title
stringlengths
5
246
categories
stringlengths
5
94
abstract
stringlengths
54
5.03k
authors
stringlengths
0
6.72k
doi
stringlengths
12
54
id
stringlengths
6
10
year
float64
2.02k
2.02k
venue
stringclasses
13 values
Gradient Methods Provably Converge to Non-Robust Networks
null
Despite a great deal of research, it is still unclear why neural networks are so susceptible to adversarial examples. In this work, we identify natural settings where depth-$2$ ReLU networks trained with gradient flow are provably non-robust (susceptible to small adversarial $\ell_2$-perturbations), even when robust networks that classify the training dataset correctly exist.Perhaps surprisingly, we show that the well-known implicit bias towards margin maximization induces bias towards non-robust networks, by proving that every network which satisfies the KKT conditions of the max-margin problem is non-robust.
Gal Vardi, Gilad Yehudai, Ohad Shamir
null
null
2,022
neurips
SCONE: Surface Coverage Optimization in Unknown Environments by Volumetric Integration
null
Next Best View computation (NBV) is a long-standing problem in robotics, and consists in identifying the next most informative sensor position(s) for reconstructing a 3D object or scene efficiently and accurately. Like most current methods, we consider NBV prediction from a depth sensor like Lidar systems. Learning-based methods relying on a volumetric representation of the scene are suitable for path planning, but have lower accuracy than methods using a surface-based representation. However, the latter do not scale well with the size of the scene and constrain the camera to a small number of poses. To obtain the advantages of both representations, we show that we can maximize surface metrics by Monte Carlo integration over a volumetric representation. In particular, we propose an approach, SCONE, that relies on two neural modules: The first module predicts occupancy probability in the entire volume of the scene. Given any new camera pose, the second module samples points in the scene based on their occupancy probability and leverages a self-attention mechanism to predict the visibility of the samples. Finally, we integrate the visibility to evaluate the gain in surface coverage for the new camera pose. NBV is selected as the pose that maximizes the gain in total surface coverage. Our method scales to large scenes and handles free camera motion: It takes as input an arbitrarily large point cloud gathered by a depth sensor as well as camera poses to predict NBV. We demonstrate our approach on a novel dataset made of large and complex 3D scenes.
Antoine Guedon, Pascal Monasse, Vincent Lepetit
null
null
2,022
neurips
Pessimism for Offline Linear Contextual Bandits using $\ell_p$ Confidence Sets
null
We present a family $\{\widehat{\pi}_p\}_{p\ge 1}$ of pessimistic learning rules for offline learning of linear contextual bandits, relying on confidence sets with respect to different $\ell_p$ norms, where $\widehat{\pi}_2$ corresponds to Bellman-consistent pessimism (BCP), while $\widehat{\pi}_\infty$ is a novel generalization of lower confidence bound (LCB) to the linear setting. We show that the novel $\widehat{\pi}_\infty$ learning rule is, in a sense, adaptively optimal, as it achieves the minimax performance (up to log factors) against all $\ell_q$-constrained problems, and as such it strictly dominates all other predictors in the family, including $\widehat{\pi}_2$.
Gene Li, Cong Ma, Nati Srebro
null
null
2,022
neurips
Losses Can Be Blessings: Routing Self-Supervised Speech Representations Towards Efficient Multilingual and Multitask Speech Processing
null
Self-supervised learning (SSL) for rich speech representations has achieved empirical success in low-resource Automatic Speech Recognition (ASR) and other speech processing tasks, which can mitigate the necessity of a large amount of transcribed speech and thus has driven a growing demand for on-device ASR and other speech processing. However, advanced speech SSL models have become increasingly large, which contradicts the limited on-device resources. This gap could be more severe in multilingual/multitask scenarios requiring simultaneously recognizing multiple languages or executing multiple speech processing tasks. Additionally, strongly overparameterized speech SSL models tend to suffer from overfitting when being finetuned on low-resource speech corpus. This work aims to enhance the practical usage of speech SSL models towards a win-win in both enhanced efficiency and alleviated overfitting via our proposed S$^3$-Router framework, which for the first time discovers that simply discarding no more than 10% of model weights via only finetuning model connections of speech SSL models can achieve better accuracy over standard weight finetuning on downstream speech processing tasks. More importantly, S$^3$-Router can serve as an all-in-one technique to enable (1) a new finetuning scheme, (2) an efficient multilingual/multitask solution, (3) a state-of-the-art pruning technique, and (4) a new tool to quantitatively analyze the learned speech representation. We believe S$^3$-Router has provided a new perspective for practical deployment of speech SSL models. Our codes are available at: https://github.com/GATECH-EIC/S3-Router.
Yonggan Fu, Yang Zhang, Kaizhi Qian, Zhifan Ye, Zhongzhi Yu, Cheng-I Jeff Lai, Celine Lin
null
null
2,022
neurips
WebShop: Towards Scalable Real-World Web Interaction with Grounded Language Agents
null
Most existing benchmarks for grounding language in interactive environments either lack realistic linguistic elements, or prove difficult to scale up due to substantial human involvement in the collection of data or feedback signals. We develop WebShop – a simulated e-commerce website environment with 1.18 million real-world products and 12,087 crowd-sourced text instructions. In this environment, an agent needs to navigate multiple types of webpages and issue diverse actions to find, customize, and purchase a product given an instruction. WebShop provides several challenges including understanding compositional instructions, query (re-)formulation, dealing with noisy text in webpages, and performing strategic exploration. We collect over 1,600 human trajectories to first validate the benchmark, then train and evaluate a diverse range of agents using reinforcement learning, imitation learning, and pre-trained image and language models. Our best model achieves a task success rate of 29%, which significantly outperforms rule heuristics but is far lower than expert human performance (59%). We also analyze agent and human trajectories and ablate various model components to provide insights for developing future agents with stronger language understanding and decision making abilities. Finally, we show our agent trained on WebShop exhibits non-trivial sim-to-real transfer when evaluated on amazon.com and ebay.com, indicating the potential value of our benchmark for developing practical web agents that can operate in the wild.
Shunyu Yao, Howard Chen, John Yang, Karthik Narasimhan
null
null
2,022
neurips
On the Statistical Efficiency of Reward-Free Exploration in Non-Linear RL
null
We study reward-free reinforcement learning (RL) under general non-linear function approximation, and establish sample efficiency and hardness results under various standard structural assumptions. On the positive side, we propose the RFOLIVE (Reward-Free OLIVE) algorithm for sample-efficient reward-free exploration under minimal structural assumptions, which covers the previously studied settings of linear MDPs (Jin et al., 2020b), linear completeness (Zanette et al., 2020b) and low-rank MDPs with unknown representation (Modi et al., 2021). Our analyses indicate that the explorability or reachability assumptions, previously made for the latter two settings, are not necessary statistically for reward-free exploration. On the negative side, we provide a statistical hardness result for both reward-free and reward-aware exploration under linear completeness assumptions when the underlying features are unknown, showing an exponential separation between low-rank and linear completeness settings.
Jinglin Chen, Aditya Modi, Akshay Krishnamurthy, Nan Jiang, Alekh Agarwal
null
null
2,022
neurips
Online Training Through Time for Spiking Neural Networks
null
Spiking neural networks (SNNs) are promising brain-inspired energy-efficient models. Recent progress in training methods has enabled successful deep SNNs on large-scale tasks with low latency. Particularly, backpropagation through time (BPTT) with surrogate gradients (SG) is popularly used to enable models to achieve high performance in a very small number of time steps. However, it is at the cost of large memory consumption for training, lack of theoretical clarity for optimization, and inconsistency with the online property of biological learning rules and rules on neuromorphic hardware. Other works connect the spike representations of SNNs with equivalent artificial neural network formulation and train SNNs by gradients from equivalent mappings to ensure descent directions. But they fail to achieve low latency and are also not online. In this work, we propose online training through time (OTTT) for SNNs, which is derived from BPTT to enable forward-in-time learning by tracking presynaptic activities and leveraging instantaneous loss and gradients. Meanwhile, we theoretically analyze and prove that the gradients of OTTT can provide a similar descent direction for optimization as gradients from equivalent mapping between spike representations under both feedforward and recurrent conditions. OTTT only requires constant training memory costs agnostic to time steps, avoiding the significant memory costs of BPTT for GPU training. Furthermore, the update rule of OTTT is in the form of three-factor Hebbian learning, which could pave a path for online on-chip learning. With OTTT, it is the first time that the two mainstream supervised SNN training methods, BPTT with SG and spike representation-based training, are connected, and meanwhile it is in a biologically plausible form. Experiments on CIFAR-10, CIFAR-100, ImageNet, and CIFAR10-DVS demonstrate the superior performance of our method on large-scale static and neuromorphic datasets in a small number of time steps. Our code is available at https://github.com/pkuxmq/OTTT-SNN.
Mingqing Xiao, Qingyan Meng, Zongpeng Zhang, Di He, Zhouchen Lin
null
null
2,022
neurips
Task-level Differentially Private Meta Learning
null
We study the problem of meta-learning with task-level differential privacy. Meta-learning has received increasing attention recently because of its ability to enable fast generalization to new task with small number of data points. However, the training process of meta learning likely involves exchange of task specific information, which may pose privacy risk especially in some privacy-sensitive applications. Therefore, it is important to provide strong privacy guarantees such that the learning process will not reveal any task sensitive information. To this end, existing works have proposed meta learning algorithms with record-level differential privacy, which is not sufficient in many scenarios since it does not protect the aggregated statistics based on the task dataset as a whole. Moreover, the utility guarantees in the prior work are based on assuming that the loss function satisfies both smoothness and quadratic growth conditions, which do not necessarily hold in practice. To address these issues, we propose meta learning algorithms with task-level differential privacy; that is, our algorithms protect the privacy of the entire dataset for each task. In the case when a single meta model is trained, we give both privacy and utility guarantees assuming only that the loss is convex and Lipschitz. Moreover, we propose a new private clustering-based meta-learning algorithm that enables private meta learning of multiple meta models. This can provide significant accuracy gains over the single meta model paradigm, especially when the tasks distribution cannot be well represented by a single meta model. Finally, we conduct several experiments demonstrating the effectiveness of our proposed algorithms.
Xinyu Zhou, Raef Bassily
null
null
2,022
neurips
CAESAR: An Embodied Simulator for Generating Multimodal Referring Expression Datasets
null
Humans naturally use verbal utterances and nonverbal gestures to refer to various objects (known as $\textit{referring expressions}$) in different interactional scenarios. As collecting real human interaction datasets are costly and laborious, synthetic datasets are often used to train models to unambiguously detect relationships among objects. However, existing synthetic data generation tools that provide referring expressions generally neglect nonverbal gestures. Additionally, while a few small-scale datasets contain multimodal cues (verbal and nonverbal), these datasets only capture the nonverbal gestures from an exo-centric perspective (observer). As models can use complementary information from multimodal cues to recognize referring expressions, generating multimodal data from multiple views can help to develop robust models. To address these critical issues, in this paper, we present a novel embodied simulator, CAESAR, to generate multimodal referring expressions containing both verbal utterances and nonverbal cues captured from multiple views. Using our simulator, we have generated two large-scale embodied referring expression datasets, which we have released publicly. We have conducted experimental analyses on embodied spatial relation grounding using various state-of-the-art baseline models. Our experimental results suggest that visual perspective affects the models' performance; and that nonverbal cues improve spatial relation grounding accuracy. Finally, we will release the simulator publicly to allow researchers to generate new embodied interaction datasets.
Md Mofijul Islam, Reza Mirzaiee, Alexi Gladstone, Haley Green, Tariq Iqbal
null
null
2,022
neurips
Structured Energy Network As a Loss
null
Belanger & McCallum (2016) and Gygli et al. (2017) have shown that an energy network can capture arbitrary dependencies amongst the output variables in structured prediction; however, their reliance on gradient-based inference (GBI) makes the inference slow and unstable. In this work, we propose Structured Energy As Loss (SEAL) to take advantage of the expressivity of energy networks without incurring the high inference cost. This is a novel learning framework that uses an energy network as a trainable loss function (loss-net) to train a separate neural network (task-net), which is then used to perform the inference through a forward pass. We establish SEAL as a general framework wherein various learning strategies like margin-based, regression, and noise-contrastive, could be employed to learn the parameters of loss-net. Through extensive evaluation on multi-label classification, semantic role labeling, and image segmentation, we demonstrate that SEAL provides various useful design choices, is faster at inference than GBI, and leads to significant performance gains over the baselines.
