task_url
stringlengths
30
116
task_name
stringlengths
2
86
task_description
stringlengths
0
14.4k
language_url
stringlengths
2
53
language_name
stringlengths
1
52
code
stringlengths
0
61.9k
http://rosettacode.org/wiki/QR_decomposition
QR decomposition
Any rectangular m × n {\displaystyle m\times n} matrix A {\displaystyle {\mathit {A}}} can be decomposed to a product of an orthogonal matrix Q {\displaystyle {\mathit {Q}}} and an upper (right) triangular matrix R {\displaystyle {\mathit {R}}} , as described in QR decomposition. Task Demonstrate the QR decomposition on the example matrix from the Wikipedia article: A = ( 12 − 51 4 6 167 − 68 − 4 24 − 41 ) {\displaystyle A={\begin{pmatrix}12&-51&4\\6&167&-68\\-4&24&-41\end{pmatrix}}} and the usage for linear least squares problems on the example from Polynomial regression. The method of Householder reflections should be used: Method Multiplying a given vector a {\displaystyle {\mathit {a}}} , for example the first column of matrix A {\displaystyle {\mathit {A}}} , with the Householder matrix H {\displaystyle {\mathit {H}}} , which is given as H = I − 2 u T u u u T {\displaystyle H=I-{\frac {2}{u^{T}u}}uu^{T}} reflects a {\displaystyle {\mathit {a}}} about a plane given by its normal vector u {\displaystyle {\mathit {u}}} . When the normal vector of the plane u {\displaystyle {\mathit {u}}} is given as u = a − ∥ a ∥ 2 e 1 {\displaystyle u=a-\|a\|_{2}\;e_{1}} then the transformation reflects a {\displaystyle {\mathit {a}}} onto the first standard basis vector e 1 = [ 1 0 0 . . . ] T {\displaystyle e_{1}=[1\;0\;0\;...]^{T}} which means that all entries but the first become zero. To avoid numerical cancellation errors, we should take the opposite sign of a 1 {\displaystyle a_{1}} : u = a + sign ( a 1 ) ∥ a ∥ 2 e 1 {\displaystyle u=a+{\textrm {sign}}(a_{1})\|a\|_{2}\;e_{1}} and normalize with respect to the first element: v = u u 1 {\displaystyle v={\frac {u}{u_{1}}}} The equation for H {\displaystyle H} thus becomes: H = I − 2 v T v v v T {\displaystyle H=I-{\frac {2}{v^{T}v}}vv^{T}} or, in another form H = I − β v v T {\displaystyle H=I-\beta vv^{T}} with β = 2 v T v {\displaystyle \beta ={\frac {2}{v^{T}v}}} Applying H {\displaystyle {\mathit {H}}} on a {\displaystyle {\mathit {a}}} then gives H a = − sign ( a 1 ) ∥ a ∥ 2 e 1 {\displaystyle H\;a=-{\textrm {sign}}(a_{1})\;\|a\|_{2}\;e_{1}} and applying H {\displaystyle {\mathit {H}}} on the matrix A {\displaystyle {\mathit {A}}} zeroes all subdiagonal elements of the first column: H 1 A = ( r 11 r 12 r 13 0 ∗ ∗ 0 ∗ ∗ ) {\displaystyle H_{1}\;A={\begin{pmatrix}r_{11}&r_{12}&r_{13}\\0&*&*\\0&*&*\end{pmatrix}}} In the second step, the second column of A {\displaystyle {\mathit {A}}} , we want to zero all elements but the first two, which means that we have to calculate H {\displaystyle {\mathit {H}}} with the first column of the submatrix (denoted *), not on the whole second column of A {\displaystyle {\mathit {A}}} . To get H 2 {\displaystyle H_{2}} , we then embed the new H {\displaystyle {\mathit {H}}} into an m × n {\displaystyle m\times n} identity: H 2 = ( 1 0 0 0 H 0 ) {\displaystyle H_{2}={\begin{pmatrix}1&0&0\\0&H&\\0&&\end{pmatrix}}} This is how we can, column by column, remove all subdiagonal elements of A {\displaystyle {\mathit {A}}} and thus transform it into R {\displaystyle {\mathit {R}}} . H n . . . H 3 H 2 H 1 A = R {\displaystyle H_{n}\;...\;H_{3}H_{2}H_{1}A=R} The product of all the Householder matrices H {\displaystyle {\mathit {H}}} , for every column, in reverse order, will then yield the orthogonal matrix Q {\displaystyle {\mathit {Q}}} . H 1 H 2 H 3 . . . H n = Q {\displaystyle H_{1}H_{2}H_{3}\;...\;H_{n}=Q} The QR decomposition should then be used to solve linear least squares (Multiple regression) problems A x = b {\displaystyle {\mathit {A}}x=b} by solving R x = Q T b {\displaystyle R\;x=Q^{T}\;b} When R {\displaystyle {\mathit {R}}} is not square, i.e. m > n {\displaystyle m>n} we have to cut off the m − n {\displaystyle {\mathit {m}}-n} zero padded bottom rows. R = ( R 1 0 ) {\displaystyle R={\begin{pmatrix}R_{1}\\0\end{pmatrix}}} and the same for the RHS: Q T b = ( q 1 q 2 ) {\displaystyle Q^{T}\;b={\begin{pmatrix}q_{1}\\q_{2}\end{pmatrix}}} Finally, solve the square upper triangular system by back substitution: R 1 x = q 1 {\displaystyle R_{1}\;x=q_{1}}
#Python
Python
#!/usr/bin/env python3   import numpy as np   def qr(A): m, n = A.shape Q = np.eye(m) for i in range(n - (m == n)): H = np.eye(m) H[i:, i:] = make_householder(A[i:, i]) Q = np.dot(Q, H) A = np.dot(H, A) return Q, A   def make_householder(a): v = a / (a[0] + np.copysign(np.linalg.norm(a), a[0])) v[0] = 1 H = np.eye(a.shape[0]) H -= (2 / np.dot(v, v)) * np.dot(v[:, None], v[None, :]) return H   # task 1: show qr decomp of wp example a = np.array((( (12, -51, 4), ( 6, 167, -68), (-4, 24, -41), )))   q, r = qr(a) print('q:\n', q.round(6)) print('r:\n', r.round(6))   # task 2: use qr decomp for polynomial regression example def polyfit(x, y, n): return lsqr(x[:, None]**np.arange(n + 1), y.T)   def lsqr(a, b): q, r = qr(a) _, n = r.shape return np.linalg.solve(r[:n, :], np.dot(q.T, b)[:n])   x = np.array((0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10)) y = np.array((1, 6, 17, 34, 57, 86, 121, 162, 209, 262, 321))   print('\npolyfit:\n', polyfit(x, y, 2))
http://rosettacode.org/wiki/Prime_triangle
Prime triangle
You will require a function f which when given an integer S will return a list of the arrangements of the integers 1 to S such that g1=1 gS=S and generally for n=1 to n=S-1 gn+gn+1 is prime. S=1 is undefined. For S=2 to S=20 print f(S) to form a triangle. Then again for S=2 to S=20 print the number of possible arrangements of 1 to S meeting these requirements.
#C
C
#include <assert.h> #include <stdbool.h> #include <stdio.h> #include <time.h>   bool is_prime(unsigned int n) { assert(n < 64); static bool isprime[] = {0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0}; return isprime[n]; }   void swap(unsigned int* a, size_t i, size_t j) { unsigned int tmp = a[i]; a[i] = a[j]; a[j] = tmp; }   bool prime_triangle_row(unsigned int* a, size_t length) { if (length == 2) return is_prime(a[0] + a[1]); for (size_t i = 1; i + 1 < length; i += 2) { if (is_prime(a[0] + a[i])) { swap(a, i, 1); if (prime_triangle_row(a + 1, length - 1)) return true; swap(a, i, 1); } } return false; }   int prime_triangle_count(unsigned int* a, size_t length) { int count = 0; if (length == 2) { if (is_prime(a[0] + a[1])) ++count; } else { for (size_t i = 1; i + 1 < length; i += 2) { if (is_prime(a[0] + a[i])) { swap(a, i, 1); count += prime_triangle_count(a + 1, length - 1); swap(a, i, 1); } } } return count; }   void print(unsigned int* a, size_t length) { if (length == 0) return; printf("%2u", a[0]); for (size_t i = 1; i < length; ++i) printf(" %2u", a[i]); printf("\n"); }   int main() { clock_t start = clock(); for (unsigned int n = 2; n < 21; ++n) { unsigned int a[n]; for (unsigned int i = 0; i < n; ++i) a[i] = i + 1; if (prime_triangle_row(a, n)) print(a, n); } printf("\n"); for (unsigned int n = 2; n < 21; ++n) { unsigned int a[n]; for (unsigned int i = 0; i < n; ++i) a[i] = i + 1; if (n > 2) printf(" "); printf("%d", prime_triangle_count(a, n)); } printf("\n"); clock_t end = clock(); double duration = (end - start + 0.0) / CLOCKS_PER_SEC; printf("\nElapsed time: %f seconds\n", duration); return 0; }
http://rosettacode.org/wiki/Proper_divisors
Proper divisors
The   proper divisors   of a positive integer N are those numbers, other than N itself, that divide N without remainder. For N > 1 they will always include 1,   but for N == 1 there are no proper divisors. Examples The proper divisors of     6     are   1, 2, and 3. The proper divisors of   100   are   1, 2, 4, 5, 10, 20, 25, and 50. Task Create a routine to generate all the proper divisors of a number. use it to show the proper divisors of the numbers 1 to 10 inclusive. Find a number in the range 1 to 20,000 with the most proper divisors. Show the number and just the count of how many proper divisors it has. Show all output here. Related tasks   Amicable pairs   Abundant, deficient and perfect number classifications   Aliquot sequence classifications   Factors of an integer   Prime decomposition
#Ada
Ada
generic type Result_Type (<>) is limited private; None: Result_Type; with function One(X: Positive) return Result_Type; with function Add(X, Y: Result_Type) return Result_Type is <>; package Generic_Divisors is   function Process (N: Positive; First: Positive := 1) return Result_Type is (if First**2 > N or First = N then None elsif (N mod First)=0 then (if First = 1 or First*First = N then Add(One(First), Process(N, First+1)) else Add(One(First), Add(One((N/First)), Process(N, First+1)))) else Process(N, First+1));   end Generic_Divisors;
http://rosettacode.org/wiki/Priority_queue
Priority queue
A priority queue is somewhat similar to a queue, with an important distinction: each item is added to a priority queue with a priority level, and will be later removed from the queue with the highest priority element first. That is, the items are (conceptually) stored in the queue in priority order instead of in insertion order. Task Create a priority queue.   The queue must support at least two operations:   Insertion.   An element is added to the queue with a priority (a numeric value).   Top item removal.   Deletes the element or one of the elements with the current top priority and return it. Optionally, other operations may be defined, such as peeking (find what current top priority/top element is), merging (combining two priority queues into one), etc. To test your implementation, insert a number of elements into the queue, each with some random priority. Then dequeue them sequentially; now the elements should be sorted by priority. You can use the following task/priority items as input data: Priority Task ══════════ ════════════════ 3 Clear drains 4 Feed cat 5 Make tea 1 Solve RC tasks 2 Tax return The implementation should try to be efficient.   A typical implementation has   O(log n)   insertion and extraction time,   where   n   is the number of items in the queue. You may choose to impose certain limits such as small range of allowed priority levels, limited capacity, etc.   If so, discuss the reasons behind it.
#11l
11l
V items = [(3, ‘Clear drains’), (4, ‘Feed cat’), (5, ‘Make tea’), (1, ‘Solve RC tasks’), (2, ‘Tax return’)] minheap:heapify(&items) L !items.empty print(minheap:pop(&items))
http://rosettacode.org/wiki/Problem_of_Apollonius
Problem of Apollonius
Task Implement a solution to the Problem of Apollonius   (description on Wikipedia)   which is the problem of finding the circle that is tangent to three specified circles   (colored black in the diagram below to the right). There is an   algebraic solution   which is pretty straightforward. The solutions to the example in the code are shown in the diagram   (below and to the right). The red circle is "internally tangent" to all three black circles,   and the green circle is "externally tangent" to all three black circles.
#AutoHotkey
AutoHotkey
#NoEnv #SingleInstance, Force SetBatchLines, -1   ; Uncomment if Gdip.ahk is not in your standard library ;#Include, Gdip.ahk   ; Start gdi+ If !pToken := Gdip_Startup() { MsgBox, 48, gdiplus error!, Gdiplus failed to start. Please ensure you have gdiplus on your system ExitApp } OnExit, Exit ; I've added a simple new function here, just to ensure if anyone is having any problems then to make sure they are using the correct library version If (Gdip_LibraryVersion() < 1.30) { MsgBox, 48, version error!, Please download the latest version of the gdi+ library ExitApp } x1:=300,y1:=500,r1:=50,x2:=200,y2:=200,r2:=150,x3:=600,y3:=400,r3:=100,s1:=-1,s2:=-1,s3:=-1,xs:=0,ys:=0,rs:=0 , Apollonius(x1,y1,r1,x2,y2,r2,x3,y3,r3,s1,s2,s3,xs,ys,rs) , Width:=max(x1+r1 "," x2+r2 "," x3+r3 "," xs+rs)*1.1 , Height:=max(y1+r1 "," y2+r2 "," y3+r3 "," ys+rs)*1.1   Gui, -Caption +E0x80000 +LastFound +AlwaysOnTop +ToolWindow +OwnDialogs Gui, Show hwnd1 := WinExist() , hbm := CreateDIBSection(Width, Height) , hdc := CreateCompatibleDC() , obm := SelectObject(hdc, hbm) , G := Gdip_GraphicsFromHDC(hdc) , Gdip_SetSmoothingMode(G, 4) , bWhite := Gdip_BrushCreateSolid(0xffffffff) , Gdip_FillRectangle(G, bWhite, 0, 0, Width, Height) , pRed := Gdip_CreatePen(0x88ff0000, 3) , pGreen := Gdip_CreatePen(0x8800ff00, 3) , pBlue := Gdip_CreatePen(0x880000ff, 3) , pBlack := Gdip_CreatePen(0x88000000, 3) , Gdip_DrawCircle(G, pRed, x1, y1, r1) , Gdip_DrawCircle(G, pGreen, x2, y2, r2) , Gdip_DrawCircle(G, pBlue, x3, y3, r3) , Gdip_DrawCircle(G, pBlack, xs, ys, rs) , Gdip_DeletePen(pRed) , Gdip_DeletePen(pGreen) , Gdip_DeletePen(pBlue) , Gdip_DeletePen(pBlack) , UpdateLayeredWindow(hwnd1, hdc, 0, 0, Width, Height) Return   GuiEscape: GuiClose: Exit: SelectObject(hdc, obm) , DeleteObject(hbm) , DeleteDC(hdc) , Gdip_DeleteGraphics(G) , Gdip_Shutdown(pToken) ExitApp   Apollonius(x1=300,y1=500,r1=50,x2=200,y2=200,r2=150,x3=600,y3=400,r3=100,s1=1,s2=1,s3=1,ByRef xs=0, ByRef ys=0, ByRef rs=0) { v11 := 2*x2 - 2*x1 v12 := 2*y2 - 2*y1 v13 := x1**2 - x2**2 + y1**2 - y2**2 - r1**2 + r2**2 v14 := 2*s2*r2 - 2*s1*r1   v21 := 2*x3 - 2*x2 v22 := 2*y3 - 2*y2 v23 := x2**2 - x3**2 + y2**2 - y3**2 - r2**2 + r3**2 v24 := 2*s3*r3 - 2*s2*r2   w12 := v12/v11 w13 := v13/v11 w14 := v14/v11   w22 := v22/v21 - w12 w23 := v23/v21 - w13 w24 := v24/v21 - w14   p := -w23/w22 q := w24/w22 m := -w12*p - w13 n := w14 - w12*q   a := n**2 + q**2 - 1 b := 2*m*n - 2*n*x1 + 2*p*q - 2*q*y1 + 2*s1*r1 c := x1**2 + m**2 - 2*m*x1 + p**2 + y1**2 - 2*p*y1 - r1**2   d := b**2 - 4*a*c rs := (-b - d**0.5)/(2*a) xs := m + n*rs ys := p + q*rs }   ; from http://rosettacode.org/wiki/Greatest_element_of_a_list#AutoHotkey max(list) { Loop Parse, list, `, x := x < A_LoopField ? A_LoopField : x Return x }   ; Gdip helper function Gdip_DrawCircle(G, pPen, x, y, r) { Return Gdip_DrawEllipse(G, pPen, x-r, y-r, r*2, r*2) }
http://rosettacode.org/wiki/Program_name
Program name
The task is to programmatically obtain the name used to invoke the program. (For example determine whether the user ran "python hello.py", or "python hellocaller.py", a program importing the code from "hello.py".) Sometimes a multiline shebang is necessary in order to provide the script name to a language's internal ARGV. See also Command-line arguments Examples from GitHub.
#J
J
#!/usr/bin/env jconsole   program =: monad : 0 if. (#ARGV) > 1 do. > 1 { ARGV else. 'Interpreted' end. )   echo 'Program: ', program 0   exit ''
http://rosettacode.org/wiki/Program_name
Program name
The task is to programmatically obtain the name used to invoke the program. (For example determine whether the user ran "python hello.py", or "python hellocaller.py", a program importing the code from "hello.py".) Sometimes a multiline shebang is necessary in order to provide the script name to a language's internal ARGV. See also Command-line arguments Examples from GitHub.
#Java
Java
public class ScriptName { public static void main(String[] args) { String program = System.getProperty("sun.java.command").split(" ")[0]; System.out.println("Program: " + program); } }
http://rosettacode.org/wiki/Primorial_numbers
Primorial numbers
Primorial numbers are those formed by multiplying successive prime numbers. The primorial number series is:   primorial(0) =         1       (by definition)   primorial(1) =         2       (2)   primorial(2) =         6       (2×3)   primorial(3) =       30       (2×3×5)   primorial(4) =     210       (2×3×5×7)   primorial(5) =   2310       (2×3×5×7×11)   primorial(6) = 30030       (2×3×5×7×11×13)         ∙ ∙ ∙ To express this mathematically,   primorialn   is   the product of the first   n   (successive) primes:   p r i m o r i a l n = ∏ k = 1 n p r i m e k {\displaystyle primorial_{n}=\prod _{k=1}^{n}prime_{k}} ─── where   p r i m e k {\displaystyle prime_{k}}   is the   kth   prime number. In some sense, generating primorial numbers is similar to factorials. As with factorials, primorial numbers get large quickly. Task   Show the first ten primorial numbers   (0 ──► 9,   inclusive).   Show the length of primorial numbers whose index is:   10   100   1,000   10,000   and   100,000.   Show the length of the one millionth primorial number   (optional).   Use exact integers, not approximations. By   length   (above), it is meant the number of decimal digits in the numbers. Related tasks   Sequence of primorial primes   Factorial   Fortunate_numbers See also   the MathWorld webpage:   primorial   the Wikipedia   webpage:   primorial.   the   OEIS   webpage:   A002110.
#jq
jq
def primes: 2, range(3; infinite; 2) | select(is_prime);   # generate an infinite stream of primorials beginning with primorial(0) def primorials: 0, foreach primes as $p (1; .*$p; .);   "The first ten primorial numbers are:", limit(10; primorials),   "\nThe primorials with the given index have the lengths shown:", ([10, 100, 1000, 10000, 100000] as $sample | limit($sample|length; foreach primes as $p ([0,1]; # [index, primorial] .[0]+=1 | .[1] *= $p; select(.[0]|IN($sample[])) | [.[0], (.[1]|tostring|length)] ) ))
http://rosettacode.org/wiki/Primorial_numbers
Primorial numbers
Primorial numbers are those formed by multiplying successive prime numbers. The primorial number series is:   primorial(0) =         1       (by definition)   primorial(1) =         2       (2)   primorial(2) =         6       (2×3)   primorial(3) =       30       (2×3×5)   primorial(4) =     210       (2×3×5×7)   primorial(5) =   2310       (2×3×5×7×11)   primorial(6) = 30030       (2×3×5×7×11×13)         ∙ ∙ ∙ To express this mathematically,   primorialn   is   the product of the first   n   (successive) primes:   p r i m o r i a l n = ∏ k = 1 n p r i m e k {\displaystyle primorial_{n}=\prod _{k=1}^{n}prime_{k}} ─── where   p r i m e k {\displaystyle prime_{k}}   is the   kth   prime number. In some sense, generating primorial numbers is similar to factorials. As with factorials, primorial numbers get large quickly. Task   Show the first ten primorial numbers   (0 ──► 9,   inclusive).   Show the length of primorial numbers whose index is:   10   100   1,000   10,000   and   100,000.   Show the length of the one millionth primorial number   (optional).   Use exact integers, not approximations. By   length   (above), it is meant the number of decimal digits in the numbers. Related tasks   Sequence of primorial primes   Factorial   Fortunate_numbers See also   the MathWorld webpage:   primorial   the Wikipedia   webpage:   primorial.   the   OEIS   webpage:   A002110.
#Julia
Julia
  using Primes   primelist = primes(300000001) # primes to 30 million   primorial(n) = foldr(*, primelist[1:n], init=BigInt(1))   println("The first ten primorials are: $([primorial(n) for n in 1:10])")   for i in 1:6 n = 10^i p = primorial(n) plen = Int(floor(log10(p))) + 1 println("primorial($n) has length $plen digits in base 10.") end  
http://rosettacode.org/wiki/Pythagorean_triples
Pythagorean triples
A Pythagorean triple is defined as three positive integers ( a , b , c ) {\displaystyle (a,b,c)} where a < b < c {\displaystyle a<b<c} , and a 2 + b 2 = c 2 . {\displaystyle a^{2}+b^{2}=c^{2}.} They are called primitive triples if a , b , c {\displaystyle a,b,c} are co-prime, that is, if their pairwise greatest common divisors g c d ( a , b ) = g c d ( a , c ) = g c d ( b , c ) = 1 {\displaystyle {\rm {gcd}}(a,b)={\rm {gcd}}(a,c)={\rm {gcd}}(b,c)=1} . Because of their relationship through the Pythagorean theorem, a, b, and c are co-prime if a and b are co-prime ( g c d ( a , b ) = 1 {\displaystyle {\rm {gcd}}(a,b)=1} ).   Each triple forms the length of the sides of a right triangle, whose perimeter is P = a + b + c {\displaystyle P=a+b+c} . Task The task is to determine how many Pythagorean triples there are with a perimeter no larger than 100 and the number of these that are primitive. Extra credit Deal with large values.   Can your program handle a maximum perimeter of 1,000,000?   What about 10,000,000?   100,000,000? Note: the extra credit is not for you to demonstrate how fast your language is compared to others;   you need a proper algorithm to solve them in a timely manner. Related tasks   Euler's sum of powers conjecture   List comprehensions   Pythagorean quadruples
#JavaScript
JavaScript
(() => { "use strict";   // Arguments: predicate, maximum perimeter // pythTripleCount :: ((Int, Int, Int) -> Bool) -> Int -> Int const pythTripleCount = p => maxPerim => { const xs = enumFromTo(1)( Math.floor(maxPerim / 2) );   return xs.flatMap( x => xs.slice(x).flatMap( y => xs.slice(y).flatMap( z => ((x + y + z <= maxPerim) && ((x * x) + (y * y) === z * z) && p(x, y, z)) ? [ [x, y, z] ] : [] ) ) ).length; };   // ---------------------- TEST ----------------------- const main = () => [10, 100, 1000] .map(n => ({ maxPerimeter: n, triples: pythTripleCount(() => true)(n), primitives: pythTripleCount( (x, y) => gcd(x)(y) === 1 )(n) }));     // ---------------- GENERIC FUNCTIONS ----------------   // abs :: Num -> Num const abs = // Absolute value of a given number // without the sign. x => 0 > x ? ( -x ) : x;     // enumFromTo :: Int -> Int -> [Int] const enumFromTo = m => n => Array.from({ length: 1 + n - m }, (_, i) => m + i);     // gcd :: Integral a => a -> a -> a const gcd = x => y => { const zero = x.constructor(0); const go = (a, b) => zero === b ? ( a ) : go(b, a % b);   return go(abs(x), abs(y)); };   // MAIN --- return main(); })();
http://rosettacode.org/wiki/Program_termination
Program termination
Task Show the syntax for a complete stoppage of a program inside a   conditional. This includes all threads/processes which are part of your program. Explain the cleanup (or lack thereof) caused by the termination (allocated memory, database connections, open files, object finalizers/destructors, run-on-exit hooks, etc.). Unless otherwise described, no special cleanup outside that provided by the operating system is provided.
#Fortran
Fortran
IF (condition) STOP [message] ! message is optional and is a character string. ! If present, the message is output to the standard output device.
http://rosettacode.org/wiki/Program_termination
Program termination
Task Show the syntax for a complete stoppage of a program inside a   conditional. This includes all threads/processes which are part of your program. Explain the cleanup (or lack thereof) caused by the termination (allocated memory, database connections, open files, object finalizers/destructors, run-on-exit hooks, etc.). Unless otherwise described, no special cleanup outside that provided by the operating system is provided.
#FreeBASIC
FreeBASIC
'FB 1.05.0 Win64 'endprog.bas'   Dim isError As Boolean = True If isError Then End 1 End If   ' The following code won't be executed Print Print "Press any key to quit" Sleep
http://rosettacode.org/wiki/QR_decomposition
QR decomposition
Any rectangular m × n {\displaystyle m\times n} matrix A {\displaystyle {\mathit {A}}} can be decomposed to a product of an orthogonal matrix Q {\displaystyle {\mathit {Q}}} and an upper (right) triangular matrix R {\displaystyle {\mathit {R}}} , as described in QR decomposition. Task Demonstrate the QR decomposition on the example matrix from the Wikipedia article: A = ( 12 − 51 4 6 167 − 68 − 4 24 − 41 ) {\displaystyle A={\begin{pmatrix}12&-51&4\\6&167&-68\\-4&24&-41\end{pmatrix}}} and the usage for linear least squares problems on the example from Polynomial regression. The method of Householder reflections should be used: Method Multiplying a given vector a {\displaystyle {\mathit {a}}} , for example the first column of matrix A {\displaystyle {\mathit {A}}} , with the Householder matrix H {\displaystyle {\mathit {H}}} , which is given as H = I − 2 u T u u u T {\displaystyle H=I-{\frac {2}{u^{T}u}}uu^{T}} reflects a {\displaystyle {\mathit {a}}} about a plane given by its normal vector u {\displaystyle {\mathit {u}}} . When the normal vector of the plane u {\displaystyle {\mathit {u}}} is given as u = a − ∥ a ∥ 2 e 1 {\displaystyle u=a-\|a\|_{2}\;e_{1}} then the transformation reflects a {\displaystyle {\mathit {a}}} onto the first standard basis vector e 1 = [ 1 0 0 . . . ] T {\displaystyle e_{1}=[1\;0\;0\;...]^{T}} which means that all entries but the first become zero. To avoid numerical cancellation errors, we should take the opposite sign of a 1 {\displaystyle a_{1}} : u = a + sign ( a 1 ) ∥ a ∥ 2 e 1 {\displaystyle u=a+{\textrm {sign}}(a_{1})\|a\|_{2}\;e_{1}} and normalize with respect to the first element: v = u u 1 {\displaystyle v={\frac {u}{u_{1}}}} The equation for H {\displaystyle H} thus becomes: H = I − 2 v T v v v T {\displaystyle H=I-{\frac {2}{v^{T}v}}vv^{T}} or, in another form H = I − β v v T {\displaystyle H=I-\beta vv^{T}} with β = 2 v T v {\displaystyle \beta ={\frac {2}{v^{T}v}}} Applying H {\displaystyle {\mathit {H}}} on a {\displaystyle {\mathit {a}}} then gives H a = − sign ( a 1 ) ∥ a ∥ 2 e 1 {\displaystyle H\;a=-{\textrm {sign}}(a_{1})\;\|a\|_{2}\;e_{1}} and applying H {\displaystyle {\mathit {H}}} on the matrix A {\displaystyle {\mathit {A}}} zeroes all subdiagonal elements of the first column: H 1 A = ( r 11 r 12 r 13 0 ∗ ∗ 0 ∗ ∗ ) {\displaystyle H_{1}\;A={\begin{pmatrix}r_{11}&r_{12}&r_{13}\\0&*&*\\0&*&*\end{pmatrix}}} In the second step, the second column of A {\displaystyle {\mathit {A}}} , we want to zero all elements but the first two, which means that we have to calculate H {\displaystyle {\mathit {H}}} with the first column of the submatrix (denoted *), not on the whole second column of A {\displaystyle {\mathit {A}}} . To get H 2 {\displaystyle H_{2}} , we then embed the new H {\displaystyle {\mathit {H}}} into an m × n {\displaystyle m\times n} identity: H 2 = ( 1 0 0 0 H 0 ) {\displaystyle H_{2}={\begin{pmatrix}1&0&0\\0&H&\\0&&\end{pmatrix}}} This is how we can, column by column, remove all subdiagonal elements of A {\displaystyle {\mathit {A}}} and thus transform it into R {\displaystyle {\mathit {R}}} . H n . . . H 3 H 2 H 1 A = R {\displaystyle H_{n}\;...\;H_{3}H_{2}H_{1}A=R} The product of all the Householder matrices H {\displaystyle {\mathit {H}}} , for every column, in reverse order, will then yield the orthogonal matrix Q {\displaystyle {\mathit {Q}}} . H 1 H 2 H 3 . . . H n = Q {\displaystyle H_{1}H_{2}H_{3}\;...\;H_{n}=Q} The QR decomposition should then be used to solve linear least squares (Multiple regression) problems A x = b {\displaystyle {\mathit {A}}x=b} by solving R x = Q T b {\displaystyle R\;x=Q^{T}\;b} When R {\displaystyle {\mathit {R}}} is not square, i.e. m > n {\displaystyle m>n} we have to cut off the m − n {\displaystyle {\mathit {m}}-n} zero padded bottom rows. R = ( R 1 0 ) {\displaystyle R={\begin{pmatrix}R_{1}\\0\end{pmatrix}}} and the same for the RHS: Q T b = ( q 1 q 2 ) {\displaystyle Q^{T}\;b={\begin{pmatrix}q_{1}\\q_{2}\end{pmatrix}}} Finally, solve the square upper triangular system by back substitution: R 1 x = q 1 {\displaystyle R_{1}\;x=q_{1}}
#R
R
# R has QR decomposition built-in (using LAPACK or LINPACK)   a <- matrix(c(12, -51, 4, 6, 167, -68, -4, 24, -41), nrow=3, ncol=3, byrow=T) d <- qr(a) qr.Q(d) qr.R(d)   # now fitting a polynomial x <- 0:10 y <- 3*x^2 + 2*x + 1   # using QR decomposition directly a <- cbind(1, x, x^2) qr.coef(qr(a), y)   # using least squares a <- cbind(x, x^2) lsfit(a, y)$coefficients   # using a linear model xx <- x*x m <- lm(y ~ x + xx) coef(m)
http://rosettacode.org/wiki/Prime_triangle
Prime triangle
You will require a function f which when given an integer S will return a list of the arrangements of the integers 1 to S such that g1=1 gS=S and generally for n=1 to n=S-1 gn+gn+1 is prime. S=1 is undefined. For S=2 to S=20 print f(S) to form a triangle. Then again for S=2 to S=20 print the number of possible arrangements of 1 to S meeting these requirements.
#C.2B.2B
C++
#include <cassert> #include <chrono> #include <iomanip> #include <iostream> #include <numeric> #include <vector>   bool is_prime(unsigned int n) { assert(n > 0 && n < 64); return (1ULL << n) & 0x28208a20a08a28ac; }   template <typename Iterator> bool prime_triangle_row(Iterator begin, Iterator end) { if (std::distance(begin, end) == 2) return is_prime(*begin + *(begin + 1)); for (auto i = begin + 1; i + 1 != end; ++i) { if (is_prime(*begin + *i)) { std::iter_swap(i, begin + 1); if (prime_triangle_row(begin + 1, end)) return true; std::iter_swap(i, begin + 1); } } return false; }   template <typename Iterator> void prime_triangle_count(Iterator begin, Iterator end, int& count) { if (std::distance(begin, end) == 2) { if (is_prime(*begin + *(begin + 1))) ++count; return; } for (auto i = begin + 1; i + 1 != end; ++i) { if (is_prime(*begin + *i)) { std::iter_swap(i, begin + 1); prime_triangle_count(begin + 1, end, count); std::iter_swap(i, begin + 1); } } }   template <typename Iterator> void print(Iterator begin, Iterator end) { if (begin == end) return; auto i = begin; std::cout << std::setw(2) << *i++; for (; i != end; ++i) std::cout << ' ' << std::setw(2) << *i; std::cout << '\n'; }   int main() { auto start = std::chrono::high_resolution_clock::now(); for (unsigned int n = 2; n < 21; ++n) { std::vector<unsigned int> v(n); std::iota(v.begin(), v.end(), 1); if (prime_triangle_row(v.begin(), v.end())) print(v.begin(), v.end()); } std::cout << '\n'; for (unsigned int n = 2; n < 21; ++n) { std::vector<unsigned int> v(n); std::iota(v.begin(), v.end(), 1); int count = 0; prime_triangle_count(v.begin(), v.end(), count); if (n > 2) std::cout << ' '; std::cout << count; } std::cout << '\n'; auto end = std::chrono::high_resolution_clock::now(); std::chrono::duration<double> duration(end - start); std::cout << "\nElapsed time: " << duration.count() << " seconds\n"; }
http://rosettacode.org/wiki/Proper_divisors
Proper divisors
The   proper divisors   of a positive integer N are those numbers, other than N itself, that divide N without remainder. For N > 1 they will always include 1,   but for N == 1 there are no proper divisors. Examples The proper divisors of     6     are   1, 2, and 3. The proper divisors of   100   are   1, 2, 4, 5, 10, 20, 25, and 50. Task Create a routine to generate all the proper divisors of a number. use it to show the proper divisors of the numbers 1 to 10 inclusive. Find a number in the range 1 to 20,000 with the most proper divisors. Show the number and just the count of how many proper divisors it has. Show all output here. Related tasks   Amicable pairs   Abundant, deficient and perfect number classifications   Aliquot sequence classifications   Factors of an integer   Prime decomposition
#ALGOL_68
ALGOL 68
# MODE to hold an element of a list of proper divisors # MODE DIVISORLIST = STRUCT( INT divisor, REF DIVISORLIST next );   # end of divisor list value # REF DIVISORLIST nil divisor list = REF DIVISORLIST(NIL);   # resturns a DIVISORLIST containing the proper divisors of n # # if n = 1, 0 or -1, we return no divisors # PROC proper divisors = ( INT n )REF DIVISORLIST: BEGIN REF DIVISORLIST result := nil divisor list; REF DIVISORLIST end list := result; INT abs n = ABS n; IF abs n > 1 THEN # build the list of divisors backeards, so they are # # returned in ascending order # INT root n = ENTIER sqrt( abs n ); FOR d FROM root n BY -1 TO 2 DO IF abs n MOD d = 0 THEN # found another divisor # result := HEAP DIVISORLIST := DIVISORLIST( d, result ); IF end list IS nil divisor list THEN # first result # end list := result FI; IF d * d /= n THEN # add the other divisor to the end of # # the list # next OF end list := HEAP DIVISORLIST := DIVISORLIST( abs n OVER d, nil divisor list ); end list := next OF end list FI FI OD; # 1 is always a proper divisor of numbers > 1 # result := HEAP DIVISORLIST := DIVISORLIST( 1, result ) FI; result END # proper divisors # ;   # returns the number of divisors in a DIVISORLIST # PROC count divisors = ( REF DIVISORLIST list )INT: BEGIN INT result := 0; REF DIVISORLIST divisors := list; WHILE divisors ISNT nil divisor list DO result +:= 1; divisors := next OF divisors OD; result END # count divisors # ;   # find the proper divisors of 1 : 10 # FOR n TO 10 DO REF DIVISORLIST divisors := proper divisors( n ); print( ( "Proper divisors of: ", whole( n, -2 ), ": " ) ); WHILE divisors ISNT nil divisor list DO print( ( " ", whole( divisor OF divisors, 0 ) ) ); divisors := next OF divisors OD; print( ( newline ) ) OD;   # find the first/only number in 1 : 20 000 with the most divisors # INT max number = 20 000; INT max divisors := 0; INT has max divisors := 0; INT with max divisors := 0; FOR d TO max number DO INT divisor count = count divisors( proper divisors( d ) ); IF divisor count > max divisors THEN # found a number with more divisors than the previous max # max divisors := divisor count; has max divisors := d; with max divisors := 1 ELIF divisor count = max divisors THEN # found another number with that many divisors # with max divisors +:= 1 FI OD; print( ( whole( has max divisors, 0 ) , " is the " , IF with max divisors < 2 THEN "only" ELSE "first" FI , " number upto " , whole( max number, 0 ) , " with " , whole( max divisors, 0 ) , " divisors" , newline ) )
http://rosettacode.org/wiki/Priority_queue
Priority queue
A priority queue is somewhat similar to a queue, with an important distinction: each item is added to a priority queue with a priority level, and will be later removed from the queue with the highest priority element first. That is, the items are (conceptually) stored in the queue in priority order instead of in insertion order. Task Create a priority queue.   The queue must support at least two operations:   Insertion.   An element is added to the queue with a priority (a numeric value).   Top item removal.   Deletes the element or one of the elements with the current top priority and return it. Optionally, other operations may be defined, such as peeking (find what current top priority/top element is), merging (combining two priority queues into one), etc. To test your implementation, insert a number of elements into the queue, each with some random priority. Then dequeue them sequentially; now the elements should be sorted by priority. You can use the following task/priority items as input data: Priority Task ══════════ ════════════════ 3 Clear drains 4 Feed cat 5 Make tea 1 Solve RC tasks 2 Tax return The implementation should try to be efficient.   A typical implementation has   O(log n)   insertion and extraction time,   where   n   is the number of items in the queue. You may choose to impose certain limits such as small range of allowed priority levels, limited capacity, etc.   If so, discuss the reasons behind it.
