2187500, 2205000, 2222640, 2280960, 2302911, 2352000, 2370816, 2405700, 2433024, 2480625, 2500470, 2508800, 2566080, 2625000, 2646000, 2667168, 2737152, 2800000, 2822400, 2886840, 2953125, 2976750, 3000564, 3010560, 3079296, 3125000, 3150000, 3175200, 3211264, 3247695, 3360000, 3386880, 3464208, 3515625, 3543750, 3572100, 3584000, 3612672, 3750000, 3780000, 3810240, 3897234, 4000000, 4032000, 4064256, 4218750, 4252500, 4286520, 4300800, 4500000, 4536000, 4572288, 4587520, 4800000, 4822335, 4838400, 5062500, 5103000, 5120000, 5143824, 5160960, 5400000, 5443200, 5505024, 5740875, 5760000, 5786802, 5806080, 6075000, 6123600, 6144000, 6193152, 6480000, 6531840, 6553600, 6834375, 6889050, 6912000, 6967296, 7290000, 7348320, 7372800, 7776000, 7838208, 7864320, 8201250, 8266860, 8294400, 8388608, 8748000, 8817984, 8847360, 9331200, 9437184, 9841500, 9920232, 9953280, 10497600, 10616832, 11160261, 11197440, 11809800, 11943936, 12597120, 13286025, 13436928, 14171760, 15116544, 15943230, 17006112, 19131876 Some figures : The biggest descendant number : 3^33 = 5.559.060.566.555.523 (parent 99) Total Descendants 546.986
#Phix
Phix
with javascript_semantics constant maxSum = 99 function stringify(sequence s) s = deep_copy(s) for i=1 to length(s) do s[i] = sprintf("%d",s[i]) end for return s end function procedure main() atom t0 = time() integer p sequence descendants = repeat({},maxSum+1), ancestors = repeat({},maxSum+1), primes = get_primes_le(maxSum) for i=1 to length(primes) do p = primes[i] descendants[p] = append(descendants[p], p) for s=1 to length(descendants)-p do descendants[s+p] = deep_copy(descendants[s+p]) & sq_mul(descendants[s],p) end for end for p = 4 for i=0 to length(primes) do if i>0 then p = primes[i] end if if length(descendants[p])!=0 then descendants[p] = descendants[p][1..$-1] end if end for integer total = 0 for s=1 to maxSum do sequence x = sort(deep_copy(descendants[s])) total += length(x) for i=1 to length(x) do atom d = x[i] if d>maxSum then exit end if ancestors[d] = deep_copy(ancestors[d]) &append(deep_copy(ancestors[s]),s) end for if s<26 or find(s,{46,74,99}) then sequence d = ancestors[s] integer l = length(d) string sp = iff(l=1?" ":"s") d = stringify(d) printf(1,"%2d: %d Ancestor%s: [%-14s", {s, l, sp, join(d)&"]"}) d = sort(deep_copy(descendants[s])) l = length(d) sp = iff(l=1?" ":"s") if l<10 then d = stringify(d) else d[4..-4] = {0} d = stringify(d) d[4] = "..." end if printf(1,"%5d Descendant%s: [%s]\n", {l, sp, join(d)}) end if end for printf(1,"\nTotal descendants %d\n", total) ?elapsed(time()-t0) -- about 1s ?elapsed(power(3,33)/4e9) -- over 16 days end procedure main()
http://rosettacode.org/wiki/Priority_queue
Priority queue
A priority queue is somewhat similar to a queue, with an important distinction: each item is added to a priority queue with a priority level, and will be later removed from the queue with the highest priority element first. That is, the items are (conceptually) stored in the queue in priority order instead of in insertion order. Task Create a priority queue.   The queue must support at least two operations:   Insertion.   An element is added to the queue with a priority (a numeric value).   Top item removal.   Deletes the element or one of the elements with the current top priority and return it. Optionally, other operations may be defined, such as peeking (find what current top priority/top element is), merging (combining two priority queues into one), etc. To test your implementation, insert a number of elements into the queue, each with some random priority. Then dequeue them sequentially; now the elements should be sorted by priority. You can use the following task/priority items as input data: Priority Task ══════════ ════════════════ 3 Clear drains 4 Feed cat 5 Make tea 1 Solve RC tasks 2 Tax return The implementation should try to be efficient.   A typical implementation has   O(log n)   insertion and extraction time,   where   n   is the number of items in the queue. You may choose to impose certain limits such as small range of allowed priority levels, limited capacity, etc.   If so, discuss the reasons behind it.
#Common_Lisp
Common Lisp
  ;priority-queue's are implemented with association lists (defun make-pq (alist) (sort (copy-alist alist) (lambda (a b) (< (car a) (car b))))) ; ;Will change the state of pq ; (define-modify-macro insert-pq (pair) (lambda (pq pair) (sort-alist (cons pair pq))))   (define-modify-macro remove-pq-aux () cdr)   (defmacro remove-pq (pq) `(let ((aux (copy-alist ,pq))) (REMOVE-PQ-AUX ,pq) (car aux))) ; ;Will not change the state of pq ; (defun insert-pq-non-destructive (pair pq) (sort-alist (cons pair pq)))   (defun remove-pq-non-destructive (pq) (cdr pq)) ;testing (defparameter a (make-pq '((1 . "Solve RC tasks") (3 . "Clear drains") (2 . "Tax return") (5 . "Make tea")))) (format t "~a~&" a) (insert-pq a '(4 . "Feed cat")) (format t "~a~&" a) (format t "~a~&" (remove-pq a)) (format t "~a~&" a) (format t "~a~&" (remove-pq a)) (format t "~a~&" a)  
http://rosettacode.org/wiki/Problem_of_Apollonius
Problem of Apollonius
Task Implement a solution to the Problem of Apollonius   (description on Wikipedia)   which is the problem of finding the circle that is tangent to three specified circles   (colored black in the diagram below to the right). There is an   algebraic solution   which is pretty straightforward. The solutions to the example in the code are shown in the diagram   (below and to the right). The red circle is "internally tangent" to all three black circles,   and the green circle is "externally tangent" to all three black circles.
#J
J
require 'math/misc/amoeba'   NB.*apollonius v solves Apollonius problems NB. y is Cx0 Cy0 R0, Cx1 Cy1 R1,: Cx2 Cy2 R2 NB. x are radius scale factors to control which circles are included NB. in the common tangent circle. 1 to surround, _1 to exclude. NB. returns Cxs Cys Rs apollonius =: verb define"1 _ 1 apollonius y : centers=. 2{."1 y radii=. x * {:"1 y goal=. 1e_20 NB. goal simplex volume dist=. radii + [: +/"1&.:*: centers -"1 ] NB. distances to tangents 'soln err'=. ([: +/@:*:@, -/~@dist) f. amoeba goal centers if. err > 10 * goal do. '' return. end. NB. no solution found avg=. +/ % # (, avg@dist) soln )
http://rosettacode.org/wiki/Program_name
Program name
The task is to programmatically obtain the name used to invoke the program. (For example determine whether the user ran "python hello.py", or "python hellocaller.py", a program importing the code from "hello.py".) Sometimes a multiline shebang is necessary in order to provide the script name to a language's internal ARGV. See also Command-line arguments Examples from GitHub.
#Ol
Ol
  (print (car *vm-args*))  
http://rosettacode.org/wiki/Program_name
Program name
The task is to programmatically obtain the name used to invoke the program. (For example determine whether the user ran "python hello.py", or "python hellocaller.py", a program importing the code from "hello.py".) Sometimes a multiline shebang is necessary in order to provide the script name to a language's internal ARGV. See also Command-line arguments Examples from GitHub.
#Order
Order
__FILE__
http://rosettacode.org/wiki/Primorial_numbers
Primorial numbers
Primorial numbers are those formed by multiplying successive prime numbers. The primorial number series is:   primorial(0) =         1       (by definition)   primorial(1) =         2       (2)   primorial(2) =         6       (2×3)   primorial(3) =       30       (2×3×5)   primorial(4) =     210       (2×3×5×7)   primorial(5) =   2310       (2×3×5×7×11)   primorial(6) = 30030       (2×3×5×7×11×13)         ∙ ∙ ∙ To express this mathematically,   primorialn   is   the product of the first   n   (successive) primes:   p r i m o r i a l n = ∏ k = 1 n p r i m e k {\displaystyle primorial_{n}=\prod _{k=1}^{n}prime_{k}} ─── where   p r i m e k {\displaystyle prime_{k}}   is the   kth   prime number. In some sense, generating primorial numbers is similar to factorials. As with factorials, primorial numbers get large quickly. Task   Show the first ten primorial numbers   (0 ──► 9,   inclusive).   Show the length of primorial numbers whose index is:   10   100   1,000   10,000   and   100,000.   Show the length of the one millionth primorial number   (optional).   Use exact integers, not approximations. By   length   (above), it is meant the number of decimal digits in the numbers. Related tasks   Sequence of primorial primes   Factorial   Fortunate_numbers See also   the MathWorld webpage:   primorial   the Wikipedia   webpage:   primorial.   the   OEIS   webpage:   A002110.
#zkl
zkl
sieve:=Import("sieve.zkl",False,False,False).postponed_sieve; primes:=Utils.Generator(sieve).walk(0d10); // first 10 primes foreach n in (10) { primes[0,n].reduce('*,1):println("primorial(%d)=%d".fmt(n,_)); }   var [const] BN=Import("zklBigNum"); primes:=Utils.Generator(sieve).walk(0d1_000_000); foreach n in ([1..6]){ n=(10).pow(n); primes[0,n].pump(BN(1).mul)  :println("primorial(%,d)=%,d digits".fmt(n,_.numDigits)); }
http://rosettacode.org/wiki/Pythagorean_triples
Pythagorean triples
A Pythagorean triple is defined as three positive integers ( a , b , c ) {\displaystyle (a,b,c)} where a < b < c {\displaystyle a<b<c} , and a 2 + b 2 = c 2 . {\displaystyle a^{2}+b^{2}=c^{2}.} They are called primitive triples if a , b , c {\displaystyle a,b,c} are co-prime, that is, if their pairwise greatest common divisors g c d ( a , b ) = g c d ( a , c ) = g c d ( b , c ) = 1 {\displaystyle {\rm {gcd}}(a,b)={\rm {gcd}}(a,c)={\rm {gcd}}(b,c)=1} . Because of their relationship through the Pythagorean theorem, a, b, and c are co-prime if a and b are co-prime ( g c d ( a , b ) = 1 {\displaystyle {\rm {gcd}}(a,b)=1} ).   Each triple forms the length of the sides of a right triangle, whose perimeter is P = a + b + c {\displaystyle P=a+b+c} . Task The task is to determine how many Pythagorean triples there are with a perimeter no larger than 100 and the number of these that are primitive. Extra credit Deal with large values.   Can your program handle a maximum perimeter of 1,000,000?   What about 10,000,000?   100,000,000? Note: the extra credit is not for you to demonstrate how fast your language is compared to others;   you need a proper algorithm to solve them in a timely manner. Related tasks   Euler's sum of powers conjecture   List comprehensions   Pythagorean quadruples
#PARI.2FGP
PARI/GP
do(lim)={ my(prim,total,P); lim\=1; for(m=2,sqrtint(lim\2), forstep(n=1+m%2,min(sqrtint(lim-m^2),m-1),2, P=2*m*(m+n); if(gcd(m,n)==1 && P<=lim, prim++; total+=lim\P ) ) ); [prim,total] }; do(100)
http://rosettacode.org/wiki/Program_termination
Program termination
Task Show the syntax for a complete stoppage of a program inside a   conditional. This includes all threads/processes which are part of your program. Explain the cleanup (or lack thereof) caused by the termination (allocated memory, database connections, open files, object finalizers/destructors, run-on-exit hooks, etc.). Unless otherwise described, no special cleanup outside that provided by the operating system is provided.
#Maxima
Maxima
/* Basically, it's simply quit() */   block([ans], loop, if (ans: read("Really quit ? (y, n)")) = 'y then quit() elseif ans = 'n then (print("Nice choice!"), 'done) else (print("I dont' understand..."), go(loop)));
http://rosettacode.org/wiki/Program_termination
Program termination
Task Show the syntax for a complete stoppage of a program inside a   conditional. This includes all threads/processes which are part of your program. Explain the cleanup (or lack thereof) caused by the termination (allocated memory, database connections, open files, object finalizers/destructors, run-on-exit hooks, etc.). Unless otherwise described, no special cleanup outside that provided by the operating system is provided.