Jay Yoon Lee, Dhruvesh Patel, Purujit Goyal, Wenlong Zhao, Zhiyang Xu, Andrew McCallum
null
null
2,022
neurips
Discrete-Convex-Analysis-Based Framework for Warm-Starting Algorithms with Predictions
null
Augmenting algorithms with learned predictions is a promising approach for going beyond worst-case bounds. Dinitz, Im, Lavastida, Moseley, and Vassilvitskii~(2021) have demonstrated that warm-starts with learned dual solutions can improve the time complexity of the Hungarian method for weighted perfect bipartite matching. We extend and improve their framework in a principled manner via \textit{discrete convex analysis} (DCA), a discrete analog of convex analysis. We show the usefulness of our DCA-based framework by applying it to weighted perfect bipartite matching, weighted matroid intersection, and discrete energy minimization for computer vision. Our DCA-based framework yields time complexity bounds that depend on the $\ell_\infty$-distance from a predicted solution to an optimal solution, which has two advantages relative to the previous $\ell_1$-distance-dependent bounds: time complexity bounds are smaller, and learning of predictions is more sample efficient. We also discuss whether to learn primal or dual solutions from the DCA perspective.
Shinsaku Sakaue, Taihei Oki
null
null
2,022
neurips
Alleviating the Sample Selection Bias in Few-shot Learning by Removing Projection to the Centroid
null
Few-shot learning (FSL) targets at generalization of vision models towards unseen tasks without sufficient annotations. Despite the emergence of a number of few-shot learning methods, the sample selection bias problem, i.e., the sensitivity to the limited amount of support data, has not been well understood. In this paper, we find that this problem usually occurs when the positions of support samples are in the vicinity of task centroid—the mean of all class centroids in the task. This motivates us to propose an extremely simple feature transformation to alleviate this problem, dubbed Task Centroid Projection Removing (TCPR). TCPR is applied directly to all image features in a given task, aiming at removing the dimension of features along the direction of the task centroid. While the exact task centoid cannot be accurately obtained from limited data, we estimate it using base features that are each similar to one of the support features. Our method effectively prevents features from being too close to the task centroid. Extensive experiments over ten datasets from different domains show that TCPR can reliably improve classification accuracy across various feature extractors, training algorithms and datasets. The code has been made available at https://github.com/KikimorMay/FSL-TCBR.
Jing Xu, Xu Luo, Xinglin Pan, Yanan Li, Wenjie Pei, Zenglin Xu
null
null
2,022
neurips
Laplacian Autoencoders for Learning Stochastic Representations
null
Established methods for unsupervised representation learning such as variational autoencoders produce none or poorly calibrated uncertainty estimates making it difficult to evaluate if learned representations are stable and reliable. In this work, we present a Bayesian autoencoder for unsupervised representation learning, which is trained using a novel variational lower-bound of the autoencoder evidence. This is maximized using Monte Carlo EM with a variational distribution that takes the shape of a Laplace approximation. We develop a new Hessian approximation that scales linearly with data size allowing us to model high-dimensional data. Empirically, we show that our Laplacian autoencoder estimates well-calibrated uncertainties in both latent and output space. We demonstrate that this results in improved performance across a multitude of downstream tasks.
Marco Miani, Frederik Warburg, Pablo Moreno-Muñoz, Nicki Skafte, Søren Hauberg
null
null
2,022
neurips
Ordered Subgraph Aggregation Networks
null
Numerous subgraph-enhanced graph neural networks (GNNs) have emerged recently, provably boosting the expressive power of standard (message-passing) GNNs. However, there is a limited understanding of how these approaches relate to each other and to the Weisfeiler-Leman hierarchy. Moreover, current approaches either use all subgraphs of a given size, sample them uniformly at random, or use hand-crafted heuristics instead of learning to select subgraphs in a data-driven manner. Here, we offer a unified way to study such architectures by introducing a theoretical framework and extending the known expressivity results of subgraph-enhanced GNNs. Concretely, we show that increasing subgraph size always increases the expressive power and develop a better understanding of their limitations by relating them to the established $k\mathsf{\text{-}WL}$ hierarchy. In addition, we explore different approaches for learning to sample subgraphs using recent methods for backpropagating through complex discrete probability distributions. Empirically, we study the predictive performance of different subgraph-enhanced GNNs, showing that our data-driven architectures increase prediction accuracy on standard benchmark datasets compared to non-data-driven subgraph-enhanced graph neural networks while reducing computation time.
Chendi Qian, Gaurav Rattan, Floris Geerts, Mathias Niepert, Christopher Morris
null
null
2,022
neurips
Generalizing Bayesian Optimization with Decision-theoretic Entropies
null
Bayesian optimization (BO) is a popular method for efficiently inferring optima of an expensive black-box function via a sequence of queries. Existing information-theoretic BO procedures aim to make queries that most reduce the uncertainty about optima, where the uncertainty is captured by Shannon entropy. However, an optimal measure of uncertainty would, ideally, factor in how we intend to use the inferred quantity in some downstream procedure. In this paper, we instead consider a generalization of Shannon entropy from work in statistical decision theory (DeGroot 1962, Rao 1984), which contains a broad class of uncertainty measures parameterized by a problem-specific loss function corresponding to a downstream task. We first show that special cases of this entropy lead to popular acquisition functions used in BO procedures such as knowledge gradient, expected improvement, and entropy search. We then show how alternative choices for the loss yield a flexible family of acquisition functions that can be customized for use in novel optimization settings. Additionally, we develop gradient-based methods to efficiently optimize our proposed family of acquisition functions, and demonstrate strong empirical performance on a diverse set of sequential decision making tasks, including variants of top-$k$ optimization, multi-level set estimation, and sequence search.
Willie Neiswanger, Lantao Yu, Shengjia Zhao, Chenlin Meng, Stefano Ermon
null
null
2,022
neurips
A Coupled Design of Exploiting Record Similarity for Practical Vertical Federated Learning
null
Federated learning is a learning paradigm to enable collaborative learning across different parties without revealing raw data. Notably, vertical federated learning (VFL), where parties share the same set of samples but only hold partial features, has a wide range of real-world applications. However, most existing studies in VFL disregard the "record linkage'' process. They design algorithms either assuming the data from different parties can be exactly linked or simply linking each record with its most similar neighboring record. These approaches may fail to capture the key features from other less similar records. Moreover, such improper linkage cannot be corrected by training since existing approaches provide no feedback on linkage during training. In this paper, we design a novel coupled training paradigm, FedSim, that integrates one-to-many linkage into the training process. Besides enabling VFL in many real-world applications with fuzzy identifiers, FedSim also achieves better performance in traditional VFL tasks. Moreover, we theoretically analyze the additional privacy risk incurred by sharing similarities. Our experiments on eight datasets with various similarity metrics show that FedSim outperforms other state-of-the-art baselines. The codes of FedSim are available at https://github.com/Xtra-Computing/FedSim.
Zhaomin Wu, Qinbin Li, Bingsheng He
null
null
2,022
neurips
Cooperative Distribution Alignment via JSD Upper Bound
null
Unsupervised distribution alignment estimates a transformation that maps two or more source distributions to a shared aligned distribution given only samples from each distribution. This task has many applications including generative modeling, unsupervised domain adaptation, and socially aware learning. Most prior works use adversarial learning (i.e., min-max optimization), which can be challenging to optimize and evaluate. A few recent works explore non-adversarial flow-based (i.e., invertible) approaches, but they lack a unified perspective and are limited in efficiently aligning multiple distributions. Therefore, we propose to unify and generalize previous flow-based approaches under a single non-adversarial framework, which we prove is equivalent to minimizing an upper bound on the Jensen-Shannon Divergence (JSD). Importantly, our problem reduces to a min-min, i.e., cooperative, problem and can provide a natural evaluation metric for unsupervised distribution alignment. We show empirical results on both simulated and real-world datasets to demonstrate the benefits of our approach. Code is available at https://github.com/inouye-lab/alignment-upper-bound.
Wonwoong Cho, ZIYU GONG, David I. Inouye
null
null
2,022
neurips
RSA: Reducing Semantic Shift from Aggressive Augmentations for Self-supervised Learning
null
Most recent self-supervised learning methods learn visual representation by contrasting different augmented views of images. Compared with supervised learning, more aggressive augmentations have been introduced to further improve the diversity of training pairs. However, aggressive augmentations may distort images' structures leading to a severe semantic shift problem that augmented views of the same image may not share the same semantics, thus degrading the transfer performance. To address this problem, we propose a new SSL paradigm, which counteracts the impact of semantic shift by balancing the role of weak and aggressively augmented pairs. Specifically, semantically inconsistent pairs are of minority, and we treat them as noisy pairs. Note that deep neural networks (DNNs) have a crucial memorization effect that DNNs tend to first memorize clean (majority) examples before overfitting to noisy (minority) examples. Therefore, we set a relatively large weight for aggressively augmented data pairs at the early learning stage. With the training going on, the model begins to overfit noisy pairs. Accordingly, we gradually reduce the weights of aggressively augmented pairs. In doing so, our method can better embrace aggressive augmentations and neutralize the semantic shift problem. Experiments show that our model achieves 73.1% top-1 accuracy on ImageNet-1K with ResNet-50 for 200 epochs, which is a 2.5% improvement over BYOL. Moreover, experiments also demonstrate that the learned representations can transfer well for various downstream tasks. Code is released at: https://github.com/tmllab/RSA.
Yingbin Bai, Erkun Yang, Zhaoqing Wang, Yuxuan Du, Bo Han, Cheng Deng, Dadong Wang, Tongliang Liu
null
null
2,022
neurips
Hierarchical Graph Transformer with Adaptive Node Sampling
null
The Transformer architecture has achieved remarkable success in a number of domains including natural language processing and computer vision. However, when it comes to graph-structured data, transformers have not achieved competitive performance, especially on large graphs. In this paper, we identify the main deficiencies of current graph transformers: (1) Existing node sampling strategies in Graph Transformers are agnostic to the graph characteristics and the training process. (2) Most sampling strategies only focus on local neighbors and neglect the long-range dependencies in the graph. We conduct experimental investigations on synthetic datasets to show that existing sampling strategies are sub-optimal. To tackle the aforementioned problems, we formulate the optimization strategies of node sampling in Graph Transformer as an adversary bandit problem, where the rewards are related to the attention weights and can vary in the training procedure. Meanwhile, we propose a hierarchical attention scheme with graph coarsening to capture the long-range interactions while reducing computational complexity. Finally, we conduct extensive experiments on real-world datasets to demonstrate the superiority of our method over existing graph transformers and popular GNNs.
ZAIXI ZHANG, Qi Liu, Qingyong Hu, Chee-Kong Lee
null
null
2,022
neurips
u-HuBERT: Unified Mixed-Modal Speech Pretraining And Zero-Shot Transfer to Unlabeled Modality
null
While audio-visual speech models can yield superior performance and robustness compared to audio-only models, their development and adoption are hindered by the lack of labeled and unlabeled audio-visual data and the cost to deploy one model per modality. In this paper, we present u-HuBERT, a self-supervised pre-training framework that can leverage both multimodal and unimodal speech with a unified masked cluster prediction objective. By utilizing modality dropout during pre-training, we demonstrate that a single fine-tuned model can achieve performance on par or better than the state-of-the-art modality-specific models. Moreover, our model fine-tuned only on audio can perform well with audio-visual and visual speech input, achieving zero-shot modality generalization for multiple speech processing tasks. In particular, our single model yields 1.2%/1.4%/27.2% speech recognition word error rate on LRS3 with audio-visual/audio/visual input.