#AArch64_Assembly
AArch64 Assembly
  /* ARM assembly AARCH64 Raspberry PI 3B */ /* program priorQueue64.s */   /*******************************************/ /* Constantes file */ /*******************************************/ /* for this file see task include a file in language AArch64 assembly*/ .include "../includeConstantesARM64.inc"   .equ NBMAXIELEMENTS, 100   /*******************************************/ /* Structures */ /********************************************/ /* example structure item */ .struct 0 item_priority: // priority .struct item_priority + 8 item_address: // string address .struct item_address + 8 item_fin: /* example structure heap */ .struct 0 heap_size: // heap size .struct heap_size + 8 heap_items: // structure of items .struct heap_items + (item_fin * NBMAXIELEMENTS) heap_fin:     /*********************************/ /* Initialized data */ /*********************************/ .data szMessEmpty: .asciz "Empty queue. \n" szMessNotEmpty: .asciz "Not empty queue. \n" szMessError: .asciz "Error detected !!!!. \n" szMessResult: .asciz "Priority : @ : @ \n" // message result   szString1: .asciz "Clear drains" szString2: .asciz "Feed cat" szString3: .asciz "Make tea" szString4: .asciz "Solve RC tasks" szString5: .asciz "Tax return" szCarriageReturn: .asciz "\n" /*********************************/ /* UnInitialized data */ /*********************************/ .bss .align 4 sZoneConv: .skip 24 Queue1: .skip heap_fin // queue memory place /*********************************/ /* code section */ /*********************************/ .text .global main main: // entry of program ldr x0,qAdrQueue1 // queue structure address bl isEmpty cbz x0,1f ldr x0,qAdrszMessEmpty bl affichageMess // display message empty b 2f 1: ldr x0,qAdrszMessNotEmpty bl affichageMess // display message not empty 2: // init item 1 ldr x0,qAdrQueue1 // queue structure address mov x1,#3 // priority ldr x2,qAdrszString1 bl pushQueue // add item in queue cmp x0,#-1 // error ? beq 99f   ldr x0,qAdrQueue1 // queue structure address bl isEmpty cbz x0,3f // not empty ldr x0,qAdrszMessEmpty bl affichageMess // display message empty b 4f 3: ldr x0,qAdrszMessNotEmpty bl affichageMess // display message not empty   4: // init item 2 ldr x0,qAdrQueue1 // queue structure address mov x1,#4 // priority ldr x2,qAdrszString2 bl pushQueue // add item in queue cmp x0,#-1 // error ? beq 99f // init item 3 ldr x0,qAdrQueue1 // queue structure address mov x1,#5 // priority ldr x2,qAdrszString3 bl pushQueue // add item in queue cmp x0,#-1 // error ? beq 99f // init item 4 ldr x0,qAdrQueue1 // queue structure address mov x1,#1 // priority ldr x2,qAdrszString4 bl pushQueue // add item in queue cmp x0,#-1 // error ? beq 99f // init item 5 ldr x0,qAdrQueue1 // queue structure address mov x1,#2 // priority ldr x2,qAdrszString5 bl pushQueue // add item in queue cmp x0,#-1 // error ? beq 99f 5: ldr x0,qAdrQueue1 // queue structure address bl popQueue // return item cmp x0,#-1 // end ? beq 100f mov x2,x1 // save string address ldr x1,qAdrsZoneConv // conversion priority bl conversion10 // decimal conversion ldr x0,qAdrszMessResult ldr x1,qAdrsZoneConv bl strInsertAtCharInc mov x1,x2 // string address bl strInsertAtCharInc bl affichageMess // display message   b 5b // loop 99: // error ldr x0,qAdrszMessError bl affichageMess 100: // standard end of the program mov x0, #0 // return code mov x8, #EXIT // request to exit program svc #0 // perform the system call   qAdrQueue1: .quad Queue1 qAdrszString1: .quad szString1 qAdrszString2: .quad szString2 qAdrszString3: .quad szString3 qAdrszString4: .quad szString4 qAdrszString5: .quad szString5 qAdrszMessError: .quad szMessError qAdrszMessEmpty: .quad szMessEmpty qAdrszMessNotEmpty: .quad szMessNotEmpty qAdrszMessResult: .quad szMessResult qAdrszCarriageReturn: .quad szCarriageReturn //qAdrsMessPriority: .quad sMessPriority qAdrsZoneConv: .quad sZoneConv /******************************************************************/ /* test if queue empty */ /******************************************************************/ /* x0 contains the address of queue structure */ isEmpty: stp x1,lr,[sp,-16]! // save registres ldr x1,[x0,#heap_size] // heap size cmp x1,#0 cset x0,eq ldp x1,lr,[sp],16 // restaur des 2 registres ret /******************************************************************/ /* add item in queue */ /******************************************************************/ /* x0 contains the address of queue structure */ /* x1 contains the priority of item */ /* x2 contains the string address */ pushQueue: stp x1,lr,[sp,-16]! // save registres stp x2,x3,[sp,-16]! // save registres stp x4,x5,[sp,-16]! // save registres stp x6,x7,[sp,-16]! // save registres stp x8,x9,[sp,-16]! // save registres ldr x3,[x0,#heap_size] // heap size cbnz x3,1f // heap empty ? add x4,x0,#heap_items // address of item structure str x1,[x4,#item_priority] // store in first item str x2,[x4,#item_address] mov x3,#1 // heap size str x3,[x0,#heap_size] // new heap size b 100f 1: mov x4,x3 // maxi index lsr x5,x4,#1 // current index = maxi / 2 mov x8,x1 // save priority mov x9,x2 // save string address 2: // insertion loop cmp x4,#0 // end loop ? ble 3f mov x6,#item_fin // item size madd x6,x5,x6,x0 // item shift add x6,x6,#heap_items // compute address item ldr x7,[x6,#item_priority] // load priority cmp x7,x8 // compare priority ble 3f // <= end loop mov x1,x4 // last index mov x2,x5 // current index bl exchange mov x4,x5 // last index = current index lsr x5,x5,#1 // current index / 2 b 2b 3: // store item at last index find mov x6,#item_fin // item size madd x6,x4,x6,x0 // item shift add x6,x6,#heap_items // item address str x8,[x6,#item_priority] str x9,[x6,#item_address] add x3,x3,#1 // increment heap size cmp x3,#NBMAXIELEMENTS // maxi ? bge 99f // yes -> error str x3,[x0,#heap_size] // store new size b 100f 99: mov x0,#-1 // error 100: ldp x8,x9,[sp],16 // restaur des 2 registres ldp x6,x7,[sp],16 // restaur des 2 registres ldp x4,x5,[sp],16 // restaur des 2 registres ldp x2,x3,[sp],16 // restaur des 2 registres ldp x1,lr,[sp],16 // restaur des 2 registres ret /******************************************************************/ /* swap two elements of table */ /******************************************************************/ /* x0 contains the address of table */ /* x1 contains the first index */ /* x2 contains the second index */ exchange: stp x1,lr,[sp,-16]! // save registres stp x2,x3,[sp,-16]! // save registres stp x4,x5,[sp,-16]! // save registres stp x6,x7,[sp,-16]! // save registres add x5,x0,#heap_items // address items begin mov x3,#item_fin // item size madd x4,x1,x3,x5 // compute item 1 address madd x6,x2,x3,x5 // compute item 2 address ldr x5,[x4,#item_priority] // exchange ldr x3,[x6,#item_priority] str x3,[x4,#item_priority] str x5,[x6,#item_priority] ldr x5,[x4,#item_address] ldr x3,[x6,#item_address] str x5,[x6,#item_address] str x3,[x4,#item_address]   100: ldp x6,x7,[sp],16 // restaur des 2 registres ldp x4,x5,[sp],16 // restaur des 2 registres ldp x2,x3,[sp],16 // restaur des 2 registres ldp x1,lr,[sp],16 // restaur des 2 registres ret /******************************************************************/ /* move one element of table */ /******************************************************************/ /* x0 contains the address of table */ /* x1 contains the origin index */ /* x2 contains the destination index */ moveItem: stp x1,lr,[sp,-16]! // save registres stp x2,x3,[sp,-16]! // save registres stp x4,x5,[sp,-16]! // save registres stp x6,x7,[sp,-16]! // save registres add x5,x0,#heap_items // address items begin mov x3,#item_fin // item size madd x4,x1,x3,x5 // compute item 1 address madd x6,x2,x3,x5 // compute item 2 address ldr x5,[x4,#item_priority] // exchange str x5,[x6,#item_priority] ldr x5,[x4,#item_address] str x5,[x6,#item_address]   100: ldp x6,x7,[sp],16 // restaur des 2 registres ldp x4,x5,[sp],16 // restaur des 2 registres ldp x2,x3,[sp],16 // restaur des 2 registres ldp x1,lr,[sp],16 // restaur des 2 registres ret   /******************************************************************/ /* pop queue */ /******************************************************************/ /* x0 contains the address of queue structure */ /* x0 return priority */ /* x1 return string address */ popQueue: stp x10,lr,[sp,-16]! // save registres stp x2,x3,[sp,-16]! // save registres stp x4,x5,[sp,-16]! // save registres stp x6,x7,[sp,-16]! // save registres stp x8,x9,[sp,-16]! // save registres mov x1,x0 // save address queue bl isEmpty // control if empty queue cmp x0,#1 // yes -> error beq 99f   mov x0,x1 // restaur address queue add x4,x0,#heap_items // address of item structure ldr x8,[x4,#item_priority] // save priority first item ldr x9,[x4,#item_address] // save address string first item ldr x3,[x0,#heap_size] // heap size sub x7,x3,#1 // last item mov x1,x7 mov x2,#0 // first item bl moveItem // move last item in first item   cmp x7,#1 // one only item ? beq 10f // yes -> end mov x4,#0 // first index 1: cmp x4,x7 // = last index bge 10f // yes -> end mov x5,x7 // last index cmp x4,#0 // init current index mov x6,#1 // = 1 lsl x1,x4,#1 // else = first index * 2 csel x6,x6,x1,eq cmp x6,x7 // current index > last index bgt 2f // yes // no compar priority current item last item mov x1,#item_fin madd x1,x6,x1,x0 add x1,x1,#heap_items // address of current item structure ldr x1,[x1,#item_priority] mov x10,#item_fin madd x10,x5,x10,x0 add x10,x10,#heap_items // address of last item structure ldr x10,[x10,#item_priority] cmp x1,x10 csel x5,x6,x5,lt 2: add x10,x6,#1 // increment current index cmp x10,x7 // end ? bgt 3f // yes mov x1,#item_fin // no compare priority madd x1,x10,x1,x0 add x1,x1,#heap_items // address of item structure ldr x1,[x1,#item_priority] mov x2,#item_fin madd x2,x5,x2,x0 add x2,x2,#heap_items // address of item structure ldr x2,[x2,#item_priority] cmp x1,x2 csel x5,x10,x5,lt 3: mov x1,x5 // move item mov x2,x4 bl moveItem mov x4,x5 b 1b // and loop 10: sub x3,x3,#1 str x3,[x0,#heap_size] // new heap size mov x0,x8 // return priority mov x1,x9 // return string address b 100f 99: mov x0,#-1 // error 100: ldp x8,x9,[sp],16 // restaur des 2 registres ldp x6,x7,[sp],16 // restaur des 2 registres ldp x4,x5,[sp],16 // restaur des 2 registres ldp x2,x3,[sp],16 // restaur des 2 registres ldp x10,lr,[sp],16 // restaur des 2 registres ret /********************************************************/ /* File Include fonctions */ /********************************************************/ /* for this file see task include a file in language AArch64 assembly */ .include "../includeARM64.inc"  
http://rosettacode.org/wiki/Problem_of_Apollonius
Problem of Apollonius
Task Implement a solution to the Problem of Apollonius   (description on Wikipedia)   which is the problem of finding the circle that is tangent to three specified circles   (colored black in the diagram below to the right). There is an   algebraic solution   which is pretty straightforward. The solutions to the example in the code are shown in the diagram   (below and to the right). The red circle is "internally tangent" to all three black circles,   and the green circle is "externally tangent" to all three black circles.
#BASIC256
BASIC256
  circle1$ = " 0.000, 0.000, 1.000" circle2$ = " 4.000, 0.000, 1.000" circle3$ = " 2.000, 4.000, 2.000"   subroutine ApolloniusSolver(c1$, c2$, c3$, s1, s2, s3) x1 = int(mid(c1$, 3, 1)): y1 = int(mid(c1$, 11, 1)): r1 = int(mid(c1$, 19, 1)) x2 = int(mid(c2$, 3, 1)): y2 = int(mid(c2$, 11, 1)): r2 = int(mid(c2$, 19, 1)) x3 = int(mid(c3$, 3, 1)): y3 = int(mid(c3$, 11, 1)): r3 = int(mid(c3$, 19, 1))   v11 = 2 * x2 - 2 * x1 v12 = 2 * y2 - 2* y1 v13 = x1 * x1 - x2 * x2 + y1 * y1 - y2 * y2 - r1 * r1 + r2 * r2 v14 = 2 * s2 * r2 - 2 * s1 * r1   v21 = 2 * x3 - 2 * x2 v22 = 2 * y3 - 2 * y2 v23 = x2 * x2 - x3 * x3 + y2 * y2 - y3 * y3 - r2 * r2 + r3 * r3 v24 = 2 * s3 * r3 - 2 * s2 * r2   w12 = v12 / v11 w13 = v13 / v11 w14 = v14 / v11   w22 = v22 / v21 - w12 w23 = v23 / v21 - w13 w24 = v24 / v21 - w14   P = 0 - w23 / w22 Q = w24 / w22 M = 0 - w12 * P - w13 N = w14 - w12 * Q   a = N * N + Q * Q - 1 b = 2 * M * N - 2 * N * x1 + 2 * P * Q - 2 * Q * y1 + 2 * s1 * r1 c = x1 * x1 + M * M -2 * M * x1 + P * P + y1 * y1 - 2 * P * y1 - r1 * r1   D = b * b - 4 * a * c   Radius = (0 - b - sqr(D)) / (2 * a) XPos = M + N * Radius YPos = P + Q * Radius   print " "; XPos; ", " ; YPos; ", " ; Radius end subroutine   print " x_pos y_pos radius" print circle1$ print circle2$ print circle3$ print print "R1: " : call ApolloniusSolver(circle1$, circle2$, circle3$, 1, 1, 1) print "R2: " : call ApolloniusSolver(circle1$, circle2$, circle3$, -1, -1, -1) end  
http://rosettacode.org/wiki/Program_name
Program name
The task is to programmatically obtain the name used to invoke the program. (For example determine whether the user ran "python hello.py", or "python hellocaller.py", a program importing the code from "hello.py".) Sometimes a multiline shebang is necessary in order to provide the script name to a language's internal ARGV. See also Command-line arguments Examples from GitHub.
#JavaScript
JavaScript
function foo() { return arguments.callee.name; }
http://rosettacode.org/wiki/Program_name
Program name
The task is to programmatically obtain the name used to invoke the program. (For example determine whether the user ran "python hello.py", or "python hellocaller.py", a program importing the code from "hello.py".) Sometimes a multiline shebang is necessary in order to provide the script name to a language's internal ARGV. See also Command-line arguments Examples from GitHub.
#Jsish
Jsish
#!/usr/bin/env jsish /* Program name, in Jsish */ puts('Executable:', Info.executable()); puts('Argv0  :', Info.argv0());
http://rosettacode.org/wiki/Primorial_numbers
Primorial numbers
Primorial numbers are those formed by multiplying successive prime numbers. The primorial number series is:   primorial(0) =         1       (by definition)   primorial(1) =         2       (2)   primorial(2) =         6       (2×3)   primorial(3) =       30       (2×3×5)   primorial(4) =     210       (2×3×5×7)   primorial(5) =   2310       (2×3×5×7×11)   primorial(6) = 30030       (2×3×5×7×11×13)         ∙ ∙ ∙ To express this mathematically,   primorialn   is   the product of the first   n   (successive) primes:   p r i m o r i a l n = ∏ k = 1 n p r i m e k {\displaystyle primorial_{n}=\prod _{k=1}^{n}prime_{k}} ─── where   p r i m e k {\displaystyle prime_{k}}   is the   kth   prime number. In some sense, generating primorial numbers is similar to factorials. As with factorials, primorial numbers get large quickly. Task   Show the first ten primorial numbers   (0 ──► 9,   inclusive).   Show the length of primorial numbers whose index is:   10   100   1,000   10,000   and   100,000.   Show the length of the one millionth primorial number   (optional).   Use exact integers, not approximations. By   length   (above), it is meant the number of decimal digits in the numbers. Related tasks   Sequence of primorial primes   Factorial   Fortunate_numbers See also   the MathWorld webpage:   primorial   the Wikipedia   webpage:   primorial.   the   OEIS   webpage:   A002110.
#Kotlin
Kotlin
// version 1.0.6   import java.math.BigInteger   const val LIMIT = 1000000 // expect a run time of about 20 minutes on a typical laptop   fun isPrime(n: Int): Boolean { if (n < 2) return false if (n % 2 == 0) return n == 2 if (n % 3 == 0) return n == 3 var d : Int = 5 while (d * d <= n) { if (n % d == 0) return false d += 2 if (n % d == 0) return false d += 4 } return true }   fun countDigits(bi: BigInteger): Int = bi.toString().length   fun main(args: Array<String>) { println("Primorial(0) = 1") println("Primorial(1) = 2") var count = 1 var p = 3 var prod = BigInteger.valueOf(2) var target = 10 while(true) { if (isPrime(p)) { count++ prod *= BigInteger.valueOf(p.toLong()) if (count < 10) { println("Primorial($count) = $prod") if (count == 9) println() } else if (count == target) { println("Primorial($target) has ${countDigits(prod)} digits") if (count == LIMIT) break target *= 10 } } p += 2 } }
http://rosettacode.org/wiki/Pythagorean_triples
Pythagorean triples
A Pythagorean triple is defined as three positive integers ( a , b , c ) {\displaystyle (a,b,c)} where a < b < c {\displaystyle a<b<c} , and a 2 + b 2 = c 2 . {\displaystyle a^{2}+b^{2}=c^{2}.} They are called primitive triples if a , b , c {\displaystyle a,b,c} are co-prime, that is, if their pairwise greatest common divisors g c d ( a , b ) = g c d ( a , c ) = g c d ( b , c ) = 1 {\displaystyle {\rm {gcd}}(a,b)={\rm {gcd}}(a,c)={\rm {gcd}}(b,c)=1} . Because of their relationship through the Pythagorean theorem, a, b, and c are co-prime if a and b are co-prime ( g c d ( a , b ) = 1 {\displaystyle {\rm {gcd}}(a,b)=1} ).   Each triple forms the length of the sides of a right triangle, whose perimeter is P = a + b + c {\displaystyle P=a+b+c} . Task The task is to determine how many Pythagorean triples there are with a perimeter no larger than 100 and the number of these that are primitive. Extra credit Deal with large values.   Can your program handle a maximum perimeter of 1,000,000?   What about 10,000,000?   100,000,000? Note: the extra credit is not for you to demonstrate how fast your language is compared to others;   you need a proper algorithm to solve them in a timely manner. Related tasks   Euler's sum of powers conjecture   List comprehensions   Pythagorean quadruples
#jq
jq
def gcd(a; b): def _gcd: if .[1] == 0 then .[0] else [.[1], .[0] % .[1]] | _gcd end; [a,b] | _gcd ;   # Return: [total, primitives] for pythagorean triangles having # perimeter no larger than peri. # The following uses Euclid's formula with the convention: m > n. def count(peri):   # The inner function can be used to count for a given value of m: def _count: # state [n,m,p, [total, primitives]] .[0] as $n | .[1] as $m | .[2] as $p | if $n < $m and $p <= peri then if (gcd($m;$n) == 1) then .[3] | [ (.[0] + ((peri/$p)|floor) ), (.[1] + 1)] else .[3] end | [$n+2, $m, $p+4*$m, .] | _count else . end;   # m^2 < m*(m+1) <= m*(m+n) = perimeter/2 reduce range(2; (peri/2) | sqrt + 1) as $m ( [1, 2, 12, [0,0]]; (($m % 2) + 1) as $n | (2 * $m * ($m + $n) ) as $p # a+b+c for this (m,n) | [$n, $m, $p, .[3]] | _count ) | .[3] ;   # '''Example''': def pow(i): . as $in | reduce range(0; i) as $j (1; . * $in);   range(1; 9) | . as $i | 10|pow($i) as $i | "\($i): \(count($i) )"  
http://rosettacode.org/wiki/Program_termination
Program termination
Task Show the syntax for a complete stoppage of a program inside a   conditional. This includes all threads/processes which are part of your program. Explain the cleanup (or lack thereof) caused by the termination (allocated memory, database connections, open files, object finalizers/destructors, run-on-exit hooks, etc.). Unless otherwise described, no special cleanup outside that provided by the operating system is provided.
#Gambas
Gambas
Public Sub Form_Open() Dim siCount As Short   Do If siCount > 1000 Then Break Inc siCount Loop   Me.Close   End
http://rosettacode.org/wiki/QR_decomposition
QR decomposition
Any rectangular m × n {\displaystyle m\times n} matrix A {\displaystyle {\mathit {A}}} can be decomposed to a product of an orthogonal matrix Q {\displaystyle {\mathit {Q}}} and an upper (right) triangular matrix R {\displaystyle {\mathit {R}}} , as described in QR decomposition. Task Demonstrate the QR decomposition on the example matrix from the Wikipedia article: A = ( 12 − 51 4 6 167 − 68 − 4 24 − 41 ) {\displaystyle A={\begin{pmatrix}12&-51&4\\6&167&-68\\-4&24&-41\end{pmatrix}}} and the usage for linear least squares problems on the example from Polynomial regression. The method of Householder reflections should be used: Method Multiplying a given vector a {\displaystyle {\mathit {a}}} , for example the first column of matrix A {\displaystyle {\mathit {A}}} , with the Householder matrix H {\displaystyle {\mathit {H}}} , which is given as H = I − 2 u T u u u T {\displaystyle H=I-{\frac {2}{u^{T}u}}uu^{T}} reflects a {\displaystyle {\mathit {a}}} about a plane given by its normal vector u {\displaystyle {\mathit {u}}} . When the normal vector of the plane u {\displaystyle {\mathit {u}}} is given as u = a − ∥ a ∥ 2 e 1 {\displaystyle u=a-\|a\|_{2}\;e_{1}} then the transformation reflects a {\displaystyle {\mathit {a}}} onto the first standard basis vector e 1 = [ 1 0 0 . . . ] T {\displaystyle e_{1}=[1\;0\;0\;...]^{T}} which means that all entries but the first become zero. To avoid numerical cancellation errors, we should take the opposite sign of a 1 {\displaystyle a_{1}} : u = a + sign ( a 1 ) ∥ a ∥ 2 e 1 {\displaystyle u=a+{\textrm {sign}}(a_{1})\|a\|_{2}\;e_{1}} and normalize with respect to the first element: v = u u 1 {\displaystyle v={\frac {u}{u_{1}}}} The equation for H {\displaystyle H} thus becomes: H = I − 2 v T v v v T {\displaystyle H=I-{\frac {2}{v^{T}v}}vv^{T}} or, in another form H = I − β v v T {\displaystyle H=I-\beta vv^{T}} with β = 2 v T v {\displaystyle \beta ={\frac {2}{v^{T}v}}} Applying H {\displaystyle {\mathit {H}}} on a {\displaystyle {\mathit {a}}} then gives H a = − sign ( a 1 ) ∥ a ∥ 2 e 1 {\displaystyle H\;a=-{\textrm {sign}}(a_{1})\;\|a\|_{2}\;e_{1}} and applying H {\displaystyle {\mathit {H}}} on the matrix A {\displaystyle {\mathit {A}}} zeroes all subdiagonal elements of the first column: H 1 A = ( r 11 r 12 r 13 0 ∗ ∗ 0 ∗ ∗ ) {\displaystyle H_{1}\;A={\begin{pmatrix}r_{11}&r_{12}&r_{13}\\0&*&*\\0&*&*\end{pmatrix}}} In the second step, the second column of A {\displaystyle {\mathit {A}}} , we want to zero all elements but the first two, which means that we have to calculate H {\displaystyle {\mathit {H}}} with the first column of the submatrix (denoted *), not on the whole second column of A {\displaystyle {\mathit {A}}} . To get H 2 {\displaystyle H_{2}} , we then embed the new H {\displaystyle {\mathit {H}}} into an m × n {\displaystyle m\times n} identity: H 2 = ( 1 0 0 0 H 0 ) {\displaystyle H_{2}={\begin{pmatrix}1&0&0\\0&H&\\0&&\end{pmatrix}}} This is how we can, column by column, remove all subdiagonal elements of A {\displaystyle {\mathit {A}}} and thus transform it into R {\displaystyle {\mathit {R}}} . H n . . . H 3 H 2 H 1 A = R {\displaystyle H_{n}\;...\;H_{3}H_{2}H_{1}A=R} The product of all the Householder matrices H {\displaystyle {\mathit {H}}} , for every column, in reverse order, will then yield the orthogonal matrix Q {\displaystyle {\mathit {Q}}} . H 1 H 2 H 3 . . . H n = Q {\displaystyle H_{1}H_{2}H_{3}\;...\;H_{n}=Q} The QR decomposition should then be used to solve linear least squares (Multiple regression) problems A x = b {\displaystyle {\mathit {A}}x=b} by solving R x = Q T b {\displaystyle R\;x=Q^{T}\;b} When R {\displaystyle {\mathit {R}}} is not square, i.e. m > n {\displaystyle m>n} we have to cut off the m − n {\displaystyle {\mathit {m}}-n} zero padded bottom rows. R = ( R 1 0 ) {\displaystyle R={\begin{pmatrix}R_{1}\\0\end{pmatrix}}} and the same for the RHS: Q T b = ( q 1 q 2 ) {\displaystyle Q^{T}\;b={\begin{pmatrix}q_{1}\\q_{2}\end{pmatrix}}} Finally, solve the square upper triangular system by back substitution: R 1 x = q 1 {\displaystyle R_{1}\;x=q_{1}}
#Racket
Racket
  > (require math) > (matrix-qr (matrix [[12 -51 4] [ 6 167 -68] [-4 24 -41]])) (array #[#[6/7 -69/175 -58/175] #[3/7 158/175 6/175] #[-2/7 6/35 -33/35]]) (array #[#[14 21 -14] #[0 175 -70] #[0 0 35]])  
http://rosettacode.org/wiki/Prime_triangle
Prime triangle
You will require a function f which when given an integer S will return a list of the arrangements of the integers 1 to S such that g1=1 gS=S and generally for n=1 to n=S-1 gn+gn+1 is prime. S=1 is undefined. For S=2 to S=20 print f(S) to form a triangle. Then again for S=2 to S=20 print the number of possible arrangements of 1 to S meeting these requirements.
#F.23
F#
  // Prime triangle. Nigel Galloway: April 12th., 2022 let fN i (g,(e,l))=e|>Seq.map(fun n->let n=i n in (n::g,List.partition(i>>(=)n) l)) let rec fG n g=function 0->n|>Seq.map fst |x->fG(n|>Seq.collect(fN(if g then fst else snd)))(not g)(x-1) let primeT row=fG [([1],([for g in {2..2..row-1} do if isPrime(g+1) then yield (1,g)],[for n in {3..2..row-1} do for g in {2..2..row-1} do if isPrime(n+g) then yield (n,g)]))] false (row-2) |>Seq.filter(List.head>>(+)row>>isPrime)|>Seq.map(fun n->row::n|>List.rev)   {2..20}|>Seq.iter(fun n->(primeT>>Seq.head>>List.iter(printf "%3d"))n;printfn "");; {2..20}|>Seq.iter(primeT>>Seq.length>>printf "%d "); printfn ""  
http://rosettacode.org/wiki/Proper_divisors
Proper divisors
The   proper divisors   of a positive integer N are those numbers, other than N itself, that divide N without remainder. For N > 1 they will always include 1,   but for N == 1 there are no proper divisors. Examples The proper divisors of     6     are   1, 2, and 3. The proper divisors of   100   are   1, 2, 4, 5, 10, 20, 25, and 50. Task Create a routine to generate all the proper divisors of a number. use it to show the proper divisors of the numbers 1 to 10 inclusive. Find a number in the range 1 to 20,000 with the most proper divisors. Show the number and just the count of how many proper divisors it has. Show all output here. Related tasks   Amicable pairs   Abundant, deficient and perfect number classifications   Aliquot sequence classifications   Factors of an integer   Prime decomposition
#ALGOL-M
ALGOL-M
  BEGIN   % COMPUTE P MOD Q % INTEGER FUNCTION MOD (P, Q); INTEGER P, Q; BEGIN MOD := P - Q * (P / Q); END;   % COUNT, AND OPTIONALLY DISPLAY, PROPER DIVISORS OF N % INTEGER FUNCTION DIVISORS(N, DISPLAY); INTEGER N, DISPLAY; BEGIN INTEGER I, LIMIT, COUNT, START, DELTA; IF MOD(N, 2) = 0 THEN BEGIN START := 2; DELTA := 1; END ELSE  % ONLY NEED TO CHECK ODD DIVISORS % BEGIN START := 3; DELTA := 2; END;  % 1 IS A DIVISOR OF ANY NUMBER > 1 % IF N > 1 THEN COUNT := 1 ELSE COUNT := 0; IF (DISPLAY <> 0) AND (COUNT <> 0) THEN WRITEON(1);  % CHECK REMAINING POTENTIAL DIVISORS % I := START; LIMIT := N / START; WHILE I <= LIMIT DO BEGIN IF MOD(N, I) = 0 THEN BEGIN IF DISPLAY <> 0 THEN WRITEON(I); COUNT := COUNT + 1; END; I := I + DELTA; IF COUNT = 1 THEN LIMIT := N / I; END; DIVISORS := COUNT; END;   COMMENT MAIN PROGRAM BEGINS HERE; INTEGER I, NDIV, TRUE, FALSE, HIGHDIV, HIGHNUM; TRUE := -1; FALSE := 0;   WRITE("PROPER DIVISORS OF FIRST TEN NUMBERS:"); FOR I := 1 STEP 1 UNTIL 10 DO BEGIN WRITE(I, " : "); NDIV := DIVISORS(I, TRUE); END;   WRITE("SEARCHING FOR NUMBER UP TO 10000 WITH MOST DIVISORS ..."); HIGHDIV := 1; HIGHNUM := 1; FOR I := 1 STEP 1 UNTIL 10000 DO BEGIN NDIV := DIVISORS(I, FALSE); IF NDIV > HIGHDIV THEN BEGIN HIGHDIV := NDIV; HIGHNUM := I; END; END; WRITE("THE NUMBER IS:", HIGHNUM); WRITE("IT HAS", HIGHDIV, " DIVISORS");   END  
http://rosettacode.org/wiki/Probabilistic_choice
Probabilistic choice
Given a mapping between items and their required probability of occurrence, generate a million items randomly subject to the given probabilities and compare the target probability of occurrence versus the generated values. The total of all the probabilities should equal one. (Because floating point arithmetic is involved, this is subject to rounding errors). aleph 1/5.0 beth 1/6.0 gimel 1/7.0 daleth 1/8.0 he 1/9.0 waw 1/10.0 zayin 1/11.0 heth 1759/27720 # adjusted so that probabilities add to 1 Related task Random number generator (device)
#Ada
Ada
with Ada.Numerics.Float_Random; use Ada.Numerics.Float_Random; with Ada.Text_IO; use Ada.Text_IO;   procedure Random_Distribution is Trials : constant := 1_000_000; type Outcome is (Aleph, Beth, Gimel, Daleth, He, Waw, Zayin, Heth); Pr : constant array (Outcome) of Uniformly_Distributed := (1.0/5.0, 1.0/6.0, 1.0/7.0, 1.0/8.0, 1.0/9.0, 1.0/10.0, 1.0/11.0, 1.0); Samples : array (Outcome) of Natural := (others => 0); Value  : Uniformly_Distributed; Dice  : Generator; begin for Try in 1..Trials loop Value := Random (Dice); for I in Pr'Range loop if Value <= Pr (I) then Samples (I) := Samples (I) + 1; exit; else Value := Value - Pr (I); end if; end loop; end loop; -- Printing the results for I in Pr'Range loop Put (Outcome'Image (I) & Character'Val (9)); Put (Float'Image (Float (Samples (I)) / Float (Trials)) & Character'Val (9)); if I = Heth then Put_Line (" rest"); else Put_Line (Uniformly_Distributed'Image (Pr (I))); end if; end loop; end Random_Distribution;
http://rosettacode.org/wiki/Priority_queue
Priority queue
A priority queue is somewhat similar to a queue, with an important distinction: each item is added to a priority queue with a priority level, and will be later removed from the queue with the highest priority element first. That is, the items are (conceptually) stored in the queue in priority order instead of in insertion order. Task Create a priority queue.   The queue must support at least two operations:   Insertion.   An element is added to the queue with a priority (a numeric value).   Top item removal.   Deletes the element or one of the elements with the current top priority and return it. Optionally, other operations may be defined, such as peeking (find what current top priority/top element is), merging (combining two priority queues into one), etc. To test your implementation, insert a number of elements into the queue, each with some random priority. Then dequeue them sequentially; now the elements should be sorted by priority. You can use the following task/priority items as input data: Priority Task ══════════ ════════════════ 3 Clear drains 4 Feed cat 5 Make tea 1 Solve RC tasks 2 Tax return The implementation should try to be efficient.   A typical implementation has   O(log n)   insertion and extraction time,   where   n   is the number of items in the queue. You may choose to impose certain limits such as small range of allowed priority levels, limited capacity, etc.   If so, discuss the reasons behind it.