#.D0.9C.D0.9A-61.2F52
МК-61/52
ИП0 x=0 04 С/П ...
http://rosettacode.org/wiki/Primality_by_Wilson%27s_theorem
Primality by Wilson's theorem
Task Write a boolean function that tells whether a given integer is prime using Wilson's theorem. By Wilson's theorem, a number p is prime if and only if p divides (p - 1)! + 1. Remember that 1 and all non-positive integers are not prime. See also Cut-the-knot: Wilson's theorem. Wikipedia: Wilson's theorem
#CLU
CLU
% Wilson primality test wilson = proc (n: int) returns (bool) if n<2 then return (false) end fac_mod: int := 1 for i: int in int$from_to(2, n-1) do fac_mod := fac_mod * i // n end return (fac_mod + 1 = n) end wilson   % Print primes up to 100 using Wilson's theorem start_up = proc () po: stream := stream$primary_output() for i: int in int$from_to(1, 100) do if wilson(i) then stream$puts(po, int$unparse(i) || " ") end end stream$putl(po, "") end start_up
http://rosettacode.org/wiki/Primality_by_Wilson%27s_theorem
Primality by Wilson's theorem
Task Write a boolean function that tells whether a given integer is prime using Wilson's theorem. By Wilson's theorem, a number p is prime if and only if p divides (p - 1)! + 1. Remember that 1 and all non-positive integers are not prime. See also Cut-the-knot: Wilson's theorem. Wikipedia: Wilson's theorem
#Common_Lisp
Common Lisp
  (defun factorial (n) (if (< n 2) 1 (* n (factorial (1- n)))) )     (defun primep (n) "Primality test using Wilson's Theorem" (unless (zerop n) (zerop (mod (1+ (factorial (1- n))) n)) ))  
http://rosettacode.org/wiki/Prime_conspiracy
Prime conspiracy
A recent discovery, quoted from   Quantamagazine   (March 13, 2016): Two mathematicians have uncovered a simple, previously unnoticed property of prime numbers — those numbers that are divisible only by 1 and themselves. Prime numbers, it seems, have decided preferences about the final digits of the primes that immediately follow them. and This conspiracy among prime numbers seems, at first glance, to violate a longstanding assumption in number theory: that prime numbers behave much like random numbers. ─── (original authors from Stanford University): ─── Kannan Soundararajan and Robert Lemke Oliver The task is to check this assertion, modulo 10. Lets call    i -> j   a transition if    i   is the last decimal digit of a prime, and    j   the last decimal digit of the following prime. Task Considering the first one million primes.   Count, for any pair of successive primes, the number of transitions    i -> j   and print them along with their relative frequency, sorted by    i . You can see that, for a given    i ,   frequencies are not evenly distributed. Observation (Modulo 10),   primes whose last digit is   9   "prefer"   the digit   1   to the digit   9,   as its following prime. Extra credit Do the same for one hundred million primes. Example for 10,000 primes 10000 first primes. Transitions prime % 10 → next-prime % 10. 1 → 1 count: 365 frequency: 3.65 % 1 → 3 count: 833 frequency: 8.33 % 1 → 7 count: 889 frequency: 8.89 % 1 → 9 count: 397 frequency: 3.97 % 2 → 3 count: 1 frequency: 0.01 % 3 → 1 count: 529 frequency: 5.29 % 3 → 3 count: 324 frequency: 3.24 % 3 → 5 count: 1 frequency: 0.01 % 3 → 7 count: 754 frequency: 7.54 % 3 → 9 count: 907 frequency: 9.07 % 5 → 7 count: 1 frequency: 0.01 % 7 → 1 count: 655 frequency: 6.55 % 7 → 3 count: 722 frequency: 7.22 % 7 → 7 count: 323 frequency: 3.23 % 7 → 9 count: 808 frequency: 8.08 % 9 → 1 count: 935 frequency: 9.35 % 9 → 3 count: 635 frequency: 6.35 % 9 → 7 count: 541 frequency: 5.41 % 9 → 9 count: 379 frequency: 3.79 %
#FreeBASIC
FreeBASIC
' version 13-04-2017 ' updated 09-08-2018 Using bit-sieve of odd numbers ' compile with: fbc -s console ' compile with: fbc -s console -Wc -O2 ->more than 2x faster(20.2-> 8,7s)   const max = 2040*1000*1000 ' enough for 100,000,000 primes const max2 = (max -1) \ 2 Dim As uByte _bit(7) Dim shared As uByte sieve(max2 \ 8 + 1) Dim shared As ULong end_digit(1 To 9, 1 To 9) Dim As ULong i, j, x, i1, j1, x1, c, c1 Dim As String frmt_str = " # " + Chr(26) + " # count:######## frequency:##.##%"   ' bit Mask For i = 0 To 7 _bit(i) = 1 shl i Next ' sieving For i = 1 To (sqr(max) -1) / 2 x = 2*i+1 If (sieve(i Shr 3) And _bit(i And 7)) = 0 Then For j = (2*i+2)*i To max2 Step x sieve(j Shr 3) or= _bit(j And 7) Next End If Next   ' count x = 2 : c = 1 For i = 1 To max2 If (sieve(i Shr 3) And _bit(i And 7)) = 0 Then j = (2*i+1) Mod 10 end_digit(x, j) += 1 x = j c += 1 If c = 1000000 Or c = 100000000 Then Print "first "; c; " primes" c1 = c \ 100 For i1 = 1 To 9 For j1 = 1 To 9 x1 = end_digit(i1, j1) If x1 <> 0 Then Print Using frmt_str; i1; j1; x1; (x1 / c1) End If Next Next Print If c = 100000000 Then Exit for End If End If Next   ' empty keyboard buffer While Inkey <> "" : Wend Print : Print "hit any key to end program" Sleep End  
http://rosettacode.org/wiki/Prime_decomposition
Prime decomposition
The prime decomposition of a number is defined as a list of prime numbers which when all multiplied together, are equal to that number. Example 12 = 2 × 2 × 3, so its prime decomposition is {2, 2, 3} Task Write a function which returns an array or collection which contains the prime decomposition of a given number   n {\displaystyle n}   greater than   1. If your language does not have an isPrime-like function available, you may assume that you have a function which determines whether a number is prime (note its name before your code). If you would like to test code from this task, you may use code from trial division or the Sieve of Eratosthenes. Note: The program must not be limited by the word size of your computer or some other artificial limit; it should work for any number regardless of size (ignoring the physical limits of RAM etc). Related tasks   count in factors   factors of an integer   Sieve of Eratosthenes   primality by trial division   factors of a Mersenne number   trial factoring of a Mersenne number   partition an integer X into N primes   sequence of primes by Trial Division
#ACL2
ACL2
(include-book "arithmetic-3/top" :dir :system)   (defun prime-factors-r (n i) (declare (xargs :mode :program)) (cond ((or (zp n) (zp (- n i)) (zp i) (< i 2) (< n 2)) (list n)) ((= (mod n i) 0) (cons i (prime-factors-r (floor n i) 2))) (t (prime-factors-r n (1+ i)))))   (defun prime-factors (n) (declare (xargs :mode :program)) (prime-factors-r n 2))
http://rosettacode.org/wiki/Primality_by_trial_division
Primality by trial division
Task Write a boolean function that tells whether a given integer is prime. Remember that   1   and all non-positive numbers are not prime. Use trial division. Even numbers greater than   2   may be eliminated right away. A loop from   3   to   √ n    will suffice,   but other loops are allowed. Related tasks   count in factors   prime decomposition   AKS test for primes   factors of an integer   Sieve of Eratosthenes   factors of a Mersenne number   trial factoring of a Mersenne number   partition an integer X into N primes   sequence of primes by Trial Division
#360_Assembly
360 Assembly
* Primality by trial division 26/03/2017 PRIMEDIV CSECT USING PRIMEDIV,R13 base register B 72(R15) skip savearea DC 17F'0' savearea STM R14,R12,12(R13) save previous context ST R13,4(R15) link backward ST R15,8(R13) link forward LR R13,R15 set addressability LA R10,PG pgi=0 LA R6,1 i=1 DO WHILE=(C,R6,LE,=F'50') do i=1 to 50 LR R1,R6 i BAL R14,ISPRIME call isprime(i) IF C,R0,EQ,=F'1' THEN if isprime(i) then XDECO R6,XDEC edit i MVC 0(4,R10),XDEC+8 output i LA R10,4(R10) pgi+=4 ENDIF , endif LA R6,1(R6) i++ ENDDO , enddo i XPRNT PG,L'PG print buffer L R13,4(0,R13) restore previous savearea pointer LM R14,R12,12(R13) restore previous context XR R15,R15 rc=0 BR R14 exit *------- ---- ---------------------------------------- ISPRIME EQU * function isprime(n) IF C,R1,LE,=F'1' THEN if n<=1 then LA R0,0 return(0) BR R14 return ENDIF , endif IF C,R1,EQ,=F'2' THEN if n=2 then LA R0,1 return(1) BR R14 return ENDIF , endif LR R4,R1 n N R4,=X'00000001' n and 1 IF LTR,R4,Z,R4 THEN if mod(n,2)=0 then LA R0,0 return(0) BR R14 return ENDIF , endif LA R7,3 j=3 LA R5,9 r5=j*j DO WHILE=(CR,R5,LE,R1) do j=3 by 2 while j*j<=n LR R4,R1 n SRDA R4,32 ~ DR R4,R7 /j IF LTR,R4,Z,R4 THEN if mod(n,j)=0 then LA R0,0 return(0) BR R14 return ENDIF , endif LA R7,2(R7) j+=2 LR R5,R7 j MR R4,R7 r5=j*j ENDDO , enddo j LA R0,1 return(1) BR R14 return *------- ---- ---------------------------------------- PG DC CL80' ' buffer XDEC DS CL12 temp for xdeco YREGS END PRIMEDIV
http://rosettacode.org/wiki/Price_fraction
Price fraction
A friend of mine runs a pharmacy.   He has a specialized function in his Dispensary application which receives a decimal value of currency and replaces it to a standard value.   This value is regulated by a government department. Task Given a floating point value between   0.00   and   1.00,   rescale according to the following table: >= 0.00 < 0.06  := 0.10 >= 0.06 < 0.11  := 0.18 >= 0.11 < 0.16  := 0.26 >= 0.16 < 0.21  := 0.32 >= 0.21 < 0.26  := 0.38 >= 0.26 < 0.31  := 0.44 >= 0.31 < 0.36  := 0.50 >= 0.36 < 0.41  := 0.54 >= 0.41 < 0.46  := 0.58 >= 0.46 < 0.51  := 0.62 >= 0.51 < 0.56  := 0.66 >= 0.56 < 0.61  := 0.70 >= 0.61 < 0.66  := 0.74 >= 0.66 < 0.71  := 0.78 >= 0.71 < 0.76  := 0.82 >= 0.76 < 0.81  := 0.86 >= 0.81 < 0.86  := 0.90 >= 0.86 < 0.91  := 0.94 >= 0.91 < 0.96  := 0.98 >= 0.96 < 1.01  := 1.00
#Action.21
Action!