Wei-Ning Hsu, Bowen Shi
null
null
2,022
neurips
A Fourier Approach to Mixture Learning
null
We revisit the problem of learning mixtures of spherical Gaussians. Given samples from a mixture $\frac{1}{k}\sum_{j=1}^{k}\mathcal{N}(\mu_j, I_d)$, the goal is to estimate the means $\mu_1, \mu_2, \ldots, \mu_k \in \mathbb{R}^d$ up to a small error. The hardness of this learning problem can be measured by the \emph{separation} $\Delta$ defined as the minimum distance between all pairs of means. Regev and Vijayaraghavan (2017) showed that with $\Delta = \Omega(\sqrt{\log k})$ separation, the means can be learned using $\mathrm{poly}(k, d)$ samples, whereas super-polynomially many samples are required if $\Delta = o(\sqrt{\log k})$ and $d = \Omega(\log k)$. This leaves open the low-dimensional regime where $d = o(\log k)$. In this work, we give an algorithm that efficiently learns the means in $d = O(\log k/\log\log k)$ dimensions under separation $d/\sqrt{\log k}$ (modulo doubly logarithmic factors). This separation is strictly smaller than $\sqrt{\log k}$, and is also shown to be necessary. Along with the results of Regev and Vijayaraghavan (2017), our work almost pins down the critical separation threshold at which efficient parameter learning becomes possible for spherical Gaussian mixtures. More generally, our algorithm runs in time $\mathrm{poly}(k)\cdot f(d, \Delta, \epsilon)$, and is thus fixed-parameter tractable in parameters $d$, $\Delta$ and $\epsilon$. Our approach is based on estimating the Fourier transform of the mixture at carefully chosen frequencies, and both the algorithm and its analysis are simple and elementary. Our positive results can be easily extended to learning mixtures of non-Gaussian distributions, under a mild condition on the Fourier spectrum of the distribution.
Mingda Qiao, Guru Guruganesh, Ankit Rawat, Kumar Avinava Dubey, Manzil Zaheer
null
null
2,022
neurips
Fixed-Distance Hamiltonian Monte Carlo
null
We propose a variation of the Hamiltonian Monte Carlo sampling (HMC) where the equations of motion are simulated for a fixed traversed distance rather than the conventional fixed simulation time. This new mechanism tends to generate proposals that have higher target probability values. The momentum distribution that is naturally joint with our Fixed-Distance HMC (FDHMC), and keeps the proposal acceptance probability close to 1, is not Gaussian and generates momentums that have a higher expected magnitude. This translates into a reduced correlation between the successive MCMC states and according to our experimental results, leads to an improvement in terms of the effective sample size per gradient when compared to the baseline HMC and No-U-Turn (NUTS) samplers.
Hadi Mohasel Afshar, Sally Cripps
null
null
2,022
neurips
Learning Options via Compression
null
Identifying statistical regularities in solutions to some tasks in multi-task reinforcement learning can accelerate the learning of new tasks.Skill learning offers one way of identifying these regularities by decomposing pre-collected experiences into a sequence of skills.A popular approach to skill learning is maximizing the likelihood of the pre-collected experience with latent variable models,where the latent variables represent the skills. However, there are often many solutions that maximize the likelihood equally well, including degenerate solutions. To address this underspecification, we propose a new objective that combines the maximum likelihood objective with a penalty on the description length of the skills. This penalty incentivizes the skills to maximally extract common structures from the experiences. Empirically, our objective learns skills that solve downstream tasks in fewer samples compared to skills learned from only maximizing likelihood. Further, while most prior works in the offline multi-task setting focus on tasks with low-dimensional observations, our objective can scale to challenging tasks with high-dimensional image observations.
Yiding Jiang, Evan Liu, Benjamin Eysenbach, J. Zico Kolter, Chelsea Finn
null
null
2,022
neurips
GlanceNets: Interpretable, Leak-proof Concept-based Models
null
There is growing interest in concept-based models (CBMs) that combine high-performance and interpretability by acquiring and reasoning with a vocabulary of high-level concepts. A key requirement is that the concepts be interpretable. Existing CBMs tackle this desideratum using a variety of heuristics based on unclear notions of interpretability, and fail to acquire concepts with the intended semantics. We address this by providing a clear definition of interpretability in terms of alignment between the model’s representation and an underlying data generation process, and introduce GlanceNets, a new CBM that exploits techniques from disentangled representation learning and open-set recognition to achieve alignment, thus improving the interpretability of the learned concepts. We show that GlanceNets, paired with concept-level supervision, achieve better alignment than state-of-the-art approaches while preventing spurious information from unintendedly leaking into the learned concepts.
Emanuele Marconato, Andrea Passerini, Stefano Teso
null
null
2,022
neurips
3DOS: Towards 3D Open Set Learning - Benchmarking and Understanding Semantic Novelty Detection on Point Clouds
null
In recent years there has been significant progress in the field of 3D learning on classification, detection and segmentation problems. The vast majority of the existing studies focus on canonical closed-set conditions, neglecting the intrinsic open nature of the real-world. This limits the abilities of robots and autonomous systems involved in safety-critical applications that require managing novel and unknown signals. In this context exploiting 3D data can be a valuable asset since it provides rich information about the geometry of perceived objects and scenes. With this paper we provide the first broad study on 3D Open Set learning. We introduce 3DOS: a novel testbed for semantic novelty detection that considers several settings with increasing difficulties in terms of semantic (category) shift, and covers both in-domain (synthetic-to-synthetic, real-to-real) and cross-domain (synthetic-to-real) scenarios. Moreover, we investigate the related 2D Open Set literature to understand if and how its recent improvements are effective on 3D data. Our extensive benchmark positions several algorithms in the same coherent picture, revealing their strengths and limitations. The results of our analysis may serve as a reliable foothold for future tailored 3D Open Set methods.
Antonio Alliegro, Francesco Cappio Borlino, Tatiana Tommasi
null
null
2,022
neurips
Searching for Better Spatio-temporal Alignment in Few-Shot Action Recognition
null
Spatio-Temporal feature matching and alignment are essential for few-shot action recognition as they determine the coherence and effectiveness of the temporal patterns. Nevertheless, this process could be not reliable, especially when dealing with complex video scenarios. In this paper, we propose to improve the performance of matching and alignment from the end-to-end design of models. Our solution comes at two-folds. First, we encourage to enhance the extracted Spatio-Temporal representations from few-shot videos in the perspective of architectures. With this aim, we propose a specialized transformer search method for videos, thus the spatial and temporal attention can be well-organized and optimized for stronger feature representations. Second, we also design an efficient non-parametric spatio-temporal prototype alignment strategy to better handle the high variability of motion. In particular, a query-specific class prototype will be generated for each query sample and category, which can better match query sequences against all support sequences. By doing so, our method SST enjoys significant superiority over the benchmark UCF101 and HMDB51 datasets. For example, with no pretraining, our method achieves 17.1\% Top-1 accuracy improvement than the baseline TRX on UCF101 5-way 1-shot setting but with only 3x fewer FLOPs.
Yichao Cao, Xiu Su, Qingfei Tang, Shan You, Xiaobo Lu, Chang Xu
null
null
2,022
neurips
MGNNI: Multiscale Graph Neural Networks with Implicit Layers
null
Recently, implicit graph neural networks (GNNs) have been proposed to capture long-range dependencies in underlying graphs. In this paper, we introduce and justify two weaknesses of implicit GNNs: the constrained expressiveness due to their limited effective range for capturing long-range dependencies, and their lack of ability to capture multiscale information on graphs at multiple resolutions. To show the limited effective range of previous implicit GNNs, we first provide a theoretical analysis and point out the intrinsic relationship between the effective range and the convergence of iterative equations used in these models. To mitigate the mentioned weaknesses, we propose a multiscale graph neural network with implicit layers (MGNNI) which is able to model multiscale structures on graphs and has an expanded effective range for capturing long-range dependencies. We conduct comprehensive experiments for both node classification and graph classification to show that MGNNI outperforms representative baselines and has a better ability for multiscale modeling and capturing of long-range dependencies.
Juncheng Liu, Bryan Hooi, Kenji Kawaguchi, Xiaokui Xiao
null
null
2,022
neurips
Leveraging the Hints: Adaptive Bidding in Repeated First-Price Auctions
null
With the advent and increasing consolidation of e-commerce, digital advertising has very recently replaced traditional advertising as the main marketing force in the economy. In the past four years, a particularly important development in the digital advertising industry is the shift from second-price auctions to first-price auctions for online display ads. This shift immediately motivated the intellectually challenging question of how to bid in first-price auctions, because unlike in second-price auctions, bidding one's private value truthfully is no longer optimal. Following a series of recent works in this area, we consider a differentiated setup: we do not make any assumption about other bidders' maximum bid (i.e. it can be adversarial over time), and instead assume that we have access to a hint that serves as a prediction of other bidders' maximum bid, where the prediction is learned through some blackbox machine learning model. We consider two types of hints: one where a single point-prediction is available, and the other where a hint interval (representing a type of confidence region into which others' maximum bid falls) is available. We establish minimax optimal regret bounds for both cases and highlight the quantitatively different behavior between the two settings. We also provide improved regret bounds when the others' maximum bid exhibits the further structure of sparsity. Finally, we complement the theoretical results with demonstrations using real bidding data.
Wei Zhang, Yanjun Han, Zhengyuan Zhou, Aaron Flores, Tsachy Weissman
null
null
2,022
neurips
Self-Supervised Learning of Brain Dynamics from Broad Neuroimaging Data
null
Self-supervised learning techniques are celebrating immense success in natural language processing (NLP) by enabling models to learn from broad language data at unprecedented scales. Here, we aim to leverage the success of these techniques for mental state decoding, where researchers aim to identify specific mental states (e.g., the experience of anger or joy) from brain activity. To this end, we devise a set of novel self-supervised learning frameworks for neuroimaging data inspired by prominent learning frameworks in NLP. At their core, these frameworks learn the dynamics of brain activity by modeling sequences of activity akin to how sequences of text are modeled in NLP. We evaluate the frameworks by pre-training models on a broad neuroimaging dataset spanning functional Magnetic Resonance Imaging data from 11,980 experimental runs of 1,726 individuals across 34 datasets, and subsequently adapting the pre-trained models to benchmark mental state decoding datasets. The pre-trained models transfer well, generally outperforming baseline models trained from scratch, while models trained in a learning framework based on causal language modeling clearly outperform the others.
Armin Thomas, Christopher Ré, Russell Poldrack
null
null
2,022
neurips
A Non-Asymptotic Moreau Envelope Theory for High-Dimensional Generalized Linear Models
null
We prove a new generalization bound that shows for any class of linear predictors in Gaussian space, the Rademacher complexity of the class and the training error under any continuous loss $\ell$ can control the test error under all Moreau envelopes of the loss $\ell$ . We use our finite-sample bound to directly recover the “optimistic rate” of Zhou et al. (2021) for linear regression with the square loss, which is known to be tight for minimal $\ell_2$-norm interpolation, but we also handle more general settings where the label is generated by a potentially misspecified multi-index model. The same argument can analyze noisy interpolation of max-margin classifiers through the squared hinge loss, and establishes consistency results in spiked-covariance settings. More generally, when the loss is only assumed to be Lipschitz, our bound effectively improves Talagrand’s well-known contraction lemma by a factor of two, and we prove uniform convergence of interpolators (Koehler et al. 2021) for all smooth, non-negative losses. Finally, we show that application of our generalization bound using localized Gaussian width will generally be sharp for empirical risk minimizers, establishing a non-asymptotic Moreau envelope theory for generalization that applies outside of proportional scaling regimes, handles model misspecification, and complements existing asymptotic Moreau envelope theories for M-estimation.
Lijia Zhou, Frederic Koehler, Pragya Sur, Danica J. Sutherland, Nati Srebro
null
null
2,022
neurips
Audio-Driven Co-Speech Gesture Video Generation
null
Co-speech gesture is crucial for human-machine interaction and digital entertainment. While previous works mostly map speech audio to human skeletons (e.g., 2D keypoints), directly generating speakers' gestures in the image domain remains unsolved. In this work, we formally define and study this challenging problem of audio-driven co-speech gesture video generation, i.e., using a unified framework to generate speaker image sequence driven by speech audio. Our key insight is that the co-speech gestures can be decomposed into common motion patterns and subtle rhythmic dynamics. To this end, we propose a novel framework, Audio-driveN Gesture vIdeo gEneration (ANGIE), to effectively capture the reusable co-speech gesture patterns as well as fine-grained rhythmic movements. To achieve high-fidelity image sequence generation, we leverage an unsupervised motion representation instead of a structural human body prior (e.g., 2D skeletons). Specifically, 1) we propose a vector quantized motion extractor (VQ-Motion Extractor) to summarize common co-speech gesture patterns from implicit motion representation to codebooks. 2) Moreover, a co-speech gesture GPT with motion refinement (Co-Speech GPT) is devised to complement the subtle prosodic motion details. Extensive experiments demonstrate that our framework renders realistic and vivid co-speech gesture video. Demo video and more resources can be found in: https://alvinliu0.github.io/projects/ANGIE
Xian Liu, Qianyi Wu, Hang Zhou, Yuanqi Du, Wayne Wu, Dahua Lin, Ziwei Liu
null
null
2,022
neurips
Characterization of Excess Risk for Locally Strongly Convex Population Risk
null
We establish upper bounds for the expected excess risk of models trained by proper iterative algorithms which approximate the local minima. Unlike the results built upon the strong globally strongly convexity or global growth conditions e.g., PL-inequality, we only require the population risk to be \emph{locally} strongly convex around its local minima. Concretely, our bound under convex problems is of order $\tilde{\mathcal{O}}(1/n)$. For non-convex problems with $d$ model parameters such that $d/n$ is smaller than a threshold independent of $n$, the order of $\tilde{\mathcal{O}}(1/n)$ can be maintained if the empirical risk has no spurious local minima with high probability. Moreover, the bound for non-convex problem becomes $\tilde{\mathcal{O}}(1/\sqrt{n})$ without such assumption. Our results are derived via algorithmic stability and characterization of the empirical risk's landscape. Compared with the existing algorithmic stability based results, our bounds are dimensional insensitive and without restrictions on the algorithm's implementation, learning rate, and the number of iterations. Our bounds underscore that with locally strongly convex population risk, the models trained by any proper iterative algorithm can generalize well, even for non-convex problems, and $d$ is large.