#Action.21
Action!
SET EndProg=*
http://rosettacode.org/wiki/Problem_of_Apollonius
Problem of Apollonius
Task Implement a solution to the Problem of Apollonius   (description on Wikipedia)   which is the problem of finding the circle that is tangent to three specified circles   (colored black in the diagram below to the right). There is an   algebraic solution   which is pretty straightforward. The solutions to the example in the code are shown in the diagram   (below and to the right). The red circle is "internally tangent" to all three black circles,   and the green circle is "externally tangent" to all three black circles.
#BBC_BASIC
BBC BASIC
DIM Circle{x, y, r} DIM Circles{(2)} = Circle{} Circles{(0)}.x = 0 : Circles{(0)}.y = 0 : Circles{(0)}.r = 1 Circles{(1)}.x = 4 : Circles{(1)}.y = 0 : Circles{(1)}.r = 1 Circles{(2)}.x = 2 : Circles{(2)}.y = 4 : Circles{(2)}.r = 2   @% = &2030A REM Solution for internal circle: PROCapollonius(Circle{}, Circles{()}, -1, -1, -1) PRINT "Internal: x = ";Circle.x ", y = ";Circle.y ", r = ";Circle.r REM Solution for external circle: PROCapollonius(Circle{}, Circles{()}, 1, 1, 1) PRINT "External: x = ";Circle.x ", y = ";Circle.y ", r = ";Circle.r END   DEF PROCapollonius(c{}, c{()}, s0, s1, s2) LOCAL x0, x1, x2, y0, y1, y2, r0, r1, r2, a, b, c LOCAL u(), v(), w() : DIM u(2), v(2), w(2) x0 = c{(0)}.x : y0 = c{(0)}.y : r0 = c{(0)}.r x1 = c{(1)}.x : y1 = c{(1)}.y : r1 = c{(1)}.r x2 = c{(2)}.x : y2 = c{(2)}.y : r2 = c{(2)}.r   u() = 2*y1-2*y0, x0*x0-x1*x1+y0*y0-y1*y1-r0*r0+r1*r1, 2*s1*r1-2*s0*r0 v() = 2*y2-2*y1, x1*x1-x2*x2+y1*y1-y2*y2-r1*r1+r2*r2, 2*s2*r2-2*s1*r1 w() = u() / (2*x1 - 2*x0) u() = v() / (2*x2 - 2*x1) - w() u() /= u(0) w(1) -= w(0)*u(1) w(2) -= w(0)*u(2) a = w(2)*w(2) + u(2)*u(2) - 1 b = -2*w(1)*w(2) - 2*w(2)*x1 - 2*u(1)*u(2) - 2*u(2)*y1 + 2*s1*r1 c = x1*x1 + w(1)*w(1) + 2*w(1)*x1 + u(1)*u(1) + y1*y1 + 2*u(1)*y1 - r1*r1   c.r = (-b - SQR(b^2 - 4*a*c)) / (2*a) c.x = c.r * w(2) - w(1) c.y = c.r * u(2) - u(1) ENDPROC
http://rosettacode.org/wiki/Problem_of_Apollonius
Problem of Apollonius
Task Implement a solution to the Problem of Apollonius   (description on Wikipedia)   which is the problem of finding the circle that is tangent to three specified circles   (colored black in the diagram below to the right). There is an   algebraic solution   which is pretty straightforward. The solutions to the example in the code are shown in the diagram   (below and to the right). The red circle is "internally tangent" to all three black circles,   and the green circle is "externally tangent" to all three black circles.
#C
C
#include <stdio.h> #include <tgmath.h>   #define VERBOSE 0 #define for3 for(int i = 0; i < 3; i++)   typedef complex double vec; typedef struct { vec c; double r; } circ;   #define re(x) creal(x) #define im(x) cimag(x) #define cp(x) re(x), im(x) #define CPLX "(%6.3f,%6.3f)" #define CPLX3 CPLX" "CPLX" "CPLX   double cross(vec a, vec b) { return re(a) * im(b) - im(a) * re(b); } double abs2(vec a) { return a * conj(a); }   int apollonius_in(circ aa[], int ss[], int flip, int divert) { vec n[3], x[3], t[3], a, b, center; int s[3], iter = 0, res = 0; double diff = 1, diff_old = -1, axb, d, r;   for3 { s[i] = ss[i] ? 1 : -1; x[i] = aa[i].c; }   while (diff > 1e-20) { a = x[0] - x[2], b = x[1] - x[2]; diff = 0; axb = -cross(a, b); d = sqrt(abs2(a) * abs2(b) * abs2(a - b));   if (VERBOSE) { const char *z = 1 + "-0+"; printf("%c%c%c|%c%c|", z[s[0]], z[s[1]], z[s[2]], z[flip], z[divert]); printf(CPLX3, cp(x[0]), cp(x[1]), cp(x[2])); }   /* r and center represent an arc through points x[i]. Each step, we'll deform this arc by pushing or pulling some point on it towards the edge of each given circle. */ r = fabs(d / (2 * axb)); center = (abs2(a)*b - abs2(b)*a) / (2 * axb) * I + x[2];   /* maybe the "arc" is actually straight line; then we have two choices in defining "push" and "pull", so try both */ if (!axb && flip != -1 && !divert) { if (!d) { /* generally means circle centers overlap */ printf("Given conditions confused me.\n"); return 0; }   if (VERBOSE) puts("\n[divert]"); divert = 1; res = apollonius_in(aa, ss, -1, 1); }   /* if straight line, push dir is its norm; else it's away from center */ for3 n[i] = axb ? aa[i].c - center : a * I * flip; for3 t[i] = aa[i].c + n[i] / cabs(n[i]) * aa[i].r * s[i];   /* diff: how much tangent points have moved since last iteration */ for3 diff += abs2(t[i] - x[i]), x[i] = t[i];   if (VERBOSE) printf(" %g\n", diff);   /* keep an eye on the total diff: failing to converge means no solution */ if (diff >= diff_old && diff_old >= 0) if (iter++ > 20) return res;   diff_old = diff; }   printf("found: "); if (axb) printf("circle "CPLX", r = %f\n", cp(center), r); else printf("line "CPLX3"\n", cp(x[0]), cp(x[1]), cp(x[2]));   return res + 1; }   int apollonius(circ aa[]) { int s[3], i, sum = 0; for (i = 0; i < 8; i++) { s[0] = i & 1, s[1] = i & 2, s[2] = i & 4;   /* internal or external results of a zero-radius circle are the same */ if (s[0] && !aa[0].r) continue; if (s[1] && !aa[1].r) continue; if (s[2] && !aa[2].r) continue; sum += apollonius_in(aa, s, 1, 0); } return sum; }   int main() { circ a[3] = {{0, 1}, {4, 1}, {2 + 4 * I, 1}}; circ b[3] = {{-3, 2}, {0, 1}, {3, 2}}; circ c[3] = {{-2, 1}, {0, 1}, {2 * I, 1}}; //circ c[3] = {{0, 1}, {0, 2}, {0, 3}}; <-- a fun one   puts("set 1"); apollonius(a); puts("set 2"); apollonius(b); puts("set 3"); apollonius(c); }
http://rosettacode.org/wiki/Program_name
Program name
The task is to programmatically obtain the name used to invoke the program. (For example determine whether the user ran "python hello.py", or "python hellocaller.py", a program importing the code from "hello.py".) Sometimes a multiline shebang is necessary in order to provide the script name to a language's internal ARGV. See also Command-line arguments Examples from GitHub.
#Julia
Julia
  prog = basename(Base.source_path()) println("This program file is \"", prog, "\".")  
http://rosettacode.org/wiki/Program_name
Program name
The task is to programmatically obtain the name used to invoke the program. (For example determine whether the user ran "python hello.py", or "python hellocaller.py", a program importing the code from "hello.py".) Sometimes a multiline shebang is necessary in order to provide the script name to a language's internal ARGV. See also Command-line arguments Examples from GitHub.
#Kotlin
Kotlin
// version 1.0.6   // 'progname.kt' packaged as 'progname.jar'   fun main(args: Array<String>) { println(System.getProperty("sun.java.command")) // may not exist on all JVMs println(System.getProperty("java.vm.name")) }
http://rosettacode.org/wiki/Primorial_numbers
Primorial numbers
Primorial numbers are those formed by multiplying successive prime numbers. The primorial number series is:   primorial(0) =         1       (by definition)   primorial(1) =         2       (2)   primorial(2) =         6       (2×3)   primorial(3) =       30       (2×3×5)   primorial(4) =     210       (2×3×5×7)   primorial(5) =   2310       (2×3×5×7×11)   primorial(6) = 30030       (2×3×5×7×11×13)         ∙ ∙ ∙ To express this mathematically,   primorialn   is   the product of the first   n   (successive) primes:   p r i m o r i a l n = ∏ k = 1 n p r i m e k {\displaystyle primorial_{n}=\prod _{k=1}^{n}prime_{k}} ─── where   p r i m e k {\displaystyle prime_{k}}   is the   kth   prime number. In some sense, generating primorial numbers is similar to factorials. As with factorials, primorial numbers get large quickly. Task   Show the first ten primorial numbers   (0 ──► 9,   inclusive).   Show the length of primorial numbers whose index is:   10   100   1,000   10,000   and   100,000.   Show the length of the one millionth primorial number   (optional).   Use exact integers, not approximations. By   length   (above), it is meant the number of decimal digits in the numbers. Related tasks   Sequence of primorial primes   Factorial   Fortunate_numbers See also   the MathWorld webpage:   primorial   the Wikipedia   webpage:   primorial.   the   OEIS   webpage:   A002110.
#Lingo
Lingo
-- libs sieve = script("math.primes").new() bigint = script("bigint").new()   cnt = 1000 * 100 primes = sieve.getNPrimes(cnt)   pr = 1 put "Primorial 0: " & pr repeat with i = 1 to 9 pr = pr*primes[i] put "Primorial " & i & ": " & pr end repeat   pow10 = 10 repeat with i = 10 to cnt pr = bigint.mul(pr, primes[i]) if i mod pow10=0 then put "Primorial " & i & " has length: " & pr.length pow10 = pow10 * 10 end if end repeat
http://rosettacode.org/wiki/Primorial_numbers
Primorial numbers
Primorial numbers are those formed by multiplying successive prime numbers. The primorial number series is:   primorial(0) =         1       (by definition)   primorial(1) =         2       (2)   primorial(2) =         6       (2×3)   primorial(3) =       30       (2×3×5)   primorial(4) =     210       (2×3×5×7)   primorial(5) =   2310       (2×3×5×7×11)   primorial(6) = 30030       (2×3×5×7×11×13)         ∙ ∙ ∙ To express this mathematically,   primorialn   is   the product of the first   n   (successive) primes:   p r i m o r i a l n = ∏ k = 1 n p r i m e k {\displaystyle primorial_{n}=\prod _{k=1}^{n}prime_{k}} ─── where   p r i m e k {\displaystyle prime_{k}}   is the   kth   prime number. In some sense, generating primorial numbers is similar to factorials. As with factorials, primorial numbers get large quickly. Task   Show the first ten primorial numbers   (0 ──► 9,   inclusive).   Show the length of primorial numbers whose index is:   10   100   1,000   10,000   and   100,000.   Show the length of the one millionth primorial number   (optional).   Use exact integers, not approximations. By   length   (above), it is meant the number of decimal digits in the numbers. Related tasks   Sequence of primorial primes   Factorial   Fortunate_numbers See also   the MathWorld webpage:   primorial   the Wikipedia   webpage:   primorial.   the   OEIS   webpage:   A002110.
#Maple
Maple
  with(NumberTheory):   primorial := proc(n::integer) local total := 1: local count: for count from 1 to n do total *= ithprime(count): end: return total; end proc:   primorialDigits := proc(n::integer) local logSum := 0: local count: for count from 1 to n do logSum += log10(ithprime(count)): end: return ceil(logSum); end proc:   print("The first 10 primorial numbers");   for count from 0 to 9 do cat("primorial(", count, ") = ", primorial(count)) end;   for expon from 1 to 5 do cat("primorial(", 10^expon, ") has ", primorialDigits(10^expon), " digits"); end;    
http://rosettacode.org/wiki/Pythagorean_triples
Pythagorean triples
A Pythagorean triple is defined as three positive integers ( a , b , c ) {\displaystyle (a,b,c)} where a < b < c {\displaystyle a<b<c} , and a 2 + b 2 = c 2 . {\displaystyle a^{2}+b^{2}=c^{2}.} They are called primitive triples if a , b , c {\displaystyle a,b,c} are co-prime, that is, if their pairwise greatest common divisors g c d ( a , b ) = g c d ( a , c ) = g c d ( b , c ) = 1 {\displaystyle {\rm {gcd}}(a,b)={\rm {gcd}}(a,c)={\rm {gcd}}(b,c)=1} . Because of their relationship through the Pythagorean theorem, a, b, and c are co-prime if a and b are co-prime ( g c d ( a , b ) = 1 {\displaystyle {\rm {gcd}}(a,b)=1} ).   Each triple forms the length of the sides of a right triangle, whose perimeter is P = a + b + c {\displaystyle P=a+b+c} . Task The task is to determine how many Pythagorean triples there are with a perimeter no larger than 100 and the number of these that are primitive. Extra credit Deal with large values.   Can your program handle a maximum perimeter of 1,000,000?   What about 10,000,000?   100,000,000? Note: the extra credit is not for you to demonstrate how fast your language is compared to others;   you need a proper algorithm to solve them in a timely manner. Related tasks   Euler's sum of powers conjecture   List comprehensions   Pythagorean quadruples
#Julia
Julia
  function primitiven{T<:Integer}(m::T) 1 < m || return T[] m != 2 || return T[1]  !isprime(m) || return T[2:2:m-1] rp = trues(m-1) if isodd(m) rp[1:2:m-1] = false end for p in keys(factor(m)) rp[p:p:m-1] = false end T[1:m-1][rp] end   function pythagoreantripcount{T<:Integer}(plim::T) primcnt = 0 fullcnt = 0 11 < plim || return (primcnt, fullcnt) for m in 2:plim p = 2m^2 p+2m <= plim || break for n in primitiven(m) q = p + 2m*n q <= plim || break primcnt += 1 fullcnt += div(plim, q) end end return (primcnt, fullcnt) end   println("Counting Pythagorian Triplets within perimeter limits:") println(" Limit All Primitive") for om in 1:10 (pcnt, fcnt) = pythagoreantripcount(10^om) println(@sprintf " 10^%02d  %11d  %9d" om fcnt pcnt) end  
http://rosettacode.org/wiki/Program_termination
Program termination
Task Show the syntax for a complete stoppage of a program inside a   conditional. This includes all threads/processes which are part of your program. Explain the cleanup (or lack thereof) caused by the termination (allocated memory, database connections, open files, object finalizers/destructors, run-on-exit hooks, etc.). Unless otherwise described, no special cleanup outside that provided by the operating system is provided.
#Gema
Gema
Star Trek=@err{found a Star Trek reference\n}@abort
http://rosettacode.org/wiki/Program_termination
Program termination
Task Show the syntax for a complete stoppage of a program inside a   conditional. This includes all threads/processes which are part of your program. Explain the cleanup (or lack thereof) caused by the termination (allocated memory, database connections, open files, object finalizers/destructors, run-on-exit hooks, etc.). Unless otherwise described, no special cleanup outside that provided by the operating system is provided.
#Gnuplot
Gnuplot
problem=1 if (problem) { exit gnuplot }
http://rosettacode.org/wiki/QR_decomposition
QR decomposition
Any rectangular m × n {\displaystyle m\times n} matrix A {\displaystyle {\mathit {A}}} can be decomposed to a product of an orthogonal matrix Q {\displaystyle {\mathit {Q}}} and an upper (right) triangular matrix R {\displaystyle {\mathit {R}}} , as described in QR decomposition. Task Demonstrate the QR decomposition on the example matrix from the Wikipedia article: A = ( 12 − 51 4 6 167 − 68 − 4 24 − 41 ) {\displaystyle A={\begin{pmatrix}12&-51&4\\6&167&-68\\-4&24&-41\end{pmatrix}}} and the usage for linear least squares problems on the example from Polynomial regression. The method of Householder reflections should be used: Method Multiplying a given vector a {\displaystyle {\mathit {a}}} , for example the first column of matrix A {\displaystyle {\mathit {A}}} , with the Householder matrix H {\displaystyle {\mathit {H}}} , which is given as H = I − 2 u T u u u T {\displaystyle H=I-{\frac {2}{u^{T}u}}uu^{T}} reflects a {\displaystyle {\mathit {a}}} about a plane given by its normal vector u {\displaystyle {\mathit {u}}} . When the normal vector of the plane u {\displaystyle {\mathit {u}}} is given as u = a − ∥ a ∥ 2 e 1 {\displaystyle u=a-\|a\|_{2}\;e_{1}} then the transformation reflects a {\displaystyle {\mathit {a}}} onto the first standard basis vector e 1 = [ 1 0 0 . . . ] T {\displaystyle e_{1}=[1\;0\;0\;...]^{T}} which means that all entries but the first become zero. To avoid numerical cancellation errors, we should take the opposite sign of a 1 {\displaystyle a_{1}} : u = a + sign ( a 1 ) ∥ a ∥ 2 e 1 {\displaystyle u=a+{\textrm {sign}}(a_{1})\|a\|_{2}\;e_{1}} and normalize with respect to the first element: v = u u 1 {\displaystyle v={\frac {u}{u_{1}}}} The equation for H {\displaystyle H} thus becomes: H = I − 2 v T v v v T {\displaystyle H=I-{\frac {2}{v^{T}v}}vv^{T}} or, in another form H = I − β v v T {\displaystyle H=I-\beta vv^{T}} with β = 2 v T v {\displaystyle \beta ={\frac {2}{v^{T}v}}} Applying H {\displaystyle {\mathit {H}}} on a {\displaystyle {\mathit {a}}} then gives H a = − sign ( a 1 ) ∥ a ∥ 2 e 1 {\displaystyle H\;a=-{\textrm {sign}}(a_{1})\;\|a\|_{2}\;e_{1}} and applying H {\displaystyle {\mathit {H}}} on the matrix A {\displaystyle {\mathit {A}}} zeroes all subdiagonal elements of the first column: H 1 A = ( r 11 r 12 r 13 0 ∗ ∗ 0 ∗ ∗ ) {\displaystyle H_{1}\;A={\begin{pmatrix}r_{11}&r_{12}&r_{13}\\0&*&*\\0&*&*\end{pmatrix}}} In the second step, the second column of A {\displaystyle {\mathit {A}}} , we want to zero all elements but the first two, which means that we have to calculate H {\displaystyle {\mathit {H}}} with the first column of the submatrix (denoted *), not on the whole second column of A {\displaystyle {\mathit {A}}} . To get H 2 {\displaystyle H_{2}} , we then embed the new H {\displaystyle {\mathit {H}}} into an m × n {\displaystyle m\times n} identity: H 2 = ( 1 0 0 0 H 0 ) {\displaystyle H_{2}={\begin{pmatrix}1&0&0\\0&H&\\0&&\end{pmatrix}}} This is how we can, column by column, remove all subdiagonal elements of A {\displaystyle {\mathit {A}}} and thus transform it into R {\displaystyle {\mathit {R}}} . H n . . . H 3 H 2 H 1 A = R {\displaystyle H_{n}\;...\;H_{3}H_{2}H_{1}A=R} The product of all the Householder matrices H {\displaystyle {\mathit {H}}} , for every column, in reverse order, will then yield the orthogonal matrix Q {\displaystyle {\mathit {Q}}} . H 1 H 2 H 3 . . . H n = Q {\displaystyle H_{1}H_{2}H_{3}\;...\;H_{n}=Q} The QR decomposition should then be used to solve linear least squares (Multiple regression) problems A x = b {\displaystyle {\mathit {A}}x=b} by solving R x = Q T b {\displaystyle R\;x=Q^{T}\;b} When R {\displaystyle {\mathit {R}}} is not square, i.e. m > n {\displaystyle m>n} we have to cut off the m − n {\displaystyle {\mathit {m}}-n} zero padded bottom rows. R = ( R 1 0 ) {\displaystyle R={\begin{pmatrix}R_{1}\\0\end{pmatrix}}} and the same for the RHS: Q T b = ( q 1 q 2 ) {\displaystyle Q^{T}\;b={\begin{pmatrix}q_{1}\\q_{2}\end{pmatrix}}} Finally, solve the square upper triangular system by back substitution: R 1 x = q 1 {\displaystyle R_{1}\;x=q_{1}}
#Raku
Raku
# sub householder translated from https://codereview.stackexchange.com/questions/120978/householder-transformation   use v6;   sub identity(Int:D $m --> Array of Array) { my Array @M;   for 0 ..^ $m -> $i { @M.push: [0 xx $m]; @M[$i; $i] = 1; }   @M; }   multi multiply(Array:D @A, @b where Array:D --> Array) { my @c;   for ^@A X ^@b -> ($i, $j) { @c[$i] += @A[$i; $j] * @b[$j]; }   @c; }   multi multiply(Array:D @A, Array:D @B --> Array of Array) { my Array @C;   for ^@A X ^@B[0] -> ($i, $j) { @C[$i; $j] += @A[$i; $_] * @B[$_; $j] for ^@B; }   @C; }   sub transpose(Array:D @M --> Array of Array) { my ($rows, $cols) = (@M.elems, @M[0].elems);   my Array @T;   for ^$cols X ^$rows -> ($j, $i) { @T[$j; $i] = @M[$i; $j]; }   @T; }   #################################################### # NOTE: @A gets overwritten and becomes @R, only need # to return @Q. #################################################### sub householder(Array:D @A --> Array) { my Int ($m, $n) = (@A.elems, @A[0].elems); my @v = 0 xx $m; my Array @Q = identity($m);   for 0 ..^ $n -> $k { my Real $sum = 0; my Real $A0 = @A[$k; $k]; my Int $sign = $A0 < 0 ?? -1 !! 1;   for $k ..^ $m -> $i { $sum += @A[$i; $k] * @A[$i; $k]; }   my Real $sqr_sum = $sign * sqrt($sum); my Real $tmp = sqrt(2 * ($sum + $A0 * $sqr_sum)); @v[$k] = ($sqr_sum + $A0) / $tmp;   for ($k + 1) ..^ $m -> $i { @v[$i] = @A[$i; $k] / $tmp; }   for 0 ..^ $n -> $j { $sum = 0;   for $k ..^ $m -> $i { $sum += @v[$i] * @A[$i; $j]; }   for $k ..^ $m -> $i { @A[$i; $j] -= 2 * @v[$i] * $sum; } }   for 0 ..^ $m -> $j { $sum = 0;   for $k ..^ $m -> $i { $sum += @v[$i] * @Q[$i; $j]; }   for $k ..^ $m -> $i { @Q[$i; $j] -= 2 * @v[$i] * $sum; } } }   @Q }   sub dotp(@a where Array:D, @b where Array:D --> Real) { [+] @a >>*<< @b; }   sub upper-solve(Array:D @U, @b where Array:D, Int:D $n --> Array) { my @y = 0 xx $n;   @y[$n - 1] = @b[$n - 1] / @U[$n - 1; $n - 1];   for reverse ^($n - 1) -> $i { @y[$i] = (@b[$i] - (dotp(@U[$i], @y))) / @U[$i; $i]; }   @y; }   sub polyfit(@x where Array:D, @y where Array:D, Int:D $n) { my Int $m = @x.elems; my Array @V;   # Vandermonde matrix for ^$m X (0 .. $n) -> ($i, $j) { @V[$i; $j] = @x[$i] ** $j }   # least squares my $Q = householder(@V); my @b = multiply($Q, @y);   return upper-solve(@V, @b, $n + 1); }   sub print-mat(Array:D @M, Str:D $name) { my Int ($m, $n) = (@M.elems, @M[0].elems); print "\n$name:\n";   for 0 ..^ $m -> $i { for 0 ..^ $n -> $j { print @M[$i; $j].fmt("%12.6f "); }   print "\n"; } }   sub MAIN() { ############ # 1st part # ############ my Array @A = ( [12, -51, 4], [ 6, 167, -68], [-4, 24, -41], [-1, 1, 0], [ 2, 0, 3] );   print-mat(@A, 'A'); my $Q = householder(@A); $Q = transpose($Q); print-mat($Q, 'Q'); # after householder, @A is now @R print-mat(@A, 'R'); print-mat(multiply($Q, @A), 'check Q x R = A');   ############ # 2nd part # ############ my @x = [^11]; my @y = [1, 6, 17, 34, 57, 86, 121, 162, 209, 262, 321];   my @coef = polyfit(@x, @y, 2);   say "\npolyfit:\n", <constant X X^2>.fmt("%12s"), "\n", @coef.fmt("%12.6f"); }
http://rosettacode.org/wiki/Prime_triangle
Prime triangle
You will require a function f which when given an integer S will return a list of the arrangements of the integers 1 to S such that g1=1 gS=S and generally for n=1 to n=S-1 gn+gn+1 is prime. S=1 is undefined. For S=2 to S=20 print f(S) to form a triangle. Then again for S=2 to S=20 print the number of possible arrangements of 1 to S meeting these requirements.