DEFINE COUNT="20" BYTE ARRAY levels=[6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 101] BYTE ARRAY values=[10 18 26 32 38 44 50 54 58 62 66 70 74 78 82 86 90 94 98 100]   PROC PrintValue(BYTE v) PrintB(v/100) Put('.) v=v MOD 100 PrintB(v/10) v=v MOD 10 PrintB(v) RETURN   BYTE FUNC Map(BYTE v) BYTE i   FOR i=0 TO COUNT-1 DO IF v<levels(i) THEN RETURN (values(i)) FI OD RETURN (v)   PROC Main() BYTE i,v   FOR i=0 TO 100 DO v=Map(i) PrintValue(v) IF i MOD 5=4 THEN PutE() ELSE Put(' ) FI OD RETURN
http://rosettacode.org/wiki/Price_fraction
Price fraction
A friend of mine runs a pharmacy.   He has a specialized function in his Dispensary application which receives a decimal value of currency and replaces it to a standard value.   This value is regulated by a government department. Task Given a floating point value between   0.00   and   1.00,   rescale according to the following table: >= 0.00 < 0.06  := 0.10 >= 0.06 < 0.11  := 0.18 >= 0.11 < 0.16  := 0.26 >= 0.16 < 0.21  := 0.32 >= 0.21 < 0.26  := 0.38 >= 0.26 < 0.31  := 0.44 >= 0.31 < 0.36  := 0.50 >= 0.36 < 0.41  := 0.54 >= 0.41 < 0.46  := 0.58 >= 0.46 < 0.51  := 0.62 >= 0.51 < 0.56  := 0.66 >= 0.56 < 0.61  := 0.70 >= 0.61 < 0.66  := 0.74 >= 0.66 < 0.71  := 0.78 >= 0.71 < 0.76  := 0.82 >= 0.76 < 0.81  := 0.86 >= 0.81 < 0.86  := 0.90 >= 0.86 < 0.91  := 0.94 >= 0.91 < 0.96  := 0.98 >= 0.96 < 1.01  := 1.00
#Ada
Ada
  type Price is delta 0.01 digits 3 range 0.0..1.0; function Scale (Value : Price) return Price is X : constant array (1..19) of Price := ( 0.06, 0.11, 0.16, 0.21, 0.26, 0.31, 0.36, 0.41, 0.46, 0.51, 0.56, 0.61, 0.66, 0.71, 0.76, 0.81, 0.86, 0.91, 0.96 ); Y : constant array (1..20) of Price := ( 0.10, 0.18, 0.26, 0.32, 0.38, 0.44, 0.50, 0.54, 0.58, 0.62, 0.66, 0.70, 0.74, 0.78, 0.82, 0.86, 0.90, 0.94, 0.98, 1.0 ); Low  : Natural := X'First; High  : Natural := X'Last; Middle : Natural; begin loop Middle := (Low + High) / 2; if Value = X (Middle) then return Y (Middle + 1); elsif Value < X (Middle) then if Low = Middle then return Y (Low); end if; High := Middle - 1; else if High = Middle then return Y (High + 1); end if; Low := Middle + 1; end if; end loop; end Scale;  
http://rosettacode.org/wiki/Proper_divisors
Proper divisors
The   proper divisors   of a positive integer N are those numbers, other than N itself, that divide N without remainder. For N > 1 they will always include 1,   but for N == 1 there are no proper divisors. Examples The proper divisors of     6     are   1, 2, and 3. The proper divisors of   100   are   1, 2, 4, 5, 10, 20, 25, and 50. Task Create a routine to generate all the proper divisors of a number. use it to show the proper divisors of the numbers 1 to 10 inclusive. Find a number in the range 1 to 20,000 with the most proper divisors. Show the number and just the count of how many proper divisors it has. Show all output here. Related tasks   Amicable pairs   Abundant, deficient and perfect number classifications   Aliquot sequence classifications   Factors of an integer   Prime decomposition
#Clojure
Clojure
(ns properdivisors (:gen-class))   (defn proper-divisors [n] " Proper divisors of n" (if (= n 1) [] (filter #(= 0 (rem n %)) (range 1 n))))   ;; Property divisors of numbers 1 to 20,000 inclusive (def data (for [n (range 1 (inc 20000))] [n (proper-divisors n)]))   ;; Find Max (defn maximal-key [k x & xs] " Normal max-key only finds one key that produces maximum, while this function finds them all " (reduce (fn [ys x] (let [c (compare (k x) (k (peek ys)))] (cond (pos? c) [x] (neg? c) ys :else (conj ys x)))) [x] xs))   (println "n\tcnt\tPROPER DIVISORS") (doseq [n (range 1 11)] (let [factors (proper-divisors n)] (println n "\t" (count factors) "\t" factors)))   (def max-data (apply maximal-key (fn [[i pd]] (count pd)) data))   (doseq [[n factors] max-data] (println n " has " (count factors) " divisors"))    
http://rosettacode.org/wiki/Probabilistic_choice
Probabilistic choice
Given a mapping between items and their required probability of occurrence, generate a million items randomly subject to the given probabilities and compare the target probability of occurrence versus the generated values. The total of all the probabilities should equal one. (Because floating point arithmetic is involved, this is subject to rounding errors). aleph 1/5.0 beth 1/6.0 gimel 1/7.0 daleth 1/8.0 he 1/9.0 waw 1/10.0 zayin 1/11.0 heth 1759/27720 # adjusted so that probabilities add to 1 Related task Random number generator (device)
#E
E
pragma.syntax("0.9")
http://rosettacode.org/wiki/Probabilistic_choice
Probabilistic choice
Given a mapping between items and their required probability of occurrence, generate a million items randomly subject to the given probabilities and compare the target probability of occurrence versus the generated values. The total of all the probabilities should equal one. (Because floating point arithmetic is involved, this is subject to rounding errors). aleph 1/5.0 beth 1/6.0 gimel 1/7.0 daleth 1/8.0 he 1/9.0 waw 1/10.0 zayin 1/11.0 heth 1759/27720 # adjusted so that probabilities add to 1 Related task Random number generator (device)
#Elixir
Elixir
defmodule Probabilistic do @tries 1000000 @probs [aleph: 1/5, beth: 1/6, gimel: 1/7, daleth: 1/8, he: 1/9, waw: 1/10, zayin: 1/11, heth: 1759/27720]   def test do trials = for _ <- 1..@tries, do: get_choice(@probs, :rand.uniform) IO.puts "Item Expected Actual" fmt = " ~-8s ~.6f ~.6f~n" Enum.each(@probs, fn {glyph,expected} -> actual = length(for ^glyph <- trials, do: glyph) / @tries  :io.format fmt, [glyph, expected, actual] end) end   defp get_choice([{glyph,_}], _), do: glyph defp get_choice([{glyph,prob}|_], ran) when ran < prob, do: glyph defp get_choice([{_,prob}|t], ran), do: get_choice(t, ran - prob) end   Probabilistic.test
http://rosettacode.org/wiki/Primes_-_allocate_descendants_to_their_ancestors
Primes - allocate descendants to their ancestors
The concept, is to add the decomposition into prime factors of a number to get its 'ancestors'. The objective is to demonstrate that the choice of the algorithm can be crucial in term of performance. This solution could be compared to the solution that would use the decomposition into primes for all the numbers between 1 and 333. The problem is to list, for a delimited set of ancestors (from 1 to 99) : - the total of their own ancestors (LEVEL), - their own ancestors (ANCESTORS), - the total of the direct descendants (DESCENDANTS), - all the direct descendants. You only have to consider the prime factors < 100. A grand total of the descendants has to be printed at the end of the list. The task should be accomplished in a reasonable time-frame. Example : 46 = 2*23 --> 2+23 = 25, is the parent of 46. 25 = 5*5 --> 5+5 = 10, is the parent of 25. 10 = 2*5 --> 2+5 = 7, is the parent of 10. 7 is a prime factor and, as such, has no parent. 46 has 3 ancestors (7, 10 and 25). 46 has 557 descendants. The list layout and the output for Parent [46] : [46] Level: 3 Ancestors: 7, 10, 25 Descendants: 557 129, 205, 246, 493, 518, 529, 740, 806, 888, 999, 1364, 1508, 1748, 2552, 2871, 3128, 3255, 3472, 3519, 3875, 3906, 4263, 4650, 4960, 5075, 5415, 5580, 5776, 5952, 6090, 6279, 6496, 6498, 6696, 6783, 7250, 7308, 7475, 7533, 8075, 8151, 8619, 8700, 8855, 8970, 9280, 9568, 9690, 10115, 10336, 10440, 10626, 10764, 11136, 11495, 11628, 11745, 12103, 12138, 12155, 12528, 12650, 13794, 14094, 14399, 14450, 14586, 15180, 15379, 15778, 16192, 17290, 17303, 17340, 18216, 18496, 20482, 20493, 20570, 20748, 20808, 21658, 21970, 22540, 23409, 24684, 24700, 26026, 26364, 27048, 29260, 29282, 29640, 30429, 30940, 31616, 32200, 33345, 35112, 35568, 36225, 36652, 37128, 37180, 38640, 39501, 40014, 41216, 41769, 41800, 43125, 43470, 44044, 44200, 44616, 46000, 46368, 47025, 49725, 50160, 50193, 51750, 52136, 52164, 52360, 53040, 53504, 55200, 56430, 56576, 58653, 58880, 58905, 59670, 60192, 62100, 62832, 62920, 63648, 66240, 66248, 67716, 69825, 70125, 70656, 70686, 70785, 71604, 74480, 74520, 74529, 74536, 74800, 75504, 79488, 83125, 83790, 83835, 83853, 84150, 84942, 87465, 88725, 89376, 89424, 89760, 93296, 94640, 95744, 99750, 99825, 100548, 100602, 100980, 104125, 104958, 105105, 105625, 106400, 106470, 106480, 107712, 112112, 113568, 118750, 119700, 119790, 121176, 124509, 124950, 125125, 126126, 126750, 127680, 127764, 127776, 133280, 135200, 136192, 136323, 142500, 143640, 143748, 148225, 148750, 149940, 150150, 152000, 152100, 153216, 156065, 159936, 160160, 161595, 162240, 171000, 172368, 173056, 177870, 178500, 178750, 179928, 180180, 182400, 182520, 184877, 187278, 189728, 190400, 192192, 192375, 193914, 194560, 194688, 202419, 205200, 205335, 211750, 212500, 213444, 214200, 214500, 216216, 218880, 219024, 222950, 228480, 228800, 230850, 233472, 240975, 243243, 243712, 246240, 246402, 254100, 255000, 257040, 257400, 262656, 264110, 267540, 271040, 272000, 274176, 274560, 277020, 285376, 286875, 289170, 289575, 292864, 295488, 302500, 304920, 306000, 308448, 308880, 316932, 318500, 321048, 325248, 326400, 329472, 332424, 343035, 344250, 347004, 347490, 348160, 361179, 363000, 365904, 367200, 370656, 373977, 377300, 382200, 387200, 391680, 407680, 408375, 411642, 413100, 416988, 417792, 429975, 435600, 440640, 452760, 455000, 458640, 464640, 470016, 470596, 482944, 489216, 490050, 495616, 495720, 509355, 511875, 515970, 522720, 528768, 539000, 543312, 546000, 550368, 557568, 557685, 582400, 588060, 594864, 606375, 609375, 611226, 614250, 619164, 627264, 646800, 650000, 655200, 669222, 672280, 689920, 698880, 705672, 721875, 727650, 731250, 737100, 745472, 756315, 770000, 776160, 780000, 786240, 793881, 806736, 827904, 832000, 838656, 859375, 866250, 873180, 877500, 884520, 900375, 907578, 924000, 931392, 936000, 943488, 960400, 985600, 995085, 998400, 1031250, 1039500, 1047816, 1053000, 1061424, 1064960, 1071875, 1080450, 1100000, 1108800, 1123200, 1152480, 1178793, 1182720, 1184625, 1194102, 1198080, 1229312, 1237500, 1247400, 1261568, 1263600, 1277952, 1286250, 1296540, 1320000, 1330560, 1347840, 1372000, 1382976, 1403325, 1408000, 1419264, 1421550, 1437696, 1485000, 1496880, 1516320, 1531250, 1543500, 1555848, 1584000, 1596672, 1617408, 1646400, 1670625, 1683990, 1689600, 1705860, 1750329, 1756160, 1782000, 1796256, 1802240, 1819584, 1837500, 1852200, 1900800, 1960000, 1975680, 2004750, 2020788, 2027520, 2047032, 2083725, 2107392, 2138400, 2162688, 2187500, 2205000, 2222640, 2280960, 2302911, 2352000, 2370816, 2405700, 2433024, 2480625, 2500470, 2508800, 2566080, 2625000, 2646000, 2667168, 2737152, 2800000, 2822400, 2886840, 2953125, 2976750, 3000564, 3010560, 3079296, 3125000, 3150000, 3175200, 3211264, 3247695, 3360000, 3386880, 3464208, 3515625, 3543750, 3572100, 3584000, 3612672, 3750000, 3780000, 3810240, 3897234, 4000000, 4032000, 4064256, 4218750, 4252500, 4286520, 4300800, 4500000, 4536000, 4572288, 4587520, 4800000, 4822335, 4838400, 5062500, 5103000, 5120000, 5143824, 5160960, 5400000, 5443200, 5505024, 5740875, 5760000, 5786802, 5806080, 6075000, 6123600, 6144000, 6193152, 6480000, 6531840, 6553600, 6834375, 6889050, 6912000, 6967296, 7290000, 7348320, 7372800, 7776000, 7838208, 7864320, 8201250, 8266860, 8294400, 8388608, 8748000, 8817984, 8847360, 9331200, 9437184, 9841500, 9920232, 9953280, 10497600, 10616832, 11160261, 11197440, 11809800, 11943936, 12597120, 13286025, 13436928, 14171760, 15116544, 15943230, 17006112, 19131876 Some figures : The biggest descendant number : 3^33 = 5.559.060.566.555.523 (parent 99) Total Descendants 546.986
#Python
Python
from __future__ import print_function from itertools import takewhile   maxsum = 99   def get_primes(max): if max < 2: return [] lprimes = [2] for x in range(3, max + 1, 2): for p in lprimes: if x % p == 0: break else: lprimes.append(x) return lprimes   descendants = [[] for _ in range(maxsum + 1)] ancestors = [[] for _ in range(maxsum + 1)]   primes = get_primes(maxsum)   for p in primes: descendants[p].append(p) for s in range(1, len(descendants) - p): descendants[s + p] += [p * pr for pr in descendants[s]]   for p in primes + [4]: descendants[p].pop()   total = 0 for s in range(1, maxsum + 1): descendants[s].sort() for d in takewhile(lambda x: x <= maxsum, descendants[s]): ancestors[d] = ancestors[s] + [s] print([s], "Level:", len(ancestors[s])) print("Ancestors:", ancestors[s] if len(ancestors[s]) else "None") print("Descendants:", len(descendants[s]) if len(descendants[s]) else "None") if len(descendants[s]): print(descendants[s]) print() total += len(descendants[s])   print("Total descendants", total)
http://rosettacode.org/wiki/Priority_queue
Priority queue
A priority queue is somewhat similar to a queue, with an important distinction: each item is added to a priority queue with a priority level, and will be later removed from the queue with the highest priority element first. That is, the items are (conceptually) stored in the queue in priority order instead of in insertion order. Task Create a priority queue.   The queue must support at least two operations:   Insertion.   An element is added to the queue with a priority (a numeric value).   Top item removal.   Deletes the element or one of the elements with the current top priority and return it. Optionally, other operations may be defined, such as peeking (find what current top priority/top element is), merging (combining two priority queues into one), etc. To test your implementation, insert a number of elements into the queue, each with some random priority. Then dequeue them sequentially; now the elements should be sorted by priority. You can use the following task/priority items as input data: Priority Task ══════════ ════════════════ 3 Clear drains 4 Feed cat 5 Make tea 1 Solve RC tasks 2 Tax return The implementation should try to be efficient.   A typical implementation has   O(log n)   insertion and extraction time,   where   n   is the number of items in the queue. You may choose to impose certain limits such as small range of allowed priority levels, limited capacity, etc.   If so, discuss the reasons behind it.