Mingyang Yi, Ruoyu Wang, Zhi-Ming Ma
null
null
2,022
neurips
Quality Not Quantity: On the Interaction between Dataset Design and Robustness of CLIP
null
Web-crawled datasets have enabled remarkable generalization capabilities in recent image-text models such as CLIP (Contrastive Language-Image pre-training) or Flamingo, but little is known about the dataset creation processes. In this work, we introduce a testbed of six publicly available data sources---YFCC, LAION, Conceptual Captions, WIT, RedCaps, Shutterstock---to investigate how pre-training distributions induce robustness in CLIP. We find that the performance of the pre-training data varies substantially across distribution shifts, with no single data source dominating. Moreover, we systematically study the interactions between these data sources and find that mixing multiple sources does not necessarily yield better models, but rather dilutes the robustness of the best individual data source. We complement our empirical findings with theoretical insights from a simple setting, where combining the training data also results in diluted robustness. In addition, our theoretical model provides a candidate explanation for the success of the CLIP-based data filtering technique recently employed in the LAION dataset. Overall our results demonstrate that simply gathering a large amount of data from the web is not the most effective way to build a pre-training dataset for robust generalization, necessitating further study into dataset design. Code is available at https://github.com/mlfoundations/clipqualitynot_quantity.
Thao Nguyen, Gabriel Ilharco, Mitchell Wortsman, Sewoong Oh, Ludwig Schmidt
null
null
2,022
neurips
Sample Efficiency Matters: A Benchmark for Practical Molecular Optimization
null
Molecular optimization is a fundamental goal in the chemical sciences and is of central interest to drug and material design. In recent years, significant progress has been made in solving challenging problems across various aspects of computational molecular optimizations, emphasizing high validity, diversity, and, most recently, synthesizability. Despite this progress, many papers report results on trivial or self-designed tasks, bringing additional challenges to directly assessing the performance of new methods. Moreover, the sample efficiency of the optimization---the number of molecules evaluated by the oracle---is rarely discussed, despite being an essential consideration for realistic discovery applications.To fill this gap, we have created an open-source benchmark for practical molecular optimization, PMO, to facilitate the transparent and reproducible evaluation of algorithmic advances in molecular optimization. This paper thoroughly investigates the performance of 25 molecular design algorithms on 23 single-objective (scalar) optimization tasks with a particular focus on sample efficiency. Our results show that most ``state-of-the-art'' methods fail to outperform their predecessors under a limited oracle budget allowing 10K queries and that no existing algorithm can efficiently solve certain molecular optimization problems in this setting. We analyze the influence of the optimization algorithm choices, molecular assembly strategies, and oracle landscapes on the optimization performance to inform future algorithm development and benchmarking. PMO provides a standardized experimental setup to comprehensively evaluate and compare new molecule optimization methods with existing ones. All code can be found at https://github.com/wenhao-gao/mol_opt.
Wenhao Gao, Tianfan Fu, Jimeng Sun, Connor Coley
null
null
2,022
neurips
CodeRL: Mastering Code Generation through Pretrained Models and Deep Reinforcement Learning
null
Program synthesis or code generation aims to generate a program that satisfies a problem specification. Recent approaches using large-scale pretrained language models (LMs) have shown promising results, yet they have some critical limitations. In particular, they often follow a standard supervised fine-tuning procedure to train a code generation model from natural language problem descriptions and ground-truth programs only. Such paradigm largely ignores some important but potentially useful signals in the problem specification such as unit tests, which thus results in poor performance when solving complex unseen coding tasks. We propose “CodeRL” to address the limitations, a new framework for program synthesis tasks through pretrained LMs and deep reinforcement learning (RL). Specifically, during training, we treat the code-generating LM as an actor network, and introduce a critic network that is trained to predict the functional correctness of generated programs and provide dense feedback signals to the actor. During inference, we introduce a new generation procedure with a critical sampling strategy that allows a model to automatically regenerate programs based on feedback from example unit tests and critic scores. For the model backbones, we extended the encoder-decoder architecture of CodeT5 with enhanced learning objectives, larger model sizes, and better pretraining data. Our method not only achieves new SOTA results on the challenging APPS benchmark, but also shows strong zero-shot transfer capability with new SOTA results on the simpler MBPP benchmark.
Hung Le, Yue Wang, Akhilesh Deepak Gotmare, Silvio Savarese, Steven Chu Hong Hoi
null
null
2,022
neurips
Masked Prediction: A Parameter Identifiability View
null
The vast majority of work in self-supervised learning have focused on assessing recovered features by a chosen set of downstream tasks. While there are several commonly used benchmark datasets, this lens of feature learning requires assumptions on the downstream tasks which are not inherent to the data distribution itself. In this paper, we present an alternative lens, one of parameter identifiability: assuming data comes from a parametric probabilistic model, we train a self-supervised learning predictor with a suitable parametric form, and ask whether the parameters of the optimal predictor can be used to extract the parameters of the ground truth generative model.Specifically, we focus on latent-variable models capturing sequential structures, namely Hidden Markov Models with both discrete and conditionally Gaussian observations. We focus on masked prediction as the self-supervised learning task and study the optimal masked predictor. We show that parameter identifiability is governed by the task difficulty, which is determined by the choice of data model and the amount of tokens to predict. Technique-wise, we uncover close connections with the uniqueness of tensor rank decompositions, a widely used tool in studying identifiability through the lens of the method of moments.
Bingbin Liu, Daniel J. Hsu, Pradeep Ravikumar, Andrej Risteski
null
null
2,022
neurips
Fine-Tuning Pre-Trained Language Models Effectively by Optimizing Subnetworks Adaptively
null
Large-scale pre-trained language models have achieved impressive results on a wide range of downstream tasks recently. However, fine-tuning an extremely large-scale pre-trained language model on limited target datasets is often plagued by overfitting and representation degradation. In this paper, we propose a Dynamic Parameter Selection (DPS) algorithm for the large-scale pre-trained models during fine-tuning, which adaptively selects a more promising subnetwork to perform staging updates based on gradients of back-propagation. Experiments on the GLUE benchmark show that DPS outperforms previous fine-tuning methods in terms of overall performance and stability, and consistently achieves better results with variable pre-trained language models. In addition, DPS brings a large magnitude of improvement in out-of-domain transferring experiments and low-resource scenarios, which shows that it can maintain stable general contextual features and reduce the representation collapse. We release our code at \url{https://github.com/ZhangHaojie077/DPS}.
Haojie Zhang, Ge Li, Jia Li, Zhongjin Zhang, YUQI ZHU, Zhi Jin
null
null
2,022
neurips
An Analysis of Ensemble Sampling
null
Ensemble sampling serves as a practical approximation to Thompson sampling when maintaining an exact posterior distribution over model parameters is computationally intractable. In this paper, we establish a regret bound that ensures desirable behavior when ensemble sampling is applied to the linear bandit problem. This represents the first rigorous regret analysis of ensemble sampling and is made possible by leveraging information-theoretic concepts and novel analytic techniques that may prove useful beyond the scope of this paper.
Chao Qin, Zheng Wen, Xiuyuan Lu, Benjamin Van Roy
null
null
2,022
neurips
PaCo: Parameter-Compositional Multi-task Reinforcement Learning
null
The purpose of multi-task reinforcement learning (MTRL) is to train a single policy that can be applied to a set of different tasks. Sharing parameters allows us to take advantage of the similarities among tasks. However, the gaps between contents and difficulties of different tasks bring us challenges on both which tasks should share the parameters and what parameters should be shared, as well as the optimization challenges due to parameter sharing. In this work, we introduce a parameter-compositional approach (PaCo) as an attempt to address these challenges. In this framework, a policy subspace represented by a set of parameters is learned. Policies for all the single tasks lie in this subspace and can be composed by interpolating with the learned set. It allows not only flexible parameter sharing, but also a natural way to improve training.We demonstrate the state-of-the-art performance on Meta-World benchmarks, verifying the effectiveness of the proposed approach.
Lingfeng Sun, Haichao Zhang, Wei Xu, Masayoshi TOMIZUKA
null
null
2,022
neurips
Bridging Central and Local Differential Privacy in Data Acquisition Mechanisms
null
We study the design of optimal Bayesian data acquisition mechanisms for a platform interested in estimating the mean of a distribution by collecting data from privacy-conscious users. In our setting, users have heterogeneous sensitivities for two types of privacy losses corresponding to local and central differential privacy measures. The local privacy loss is due to the leakage of a user's information when she shares her data with the platform, and the central privacy loss is due to the released estimate by the platform to the public. The users share their data in exchange for a payment (e.g., through monetary transfers or services) that compensates for their privacy losses. The platform does not know the privacy sensitivity of users and must design a mechanism to solicit their preferences and then deliver both local and central privacy guarantees while minimizing the estimation error plus the expected payment to users. We first establish minimax lower bounds for the estimation error, given a vector of privacy guarantees, and show that a linear estimator is (near) optimal. We then turn to our main goal: designing an optimal data acquisition mechanism. We establish that the design of such mechanisms in a Bayesian setting (where the platform knows the distribution of users' sensitivities and not their realizations) can be cast as a nonconvex optimization problem. Additionally, for the class of linear estimators, we prove that finding the optimal mechanism admits a Polynomial Time Approximation Scheme.
Alireza Fallah, Ali Makhdoumi, azarakhsh malekian, Asuman Ozdaglar
null
null
2,022
neurips
Stars: Tera-Scale Graph Building for Clustering and Learning
null
A fundamental procedure in the analysis of massive datasets is the construction of similarity graphs. Such graphs play a key role for many downstream tasks, including clustering, classification, graph learning, and nearest neighbor search. For these tasks, it is critical to build graphs which are sparse yet still representative of the underlying data. The benefits of sparsity are twofold: firstly, constructing dense graphs is infeasible in practice for large datasets, and secondly, the runtime of downstream tasks is directly influenced by the sparsity of the similarity graph. In this work, we present Stars: a highly scalable method for building extremely sparse graphs via two-hop spanners, which are graphs where similar points are connected by a path of length at most two. Stars can construct two-hop spanners with significantly fewer similarity comparisons, which are a major bottleneck for learning based models where comparisons are expensive to evaluate. Theoretically, we demonstrate that Stars builds a graph in nearly-linear time, where approximate nearest neighbors are contained within two-hop neighborhoods. In practice, we have deployed Stars for multiple data sets allowing for graph building at the Tera-Scale, i.e., for graphs with hundreds of billions of nodes and tens of trillions of edges. We evaluate the performance of Stars for clustering and graph learning, and demonstrate 10~1000-fold improvements in pairwise similarity comparisons and significant running time speedups with negligible quality loss.
CJ Carey, Jonathan Halcrow, Rajesh Jayaram, Vahab Mirrokni, Warren Schudy, Peilin Zhong
null
null
2,022
neurips
Score-Based Diffusion meets Annealed Importance Sampling
null
More than twenty years after its introduction, Annealed Importance Sampling (AIS) remains one of the most effective methods for marginal likelihood estimation. It relies on a sequence of distributions interpolating between a tractable initial distribution and the target distribution of interest which we simulate from approximately using a non-homogeneous Markov chain. To obtain an importance sampling estimate of the marginal likelihood, AIS introduces an extended target distribution to reweight the Markov chain proposal. While much effort has been devoted to improving the proposal distribution used by AIS, by changing the intermediate distributions and corresponding Markov kernels, an underappreciated issue is that AIS uses a convenient but suboptimal extended target distribution. This can hinder its performance. We here leverage recent progress in score-based generative modeling (SGM) to approximate the optimal extended target distribution for AIS proposals corresponding to the discretization of Langevin and Hamiltonian dynamics. We demonstrate these novel, differentiable, AIS procedures on a number of synthetic benchmark distributions and variational auto-encoders.