#Go
Go
package main   import "fmt"   var canFollow [][]bool var arrang []int var bFirst = true   var pmap = make(map[int]bool)   func init() { for _, i := range []int{2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37} { pmap[i] = true } }   func ptrs(res, n, done int) int { ad := arrang[done-1] if n-done <= 1 { if canFollow[ad-1][n-1] { if bFirst { for _, e := range arrang { fmt.Printf("%2d ", e) } fmt.Println() bFirst = false } res++ } } else { done++ for i := done - 1; i <= n-2; i += 2 { ai := arrang[i] if canFollow[ad-1][ai-1] { arrang[i], arrang[done-1] = arrang[done-1], arrang[i] res = ptrs(res, n, done) arrang[i], arrang[done-1] = arrang[done-1], arrang[i] } } } return res }   func primeTriangle(n int) int { canFollow = make([][]bool, n) for i := 0; i < n; i++ { canFollow[i] = make([]bool, n) for j := 0; j < n; j++ { _, ok := pmap[i+j+2] canFollow[i][j] = ok } } bFirst = true arrang = make([]int, n) for i := 0; i < n; i++ { arrang[i] = i + 1 } return ptrs(0, n, 1) }   func main() { counts := make([]int, 19) for i := 2; i <= 20; i++ { counts[i-2] = primeTriangle(i) } fmt.Println() for i := 0; i < 19; i++ { fmt.Printf("%d ", counts[i]) } fmt.Println() }
http://rosettacode.org/wiki/Proper_divisors
Proper divisors
The   proper divisors   of a positive integer N are those numbers, other than N itself, that divide N without remainder. For N > 1 they will always include 1,   but for N == 1 there are no proper divisors. Examples The proper divisors of     6     are   1, 2, and 3. The proper divisors of   100   are   1, 2, 4, 5, 10, 20, 25, and 50. Task Create a routine to generate all the proper divisors of a number. use it to show the proper divisors of the numbers 1 to 10 inclusive. Find a number in the range 1 to 20,000 with the most proper divisors. Show the number and just the count of how many proper divisors it has. Show all output here. Related tasks   Amicable pairs   Abundant, deficient and perfect number classifications   Aliquot sequence classifications   Factors of an integer   Prime decomposition
#AppleScript
AppleScript
-- PROPER DIVISORS -----------------------------------------------------------   -- properDivisors :: Int -> [Int] on properDivisors(n) if n = 1 then {1} else set realRoot to n ^ (1 / 2) set intRoot to realRoot as integer set blnPerfectSquare to intRoot = realRoot   -- isFactor :: Int -> Bool script isFactor on |λ|(x) n mod x = 0 end |λ| end script   -- Factors up to square root of n, set lows to filter(isFactor, enumFromTo(1, intRoot))   -- and quotients of these factors beyond the square root,   -- integerQuotient :: Int -> Int script integerQuotient on |λ|(x) (n / x) as integer end |λ| end script   -- excluding n itself (last item) items 1 thru -2 of (lows & map(integerQuotient, ¬ items (1 + (blnPerfectSquare as integer)) thru -1 of reverse of lows)) end if end properDivisors     -- TEST ---------------------------------------------------------------------- on run -- numberAndDivisors :: Int -> [Int] script numberAndDivisors on |λ|(n) {num:n, divisors:properDivisors(n)} end |λ| end script   -- maxDivisorCount :: Record -> Int -> Record script maxDivisorCount on |λ|(a, n) set intDivisors to length of properDivisors(n)   if intDivisors ≥ divisors of a then {num:n, divisors:intDivisors} else a end if end |λ| end script   {oneToTen:map(numberAndDivisors, ¬ enumFromTo(1, 10)), mostDivisors:foldl(maxDivisorCount, ¬ {num:0, divisors:0}, enumFromTo(1, 20000))} ¬   end run     -- GENERIC FUNCTIONS ---------------------------------------------------------   -- enumFromTo :: Int -> Int -> [Int] on enumFromTo(m, n) if m > n then set d to -1 else set d to 1 end if set lst to {} repeat with i from m to n by d set end of lst to i end repeat return lst end enumFromTo   -- filter :: (a -> Bool) -> [a] -> [a] on filter(f, xs) tell mReturn(f) set lst to {} set lng to length of xs repeat with i from 1 to lng set v to item i of xs if |λ|(v, i, xs) then set end of lst to v end repeat return lst end tell end filter   -- foldl :: (a -> b -> a) -> a -> [b] -> a on foldl(f, startValue, xs) tell mReturn(f) set v to startValue set lng to length of xs repeat with i from 1 to lng set v to |λ|(v, item i of xs, i, xs) end repeat return v end tell end foldl   -- map :: (a -> b) -> [a] -> [b] on map(f, xs) tell mReturn(f) set lng to length of xs set lst to {} repeat with i from 1 to lng set end of lst to |λ|(item i of xs, i, xs) end repeat return lst end tell end map   -- Lift 2nd class handler function into 1st class script wrapper -- mReturn :: Handler -> Script on mReturn(f) if class of f is script then f else script property |λ| : f end script end if end mReturn
http://rosettacode.org/wiki/Probabilistic_choice
Probabilistic choice
Given a mapping between items and their required probability of occurrence, generate a million items randomly subject to the given probabilities and compare the target probability of occurrence versus the generated values. The total of all the probabilities should equal one. (Because floating point arithmetic is involved, this is subject to rounding errors). aleph 1/5.0 beth 1/6.0 gimel 1/7.0 daleth 1/8.0 he 1/9.0 waw 1/10.0 zayin 1/11.0 heth 1759/27720 # adjusted so that probabilities add to 1 Related task Random number generator (device)
#ALGOL_68
ALGOL 68
INT trials = 1 000 000;   MODE LREAL = LONG REAL;   MODE ITEM = STRUCT( STRING name, INT prob count, LREAL expect, mapping ); INT col width = 9; FORMAT real repr = $g(-col width+1, 6)$, item repr = $"Name: "g", Prob count: "g(0)", Expect: "f(real repr)", Mapping: ", f(real repr)l$;   [8]ITEM items := ( ( "aleph", 0, ~, ~ ), ( "beth", 0, ~, ~ ), ( "gimel", 0, ~, ~ ), ( "daleth", 0, ~, ~ ), ( "he", 0, ~, ~ ), ( "waw", 0, ~, ~ ), ( "zayin", 0, ~, ~ ), ( "heth", 0, ~, ~ ) );   main: ( LREAL offset = 5; # const #   # initialise items # LREAL total sum := 0; FOR i FROM LWB items TO UPB items - 1 DO expect OF items[i] := 1/(i-1+offset); total sum +:= expect OF items[i] OD; expect OF items[UPB items] := 1 - total sum;   mapping OF items[LWB items] := expect OF items[LWB items]; FOR i FROM LWB items + 1 TO UPB items DO mapping OF items[i] := mapping OF items[i-1] + expect OF items[i] OD;   # printf((item repr, items)) #   # perform the sampling # PROC sample = (REF[]LREAL mapping)INT:( INT out; LREAL rand real = random; FOR j FROM LWB items TO UPB items DO IF rand real < mapping[j] THEN out := j; done FI OD; done: out );   FOR i TO trials DO prob count OF items[sample(mapping OF items)] +:= 1 OD;   FORMAT indent = $17k$;   # print the results # printf(($"Trials: "g(0)l$, trials)); printf(($"Items:"$,indent)); FOR i FROM LWB items TO UPB items DO printf(($gn(col width)k" "$, name OF items[i])) OD; printf(($l"Target prob.:"$, indent, $f(real repr)" "$, expect OF items)); printf(($l"Attained prob.:"$, indent)); FOR i FROM LWB items TO UPB items DO printf(($f(real repr)" "$, prob count OF items[i]/trials)) OD; printf($l$) )
http://rosettacode.org/wiki/Primes_-_allocate_descendants_to_their_ancestors
Primes - allocate descendants to their ancestors
The concept, is to add the decomposition into prime factors of a number to get its 'ancestors'. The objective is to demonstrate that the choice of the algorithm can be crucial in term of performance. This solution could be compared to the solution that would use the decomposition into primes for all the numbers between 1 and 333. The problem is to list, for a delimited set of ancestors (from 1 to 99) : - the total of their own ancestors (LEVEL), - their own ancestors (ANCESTORS), - the total of the direct descendants (DESCENDANTS), - all the direct descendants. You only have to consider the prime factors < 100. A grand total of the descendants has to be printed at the end of the list. The task should be accomplished in a reasonable time-frame. Example : 46 = 2*23 --> 2+23 = 25, is the parent of 46. 25 = 5*5 --> 5+5 = 10, is the parent of 25. 10 = 2*5 --> 2+5 = 7, is the parent of 10. 7 is a prime factor and, as such, has no parent. 46 has 3 ancestors (7, 10 and 25). 46 has 557 descendants. The list layout and the output for Parent [46] : [46] Level: 3 Ancestors: 7, 10, 25 Descendants: 557 129, 205, 246, 493, 518, 529, 740, 806, 888, 999, 1364, 1508, 1748, 2552, 2871, 3128, 3255, 3472, 3519, 3875, 3906, 4263, 4650, 4960, 5075, 5415, 5580, 5776, 5952, 6090, 6279, 6496, 6498, 6696, 6783, 7250, 7308, 7475, 7533, 8075, 8151, 8619, 8700, 8855, 8970, 9280, 9568, 9690, 10115, 10336, 10440, 10626, 10764, 11136, 11495, 11628, 11745, 12103, 12138, 12155, 12528, 12650, 13794, 14094, 14399, 14450, 14586, 15180, 15379, 15778, 16192, 17290, 17303, 17340, 18216, 18496, 20482, 20493, 20570, 20748, 20808, 21658, 21970, 22540, 23409, 24684, 24700, 26026, 26364, 27048, 29260, 29282, 29640, 30429, 30940, 31616, 32200, 33345, 35112, 35568, 36225, 36652, 37128, 37180, 38640, 39501, 40014, 41216, 41769, 41800, 43125, 43470, 44044, 44200, 44616, 46000, 46368, 47025, 49725, 50160, 50193, 51750, 52136, 52164, 52360, 53040, 53504, 55200, 56430, 56576, 58653, 58880, 58905, 59670, 60192, 62100, 62832, 62920, 63648, 66240, 66248, 67716, 69825, 70125, 70656, 70686, 70785, 71604, 74480, 74520, 74529, 74536, 74800, 75504, 79488, 83125, 83790, 83835, 83853, 84150, 84942, 87465, 88725, 89376, 89424, 89760, 93296, 94640, 95744, 99750, 99825, 100548, 100602, 100980, 104125, 104958, 105105, 105625, 106400, 106470, 106480, 107712, 112112, 113568, 118750, 119700, 119790, 121176, 124509, 124950, 125125, 126126, 126750, 127680, 127764, 127776, 133280, 135200, 136192, 136323, 142500, 143640, 143748, 148225, 148750, 149940, 150150, 152000, 152100, 153216, 156065, 159936, 160160, 161595, 162240, 171000, 172368, 173056, 177870, 178500, 178750, 179928, 180180, 182400, 182520, 184877, 187278, 189728, 190400, 192192, 192375, 193914, 194560, 194688, 202419, 205200, 205335, 211750, 212500, 213444, 214200, 214500, 216216, 218880, 219024, 222950, 228480, 228800, 230850, 233472, 240975, 243243, 243712, 246240, 246402, 254100, 255000, 257040, 257400, 262656, 264110, 267540, 271040, 272000, 274176, 274560, 277020, 285376, 286875, 289170, 289575, 292864, 295488, 302500, 304920, 306000, 308448, 308880, 316932, 318500, 321048, 325248, 326400, 329472, 332424, 343035, 344250, 347004, 347490, 348160, 361179, 363000, 365904, 367200, 370656, 373977, 377300, 382200, 387200, 391680, 407680, 408375, 411642, 413100, 416988, 417792, 429975, 435600, 440640, 452760, 455000, 458640, 464640, 470016, 470596, 482944, 489216, 490050, 495616, 495720, 509355, 511875, 515970, 522720, 528768, 539000, 543312, 546000, 550368, 557568, 557685, 582400, 588060, 594864, 606375, 609375, 611226, 614250, 619164, 627264, 646800, 650000, 655200, 669222, 672280, 689920, 698880, 705672, 721875, 727650, 731250, 737100, 745472, 756315, 770000, 776160, 780000, 786240, 793881, 806736, 827904, 832000, 838656, 859375, 866250, 873180, 877500, 884520, 900375, 907578, 924000, 931392, 936000, 943488, 960400, 985600, 995085, 998400, 1031250, 1039500, 1047816, 1053000, 1061424, 1064960, 1071875, 1080450, 1100000, 1108800, 1123200, 1152480, 1178793, 1182720, 1184625, 1194102, 1198080, 1229312, 1237500, 1247400, 1261568, 1263600, 1277952, 1286250, 1296540, 1320000, 1330560, 1347840, 1372000, 1382976, 1403325, 1408000, 1419264, 1421550, 1437696, 1485000, 1496880, 1516320, 1531250, 1543500, 1555848, 1584000, 1596672, 1617408, 1646400, 1670625, 1683990, 1689600, 1705860, 1750329, 1756160, 1782000, 1796256, 1802240, 1819584, 1837500, 1852200, 1900800, 1960000, 1975680, 2004750, 2020788, 2027520, 2047032, 2083725, 2107392, 2138400, 2162688, 2187500, 2205000, 2222640, 2280960, 2302911, 2352000, 2370816, 2405700, 2433024, 2480625, 2500470, 2508800, 2566080, 2625000, 2646000, 2667168, 2737152, 2800000, 2822400, 2886840, 2953125, 2976750, 3000564, 3010560, 3079296, 3125000, 3150000, 3175200, 3211264, 3247695, 3360000, 3386880, 3464208, 3515625, 3543750, 3572100, 3584000, 3612672, 3750000, 3780000, 3810240, 3897234, 4000000, 4032000, 4064256, 4218750, 4252500, 4286520, 4300800, 4500000, 4536000, 4572288, 4587520, 4800000, 4822335, 4838400, 5062500, 5103000, 5120000, 5143824, 5160960, 5400000, 5443200, 5505024, 5740875, 5760000, 5786802, 5806080, 6075000, 6123600, 6144000, 6193152, 6480000, 6531840, 6553600, 6834375, 6889050, 6912000, 6967296, 7290000, 7348320, 7372800, 7776000, 7838208, 7864320, 8201250, 8266860, 8294400, 8388608, 8748000, 8817984, 8847360, 9331200, 9437184, 9841500, 9920232, 9953280, 10497600, 10616832, 11160261, 11197440, 11809800, 11943936, 12597120, 13286025, 13436928, 14171760, 15116544, 15943230, 17006112, 19131876 Some figures : The biggest descendant number : 3^33 = 5.559.060.566.555.523 (parent 99) Total Descendants 546.986
#11l
11l
V maxsum = 99   F get_primes(max) V lprimes = [2] L(x) (3..max).step(2) L(p) lprimes I x % p == 0 L.break L.was_no_break lprimes.append(x) R lprimes   V descendants = [[Int64]()] * (maxsum + 1) V ancestors = [[Int64]()] * (maxsum + 1)   V primes = get_primes(maxsum)   L(p) primes descendants[p].append(p) L(s) 1 .< descendants.len - p descendants[s + p] [+]= descendants[s].map(pr -> @p * pr)   L(p) primes [+] [4] descendants[p].pop()   V total = 0 L(s) 1..maxsum descendants[s].sort() L(d) descendants[s] I d > maxsum L.break ancestors[Int(d)] = ancestors[s] [+] [Int64(s)] print([s]‘ Level: ’ancestors[s].len) print(‘Ancestors: ’(I !ancestors[s].empty {String(ancestors[s])} E ‘None’)) print(‘Descendants: ’(I !descendants[s].empty {String(descendants[s].len)} E ‘None’)) I !descendants[s].empty print(descendants[s]) print() total += descendants[s].len   print(‘Total descendants ’total)
http://rosettacode.org/wiki/Priority_queue
Priority queue
A priority queue is somewhat similar to a queue, with an important distinction: each item is added to a priority queue with a priority level, and will be later removed from the queue with the highest priority element first. That is, the items are (conceptually) stored in the queue in priority order instead of in insertion order. Task Create a priority queue.   The queue must support at least two operations:   Insertion.   An element is added to the queue with a priority (a numeric value).   Top item removal.   Deletes the element or one of the elements with the current top priority and return it. Optionally, other operations may be defined, such as peeking (find what current top priority/top element is), merging (combining two priority queues into one), etc. To test your implementation, insert a number of elements into the queue, each with some random priority. Then dequeue them sequentially; now the elements should be sorted by priority. You can use the following task/priority items as input data: Priority Task ══════════ ════════════════ 3 Clear drains 4 Feed cat 5 Make tea 1 Solve RC tasks 2 Tax return The implementation should try to be efficient.   A typical implementation has   O(log n)   insertion and extraction time,   where   n   is the number of items in the queue. You may choose to impose certain limits such as small range of allowed priority levels, limited capacity, etc.   If so, discuss the reasons behind it.
#Ada
Ada
with Ada.Containers.Synchronized_Queue_Interfaces; with Ada.Containers.Unbounded_Priority_Queues; with Ada.Strings.Unbounded;   procedure Priority_Queues is use Ada.Containers; use Ada.Strings.Unbounded; type Queue_Element is record Priority : Natural; Content  : Unbounded_String; end record; function Get_Priority (Element : Queue_Element) return Natural is begin return Element.Priority; end Get_Priority; function Before (Left, Right : Natural) return Boolean is begin return Left > Right; end Before; package String_Queues is new Synchronized_Queue_Interfaces (Element_Type => Queue_Element); package String_Priority_Queues is new Unbounded_Priority_Queues (Queue_Interfaces => String_Queues, Queue_Priority => Natural);   My_Queue : String_Priority_Queues.Queue; begin My_Queue.Enqueue (New_Item => (Priority => 3, Content => To_Unbounded_String ("Clear drains"))); My_Queue.Enqueue (New_Item => (Priority => 4, Content => To_Unbounded_String ("Feed cat"))); My_Queue.Enqueue (New_Item => (Priority => 5, Content => To_Unbounded_String ("Make tea"))); My_Queue.Enqueue (New_Item => (Priority => 1, Content => To_Unbounded_String ("Solve RC tasks"))); My_Queue.Enqueue (New_Item => (Priority => 2, Content => To_Unbounded_String ("Tax return")));   declare Element : Queue_Element; begin while My_Queue.Current_Use > 0 loop My_Queue.Dequeue (Element => Element); Ada.Text_IO.Put_Line (Natural'Image (Element.Priority) & " => " & To_String (Element.Content)); end loop; end; end Priority_Queues;
http://rosettacode.org/wiki/Problem_of_Apollonius
Problem of Apollonius
Task Implement a solution to the Problem of Apollonius   (description on Wikipedia)   which is the problem of finding the circle that is tangent to three specified circles   (colored black in the diagram below to the right). There is an   algebraic solution   which is pretty straightforward. The solutions to the example in the code are shown in the diagram   (below and to the right). The red circle is "internally tangent" to all three black circles,   and the green circle is "externally tangent" to all three black circles.
#C.23
C#
  using System;   namespace ApolloniusProblemCalc { class Program { static float rs = 0; static float xs = 0; static float ys = 0;   public static void Main(string[] args) { float gx1; float gy1; float gr1; float gx2; float gy2; float gr2; float gx3; float gy3; float gr3;   //----------Enter values for the given circles here---------- gx1 = 0; gy1 = 0; gr1 = 1; gx2 = 4; gy2 = 0; gr2 = 1; gx3 = 2; gy3 = 4; gr3 = 2; //-----------------------------------------------------------   for (int i = 1; i <= 8; i++) { SolveTheApollonius(i, gx1, gy1, gr1, gx2, gy2, gr2, gx3, gy3, gr3);     if (i == 1) { Console.WriteLine("X of point of the " + i + "st solution: " + xs.ToString()); Console.WriteLine("Y of point of the " + i + "st solution: " + ys.ToString()); Console.WriteLine(i + "st Solution circle's radius: " + rs.ToString()); } else if (i == 2) { Console.WriteLine("X of point of the " + i + "ed solution: " + xs.ToString()); Console.WriteLine("Y of point of the " + i + "ed solution: " + ys.ToString()); Console.WriteLine(i + "ed Solution circle's radius: " + rs.ToString()); } else if(i == 3) { Console.WriteLine("X of point of the " + i + "rd solution: " + xs.ToString()); Console.WriteLine("Y of point of the " + i + "rd solution: " + ys.ToString()); Console.WriteLine(i + "rd Solution circle's radius: " + rs.ToString()); } else { Console.WriteLine("X of point of the " + i + "th solution: " + xs.ToString()); Console.WriteLine("Y of point of the " + i + "th solution: " + ys.ToString()); Console.WriteLine(i + "th Solution circle's radius: " + rs.ToString()); }   Console.WriteLine(); }     Console.ReadKey(true); }   private static void SolveTheApollonius(int calcCounter, float x1, float y1, float r1, float x2, float y2, float r2, float x3, float y3, float r3) { float s1 = 1; float s2 = 1; float s3 = 1;   if (calcCounter == 2) { s1 = -1; s2 = -1; s3 = -1; } else if (calcCounter == 3) { s1 = 1; s2 = -1; s3 = -1; } else if (calcCounter == 4) { s1 = -1; s2 = 1; s3 = -1; } else if (calcCounter == 5) { s1 = -1; s2 = -1; s3 = 1; } else if (calcCounter == 6) { s1 = 1; s2 = 1; s3 = -1; } else if (calcCounter == 7) { s1 = -1; s2 = 1; s3 = 1; } else if (calcCounter == 8) { s1 = 1; s2 = -1; s3 = 1; }   //This calculation to solve for the solution circles is cited from the Java version float v11 = 2 * x2 - 2 * x1; float v12 = 2 * y2 - 2 * y1; float v13 = x1 * x1 - x2 * x2 + y1 * y1 - y2 * y2 - r1 * r1 + r2 * r2; float v14 = 2 * s2 * r2 - 2 * s1 * r1;   float v21 = 2 * x3 - 2 * x2; float v22 = 2 * y3 - 2 * y2; float v23 = x2 * x2 - x3 * x3 + y2 * y2 - y3 * y3 - r2 * r2 + r3 * r3; float v24 = 2 * s3 * r3 - 2 * s2 * r2;   float w12 = v12 / v11; float w13 = v13 / v11; float w14 = v14 / v11;   float w22 = v22 / v21 - w12; float w23 = v23 / v21 - w13; float w24 = v24 / v21 - w14;   float P = -w23 / w22; float Q = w24 / w22; float M = -w12 * P - w13; float N = w14 - w12 * Q;   float a = N * N + Q * Q - 1; float b = 2 * M * N - 2 * N * x1 + 2 * P * Q - 2 * Q * y1 + 2 * s1 * r1; float c = x1 * x1 + M * M - 2 * M * x1 + P * P + y1 * y1 - 2 * P * y1 - r1 * r1;   float D = b * b - 4 * a * c;   rs = (-b - float.Parse(Math.Sqrt(D).ToString())) / (2 * float.Parse(a.ToString())); xs = M + N * rs; ys = P + Q * rs; } } }  
http://rosettacode.org/wiki/Program_name
Program name
The task is to programmatically obtain the name used to invoke the program. (For example determine whether the user ran "python hello.py", or "python hellocaller.py", a program importing the code from "hello.py".) Sometimes a multiline shebang is necessary in order to provide the script name to a language's internal ARGV. See also Command-line arguments Examples from GitHub.
#langur
langur
writeln "script: ", _script writeln "script args: ", _args
http://rosettacode.org/wiki/Program_name
Program name
The task is to programmatically obtain the name used to invoke the program. (For example determine whether the user ran "python hello.py", or "python hellocaller.py", a program importing the code from "hello.py".) Sometimes a multiline shebang is necessary in order to provide the script name to a language's internal ARGV. See also Command-line arguments Examples from GitHub.
#Lasso
Lasso
#!/usr/bin/lasso9   stdoutnl("Program: " + $argv->first)
http://rosettacode.org/wiki/Primorial_numbers
Primorial numbers
Primorial numbers are those formed by multiplying successive prime numbers. The primorial number series is:   primorial(0) =         1       (by definition)   primorial(1) =         2       (2)   primorial(2) =         6       (2×3)   primorial(3) =       30       (2×3×5)   primorial(4) =     210       (2×3×5×7)   primorial(5) =   2310       (2×3×5×7×11)   primorial(6) = 30030       (2×3×5×7×11×13)         ∙ ∙ ∙ To express this mathematically,   primorialn   is   the product of the first   n   (successive) primes:   p r i m o r i a l n = ∏ k = 1 n p r i m e k {\displaystyle primorial_{n}=\prod _{k=1}^{n}prime_{k}} ─── where   p r i m e k {\displaystyle prime_{k}}   is the   kth   prime number. In some sense, generating primorial numbers is similar to factorials. As with factorials, primorial numbers get large quickly. Task   Show the first ten primorial numbers   (0 ──► 9,   inclusive).   Show the length of primorial numbers whose index is:   10   100   1,000   10,000   and   100,000.   Show the length of the one millionth primorial number   (optional).   Use exact integers, not approximations. By   length   (above), it is meant the number of decimal digits in the numbers. Related tasks   Sequence of primorial primes   Factorial   Fortunate_numbers See also   the MathWorld webpage:   primorial   the Wikipedia   webpage:   primorial.   the   OEIS   webpage:   A002110.
#Mathematica.2FWolfram_Language
Mathematica/Wolfram Language
FoldList[Times, 1, Prime @ Range @ 9]
http://rosettacode.org/wiki/Primorial_numbers
Primorial numbers
Primorial numbers are those formed by multiplying successive prime numbers. The primorial number series is:   primorial(0) =         1       (by definition)   primorial(1) =         2       (2)   primorial(2) =         6       (2×3)   primorial(3) =       30       (2×3×5)   primorial(4) =     210       (2×3×5×7)   primorial(5) =   2310       (2×3×5×7×11)   primorial(6) = 30030       (2×3×5×7×11×13)         ∙ ∙ ∙ To express this mathematically,   primorialn   is   the product of the first   n   (successive) primes:   p r i m o r i a l n = ∏ k = 1 n p r i m e k {\displaystyle primorial_{n}=\prod _{k=1}^{n}prime_{k}} ─── where   p r i m e k {\displaystyle prime_{k}}   is the   kth   prime number. In some sense, generating primorial numbers is similar to factorials. As with factorials, primorial numbers get large quickly. Task   Show the first ten primorial numbers   (0 ──► 9,   inclusive).   Show the length of primorial numbers whose index is:   10   100   1,000   10,000   and   100,000.   Show the length of the one millionth primorial number   (optional).   Use exact integers, not approximations. By   length   (above), it is meant the number of decimal digits in the numbers. Related tasks   Sequence of primorial primes   Factorial   Fortunate_numbers See also   the MathWorld webpage:   primorial   the Wikipedia   webpage:   primorial.   the   OEIS   webpage:   A002110.
#Nickle
Nickle
library "prime_sieve.5c"   # For 1 million primes # int val = 15485867; int val = 1299743;   int start = millis(); int [*] primes = PrimeSieve::primes(val); printf("%d primes (%d) in %dms\n", dim(primes), primes[dim(primes)-1], millis() - start);   int primorial(int n) { if (n == 0) return 1; if (n == 1) return 2; int v = 2; for (int i = 2; i <= n; i++) { v *= primes[i-2]; } return v; }   for (int i = 0; i < 10; i++) { printf("primorial(%d) = %d\n", i, primorial(i)); }   for (int i = 1; i < 6; i++) { start = millis(); int p = 10**i; int pn = primorial(p);   int digits = floor(Math::log10(pn)) + 1; printf("primorial(%d) has %d digits, in %dms\n", p, digits, millis() - start); }
http://rosettacode.org/wiki/Pythagorean_triples
Pythagorean triples
A Pythagorean triple is defined as three positive integers ( a , b , c ) {\displaystyle (a,b,c)} where a < b < c {\displaystyle a<b<c} , and a 2 + b 2 = c 2 . {\displaystyle a^{2}+b^{2}=c^{2}.} They are called primitive triples if a , b , c {\displaystyle a,b,c} are co-prime, that is, if their pairwise greatest common divisors g c d ( a , b ) = g c d ( a , c ) = g c d ( b , c ) = 1 {\displaystyle {\rm {gcd}}(a,b)={\rm {gcd}}(a,c)={\rm {gcd}}(b,c)=1} . Because of their relationship through the Pythagorean theorem, a, b, and c are co-prime if a and b are co-prime ( g c d ( a , b ) = 1 {\displaystyle {\rm {gcd}}(a,b)=1} ).   Each triple forms the length of the sides of a right triangle, whose perimeter is P = a + b + c {\displaystyle P=a+b+c} . Task The task is to determine how many Pythagorean triples there are with a perimeter no larger than 100 and the number of these that are primitive. Extra credit Deal with large values.   Can your program handle a maximum perimeter of 1,000,000?   What about 10,000,000?   100,000,000? Note: the extra credit is not for you to demonstrate how fast your language is compared to others;   you need a proper algorithm to solve them in a timely manner. Related tasks   Euler's sum of powers conjecture   List comprehensions   Pythagorean quadruples
#Kotlin
Kotlin
// version 1.1.2   var total = 0L var prim = 0L var maxPeri = 0L   fun newTri(s0: Long, s1: Long, s2: Long) { val p = s0 + s1 + s2 if (p <= maxPeri) { prim++ total += maxPeri / p newTri( s0 - 2 * s1 + 2 * s2, 2 * s0 - s1 + 2 * s2, 2 * s0 - 2 * s1 + 3 * s2) newTri( s0 + 2 * s1 + 2 * s2, 2 * s0 + s1 + 2 * s2, 2 * s0 + 2 * s1 + 3 * s2) newTri(-s0 + 2 * s1 + 2 * s2, -2 * s0 + s1 + 2 * s2, -2 * s0 + 2 * s1 + 3 * s2) } }   fun main(args: Array<String>) { maxPeri = 100 while (maxPeri <= 10_000_000_000L) { prim = 0 total = 0 newTri(3, 4, 5) println("Up to $maxPeri: $total triples, $prim primatives") maxPeri *= 10 } }
http://rosettacode.org/wiki/Program_termination
Program termination
Task Show the syntax for a complete stoppage of a program inside a   conditional. This includes all threads/processes which are part of your program. Explain the cleanup (or lack thereof) caused by the termination (allocated memory, database connections, open files, object finalizers/destructors, run-on-exit hooks, etc.). Unless otherwise described, no special cleanup outside that provided by the operating system is provided.
#Go
Go
func main() { if problem { return } }
http://rosettacode.org/wiki/Program_termination
Program termination
Task Show the syntax for a complete stoppage of a program inside a   conditional. This includes all threads/processes which are part of your program. Explain the cleanup (or lack thereof) caused by the termination (allocated memory, database connections, open files, object finalizers/destructors, run-on-exit hooks, etc.). Unless otherwise described, no special cleanup outside that provided by the operating system is provided.
#Groovy
Groovy
if (problem) System.exit(intExitCode)
http://rosettacode.org/wiki/QR_decomposition
QR decomposition
Any rectangular m × n {\displaystyle m\times n} matrix A {\displaystyle {\mathit {A}}} can be decomposed to a product of an orthogonal matrix Q {\displaystyle {\mathit {Q}}} and an upper (right) triangular matrix R {\displaystyle {\mathit {R}}} , as described in QR decomposition. Task Demonstrate the QR decomposition on the example matrix from the Wikipedia article: A = ( 12 − 51 4 6 167 − 68 − 4 24 − 41 ) {\displaystyle A={\begin{pmatrix}12&-51&4\\6&167&-68\\-4&24&-41\end{pmatrix}}} and the usage for linear least squares problems on the example from Polynomial regression. The method of Householder reflections should be used: Method Multiplying a given vector a {\displaystyle {\mathit {a}}} , for example the first column of matrix A {\displaystyle {\mathit {A}}} , with the Householder matrix H {\displaystyle {\mathit {H}}} , which is given as H = I − 2 u T u u u T {\displaystyle H=I-{\frac {2}{u^{T}u}}uu^{T}} reflects a {\displaystyle {\mathit {a}}} about a plane given by its normal vector u {\displaystyle {\mathit {u}}} . When the normal vector of the plane u {\displaystyle {\mathit {u}}} is given as u = a − ∥ a ∥ 2 e 1 {\displaystyle u=a-\|a\|_{2}\;e_{1}} then the transformation reflects a {\displaystyle {\mathit {a}}} onto the first standard basis vector e 1 = [ 1 0 0 . . . ] T {\displaystyle e_{1}=[1\;0\;0\;...]^{T}} which means that all entries but the first become zero. To avoid numerical cancellation errors, we should take the opposite sign of a 1 {\displaystyle a_{1}} : u = a + sign ( a 1 ) ∥ a ∥ 2 e 1 {\displaystyle u=a+{\textrm {sign}}(a_{1})\|a\|_{2}\;e_{1}} and normalize with respect to the first element: v = u u 1 {\displaystyle v={\frac {u}{u_{1}}}} The equation for H {\displaystyle H} thus becomes: H = I − 2 v T v v v T {\displaystyle H=I-{\frac {2}{v^{T}v}}vv^{T}} or, in another form H = I − β v v T {\displaystyle H=I-\beta vv^{T}} with β = 2 v T v {\displaystyle \beta ={\frac {2}{v^{T}v}}} Applying H {\displaystyle {\mathit {H}}} on a {\displaystyle {\mathit {a}}} then gives H a = − sign ( a 1 ) ∥ a ∥ 2 e 1 {\displaystyle H\;a=-{\textrm {sign}}(a_{1})\;\|a\|_{2}\;e_{1}} and applying H {\displaystyle {\mathit {H}}} on the matrix A {\displaystyle {\mathit {A}}} zeroes all subdiagonal elements of the first column: H 1 A = ( r 11 r 12 r 13 0 ∗ ∗ 0 ∗ ∗ ) {\displaystyle H_{1}\;A={\begin{pmatrix}r_{11}&r_{12}&r_{13}\\0&*&*\\0&*&*\end{pmatrix}}} In the second step, the second column of A {\displaystyle {\mathit {A}}} , we want to zero all elements but the first two, which means that we have to calculate H {\displaystyle {\mathit {H}}} with the first column of the submatrix (denoted *), not on the whole second column of A {\displaystyle {\mathit {A}}} . To get H 2 {\displaystyle H_{2}} , we then embed the new H {\displaystyle {\mathit {H}}} into an m × n {\displaystyle m\times n} identity: H 2 = ( 1 0 0 0 H 0 ) {\displaystyle H_{2}={\begin{pmatrix}1&0&0\\0&H&\\0&&\end{pmatrix}}} This is how we can, column by column, remove all subdiagonal elements of A {\displaystyle {\mathit {A}}} and thus transform it into R {\displaystyle {\mathit {R}}} . H n . . . H 3 H 2 H 1 A = R {\displaystyle H_{n}\;...\;H_{3}H_{2}H_{1}A=R} The product of all the Householder matrices H {\displaystyle {\mathit {H}}} , for every column, in reverse order, will then yield the orthogonal matrix Q {\displaystyle {\mathit {Q}}} . H 1 H 2 H 3 . . . H n = Q {\displaystyle H_{1}H_{2}H_{3}\;...\;H_{n}=Q} The QR decomposition should then be used to solve linear least squares (Multiple regression) problems A x = b {\displaystyle {\mathit {A}}x=b} by solving R x = Q T b {\displaystyle R\;x=Q^{T}\;b} When R {\displaystyle {\mathit {R}}} is not square, i.e. m > n {\displaystyle m>n} we have to cut off the m − n {\displaystyle {\mathit {m}}-n} zero padded bottom rows. R = ( R 1 0 ) {\displaystyle R={\begin{pmatrix}R_{1}\\0\end{pmatrix}}} and the same for the RHS: Q T b = ( q 1 q 2 ) {\displaystyle Q^{T}\;b={\begin{pmatrix}q_{1}\\q_{2}\end{pmatrix}}} Finally, solve the square upper triangular system by back substitution: R 1 x = q 1 {\displaystyle R_{1}\;x=q_{1}}
#Rascal
Rascal
import util::Math; import Prelude; import vis::Figure; import vis::Render;   public rel[real,real,real] QRdecomposition(rel[real x, real y, real v] matrix){ //orthogonalcolumns oc = domainR(matrix, {0.0}); for (x <- sort(toList(domain(matrix)-{0.0}))){ c = domainR(matrix, {x}); o = domainR(oc, {x-1});   for (n <- [1.0 .. x]){ o = domainR(oc, {n-1}); c = matrixSubtract(c, matrixMultiplybyN(o, matrixDotproduct(o, c)/matrixDotproduct(o, o))); }   oc += c; }   Q = {}; //from orthogonal to orthonormal columns for (el <- oc){ c = domainR(oc, {el[0]}); Q += matrixNormalize({el}, c); }   //from Q to R R= matrixMultiplication(matrixTranspose(Q), matrix); R= {<x,y,toReal(round(v))> | <x,y,v> <- R};   println("Q:"); iprintlnExp(Q); println(); println("R:"); return R; }   //a function that takes the transpose of a matrix, see also Rosetta Code problem "Matrix transposition" public rel[real, real, real] matrixTranspose(rel[real x, real y, real v] matrix){ return {<y, x, v> | <x, y, v> <- matrix}; }   //a function to normalize an element of a matrix by the normalization of a column public rel[real,real,real] matrixNormalize(rel[real x, real y, real v] element, rel[real x, real y, real v] column){ normalized = 1.0/nroot((0.0 | it + v*v | <x,y,v> <- column), 2); return matrixMultiplybyN(element, normalized); }   //a function that takes the dot product, see also Rosetta Code problem "Dot product" public real matrixDotproduct(rel[real x, real y, real v] column1, rel[real x, real y, real v] column2){ return (0.0 | it + v1*v2 | <x1,y1,v1> <- column1, <x2,y2,v2> <- column2, y1==y2); }   //a function to subtract two columns public rel[real,real,real] matrixSubtract(rel[real x, real y, real v] column1, rel[real x, real y, real v] column2){ return {<x1,y1,v1-v2> | <x1,y1,v1> <- column1, <x2,y2,v2> <- column2, y1==y2}; }   //a function to multiply a column by a number public rel[real,real,real] matrixMultiplybyN(rel[real x, real y, real v] column, real n){ return {<x,y,v*n> | <x,y,v> <- column}; }   //a function to perform matrix multiplication, see also Rosetta Code problem "Matrix multiplication". public rel[real, real, real] matrixMultiplication(rel[real x, real y, real v] matrix1, rel[real x, real y, real v] matrix2){ if (max(matrix1.x) == max(matrix2.y)){ p = {<x1,y1,x2,y2, v1*v2> | <x1,y1,v1> <- matrix1, <x2,y2,v2> <- matrix2};   result = {}; for (y <- matrix1.y){ for (x <- matrix2.x){ v = (0.0 | it + v | <x1, y1, x2, y2, v> <- p, x==x2 && y==y1, x1==y2 && y2==x1); result += <x,y,v>; } } return result; } else throw "Matrix sizes do not match."; }   // a function to visualize the result public void displayMatrix(rel[real x, real y, real v] matrix){ points = [box(text("<v>"), align(0.3333*(x+1),0.3333*(y+1)),shrink(0.25)) | <x,y,v> <- matrix]; render(overlay([*points], aspectRatio(1.0))); }   //a matrix, given by a relation of <x-coordinate, y-coordinate, value>. public rel[real x, real y, real v] matrixA = { <0.0,0.0,12.0>, <0.0,1.0, 6.0>, <0.0,2.0,-4.0>, <1.0,0.0,-51.0>, <1.0,1.0,167.0>, <1.0,2.0,24.0>, <2.0,0.0,4.0>, <2.0,1.0,-68.0>, <2.0,2.0,-41.0> };
http://rosettacode.org/wiki/Prime_triangle
Prime triangle
You will require a function f which when given an integer S will return a list of the arrangements of the integers 1 to S such that g1=1 gS=S and generally for n=1 to n=S-1 gn+gn+1 is prime. S=1 is undefined. For S=2 to S=20 print f(S) to form a triangle. Then again for S=2 to S=20 print the number of possible arrangements of 1 to S meeting these requirements.