#Component_Pascal
Component Pascal
  MODULE PQueues; IMPORT StdLog,Boxes;   TYPE Rank* = POINTER TO RECORD p-: LONGINT; (* Priority *) value-: Boxes.Object END;   PQueue* = POINTER TO RECORD a: POINTER TO ARRAY OF Rank; size-: LONGINT; END;   PROCEDURE NewRank*(p: LONGINT; v: Boxes.Object): Rank; VAR r: Rank; BEGIN NEW(r);r.p := p;r.value := v; RETURN r END NewRank;   PROCEDURE NewPQueue*(cap: LONGINT): PQueue; VAR pq: PQueue; BEGIN NEW(pq);pq.size := 0; NEW(pq.a,cap);pq.a[0] := NewRank(MIN(INTEGER),NIL); RETURN pq END NewPQueue;   PROCEDURE (pq: PQueue) Push*(r:Rank), NEW; VAR i: LONGINT; BEGIN INC(pq.size); i := pq.size; WHILE r.p < pq.a[i DIV 2].p DO pq.a[i] := pq.a[i DIV 2];i := i DIV 2 END; pq.a[i] := r END Push;   PROCEDURE (pq: PQueue) Pop*(): Rank,NEW; VAR r,y: Rank; i,j: LONGINT; ok: BOOLEAN; BEGIN r := pq.a[1]; (* Priority object *) y := pq.a[pq.size]; DEC(pq.size); i := 1; ok := FALSE; WHILE (i <= pq.size DIV 2) & ~ok DO j := i + 1; IF (j < pq.size) & (pq.a[i].p > pq.a[j + 1].p) THEN INC(j) END; IF y.p > pq.a[j].p THEN pq.a[i] := pq.a[j]; i := j ELSE ok := TRUE END END; pq.a[i] := y; RETURN r END Pop;   PROCEDURE (pq: PQueue) IsEmpty*(): BOOLEAN,NEW; BEGIN RETURN pq.size = 0 END IsEmpty;   PROCEDURE Test*; VAR pq: PQueue; r: Rank; PROCEDURE ShowRank(r:Rank); BEGIN StdLog.Int(r.p);StdLog.String(":> ");StdLog.String(r.value.AsString());StdLog.Ln; END ShowRank; BEGIN pq := NewPQueue(128); pq.Push(NewRank(3,Boxes.NewString("Clear drains"))); pq.Push(NewRank(4,Boxes.NewString("Feed cat"))); pq.Push(NewRank(5,Boxes.NewString("Make tea"))); pq.Push(NewRank(1,Boxes.NewString("Solve RC tasks"))); pq.Push(NewRank(2,Boxes.NewString("Tax return"))); ShowRank(pq.Pop()); ShowRank(pq.Pop()); ShowRank(pq.Pop()); ShowRank(pq.Pop()); ShowRank(pq.Pop()); END Test;   END PQueues.  
http://rosettacode.org/wiki/Problem_of_Apollonius
Problem of Apollonius
Task Implement a solution to the Problem of Apollonius   (description on Wikipedia)   which is the problem of finding the circle that is tangent to three specified circles   (colored black in the diagram below to the right). There is an   algebraic solution   which is pretty straightforward. The solutions to the example in the code are shown in the diagram   (below and to the right). The red circle is "internally tangent" to all three black circles,   and the green circle is "externally tangent" to all three black circles.
#Java
Java
public class Circle { public double[] center; public double radius; public Circle(double[] center, double radius) { this.center = center; this.radius = radius; } public String toString() { return String.format("Circle[x=%.2f,y=%.2f,r=%.2f]",center[0],center[1], radius); } }   public class ApolloniusSolver { /** Solves the Problem of Apollonius (finding a circle tangent to three other * circles in the plane). The method uses approximately 68 heavy operations * (multiplication, division, square-roots). * @param c1 One of the circles in the problem * @param c2 One of the circles in the problem * @param c3 One of the circles in the problem * @param s1 An indication if the solution should be externally or internally * tangent (+1/-1) to c1 * @param s2 An indication if the solution should be externally or internally * tangent (+1/-1) to c2 * @param s3 An indication if the solution should be externally or internally * tangent (+1/-1) to c3 * @return The circle that is tangent to c1, c2 and c3. */ public static Circle solveApollonius(Circle c1, Circle c2, Circle c3, int s1, int s2, int s3) { float x1 = c1.center[0]; float y1 = c1.center[1]; float r1 = c1.radius; float x2 = c2.center[0]; float y2 = c2.center[1]; float r2 = c2.radius; float x3 = c3.center[0]; float y3 = c3.center[1]; float r3 = c3.radius;   //Currently optimized for fewest multiplications. Should be optimized for //readability float v11 = 2*x2 - 2*x1; float v12 = 2*y2 - 2*y1; float v13 = x1*x1 - x2*x2 + y1*y1 - y2*y2 - r1*r1 + r2*r2; float v14 = 2*s2*r2 - 2*s1*r1;   float v21 = 2*x3 - 2*x2; float v22 = 2*y3 - 2*y2; float v23 = x2*x2 - x3*x3 + y2*y2 - y3*y3 - r2*r2 + r3*r3; float v24 = 2*s3*r3 - 2*s2*r2;   float w12 = v12/v11; float w13 = v13/v11; float w14 = v14/v11;   float w22 = v22/v21-w12; float w23 = v23/v21-w13; float w24 = v24/v21-w14;   float P = -w23/w22; float Q = w24/w22; float M = -w12*P-w13; float N = w14 - w12*Q;   float a = N*N + Q*Q - 1; float b = 2*M*N - 2*N*x1 + 2*P*Q - 2*Q*y1 + 2*s1*r1; float c = x1*x1 + M*M - 2*M*x1 + P*P + y1*y1 - 2*P*y1 - r1*r1;   // Find a root of a quadratic equation. This requires the circle centers not // to be e.g. colinear float D = b*b-4*a*c; float rs = (-b-Math.sqrt(D))/(2*a); float xs = M + N * rs; float ys = P + Q * rs; return new Circle(new double[]{xs,ys}, rs); } public static void main(final String[] args) { Circle c1 = new Circle(new double[]{0,0}, 1); Circle c2 = new Circle(new double[]{4,0}, 1); Circle c3 = new Circle(new double[]{2,4}, 2); // Expects "Circle[x=2.00,y=2.10,r=3.90]" (green circle in image) System.out.println(solveApollonius(c1,c2,c3,1,1,1)); // Expects "Circle[x=2.00,y=0.83,r=1.17]" (red circle in image) System.out.println(solveApollonius(c1,c2,c3,-1,-1,-1)); } }
http://rosettacode.org/wiki/Program_name
Program name
The task is to programmatically obtain the name used to invoke the program. (For example determine whether the user ran "python hello.py", or "python hellocaller.py", a program importing the code from "hello.py".) Sometimes a multiline shebang is necessary in order to provide the script name to a language's internal ARGV. See also Command-line arguments Examples from GitHub.
#PARI.2FGP
PARI/GP
program ScriptName; var prog : String; begin prog := ParamStr(0); write('Program: '); writeln(prog) end.
http://rosettacode.org/wiki/Program_name
Program name
The task is to programmatically obtain the name used to invoke the program. (For example determine whether the user ran "python hello.py", or "python hellocaller.py", a program importing the code from "hello.py".) Sometimes a multiline shebang is necessary in order to provide the script name to a language's internal ARGV. See also Command-line arguments Examples from GitHub.
#Pascal
Pascal
program ScriptName; var prog : String; begin prog := ParamStr(0); write('Program: '); writeln(prog) end.
http://rosettacode.org/wiki/Pythagorean_triples
Pythagorean triples
A Pythagorean triple is defined as three positive integers ( a , b , c ) {\displaystyle (a,b,c)} where a < b < c {\displaystyle a<b<c} , and a 2 + b 2 = c 2 . {\displaystyle a^{2}+b^{2}=c^{2}.} They are called primitive triples if a , b , c {\displaystyle a,b,c} are co-prime, that is, if their pairwise greatest common divisors g c d ( a , b ) = g c d ( a , c ) = g c d ( b , c ) = 1 {\displaystyle {\rm {gcd}}(a,b)={\rm {gcd}}(a,c)={\rm {gcd}}(b,c)=1} . Because of their relationship through the Pythagorean theorem, a, b, and c are co-prime if a and b are co-prime ( g c d ( a , b ) = 1 {\displaystyle {\rm {gcd}}(a,b)=1} ).   Each triple forms the length of the sides of a right triangle, whose perimeter is P = a + b + c {\displaystyle P=a+b+c} . Task The task is to determine how many Pythagorean triples there are with a perimeter no larger than 100 and the number of these that are primitive. Extra credit Deal with large values.   Can your program handle a maximum perimeter of 1,000,000?   What about 10,000,000?   100,000,000? Note: the extra credit is not for you to demonstrate how fast your language is compared to others;   you need a proper algorithm to solve them in a timely manner. Related tasks   Euler's sum of powers conjecture   List comprehensions   Pythagorean quadruples
#Pascal
Pascal
Program PythagoreanTriples (output);   var total, prim, maxPeri: int64;   procedure newTri(s0, s1, s2: int64); var p: int64; begin p := s0 + s1 + s2; if p <= maxPeri then begin inc(prim); total := total + maxPeri div p; newTri( s0 + 2*(-s1+s2), 2*( s0+s2) - s1, 2*( s0-s1+s2) + s2); newTri( s0 + 2*( s1+s2), 2*( s0+s2) + s1, 2*( s0+s1+s2) + s2); newTri(-s0 + 2*( s1+s2), 2*(-s0+s2) + s1, 2*(-s0+s1+s2) + s2); end; end;   begin maxPeri := 100; while maxPeri <= 1e10 do begin prim := 0; total := 0; newTri(3, 4, 5); writeln('Up to ', maxPeri, ': ', total, ' triples, ', prim, ' primitives.'); maxPeri := maxPeri * 10; end; end.
http://rosettacode.org/wiki/Program_termination
Program termination
Task Show the syntax for a complete stoppage of a program inside a   conditional. This includes all threads/processes which are part of your program. Explain the cleanup (or lack thereof) caused by the termination (allocated memory, database connections, open files, object finalizers/destructors, run-on-exit hooks, etc.). Unless otherwise described, no special cleanup outside that provided by the operating system is provided.