Arnaud Doucet, Will Grathwohl, Alexander G. Matthews, Heiko Strathmann
null
null
2,022
neurips
Evaluating Latent Space Robustness and Uncertainty of EEG-ML Models under Realistic Distribution Shifts
null
The recent availability of large datasets in bio-medicine has inspired the development of representation learning methods for multiple healthcare applications. Despite advances in predictive performance, the clinical utility of such methods is limited when exposed to real-world data. This study develops model diagnostic measures to detect potential pitfalls before deployment without assuming access to external data. Specifically, we focus on modeling realistic data shifts in electrophysiological signals (EEGs) via data transforms and extend the conventional task-based evaluations with analyses of a) the model's latent space and b) predictive uncertainty under these transforms. We conduct experiments on multiple EEG feature encoders and two clinically relevant downstream tasks using publicly available large-scale clinical EEGs. Within this experimental setting, our results suggest that measures of latent space integrity and model uncertainty under the proposed data shifts may help anticipate performance degradation during deployment.
Neeraj Wagh, Jionghao Wei, Samarth Rawal, Brent M Berry, Yogatheesan Varatharajah
null
null
2,022
neurips
UQGAN: A Unified Model for Uncertainty Quantification of Deep Classifiers trained via Conditional GANs
null
We present an approach to quantifying both aleatoric and epistemic uncertainty for deep neural networks in image classification, based on generative adversarial networks (GANs). While most works in the literature that use GANs to generate out-of-distribution (OoD) examples only focus on the evaluation of OoD detection, we present a GAN based approach to learn a classifier that produces proper uncertainties for OoD examples as well as for false positives (FPs). Instead of shielding the entire in-distribution data with GAN generated OoD examples which is state-of-the-art, we shield each class separately with out-of-class examples generated by a conditional GAN and complement this with a one-vs-all image classifier. In our experiments, in particular on CIFAR10, CIFAR100 and Tiny ImageNet, we improve over the OoD detection and FP detection performance of state-of-the-art GAN-training based classifiers. Furthermore, we also find that the generated GAN examples do not significantly affect the calibration error of our classifier and result in a significant gain in model accuracy.
Philipp Oberdiek, Gernot Fink, Matthias Rottmann
null
null
2,022
neurips
Towards Efficient 3D Object Detection with Knowledge Distillation
null
Despite substantial progress in 3D object detection, advanced 3D detectors often suffer from heavy computation overheads. To this end, we explore the potential of knowledge distillation (KD) for developing efficient 3D object detectors, focusing on popular pillar- and voxel-based detectors. In the absence of well-developed teacher-student pairs, we first study how to obtain student models with good trade offs between accuracy and efficiency from the perspectives of model compression and input resolution reduction. Then, we build a benchmark to assess existing KD methods developed in the 2D domain for 3D object detection upon six well-constructed teacher-student pairs. Further, we propose an improved KD pipeline incorporating an enhanced logit KD method that performs KD on only a few pivotal positions determined by teacher classification response and a teacher-guided student model initialization to facilitate transferring teacher model's feature extraction ability to students through weight inheritance. Finally, we conduct extensive experiments on the Waymo dataset. Our best performing model achieves $65.75\%$ LEVEL 2 mAPH surpassing its teacher model and requiring only $44\%$ of teacher flops. Our most efficient model runs 51 FPS on an NVIDIA A100, which is $2.2\times$ faster than PointPillar with even higher accuracy. Code will be available.
Jihan Yang, Shaoshuai Shi, Runyu Ding, Zhe Wang, Xiaojuan Qi
null
null
2,022
neurips
Adaptive Multi-stage Density Ratio Estimation for Learning Latent Space Energy-based Model
null
This paper studies the fundamental problem of learning energy-based model (EBM) in the latent space of the generator model. Learning such prior model typically requires running costly Markov Chain Monte Carlo (MCMC). Instead, we propose to use noise contrastive estimation (NCE) to discriminatively learn the EBM through density ratio estimation between the latent prior density and latent posterior density. However, the NCE typically fails to accurately estimate such density ratio given large gap between two densities. To effectively tackle this issue and further learn more expressive prior model, we develop the adaptive multi-stage density ratio estimation which breaks the estimation into multiple stages and learn different stages of density ratio sequentially and adaptively. The latent prior model can be gradually learned using ratio estimated in previous stage so that the final latent space EBM prior can be naturally formed by product of ratios in different stages. The proposed method enables informative and much sharper prior than existing baselines, and can be trained efficiently. Our experiments demonstrate strong performances in terms of image generation and reconstruction as well as anomaly detection.
Zhisheng Xiao, Tian Han
null
null
2,022
neurips
Concept Embedding Models: Beyond the Accuracy-Explainability Trade-Off
null
Deploying AI-powered systems requires trustworthy models supporting effective human interactions, going beyond raw prediction accuracy. Concept bottleneck models promote trustworthiness by conditioning classification tasks on an intermediate level of human-like concepts. This enables human interventions which can correct mispredicted concepts to improve the model's performance. However, existing concept bottleneck models are unable to find optimal compromises between high task accuracy, robust concept-based explanations, and effective interventions on concepts---particularly in real-world conditions where complete and accurate concept supervisions are scarce. To address this, we propose Concept Embedding Models, a novel family of concept bottleneck models which goes beyond the current accuracy-vs-interpretability trade-off by learning interpretable high-dimensional concept representations. Our experiments demonstrate that Concept Embedding Models (1) attain better or competitive task accuracy w.r.t. standard neural models without concepts, (2) provide concept representations capturing meaningful semantics including and beyond their ground truth labels, (3) support test-time concept interventions whose effect in test accuracy surpasses that in standard concept bottleneck models, and (4) scale to real-world conditions where complete concept supervisions are scarce.
Mateo Espinosa Zarlenga, Pietro Barbiero, Gabriele Ciravegna, Giuseppe Marra, Francesco Giannini, Michelangelo Diligenti, Zohreh Shams, Frederic Precioso, Stefano Melacci, Adrian Weller, Pietro Lió, Mateja Jamnik
null
null
2,022
neurips
Pythae: Unifying Generative Autoencoders in Python - A Benchmarking Use Case
null
In recent years, deep generative models have attracted increasing interest due to their capacity to model complex distributions. Among those models, variational autoencoders have gained popularity as they have proven both to be computationally efficient and yield impressive results in multiple fields. Following this breakthrough, extensive research has been done in order to improve the original publication, resulting in a variety of different VAE models in response to different tasks. In this paper we present \textbf{Pythae}, a versatile \textit{open-source} Python library providing both a \textit{unified implementation} and a dedicated framework allowing \textit{straightforward}, \emph{reproducible} and \textit{reliable} use of generative autoencoder models. We then propose to use this library to perform a case study benchmark where we present and compare 19 generative autoencoder models representative of some of the main improvements on downstream tasks such as image reconstruction, generation, classification, clustering and interpolation. The open-source library can be found at \url{https://github.com/clementchadebec/benchmark_VAE}.
Clément Chadebec, Louis Vincent, Stephanie Allassonniere
null
null
2,022
neurips
Non-Gaussian Tensor Programs
null
Does it matter whether one randomly initializes a neural network (NN) from Gaussian, uniform, or other distributions? We show the answer is ”yes” in some parameter tensors (the so-called matrix-like parameters) but ”no” in others when the NN is wide. This is a specific instance of a more general universality principle for Tensor Programs (TP) that informs precisely when the limit of a program depends on the distribution of its initial matrices and vectors. To obtain this principle, we develop the theory of non-Gaussian Tensor Programs. As corollaries, we obtain all previous consequences of the TP framework (such as NNGP/NTK correspondence, Free Independence Principle, Dynamical Dichotomy Theorem, and μ-parametrization) for NNs with non-Gaussian weights.
Eugene Golikov, Greg Yang
null
null
2,022
neurips
Fair Wrapping for Black-box Predictions
null
We introduce a new family of techniques to post-process (``wrap") a black-box classifier in order to reduce its bias. Our technique builds on the recent analysis of improper loss functions whose optimization can correct any twist in prediction, unfairness being treated as a twist. In the post-processing, we learn a wrapper function which we define as an $\alpha$-tree, which modifies the prediction. We provide two generic boosting algorithms to learn $\alpha$-trees. We show that our modification has appealing properties in terms of composition of $\alpha$-trees, generalization, interpretability, and KL divergence between modified and original predictions. We exemplify the use of our technique in three fairness notions: conditional value-at-risk, equality of opportunity, and statistical parity; and provide experiments on several readily available datasets.
Alexander Soen, Ibrahim M. Alabdulmohsin, Sanmi Koyejo, Yishay Mansour, Nyalleng Moorosi, Richard Nock, Ke Sun, Lexing Xie
null
null
2,022
neurips
Diffusion Curvature for Estimating Local Curvature in High Dimensional Data
null
We introduce a new intrinsic measure of local curvature on point-cloud data called diffusion curvature. Our measure uses the framework of diffusion maps, including the data diffusion operator, to structure point cloud data and define local curvature based on the laziness of a random walk starting at a point or region of the data. We show that this laziness directly relates to volume comparison results from Riemannian geometry. We then extend this scalar curvature notion to an entire quadratic form using neural network estimations based on the diffusion map of point-cloud data. We show applications of both estimations on toy data, single-cell data, and on estimating local Hessian matrices of neural network loss landscapes.
Dhananjay Bhaskar, Kincaid MacDonald, Oluwadamilola Fasina, Dawson Thomas, Bastian Rieck, Ian Adelstein, Smita Krishnaswamy
null
null
2,022
neurips
Decoupled Context Processing for Context Augmented Language Modeling
null
Language models can be augmented with context retriever to incorporate knowledge from large external databases. By leveraging retrieved context, the neural network does not have to memorize the massive amount of world knowledge within its internal parameters, leading to better parameter efficiency, interpretability and modularity. In this paper we examined a simple yet effective architecture for incorporating external context into language models based on decoupled $\texttt{Encoder-Decoder}$ architecture. We showed that such a simple architecture achieves competitive results on auto-regressive language modeling and open domain question answering tasks. We also analyzed the behavior of the proposed model which performs grounded context transfer. Finally we discussed the computational implications of such retrieval augmented models.
Zonglin Li, Ruiqi Guo, Sanjiv Kumar
null
null
2,022
neurips
Contrastive Adapters for Foundation Model Group Robustness
null
While large pretrained foundation models (FMs) have shown remarkable zero-shot classification robustness to dataset-level distribution shifts, their robustness to subpopulation or group shifts is relatively underexplored. We study this problem, and find that foundation models such as CLIP may not be robust to various group shifts. Across 9 robustness benchmarks, zero-shot classification with their embeddings results in gaps of up to 80.7 percentage points (pp) between average and worst-group accuracy. Unfortunately, existing methods to improve robustness require retraining, which can be prohibitively expensive on large foundation models. We also find that efficient ways to improve model inference (e.g. via adapters, lightweight networks that transform FM embeddings) do not consistently improve and can sometimes hurt group robustness compared to zero-shot. We therefore develop an adapter training strategy to effectively and efficiently improve FM group robustness. Our motivating observation is that while poor robustness results from groups in the same class being embedded far apart in the foundation model "embedding space," standard adapter training may not actually bring these points closer together. We thus propose contrastive adapting, which contrastively trains adapters to bring sample embeddings close to both their ground-truth class embeddings and same-class sample embeddings. Across the 9 robustness benchmarks, contrastive adapting consistently improves group robustness, raising worst-group accuracy by 8.5 to 56.0 pp over zero-shot. Our approach is also efficient, doing so without any FM finetuning and only a fixed set of FM embeddings. On popular benchmarks such as Waterbirds and CelebA, this leads to worst-group accuracy comparable to state-of-the-art methods, while only training <1% of the model parameters.