#J
J
is_prime=: 1&p:@(+/)   is_prime_triangle=: {{ NB. y is index into L and thus analogous to *a p=. is_prime L{~y+0 1 if. N=y do. p return.end. i=. Y=. y+1 if. p do. if. is_prime_triangle Y do. 1 return.end.end. while. M>i=.i+2 do. if. is_prime L{~y,i do. L=: (L{~Y,i) (i,Y)} L if. is_prime_triangle Y do. 1 return.end. L=: (L{~Y,i) (i,Y)} L end. end. 0 }}   prime_triangle_counter=: {{ NB. y is index into L and thus analogous to *a p=. is_prime L{~y+0 1 if. N=y do. count=: count+p return. end. i=. Y=. y+1 if. p do. prime_triangle_counter Y end. while. M>i=. i+2 do. if. is_prime L{~y,i do. L=: (L{~Y,i) (i,Y)} L prime_triangle_counter Y L=: (L{~Y,i) (i,Y)} L end. end. count }}   prime_triangles=: {{ for_k. i.y-1 do. L=: l=. 1+i.1+M=: 1+N=: k count=: 0 prime_triangle_counter 0 L=: l assert is_prime_triangle 0 echo (8":count),' | ',3":L end. }}
http://rosettacode.org/wiki/Proper_divisors
Proper divisors
The   proper divisors   of a positive integer N are those numbers, other than N itself, that divide N without remainder. For N > 1 they will always include 1,   but for N == 1 there are no proper divisors. Examples The proper divisors of     6     are   1, 2, and 3. The proper divisors of   100   are   1, 2, 4, 5, 10, 20, 25, and 50. Task Create a routine to generate all the proper divisors of a number. use it to show the proper divisors of the numbers 1 to 10 inclusive. Find a number in the range 1 to 20,000 with the most proper divisors. Show the number and just the count of how many proper divisors it has. Show all output here. Related tasks   Amicable pairs   Abundant, deficient and perfect number classifications   Aliquot sequence classifications   Factors of an integer   Prime decomposition
#Arc
Arc
    ;; Given num, return num and the list of its divisors (= divisor (fn (num) (= dlist '()) (when (is 1 num) (= dlist '(1 0))) (when (is 2 num) (= dlist '(2 1))) (unless (or (is 1 num) (is 2 num)) (up i 1 (+ 1 (/ num 2)) (if (is 0 (mod num i)) (push i dlist))) (= dlist (cons num dlist))) dlist))   ;; Find out what number has the most divisors between 2 and 20,000. ;; Print a list of the largest known number's divisors as it is found. (= div-lists (fn (cnt (o show 0)) (= tlist '()) (= clist tlist) (when (> show 0) (prn tlist)) (up i 1 cnt (divisor i) (when (is 1 show) (prn dlist)) (when (>= (len dlist) (len tlist)) (= tlist dlist) (when (is show 2) (prn tlist)) (let c (- (len dlist) 1) (push (list i c) clist))))   (= many-divisors (list ((clist 0) 1))) (for n 0 (is ((clist n) 1) ((clist 0) 1)) (= n (+ 1 n)) (push ((clist n) 0) many-divisors)) (= many-divisors (rev many-divisors)) (prn "The number with the most divisors under " cnt " has " (many-divisors 0) " divisors.") (prn "It is the number " (if (> 2 (len many-divisors)) (cut (many-divisors) 1) (many-divisors 1)) ".") (prn "There are " (- (len many-divisors) 1) " numbers" " with this trait, and they are " (map [many-divisors _] (range 1 (- (len many-divisors) 1)))) (prn (map [divisor _] (cut many-divisors 1))) many-divisors))   ;; Do the tasks (div-lists 10 1) (div-lists 20000) ;; This took about 10 minutes on my machine.  
http://rosettacode.org/wiki/Probabilistic_choice
Probabilistic choice
Given a mapping between items and their required probability of occurrence, generate a million items randomly subject to the given probabilities and compare the target probability of occurrence versus the generated values. The total of all the probabilities should equal one. (Because floating point arithmetic is involved, this is subject to rounding errors). aleph 1/5.0 beth 1/6.0 gimel 1/7.0 daleth 1/8.0 he 1/9.0 waw 1/10.0 zayin 1/11.0 heth 1759/27720 # adjusted so that probabilities add to 1 Related task Random number generator (device)
#AppleScript
AppleScript
use AppleScript version "2.5" -- Mac OS X 10.11 (El Capitan) or later. use framework "Foundation" use framework "GameplayKit"   on probabilisticChoices(mapping, picks) script o property mapping : {} end script   -- Make versions of the mapping records with additional 'actual' properties … set mapping to current application's class "NSMutableArray"'s arrayWithArray:(mapping) tell mapping to makeObjectsPerformSelector:("addEntriesFromDictionary:") withObject:({actual:0}) -- … ensuring that they're sorted (for accuracy) in descending order (for efficiency) of probability. set descriptor to current application's class "NSSortDescriptor"'s sortDescriptorWithKey:("probability") ascending:(false) tell mapping to sortUsingDescriptors:({descriptor}) set o's mapping to mapping as list   set rndGenerator to current application's class "GKRandomDistribution"'s distributionForDieWithSideCount:(picks) set onePickth to 1 / picks repeat picks times -- Get a random number between 0.0 and 1.0. set r to rndGenerator's nextUniform() -- Interpret the probability of the number occurring in the range it does -- as picking the item with the same probability of being picked. repeat with thisRecord in o's mapping set r to r - (thisRecord's probability) if (r ≤ 0) then set thisRecord's actual to (thisRecord's actual) + onePickth exit repeat end if end repeat end repeat   return o's mapping end probabilisticChoices   on task() set mapping to {{|item|:"aleph", probability:1 / 5}, {|item|:"beth", probability:1 / 6}, ¬ {|item|:"gimel", probability:1 / 7}, {|item|:"daleth", probability:1 / 8}, ¬ {|item|:"he", probability:1 / 9}, {|item|:"waw", probability:1 / 10}, ¬ {|item|:"zayin", probability:1 / 11}, {|item|:"heth", probability:1759 / 27720}} set picks to 1000000 set theResults to probabilisticChoices(mapping, picks) set output to {} set template to {"|item|:", missing value, ", probability:", missing value, ", actual:", missing value} set astid to AppleScript's text item delimiters set AppleScript's text item delimiters to "" repeat with thisRecord in theResults set {|item|:item 2 of template, probability:item 4 of template, actual:item 6 of template} to thisRecord set {|item|:template's second item, probability:template's fourth item, actual:template's sixth item} to thisRecord set end of output to template as text end repeat set AppleScript's text item delimiters to "}, ¬ {" set output to "{ ¬ {" & output & "} ¬ }" set AppleScript's text item delimiters to astid return output end task   task()
http://rosettacode.org/wiki/Primes_-_allocate_descendants_to_their_ancestors
Primes - allocate descendants to their ancestors
The concept, is to add the decomposition into prime factors of a number to get its 'ancestors'. The objective is to demonstrate that the choice of the algorithm can be crucial in term of performance. This solution could be compared to the solution that would use the decomposition into primes for all the numbers between 1 and 333. The problem is to list, for a delimited set of ancestors (from 1 to 99) : - the total of their own ancestors (LEVEL), - their own ancestors (ANCESTORS), - the total of the direct descendants (DESCENDANTS), - all the direct descendants. You only have to consider the prime factors < 100. A grand total of the descendants has to be printed at the end of the list. The task should be accomplished in a reasonable time-frame. Example : 46 = 2*23 --> 2+23 = 25, is the parent of 46. 25 = 5*5 --> 5+5 = 10, is the parent of 25. 10 = 2*5 --> 2+5 = 7, is the parent of 10. 7 is a prime factor and, as such, has no parent. 46 has 3 ancestors (7, 10 and 25). 46 has 557 descendants. The list layout and the output for Parent [46] : [46] Level: 3 Ancestors: 7, 10, 25 Descendants: 557 129, 205, 246, 493, 518, 529, 740, 806, 888, 999, 1364, 1508, 1748, 2552, 2871, 3128, 3255, 3472, 3519, 3875, 3906, 4263, 4650, 4960, 5075, 5415, 5580, 5776, 5952, 6090, 6279, 6496, 6498, 6696, 6783, 7250, 7308, 7475, 7533, 8075, 8151, 8619, 8700, 8855, 8970, 9280, 9568, 9690, 10115, 10336, 10440, 10626, 10764, 11136, 11495, 11628, 11745, 12103, 12138, 12155, 12528, 12650, 13794, 14094, 14399, 14450, 14586, 15180, 15379, 15778, 16192, 17290, 17303, 17340, 18216, 18496, 20482, 20493, 20570, 20748, 20808, 21658, 21970, 22540, 23409, 24684, 24700, 26026, 26364, 27048, 29260, 29282, 29640, 30429, 30940, 31616, 32200, 33345, 35112, 35568, 36225, 36652, 37128, 37180, 38640, 39501, 40014, 41216, 41769, 41800, 43125, 43470, 44044, 44200, 44616, 46000, 46368, 47025, 49725, 50160, 50193, 51750, 52136, 52164, 52360, 53040, 53504, 55200, 56430, 56576, 58653, 58880, 58905, 59670, 60192, 62100, 62832, 62920, 63648, 66240, 66248, 67716, 69825, 70125, 70656, 70686, 70785, 71604, 74480, 74520, 74529, 74536, 74800, 75504, 79488, 83125, 83790, 83835, 83853, 84150, 84942, 87465, 88725, 89376, 89424, 89760, 93296, 94640, 95744, 99750, 99825, 100548, 100602, 100980, 104125, 104958, 105105, 105625, 106400, 106470, 106480, 107712, 112112, 113568, 118750, 119700, 119790, 121176, 124509, 124950, 125125, 126126, 126750, 127680, 127764, 127776, 133280, 135200, 136192, 136323, 142500, 143640, 143748, 148225, 148750, 149940, 150150, 152000, 152100, 153216, 156065, 159936, 160160, 161595, 162240, 171000, 172368, 173056, 177870, 178500, 178750, 179928, 180180, 182400, 182520, 184877, 187278, 189728, 190400, 192192, 192375, 193914, 194560, 194688, 202419, 205200, 205335, 211750, 212500, 213444, 214200, 214500, 216216, 218880, 219024, 222950, 228480, 228800, 230850, 233472, 240975, 243243, 243712, 246240, 246402, 254100, 255000, 257040, 257400, 262656, 264110, 267540, 271040, 272000, 274176, 274560, 277020, 285376, 286875, 289170, 289575, 292864, 295488, 302500, 304920, 306000, 308448, 308880, 316932, 318500, 321048, 325248, 326400, 329472, 332424, 343035, 344250, 347004, 347490, 348160, 361179, 363000, 365904, 367200, 370656, 373977, 377300, 382200, 387200, 391680, 407680, 408375, 411642, 413100, 416988, 417792, 429975, 435600, 440640, 452760, 455000, 458640, 464640, 470016, 470596, 482944, 489216, 490050, 495616, 495720, 509355, 511875, 515970, 522720, 528768, 539000, 543312, 546000, 550368, 557568, 557685, 582400, 588060, 594864, 606375, 609375, 611226, 614250, 619164, 627264, 646800, 650000, 655200, 669222, 672280, 689920, 698880, 705672, 721875, 727650, 731250, 737100, 745472, 756315, 770000, 776160, 780000, 786240, 793881, 806736, 827904, 832000, 838656, 859375, 866250, 873180, 877500, 884520, 900375, 907578, 924000, 931392, 936000, 943488, 960400, 985600, 995085, 998400, 1031250, 1039500, 1047816, 1053000, 1061424, 1064960, 1071875, 1080450, 1100000, 1108800, 1123200, 1152480, 1178793, 1182720, 1184625, 1194102, 1198080, 1229312, 1237500, 1247400, 1261568, 1263600, 1277952, 1286250, 1296540, 1320000, 1330560, 1347840, 1372000, 1382976, 1403325, 1408000, 1419264, 1421550, 1437696, 1485000, 1496880, 1516320, 1531250, 1543500, 1555848, 1584000, 1596672, 1617408, 1646400, 1670625, 1683990, 1689600, 1705860, 1750329, 1756160, 1782000, 1796256, 1802240, 1819584, 1837500, 1852200, 1900800, 1960000, 1975680, 2004750, 2020788, 2027520, 2047032, 2083725, 2107392, 2138400, 2162688, 2187500, 2205000, 2222640, 2280960, 2302911, 2352000, 2370816, 2405700, 2433024, 2480625, 2500470, 2508800, 2566080, 2625000, 2646000, 2667168, 2737152, 2800000, 2822400, 2886840, 2953125, 2976750, 3000564, 3010560, 3079296, 3125000, 3150000, 3175200, 3211264, 3247695, 3360000, 3386880, 3464208, 3515625, 3543750, 3572100, 3584000, 3612672, 3750000, 3780000, 3810240, 3897234, 4000000, 4032000, 4064256, 4218750, 4252500, 4286520, 4300800, 4500000, 4536000, 4572288, 4587520, 4800000, 4822335, 4838400, 5062500, 5103000, 5120000, 5143824, 5160960, 5400000, 5443200, 5505024, 5740875, 5760000, 5786802, 5806080, 6075000, 6123600, 6144000, 6193152, 6480000, 6531840, 6553600, 6834375, 6889050, 6912000, 6967296, 7290000, 7348320, 7372800, 7776000, 7838208, 7864320, 8201250, 8266860, 8294400, 8388608, 8748000, 8817984, 8847360, 9331200, 9437184, 9841500, 9920232, 9953280, 10497600, 10616832, 11160261, 11197440, 11809800, 11943936, 12597120, 13286025, 13436928, 14171760, 15116544, 15943230, 17006112, 19131876 Some figures : The biggest descendant number : 3^33 = 5.559.060.566.555.523 (parent 99) Total Descendants 546.986
#AutoHotkey
AutoHotkey
#Warn #SingleInstance force #NoEnv ; Recommended for performance and compatibility with future AutoHotkey releases. SendMode Input ; Recommended for new scripts due to its superior speed and reliability. SetBatchLines, -1 SetFormat, IntegerFast, D   MaxPrime = 99 ; upper bound for the prime factors MaxAncestor = 99 ; greatest parent number   Descendants := []   Primes := GetPrimes(MaxPrime) Exclusions := Primes.Clone() Exclusions.Insert(4)   if A_Is64bitOS { Loop, % MaxAncestor Descendants.Insert({})   for i, Prime in Primes { Descendants[Prime, Prime] := 0   for Parent, Children in Descendants { if ((Sum := Parent+Prime) > MaxAncestor) break   for pr in Children Descendants[Sum, pr*Prime] := 0 } }   for i, v in Exclusions Descendants[v].Remove(v, "") } else { Loop, % MaxAncestor Descendants.Insert([])   for i, Prime in Primes { Descendants[Prime].Insert(Prime)   for Parent, Children in Descendants { if ((Sum := Parent+Prime) > MaxAncestor) break   for j, pr in Children Descendants[Sum].Insert(pr*Prime) } }   for i, v in Exclusions Descendants[v].Remove() }   if (MaxAncestor > MaxPrime) Primes := GetPrimes(MaxAncestor)   IfExist, %A_ScriptName%.txt FileDelete, %A_ScriptName%.txt   ;------------------------------------------------------- ; Arrays : ; Integer keys are stored using the native integer type ; 32bit key max = 2.147.483.647 ; 64bit key max = 9.223.372.036.854.775.807 ;------------------------------------------------------- Tot_desc = 0 for Parent, Children in Descendants { ls_desc = if A_Is64bitOS { nb_desc = 0 for pr in Children ls_desc .= ", " pr, nb_desc++ ls_desc := LTrim(ls_desc, ", ") } else { nb_desc := Children.MaxIndex() for i, pr in Children ls_desc .= "," pr ls_desc := LTrim(ls_desc, ",")   Sort, ls_desc, N D`, StringReplace, ls_desc, ls_desc, `,,`,%A_Space%, All }   ls_anc = nb_anc := GetAncestors(ls_anc, Parent) ls_anc := LTrim(ls_anc, ", ")   FileAppend, % "[" Parent "] Level: " nb_anc "`r`nAncestors: " (nb_anc ? ls_anc : "None") "`r`n" , %A_ScriptName%.txt   if nb_desc { Tot_desc += nb_desc FileAppend, % "Descendants: " nb_desc "`r`n" ls_desc "`r`n`r`n", %A_ScriptName%.txt } else FileAppend, % "Descendants: None`r`n`r`n", %A_ScriptName%.txt }   FileAppend, % "Total descendants " Tot_desc, %A_ScriptName%.txt return   GetAncestors(ByRef _lsAnc, _child) { global Primes   lChild := _child lIndex := lParent := 0   while lChild > 1 { lPrime := Primes[++lIndex] while !mod(lChild, lPrime) lChild //= lPrime, lParent += lPrime }   if (lParent = _child or _child = 1) return 0   _lsAnc := ", " lParent _lsAnc li := GetAncestors(_lsAnc, lParent) return ++li }   GetPrimes(_maxPrime=0, _nbrPrime=0) { lPrimes := []   if (_maxPrime >= 2 or _nbrPrime >= 1) { lPrimes.Insert(2) lValue = 1   while (lValue += 2) <= _maxPrime or lPrimes.MaxIndex() < _nbrPrime { lMaxPrime := Floor(Sqrt(lValue))   for lKey, lPrime in lPrimes { if (lPrime > lMaxPrime) ; if prime divisor is greater than Floor(Sqrt(lValue)) { lPrimes.Insert(lValue) break }   if !Mod(lValue, lPrime) break } } }   return lPrimes }
http://rosettacode.org/wiki/Priority_queue
Priority queue
A priority queue is somewhat similar to a queue, with an important distinction: each item is added to a priority queue with a priority level, and will be later removed from the queue with the highest priority element first. That is, the items are (conceptually) stored in the queue in priority order instead of in insertion order. Task Create a priority queue.   The queue must support at least two operations:   Insertion.   An element is added to the queue with a priority (a numeric value).   Top item removal.   Deletes the element or one of the elements with the current top priority and return it. Optionally, other operations may be defined, such as peeking (find what current top priority/top element is), merging (combining two priority queues into one), etc. To test your implementation, insert a number of elements into the queue, each with some random priority. Then dequeue them sequentially; now the elements should be sorted by priority. You can use the following task/priority items as input data: Priority Task ══════════ ════════════════ 3 Clear drains 4 Feed cat 5 Make tea 1 Solve RC tasks 2 Tax return The implementation should try to be efficient.   A typical implementation has   O(log n)   insertion and extraction time,   where   n   is the number of items in the queue. You may choose to impose certain limits such as small range of allowed priority levels, limited capacity, etc.   If so, discuss the reasons behind it.
#ARM_Assembly
ARM Assembly
  /* ARM assembly Raspberry PI */ /* program priorqueue.s */   /* Constantes */ .equ STDOUT, 1 @ Linux output console .equ EXIT, 1 @ Linux syscall .equ WRITE, 4 @ Linux syscall   .equ NBMAXIELEMENTS, 100   /*******************************************/ /* Structures */ /********************************************/ /* example structure item */ .struct 0 item_priority: @ priority .struct item_priority + 4 item_address: @ string address .struct item_address + 4 item_fin: /* example structure heap */ .struct 0 heap_size: @ heap size .struct heap_size + 4 heap_items: @ structure of items .struct heap_items + (item_fin * NBMAXIELEMENTS) heap_fin:     /*********************************/ /* Initialized data */ /*********************************/ .data szMessEmpty: .asciz "Empty queue. \n" szMessNotEmpty: .asciz "Not empty queue. \n" szMessError: .asciz "Error detected !!!!. \n" szMessResult: .ascii "Priority : " @ message result sMessPriority: .fill 11, 1, ' ' .asciz " : "   szString1: .asciz "Clear drains" szString2: .asciz "Feed cat" szString3: .asciz "Make tea" szString4: .asciz "Solve RC tasks" szString5: .asciz "Tax return" szCarriageReturn: .asciz "\n" /*********************************/ /* UnInitialized data */ /*********************************/ .bss .align 4 Queue1: .skip heap_fin @ queue memory place /*********************************/ /* code section */ /*********************************/ .text .global main main: @ entry of program ldr r0,iAdrQueue1 @ queue structure address bl isEmpty cmp r0,#0 beq 1f ldr r0,iAdrszMessEmpty bl affichageMess @ display message empty b 2f 1: ldr r0,iAdrszMessNotEmpty bl affichageMess @ display message not empty 2: @ init item 1 ldr r0,iAdrQueue1 @ queue structure address mov r1,#3 @ priority ldr r2,iAdrszString1 bl pushQueue @ add item in queue cmp r0,#-1 @ error ? beq 99f   ldr r0,iAdrQueue1 @ queue structure address bl isEmpty cmp r0,#0 @ not empty beq 3f ldr r0,iAdrszMessEmpty bl affichageMess @ display message empty b 4f 3: ldr r0,iAdrszMessNotEmpty bl affichageMess @ display message not empty   4: @ init item 2 ldr r0,iAdrQueue1 @ queue structure address mov r1,#4 @ priority ldr r2,iAdrszString2 bl pushQueue @ add item in queue cmp r0,#-1 @ error ? beq 99f @ init item 3 ldr r0,iAdrQueue1 @ queue structure address mov r1,#5 @ priority ldr r2,iAdrszString3 bl pushQueue @ add item in queue cmp r0,#-1 @ error ? beq 99f @ init item 4 ldr r0,iAdrQueue1 @ queue structure address mov r1,#1 @ priority ldr r2,iAdrszString4 bl pushQueue @ add item in queue cmp r0,#-1 @ error ? beq 99f @ init item 5 ldr r0,iAdrQueue1 @ queue structure address mov r1,#2 @ priority ldr r2,iAdrszString5 bl pushQueue @ add item in queue cmp r0,#-1 @ error ? beq 99f 5: ldr r0,iAdrQueue1 @ queue structure address bl popQueue @ return item cmp r0,#-1 @ end ? beq 100f mov r2,r1 @ save string address ldr r1,iAdrsMessPriority @ conversion priority bl conversion10 @ decimal conversion ldr r0,iAdrszMessResult bl affichageMess @ display message mov r0,r2 @ string address bl affichageMess @ display message ldr r0,iAdrszCarriageReturn bl affichageMess   b 5b @ loop 99: @ error ldr r0,iAdrszMessError bl affichageMess 100: @ standard end of the program mov r0, #0 @ return code mov r7, #EXIT @ request to exit program svc #0 @ perform the system call   iAdrQueue1: .int Queue1 iAdrszString1: .int szString1 iAdrszString2: .int szString2 iAdrszString3: .int szString3 iAdrszString4: .int szString4 iAdrszString5: .int szString5 iAdrszMessError: .int szMessError iAdrszMessEmpty: .int szMessEmpty iAdrszMessNotEmpty: .int szMessNotEmpty iAdrszMessResult: .int szMessResult iAdrszCarriageReturn: .int szCarriageReturn iAdrsMessPriority: .int sMessPriority   /******************************************************************/ /* test if queue empty */ /******************************************************************/ /* r0 contains the address of queue structure */ isEmpty: push {r1,lr} @ save registres ldr r1,[r0,#heap_size] @ heap size cmp r1,#0 moveq r0,#1 @ empty queue movne r0,#0 @ not empty pop {r1,lr} @ restaur registers bx lr @ return /******************************************************************/ /* add item in queue */ /******************************************************************/ /* r0 contains the address of queue structure */ /* r1 contains the priority of item */ /* r2 contains the string address */ pushQueue: push {r1-r9,lr} @ save registres ldr r3,[r0,#heap_size] @ heap size cmp r3,#0 @ heap empty ? bne 1f add r4,r0,#heap_items @ address of item structure str r1,[r4,#item_priority] @ store in first item str r2,[r4,#item_address] mov r3,#1 @ heap size str r3,[r0,#heap_size] @ new heap size b 100f 1: mov r4,r3 @ maxi index lsr r5,r4,#1 @ current index = maxi / 2 mov r8,r1 @ save priority mov r9,r2 @ save string address 2: @ insertion loop cmp r4,#0 @ end loop ? ble 3f mov r6,#item_fin @ item size mul r6,r5,r6 @ item shift add r6,r0 add r6,#heap_items @ compute address item ldr r7,[r6,#item_priority] @ load priority cmp r7,r8 @ compare priority ble 3f @ <= end loop mov r1,r4 @ last index mov r2,r5 @ current index bl exchange mov r4,r5 @ last index = current index lsr r5,#1 @ current index / 2 b 2b 3: @ store item at last index find mov r6,#item_fin @ item size mul r6,r4,r6 @ item shift add r6,r0 add r6,#heap_items @ item address str r8,[r6,#item_priority] str r9,[r6,#item_address] add r3,#1 @ increment heap size cmp r3,#NBMAXIELEMENTS @ maxi ? movge r0,#-1 @ yes -> error bge 100f str r3,[r0,#heap_size] @ store new size 100: pop {r1-r9,lr} @ restaur registers bx lr @ return /******************************************************************/ /* swap two elements of table */ /******************************************************************/ /* r0 contains the address of table */ /* r1 contains the first index */ /* r2 contains the second index */ exchange: push {r3-r6,lr} @ save registers add r5,r0,#heap_items @ address items begin mov r3,#item_fin @ item size mul r4,r1,r3 @ compute item 1 shift add r4,r5 @ compute item 1 address mul r6,r2,r3 @ compute item 2 shift add r6,r5 @ compute item 2 address ldr r5,[r4,#item_priority] @ exchange ldr r3,[r6,#item_priority] str r3,[r4,#item_priority] str r5,[r6,#item_priority] ldr r5,[r4,#item_address] ldr r3,[r6,#item_address] str r5,[r6,#item_address] str r3,[r4,#item_address]   100: pop {r3-r6,lr} bx lr @ return /******************************************************************/ /* move one element of table */ /******************************************************************/ /* r0 contains the address of table */ /* r1 contains the origin index */ /* r2 contains the destination index */ moveItem: push {r3-r6,lr} @ save registers add r5,r0,#heap_items @ address items begin mov r3,#item_fin @ item size mul r4,r1,r3 @ compute item 1 shift add r4,r5 @ compute item 1 address mul r6,r2,r3 @ compute item 2 shift add r6,r5 @ compute item 2 address ldr r5,[r4,#item_priority] @ exchange str r5,[r6,#item_priority] ldr r5,[r4,#item_address] str r5,[r6,#item_address]   100: pop {r3-r6,lr} bx lr @ return     /******************************************************************/ /* pop queue */ /******************************************************************/ /* r0 contains the address of queue structure */ /* r0 return priority */ /* r1 return string address */ popQueue: push {r2-r10,lr} @ save registres mov r1,r0 @ save address queue bl isEmpty @ control if empty queue cmp r0,#1 @ yes -> error moveq r0,#-1 beq 100f @ save données à retourner mov r0,r1 @ restaur address queue add r4,r0,#heap_items @ address of item structure ldr r8,[r4,#item_priority] @ save priority first item ldr r9,[r4,#item_address] @ save address string first item ldr r3,[r0,#heap_size] @ heap size sub r7,r3,#1 @ last item mov r1,r7 mov r2,#0 @ first item bl moveItem @ move last item in first item   cmp r7,#1 @ one only item ? beq 10f @ yes -> end mov r4,#0 @ first index 1: cmp r4,r7 @ = last index bge 10f @ yes -> end mov r5,r7 @ last index cmp r4,#0 @ init current index moveq r6,#1 @ = 1 lslne r6,r4,#1 @ else = first index * 2 cmp r6,r7 @ current index > last index bgt 2f @ yes @ no compar priority current item last item mov r1,#item_fin mul r1,r6,r1 add r1,r0 add r1,#heap_items @ address of current item structure ldr r1,[r1,#item_priority] mov r10,#item_fin mul r10,r5,r10 add r10,r0 add r10,#heap_items @ address of last item structure ldr r10,[r10,#item_priority] cmp r1,r10 movlt r5,r6 2: add r10,r6,#1 @ increment current index cmp r10,r7 @ end ? bgt 3f @ yes mov r1,#item_fin @ no compare priority mul r1,r10,r1 add r1,r0 add r1,#heap_items @ address of item structure ldr r1,[r1,#item_priority] mov r2,#item_fin mul r2,r5,r2 add r2,r0 add r2,#heap_items @ address of item structure ldr r2,[r2,#item_priority] cmp r1,r2 movlt r5,r10 3: mov r1,r5 @ move item mov r2,r4 bl moveItem mov r4,r5 b 1b @ and loop 10: sub r3,#1 str r3,[r0,#heap_size] @ new heap size mov r0,r8 @ return priority mov r1,r9 @ return string address 100: pop {r2-r10,lr} @ restaur registers bx lr @ return /******************************************************************/ /* display text with size calculation */ /******************************************************************/ /* r0 contains the address of the message */ affichageMess: push {r0,r1,r2,r7,lr} @ save registres mov r2,#0 @ counter length 1: @ loop length calculation ldrb r1,[r0,r2] @ read octet start position + index cmp r1,#0 @ if 0 its over addne r2,r2,#1 @ else add 1 in the length bne 1b @ and loop @ so here r2 contains the length of the message mov r1,r0 @ address message in r1 mov r0,#STDOUT @ code to write to the standard output Linux mov r7, #WRITE @ code call system "write" svc #0 @ call systeme pop {r0,r1,r2,r7,lr} @ restaur registers */ bx lr @ return /******************************************************************/ /* Converting a register to a decimal */ /******************************************************************/ /* r0 contains value and r1 address area */ .equ LGZONECAL, 10 conversion10: push {r1-r4,lr} @ save registers mov r3,r1 mov r2,#LGZONECAL 1: @ start loop bl divisionpar10 @ r0 <- dividende. quotient ->r0 reste -> r1 add r1,#48 @ digit strb r1,[r3,r2] @ store digit on area cmp r0,#0 @ stop if quotient = 0 subne r2,#1 @ previous position bne 1b @ else loop @ end replaces digit in front of area mov r4,#0 2: ldrb r1,[r3,r2] strb r1,[r3,r4] @ store in area begin add r4,#1 add r2,#1 @ previous position cmp r2,#LGZONECAL @ end ble 2b @ loop mov r1,#' ' 3: strb r1,[r3,r4] add r4,#1 cmp r4,#LGZONECAL @ end ble 3b 100: pop {r1-r4,lr} @ restaur registres bx lr @return /***************************************************/ /* division par 10 signé */ /* Thanks to http://thinkingeek.com/arm-assembler-raspberry-pi/* /* and http://www.hackersdelight.org/ */ /***************************************************/ /* r0 dividende */ /* r0 quotient */ /* r1 remainder */ divisionpar10: /* r0 contains the argument to be divided by 10 */ push {r2-r4} @ save registers */ mov r4,r0 mov r3,#0x6667 @ r3 <- magic_number lower movt r3,#0x6666 @ r3 <- magic_number upper smull r1, r2, r3, r0 @ r1 <- Lower32Bits(r1*r0). r2 <- Upper32Bits(r1*r0) mov r2, r2, ASR #2 @ r2 <- r2 >> 2 mov r1, r0, LSR #31 @ r1 <- r0 >> 31 add r0, r2, r1 @ r0 <- r2 + r1 add r2,r0,r0, lsl #2 @ r2 <- r0 * 5 sub r1,r4,r2, lsl #1 @ r1 <- r4 - (r2 * 2) = r4 - (r0 * 10) pop {r2-r4} bx lr @ return  
http://rosettacode.org/wiki/Problem_of_Apollonius
Problem of Apollonius
Task Implement a solution to the Problem of Apollonius   (description on Wikipedia)   which is the problem of finding the circle that is tangent to three specified circles   (colored black in the diagram below to the right). There is an   algebraic solution   which is pretty straightforward. The solutions to the example in the code are shown in the diagram   (below and to the right). The red circle is "internally tangent" to all three black circles,   and the green circle is "externally tangent" to all three black circles.
#CoffeeScript
CoffeeScript
  class Circle constructor: (@x, @y, @r) ->   apollonius = (c1, c2, c3, s1=1, s2=1, s3=1) -> [x1, y1, r1] = [c1.x, c1.y, c1.r] [x2, y2, r2] = [c2.x, c2.y, c2.r] [x3, y3, r3] = [c3.x, c3.y, c3.r]   sq = (n) -> n*n   v11 = 2*x2 - 2*x1 v12 = 2*y2 - 2*y1 v13 = sq(x1) - sq(x2) + sq(y1) - sq(y2) - sq(r1) + sq(r2) v14 = 2*s2*r2 - 2*s1*r1   v21 = 2*x3 - 2*x2 v22 = 2*y3 - 2*y2 v23 = sq(x2) - sq(x3) + sq(y2) - sq(y3) - sq(r2) + sq(r3) v24 = 2*s3*r3 - 2*s2*r2   w12 = v12/v11 w13 = v13/v11 w14 = v14/v11   w22 = v22/v21 - w12 w23 = v23/v21 - w13 w24 = v24/v21 - w14   p = -w23/w22 q = w24/w22 m = -w12*p - w13 n = w14 - w12*q   a = sq(n) + sq(q) - 1 b = 2*m*n - 2*n*x1 + 2*p*q - 2*q*y1 + 2*s1*r1 c = sq(x1) + sq(m) - 2*m*x1 + sq(p) + sq(y1) - 2*p*y1 - sq(r1)   d = sq(b) - 4*a*c rs = (-b - Math.sqrt(d)) / (2*a) xs = m + n*rs ys = p + q*rs   new Circle(xs, ys, rs)     console.log c1 = new Circle(0, 0, 1) console.log c2 = new Circle(2, 4, 2) console.log c3 = new Circle(4, 0, 1)   console.log apollonius(c1, c2, c3) console.log apollonius(c1, c2, c3, -1, -1, -1)    
http://rosettacode.org/wiki/Program_name
Program name
The task is to programmatically obtain the name used to invoke the program. (For example determine whether the user ran "python hello.py", or "python hellocaller.py", a program importing the code from "hello.py".) Sometimes a multiline shebang is necessary in order to provide the script name to a language's internal ARGV. See also Command-line arguments Examples from GitHub.
#Liberty_BASIC
Liberty BASIC
  nSize = _MAX_PATH + 2 lpFilename$ = space$(nSize); chr$(0)   calldll #kernel32, "GetModuleFileNameA", _ hModule as ulong, _ lpFilename$ as ptr, _ nSize as ulong, _ result as ulong lpFilename$ = left$(lpFilename$,result)   print "Path to LB exe" print lpFilename$ print "current program file (:last one on LRU list)" print getLastLRU$(lbPath$) end   Function getLastLRU$(lbPath$) open lbPath$+"lbasic404.ini" for input as #1 while not(eof(#1)) line input #1, a$ if instr(a$, "recent files")<>0 then [readRecentFiles] wend getLastLRU$ = "* Failed: Recent files section not found *" close #1 exit function   [readRecentFiles] nRecent = val(word$(a$,1)) 'print "nRecentFiles", nRecent for i = 1 to nRecent if eof(#1) then getLastLRU$ = "* Failed: File ended while in recent files section *" close #1 exit function end if line input #1, a$ 'print i, a$ next close #1 getLastLRU$ = a$ end function    
http://rosettacode.org/wiki/Primorial_numbers
Primorial numbers
Primorial numbers are those formed by multiplying successive prime numbers. The primorial number series is:   primorial(0) =         1       (by definition)   primorial(1) =         2       (2)   primorial(2) =         6       (2×3)   primorial(3) =       30       (2×3×5)   primorial(4) =     210       (2×3×5×7)   primorial(5) =   2310       (2×3×5×7×11)   primorial(6) = 30030       (2×3×5×7×11×13)         ∙ ∙ ∙ To express this mathematically,   primorialn   is   the product of the first   n   (successive) primes:   p r i m o r i a l n = ∏ k = 1 n p r i m e k {\displaystyle primorial_{n}=\prod _{k=1}^{n}prime_{k}} ─── where   p r i m e k {\displaystyle prime_{k}}   is the   kth   prime number. In some sense, generating primorial numbers is similar to factorials. As with factorials, primorial numbers get large quickly. Task   Show the first ten primorial numbers   (0 ──► 9,   inclusive).   Show the length of primorial numbers whose index is:   10   100   1,000   10,000   and   100,000.   Show the length of the one millionth primorial number   (optional).   Use exact integers, not approximations. By   length   (above), it is meant the number of decimal digits in the numbers. Related tasks   Sequence of primorial primes   Factorial   Fortunate_numbers See also   the MathWorld webpage:   primorial   the Wikipedia   webpage:   primorial.   the   OEIS   webpage:   A002110.
#Nim
Nim
import times   let t0 = cpuTime()   #################################################################################################### # Build list of primes.   const NPrimes = 1_000_000 N = 16 * NPrimes   var sieve: array[(N - 1) div 2 + 1, bool] # False (default) means prime.   for i, composite in sieve: if not composite: let n = 2 * i + 3 for k in countup(n * n, N, 2 * n): sieve[(k - 3) div 2] = true   var primes = @[2] for i, composite in sieve: if not composite: primes.add 2 * i + 3   if primes.len < NPrimes: quit "Not enough primes. Please, increase value of N."     #################################################################################################### # Compute primorial.   import strformat import bignum   const LastToPrint = NPrimes   iterator primorials(): Int = ## Yield successive primorial numbers. var prim = newInt(1) yield prim for p in primes: prim *= p yield prim   var n = 0 for prim in primorials(): echo &"primorial({n}) = {prim}" inc n if n == 10: break   n = 0 var nextToPrint = 10 for prim in primorials(): if n == nextToPrint: echo &"primorial({n}) has {($prim).len} digits" if nextToPrint == LastToPrint: break nextToPrint *= 10 inc n   echo "" echo &"Total time: {cpuTime() - t0:.2f} s"
http://rosettacode.org/wiki/Primorial_numbers
Primorial numbers
Primorial numbers are those formed by multiplying successive prime numbers. The primorial number series is:   primorial(0) =         1       (by definition)   primorial(1) =         2       (2)   primorial(2) =         6       (2×3)   primorial(3) =       30       (2×3×5)   primorial(4) =     210       (2×3×5×7)   primorial(5) =   2310       (2×3×5×7×11)   primorial(6) = 30030       (2×3×5×7×11×13)         ∙ ∙ ∙ To express this mathematically,   primorialn   is   the product of the first   n   (successive) primes:   p r i m o r i a l n = ∏ k = 1 n p r i m e k {\displaystyle primorial_{n}=\prod _{k=1}^{n}prime_{k}} ─── where   p r i m e k {\displaystyle prime_{k}}   is the   kth   prime number. In some sense, generating primorial numbers is similar to factorials. As with factorials, primorial numbers get large quickly. Task   Show the first ten primorial numbers   (0 ──► 9,   inclusive).   Show the length of primorial numbers whose index is:   10   100   1,000   10,000   and   100,000.   Show the length of the one millionth primorial number   (optional).   Use exact integers, not approximations. By   length   (above), it is meant the number of decimal digits in the numbers. Related tasks   Sequence of primorial primes   Factorial   Fortunate_numbers See also   the MathWorld webpage:   primorial   the Wikipedia   webpage:   primorial.   the   OEIS   webpage:   A002110.