#Nanoquery
Nanoquery
exit exit(0)
http://rosettacode.org/wiki/Program_termination
Program termination
Task Show the syntax for a complete stoppage of a program inside a   conditional. This includes all threads/processes which are part of your program. Explain the cleanup (or lack thereof) caused by the termination (allocated memory, database connections, open files, object finalizers/destructors, run-on-exit hooks, etc.). Unless otherwise described, no special cleanup outside that provided by the operating system is provided.
#Neko
Neko
/* Program termination, in Neko */   var sys_exit = $loader.loadprim("std@sys_exit", 1)   var return_code = 42 if true sys_exit(return_code)   $print("Control flow does not make it this far")
http://rosettacode.org/wiki/Primality_by_Wilson%27s_theorem
Primality by Wilson's theorem
Task Write a boolean function that tells whether a given integer is prime using Wilson's theorem. By Wilson's theorem, a number p is prime if and only if p divides (p - 1)! + 1. Remember that 1 and all non-positive integers are not prime. See also Cut-the-knot: Wilson's theorem. Wikipedia: Wilson's theorem
#Cowgol
Cowgol
include "cowgol.coh";   # Wilson primality test sub wilson(n: uint32): (out: uint8) is out := 0; if n >= 2 then var facmod: uint32 := 1; var ct := n - 1; while ct > 0 loop facmod := (facmod * ct) % n; ct := ct - 1; end loop; if facmod + 1 == n then out := 1; end if; end if; end sub;   # Print primes up to 100 according to Wilson var i: uint32 := 1; while i < 100 loop if wilson(i) == 1 then print_i32(i); print_char(' '); end if; i := i + 1; end loop; print_nl();
http://rosettacode.org/wiki/Primality_by_Wilson%27s_theorem
Primality by Wilson's theorem
Task Write a boolean function that tells whether a given integer is prime using Wilson's theorem. By Wilson's theorem, a number p is prime if and only if p divides (p - 1)! + 1. Remember that 1 and all non-positive integers are not prime. See also Cut-the-knot: Wilson's theorem. Wikipedia: Wilson's theorem
#D
D
import std.bigint; import std.stdio;   BigInt fact(long n) { BigInt f = 1; for (int i = 2; i <= n; i++) { f *= i; } return f; }   bool isPrime(long p) { if (p <= 1) { return false; } return (fact(p - 1) + 1) % p == 0; }   void main() { writeln("Primes less than 100 testing by Wilson's Theorem"); foreach (i; 0 .. 101) { if (isPrime(i)) { write(i, ' '); } } writeln; }
http://rosettacode.org/wiki/Prime_conspiracy
Prime conspiracy
A recent discovery, quoted from   Quantamagazine   (March 13, 2016): Two mathematicians have uncovered a simple, previously unnoticed property of prime numbers — those numbers that are divisible only by 1 and themselves. Prime numbers, it seems, have decided preferences about the final digits of the primes that immediately follow them. and This conspiracy among prime numbers seems, at first glance, to violate a longstanding assumption in number theory: that prime numbers behave much like random numbers. ─── (original authors from Stanford University): ─── Kannan Soundararajan and Robert Lemke Oliver The task is to check this assertion, modulo 10. Lets call    i -> j   a transition if    i   is the last decimal digit of a prime, and    j   the last decimal digit of the following prime. Task Considering the first one million primes.   Count, for any pair of successive primes, the number of transitions    i -> j   and print them along with their relative frequency, sorted by    i . You can see that, for a given    i ,   frequencies are not evenly distributed. Observation (Modulo 10),   primes whose last digit is   9   "prefer"   the digit   1   to the digit   9,   as its following prime. Extra credit Do the same for one hundred million primes. Example for 10,000 primes 10000 first primes. Transitions prime % 10 → next-prime % 10. 1 → 1 count: 365 frequency: 3.65 % 1 → 3 count: 833 frequency: 8.33 % 1 → 7 count: 889 frequency: 8.89 % 1 → 9 count: 397 frequency: 3.97 % 2 → 3 count: 1 frequency: 0.01 % 3 → 1 count: 529 frequency: 5.29 % 3 → 3 count: 324 frequency: 3.24 % 3 → 5 count: 1 frequency: 0.01 % 3 → 7 count: 754 frequency: 7.54 % 3 → 9 count: 907 frequency: 9.07 % 5 → 7 count: 1 frequency: 0.01 % 7 → 1 count: 655 frequency: 6.55 % 7 → 3 count: 722 frequency: 7.22 % 7 → 7 count: 323 frequency: 3.23 % 7 → 9 count: 808 frequency: 8.08 % 9 → 1 count: 935 frequency: 9.35 % 9 → 3 count: 635 frequency: 6.35 % 9 → 7 count: 541 frequency: 5.41 % 9 → 9 count: 379 frequency: 3.79 %
#Go
Go
package main   import ( "fmt" "sort" )   func sieve(limit uint64) []bool { limit++ // True denotes composite, false denotes prime. // We don't bother filling in the even composites. c := make([]bool, limit) c[0] = true c[1] = true p := uint64(3) // Start from 3. for { p2 := p * p if p2 >= limit { break } for i := p2; i < limit; i += 2 * p { c[i] = true } for { p += 2 if !c[p] { break } } } return c }   func main() { // sieve up to the 100 millionth prime sieved := sieve(2038074743)   transMap := make(map[int]int, 19) i := 2 // last digit of first prime p := int64(3 - 2) // next prime, -2 since we +=2 first n := 1 for _, num := range [...]int{1e4, 1e6, 1e8} { for ; n < num; n++ { // Set p to next prime by skipping composites. p += 2 for sieved[p] { p += 2 } // Count transition of i -> j. j := int(p % 10) transMap[i*10+j]++ i = j } reportTransitions(transMap, n) } }   func reportTransitions(transMap map[int]int, num int) { keys := make([]int, 0, len(transMap)) for k := range transMap { keys = append(keys, k) } sort.Ints(keys) fmt.Println("First", num, "primes. Transitions prime % 10 -> next-prime % 10.") for _, key := range keys { count := transMap[key] freq := float64(count) / float64(num) * 100 fmt.Printf("%d -> %d count: %7d", key/10, key%10, count) fmt.Printf(" frequency: %4.2f%%\n", freq) } fmt.Println() }
http://rosettacode.org/wiki/Prime_decomposition
Prime decomposition
The prime decomposition of a number is defined as a list of prime numbers which when all multiplied together, are equal to that number. Example 12 = 2 × 2 × 3, so its prime decomposition is {2, 2, 3} Task Write a function which returns an array or collection which contains the prime decomposition of a given number   n {\displaystyle n}   greater than   1. If your language does not have an isPrime-like function available, you may assume that you have a function which determines whether a number is prime (note its name before your code). If you would like to test code from this task, you may use code from trial division or the Sieve of Eratosthenes. Note: The program must not be limited by the word size of your computer or some other artificial limit; it should work for any number regardless of size (ignoring the physical limits of RAM etc). Related tasks   count in factors   factors of an integer   Sieve of Eratosthenes   primality by trial division   factors of a Mersenne number   trial factoring of a Mersenne number   partition an integer X into N primes   sequence of primes by Trial Division
#Ada
Ada
generic type Number is private; Zero : Number; One  : Number; Two  : Number; with function "+" (X, Y : Number) return Number is <>; with function "*" (X, Y : Number) return Number is <>; with function "/" (X, Y : Number) return Number is <>; with function "mod" (X, Y : Number) return Number is <>; with function ">" (X, Y : Number) return Boolean is <>; package Prime_Numbers is type Number_List is array (Positive range <>) of Number; function Decompose (N : Number) return Number_List; function Is_Prime (N : Number) return Boolean; end Prime_Numbers;
http://rosettacode.org/wiki/Polyspiral
Polyspiral
A Polyspiral is a spiral made of multiple line segments, whereby each segment is larger (or smaller) than the previous one by a given amount. Each segment also changes direction at a given angle. Task Animate a series of polyspirals, by drawing a complete spiral then incrementing the angle, and (after clearing the background) drawing the next, and so on. Every spiral will be a frame of the animation. The animation may stop as it goes full circle or continue indefinitely. The given input values may be varied. If animation is not practical in your programming environment, you may show a single frame instead. Pseudo code set incr to 0.0 // animation loop WHILE true incr = (incr + 0.05) MOD 360 x = width / 2 y = height / 2 length = 5 angle = incr // spiral loop FOR 1 TO 150 drawline change direction by angle length = length + 3 angle = (angle + incr) MOD 360 ENDFOR
#Action.21
Action!
INCLUDE "H6:REALMATH.ACT"   INT ARRAY SinTab=[ 0 4 9 13 18 22 27 31 36 40 44 49 53 58 62 66 71 75 79 83 88 92 96 100 104 108 112 116 120 124 128 132 136 139 143 147 150 154 158 161 165 168 171 175 178 181 184 187 190 193 196 199 202 204 207 210 212 215 217 219 222 224 226 228 230 232 234 236 237 239 241 242 243 245 246 247 248 249 250 251 252 253 254 254 255 255 255 256 256 256 256]   INT FUNC Sin(INT a) WHILE a<0 DO a==+360 OD WHILE a>360 DO a==-360 OD IF a<=90 THEN RETURN (SinTab(a)) ELSEIF a<=180 THEN RETURN (SinTab(180-a)) ELSEIF a<=270 THEN RETURN (-SinTab(a-180)) ELSE RETURN (-SinTab(360-a)) FI RETURN (0)   INT FUNC Cos(INT a) RETURN (Sin(a-90))   PROC DrawSpiral(INT x0,y0) INT i,angle,x,y,tmp REAL rx,ry,len,dlen,r1,r2,r3,r256   IntToReal(x0,rx) IntToReal(y0,ry) ValR("1.9",len) ValR("1.14",dlen) IntToReal(256,r256) angle=0 Plot(x0,y0) FOR i=1 TO 150 DO tmp=Cos(angle) IntToRealForNeg(tmp,r1) RealDiv(r1,r256,r2) RealMult(r2,len,r1) RealAdd(rx,r1,r2) RealAssign(r2,rx)   tmp=Sin(angle) IntToRealForNeg(tmp,r1) RealDiv(r1,r256,r2) RealMult(r2,len,r1) RealAdd(ry,r1,r2) RealAssign(r2,ry)   x=RealToInt(rx) y=RealToInt(ry) DrawTo(x,y)   RealAdd(len,dlen,r1) RealAssign(r1,len) angle==+123 IF angle>360 THEN angle==-360 FI OD RETURN   PROC Main() BYTE CH=$02FC,COLOR1=$02C5,COLOR2=$02C6   Graphics(8+16) Color=1 COLOR1=$0C COLOR2=$02   DrawSpiral(160,96)   DO UNTIL CH#$FF OD CH=$FF RETURN
http://rosettacode.org/wiki/Primality_by_trial_division
Primality by trial division
Task Write a boolean function that tells whether a given integer is prime. Remember that   1   and all non-positive numbers are not prime. Use trial division. Even numbers greater than   2   may be eliminated right away. A loop from   3   to   √ n    will suffice,   but other loops are allowed. Related tasks   count in factors   prime decomposition   AKS test for primes   factors of an integer   Sieve of Eratosthenes   factors of a Mersenne number   trial factoring of a Mersenne number   partition an integer X into N primes   sequence of primes by Trial Division
#68000_Assembly
68000 Assembly