Michael Zhang, Christopher Ré
null
null
2,022
neurips
Multi-fidelity Monte Carlo: a pseudo-marginal approach
null
Markov chain Monte Carlo (MCMC) is an established approach for uncertainty quantification and propagation in scientific applications. A key challenge in applying MCMC to scientific domains is computation: the target density of interest is often a function of expensive computations, such as a high-fidelity physical simulation, an intractable integral, or a slowly-converging iterative algorithm. Thus, using an MCMC algorithms with an expensive target density becomes impractical, as these expensive computations need to be evaluated at each iteration of the algorithm. In practice, these computations often approximated via a cheaper, low-fidelity computation, leading to bias in the resulting target density. Multi-fidelity MCMC algorithms combine models of varying fidelities in order to obtain an approximate target density with lower computational cost. In this paper, we describe a class of asymptotically exact multi-fidelity MCMC algorithms for the setting where a sequence of models of increasing fidelity can be computed that approximates the expensive target density of interest. We take a pseudo-marginal MCMC approach for multi-fidelity inference that utilizes a cheaper, randomized-fidelity unbiased estimator of the target fidelity constructed via random truncation of a telescoping series of the low-fidelity sequence of models. Finally, we discuss and evaluate the proposed multi-fidelity MCMC approach on several applications, including log-Gaussian Cox process modeling, Bayesian ODE system identification, PDE-constrained optimization, and Gaussian process parameter inference.
Diana Cai, Ryan P. Adams
null
null
2,022
neurips
LISA: Learning Interpretable Skill Abstractions from Language
null
Learning policies that effectively utilize language instructions in complex, multi-task environments is an important problem in imitation learning. While it is possible to condition on the entire language instruction directly, such an approach could suffer from generalization issues. To encode complex instructions into skills that can generalize to unseen instructions, we propose Learning Interpretable Skill Abstractions (LISA), a hierarchical imitation learning framework that can learn diverse, interpretable skills from language-conditioned demonstrations. LISA uses vector quantization to learn discrete skill codes that are highly correlated with language instructions and the behavior of the learned policy. In navigation and robotic manipulation environments, LISA is able to outperform a strong non-hierarchical baseline in the low data regime and compose learned skills to solve tasks containing unseen long-range instructions. Our method demonstrates a more natural way to condition on language in sequential decision-making problems and achieve interpretable and controllable behavior with the learned skills.
Divyansh Garg, Skanda Vaidyanath, Kuno Kim, Jiaming Song, Stefano Ermon
null
null
2,022
neurips
Accelerated Primal-Dual Gradient Method for Smooth and Convex-Concave Saddle-Point Problems with Bilinear Coupling
null
In this paper we study the convex-concave saddle-point problem $\min_x \max_y f(x) + y^\top\mathbf{A}x - g(y)$, where $f(x)$ and $g(y)$ are smooth and convex functions. We propose an Accelerated Primal-Dual Gradient Method (APDG) for solving this problem, achieving (i) an optimal linear convergence rate in the strongly-convex-strongly-concave regime, matching the lower complexity bound (Zhang et al., 2021), and (ii) an accelerated linear convergence rate in the case when only one of the functions $f(x)$ and $g(y)$ is strongly convex or even none of them are. Finally, we obtain a linearly convergent algorithm for the general smooth and convex-concave saddle point problem $\min_x \max_y F(x,y)$ without the requirement of strong convexity or strong concavity.
Dmitry Kovalev, Alexander Gasnikov, Peter Richtarik
null
null
2,022
neurips
Entropy-Driven Mixed-Precision Quantization for Deep Network Design
null
Deploying deep convolutional neural networks on Internet-of-Things (IoT) devices is challenging due to the limited computational resources, such as limited SRAM memory and Flash storage. Previous works re-design a small network for IoT devices, and then compress the network size by mixed-precision quantization. This two-stage procedure cannot optimize the architecture and the corresponding quantization jointly, leading to sub-optimal tiny deep models. In this work, we propose a one-stage solution that optimizes both jointly and automatically. The key idea of our approach is to cast the joint architecture design and quantization as an Entropy Maximization process. Particularly, our algorithm automatically designs a tiny deep model such that: 1) Its representation capacity measured by entropy is maximized under the given computational budget; 2) Each layer is assigned with a proper quantization precision; 3) The overall design loop can be done on CPU, and no GPU is required. More impressively, our method can directly search high-expressiveness architecture for IoT devices within less than half a CPU hour. Extensive experiments on three widely adopted benchmarks, ImageNet, VWW and WIDER FACE, demonstrate that our method can achieve the state-of-the-art performance in the tiny deep model regime. Code and pre-trained models are available at https://github.com/alibaba/lightweight-neural-architecture-search.
Zhenhong Sun, Ce Ge, Junyan Wang, Ming Lin, Hesen Chen, Hao Li, Xiuyu Sun
null
null
2,022
neurips
An In-depth Study of Stochastic Backpropagation
null
In this paper, we provide an in-depth study of Stochastic Backpropagation (SBP) when training deep neural networks for standard image classification and object detection tasks. During backward propagation, SBP calculates gradients by using only a subset of feature maps to save GPU memory and computational cost. We interpret SBP as an efficient way to implement stochastic gradient decent by performing backpropagation dropout, which leads to significant memory saving and training run-time reduction, with a minimal impact on the overall model accuracy. We offer best practices to apply SBP for training image recognition models, which can be adopted in learning a wide range of deep neural networks. Experiments on image classification and object detection show that SBP can save up to 40% of GPU memory with less than 1% accuracy degradation. Code is available at: https://github.com/amazon-research/stochastic-backpropagation
Jun Fang, Mingze Xu, Hao Chen, Bing Shuai, Zhuowen Tu, Joseph Tighe
null
null
2,022
neurips
A Contrastive Framework for Neural Text Generation
null
Text generation is of great importance to many natural language processing applications. However, maximization-based decoding methods (e.g., beam search) of neural language models often lead to degenerate solutions---the generated text is unnatural and contains undesirable repetitions. Existing approaches introduce stochasticity via sampling or modify training objectives to decrease the probabilities of certain tokens (e.g., unlikelihood training). However, they often lead to solutions that lack coherence. In this work, we show that an underlying reason for model degeneration is the anisotropic distribution of token representations. We present a contrastive solution: (i) SimCTG, a contrastive training objective to calibrate the model's representation space, and (ii) a decoding method---contrastive search---to encourage diversity while maintaining coherence in the generated text. Extensive experiments and analyses on three benchmarks from two languages demonstrate that our proposed approach outperforms state-of-the-art text generation methods as evaluated by both human and automatic metrics.
Yixuan Su, Tian Lan, Yan Wang, Dani Yogatama, Lingpeng Kong, Nigel Collier
null
null
2,022
neurips
Adaptation Accelerating Sampling-based Bayesian Inference in Attractor Neural Networks
null
The brain performs probabilistic Bayesian inference to interpret the external world. The sampling-based view assumes that the brain represents the stimulus posterior distribution via samples of stochastic neuronal responses. Although the idea of sampling-based inference is appealing, it faces a critical challenge of whether stochastic sampling is fast enough to match the rapid computation of the brain. In this study, we explore how latent stimulus sampling can be accelerated in neural circuits. Specifically, we consider a canonical neural circuit model called continuous attractor neural networks (CANNs) and investigate how sampling-based inference of latent continuous variables is accelerated in CANNs. Intriguingly, we find that by including noisy adaptation in the neuronal dynamics, the CANN is able to speed up the sampling process significantly. We theoretically derive that the CANN with noisy adaptation implements the efficient sampling method called Hamiltonian dynamics with friction, where noisy adaption effectively plays the role of momentum. We theoretically analyze the sampling performances of the network and derive the condition when the acceleration has the maximum effect. Simulation results confirm our theoretical analyses. We further extend the model to coupled CANNs and demonstrate that noisy adaptation accelerates the sampling of the posterior distribution of multivariate stimuli. We hope that this study enhances our understanding of how Bayesian inference is realized in the brain.
Xingsi Dong, Zilong Ji, Tianhao Chu, Tiejun Huang, Wenhao Zhang, Si Wu
null
null
2,022
neurips
Insights into Pre-training via Simpler Synthetic Tasks
null
Pre-training produces representations that are effective for a wide range of downstream tasks, but it is still unclear what properties of pre-training are necessary for effective gains. Notably, recent work shows that even pre-training on synthetic tasks can achieve significant gains in downstream tasks. In this work, we perform three experiments that iteratively simplify pre-training and show that the simplifications still retain much of its gains. First, building on prior work, we perform a systematic evaluation of three existing synthetic pre-training methods on six downstream tasks. We find the best synthetic pre-training method, LIME, attains an average of $67\%$ of the benefits of natural pre-training. Second, to our surprise, we find that pre-training on a simple and generic synthetic task defined by the set function achieves $65\%$ of the benefits, almost matching LIME. Third, we find that $39\%$ of the benefits can be attained by using merely the parameter statistics of synthetic pre-training. We release the source code at \url{https://github.com/felixzli/synthetic_pretraining}.
Yuhuai Wu, Felix Li, Percy S. Liang
null
null
2,022
neurips
3DILG: Irregular Latent Grids for 3D Generative Modeling
null
We propose a new representation for encoding 3D shapes as neural fields. The representation is designed to be compatible with the transformer architecture and to benefit both shape reconstruction and shape generation. Existing works on neural fields are grid-based representations with latents being defined on a regular grid. In contrast, we define latents on irregular grids which facilitates our representation to be sparse and adaptive. In the context of shape reconstruction from point clouds, our shape representation built on irregular grids improves upon grid-based methods in terms of reconstruction accuracy. For shape generation, our representation promotes high-quality shape generation using auto-regressive probabilistic models. We show different applications that improve over the current state of the art. First, we show results of probabilistic shape reconstruction from a single higher resolution image. Second, we train a probabilistic model conditioned on very low resolution images. Third, we apply our model to category-conditioned generation. All probabilistic experiments confirm that we are able to generate detailed and high quality shapes to yield the new state of the art in generative 3D shape modeling.
Biao Zhang, Matthias Niessner, Peter Wonka
null
null
2,022
neurips
Last-Iterate Convergence of Optimistic Gradient Method for Monotone Variational Inequalities
null
The Past Extragradient (PEG) [Popov, 1980] method, also known as the Optimistic Gradient method, has known a recent gain in interest in the optimization community with the emergence of variational inequality formulations for machine learning. Recently, in the unconstrained case, Golowich et al. [2020] proved that a $O(1/N)$ last-iterate convergence rate in terms of the squared norm of the operator can be achieved for Lipschitz and monotone operators with a Lipchitz Jacobian. In this work, by introducing a novel analysis through potential functions, we show that (i) this $O(1/N)$ last-iterate convergence can be achieved without any assumption on the Jacobian of the operator, and (ii) it can be extended to the constrained case, which was not derived before even under Lipschitzness of the Jacobian. The proof is significantly different from the one known from Golowich et al. [2020], and its discovery was computer-aided. Those results close the open question of the last iterate convergence of PEG for monotone variational inequalities.
Eduard Gorbunov, Adrien Taylor, Gauthier Gidel
null
null
2,022
neurips
Communication Acceleration of Local Gradient Methods via an Accelerated Primal-Dual Algorithm with an Inexact Prox
null
Inspired by a recent breakthrough of Mishchenko et al. [2022], who for the first time showed that local gradient steps can lead to provable communication acceleration, we propose an alternative algorithm which obtains the same communication acceleration as their method (ProxSkip). Our approach is very different, however: it is based on the celebrated method of Chambolle and Pock [2011], with several nontrivial modifications: i) we allow for an inexact computation of the prox operator of a certain smooth strongly convex function via a suitable gradient-based method (e.g., GD or Fast GD), ii) we perform a careful modification of the dual update step in order to retain linear convergence. Our general results offer the new state-of-the-art rates for the class of strongly convex-concave saddle-point problems with bilinear coupling characterized by the absence of smoothness in the dual function. When applied to federated learning, we obtain a theoretically better alternative to ProxSkip: our method requires fewer local steps ($\mathcal{O}(\kappa^{1/3})$ or $\mathcal{O}(\kappa^{1/4})$, compared to $\mathcal{O}(\kappa^{1/2})$ of ProxSkip), and performs a deterministic number of local steps instead. Like ProxSkip, our method can be applied to optimization over a connected network, and we obtain theoretical improvements here as well.