#PARI.2FGP
PARI/GP
nthprimorial(n)=prod(i=1,n,prime(i)); vector(10,i,nthprimorial(i-1)) vector(5,n,#Str(nthprimorial(10^n))) #Str(nthprimorial(10^6))
http://rosettacode.org/wiki/Pythagorean_triples
Pythagorean triples
A Pythagorean triple is defined as three positive integers ( a , b , c ) {\displaystyle (a,b,c)} where a < b < c {\displaystyle a<b<c} , and a 2 + b 2 = c 2 . {\displaystyle a^{2}+b^{2}=c^{2}.} They are called primitive triples if a , b , c {\displaystyle a,b,c} are co-prime, that is, if their pairwise greatest common divisors g c d ( a , b ) = g c d ( a , c ) = g c d ( b , c ) = 1 {\displaystyle {\rm {gcd}}(a,b)={\rm {gcd}}(a,c)={\rm {gcd}}(b,c)=1} . Because of their relationship through the Pythagorean theorem, a, b, and c are co-prime if a and b are co-prime ( g c d ( a , b ) = 1 {\displaystyle {\rm {gcd}}(a,b)=1} ).   Each triple forms the length of the sides of a right triangle, whose perimeter is P = a + b + c {\displaystyle P=a+b+c} . Task The task is to determine how many Pythagorean triples there are with a perimeter no larger than 100 and the number of these that are primitive. Extra credit Deal with large values.   Can your program handle a maximum perimeter of 1,000,000?   What about 10,000,000?   100,000,000? Note: the extra credit is not for you to demonstrate how fast your language is compared to others;   you need a proper algorithm to solve them in a timely manner. Related tasks   Euler's sum of powers conjecture   List comprehensions   Pythagorean quadruples
#Lasso
Lasso
// Brute Force: Too slow for large numbers define num_pythagorean_triples(max_perimeter::integer) => { local(max_b) = (#max_perimeter / 3)*2   return ( with a in 1 to (#max_b - 1) sum integer( with b in (#a + 1) to #max_b let c = math_sqrt(#a*#a + #b*#b) where #c == integer(#c) where #c > #b where (#a+#b+#c) <= #max_perimeter sum 1 ) ) } stdout(`Number of Pythagorean Triples in a Perimeter of 100: `) stdoutnl(num_pythagorean_triples(100))  
http://rosettacode.org/wiki/Program_termination
Program termination
Task Show the syntax for a complete stoppage of a program inside a   conditional. This includes all threads/processes which are part of your program. Explain the cleanup (or lack thereof) caused by the termination (allocated memory, database connections, open files, object finalizers/destructors, run-on-exit hooks, etc.). Unless otherwise described, no special cleanup outside that provided by the operating system is provided.
#GW-BASIC
GW-BASIC
10 IF 1 THEN STOP
http://rosettacode.org/wiki/Program_termination
Program termination
Task Show the syntax for a complete stoppage of a program inside a   conditional. This includes all threads/processes which are part of your program. Explain the cleanup (or lack thereof) caused by the termination (allocated memory, database connections, open files, object finalizers/destructors, run-on-exit hooks, etc.). Unless otherwise described, no special cleanup outside that provided by the operating system is provided.
#Haskell
Haskell
import Control.Monad import System.Exit   when problem do exitWith ExitSuccess -- success exitWith (ExitFailure integerErrorCode) -- some failure with code exitSuccess -- success; in GHC 6.10+ exitFailure -- generic failure
http://rosettacode.org/wiki/QR_decomposition
QR decomposition
Any rectangular m × n {\displaystyle m\times n} matrix A {\displaystyle {\mathit {A}}} can be decomposed to a product of an orthogonal matrix Q {\displaystyle {\mathit {Q}}} and an upper (right) triangular matrix R {\displaystyle {\mathit {R}}} , as described in QR decomposition. Task Demonstrate the QR decomposition on the example matrix from the Wikipedia article: A = ( 12 − 51 4 6 167 − 68 − 4 24 − 41 ) {\displaystyle A={\begin{pmatrix}12&-51&4\\6&167&-68\\-4&24&-41\end{pmatrix}}} and the usage for linear least squares problems on the example from Polynomial regression. The method of Householder reflections should be used: Method Multiplying a given vector a {\displaystyle {\mathit {a}}} , for example the first column of matrix A {\displaystyle {\mathit {A}}} , with the Householder matrix H {\displaystyle {\mathit {H}}} , which is given as H = I − 2 u T u u u T {\displaystyle H=I-{\frac {2}{u^{T}u}}uu^{T}} reflects a {\displaystyle {\mathit {a}}} about a plane given by its normal vector u {\displaystyle {\mathit {u}}} . When the normal vector of the plane u {\displaystyle {\mathit {u}}} is given as u = a − ∥ a ∥ 2 e 1 {\displaystyle u=a-\|a\|_{2}\;e_{1}} then the transformation reflects a {\displaystyle {\mathit {a}}} onto the first standard basis vector e 1 = [ 1 0 0 . . . ] T {\displaystyle e_{1}=[1\;0\;0\;...]^{T}} which means that all entries but the first become zero. To avoid numerical cancellation errors, we should take the opposite sign of a 1 {\displaystyle a_{1}} : u = a + sign ( a 1 ) ∥ a ∥ 2 e 1 {\displaystyle u=a+{\textrm {sign}}(a_{1})\|a\|_{2}\;e_{1}} and normalize with respect to the first element: v = u u 1 {\displaystyle v={\frac {u}{u_{1}}}} The equation for H {\displaystyle H} thus becomes: H = I − 2 v T v v v T {\displaystyle H=I-{\frac {2}{v^{T}v}}vv^{T}} or, in another form H = I − β v v T {\displaystyle H=I-\beta vv^{T}} with β = 2 v T v {\displaystyle \beta ={\frac {2}{v^{T}v}}} Applying H {\displaystyle {\mathit {H}}} on a {\displaystyle {\mathit {a}}} then gives H a = − sign ( a 1 ) ∥ a ∥ 2 e 1 {\displaystyle H\;a=-{\textrm {sign}}(a_{1})\;\|a\|_{2}\;e_{1}} and applying H {\displaystyle {\mathit {H}}} on the matrix A {\displaystyle {\mathit {A}}} zeroes all subdiagonal elements of the first column: H 1 A = ( r 11 r 12 r 13 0 ∗ ∗ 0 ∗ ∗ ) {\displaystyle H_{1}\;A={\begin{pmatrix}r_{11}&r_{12}&r_{13}\\0&*&*\\0&*&*\end{pmatrix}}} In the second step, the second column of A {\displaystyle {\mathit {A}}} , we want to zero all elements but the first two, which means that we have to calculate H {\displaystyle {\mathit {H}}} with the first column of the submatrix (denoted *), not on the whole second column of A {\displaystyle {\mathit {A}}} . To get H 2 {\displaystyle H_{2}} , we then embed the new H {\displaystyle {\mathit {H}}} into an m × n {\displaystyle m\times n} identity: H 2 = ( 1 0 0 0 H 0 ) {\displaystyle H_{2}={\begin{pmatrix}1&0&0\\0&H&\\0&&\end{pmatrix}}} This is how we can, column by column, remove all subdiagonal elements of A {\displaystyle {\mathit {A}}} and thus transform it into R {\displaystyle {\mathit {R}}} . H n . . . H 3 H 2 H 1 A = R {\displaystyle H_{n}\;...\;H_{3}H_{2}H_{1}A=R} The product of all the Householder matrices H {\displaystyle {\mathit {H}}} , for every column, in reverse order, will then yield the orthogonal matrix Q {\displaystyle {\mathit {Q}}} . H 1 H 2 H 3 . . . H n = Q {\displaystyle H_{1}H_{2}H_{3}\;...\;H_{n}=Q} The QR decomposition should then be used to solve linear least squares (Multiple regression) problems A x = b {\displaystyle {\mathit {A}}x=b} by solving R x = Q T b {\displaystyle R\;x=Q^{T}\;b} When R {\displaystyle {\mathit {R}}} is not square, i.e. m > n {\displaystyle m>n} we have to cut off the m − n {\displaystyle {\mathit {m}}-n} zero padded bottom rows. R = ( R 1 0 ) {\displaystyle R={\begin{pmatrix}R_{1}\\0\end{pmatrix}}} and the same for the RHS: Q T b = ( q 1 q 2 ) {\displaystyle Q^{T}\;b={\begin{pmatrix}q_{1}\\q_{2}\end{pmatrix}}} Finally, solve the square upper triangular system by back substitution: R 1 x = q 1 {\displaystyle R_{1}\;x=q_{1}}
#SAS
SAS
/* See http://support.sas.com/documentation/cdl/en/imlug/63541/HTML/default/viewer.htm#imlug_langref_sect229.htm */   proc iml; a={12 -51 4,6 167 -68,-4 24 -41}; print(a); call qr(q,r,p,d,a); print(q); print(r); quit;   /* a   12 -51 4 6 167 -68 -4 24 -41     q   -0.857143 0.3942857 -0.331429 -0.428571 -0.902857 0.0342857 0.2857143 -0.171429 -0.942857     r   -14 -21 14 0 -175 70 0 0 35 */
http://rosettacode.org/wiki/Prime_triangle
Prime triangle
You will require a function f which when given an integer S will return a list of the arrangements of the integers 1 to S such that g1=1 gS=S and generally for n=1 to n=S-1 gn+gn+1 is prime. S=1 is undefined. For S=2 to S=20 print f(S) to form a triangle. Then again for S=2 to S=20 print the number of possible arrangements of 1 to S meeting these requirements.
#Java
Java
public class PrimeTriangle { public static void main(String[] args) { long start = System.currentTimeMillis(); for (int i = 2; i <= 20; ++i) { int[] a = new int[i]; for (int j = 0; j < i; ++j) a[j] = j + 1; if (findRow(a, 0, i)) printRow(a); } System.out.println(); StringBuilder s = new StringBuilder(); for (int i = 2; i <= 20; ++i) { int[] a = new int[i]; for (int j = 0; j < i; ++j) a[j] = j + 1; if (i > 2) s.append(" "); s.append(countRows(a, 0, i)); } System.out.println(s); long finish = System.currentTimeMillis(); System.out.printf("\nElapsed time: %d milliseconds\n", finish - start); }   private static void printRow(int[] a) { for (int i = 0; i < a.length; ++i) { if (i != 0) System.out.print(" "); System.out.printf("%2d", a[i]); } System.out.println(); }   private static boolean findRow(int[] a, int start, int length) { if (length == 2) return isPrime(a[start] + a[start + 1]); for (int i = 1; i + 1 < length; i += 2) { if (isPrime(a[start] + a[start + i])) { swap(a, start + i, start + 1); if (findRow(a, start + 1, length - 1)) return true; swap(a, start + i, start + 1); } } return false; }   private static int countRows(int[] a, int start, int length) { int count = 0; if (length == 2) { if (isPrime(a[start] + a[start + 1])) ++count; } else { for (int i = 1; i + 1 < length; i += 2) { if (isPrime(a[start] + a[start + i])) { swap(a, start + i, start + 1); count += countRows(a, start + 1, length - 1); swap(a, start + i, start + 1); } } } return count; }   private static void swap(int[] a, int i, int j) { int tmp = a[i]; a[i] = a[j]; a[j] = tmp; }   private static boolean isPrime(int n) { return ((1L << n) & 0x28208a20a08a28acL) != 0; } }
http://rosettacode.org/wiki/Prime_conspiracy
Prime conspiracy
A recent discovery, quoted from   Quantamagazine   (March 13, 2016): Two mathematicians have uncovered a simple, previously unnoticed property of prime numbers — those numbers that are divisible only by 1 and themselves. Prime numbers, it seems, have decided preferences about the final digits of the primes that immediately follow them. and This conspiracy among prime numbers seems, at first glance, to violate a longstanding assumption in number theory: that prime numbers behave much like random numbers. ─── (original authors from Stanford University): ─── Kannan Soundararajan and Robert Lemke Oliver The task is to check this assertion, modulo 10. Lets call    i -> j   a transition if    i   is the last decimal digit of a prime, and    j   the last decimal digit of the following prime. Task Considering the first one million primes.   Count, for any pair of successive primes, the number of transitions    i -> j   and print them along with their relative frequency, sorted by    i . You can see that, for a given    i ,   frequencies are not evenly distributed. Observation (Modulo 10),   primes whose last digit is   9   "prefer"   the digit   1   to the digit   9,   as its following prime. Extra credit Do the same for one hundred million primes. Example for 10,000 primes 10000 first primes. Transitions prime % 10 → next-prime % 10. 1 → 1 count: 365 frequency: 3.65 % 1 → 3 count: 833 frequency: 8.33 % 1 → 7 count: 889 frequency: 8.89 % 1 → 9 count: 397 frequency: 3.97 % 2 → 3 count: 1 frequency: 0.01 % 3 → 1 count: 529 frequency: 5.29 % 3 → 3 count: 324 frequency: 3.24 % 3 → 5 count: 1 frequency: 0.01 % 3 → 7 count: 754 frequency: 7.54 % 3 → 9 count: 907 frequency: 9.07 % 5 → 7 count: 1 frequency: 0.01 % 7 → 1 count: 655 frequency: 6.55 % 7 → 3 count: 722 frequency: 7.22 % 7 → 7 count: 323 frequency: 3.23 % 7 → 9 count: 808 frequency: 8.08 % 9 → 1 count: 935 frequency: 9.35 % 9 → 3 count: 635 frequency: 6.35 % 9 → 7 count: 541 frequency: 5.41 % 9 → 9 count: 379 frequency: 3.79 %
#11l
11l
V limit = 1000000 V k = limit V n = k * 17 V primes = [1B] * n primes[0] = primes[1] = 0B   L(i) 2..Int(sqrt(n)) I !primes[i] L.continue L(j) (i * i .< n).step(i) primes[j] = 0B   DefaultDict[(Int, Int), Int] trans_map V prev = -1   L(i) 0 .< n I primes[i] I prev != -1 trans_map[(prev, i % 10)]++ prev = i % 10   I --k == 0 L.break   print(‘First #. primes. Transitions prime % 10 > next-prime % 10.’.format(limit)) L(trans) sorted(trans_map.keys()) print(‘#. -> #. count #5 frequency: #.4%’.format(trans[0], trans[1], trans_map[trans], 100.0 * trans_map[trans] / limit))
http://rosettacode.org/wiki/Proper_divisors
Proper divisors
The   proper divisors   of a positive integer N are those numbers, other than N itself, that divide N without remainder. For N > 1 they will always include 1,   but for N == 1 there are no proper divisors. Examples The proper divisors of     6     are   1, 2, and 3. The proper divisors of   100   are   1, 2, 4, 5, 10, 20, 25, and 50. Task Create a routine to generate all the proper divisors of a number. use it to show the proper divisors of the numbers 1 to 10 inclusive. Find a number in the range 1 to 20,000 with the most proper divisors. Show the number and just the count of how many proper divisors it has. Show all output here. Related tasks   Amicable pairs   Abundant, deficient and perfect number classifications   Aliquot sequence classifications   Factors of an integer   Prime decomposition
#ARM_Assembly
ARM Assembly
  /* ARM assembly Raspberry PI */ /* program proFactor.s */   /* REMARK 1 : this program use routines in a include file see task Include a file language arm assembly for the routine affichageMess conversion10 see at end of this program the instruction include */ /*******************************************/ /* Constantes */ /*******************************************/ .equ STDOUT, 1 @ Linux output console .equ EXIT, 1 @ Linux syscall .equ WRITE, 4 @ Linux syscall   /*******************************************/ /* Initialized data */ /*******************************************/ .data szMessStartPgm: .asciz "Program start \n" szMessEndPgm: .asciz "Program normal end.\n" szMessError: .asciz "\033[31mError Allocation !!!\n" szCarriageReturn: .asciz "\n"   /* datas message display */ szMessEntete: .ascii "Number :" sNumber: .space 12,' ' .asciz " Divisors :" szMessResult: .ascii " " sValue: .space 12,' ' .asciz "" szMessDivNumber: .ascii "\nnumber divisors :" sCounter: .space 12,' ' .asciz "\n" szMessNumberMax: .ascii "Number :" sNumberMax: .space 12,' ' .ascii " has " sDivMax: .space 12, ' ' .asciz " divisors\n" /*******************************************/ /* UnInitialized data */ /*******************************************/ .bss /*******************************************/ /* code section */ /*******************************************/ .text .global main main: @ program start ldr r0,iAdrszMessStartPgm @ display start message bl affichageMess mov r2,#1 1: mov r0,r2 @ number ldr r1,iAdrsNumber @ and convert ascii string bl conversion10 ldr r0,iAdrszMessEntete @ display result message bl affichageMess mov r0,r2 @ number mov r1,#1 @ display flag bl divisors @ display divisors ldr r1,iAdrsCounter @ and convert ascii string bl conversion10 ldr r0,iAdrszMessDivNumber @ display result message bl affichageMess add r2,r2,#1 cmp r2,#10 ble 1b   mov r2,#2 mov r3,#0 mov r4,#0 ldr r5,iMaxi 2: mov r0,r2 mov r1,#0 @ display flag bl divisors @ display divisors cmp r0,r3 movgt r3,r0 movgt r4,r2 add r2,r2,#1 cmp r2,r5 ble 2b mov r0,r4 ldr r1,iAdrsNumberMax @ and convert ascii string bl conversion10 mov r0,r3 ldr r1,iAdrsDivMax @ and convert ascii string bl conversion10 ldr r0,iAdrszMessNumberMax bl affichageMess     ldr r0,iAdrszMessEndPgm @ display end message bl affichageMess b 100f 99: @ display error message ldr r0,iAdrszMessError bl affichageMess 100: @ standard end of the program mov r0, #0 @ return code mov r7, #EXIT @ request to exit program svc 0 @ perform system call iAdrszMessStartPgm: .int szMessStartPgm iAdrszMessEndPgm: .int szMessEndPgm iAdrszMessError: .int szMessError iAdrszCarriageReturn: .int szCarriageReturn iAdrszMessResult: .int szMessResult iAdrsValue: .int sValue iAdrszMessDivNumber: .int szMessDivNumber iAdrsCounter: .int sCounter iAdrszMessEntete: .int szMessEntete iAdrsNumber: .int sNumber iAdrszMessNumberMax: .int szMessNumberMax iAdrsDivMax: .int sDivMax iAdrsNumberMax: .int sNumberMax iMaxi: .int 20000 /******************************************************************/ /* divisors function */ /******************************************************************/ /* r0 contains the number */ /* r1 contains display flag (<>0: display, 0: no display ) /* r0 return divisors number */ divisors: push {r1-r8,lr} @ save registers cmp r0,#1 @ = 1 ? movle r0,#0 ble 100f mov r7,r0 mov r8,r1 cmp r8,#0 beq 1f mov r0,#1 @ first divisor = 1 ldr r1,iAdrsValue @ and convert ascii string bl conversion10 ldr r0,iAdrszMessResult @ display result message bl affichageMess 1: @ begin loop lsr r4,r7,#1 @ Maxi mov r6,r4 @ first divisor mov r5,#1 @ Counter divisors 2: mov r0,r7 @ dividende = number mov r1,r6 @ divisor bl division cmp r3,#0 @ remainder = 0 ? bne 3f add r5,r5,#1 @ increment counter cmp r8,#0 @ display divisor ? beq 3f mov r0,r2 @ divisor ldr r1,iAdrsValue @ and convert ascii string bl conversion10 ldr r0,iAdrszMessResult @ display result message bl affichageMess 3: sub r6,r6,#1 @ decrement divisor cmp r6,#2 @ End ? bge 2b @ no loop mov r0,r5 @ return divisors number   100: pop {r1-r8,lr} @ restaur registers bx lr @ return   /***************************************************/ /* ROUTINES INCLUDE */ /***************************************************/ .include "../affichage.inc"  
http://rosettacode.org/wiki/Probabilistic_choice
Probabilistic choice
Given a mapping between items and their required probability of occurrence, generate a million items randomly subject to the given probabilities and compare the target probability of occurrence versus the generated values. The total of all the probabilities should equal one. (Because floating point arithmetic is involved, this is subject to rounding errors). aleph 1/5.0 beth 1/6.0 gimel 1/7.0 daleth 1/8.0 he 1/9.0 waw 1/10.0 zayin 1/11.0 heth 1759/27720 # adjusted so that probabilities add to 1 Related task Random number generator (device)
#Arturo
Arturo
nofTrials: 10000 probabilities: #[ aleph: to :rational [1 5] beth: to :rational [1 6] gimel: to :rational [1 7] daleth: to :rational [1 8] he: to :rational [1 9] waw: to :rational [1 10] zayin: to :rational [1 11] heth: to :rational [1759 27720] ]   samples: #[]   loop 1..nofTrials 'x [ z: random 0.0 1.0 loop probabilities [item,prob][ if? z < prob [ unless key? samples item -> samples\[item]: 0 samples\[item]: samples\[item] + 1 break ] else [ z: z - prob ] ] ]   [s1, s2]: 0.0   print [pad.right "Item" 10 pad "Target" 10 pad "Tesults" 10 pad "Differences" 15] print repeat "-" 50 loop probabilities [item,prob][ r: samples\[item] // nofTrials s1: s1 + r*100 s2: s2 + prob*100   print [ pad.right item 10 pad to :string prob 10 pad to :string round.to:4 r 10 pad to :string round.to:4 to :floating 100*1-r//prob 13 "%" ] ] print repeat "-" 50 print [ pad.right "Total:" 10 pad to :string to :floating s2 10 pad to :string s1 10 ]
http://rosettacode.org/wiki/Primes_-_allocate_descendants_to_their_ancestors
Primes - allocate descendants to their ancestors
The concept, is to add the decomposition into prime factors of a number to get its 'ancestors'. The objective is to demonstrate that the choice of the algorithm can be crucial in term of performance. This solution could be compared to the solution that would use the decomposition into primes for all the numbers between 1 and 333. The problem is to list, for a delimited set of ancestors (from 1 to 99) : - the total of their own ancestors (LEVEL), - their own ancestors (ANCESTORS), - the total of the direct descendants (DESCENDANTS), - all the direct descendants. You only have to consider the prime factors < 100. A grand total of the descendants has to be printed at the end of the list. The task should be accomplished in a reasonable time-frame. Example : 46 = 2*23 --> 2+23 = 25, is the parent of 46. 25 = 5*5 --> 5+5 = 10, is the parent of 25. 10 = 2*5 --> 2+5 = 7, is the parent of 10. 7 is a prime factor and, as such, has no parent. 46 has 3 ancestors (7, 10 and 25). 46 has 557 descendants. The list layout and the output for Parent [46] : [46] Level: 3 Ancestors: 7, 10, 25 Descendants: 557 129, 205, 246, 493, 518, 529, 740, 806, 888, 999, 1364, 1508, 1748, 2552, 2871, 3128, 3255, 3472, 3519, 3875, 3906, 4263, 4650, 4960, 5075, 5415, 5580, 5776, 5952, 6090, 6279, 6496, 6498, 6696, 6783, 7250, 7308, 7475, 7533, 8075, 8151, 8619, 8700, 8855, 8970, 9280, 9568, 9690, 10115, 10336, 10440, 10626, 10764, 11136, 11495, 11628, 11745, 12103, 12138, 12155, 12528, 12650, 13794, 14094, 14399, 14450, 14586, 15180, 15379, 15778, 16192, 17290, 17303, 17340, 18216, 18496, 20482, 20493, 20570, 20748, 20808, 21658, 21970, 22540, 23409, 24684, 24700, 26026, 26364, 27048, 29260, 29282, 29640, 30429, 30940, 31616, 32200, 33345, 35112, 35568, 36225, 36652, 37128, 37180, 38640, 39501, 40014, 41216, 41769, 41800, 43125, 43470, 44044, 44200, 44616, 46000, 46368, 47025, 49725, 50160, 50193, 51750, 52136, 52164, 52360, 53040, 53504, 55200, 56430, 56576, 58653, 58880, 58905, 59670, 60192, 62100, 62832, 62920, 63648, 66240, 66248, 67716, 69825, 70125, 70656, 70686, 70785, 71604, 74480, 74520, 74529, 74536, 74800, 75504, 79488, 83125, 83790, 83835, 83853, 84150, 84942, 87465, 88725, 89376, 89424, 89760, 93296, 94640, 95744, 99750, 99825, 100548, 100602, 100980, 104125, 104958, 105105, 105625, 106400, 106470, 106480, 107712, 112112, 113568, 118750, 119700, 119790, 121176, 124509, 124950, 125125, 126126, 126750, 127680, 127764, 127776, 133280, 135200, 136192, 136323, 142500, 143640, 143748, 148225, 148750, 149940, 150150, 152000, 152100, 153216, 156065, 159936, 160160, 161595, 162240, 171000, 172368, 173056, 177870, 178500, 178750, 179928, 180180, 182400, 182520, 184877, 187278, 189728, 190400, 192192, 192375, 193914, 194560, 194688, 202419, 205200, 205335, 211750, 212500, 213444, 214200, 214500, 216216, 218880, 219024, 222950, 228480, 228800, 230850, 233472, 240975, 243243, 243712, 246240, 246402, 254100, 255000, 257040, 257400, 262656, 264110, 267540, 271040, 272000, 274176, 274560, 277020, 285376, 286875, 289170, 289575, 292864, 295488, 302500, 304920, 306000, 308448, 308880, 316932, 318500, 321048, 325248, 326400, 329472, 332424, 343035, 344250, 347004, 347490, 348160, 361179, 363000, 365904, 367200, 370656, 373977, 377300, 382200, 387200, 391680, 407680, 408375, 411642, 413100, 416988, 417792, 429975, 435600, 440640, 452760, 455000, 458640, 464640, 470016, 470596, 482944, 489216, 490050, 495616, 495720, 509355, 511875, 515970, 522720, 528768, 539000, 543312, 546000, 550368, 557568, 557685, 582400, 588060, 594864, 606375, 609375, 611226, 614250, 619164, 627264, 646800, 650000, 655200, 669222, 672280, 689920, 698880, 705672, 721875, 727650, 731250, 737100, 745472, 756315, 770000, 776160, 780000, 786240, 793881, 806736, 827904, 832000, 838656, 859375, 866250, 873180, 877500, 884520, 900375, 907578, 924000, 931392, 936000, 943488, 960400, 985600, 995085, 998400, 1031250, 1039500, 1047816, 1053000, 1061424, 1064960, 1071875, 1080450, 1100000, 1108800, 1123200, 1152480, 1178793, 1182720, 1184625, 1194102, 1198080, 1229312, 1237500, 1247400, 1261568, 1263600, 1277952, 1286250, 1296540, 1320000, 1330560, 1347840, 1372000, 1382976, 1403325, 1408000, 1419264, 1421550, 1437696, 1485000, 1496880, 1516320, 1531250, 1543500, 1555848, 1584000, 1596672, 1617408, 1646400, 1670625, 1683990, 1689600, 1705860, 1750329, 1756160, 1782000, 1796256, 1802240, 1819584, 1837500, 1852200, 1900800, 1960000, 1975680, 2004750, 2020788, 2027520, 2047032, 2083725, 2107392, 2138400, 2162688, 2187500, 2205000, 2222640, 2280960, 2302911, 2352000, 2370816, 2405700, 2433024, 2480625, 2500470, 2508800, 2566080, 2625000, 2646000, 2667168, 2737152, 2800000, 2822400, 2886840, 2953125, 2976750, 3000564, 3010560, 3079296, 3125000, 3150000, 3175200, 3211264, 3247695, 3360000, 3386880, 3464208, 3515625, 3543750, 3572100, 3584000, 3612672, 3750000, 3780000, 3810240, 3897234, 4000000, 4032000, 4064256, 4218750, 4252500, 4286520, 4300800, 4500000, 4536000, 4572288, 4587520, 4800000, 4822335, 4838400, 5062500, 5103000, 5120000, 5143824, 5160960, 5400000, 5443200, 5505024, 5740875, 5760000, 5786802, 5806080, 6075000, 6123600, 6144000, 6193152, 6480000, 6531840, 6553600, 6834375, 6889050, 6912000, 6967296, 7290000, 7348320, 7372800, 7776000, 7838208, 7864320, 8201250, 8266860, 8294400, 8388608, 8748000, 8817984, 8847360, 9331200, 9437184, 9841500, 9920232, 9953280, 10497600, 10616832, 11160261, 11197440, 11809800, 11943936, 12597120, 13286025, 13436928, 14171760, 15116544, 15943230, 17006112, 19131876 Some figures : The biggest descendant number : 3^33 = 5.559.060.566.555.523 (parent 99) Total Descendants 546.986
#C
C
#include <math.h> #include <stdio.h> #include <stdlib.h> #include <string.h>   #define MAXPRIME 99 // upper bound for the prime factors #define MAXPARENT 99 // greatest parent number #define NBRPRIMES 30 // max number of prime factors #define NBRANCESTORS 10 // max number of parent's ancestors   FILE *FileOut; char format[] = ", %lld";   int Primes[NBRPRIMES]; // table of the prime factors int iPrimes; // max index of the prime factor table   short Ancestors[NBRANCESTORS]; // table of the parent's ancestors   struct Children { long long Child; struct Children *pNext; }; struct Children *Parents[MAXPARENT+1][2]; // table pointing to the root and to the last descendants (per parent) int CptDescendants[MAXPARENT+1]; // counter table of the descendants (per parent) long long MaxDescendant = (long long) pow(3.0, 33.0); // greatest descendant number   short GetParent(long long child); struct Children *AppendChild(struct Children *node, long long child); short GetAncestors(short child); void PrintDescendants(struct Children *node); int GetPrimes(int primes[], int maxPrime);   int main() { long long Child; short i, Parent, Level; int TotDesc = 0;   if ((iPrimes = GetPrimes(Primes, MAXPRIME)) < 0) return 1;   for (Child = 1; Child <= MaxDescendant; Child++) { if (Parent = GetParent(Child)) { Parents[Parent][1] = AppendChild(Parents[Parent][1], Child); if (Parents[Parent][0] == NULL) Parents[Parent][0] = Parents[Parent][1]; CptDescendants[Parent]++; } }   if (MAXPARENT > MAXPRIME) if (GetPrimes(Primes, MAXPARENT) < 0) return 1;   if (fopen_s(&FileOut, "Ancestors.txt", "w")) return 1;   for (Parent = 1; Parent <= MAXPARENT; Parent++) { Level = GetAncestors(Parent);   fprintf(FileOut, "[%d] Level: %d\n", Parent, Level);   if (Level) { fprintf(FileOut, "Ancestors: %d", Ancestors[0]);   for (i = 1; i < Level; i++) fprintf(FileOut, ", %d", Ancestors[i]); } else fprintf(FileOut, "Ancestors: None");   if (CptDescendants[Parent]) { fprintf(FileOut, "\nDescendants: %d\n", CptDescendants[Parent]); strcpy_s(format, "%lld"); PrintDescendants(Parents[Parent][0]); fprintf(FileOut, "\n"); } else fprintf(FileOut, "\nDescendants: None\n");   fprintf(FileOut, "\n"); TotDesc += CptDescendants[Parent]; }   fprintf(FileOut, "Total descendants %d\n\n", TotDesc); if (fclose(FileOut)) return 1;   return 0; }   short GetParent(long long child) { long long Child = child; short Parent = 0; short Index = 0;   while (Child > 1 && Parent <= MAXPARENT) { if (Index > iPrimes) return 0;   while (Child % Primes[Index] == 0) { Child /= Primes[Index]; Parent += Primes[Index]; }   Index++; }   if (Parent == child || Parent > MAXPARENT || child == 1) return 0;   return Parent; }   struct Children *AppendChild(struct Children *node, long long child) { static struct Children *NodeNew;   if (NodeNew = (struct Children *) malloc(sizeof(struct Children))) { NodeNew->Child = child; NodeNew->pNext = NULL; if (node != NULL) node->pNext = NodeNew; }   return NodeNew; }   short GetAncestors(short child) { short Child = child; short Parent = 0; short Index = 0;   while (Child > 1) { while (Child % Primes[Index] == 0) { Child /= Primes[Index]; Parent += Primes[Index]; }   Index++; }   if (Parent == child || child == 1) return 0;   Index = GetAncestors(Parent);   Ancestors[Index] = Parent; return ++Index; }   void PrintDescendants(struct Children *node) { static struct Children *NodeCurr; static struct Children *NodePrev;   NodeCurr = node; NodePrev = NULL; while (NodeCurr) { fprintf(FileOut, format, NodeCurr->Child); strcpy_s(format, ", %lld"); NodePrev = NodeCurr; NodeCurr = NodeCurr->pNext; free(NodePrev); }   return; }   int GetPrimes(int primes[], int maxPrime) { if (maxPrime < 2) return -1;   int Index = 0, Value = 1; int Max, i;   primes[0] = 2;   while ((Value += 2) <= maxPrime) { Max = (int) floor(sqrt((double) Value));   for (i = 0; i <= Index; i++) { if (primes[i] > Max) { if (++Index >= NBRPRIMES) return -1;   primes[Index] = Value; break; }   if (Value % primes[i] == 0) break; } }   return Index; }
http://rosettacode.org/wiki/Priority_queue
Priority queue
A priority queue is somewhat similar to a queue, with an important distinction: each item is added to a priority queue with a priority level, and will be later removed from the queue with the highest priority element first. That is, the items are (conceptually) stored in the queue in priority order instead of in insertion order. Task Create a priority queue.   The queue must support at least two operations:   Insertion.   An element is added to the queue with a priority (a numeric value).   Top item removal.   Deletes the element or one of the elements with the current top priority and return it. Optionally, other operations may be defined, such as peeking (find what current top priority/top element is), merging (combining two priority queues into one), etc. To test your implementation, insert a number of elements into the queue, each with some random priority. Then dequeue them sequentially; now the elements should be sorted by priority. You can use the following task/priority items as input data: Priority Task ══════════ ════════════════ 3 Clear drains 4 Feed cat 5 Make tea 1 Solve RC tasks 2 Tax return The implementation should try to be efficient.   A typical implementation has   O(log n)   insertion and extraction time,   where   n   is the number of items in the queue. You may choose to impose certain limits such as small range of allowed priority levels, limited capacity, etc.   If so, discuss the reasons behind it.