isPrime: ; REG USAGE: ; D0 = input (unsigned 32-bit integer) ; D1 = temp storage for D0 ; D2 = candidates for possible factors ; D3 = temp storage for quotient/remainder ; D4 = total count of proper divisors.   MOVEM.L D1-D4,-(SP) ;push data regs except D0 MOVE.L #0,D1 MOVEM.L D1,D2-D4 ;clear regs D1 thru D4   CMP.L #0,D0 BEQ notPrime CMP.L #1,D0 BEQ notPrime CMP.L #2,D0 BEQ wasPrime   MOVE.L D0,D1 ;D1 will be used for temp storage. AND.L #1,D1 ;is D1 even? BEQ notPrime ;if so, it's not prime!   MOVE.L D0,D1 ;restore D1   MOVE.L #3,D2 ;start with 3   computeFactors: DIVU D2,D1 ;remainder is in top 2 bytes, quotient in bottom 2. MOVE.L D1,D3 ;temporarily store into D3 to check the remainder SWAP D3 ;swap the high and low words of D3. Now bottom 2 bytes contain remainder. CMP.W #0,D3 ;is the bottom word equal to 0? BNE D2_Wasnt_A_Divisor ;if not, D2 was not a factor of D1.   ADDQ.L #1,D4 ;increment the count of proper divisors. CMP.L #2,D4 ;is D4 two or greater? BCC notPrime ;if so, it's not prime! (Ends early. We'll need to check again if we made it to the end.)   D2_Wasnt_A_Divisor: MOVE.L D0,D1 ;restore D1. ADDQ.L #1,D2 ;increment D2     CMP.L D2,D1 ;is D2 now greater than D1? BLS computeFactors ;if not, loop again   CMP.L #1,D4 ;was there only one factor? BEQ wasPrime ;if so, D0 was prime.   notPrime: MOVE.L #0,D0 ;return false MOVEM.L (SP)+,D1-D4 ;pop D1-D4 RTS   wasPrime: MOVE.L #1,D0 ;return true MOVEM.L (SP)+,D1-D4 ;pop D1-D4 RTS ;end of program
http://rosettacode.org/wiki/Price_fraction
Price fraction
A friend of mine runs a pharmacy.   He has a specialized function in his Dispensary application which receives a decimal value of currency and replaces it to a standard value.   This value is regulated by a government department. Task Given a floating point value between   0.00   and   1.00,   rescale according to the following table: >= 0.00 < 0.06  := 0.10 >= 0.06 < 0.11  := 0.18 >= 0.11 < 0.16  := 0.26 >= 0.16 < 0.21  := 0.32 >= 0.21 < 0.26  := 0.38 >= 0.26 < 0.31  := 0.44 >= 0.31 < 0.36  := 0.50 >= 0.36 < 0.41  := 0.54 >= 0.41 < 0.46  := 0.58 >= 0.46 < 0.51  := 0.62 >= 0.51 < 0.56  := 0.66 >= 0.56 < 0.61  := 0.70 >= 0.61 < 0.66  := 0.74 >= 0.66 < 0.71  := 0.78 >= 0.71 < 0.76  := 0.82 >= 0.76 < 0.81  := 0.86 >= 0.81 < 0.86  := 0.90 >= 0.86 < 0.91  := 0.94 >= 0.91 < 0.96  := 0.98 >= 0.96 < 1.01  := 1.00
#ALGOL_68
ALGOL 68
main: ( # Just get a random price between 0 and 1 # # srand(time(NIL)); # REAL price := random; REAL tops := 0.06; REAL std val := 0.10;   # Conditionals are a little odd here "(price-0.001 < tops AND price+0.001 > tops)" is to check if they are equal. Stupid C floats, right?  :) # WHILE ( price>tops OR (price-0.001 < tops AND price+0.001 > tops) ) AND tops<=1.01 DO tops+:=0.05;   IF std val < 0.26 THEN std val +:= 0.08 ELIF std val < 0.50 THEN std val +:= 0.06 ELSE std val +:= 0.04 FI;   IF std val > 0.98 THEN std val := 1.0 FI OD;   printf(($"Value : "z.2dl,"Converted to standard : "z.2dl$, price, std val)) )
http://rosettacode.org/wiki/Proper_divisors
Proper divisors
The   proper divisors   of a positive integer N are those numbers, other than N itself, that divide N without remainder. For N > 1 they will always include 1,   but for N == 1 there are no proper divisors. Examples The proper divisors of     6     are   1, 2, and 3. The proper divisors of   100   are   1, 2, 4, 5, 10, 20, 25, and 50. Task Create a routine to generate all the proper divisors of a number. use it to show the proper divisors of the numbers 1 to 10 inclusive. Find a number in the range 1 to 20,000 with the most proper divisors. Show the number and just the count of how many proper divisors it has. Show all output here. Related tasks   Amicable pairs   Abundant, deficient and perfect number classifications   Aliquot sequence classifications   Factors of an integer   Prime decomposition
#Common_Lisp
Common Lisp
(defun proper-divisors-recursive (product &optional (results '(1))) "(int,list)->list::Function to find all proper divisors of a +ve integer."   (defun smallest-divisor (x) "int->int::Find the smallest divisor of an integer > 1." (if (evenp x) 2 (do ((lim (truncate (sqrt x))) (sd 3 (+ sd 2))) ((or (integerp (/ x sd)) (> sd lim)) (if (> sd lim) x sd)))))   (defun pd-rec (fac) "(int,int)->nil::Recursive function to find proper divisors of a +ve integer" (when (not (member fac results)) (push fac results) (let ((hifac (/ fac (smallest-divisor fac)))) (pd-rec hifac) (pd-rec (/ product hifac)))))   (pd-rec product) (butlast (sort (copy-list results) #'<)))   (defun task (method &optional (n 1) (most-pds '(0))) (dotimes (i 19999) (let ((npds (length (funcall method (incf n)))) (hiest (car most-pds))) (when (>= npds hiest) (if (> npds hiest) (setf most-pds (list npds (list n))) (setf most-pds (list npds (cons n (second most-pds)))))))) most-pds)   (defun main () (format t "Task 1:Proper Divisors of [1,10]:~%") (dotimes (i 10) (format t "~A:~A~%" (1+ i) (proper-divisors-recursive (1+ i)))) (format t "Task 2:Count & list of numbers <=20,000 with the most Proper Divisors:~%~A~%" (task #'proper-divisors-recursive)))
http://rosettacode.org/wiki/Probabilistic_choice
Probabilistic choice
Given a mapping between items and their required probability of occurrence, generate a million items randomly subject to the given probabilities and compare the target probability of occurrence versus the generated values. The total of all the probabilities should equal one. (Because floating point arithmetic is involved, this is subject to rounding errors). aleph 1/5.0 beth 1/6.0 gimel 1/7.0 daleth 1/8.0 he 1/9.0 waw 1/10.0 zayin 1/11.0 heth 1759/27720 # adjusted so that probabilities add to 1 Related task Random number generator (device)
#Erlang
Erlang
  -module(probabilistic_choice).   -export([test/0]).   -define(TRIES, 1000000).   test() -> Probs = [{aleph,1/5}, {beth,1/6}, {gimel,1/7}, {daleth,1/8}, {he,1/9}, {waw,1/10}, {zayin,1/11}, {heth,1759/27720}], random:seed(now()), Trials = [get_choice(Probs,random:uniform()) || _ <- lists:seq(1,?TRIES)], [{Glyph,Expected,(length([Glyph || Glyph_ <- Trials, Glyph_ == Glyph])/?TRIES)} || {Glyph,Expected} <- Probs].   get_choice([{Glyph,_}],_) -> Glyph; get_choice([{Glyph,Prob}|T],Ran) -> case (Ran < Prob) of true -> Glyph; false -> get_choice(T,Ran - Prob) end.  
http://rosettacode.org/wiki/Primes_-_allocate_descendants_to_their_ancestors
Primes - allocate descendants to their ancestors
The concept, is to add the decomposition into prime factors of a number to get its 'ancestors'. The objective is to demonstrate that the choice of the algorithm can be crucial in term of performance. This solution could be compared to the solution that would use the decomposition into primes for all the numbers between 1 and 333. The problem is to list, for a delimited set of ancestors (from 1 to 99) : - the total of their own ancestors (LEVEL), - their own ancestors (ANCESTORS), - the total of the direct descendants (DESCENDANTS), - all the direct descendants. You only have to consider the prime factors < 100. A grand total of the descendants has to be printed at the end of the list. The task should be accomplished in a reasonable time-frame. Example : 46 = 2*23 --> 2+23 = 25, is the parent of 46. 25 = 5*5 --> 5+5 = 10, is the parent of 25. 10 = 2*5 --> 2+5 = 7, is the parent of 10. 7 is a prime factor and, as such, has no parent. 46 has 3 ancestors (7, 10 and 25). 46 has 557 descendants. The list layout and the output for Parent [46] : [46] Level: 3 Ancestors: 7, 10, 25 Descendants: 557 129, 205, 246, 493, 518, 529, 740, 806, 888, 999, 1364, 1508, 1748, 2552, 2871, 3128, 3255, 3472, 3519, 3875, 3906, 4263, 4650, 4960, 5075, 5415, 5580, 5776, 5952, 6090, 6279, 6496, 6498, 6696, 6783, 7250, 7308, 7475, 7533, 8075, 8151, 8619, 8700, 8855, 8970, 9280, 9568, 9690, 10115, 10336, 10440, 10626, 10764, 11136, 11495, 11628, 11745, 12103, 12138, 12155, 12528, 12650, 13794, 14094, 14399, 14450, 14586, 15180, 15379, 15778, 16192, 17290, 17303, 17340, 18216, 18496, 20482, 20493, 20570, 20748, 20808, 21658, 21970, 22540, 23409, 24684, 24700, 26026, 26364, 27048, 29260, 29282, 29640, 30429, 30940, 31616, 32200, 33345, 35112, 35568, 36225, 36652, 37128, 37180, 38640, 39501, 40014, 41216, 41769, 41800, 43125, 43470, 44044, 44200, 44616, 46000, 46368, 47025, 49725, 50160, 50193, 51750, 52136, 52164, 52360, 53040, 53504, 55200, 56430, 56576, 58653, 58880, 58905, 59670, 60192, 62100, 62832, 62920, 63648, 66240, 66248, 67716, 69825, 70125, 70656, 70686, 70785, 71604, 74480, 74520, 74529, 74536, 74800, 75504, 79488, 83125, 83790, 83835, 83853, 84150, 84942, 87465, 88725, 89376, 89424, 89760, 93296, 94640, 95744, 99750, 99825, 100548, 100602, 100980, 104125, 104958, 105105, 105625, 106400, 106470, 106480, 107712, 112112, 113568, 118750, 119700, 119790, 121176, 124509, 124950, 125125, 126126, 126750, 127680, 127764, 127776, 133280, 135200, 136192, 136323, 142500, 143640, 143748, 148225, 148750, 149940, 150150, 152000, 152100, 153216, 156065, 159936, 160160, 161595, 162240, 171000, 172368, 173056, 177870, 178500, 178750, 179928, 180180, 182400, 182520, 184877, 187278, 189728, 190400, 192192, 192375, 193914, 194560, 194688, 202419, 205200, 205335, 211750, 212500, 213444, 214200, 214500, 216216, 218880, 219024, 222950, 228480, 228800, 230850, 233472, 240975, 243243, 243712, 246240, 246402, 254100, 255000, 257040, 257400, 262656, 264110, 267540, 271040, 272000, 274176, 274560, 277020, 285376, 286875, 289170, 289575, 292864, 295488, 302500, 304920, 306000, 308448, 308880, 316932, 318500, 321048, 325248, 326400, 329472, 332424, 343035, 344250, 347004, 347490, 348160, 361179, 363000, 365904, 367200, 370656, 373977, 377300, 382200, 387200, 391680, 407680, 408375, 411642, 413100, 416988, 417792, 429975, 435600, 440640, 452760, 455000, 458640, 464640, 470016, 470596, 482944, 489216, 490050, 495616, 495720, 509355, 511875, 515970, 522720, 528768, 539000, 543312, 546000, 550368, 557568, 557685, 582400, 588060, 594864, 606375, 609375, 611226, 614250, 619164, 627264, 646800, 650000, 655200, 669222, 672280, 689920, 698880, 705672, 721875, 727650, 731250, 737100, 745472, 756315, 770000, 776160, 780000, 786240, 793881, 806736, 827904, 832000, 838656, 859375, 866250, 873180, 877500, 884520, 900375, 907578, 924000, 931392, 936000, 943488, 960400, 985600, 995085, 998400, 1031250, 1039500, 1047816, 1053000, 1061424, 1064960, 1071875, 1080450, 1100000, 1108800, 1123200, 1152480, 1178793, 1182720, 1184625, 1194102, 1198080, 1229312, 1237500, 1247400, 1261568, 1263600, 1277952, 1286250, 1296540, 1320000, 1330560, 1347840, 1372000, 1382976, 1403325, 1408000, 1419264, 1421550, 1437696, 1485000, 1496880, 1516320, 1531250, 1543500, 1555848, 1584000, 1596672, 1617408, 1646400, 1670625, 1683990, 1689600, 1705860, 1750329, 1756160, 1782000, 1796256, 1802240, 1819584, 1837500, 1852200, 1900800, 1960000, 1975680, 2004750, 2020788, 2027520, 2047032, 2083725, 2107392, 2138400, 2162688, 2187500, 2205000, 2222640, 2280960, 2302911, 2352000, 2370816, 2405700, 2433024, 2480625, 2500470, 2508800, 2566080, 2625000, 2646000, 2667168, 2737152, 2800000, 2822400, 2886840, 2953125, 2976750, 3000564, 3010560, 3079296, 3125000, 3150000, 3175200, 3211264, 3247695, 3360000, 3386880, 3464208, 3515625, 3543750, 3572100, 3584000, 3612672, 3750000, 3780000, 3810240, 3897234, 4000000, 4032000, 4064256, 4218750, 4252500, 4286520, 4300800, 4500000, 4536000, 4572288, 4587520, 4800000, 4822335, 4838400, 5062500, 5103000, 5120000, 5143824, 5160960, 5400000, 5443200, 5505024, 5740875, 5760000, 5786802, 5806080, 6075000, 6123600, 6144000, 6193152, 6480000, 6531840, 6553600, 6834375, 6889050, 6912000, 6967296, 7290000, 7348320, 7372800, 7776000, 7838208, 7864320, 8201250, 8266860, 8294400, 8388608, 8748000, 8817984, 8847360, 9331200, 9437184, 9841500, 9920232, 9953280, 10497600, 10616832, 11160261, 11197440, 11809800, 11943936, 12597120, 13286025, 13436928, 14171760, 15116544, 15943230, 17006112, 19131876 Some figures : The biggest descendant number : 3^33 = 5.559.060.566.555.523 (parent 99) Total Descendants 546.986