Abdurakhmon Sadiev, Dmitry Kovalev, Peter Richtarik
null
null
2,022
neurips
Policy Optimization for Markov Games: Unified Framework and Faster Convergence
null
This paper studies policy optimization algorithms for multi-agent reinforcement learning. We begin by proposing an algorithm framework for two-player zero-sum Markov Games in the full-information setting, where each iteration consists of a policy update step at each state using a certain matrix game algorithm, and a value update step with a certain learning rate. This framework unifies many existing and new policy optimization algorithms. We show that the \emph{state-wise average policy} of this algorithm converges to an approximate Nash equilibrium (NE) of the game, as long as the matrix game algorithms achieve low weighted regret at each state, with respect to weights determined by the speed of the value updates. Next, we show that this framework instantiated with the Optimistic Follow-The-Regularized-Leader (OFTRL) algorithm at each state (and smooth value updates) can find an $\mathcal{\widetilde{O}}(T^{-5/6})$ approximate NE in $T$ iterations, and a similar algorithm with slightly modified value update rule achieves a faster $\mathcal{\widetilde{O}}(T^{-1})$ convergence rate. These improve over the current best $\mathcal{\widetilde{O}}(T^{-1/2})$ rate of symmetric policy optimization type algorithms. We also extend this algorithm to multi-player general-sum Markov Games and show an $\mathcal{\widetilde{O}}(T^{-3/4})$ convergence rate to Coarse Correlated Equilibria (CCE). Finally, we provide a numerical example to verify our theory and investigate the importance of smooth value updates, and find that using ''eager'' value updates instead (equivalent to the independent natural policy gradient algorithm) may significantly slow down the convergence, even on a simple game with $H=2$ layers.
Runyu Zhang, Qinghua Liu, Huan Wang, Caiming Xiong, Na Li, Yu Bai
null
null
2,022
neurips
SAPD+: An Accelerated Stochastic Method for Nonconvex-Concave Minimax Problems
null
We propose a new stochastic method SAPD+ for solving nonconvex-concave minimax problems of the form $\min\max\mathcal{L}(x,y)=f(x)+\Phi(x,y)-g(y)$, where $f,g$ are closed convex and $\Phi(x,y)$ is a smooth function that is weakly convex in $x$, (strongly) concave in $y$. For both strongly concave and merely concave settings, SAPD+ achieves the best known oracle complexities of $\mathcal{O}(L\kappa_y\epsilon^{-4})$ and $\mathcal{O}(L^3\epsilon^{-6})$, respectively, without assuming compactness of the problem domain, where $\kappa_y$ is the condition number, and $L$ is the Lipschitz constant. We also propose SAPD+ with variance reduction, which enjoys the best known oracle complexity of $\mathcal{O}(L\kappa_y^2\epsilon^{-3})$ for weakly convex-strongly concave setting. We demonstrate the efficiency of SAPD+ on a distributionally robust learning problem with a nonconvex regularizer and also on a multi-class classification problem in deep learning.
Xuan Zhang, Necdet Serhat Aybat, Mert Gurbuzbalaban
null
null
2,022
neurips
Transformer Memory as a Differentiable Search Index
null
In this paper, we demonstrate that information retrieval can be accomplished with a single Transformer, in which all information about the corpus is encoded in the parameters of the model. To this end, we introduce the Differentiable Search Index (DSI), a new paradigm that learns a text-to-text model that maps string queries directly to relevant docids; in other words, a DSI model answers queries directly using only its parameters, dramatically simplifying the whole retrieval process. We study variations in how documents and their identifiers are represented, variations in training procedures, and the interplay between models and corpus sizes. Experiments demonstrate that given appropriate design choices, DSI significantly outperforms strong baselines such as dual encoder models. Moreover, DSI demonstrates strong generalization capabilities, outperforming a BM25 baseline in a zero-shot setup.
Yi Tay, Vinh Tran, Mostafa Dehghani, Jianmo Ni, Dara Bahri, Harsh Mehta, Zhen Qin, Kai Hui, Zhe Zhao, Jai Gupta, Tal Schuster, William W. Cohen, Donald Metzler
null
null
2,022
neurips
This is the way: designing and compiling LEPISZCZE, a comprehensive NLP benchmark for Polish
null
The availability of compute and data to train larger and larger language models increases the demand for robust methods of benchmarking the true progress of LM training. Recent years witnessed significant progress in standardized benchmarking for English. Benchmarks such as GLUE, SuperGLUE, or KILT have become a de facto standard tools to compare large language models. Following the trend to replicate GLUE for other languages, the KLEJ benchmark\ (klej is the word for glue in Polish) has been released for Polish. In this paper, we evaluate the progress in benchmarking for low-resourced languages. We note that only a handful of languages have such comprehensive benchmarks. We also note the gap in the number of tasks being evaluated by benchmarks for resource-rich English/Chinese and the rest of the world.In this paper, we introduce LEPISZCZE (lepiszcze is the Polish word for glew, the Middle English predecessor of glue), a new, comprehensive benchmark for Polish NLP with a large variety of tasks and high-quality operationalization of the benchmark.We design LEPISZCZE with flexibility in mind. Including new models, datasets, and tasks is as simple as possible while still offering data versioning and model tracking. In the first run of the benchmark, we test 13 experiments (task and dataset pairs) based on the five most recent LMs for Polish. We use five datasets from the Polish benchmark and add eight novel datasets. As the paper's main contribution, apart from LEPISZCZE, we provide insights and experiences learned while creating the benchmark for Polish as the blueprint to design similar benchmarks for other low-resourced languages.
Lukasz Augustyniak, Kamil Tagowski, Albert Sawczyn, Denis Janiak, Roman Bartusiak, Adrian Szymczak, Arkadiusz Janz, Piotr Szymański, Marcin Wątroba, Mikołaj Morzy, Tomasz Kajdanowicz, Maciej Piasecki
null
null
2,022
neurips
Aligning individual brains with fused unbalanced Gromov Wasserstein
null
Individual brains vary in both anatomy and functional organization, even within a given species. Inter-individual variability is a major impediment when trying to draw generalizable conclusions from neuroimaging data collected on groups of subjects. Current co-registration procedures rely on limited data, and thus lead to very coarse inter-subject alignments. In this work, we present a novel method for inter-subject alignment based on Optimal Transport, denoted as Fused Unbalanced Gromov Wasserstein (FUGW). The method aligns two cortical surfaces based on the similarity of their functional signatures in response to a variety of stimuli, while penalizing large deformations of individual topographic organization.We demonstrate that FUGW is suited for whole-brain landmark-free alignment. The unbalanced feature allows to deal with the fact that functional areas vary in size across subjects. Results show that FUGW alignment significantly increases between-subject correlation of activity during new independent fMRI tasks and runs, and leads to more precise maps of fMRI results at the group level.
Alexis Thual, Quang Huy TRAN, Tatiana Zemskova, Nicolas Courty, Rémi Flamary, Stanislas Dehaene, Bertrand Thirion
null
null
2,022
neurips
Hidden Progress in Deep Learning: SGD Learns Parities Near the Computational Limit
null
There is mounting evidence of emergent phenomena in the capabilities of deep learning methods as we scale up datasets, model sizes, and training times. While there are some accounts of how these resources modulate statistical capacity, far less is known about their effect on the computational problem of model training. This work conducts such an exploration through the lens of learning a $k$-sparse parity of $n$ bits, a canonical discrete search problem which is statistically easy but computationally hard. Empirically, we find that a variety of neural networks successfully learn sparse parities, with discontinuous phase transitions in the training curves. On small instances, learning abruptly occurs at approximately $n^{O(k)}$ iterations; this nearly matches SQ lower bounds, despite the apparent lack of a sparse prior. Our theoretical analysis shows that these observations are not explained by a Langevin-like mechanism, whereby SGD "stumbles in the dark" until it finds the hidden set of features (a natural algorithm which also runs in $n^{O(k)}$ time). Instead, we show that SGD gradually amplifies the sparse solution via a Fourier gap in the population gradient, making continual progress that is invisible to loss and error metrics.
Boaz Barak, Benjamin Edelman, Surbhi Goel, Sham Kakade, Eran Malach, Cyril Zhang
null
null
2,022
neurips
C2FAR: Coarse-to-Fine Autoregressive Networks for Precise Probabilistic Forecasting
null
We present coarse-to-fine autoregressive networks (C2FAR), a method for modeling the probability distribution of univariate, numeric random variables. C2FAR generates a hierarchical, coarse-to-fine discretization of a variable autoregressively; progressively finer intervals of support are generated from a sequence of binned distributions, where each distribution is conditioned on previously-generated coarser intervals. Unlike prior (flat) binned distributions, C2FAR can represent values with exponentially higher precision, for only a linear increase in complexity. We use C2FAR for probabilistic forecasting via a recurrent neural network, thus modeling time series autoregressively in both space and time. C2FAR is the first method to simultaneously handle discrete and continuous series of arbitrary scale and distribution shape. This flexibility enables a variety of time series use cases, including anomaly detection, interpolation, and compression. C2FAR achieves improvements over the state-of-the-art on several benchmark forecasting datasets.
Shane Bergsma, Tim Zeyl, Javad Rahimipour Anaraki, Lei Guo
null
null
2,022
neurips
ENS-10: A Dataset For Post-Processing Ensemble Weather Forecasts
null
Post-processing ensemble prediction systems can improve the reliability of weather forecasting, especially for extreme event prediction. In recent years, different machine learning models have been developed to improve the quality of weather post-processing. However, these models require a comprehensive dataset of weather simulations to produce high-accuracy results, which comes at a high computational cost to generate. This paper introduces the ENS-10 dataset, consisting of ten ensemble members spanning 20 years (1998--2017). The ensemble members are generated by perturbing numerical weather simulations to capture the chaotic behavior of the Earth. To represent the three-dimensional state of the atmosphere, ENS-10 provides the most relevant atmospheric variables at 11 distinct pressure levels and the surface at \ang{0.5} resolution for forecast lead times T=0, 24, and 48 hours (two data points per week). We propose the ENS-10 prediction correction task for improving the forecast quality at a 48-hour lead time through ensemble post-processing. We provide a set of baselines and compare their skill at correcting the predictions of three important atmospheric variables. Moreover, we measure the baselines' skill at improving predictions of extreme weather events using our dataset. The ENS-10 dataset is available under the Creative Commons Attribution 4.0 International (CC BY 4.0) license.
Saleh Ashkboos, Langwen Huang, Nikoli Dryden, Tal Ben-Nun, Peter Dueben, Lukas Gianinazzi, Luca Kummer, Torsten Hoefler
null
null
2,022
neurips
Respecting Transfer Gap in Knowledge Distillation
null
Knowledge distillation (KD) is essentially a process of transferring a teacher model's behavior, e.g., network response, to a student model. The network response serves as additional supervision to formulate the machine domain, which uses the data collected from the human domain as a transfer set. Traditional KD methods hold an underlying assumption that the data collected in both human domain and machine domain are both independent and identically distributed (IID). We point out that this naive assumption is unrealistic and there is indeed a transfer gap between the two domains. Although the gap offers the student model external knowledge from the machine domain, the imbalanced teacher knowledge would make us incorrectly estimate how much to transfer from teacher to student per sample on the non-IID transfer set. To tackle this challenge, we propose Inverse Probability Weighting Distillation (IPWD) that estimates the propensity of a training sample belonging to the machine domain, and assigns its inverse amount to compensate for under-represented samples. Experiments on CIFAR-100 and ImageNet demonstrate the effectiveness of \ours~for both two-stage distillation and one-stage self-distillation.
Yulei Niu, Long Chen, Chang Zhou, Hanwang Zhang
null
null
2,022
neurips
Gaussian Copula Embeddings
null
Learning latent vector representations via embedding models has been shown promising in machine learning. However, most of the embedding models are still limited to a single type of observation data. We propose a Gaussian copula embedding model to learn latent vector representations of items in a heterogeneous data setting. The proposed model can effectively incorporate different types of observed data and, at the same time, yield robust embeddings. We demonstrate the proposed model can effectively learn in many different scenarios, outperforming competing models in modeling quality and task performance.
Chien Lu, Jaakko Peltonen
null
null
2,022
neurips
Panchromatic and Multispectral Image Fusion via Alternating Reverse Filtering Network
null
Panchromatic (PAN) and multi-spectral (MS) image fusion, named Pan-sharpening, refers to super-resolve the low-resolution (LR) multi-spectral (MS) images in the spatial domain to generate the expected high-resolution (HR) MS images, conditioning on the corresponding high-resolution PAN images. In this paper, we present a simple yet effective alternating reverse filtering network for pan-sharpening. Inspired by the classical reverse filtering that reverses images to the status before filtering, we formulate pan-sharpening as an alternately iterative reverse filtering process, which fuses LR MS and HR MS in an interpretable manner. Different from existing model-driven methods that require well-designed priors and degradation assumptions, the reverse filtering process avoids the dependency on pre-defined exact priors. To guarantee the stability and convergence of the iterative process via contraction mapping on a metric space, we develop the learnable multi-scale Gaussian kernel module, instead of using specific filters. We demonstrate the theoretical feasibility of such formulations. Extensive experiments on diverse scenes to thoroughly verify the performance of our method, significantly outperforming the state of the arts.