#AutoHotkey
AutoHotkey
;----------------------------------- PQ_TopItem(Queue,Task:=""){ ; remove and return top priority item TopPriority := PQ_TopPriority(Queue) for T, P in Queue if (P = TopPriority) && ((T=Task)||!Task) return T , Queue.Remove(T) return 0 } ;----------------------------------- PQ_AddTask(Queue,Task,Priority){ ; insert and return new task for T, P in Queue if (T=Task) || !(Priority && Task) return 0 return Task, Queue[Task] := Priority } ;----------------------------------- PQ_DelTask(Queue, Task){ ; delete and return task for T, P in Queue if (T = Task) return Task, Queue.Remove(Task) } ;----------------------------------- PQ_Peek(Queue){ ; peek and return top priority task(s) TopPriority := PQ_TopPriority(Queue) for T, P in Queue if (P = TopPriority) PeekList .= (PeekList?"`n":"") "`t" T return PeekList } ;----------------------------------- PQ_Check(Queue,Task){ ; check task and return its priority for T, P in Queue if (T = Task) return P return 0 } ;----------------------------------- PQ_Edit(Queue,Task,Priority){ ; Update task priority and return its new priority for T, P in Queue if (T = Task) return Priority, Queue[T]:=Priority return 0 } ;----------------------------------- PQ_View(Queue){ ; view current Queue for T, P in Queue Res .= P " : " T "`n" Sort, Res, FMySort return "Priority Queue=`n" Res } MySort(a,b){ RegExMatch(a,"(\d+) : (.*)", x), RegExMatch(b,"(\d+) : (.*)", y) return x1>y1?1:x1<y1?-1: x2>y2?1:x2<y2?-1: 0 } ;----------------------------------- PQ_TopPriority(Queue){ ; return queue's top priority for T, P in Queue TopPriority := TopPriority?TopPriority:P , TopPriority := TopPriority<P?TopPriority:P return, TopPriority }
http://rosettacode.org/wiki/Problem_of_Apollonius
Problem of Apollonius
Task Implement a solution to the Problem of Apollonius   (description on Wikipedia)   which is the problem of finding the circle that is tangent to three specified circles   (colored black in the diagram below to the right). There is an   algebraic solution   which is pretty straightforward. The solutions to the example in the code are shown in the diagram   (below and to the right). The red circle is "internally tangent" to all three black circles,   and the green circle is "externally tangent" to all three black circles.
#D
D
import std.stdio, std.math;   immutable struct Circle { double x, y, r; } enum Tangent { externally, internally }   /** Solves the Problem of Apollonius (finding a circle tangent to three other circles in the plane).   Params: c1 = First circle of the problem. c2 = Second circle of the problem. c3 = Third circle of the problem. t1 = How is the solution tangent (externally or internally) to c1. t2 = How is the solution tangent (externally or internally) to c2. t3 = How is the solution tangent (externally or internally) to c3.   Returns: The Circle that is tangent to c1, c2 and c3. */ Circle solveApollonius(in Circle c1, in Circle c2, in Circle c3, in Tangent t1, in Tangent t2, in Tangent t3) pure nothrow @safe @nogc { alias Imd = immutable(double); Imd s1 = (t1 == Tangent.externally) ? 1.0 : -1.0; Imd s2 = (t2 == Tangent.externally) ? 1.0 : -1.0; Imd s3 = (t3 == Tangent.externally) ? 1.0 : -1.0;   Imd v11 = 2 * c2.x - 2 * c1.x; Imd v12 = 2 * c2.y - 2 * c1.y; Imd v13 = c1.x ^^ 2 - c2.x ^^ 2 + c1.y ^^ 2 - c2.y ^^ 2 - c1.r ^^ 2 + c2.r ^^ 2; Imd v14 = 2 * s2 * c2.r - 2 * s1 * c1.r;   Imd v21 = 2 * c3.x - 2 * c2.x; Imd v22 = 2 * c3.y - 2 * c2.y; Imd v23 = c2.x ^^ 2 - c3.x ^^ 2 + c2.y ^^ 2 - c3.y ^^ 2 - c2.r ^^ 2 + c3.r ^^ 2; Imd v24 = 2 * s3 * c3.r - 2 * s2 * c2.r;   Imd w12 = v12 / v11; Imd w13 = v13 / v11; Imd w14 = v14 / v11;   Imd w22 = v22 / v21 - w12; Imd w23 = v23 / v21 - w13; Imd w24 = v24 / v21 - w14;   Imd P = -w23 / w22; Imd Q = w24 / w22; Imd M = -w12 * P - w13; Imd N = w14 - w12 * Q;   Imd a = N * N + Q ^^ 2 - 1; Imd b = 2 * M * N - 2 * N * c1.x + 2 * P * Q - 2 * Q * c1.y + 2 * s1 * c1.r; Imd c = c1.x ^^ 2 + M ^^ 2 - 2 * M * c1.x + P ^^ 2 + c1.y ^^ 2 - 2 * P * c1.y - c1.r ^^ 2;   // find a root of a quadratic equation. // This requires the circle centers not to be e.g. colinear Imd D = b ^^ 2 - 4 * a * c; Imd rs = (-b - D.sqrt) / (2 * a);   return Circle(M + N * rs, P + Q * rs, rs); }   void main() { immutable c1 = Circle(0.0, 0.0, 1.0); immutable c2 = Circle(4.0, 0.0, 1.0); immutable c3 = Circle(2.0, 4.0, 2.0);   alias Te = Tangent.externally; solveApollonius(c1, c2, c3, Te, Te, Te).writeln;   alias Ti = Tangent.internally; solveApollonius(c1, c2, c3, Ti, Ti, Ti).writeln; }
http://rosettacode.org/wiki/Program_name
Program name
The task is to programmatically obtain the name used to invoke the program. (For example determine whether the user ran "python hello.py", or "python hellocaller.py", a program importing the code from "hello.py".) Sometimes a multiline shebang is necessary in order to provide the script name to a language's internal ARGV. See also Command-line arguments Examples from GitHub.
#Lingo
Lingo
put _player.applicationName -- "lsw.exe" put _movie.name -- "lsw_win_d11.dir"
http://rosettacode.org/wiki/Program_name
Program name
The task is to programmatically obtain the name used to invoke the program. (For example determine whether the user ran "python hello.py", or "python hellocaller.py", a program importing the code from "hello.py".) Sometimes a multiline shebang is necessary in order to provide the script name to a language's internal ARGV. See also Command-line arguments Examples from GitHub.
#LLVM
LLVM
$ make llvm-as scriptname.ll llc -disable-cfi scriptname.bc gcc -o scriptname scriptname.s ./scriptname Program: ./scriptname
http://rosettacode.org/wiki/Primorial_numbers
Primorial numbers
Primorial numbers are those formed by multiplying successive prime numbers. The primorial number series is:   primorial(0) =         1       (by definition)   primorial(1) =         2       (2)   primorial(2) =         6       (2×3)   primorial(3) =       30       (2×3×5)   primorial(4) =     210       (2×3×5×7)   primorial(5) =   2310       (2×3×5×7×11)   primorial(6) = 30030       (2×3×5×7×11×13)         ∙ ∙ ∙ To express this mathematically,   primorialn   is   the product of the first   n   (successive) primes:   p r i m o r i a l n = ∏ k = 1 n p r i m e k {\displaystyle primorial_{n}=\prod _{k=1}^{n}prime_{k}} ─── where   p r i m e k {\displaystyle prime_{k}}   is the   kth   prime number. In some sense, generating primorial numbers is similar to factorials. As with factorials, primorial numbers get large quickly. Task   Show the first ten primorial numbers   (0 ──► 9,   inclusive).   Show the length of primorial numbers whose index is:   10   100   1,000   10,000   and   100,000.   Show the length of the one millionth primorial number   (optional).   Use exact integers, not approximations. By   length   (above), it is meant the number of decimal digits in the numbers. Related tasks   Sequence of primorial primes   Factorial   Fortunate_numbers See also   the MathWorld webpage:   primorial   the Wikipedia   webpage:   primorial.   the   OEIS   webpage:   A002110.
#Pascal
Pascal
{$H+} uses sysutils,mp_types,mp_base,mp_prime,mp_numth; var x: mp_int; t0,t1: TDateTime; s: AnsiString;   var i,cnt : NativeInt; ctx :TPrimeContext; begin mp_init(x); cnt := 1; i := 2; FindFirstPrime32(i,ctx); i := 10; t0 := time; repeat repeat FindNextPrime32(ctx); inc(cnt); until cnt = i; mp_primorial(ctx.prime,x); s:= mp_adecimal(x); writeln('MaxPrime ',ctx.prime:10,length(s):8,' digits'); i := 10*i; until i > 1000*1000; t1 := time; Writeln((t1-t0)*86400.0:10:3,' s'); end.  
http://rosettacode.org/wiki/Pythagorean_triples
Pythagorean triples
A Pythagorean triple is defined as three positive integers ( a , b , c ) {\displaystyle (a,b,c)} where a < b < c {\displaystyle a<b<c} , and a 2 + b 2 = c 2 . {\displaystyle a^{2}+b^{2}=c^{2}.} They are called primitive triples if a , b , c {\displaystyle a,b,c} are co-prime, that is, if their pairwise greatest common divisors g c d ( a , b ) = g c d ( a , c ) = g c d ( b , c ) = 1 {\displaystyle {\rm {gcd}}(a,b)={\rm {gcd}}(a,c)={\rm {gcd}}(b,c)=1} . Because of their relationship through the Pythagorean theorem, a, b, and c are co-prime if a and b are co-prime ( g c d ( a , b ) = 1 {\displaystyle {\rm {gcd}}(a,b)=1} ).   Each triple forms the length of the sides of a right triangle, whose perimeter is P = a + b + c {\displaystyle P=a+b+c} . Task The task is to determine how many Pythagorean triples there are with a perimeter no larger than 100 and the number of these that are primitive. Extra credit Deal with large values.   Can your program handle a maximum perimeter of 1,000,000?   What about 10,000,000?   100,000,000? Note: the extra credit is not for you to demonstrate how fast your language is compared to others;   you need a proper algorithm to solve them in a timely manner. Related tasks   Euler's sum of powers conjecture   List comprehensions   Pythagorean quadruples
#Liberty_BASIC
Liberty BASIC
  print time$()   for power =1 to 6 perimeterLimit =10^power upperBound =int( 1 +perimeterLimit^0.5) primitives =0 triples =0 extras =0 ' will count the in-range multiples of any primitive   for m =2 to upperBound for n =1 +( m mod 2 =1) to m -1 step 2 term1 =2 *m *n term2 =m *m -n *n term3 =m *m +n *n perimeter =term1 +term2 +term3   if perimeter <=perimeterLimit then triples =triples +1   a =term1 b =term2   do r = a mod b a =b b =r loop until r <=0   if ( a =1) and ( perimeter <=perimeterLimit) then 'we've found a primitive triple if a =1, since hcf =1. And it is inside perimeter range. Save it in an array primitives =primitives +1 if term1 >term2 then temp =term1: term1 =term2: term2 =temp 'swap so in increasing order of side length nEx =int( perimeterLimit /perimeter) 'We have the primitive & removed any multiples. Now calculate ALL the multiples in range. extras =extras +nEx end if   scan next n next m   print " Number of primitives having perimeter below "; 10^power, " was "; primitives, " & "; extras, " non-primitive triples." print time$() next power   print "End" end  
http://rosettacode.org/wiki/Program_termination
Program termination
Task Show the syntax for a complete stoppage of a program inside a   conditional. This includes all threads/processes which are part of your program. Explain the cleanup (or lack thereof) caused by the termination (allocated memory, database connections, open files, object finalizers/destructors, run-on-exit hooks, etc.). Unless otherwise described, no special cleanup outside that provided by the operating system is provided.
#HicEst
HicEst
ALARM( 999 )
http://rosettacode.org/wiki/Program_termination
Program termination
Task Show the syntax for a complete stoppage of a program inside a   conditional. This includes all threads/processes which are part of your program. Explain the cleanup (or lack thereof) caused by the termination (allocated memory, database connections, open files, object finalizers/destructors, run-on-exit hooks, etc.). Unless otherwise described, no special cleanup outside that provided by the operating system is provided.
#Icon_and_Unicon
Icon and Unicon
exit(i) # terminates the program setting an exit code of i stop(x1,x2,..) # terminates the program writing out x1,..; if any xi is a file writing switches to that file runerr(i,x) # terminates the program with run time error 'i' for value 'x'
http://rosettacode.org/wiki/QR_decomposition
QR decomposition
Any rectangular m × n {\displaystyle m\times n} matrix A {\displaystyle {\mathit {A}}} can be decomposed to a product of an orthogonal matrix Q {\displaystyle {\mathit {Q}}} and an upper (right) triangular matrix R {\displaystyle {\mathit {R}}} , as described in QR decomposition. Task Demonstrate the QR decomposition on the example matrix from the Wikipedia article: A = ( 12 − 51 4 6 167 − 68 − 4 24 − 41 ) {\displaystyle A={\begin{pmatrix}12&-51&4\\6&167&-68\\-4&24&-41\end{pmatrix}}} and the usage for linear least squares problems on the example from Polynomial regression. The method of Householder reflections should be used: Method Multiplying a given vector a {\displaystyle {\mathit {a}}} , for example the first column of matrix A {\displaystyle {\mathit {A}}} , with the Householder matrix H {\displaystyle {\mathit {H}}} , which is given as H = I − 2 u T u u u T {\displaystyle H=I-{\frac {2}{u^{T}u}}uu^{T}} reflects a {\displaystyle {\mathit {a}}} about a plane given by its normal vector u {\displaystyle {\mathit {u}}} . When the normal vector of the plane u {\displaystyle {\mathit {u}}} is given as u = a − ∥ a ∥ 2 e 1 {\displaystyle u=a-\|a\|_{2}\;e_{1}} then the transformation reflects a {\displaystyle {\mathit {a}}} onto the first standard basis vector e 1 = [ 1 0 0 . . . ] T {\displaystyle e_{1}=[1\;0\;0\;...]^{T}} which means that all entries but the first become zero. To avoid numerical cancellation errors, we should take the opposite sign of a 1 {\displaystyle a_{1}} : u = a + sign ( a 1 ) ∥ a ∥ 2 e 1 {\displaystyle u=a+{\textrm {sign}}(a_{1})\|a\|_{2}\;e_{1}} and normalize with respect to the first element: v = u u 1 {\displaystyle v={\frac {u}{u_{1}}}} The equation for H {\displaystyle H} thus becomes: H = I − 2 v T v v v T {\displaystyle H=I-{\frac {2}{v^{T}v}}vv^{T}} or, in another form H = I − β v v T {\displaystyle H=I-\beta vv^{T}} with β = 2 v T v {\displaystyle \beta ={\frac {2}{v^{T}v}}} Applying H {\displaystyle {\mathit {H}}} on a {\displaystyle {\mathit {a}}} then gives H a = − sign ( a 1 ) ∥ a ∥ 2 e 1 {\displaystyle H\;a=-{\textrm {sign}}(a_{1})\;\|a\|_{2}\;e_{1}} and applying H {\displaystyle {\mathit {H}}} on the matrix A {\displaystyle {\mathit {A}}} zeroes all subdiagonal elements of the first column: H 1 A = ( r 11 r 12 r 13 0 ∗ ∗ 0 ∗ ∗ ) {\displaystyle H_{1}\;A={\begin{pmatrix}r_{11}&r_{12}&r_{13}\\0&*&*\\0&*&*\end{pmatrix}}} In the second step, the second column of A {\displaystyle {\mathit {A}}} , we want to zero all elements but the first two, which means that we have to calculate H {\displaystyle {\mathit {H}}} with the first column of the submatrix (denoted *), not on the whole second column of A {\displaystyle {\mathit {A}}} . To get H 2 {\displaystyle H_{2}} , we then embed the new H {\displaystyle {\mathit {H}}} into an m × n {\displaystyle m\times n} identity: H 2 = ( 1 0 0 0 H 0 ) {\displaystyle H_{2}={\begin{pmatrix}1&0&0\\0&H&\\0&&\end{pmatrix}}} This is how we can, column by column, remove all subdiagonal elements of A {\displaystyle {\mathit {A}}} and thus transform it into R {\displaystyle {\mathit {R}}} . H n . . . H 3 H 2 H 1 A = R {\displaystyle H_{n}\;...\;H_{3}H_{2}H_{1}A=R} The product of all the Householder matrices H {\displaystyle {\mathit {H}}} , for every column, in reverse order, will then yield the orthogonal matrix Q {\displaystyle {\mathit {Q}}} . H 1 H 2 H 3 . . . H n = Q {\displaystyle H_{1}H_{2}H_{3}\;...\;H_{n}=Q} The QR decomposition should then be used to solve linear least squares (Multiple regression) problems A x = b {\displaystyle {\mathit {A}}x=b} by solving R x = Q T b {\displaystyle R\;x=Q^{T}\;b} When R {\displaystyle {\mathit {R}}} is not square, i.e. m > n {\displaystyle m>n} we have to cut off the m − n {\displaystyle {\mathit {m}}-n} zero padded bottom rows. R = ( R 1 0 ) {\displaystyle R={\begin{pmatrix}R_{1}\\0\end{pmatrix}}} and the same for the RHS: Q T b = ( q 1 q 2 ) {\displaystyle Q^{T}\;b={\begin{pmatrix}q_{1}\\q_{2}\end{pmatrix}}} Finally, solve the square upper triangular system by back substitution: R 1 x = q 1 {\displaystyle R_{1}\;x=q_{1}}
#Scala
Scala
import java.io.{PrintWriter, StringWriter}   import Jama.{Matrix, QRDecomposition}   object QRDecomposition extends App { val matrix = new Matrix( Array[Array[Double]](Array(12, -51, 4), Array(6, 167, -68), Array(-4, 24, -41))) val d = new QRDecomposition(matrix)   def toString(m: Matrix): String = { val sw = new StringWriter m.print(new PrintWriter(sw, true), 8, 6) sw.toString }   print(toString(d.getQ)) print(toString(d.getR))   }
http://rosettacode.org/wiki/Prime_triangle
Prime triangle
You will require a function f which when given an integer S will return a list of the arrangements of the integers 1 to S such that g1=1 gS=S and generally for n=1 to n=S-1 gn+gn+1 is prime. S=1 is undefined. For S=2 to S=20 print f(S) to form a triangle. Then again for S=2 to S=20 print the number of possible arrangements of 1 to S meeting these requirements.
#Julia
Julia
using Combinatorics, Primes   function primetriangle(nrows::Integer) nrows < 2 && error("number of rows requested must be > 1") pmask, spinlock = primesmask(2 * (nrows + 1)), Threads.SpinLock() counts, rowstrings = [1; zeros(Int, nrows - 1)], ["" for _ in 1:nrows] for r in 2:nrows @Threads.threads for e in collect(permutations(2:2:r)) p = zeros(Int, r - 1) for o in permutations(3:2:r) i = 0 for (x, y) in zip(e, o) p[i += 1] = x p[i += 1] = y end length(e) > length(o) && (p[i += 1] = e[end]) if pmask[p[i] + r + 1] && pmask[p[begin] + 1] && all(j -> pmask[p[j] + p[j + 1]], 1:r-2) lock(spinlock) if counts[r] == 0 rowstrings[r] = " 1" * prod([lpad(n, 3) for n in p]) * lpad(r + 1, 3) * "\n" end counts[r] += 1 unlock(spinlock) end end end end println(" 1 2\n" * prod(rowstrings), "\n", counts) end   @time primetriangle(16)  
http://rosettacode.org/wiki/Prime_triangle
Prime triangle
You will require a function f which when given an integer S will return a list of the arrangements of the integers 1 to S such that g1=1 gS=S and generally for n=1 to n=S-1 gn+gn+1 is prime. S=1 is undefined. For S=2 to S=20 print f(S) to form a triangle. Then again for S=2 to S=20 print the number of possible arrangements of 1 to S meeting these requirements.
#Perl
Perl
use strict; use warnings; use feature 'say'; use ntheory 'is_prime'; use List::MoreUtils qw(zip slideatatime); use Algorithm::Combinatorics qw(permutations);   say '1 2';   my @count = (0, 0, 1);   for my $n (3..17) { my @even_nums = grep { 0 == $_ % 2 } 2..$n-1; my @odd_nums = grep { 1 == $_ % 2 } 3..$n-1; for my $e (permutations [@even_nums]) { next if $$e[0] == 8 or $$e[0] == 14; my $nope = 0; for my $o (permutations [@odd_nums]) { my @list = (zip(@$e, @$o), $n); # 'zip' makes a list with a gap if more evens than odds splice @list, -2, -1 if not defined $list[-2]; # in which case splice out 'undef' in next-to-last position my $it = slideatatime(1, 2, @list); while ( my @rr = $it->() ) { last unless defined $rr[1]; $nope++ and last unless is_prime $rr[0]+$rr[1]; } unless ($nope) { say '1 ' . join ' ', @list unless $count[$n]; $count[$n]++; } $nope = 0; } } }   say "\n" . join ' ', @count[2..$#count];
http://rosettacode.org/wiki/Prime_conspiracy
Prime conspiracy
A recent discovery, quoted from   Quantamagazine   (March 13, 2016): Two mathematicians have uncovered a simple, previously unnoticed property of prime numbers — those numbers that are divisible only by 1 and themselves. Prime numbers, it seems, have decided preferences about the final digits of the primes that immediately follow them. and This conspiracy among prime numbers seems, at first glance, to violate a longstanding assumption in number theory: that prime numbers behave much like random numbers. ─── (original authors from Stanford University): ─── Kannan Soundararajan and Robert Lemke Oliver The task is to check this assertion, modulo 10. Lets call    i -> j   a transition if    i   is the last decimal digit of a prime, and    j   the last decimal digit of the following prime. Task Considering the first one million primes.   Count, for any pair of successive primes, the number of transitions    i -> j   and print them along with their relative frequency, sorted by    i . You can see that, for a given    i ,   frequencies are not evenly distributed. Observation (Modulo 10),   primes whose last digit is   9   "prefer"   the digit   1   to the digit   9,   as its following prime. Extra credit Do the same for one hundred million primes. Example for 10,000 primes 10000 first primes. Transitions prime % 10 → next-prime % 10. 1 → 1 count: 365 frequency: 3.65 % 1 → 3 count: 833 frequency: 8.33 % 1 → 7 count: 889 frequency: 8.89 % 1 → 9 count: 397 frequency: 3.97 % 2 → 3 count: 1 frequency: 0.01 % 3 → 1 count: 529 frequency: 5.29 % 3 → 3 count: 324 frequency: 3.24 % 3 → 5 count: 1 frequency: 0.01 % 3 → 7 count: 754 frequency: 7.54 % 3 → 9 count: 907 frequency: 9.07 % 5 → 7 count: 1 frequency: 0.01 % 7 → 1 count: 655 frequency: 6.55 % 7 → 3 count: 722 frequency: 7.22 % 7 → 7 count: 323 frequency: 3.23 % 7 → 9 count: 808 frequency: 8.08 % 9 → 1 count: 935 frequency: 9.35 % 9 → 3 count: 635 frequency: 6.35 % 9 → 7 count: 541 frequency: 5.41 % 9 → 9 count: 379 frequency: 3.79 %
#ALGOL_68
ALGOL 68
# extend SET, CLEAR and ELEM to operate on rows of BITS # OP SET = ( INT n, REF[]BITS b )REF[]BITS: BEGIN INT w = n OVER bits width; b[ w ] := ( ( 1 + ( n MOD bits width ) ) SET b[ w ] ); b END # SET # ; OP CLEAR = ( INT n, REF[]BITS b )REF[]BITS: BEGIN INT w = n OVER bits width; b[ w ] := ( ( 1 + ( n MOD bits width ) ) CLEAR b[ w ] ); b END # SET # ; OP ELEM = ( INT n, REF[]BITS b )BOOL: ( 1 + ( n MOD bits width ) ) ELEM b[ n OVER bits width ];   # constructs a bit array long enough to hold n values # OP BITARRAY = ( INT n )REF[]BITS: HEAP[ 0 : n OVER bits width ]BITS;   # construct a BITS value of all TRUE # BITS all true = BEGIN BITS v := 16r0; FOR bit TO bits width DO v := bit SET v OD; v END;   # initialises a bit array to all TRUE # OP SETALL = ( REF[]BITS b )REF[]BITS: BEGIN FOR p FROM LWB b TO UPB b DO b[ p ] := all true OD; b END # SETALL # ;   # construct a sieve initialised to all TRUE apart from the first bit # INT sieve max = 15 500 000; # somewhat larger than the 1 000 000th prime # INT prime max = 1 000 000; REF[]BITS sieve = 1 CLEAR SETALL BITARRAY sieve max;   # sieve the primes # FOR s FROM 2 TO ENTIER sqrt( sieve max ) DO IF s ELEM sieve THEN FOR p FROM s * s BY s TO sieve max DO p CLEAR sieve OD FI OD;   # count the number of times each combination of # # ( last digit of previous prime, last digit of prime ) occurs # [ 0 : 9, 0 : 9 ]INT counts; FOR p FROM 0 TO 9 DO FOR n FROM 0 TO 9 DO counts[ p, n ] := 0 OD OD; INT previous prime := 2; INT primes found := 1; FOR p FROM 3 TO sieve max WHILE primes found < prime max DO IF p ELEM sieve THEN primes found +:= 1; counts[ previous prime MOD 10, p MOD 10 ] +:= 1; previous prime := p FI OD;   # print the counts # # there are thus 4 possible final digits: 1, 3, 7, 9 # STRING labels = "123456789"; # "labels" for the counts # INT total := 0; FOR p TO 9 DO FOR n TO 9 DO total +:= counts[ p, n ] OD OD; print( ( whole( primes found, 0 ), " primes, last prime considered: ", previous prime, newline ) ); FOR p TO 9 DO FOR n TO 9 DO IF counts[ p, n ] /= 0 THEN print( ( labels[ p ], "->", labels[ n ] , whole( counts[ p, n ], -8 ) , fixed( ( 100 * counts[ p, n ] ) / total, -8, 2 ) , newline ) ) FI OD OD
http://rosettacode.org/wiki/Proper_divisors
Proper divisors
The   proper divisors   of a positive integer N are those numbers, other than N itself, that divide N without remainder. For N > 1 they will always include 1,   but for N == 1 there are no proper divisors. Examples The proper divisors of     6     are   1, 2, and 3. The proper divisors of   100   are   1, 2, 4, 5, 10, 20, 25, and 50. Task Create a routine to generate all the proper divisors of a number. use it to show the proper divisors of the numbers 1 to 10 inclusive. Find a number in the range 1 to 20,000 with the most proper divisors. Show the number and just the count of how many proper divisors it has. Show all output here. Related tasks   Amicable pairs   Abundant, deficient and perfect number classifications   Aliquot sequence classifications   Factors of an integer   Prime decomposition
#Arturo
Arturo
properDivisors: function [x] -> (factors x) -- x   loop 1..10 'x -> print ["proper divisors of" x "=>" properDivisors x]   maxN: 0 maxProperDivisors: 0   loop 1..20000 'x [ pd: size properDivisors x if maxProperDivisors < pd [ maxN: x maxProperDivisors: pd ] ]   print ["The number with the most proper divisors (" maxProperDivisors ") is" maxN]
http://rosettacode.org/wiki/Probabilistic_choice
Probabilistic choice
Given a mapping between items and their required probability of occurrence, generate a million items randomly subject to the given probabilities and compare the target probability of occurrence versus the generated values. The total of all the probabilities should equal one. (Because floating point arithmetic is involved, this is subject to rounding errors). aleph 1/5.0 beth 1/6.0 gimel 1/7.0 daleth 1/8.0 he 1/9.0 waw 1/10.0 zayin 1/11.0 heth 1759/27720 # adjusted so that probabilities add to 1 Related task Random number generator (device)
#AutoHotkey
AutoHotkey
s1 := "aleph", p1 := 1/5.0 ; Input s2 := "beth", p2 := 1/6.0 s3 := "gimel", p3 := 1/7.0 s4 := "daleth", p4 := 1/8.0 s5 := "he", p5 := 1/9.0 s6 := "waw", p6 := 1/10.0 s7 := "zayin", p7 := 1/11.0 s8 := "heth", p8 := 1-p1-p2-p3-p4-p5-p6-p7 n := 8, r0 := 0, r%n% := 1 ; auxiliary data   Loop % n-1 i := A_Index-1, r%A_Index% := r%i% + p%A_Index% ; cummulative distribution   Loop 1000000 { Random R, 0, 1.0 Loop %n% ; linear search If (R < r%A_Index%) { c%A_Index%++ Break } } ; Output Loop %n% t .= s%A_Index% "`t" p%A_Index% "`t" c%A_Index%*1.0e-6 "`n" Msgbox %t%   /* output: --------------------------- aleph 0.200000 0.199960 beth 0.166667 0.166146 gimel 0.142857 0.142624 daleth 0.125000 0.124924 he 0.111111 0.111226 waw 0.100000 0.100434 zayin 0.090909 0.091344 heth 0.063456 0.063342 --------------------------- */
http://rosettacode.org/wiki/Primes_-_allocate_descendants_to_their_ancestors
Primes - allocate descendants to their ancestors
The concept, is to add the decomposition into prime factors of a number to get its 'ancestors'. The objective is to demonstrate that the choice of the algorithm can be crucial in term of performance. This solution could be compared to the solution that would use the decomposition into primes for all the numbers between 1 and 333. The problem is to list, for a delimited set of ancestors (from 1 to 99) : - the total of their own ancestors (LEVEL), - their own ancestors (ANCESTORS), - the total of the direct descendants (DESCENDANTS), - all the direct descendants. You only have to consider the prime factors < 100. A grand total of the descendants has to be printed at the end of the list. The task should be accomplished in a reasonable time-frame. Example : 46 = 2*23 --> 2+23 = 25, is the parent of 46. 25 = 5*5 --> 5+5 = 10, is the parent of 25. 10 = 2*5 --> 2+5 = 7, is the parent of 10. 7 is a prime factor and, as such, has no parent. 46 has 3 ancestors (7, 10 and 25). 46 has 557 descendants. The list layout and the output for Parent [46] : [46] Level: 3 Ancestors: 7, 10, 25 Descendants: 557 129, 205, 246, 493, 518, 529, 740, 806, 888, 999, 1364, 1508, 1748, 2552, 2871, 3128, 3255, 3472, 3519, 3875, 3906, 4263, 4650, 4960, 5075, 5415, 5580, 5776, 5952, 6090, 6279, 6496, 6498, 6696, 6783, 7250, 7308, 7475, 7533, 8075, 8151, 8619, 8700, 8855, 8970, 9280, 9568, 9690, 10115, 10336, 10440, 10626, 10764, 11136, 11495, 11628, 11745, 12103, 12138, 12155, 12528, 12650, 13794, 14094, 14399, 14450, 14586, 15180, 15379, 15778, 16192, 17290, 17303, 17340, 18216, 18496, 20482, 20493, 20570, 20748, 20808, 21658, 21970, 22540, 23409, 24684, 24700, 26026, 26364, 27048, 29260, 29282, 29640, 30429, 30940, 31616, 32200, 33345, 35112, 35568, 36225, 36652, 37128, 37180, 38640, 39501, 40014, 41216, 41769, 41800, 43125, 43470, 44044, 44200, 44616, 46000, 46368, 47025, 49725, 50160, 50193, 51750, 52136, 52164, 52360, 53040, 53504, 55200, 56430, 56576, 58653, 58880, 58905, 59670, 60192, 62100, 62832, 62920, 63648, 66240, 66248, 67716, 69825, 70125, 70656, 70686, 70785, 71604, 74480, 74520, 74529, 74536, 74800, 75504, 79488, 83125, 83790, 83835, 83853, 84150, 84942, 87465, 88725, 89376, 89424, 89760, 93296, 94640, 95744, 99750, 99825, 100548, 100602, 100980, 104125, 104958, 105105, 105625, 106400, 106470, 106480, 107712, 112112, 113568, 118750, 119700, 119790, 121176, 124509, 124950, 125125, 126126, 126750, 127680, 127764, 127776, 133280, 135200, 136192, 136323, 142500, 143640, 143748, 148225, 148750, 149940, 150150, 152000, 152100, 153216, 156065, 159936, 160160, 161595, 162240, 171000, 172368, 173056, 177870, 178500, 178750, 179928, 180180, 182400, 182520, 184877, 187278, 189728, 190400, 192192, 192375, 193914, 194560, 194688, 202419, 205200, 205335, 211750, 212500, 213444, 214200, 214500, 216216, 218880, 219024, 222950, 228480, 228800, 230850, 233472, 240975, 243243, 243712, 246240, 246402, 254100, 255000, 257040, 257400, 262656, 264110, 267540, 271040, 272000, 274176, 274560, 277020, 285376, 286875, 289170, 289575, 292864, 295488, 302500, 304920, 306000, 308448, 308880, 316932, 318500, 321048, 325248, 326400, 329472, 332424, 343035, 344250, 347004, 347490, 348160, 361179, 363000, 365904, 367200, 370656, 373977, 377300, 382200, 387200, 391680, 407680, 408375, 411642, 413100, 416988, 417792, 429975, 435600, 440640, 452760, 455000, 458640, 464640, 470016, 470596, 482944, 489216, 490050, 495616, 495720, 509355, 511875, 515970, 522720, 528768, 539000, 543312, 546000, 550368, 557568, 557685, 582400, 588060, 594864, 606375, 609375, 611226, 614250, 619164, 627264, 646800, 650000, 655200, 669222, 672280, 689920, 698880, 705672, 721875, 727650, 731250, 737100, 745472, 756315, 770000, 776160, 780000, 786240, 793881, 806736, 827904, 832000, 838656, 859375, 866250, 873180, 877500, 884520, 900375, 907578, 924000, 931392, 936000, 943488, 960400, 985600, 995085, 998400, 1031250, 1039500, 1047816, 1053000, 1061424, 1064960, 1071875, 1080450, 1100000, 1108800, 1123200, 1152480, 1178793, 1182720, 1184625, 1194102, 1198080, 1229312, 1237500, 1247400, 1261568, 1263600, 1277952, 1286250, 1296540, 1320000, 1330560, 1347840, 1372000, 1382976, 1403325, 1408000, 1419264, 1421550, 1437696, 1485000, 1496880, 1516320, 1531250, 1543500, 1555848, 1584000, 1596672, 1617408, 1646400, 1670625, 1683990, 1689600, 1705860, 1750329, 1756160, 1782000, 1796256, 1802240, 1819584, 1837500, 1852200, 1900800, 1960000, 1975680, 2004750, 2020788, 2027520, 2047032, 2083725, 2107392, 2138400, 2162688, 2187500, 2205000, 2222640, 2280960, 2302911, 2352000, 2370816, 2405700, 2433024, 2480625, 2500470, 2508800, 2566080, 2625000, 2646000, 2667168, 2737152, 2800000, 2822400, 2886840, 2953125, 2976750, 3000564, 3010560, 3079296, 3125000, 3150000, 3175200, 3211264, 3247695, 3360000, 3386880, 3464208, 3515625, 3543750, 3572100, 3584000, 3612672, 3750000, 3780000, 3810240, 3897234, 4000000, 4032000, 4064256, 4218750, 4252500, 4286520, 4300800, 4500000, 4536000, 4572288, 4587520, 4800000, 4822335, 4838400, 5062500, 5103000, 5120000, 5143824, 5160960, 5400000, 5443200, 5505024, 5740875, 5760000, 5786802, 5806080, 6075000, 6123600, 6144000, 6193152, 6480000, 6531840, 6553600, 6834375, 6889050, 6912000, 6967296, 7290000, 7348320, 7372800, 7776000, 7838208, 7864320, 8201250, 8266860, 8294400, 8388608, 8748000, 8817984, 8847360, 9331200, 9437184, 9841500, 9920232, 9953280, 10497600, 10616832, 11160261, 11197440, 11809800, 11943936, 12597120, 13286025, 13436928, 14171760, 15116544, 15943230, 17006112, 19131876 Some figures : The biggest descendant number : 3^33 = 5.559.060.566.555.523 (parent 99) Total Descendants 546.986
#C.2B.2B
C++
#include <algorithm> #include <iostream> #include <vector>   typedef unsigned long long integer;   // returns all ancestors of n. n is not its own ancestor. std::vector<integer> get_ancestors(const std::vector<integer>& ancestor, integer n) { std::vector<integer> result; for (integer a = ancestor[n]; a != 0 && a != n; ) { n = a; a = ancestor[n]; result.push_back(n); } return result; }   void print_vector(const std::vector<integer>& vec) { if (vec.empty()) { std::cout << "none\n"; return; } auto i = vec.begin(); std::cout << *i++; for (; i != vec.end(); ++i) std::cout << ", " << *i; std::cout << '\n'; }   bool is_prime(integer n) { if (n < 2) return false; if (n % 2 == 0) return n == 2; for (integer p = 3; p * p <= n; p += 2) { if (n % p == 0) return false; } return true; }   int main(int argc, char** argv) { const size_t limit = 100;   std::vector<integer> ancestor(limit, 0); std::vector<std::vector<integer>> descendants(limit);   for (size_t prime = 0; prime < limit; ++prime) { if (!is_prime(prime)) continue; descendants[prime].push_back(prime); for (size_t i = 0; i + prime < limit; ++i) { integer s = i + prime; for (integer n : descendants[i]) { integer prod = n * prime; descendants[s].push_back(prod); if (prod < limit) ancestor[prod] = s; } } }   // print the results size_t total_descendants = 0; for (integer i = 1; i < limit; ++i) { std::vector<integer> ancestors(get_ancestors(ancestor, i)); std::cout << "[" << i << "] Level: " << ancestors.size() << '\n'; std::cout << "Ancestors: "; std::sort(ancestors.begin(), ancestors.end()); print_vector(ancestors);   std::cout << "Descendants: "; std::vector<integer>& desc = descendants[i]; if (!desc.empty()) { std::sort(desc.begin(), desc.end()); if (desc[0] == i) desc.erase(desc.begin()); } std::cout << desc.size() << '\n'; total_descendants += desc.size(); if (!desc.empty()) print_vector(desc); std::cout << '\n'; } std::cout << "Total descendants: " << total_descendants << '\n'; return 0; }
http://rosettacode.org/wiki/Priority_queue
Priority queue
A priority queue is somewhat similar to a queue, with an important distinction: each item is added to a priority queue with a priority level, and will be later removed from the queue with the highest priority element first. That is, the items are (conceptually) stored in the queue in priority order instead of in insertion order. Task Create a priority queue.   The queue must support at least two operations:   Insertion.   An element is added to the queue with a priority (a numeric value).   Top item removal.   Deletes the element or one of the elements with the current top priority and return it. Optionally, other operations may be defined, such as peeking (find what current top priority/top element is), merging (combining two priority queues into one), etc. To test your implementation, insert a number of elements into the queue, each with some random priority. Then dequeue them sequentially; now the elements should be sorted by priority. You can use the following task/priority items as input data: Priority Task ══════════ ════════════════ 3 Clear drains 4 Feed cat 5 Make tea 1 Solve RC tasks 2 Tax return The implementation should try to be efficient.   A typical implementation has   O(log n)   insertion and extraction time,   where   n   is the number of items in the queue. You may choose to impose certain limits such as small range of allowed priority levels, limited capacity, etc.   If so, discuss the reasons behind it.