#Racket
Racket
#lang racket   (define-syntax-rule (define/mem (name args ...) body ...) (begin (define cache (make-hash)) (define (name args ...) (hash-ref! cache (list args ...) (lambda () body ...)))))   (define (take-last x n) (drop x (- (length x) n)))   (define (borders x) (if (> (length x) 5) (append (take x 2) '(...) (take-last x 2)) x))   (define (add-tail list x) (reverse (cons x (reverse list))))
http://rosettacode.org/wiki/Primes_-_allocate_descendants_to_their_ancestors
Primes - allocate descendants to their ancestors
The concept, is to add the decomposition into prime factors of a number to get its 'ancestors'. The objective is to demonstrate that the choice of the algorithm can be crucial in term of performance. This solution could be compared to the solution that would use the decomposition into primes for all the numbers between 1 and 333. The problem is to list, for a delimited set of ancestors (from 1 to 99) : - the total of their own ancestors (LEVEL), - their own ancestors (ANCESTORS), - the total of the direct descendants (DESCENDANTS), - all the direct descendants. You only have to consider the prime factors < 100. A grand total of the descendants has to be printed at the end of the list. The task should be accomplished in a reasonable time-frame. Example : 46 = 2*23 --> 2+23 = 25, is the parent of 46. 25 = 5*5 --> 5+5 = 10, is the parent of 25. 10 = 2*5 --> 2+5 = 7, is the parent of 10. 7 is a prime factor and, as such, has no parent. 46 has 3 ancestors (7, 10 and 25). 46 has 557 descendants. The list layout and the output for Parent [46] : [46] Level: 3 Ancestors: 7, 10, 25 Descendants: 557 129, 205, 246, 493, 518, 529, 740, 806, 888, 999, 1364, 1508, 1748, 2552, 2871, 3128, 3255, 3472, 3519, 3875, 3906, 4263, 4650, 4960, 5075, 5415, 5580, 5776, 5952, 6090, 6279, 6496, 6498, 6696, 6783, 7250, 7308, 7475, 7533, 8075, 8151, 8619, 8700, 8855, 8970, 9280, 9568, 9690, 10115, 10336, 10440, 10626, 10764, 11136, 11495, 11628, 11745, 12103, 12138, 12155, 12528, 12650, 13794, 14094, 14399, 14450, 14586, 15180, 15379, 15778, 16192, 17290, 17303, 17340, 18216, 18496, 20482, 20493, 20570, 20748, 20808, 21658, 21970, 22540, 23409, 24684, 24700, 26026, 26364, 27048, 29260, 29282, 29640, 30429, 30940, 31616, 32200, 33345, 35112, 35568, 36225, 36652, 37128, 37180, 38640, 39501, 40014, 41216, 41769, 41800, 43125, 43470, 44044, 44200, 44616, 46000, 46368, 47025, 49725, 50160, 50193, 51750, 52136, 52164, 52360, 53040, 53504, 55200, 56430, 56576, 58653, 58880, 58905, 59670, 60192, 62100, 62832, 62920, 63648, 66240, 66248, 67716, 69825, 70125, 70656, 70686, 70785, 71604, 74480, 74520, 74529, 74536, 74800, 75504, 79488, 83125, 83790, 83835, 83853, 84150, 84942, 87465, 88725, 89376, 89424, 89760, 93296, 94640, 95744, 99750, 99825, 100548, 100602, 100980, 104125, 104958, 105105, 105625, 106400, 106470, 106480, 107712, 112112, 113568, 118750, 119700, 119790, 121176, 124509, 124950, 125125, 126126, 126750, 127680, 127764, 127776, 133280, 135200, 136192, 136323, 142500, 143640, 143748, 148225, 148750, 149940, 150150, 152000, 152100, 153216, 156065, 159936, 160160, 161595, 162240, 171000, 172368, 173056, 177870, 178500, 178750, 179928, 180180, 182400, 182520, 184877, 187278, 189728, 190400, 192192, 192375, 193914, 194560, 194688, 202419, 205200, 205335, 211750, 212500, 213444, 214200, 214500, 216216, 218880, 219024, 222950, 228480, 228800, 230850, 233472, 240975, 243243, 243712, 246240, 246402, 254100, 255000, 257040, 257400, 262656, 264110, 267540, 271040, 272000, 274176, 274560, 277020, 285376, 286875, 289170, 289575, 292864, 295488, 302500, 304920, 306000, 308448, 308880, 316932, 318500, 321048, 325248, 326400, 329472, 332424, 343035, 344250, 347004, 347490, 348160, 361179, 363000, 365904, 367200, 370656, 373977, 377300, 382200, 387200, 391680, 407680, 408375, 411642, 413100, 416988, 417792, 429975, 435600, 440640, 452760, 455000, 458640, 464640, 470016, 470596, 482944, 489216, 490050, 495616, 495720, 509355, 511875, 515970, 522720, 528768, 539000, 543312, 546000, 550368, 557568, 557685, 582400, 588060, 594864, 606375, 609375, 611226, 614250, 619164, 627264, 646800, 650000, 655200, 669222, 672280, 689920, 698880, 705672, 721875, 727650, 731250, 737100, 745472, 756315, 770000, 776160, 780000, 786240, 793881, 806736, 827904, 832000, 838656, 859375, 866250, 873180, 877500, 884520, 900375, 907578, 924000, 931392, 936000, 943488, 960400, 985600, 995085, 998400, 1031250, 1039500, 1047816, 1053000, 1061424, 1064960, 1071875, 1080450, 1100000, 1108800, 1123200, 1152480, 1178793, 1182720, 1184625, 1194102, 1198080, 1229312, 1237500, 1247400, 1261568, 1263600, 1277952, 1286250, 1296540, 1320000, 1330560, 1347840, 1372000, 1382976, 1403325, 1408000, 1419264, 1421550, 1437696, 1485000, 1496880, 1516320, 1531250, 1543500, 1555848, 1584000, 1596672, 1617408, 1646400, 1670625, 1683990, 1689600, 1705860, 1750329, 1756160, 1782000, 1796256, 1802240, 1819584, 1837500, 1852200, 1900800, 1960000, 1975680, 2004750, 2020788, 2027520, 2047032, 2083725, 2107392, 2138400, 2162688, 2187500, 2205000, 2222640, 2280960, 2302911, 2352000, 2370816, 2405700, 2433024, 2480625, 2500470, 2508800, 2566080, 2625000, 2646000, 2667168, 2737152, 2800000, 2822400, 2886840, 2953125, 2976750, 3000564, 3010560, 3079296, 3125000, 3150000, 3175200, 3211264, 3247695, 3360000, 3386880, 3464208, 3515625, 3543750, 3572100, 3584000, 3612672, 3750000, 3780000, 3810240, 3897234, 4000000, 4032000, 4064256, 4218750, 4252500, 4286520, 4300800, 4500000, 4536000, 4572288, 4587520, 4800000, 4822335, 4838400, 5062500, 5103000, 5120000, 5143824, 5160960, 5400000, 5443200, 5505024, 5740875, 5760000, 5786802, 5806080, 6075000, 6123600, 6144000, 6193152, 6480000, 6531840, 6553600, 6834375, 6889050, 6912000, 6967296, 7290000, 7348320, 7372800, 7776000, 7838208, 7864320, 8201250, 8266860, 8294400, 8388608, 8748000, 8817984, 8847360, 9331200, 9437184, 9841500, 9920232, 9953280, 10497600, 10616832, 11160261, 11197440, 11809800, 11943936, 12597120, 13286025, 13436928, 14171760, 15116544, 15943230, 17006112, 19131876 Some figures : The biggest descendant number : 3^33 = 5.559.060.566.555.523 (parent 99) Total Descendants 546.986
#Raku
Raku
my $max = 99; my @primes = (2 .. $max).grep: *.is-prime; my %tree; (1..$max).map: { %tree{$_}<ancestor> = (); %tree{$_}<descendants> = {}; };     sub allocate ($n, $i = 0, $sum = 0, $prod = 1) { return if $n < 4; for @primes.kv -> $k, $p { next if $k < $i; if ($sum + $p) <= $n { allocate($n, $k, $sum + $p, $prod * $p); } else { last if $sum == $prod; %tree{$sum}<descendants>{$prod} = True; last if $prod > $max; %tree{$prod}<ancestor> = %tree{$sum}<ancestor> (|) $sum; last; } } }   # abbreviate long lists to first and last 5 elements sub abbrev (@d) { @d < 11 ?? @d !! ( @d.head(5), '...', @d.tail(5) ) }   my @print = flat 1 .. 15, 46, 74, $max;   (1 .. $max).map: -> $term { allocate($term);   if $term == any( @print ) # print some representative lines { my $dn = +%tree{$term}<descendants> // 0; my $dl = abbrev(%tree{$term}<descendants>.keys.sort( +*) // ()); printf "%2d, %2d Ancestors: %-14s %5d Descendants: %s\n", $term, %tree{$term}<ancestor>, "[{ %tree{$term}<ancestor>.keys.sort: +* }],", $dn, "[$dl]"; } }   say "\nTotal descendants: ", sum (1..$max).map({ +%tree{$_}<descendants> });
http://rosettacode.org/wiki/Priority_queue
Priority queue
A priority queue is somewhat similar to a queue, with an important distinction: each item is added to a priority queue with a priority level, and will be later removed from the queue with the highest priority element first. That is, the items are (conceptually) stored in the queue in priority order instead of in insertion order. Task Create a priority queue.   The queue must support at least two operations:   Insertion.   An element is added to the queue with a priority (a numeric value).   Top item removal.   Deletes the element or one of the elements with the current top priority and return it. Optionally, other operations may be defined, such as peeking (find what current top priority/top element is), merging (combining two priority queues into one), etc. To test your implementation, insert a number of elements into the queue, each with some random priority. Then dequeue them sequentially; now the elements should be sorted by priority. You can use the following task/priority items as input data: Priority Task ══════════ ════════════════ 3 Clear drains 4 Feed cat 5 Make tea 1 Solve RC tasks 2 Tax return The implementation should try to be efficient.   A typical implementation has   O(log n)   insertion and extraction time,   where   n   is the number of items in the queue. You may choose to impose certain limits such as small range of allowed priority levels, limited capacity, etc.   If so, discuss the reasons behind it.
#D
D
import std.stdio, std.container, std.array, std.typecons;   void main() { alias tuple T; auto heap = heapify([T(3, "Clear drains"), T(4, "Feed cat"), T(5, "Make tea"), T(1, "Solve RC tasks"), T(2, "Tax return")]);   while (!heap.empty) { writeln(heap.front); heap.removeFront(); } }
http://rosettacode.org/wiki/Problem_of_Apollonius
Problem of Apollonius
Task Implement a solution to the Problem of Apollonius   (description on Wikipedia)   which is the problem of finding the circle that is tangent to three specified circles   (colored black in the diagram below to the right). There is an   algebraic solution   which is pretty straightforward. The solutions to the example in the code are shown in the diagram   (below and to the right). The red circle is "internally tangent" to all three black circles,   and the green circle is "externally tangent" to all three black circles.