#Axiom
Axiom
)abbrev Domain ORDKE OrderedKeyEntry OrderedKeyEntry(Key:OrderedSet,Entry:SetCategory): Exports == Implementation where Exports == OrderedSet with construct: (Key,Entry) -> % elt: (%,"key") -> Key elt: (%,"entry") -> Entry Implementation == add Rep := Record(k:Key,e:Entry) x,y: % construct(a,b) == construct(a,b)$Rep @ % elt(x,"key"):Key == (x@Rep).k elt(x,"entry"):Entry == (x@Rep).e x < y == x.key < y.key x = y == x.key = y.key hash x == hash(x.key) if Entry has CoercibleTo OutputForm then coerce(x):OutputForm == bracket [(x.key)::OutputForm,(x.entry)::OutputForm] )abbrev Domain PRIORITY PriorityQueue S ==> OrderedKeyEntry(Key,Entry) PriorityQueue(Key:OrderedSet,Entry:SetCategory): Exports == Implementation where Exports == PriorityQueueAggregate S with heap : List S -> % setelt: (%,Key,Entry) -> Entry Implementation == Heap(S) add setelt(x:%,key:Key,entry:Entry) == insert!(construct(key,entry)$S,x) entry
http://rosettacode.org/wiki/Problem_of_Apollonius
Problem of Apollonius
Task Implement a solution to the Problem of Apollonius   (description on Wikipedia)   which is the problem of finding the circle that is tangent to three specified circles   (colored black in the diagram below to the right). There is an   algebraic solution   which is pretty straightforward. The solutions to the example in the code are shown in the diagram   (below and to the right). The red circle is "internally tangent" to all three black circles,   and the green circle is "externally tangent" to all three black circles.
#Dyalect
Dyalect
type Circle(Array center, Float radius) with Lookup func Circle.ToString() => "Circle[x=\(this.center[0]),y=\(this.center[1]),r=\(this.radius)]"   func solveApollonius(Circle c1, Circle c2, Circle c3, Float s1, Float s2, Float s3) { let x1 = c1.center[0] let y1 = c1.center[1] let r1 = c1.radius let x2 = c2.center[0] let y2 = c2.center[1] let r2 = c2.radius let x3 = c3.center[0] let y3 = c3.center[1] let r3 = c3.radius   let v11 = 2.0 * x2 - 2.0 * x1 let v12 = 2.0 * y2 - 2.0 *y1 let v13 = x1 * x1 - x2 * x2 + y1 * y1 - y2 * y2 - r1 * r1 + r2 * r2 let v14 = 2.0 * s2 * r2 - 2.0 * s1 * r1   let v21 = 2.0 * x3 - 2.0 * x2 let v22 = 2.0 * y3 - 2.0 * y2 let v23 = x2 * x2 - x3 * x3 + y2 * y2 - y3 * y3 - r2 * r2 + r3 * r3 let v24 = 2.0 * s3 * r3 - 2 * s2 * r2   let w12 = v12 / v11 let w13 = v13 / v11 let w14 = v14 / v11   let w22 = v22 / v21-w12 let w23 = v23 / v21-w13 let w24 = v24 / v21-w14   let p = -w23 / w22 let q = w24 / w22 let m = -w12 * p - w13 let n = w14 - w12 * q   let a = n * n + q * q - 1.0 let b = 2.0 * m * n - 2.0 * n * x1 + 2 * p * q - 2.0 * q * y1 + 2.0 * s1 * r1 let c = x1 * x1 + m * m - 2.0 * m * x1 + p * p + y1 * y1 - 2.0 * p * y1 - r1 * r1   let d = b * b - 4.0 * a * c let rs = (-b - sqrt(d)) / (2.0 * a) let xs = m + n * rs let ys = p + q * rs   Circle(center: [xs,ys], radius: rs) }   let c1 = Circle(center: [0.0, 0.0], radius: 1.0) let c2 = Circle(center: [4.0, 0.0], radius: 1.0) let c3 = Circle(center: [2.0, 4.0], radius: 2.0)   print(solveApollonius(c1, c2, c3, 1.0, 1.0, 1.0)) print(solveApollonius(c1, c2, c3, -1.0, -1.0, -1.0))
http://rosettacode.org/wiki/Problem_of_Apollonius
Problem of Apollonius
Task Implement a solution to the Problem of Apollonius   (description on Wikipedia)   which is the problem of finding the circle that is tangent to three specified circles   (colored black in the diagram below to the right). There is an   algebraic solution   which is pretty straightforward. The solutions to the example in the code are shown in the diagram   (below and to the right). The red circle is "internally tangent" to all three black circles,   and the green circle is "externally tangent" to all three black circles.
#Elixir
Elixir
defmodule Circle do def apollonius(c1, c2, c3, s1, s2, s3) do {x1, y1, r1} = c1 {w12, w13, w14} = calc(c1, c2, s1, s2) {u22, u23, u24} = calc(c2, c3, s2, s3) {w22, w23, w24} = {u22 - w12, u23 - w13, u24 - w14}   p = -w23 / w22 q = w24 / w22 m = -w12 * p - w13 n = w14 - w12 * q   a = n*n + q*q - 1 b = 2*m*n - 2*n*x1 + 2*p*q - 2*q*y1 + 2*s1*r1 c = x1*x1 + m*m - 2*m*x1 + p*p + y1*y1 - 2*p*y1 - r1*r1   d = b*b - 4*a*c rs = (-b - :math.sqrt(d)) / (2*a) {m + n*rs, p + q*rs, rs} end   defp calc({x1, y1, r1}, {x2, y2, r2}, s1, s2) do v1 = x2 - x1 {(y2 - y1) / v1, (x1*x1 - x2*x2 + y1*y1 - y2*y2 - r1*r1 + r2*r2) / (2*v1), (s2*r2 - s1*r1) / v1} end end   c1 = {0, 0, 1} c2 = {2, 4, 2} c3 = {4, 0, 1}   IO.inspect Circle.apollonius(c1, c2, c3, 1, 1, 1) IO.inspect Circle.apollonius(c1, c2, c3, -1, -1, -1)
http://rosettacode.org/wiki/Program_name
Program name
The task is to programmatically obtain the name used to invoke the program. (For example determine whether the user ran "python hello.py", or "python hellocaller.py", a program importing the code from "hello.py".) Sometimes a multiline shebang is necessary in order to provide the script name to a language's internal ARGV. See also Command-line arguments Examples from GitHub.
#Lua
Lua
#!/usr/bin/env lua   function main(arg) local program = arg[0] print("Program: " .. program) end   if type(package.loaded[(...)]) ~= "userdata" then main(arg) else module(..., package.seeall) end
http://rosettacode.org/wiki/Program_name
Program name
The task is to programmatically obtain the name used to invoke the program. (For example determine whether the user ran "python hello.py", or "python hellocaller.py", a program importing the code from "hello.py".) Sometimes a multiline shebang is necessary in order to provide the script name to a language's internal ARGV. See also Command-line arguments Examples from GitHub.
#M2000_Interpreter
M2000 Interpreter
  Module Checkit { Declare GetModuleFileName Lib "kernel32.GetModuleFileNameW" {Long hModule, &lpFileName$, Long nSize} a$=string$(chr$(0), 260) namelen=GetModuleFileName(0, &a$, 260) a$=left$(a$, namelen) \\ normally m2000.exe is the caller of m2000.dll, the activeX script language Print Mid$(a$, Rinstr(a$, "\")+1)="m2000.exe" } Checkit \\ command$ return the file's path plus name of script \\ we can use edit "callme.gsb" to paste these, and use USE callme to call it from M2000 console. Module SayIt { Show Print command$ a$=key$ } SayIt  
http://rosettacode.org/wiki/Primorial_numbers
Primorial numbers
Primorial numbers are those formed by multiplying successive prime numbers. The primorial number series is:   primorial(0) =         1       (by definition)   primorial(1) =         2       (2)   primorial(2) =         6       (2×3)   primorial(3) =       30       (2×3×5)   primorial(4) =     210       (2×3×5×7)   primorial(5) =   2310       (2×3×5×7×11)   primorial(6) = 30030       (2×3×5×7×11×13)         ∙ ∙ ∙ To express this mathematically,   primorialn   is   the product of the first   n   (successive) primes:   p r i m o r i a l n = ∏ k = 1 n p r i m e k {\displaystyle primorial_{n}=\prod _{k=1}^{n}prime_{k}} ─── where   p r i m e k {\displaystyle prime_{k}}   is the   kth   prime number. In some sense, generating primorial numbers is similar to factorials. As with factorials, primorial numbers get large quickly. Task   Show the first ten primorial numbers   (0 ──► 9,   inclusive).   Show the length of primorial numbers whose index is:   10   100   1,000   10,000   and   100,000.   Show the length of the one millionth primorial number   (optional).   Use exact integers, not approximations. By   length   (above), it is meant the number of decimal digits in the numbers. Related tasks   Sequence of primorial primes   Factorial   Fortunate_numbers See also   the MathWorld webpage:   primorial   the Wikipedia   webpage:   primorial.   the   OEIS   webpage:   A002110.
#Perl
Perl
use ntheory qw(pn_primorial);   say "First ten primorials: ", join ", ", map { pn_primorial($_) } 0..9;   say "primorial(10^$_) has ".(length pn_primorial(10**$_))." digits" for 1..6;
http://rosettacode.org/wiki/Primorial_numbers
Primorial numbers
Primorial numbers are those formed by multiplying successive prime numbers. The primorial number series is:   primorial(0) =         1       (by definition)   primorial(1) =         2       (2)   primorial(2) =         6       (2×3)   primorial(3) =       30       (2×3×5)   primorial(4) =     210       (2×3×5×7)   primorial(5) =   2310       (2×3×5×7×11)   primorial(6) = 30030       (2×3×5×7×11×13)         ∙ ∙ ∙ To express this mathematically,   primorialn   is   the product of the first   n   (successive) primes:   p r i m o r i a l n = ∏ k = 1 n p r i m e k {\displaystyle primorial_{n}=\prod _{k=1}^{n}prime_{k}} ─── where   p r i m e k {\displaystyle prime_{k}}   is the   kth   prime number. In some sense, generating primorial numbers is similar to factorials. As with factorials, primorial numbers get large quickly. Task   Show the first ten primorial numbers   (0 ──► 9,   inclusive).   Show the length of primorial numbers whose index is:   10   100   1,000   10,000   and   100,000.   Show the length of the one millionth primorial number   (optional).   Use exact integers, not approximations. By   length   (above), it is meant the number of decimal digits in the numbers. Related tasks   Sequence of primorial primes   Factorial   Fortunate_numbers See also   the MathWorld webpage:   primorial   the Wikipedia   webpage:   primorial.   the   OEIS   webpage:   A002110.
#Phix
Phix
with javascript_semantics include mpfr.e function vecprod(sequence s) if s={} then s = {mpz_init(1)} else for i=1 to length(s) do s[i] = mpz_init(s[i]) end for while length(s)>1 do for i=1 to floor(length(s)/2) do mpz_mul(s[i],s[i],s[-i]) end for s = s[1..ceil(length(s)/2)] end while end if return s[1] end function constant t0 = time(), max10 = iff(platform()=JS?4:6), tests = tagset(9,0)&sq_power(10,tagset(max10)), primes = get_primes(1_000_000) for i=1 to length(tests) do integer ti = tests[i] mpz primorial = vecprod(primes[1..ti]) string ps = iff(ti<10?sprintf("= %s",{mpz_get_str(primorial,comma_fill:=true)}) :sprintf("has %,d digits",mpz_sizeinbase(primorial,10))) printf(1,"Primorial(%,d) %s\n", {ti, ps}) end for ?elapsed(time()-t0)
http://rosettacode.org/wiki/Pythagorean_triples
Pythagorean triples
A Pythagorean triple is defined as three positive integers ( a , b , c ) {\displaystyle (a,b,c)} where a < b < c {\displaystyle a<b<c} , and a 2 + b 2 = c 2 . {\displaystyle a^{2}+b^{2}=c^{2}.} They are called primitive triples if a , b , c {\displaystyle a,b,c} are co-prime, that is, if their pairwise greatest common divisors g c d ( a , b ) = g c d ( a , c ) = g c d ( b , c ) = 1 {\displaystyle {\rm {gcd}}(a,b)={\rm {gcd}}(a,c)={\rm {gcd}}(b,c)=1} . Because of their relationship through the Pythagorean theorem, a, b, and c are co-prime if a and b are co-prime ( g c d ( a , b ) = 1 {\displaystyle {\rm {gcd}}(a,b)=1} ).   Each triple forms the length of the sides of a right triangle, whose perimeter is P = a + b + c {\displaystyle P=a+b+c} . Task The task is to determine how many Pythagorean triples there are with a perimeter no larger than 100 and the number of these that are primitive. Extra credit Deal with large values.   Can your program handle a maximum perimeter of 1,000,000?   What about 10,000,000?   100,000,000? Note: the extra credit is not for you to demonstrate how fast your language is compared to others;   you need a proper algorithm to solve them in a timely manner. Related tasks   Euler's sum of powers conjecture   List comprehensions   Pythagorean quadruples
#Mathematica.2FWolfram_Language
Mathematica/Wolfram Language
pythag[n_]:=Block[{soln=Solve[{a^2+b^2==c^2,a+b+c<=n,0<a<b<c},{a,b,c},Integers]},{Length[soln],Count[GCD[a,b]/.soln,1]}]
http://rosettacode.org/wiki/Program_termination
Program termination
Task Show the syntax for a complete stoppage of a program inside a   conditional. This includes all threads/processes which are part of your program. Explain the cleanup (or lack thereof) caused by the termination (allocated memory, database connections, open files, object finalizers/destructors, run-on-exit hooks, etc.). Unless otherwise described, no special cleanup outside that provided by the operating system is provided.
#J
J
2!:55^:] condition
http://rosettacode.org/wiki/Program_termination
Program termination
Task Show the syntax for a complete stoppage of a program inside a   conditional. This includes all threads/processes which are part of your program. Explain the cleanup (or lack thereof) caused by the termination (allocated memory, database connections, open files, object finalizers/destructors, run-on-exit hooks, etc.). Unless otherwise described, no special cleanup outside that provided by the operating system is provided.
#Java
Java
if(problem){ System.exit(integerErrorCode); //conventionally, error code 0 is the code for "OK", // while anything else is an actual problem //optionally: Runtime.getRuntime().exit(integerErrorCode); }
http://rosettacode.org/wiki/QR_decomposition
QR decomposition
Any rectangular m × n {\displaystyle m\times n} matrix A {\displaystyle {\mathit {A}}} can be decomposed to a product of an orthogonal matrix Q {\displaystyle {\mathit {Q}}} and an upper (right) triangular matrix R {\displaystyle {\mathit {R}}} , as described in QR decomposition. Task Demonstrate the QR decomposition on the example matrix from the Wikipedia article: A = ( 12 − 51 4 6 167 − 68 − 4 24 − 41 ) {\displaystyle A={\begin{pmatrix}12&-51&4\\6&167&-68\\-4&24&-41\end{pmatrix}}} and the usage for linear least squares problems on the example from Polynomial regression. The method of Householder reflections should be used: Method Multiplying a given vector a {\displaystyle {\mathit {a}}} , for example the first column of matrix A {\displaystyle {\mathit {A}}} , with the Householder matrix H {\displaystyle {\mathit {H}}} , which is given as H = I − 2 u T u u u T {\displaystyle H=I-{\frac {2}{u^{T}u}}uu^{T}} reflects a {\displaystyle {\mathit {a}}} about a plane given by its normal vector u {\displaystyle {\mathit {u}}} . When the normal vector of the plane u {\displaystyle {\mathit {u}}} is given as u = a − ∥ a ∥ 2 e 1 {\displaystyle u=a-\|a\|_{2}\;e_{1}} then the transformation reflects a {\displaystyle {\mathit {a}}} onto the first standard basis vector e 1 = [ 1 0 0 . . . ] T {\displaystyle e_{1}=[1\;0\;0\;...]^{T}} which means that all entries but the first become zero. To avoid numerical cancellation errors, we should take the opposite sign of a 1 {\displaystyle a_{1}} : u = a + sign ( a 1 ) ∥ a ∥ 2 e 1 {\displaystyle u=a+{\textrm {sign}}(a_{1})\|a\|_{2}\;e_{1}} and normalize with respect to the first element: v = u u 1 {\displaystyle v={\frac {u}{u_{1}}}} The equation for H {\displaystyle H} thus becomes: H = I − 2 v T v v v T {\displaystyle H=I-{\frac {2}{v^{T}v}}vv^{T}} or, in another form H = I − β v v T {\displaystyle H=I-\beta vv^{T}} with β = 2 v T v {\displaystyle \beta ={\frac {2}{v^{T}v}}} Applying H {\displaystyle {\mathit {H}}} on a {\displaystyle {\mathit {a}}} then gives H a = − sign ( a 1 ) ∥ a ∥ 2 e 1 {\displaystyle H\;a=-{\textrm {sign}}(a_{1})\;\|a\|_{2}\;e_{1}} and applying H {\displaystyle {\mathit {H}}} on the matrix A {\displaystyle {\mathit {A}}} zeroes all subdiagonal elements of the first column: H 1 A = ( r 11 r 12 r 13 0 ∗ ∗ 0 ∗ ∗ ) {\displaystyle H_{1}\;A={\begin{pmatrix}r_{11}&r_{12}&r_{13}\\0&*&*\\0&*&*\end{pmatrix}}} In the second step, the second column of A {\displaystyle {\mathit {A}}} , we want to zero all elements but the first two, which means that we have to calculate H {\displaystyle {\mathit {H}}} with the first column of the submatrix (denoted *), not on the whole second column of A {\displaystyle {\mathit {A}}} . To get H 2 {\displaystyle H_{2}} , we then embed the new H {\displaystyle {\mathit {H}}} into an m × n {\displaystyle m\times n} identity: H 2 = ( 1 0 0 0 H 0 ) {\displaystyle H_{2}={\begin{pmatrix}1&0&0\\0&H&\\0&&\end{pmatrix}}} This is how we can, column by column, remove all subdiagonal elements of A {\displaystyle {\mathit {A}}} and thus transform it into R {\displaystyle {\mathit {R}}} . H n . . . H 3 H 2 H 1 A = R {\displaystyle H_{n}\;...\;H_{3}H_{2}H_{1}A=R} The product of all the Householder matrices H {\displaystyle {\mathit {H}}} , for every column, in reverse order, will then yield the orthogonal matrix Q {\displaystyle {\mathit {Q}}} . H 1 H 2 H 3 . . . H n = Q {\displaystyle H_{1}H_{2}H_{3}\;...\;H_{n}=Q} The QR decomposition should then be used to solve linear least squares (Multiple regression) problems A x = b {\displaystyle {\mathit {A}}x=b} by solving R x = Q T b {\displaystyle R\;x=Q^{T}\;b} When R {\displaystyle {\mathit {R}}} is not square, i.e. m > n {\displaystyle m>n} we have to cut off the m − n {\displaystyle {\mathit {m}}-n} zero padded bottom rows. R = ( R 1 0 ) {\displaystyle R={\begin{pmatrix}R_{1}\\0\end{pmatrix}}} and the same for the RHS: Q T b = ( q 1 q 2 ) {\displaystyle Q^{T}\;b={\begin{pmatrix}q_{1}\\q_{2}\end{pmatrix}}} Finally, solve the square upper triangular system by back substitution: R 1 x = q 1 {\displaystyle R_{1}\;x=q_{1}}
#SequenceL
SequenceL
import <Utilities/Math.sl>; import <Utilities/Sequence.sl>; import <Utilities/Conversion.sl>;   main := let qrTest := [[12.0, -51.0, 4.0], [ 6.0, 167.0, -68.0], [-4.0, 24.0, -41.0]];   qrResult := qr(qrTest);   x := 1.0*(0 ... 10); y := 1.0*[1, 6, 17, 34, 57, 86, 121, 162, 209, 262, 321];   regResult := polyfit(x, y, 2); in "q:\n" ++ delimit(delimit(floatToString(qrResult[1], 6), ','), '\n') ++ "\n\n" ++ "r:\n" ++ delimit(delimit(floatToString(qrResult[2], 1), ','), '\n') ++ "\n\n" ++ "polyfit:\n" ++ "[" ++ delimit(floatToString(regResult, 1), ',') ++ "]";   //---Polynomial Regression---   polyfit(x(1), y(1), n) := let a[j] := x ^ j foreach j within 0 ... n; in lsqr(transpose(a), transpose([y]));   lsqr(a(2), b(2)) := let qrDecomp := qr(a); prod := mm(transpose(qrDecomp[1]), b); in solveUT(qrDecomp[2], prod);   solveUT(r(2), b(2)) := let n := size(r[1]); in solveUTHelper(r, b, n, duplicate(0.0, n));   solveUTHelper(r(2), b(2), k, x(1)) := let n := size(r[1]); newX := setElementAt(x, k, (b[k][1] - sum(r[k][(k+1) ... n] * x[(k+1) ... n])) / r[k][k]); in x when k <= 0 else solveUTHelper(r, b, k - 1, newX);   //---QR Decomposition---   qr(A(2)) := qrHelper(A, id(size(A)), 1);   qrHelper(A(2), Q(2), i) := let m := size(A); n := size(A[1]);   householder := makeHouseholder(A[i ... m, i]);   H[j,k] := householder[j - i + 1][k - i + 1] when j >= i and k >= i else 1.0 when j = k else 0.0 foreach j within 1 ... m, k within 1 ... m; in [Q,A] when i > (n - 1 when m = n else n) else qrHelper(mm(H, A), mm(Q, H), i + 1);     makeHouseholder(a(1)) := let v := [1.0] ++ tail(a / (a[1] + sqrt(sum(a ^ 2)) * sign(a[1])));   H := id(size(a)) - (2.0 / mm([v], transpose([v])))[1,1] * mm(transpose([v]), [v]); in H;   //---Utilities---   id(n)[i,j] := 1.0 when i = j else 0.0 foreach i within 1 ... n, j within 1 ... n;   mm(A(2), B(2))[i,j] := sum( A[i] * transpose(B)[j] );
http://rosettacode.org/wiki/Prime_triangle
Prime triangle
You will require a function f which when given an integer S will return a list of the arrangements of the integers 1 to S such that g1=1 gS=S and generally for n=1 to n=S-1 gn+gn+1 is prime. S=1 is undefined. For S=2 to S=20 print f(S) to form a triangle. Then again for S=2 to S=20 print the number of possible arrangements of 1 to S meeting these requirements.
#Phix
Phix
with javascript_semantics atom t0 = time() sequence can_follow, arrang bool bFirst = true function ptrs(integer res, n, done) -- prime triangle recursive sub-procedure -- on entry, arrang[done] is set and arrang[$]==n. -- find something/everything that fits between them. integer ad = arrang[done] if n-done<=1 then if can_follow[ad][n] then if bFirst then printf(1,"%s\n",join(arrang,fmt:="%d")) bFirst = false end if res += 1 end if else done += 1 -- as per talk page, we only need to examine odd -- numbers following an even number & vice versa for i=done to n-1 by 2 do integer ai = arrang[i] if can_follow[ad][ai] then integer aid = arrang[done] arrang[i] = aid arrang[done] = ai res = ptrs(res,n,done) arrang[i] = ai arrang[done] = aid end if end for end if return res end function function prime_triangle(integer n) can_follow = repeat(repeat(false,n),n) for i=1 to n do for j=1 to n do can_follow[i][j] = is_prime(i+j) end for end for arrang = tagset(n) bFirst = true return ptrs(0,n,1) end function sequence res = apply(tagset(20,2),prime_triangle) printf(1,"%s\n",join(res,fmt:="%d")) ?elapsed(time()-t0)
http://rosettacode.org/wiki/Primality_by_Wilson%27s_theorem
Primality by Wilson's theorem
Task Write a boolean function that tells whether a given integer is prime using Wilson's theorem. By Wilson's theorem, a number p is prime if and only if p divides (p - 1)! + 1. Remember that 1 and all non-positive integers are not prime. See also Cut-the-knot: Wilson's theorem. Wikipedia: Wilson's theorem
#11l
11l
F is_wprime(Int64 n) R n > 1 & (n == 2 | (n % 2 & (factorial(n - 1) + 1) % n == 0))   V c = 20 print(‘Primes under #.:’.format(c), end' "\n ") print((0 .< c).filter(n -> is_wprime(n)))
http://rosettacode.org/wiki/Pragmatic_directives
Pragmatic directives
Pragmatic directives cause the language to operate in a specific manner,   allowing support for operational variances within the program code   (possibly by the loading of specific or alternative modules). Task List any pragmatic directives supported by the language,   and demonstrate how to activate and deactivate the pragmatic directives and to describe or demonstrate the scope of effect that the pragmatic directives have within a program.
#6502_Assembly
6502 Assembly
NMOS_6502 equ 1 ifdef NMOS_6502 txa pha else phx  ;NMOS_6502 doesn't have this instruction. endif  ; every ifdef/ifndef needs an endif
http://rosettacode.org/wiki/Prime_conspiracy
Prime conspiracy
A recent discovery, quoted from   Quantamagazine   (March 13, 2016): Two mathematicians have uncovered a simple, previously unnoticed property of prime numbers — those numbers that are divisible only by 1 and themselves. Prime numbers, it seems, have decided preferences about the final digits of the primes that immediately follow them. and This conspiracy among prime numbers seems, at first glance, to violate a longstanding assumption in number theory: that prime numbers behave much like random numbers. ─── (original authors from Stanford University): ─── Kannan Soundararajan and Robert Lemke Oliver The task is to check this assertion, modulo 10. Lets call    i -> j   a transition if    i   is the last decimal digit of a prime, and    j   the last decimal digit of the following prime. Task Considering the first one million primes.   Count, for any pair of successive primes, the number of transitions    i -> j   and print them along with their relative frequency, sorted by    i . You can see that, for a given    i ,   frequencies are not evenly distributed. Observation (Modulo 10),   primes whose last digit is   9   "prefer"   the digit   1   to the digit   9,   as its following prime. Extra credit Do the same for one hundred million primes. Example for 10,000 primes 10000 first primes. Transitions prime % 10 → next-prime % 10. 1 → 1 count: 365 frequency: 3.65 % 1 → 3 count: 833 frequency: 8.33 % 1 → 7 count: 889 frequency: 8.89 % 1 → 9 count: 397 frequency: 3.97 % 2 → 3 count: 1 frequency: 0.01 % 3 → 1 count: 529 frequency: 5.29 % 3 → 3 count: 324 frequency: 3.24 % 3 → 5 count: 1 frequency: 0.01 % 3 → 7 count: 754 frequency: 7.54 % 3 → 9 count: 907 frequency: 9.07 % 5 → 7 count: 1 frequency: 0.01 % 7 → 1 count: 655 frequency: 6.55 % 7 → 3 count: 722 frequency: 7.22 % 7 → 7 count: 323 frequency: 3.23 % 7 → 9 count: 808 frequency: 8.08 % 9 → 1 count: 935 frequency: 9.35 % 9 → 3 count: 635 frequency: 6.35 % 9 → 7 count: 541 frequency: 5.41 % 9 → 9 count: 379 frequency: 3.79 %
#AppleScript
AppleScript
on isPrime(n) if ((n < 4) or (n is 5)) then return (n > 1) if ((n mod 2 = 0) or (n mod 3 = 0) or (n mod 5 = 0)) then return false repeat with i from 7 to (n ^ 0.5) div 1 by 30 if ((n mod i = 0) or (n mod (i + 4) = 0) or (n mod (i + 6) = 0) or ¬ (n mod (i + 10) = 0) or (n mod (i + 12) = 0) or (n mod (i + 16) = 0) or ¬ (n mod (i + 22) = 0) or (n mod (i + 24) = 0)) then return false end repeat   return true end isPrime   on conspiracy(limit) script o property counters : {{0, 0, 0, 0, 0, 0, 0, 0, 0}} end script repeat 8 times copy beginning of o's counters to end of o's counters end repeat   if (limit > 1) then set primeCount to 1 set i to 2 -- First prime. set n to 3 -- First number to test for primality. repeat until (primeCount = limit) if (isPrime(n)) then set primeCount to primeCount + 1 set j to n mod 10 set item j of item i of o's counters to (item j of item i of o's counters) + 1 set i to j end if set n to n + 2 end repeat end if   set output to {"First " & limit & " primes: transitions between end digits of consecutive primes."} set totalTransitions to limit - 1 repeat with i in {1, 2, 3, 5, 7, 9} set iTransitions to 0 repeat with j from 1 to 9 by 2 set iTransitions to iTransitions + (item j of item i of o's counters) end repeat repeat with j from 1 to 9 by 2 set ijCount to item j of item i of o's counters if (ijCount > 0) then ¬ set end of output to ¬ (i as text) & " → " & j & ¬ (" count: " & ijCount) & ¬ (" preference for " & j & ": " & (ijCount * 10000 / iTransitions as integer) / 100) & ¬ ("% overall occurrence: " & (ijCount * 10000 / totalTransitions as integer) / 100 & "%") end repeat end repeat set astid to AppleScript's text item delimiters set AppleScript's text item delimiters to linefeed set output to output as text set AppleScript's text item delimiters to astid return output end conspiracy   conspiracy(1000000)
http://rosettacode.org/wiki/Proper_divisors
Proper divisors
The   proper divisors   of a positive integer N are those numbers, other than N itself, that divide N without remainder. For N > 1 they will always include 1,   but for N == 1 there are no proper divisors. Examples The proper divisors of     6     are   1, 2, and 3. The proper divisors of   100   are   1, 2, 4, 5, 10, 20, 25, and 50. Task Create a routine to generate all the proper divisors of a number. use it to show the proper divisors of the numbers 1 to 10 inclusive. Find a number in the range 1 to 20,000 with the most proper divisors. Show the number and just the count of how many proper divisors it has. Show all output here. Related tasks   Amicable pairs   Abundant, deficient and perfect number classifications   Aliquot sequence classifications   Factors of an integer   Prime decomposition
#AutoHotkey
AutoHotkey
proper_divisors(n) { Array := [] if n = 1 return Array Array[1] := true x := Floor(Sqrt(n)) loop, % x+1 if !Mod(n, i:=A_Index+1) && (floor(n/i) < n) Array[floor(n/i)] := true Loop % n/x if !Mod(n, i:=A_Index+1) && (i < n) Array[i] := true return Array }