#jq
jq
def circle: {"x": .[0], "y": .[1], "r": .[2]};   # Find the interior or exterior Apollonius circle of three circles: # ap(circle, circle, circle, boolean) # Specify s as true for interior; false for exterior def ap(c1; c2; c3; s): def sign: if s then -. else . end; (c1.x * c1.x) as $x1sq | (c1.y * c1.y) as $y1sq | (c1.r * c1.r) as $r1sq | (c2.x * c2.x) as $x2sq | (c2.y * c2.y) as $y2sq | (c2.r * c2.r) as $r2sq | (c3.x * c3.x) as $x3sq | (c3.y * c3.y) as $y3sq | (c3.r * c3.r) as $r3sq   | (2 * (c2.x - c1.x)) as $v11 | (2 * (c2.y - c1.y)) as $v12 | ($x1sq - $x2sq + $y1sq - $y2sq - $r1sq + $r2sq) as $v13   | (2 * (c2.r - c1.r) | sign) as $v14 | (2 * (c3.x - c2.x)) as $v21 | (2 * (c3.y - c2.y)) as $v22   | ($x2sq - $x3sq + $y2sq - $y3sq - $r2sq + $r3sq) as $v23 | ( 2 * c3.r - c2.r | sign) as $v24 | ($v12 / $v11) as $w12 | ($v13 / $v11) as $w13 | ($v14 / $v11) as $w14   | (($v22 / $v21) - $w12) as $w22 | (($v23 / $v21) - $w13) as $w23 | (($v24 / $v21) - $w14) as $w24   | (-$w23 / $w22) as $p | ( $w24 / $w22) as $q | ((-$w12*$p) - $w13) as $m | ( $w14 - ($w12*$q)) as $n   | ( $n*$n + $q*$q - 1 ) as $a | (2 * (($m*$n - $n*c1.x + $p*$q - $q*c1.y) + (c1.r|sign))) as $b | ($x1sq + $m*$m - 2*$m*c1.x + $p*$p + $y1sq - 2*$p*c1.y - $r1sq) as $c   | ( $b*$b - 4*$a*$c ) as $d # discriminant | (( -$b - (($d|sqrt))) / (2 * $a)) as $rs # root   | [$m + ($n*$rs), $p + ($q*$rs), $rs] | circle ;
http://rosettacode.org/wiki/Program_name
Program name
The task is to programmatically obtain the name used to invoke the program. (For example determine whether the user ran "python hello.py", or "python hellocaller.py", a program importing the code from "hello.py".) Sometimes a multiline shebang is necessary in order to provide the script name to a language's internal ARGV. See also Command-line arguments Examples from GitHub.
#Perl
Perl
#!/usr/bin/env perl   use strict; use warnings;   sub main { my $program = $0; print "Program: $program\n"; }   unless(caller) { main; }
http://rosettacode.org/wiki/Program_name
Program name
The task is to programmatically obtain the name used to invoke the program. (For example determine whether the user ran "python hello.py", or "python hellocaller.py", a program importing the code from "hello.py".) Sometimes a multiline shebang is necessary in order to provide the script name to a language's internal ARGV. See also Command-line arguments Examples from GitHub.
#Phix
Phix
with javascript_semantics string cl2 = command_line()[2] printf(1,"%s\n",cl2) -- full path printf(1,"%s\n",get_file_name(cl2)) -- eg test.exw or test.exe or test.htm printf(1,"%s\n",get_file_base(cl2)) -- eg test
http://rosettacode.org/wiki/Pythagorean_triples
Pythagorean triples
A Pythagorean triple is defined as three positive integers ( a , b , c ) {\displaystyle (a,b,c)} where a < b < c {\displaystyle a<b<c} , and a 2 + b 2 = c 2 . {\displaystyle a^{2}+b^{2}=c^{2}.} They are called primitive triples if a , b , c {\displaystyle a,b,c} are co-prime, that is, if their pairwise greatest common divisors g c d ( a , b ) = g c d ( a , c ) = g c d ( b , c ) = 1 {\displaystyle {\rm {gcd}}(a,b)={\rm {gcd}}(a,c)={\rm {gcd}}(b,c)=1} . Because of their relationship through the Pythagorean theorem, a, b, and c are co-prime if a and b are co-prime ( g c d ( a , b ) = 1 {\displaystyle {\rm {gcd}}(a,b)=1} ).   Each triple forms the length of the sides of a right triangle, whose perimeter is P = a + b + c {\displaystyle P=a+b+c} . Task The task is to determine how many Pythagorean triples there are with a perimeter no larger than 100 and the number of these that are primitive. Extra credit Deal with large values.   Can your program handle a maximum perimeter of 1,000,000?   What about 10,000,000?   100,000,000? Note: the extra credit is not for you to demonstrate how fast your language is compared to others;   you need a proper algorithm to solve them in a timely manner. Related tasks   Euler's sum of powers conjecture   List comprehensions   Pythagorean quadruples
#Perl
Perl
sub gcd { my ($n, $m) = @_; while($n){ my $t = $n; $n = $m % $n; $m = $t; } return $m; }   sub tripel { my $pmax = shift; my $prim = 0; my $count = 0; my $nmax = sqrt($pmax)/2; for( my $n=1; $n<=$nmax; $n++ ) { for( my $m=$n+1; (my $p = 2*$m*($m+$n)) <= $pmax; $m+=2 ) { next unless 1==gcd($m,$n); $prim++; $count += int $pmax/$p; } } printf "Max. perimeter: %d, Total: %d, Primitive: %d\n", $pmax, $count, $prim; }   tripel 10**$_ for 1..8;  
http://rosettacode.org/wiki/Program_termination
Program termination
Task Show the syntax for a complete stoppage of a program inside a   conditional. This includes all threads/processes which are part of your program. Explain the cleanup (or lack thereof) caused by the termination (allocated memory, database connections, open files, object finalizers/destructors, run-on-exit hooks, etc.). Unless otherwise described, no special cleanup outside that provided by the operating system is provided.
#Nemerle
Nemerle
using System.Environment ... when (problem) Exit(1) ...
http://rosettacode.org/wiki/Program_termination
Program termination
Task Show the syntax for a complete stoppage of a program inside a   conditional. This includes all threads/processes which are part of your program. Explain the cleanup (or lack thereof) caused by the termination (allocated memory, database connections, open files, object finalizers/destructors, run-on-exit hooks, etc.). Unless otherwise described, no special cleanup outside that provided by the operating system is provided.
#NetRexx
NetRexx
/* NetRexx */ options replace format comments java crossref symbols nobinary   extremePrejudice = (1 == 1) if extremePrejudice then do exit extremePrejudice end   return  
http://rosettacode.org/wiki/Primality_by_Wilson%27s_theorem
Primality by Wilson's theorem
Task Write a boolean function that tells whether a given integer is prime using Wilson's theorem. By Wilson's theorem, a number p is prime if and only if p divides (p - 1)! + 1. Remember that 1 and all non-positive integers are not prime. See also Cut-the-knot: Wilson's theorem. Wikipedia: Wilson's theorem
#EDSAC_order_code
EDSAC order code
  [Primes by Wilson's Theoem, for Rosetta Code.] [EDSAC program, Initial Orders 2.] T51K P64F [address for G parameter: low-level subroutines] T47K P130F [M parameter: main routine + high-level subroutine]   [======== M parameter: Main routine + high-level subroutine ============] E25K TM GK [Editable range of integers to be tested for primality.] [Integers are stored right-justified, so e.g. 1000 is P500F.] [0] P500F [lowest] [1] P550F [highest] [Constants used with the M parameter] [2] PD [17-bit 1; also serves as letter P] [3] K2048F [set letters mode] [4] #F [set figures mode] [5] RF [letter R] [6] IF [letter I] [7] MF [letter M in letters mode, dot in figures mode] [8] @F [carriage return] [9] &F [line feed] [10]  !F [space character] [11] K4096F [null character]   [Subroutine for testing whether 17-bit integer n is a prime, using Wilson's Theorem with short cut.] [Input: n in 6F.] [Output: 0F holds 0 if n is prime, negative if n is not prime.] [12] A3F T69@ [plant return link as usual ] A6F S2F G68@ [acc := n - 2, exit if n < 2] A2@ T72@ [r := n - 1, clear acc] T7F [extend n to 35 bits in 6D] A2@ U71@ U70@ [f := 1; m := 1] A2F T73@ [m2inc := 3] [25] A72@ S73@ G44@ [if r < m2inc jump to part 2] T72@ [dec( r, m2inc)] A70@ A2@ T70@ [inc( m)] H71@ V70@ [acc := f*m] [Note that f and m are held as f/2^16 and m/2^16, so their product is (f*m)/2^32. We want to store the product as (f*m)/2^34, hence need to shift 2 right] R1F T4D [shift product and pass to modulo subroutine] [36] A36@ G38G [call modulo subroutine] A4F T71@ [f := product modulo n] A73@ A2F T73@ [inc( m2inc, 2)] E25@ [always loop back] [Part 2: Euclid's algorithm] [44] TF [clear acc] A6FT74@ [h := n] [47] S71@ E63@ [if f = 0 then jump to test HCF] TF [clear acc] A71@ T6F T7F [f to 6F and extend to 35 bits in 6D] A74@ T4F T5F [h to 4F and extend to 35 bits in 4D] [56] A56@ G38G [call subroutine, 4F := h modulo f] A71@ T74@ [h := f] A4F T71@ [f := (old h) modulo f] E47@ [always loop back] [Here with acc = 0. Test for h = 1] [63] A74@ S2@ [acc := h - 1] G68@ [return false if h = 0] TF SF [acc := 1 - h] [68] TF [return result in 0F] [69] ZF [(planted) jump back to caller] [Variables with names as in Pascal program] [70] PF [m] [71] PF [f] [72] PF [r] [73] PF [m2inc] [74] PF [h]   [Subroutine for finding and printing primes between the passed-in limits] [Input: 4F = minimum value, 5F = maximum value] [Output: None. 4F and 5F are not preserved.] [75] A3F T128@ [plant return link as usual] [Set letters mode, write 'PRIMES ', set figures mode] O3@ O2@ O5@ O6@ O7@ O124@ O104@ O10@ O4@ A5F T130@ [store maximum value locally] A4F U129@ [store minimum value locally] TF [pass minimum value to print subroutine] A11@ T1F [pass null for leading zeros] [93] A93@ GG [call print subroutine] O7@ O7@ [print 2 dots for range] A130 @TF [pass maximum value to print routine] [99] A99@ GG [call print subroutine] O8@ O9@ [print CRLF] [103] A130@ [load n_max] [104] S129@ [subtract n; also serves as letter S] G125@ [exit if n > n_max] TF [clear acc] A129 @T6F [pass current n to prime-testing subroutine] [109] A109@ G12M [call prime-testing subroutine] AF G120@ [load result, skip printing if n isn't prime] O10@ [print space] A129 @TF [pass n to print subroutine] A11@ T1F [pass null for leading zeros] [118] A118@ GG [call print subroutine] [120] TF [clear acc] A129@ A2@ T129@ [inc(n)] [124] E103@ [always loop back; also serves as letter E] [125] O8@ O9@ [print CRLF] TF [clear acc before return (EDSAC convention)] [128] ZF [(planted) jump back to caller] [Variables] [129] PF [n] [130] PF [n_max]   [Enter with acc = 0] [131] A@ T4F [pass lower limit to prime-finding subroutine] A1@ T5F [pass upper limit to prime-finding subroutine] [135] A135@ G75M [call prime-finding subroutine] O11@ [print null to flush printer buffer] ZF [stop]   [==================== G parameter: Low-level subroutines ====================] E25K TG [Subroutine to print non-negative 17-bit integer. Always prints 5 chars.] [Caller specifies character for leading 0 (typically 0, space or null).] [Parameters: 0F = integer to be printed (not preserved)] [1F = character for leading zero (preserved)] [Workspace: 4F..7F, 38 locations] [0] GKA3FT34@A1FT7FS35@T6FT4#FAFT4FH36@V4FRDA4#FR1024FH37@E23@O7FA2F T6FT5FV4#FYFL8FT4#FA5FL1024FUFA6FG16@OFTFT7FA6FG17@ZFP4FZ219DTF   [Subroutine to find X modulo M, where X and M are 35-bit integers.] [Input: X >= 0 in 4D, M > 0 in 6D.] [Output: X modulo M in 4D, M preserved in 6D. Does not return the quotient.] [Workspace: 0F. 27 locations.] [38] GKA3FT26@A6DT8DA4DRDS8DG12@TFA8DLDE3@TF A4DS8DG17@T4DTFA6DS8DE26@TFA8DRDT8DE13@EF   [======== M parameter again ============] E25K TM GK E131Z [define entry point] PF [acc = 0 on entry] [end]