Keyu Yan, Man Zhou, Jie Huang, Feng Zhao, Chengjun Xie, Chongyi Li, Danfeng Hong
null
null
2,022
neurips
Target alignment in truncated kernel ridge regression
null
Kernel ridge regression (KRR) has recently attracted renewed interest due to its potential for explaining the transient effects, such as double descent, that emerge during neural network training. In this work, we study how the alignment between the target function and the kernel affects the performance of the KRR. We focus on the truncated KRR (TKRR) which utilizes an additional parameter that controls the spectral truncation of the kernel matrix. We show that for polynomial alignment, there is an over-aligned regime, in which TKRR can achieve a faster rate than what is achievable by full KRR. The rate of TKRR can improve all the way to the parametric rate, while that of full KRR is capped at a sub-optimal value. This shows that target alignemnt can be better leveraged by utilizing spectral truncation in kernel methods. We also consider the bandlimited alignment setting and show that the regularization surface of TKRR can exhibit transient effects including multiple descent and non-monotonic behavior. Our results show that there is a strong and quantifable relation between the shape of the alignment spectrum and the generalization performance of kernel methods, both in terms of rates and in finite samples.
Arash Amini, Richard Baumgartner, Dai Feng
null
null
2,022
neurips
METS-CoV: A Dataset of Medical Entity and Targeted Sentiment on COVID-19 Related Tweets
null
The COVID-19 pandemic continues to bring up various topics discussed or debated on social media. In order to explore the impact of pandemics on people's lives, it is crucial to understand the public's concerns and attitudes towards pandemic-related entities (e.g., drugs, vaccines) on social media. However, models trained on existing named entity recognition (NER) or targeted sentiment analysis (TSA) datasets have limited ability to understand COVID-19-related social media texts because these datasets are not designed or annotated from a medical perspective. In this paper, we release METS-CoV, a dataset containing medical entities and targeted sentiments from COVID-19 related tweets. METS-CoV contains 10,000 tweets with 7 types of entities, including 4 medical entity types (Disease, Drug, Symptom, and Vaccine) and 3 general entity types (Person, Location, and Organization). To further investigate tweet users' attitudes toward specific entities, 4 types of entities (Person, Organization, Drug, and Vaccine) are selected and annotated with user sentiments, resulting in a targeted sentiment dataset with 9,101 entities (in 5,278 tweets). To the best of our knowledge, METS-CoV is the first dataset to collect medical entities and corresponding sentiments of COVID-19 related tweets. We benchmark the performance of classical machine learning models and state-of-the-art deep learning models on NER and TSA tasks with extensive experiments. Results show that this dataset has vast room for improvement for both NER and TSA tasks. With rich annotations and comprehensive benchmark results, we believe METS-CoV is a fundamental resource for building better medical social media understanding tools and facilitating computational social science research, especially on epidemiological topics. Our data, annotation guidelines, benchmark models, and source code are publicly available (\url{https://github.com/YLab-Open/METS-CoV}) to ensure reproducibility.
Peilin Zhou, Zeqiang Wang, Dading Chong, Zhijiang Guo, Yining Hua, Zichang Su, Zhiyang Teng, Jiageng Wu, Jie Yang
null
null
2,022
neurips
One Positive Label is Sufficient: Single-Positive Multi-Label Learning with Label Enhancement
null
Multi-label learning (MLL) learns from the examples each associated with multiple labels simultaneously, where the high cost of annotating all relevant labels for each training example is challenging for real-world applications. To cope with the challenge, we investigate single-positive multi-label learning (SPMLL) where each example is annotated with only one relevant label and show that one can successfully learn a theoretically grounded multi-label classifier for the problem. In this paper, a novel SPMLL method named SMILE, i.e., Single-positive MultI-label learning with Label Enhancement, is proposed. Specifically, an unbiased risk estimator is derived, which could be guaranteed to approximately converge to the optimal risk minimizer of fully supervised learning and shows that one positive label of each instance is sufficient to train the predictive model. Then, the corresponding empirical risk estimator is established via recovering the latent soft label as a label enhancement process, where the posterior density of the latent soft labels is approximate to the variational Beta density parameterized by an inference model. Experiments on benchmark datasets validate the effectiveness of the proposed method.
Ning Xu, Congyu Qiao, Jiaqi Lv, Xin Geng, Min-Ling Zhang
null
null
2,022
neurips
SGAM: Building a Virtual 3D World through Simultaneous Generation and Mapping
null
We present simultaneous generation and mapping (SGAM), a novel 3D scene generation algorithm. Our goal is to produce a realistic, globally consistent 3D world on a large scale. Achieving this goal is challenging and goes beyond the capacities of existing 3D generation or video generation approaches, which fail to scale up to create large, globally consistent 3D scene structures. Towards tackling the challenges, we take a hybrid approach that integrates generative sensor model- ing with 3D reconstruction. Our proposed approach is an autoregressive generative framework that simultaneously generates sensor data at novel viewpoints and builds a 3D map at each timestamp. Given an arbitrary camera trajectory, our method repeatedly applies this generation-and-mapping process for thousands of steps, allowing us to create a gigantic virtual world. Our model can be trained from RGB-D sequences without having access to the complete 3D scene structure. The generated scenes are readily compatible with various interactive environments and rendering engines. Experiments on CLEVER and GoogleEarth datasets demon- strates ours can generate consistent, realistic, and geometrically-plausible scenes that compare favorably to existing view synthesis methods. Our project page is available at https://yshen47.github.io/sgam.
Yuan Shen, Wei-Chiu Ma, Shenlong Wang
null
null
2,022
neurips
Adversarial Auto-Augment with Label Preservation: A Representation Learning Principle Guided Approach
null
Data augmentation is a critical contributing factor to the success of deep learning but heavily relies on prior domain knowledge which is not always available. Recent works on automatic data augmentation learn a policy to form a sequence of augmentation operations, which are still pre-defined and restricted to limited options. In this paper, we show that a prior-free autonomous data augmentation's objective can be derived from a representation learning principle that aims to preserve the minimum sufficient information of the labels. Given an example, the objective aims at creating a distant ``hard positive example'' as the augmentation, while still preserving the original label. We then propose a practical surrogate to the objective that can be optimized efficiently and integrated seamlessly into existing methods for a broad class of machine learning tasks, e.g., supervised, semi-supervised, and noisy-label learning. Unlike previous works, our method does not require training an extra generative model but instead leverages the intermediate layer representations of the end-task model for generating data augmentations. In experiments, we show that our method consistently brings non-trivial improvements to the three aforementioned learning tasks from both efficiency and final performance, either or not combined with pre-defined augmentations, e.g., on medical images when domain knowledge is unavailable and the existing augmentation techniques perform poorly. Code will be released publicly.
Kaiwen Yang, Yanchao Sun, Jiahao Su, Fengxiang He, Xinmei Tian, Furong Huang, Tianyi Zhou, Dacheng Tao
null
null
2,022
neurips
Probabilistic Missing Value Imputation for Mixed Categorical and Ordered Data
null
Many real-world datasets contain missing entries and mixed data types including categorical and ordered (e.g. continuous and ordinal) variables. Imputing the missing entries is necessary, since many data analysis pipelines require complete data, but challenging especially for mixed data. This paper proposes a probabilistic imputation method using an extended Gaussian copula model that supports both single and multiple imputation. The method models mixed categorical and ordered data using a latent Gaussian distribution. The unordered characteristics of categorical variables is explicitly modeled using the argmax operator. The method makes no assumptions on the data marginals nor does it require tuning any hyperparameters. Experimental results on synthetic and real datasets show that imputation with the extended Gaussian copula outperforms the current state-of-the-art for both categorical and ordered variables in mixed data.
Yuxuan Zhao, Alex Townsend, Madeleine Udell
null
null
2,022
neurips
Learning Causally Invariant Representations for Out-of-Distribution Generalization on Graphs
null
Despite recent success in using the invariance principle for out-of-distribution (OOD) generalization on Euclidean data (e.g., images), studies on graph data are still limited. Different from images, the complex nature of graphs poses unique challenges to adopting the invariance principle. In particular, distribution shifts on graphs can appear in a variety of forms such as attributes and structures, making it difficult to identify the invariance. Moreover, domain or environment partitions, which are often required by OOD methods on Euclidean data, could be highly expensive to obtain for graphs. To bridge this gap, we propose a new framework, called Causality Inspired Invariant Graph LeArning (CIGA), to capture the invariance of graphs for guaranteed OOD generalization under various distribution shifts. Specifically, we characterize potential distribution shifts on graphs with causal models, concluding that OOD generalization on graphs is achievable when models focus only on subgraphs containing the most information about the causes of labels. Accordingly, we propose an information-theoretic objective to extract the desired subgraphs that maximally preserve the invariant intra-class information. Learning with these subgraphs is immune to distribution shifts. Extensive experiments on 16 synthetic or real-world datasets, including a challenging setting -- DrugOOD, from AI-aided drug discovery, validate the superior OOD performance of CIGA.
Yongqiang Chen, Yonggang Zhang, Yatao Bian, Han Yang, MA Kaili, Binghui Xie, Tongliang Liu, Bo Han, James Cheng
null
null
2,022
neurips
Unsupervised Cross-Task Generalization via Retrieval Augmentation
null
Humans can perform unseen tasks by recalling relevant skills acquired previously and then generalizing them to the target tasks, even if there is no supervision at all. In this paper, we aim to improve this kind of cross-task generalization ability of massive multi-task language models, such as T0 and FLAN, in an unsupervised setting. We propose a retrieval-augmentation method named ReCross that takes a few unlabelled examples as queries to retrieve a small subset of upstream data and uses them to update the multi-task model for better generalization. ReCross is a straightforward yet effective retrieval method that combines both efficient dense retrieval and effective pair-wise reranking. Our results and analysis show that it significantly outperforms both non-retrieval methods and other baseline methods.
Bill Yuchen Lin, Kangmin Tan, Chris Miller, Beiwen Tian, Xiang Ren
null
null
2,022
neurips
TA-MoE: Topology-Aware Large Scale Mixture-of-Expert Training
null
Sparsely gated Mixture-of-Expert (MoE) has demonstrated its effectiveness in scaling up deep neural networks to an extreme scale. Despite that numerous efforts have been made to improve the performance of MoE from the model design or system optimization perspective, existing MoE dispatch patterns are still not able to fully exploit the underlying heterogeneous network environments. In this paper, we propose TA-MoE, a topology-aware routing strategy for large-scale MoE trainging, from a model-system co-design perspective, which can dynamically adjust the MoE dispatch pattern according to the network topology. Based on communication modeling, we abstract the dispatch problem into an optimization objective and obtain the approximate dispatch pattern under different topologies. On top of that, we design a topology-aware auxiliary loss, which can adaptively route the data to fit in the underlying topology without sacrificing the model accuracy. Experiments show that TA-MoE can substantially outperform its counterparts on various hardware and model configurations, with roughly 1.01x-1.61x, 1.01x-4.77x, 1.25x-1.54x improvements over the popular DeepSpeed-MoE, FastMoE and FasterMoE systems.
Chang Chen, Min Li, Zhihua Wu, Dianhai Yu, Chao Yang
null
null
2,022
neurips
Natural gradient enables fast sampling in spiking neural networks
null
For animals to navigate an uncertain world, their brains need to estimate uncertainty at the timescales of sensations and actions. Sampling-based algorithms afford a theoretically-grounded framework for probabilistic inference in neural circuits, but it remains unknown how one can implement fast sampling algorithms in biologically-plausible spiking networks. Here, we propose to leverage the population geometry, controlled by the neural code and the neural dynamics, to implement fast samplers in spiking neural networks. We first show that two classes of spiking samplers---efficient balanced spiking networks that simulate Langevin sampling, and networks with probabilistic spike rules that implement Metropolis-Hastings sampling---can be unified within a common framework. We then show that careful choice of population geometry, corresponding to the natural space of parameters, enables rapid inference of parameters drawn from strongly-correlated high-dimensional distributions in both networks. Our results suggest design principles for algorithms for sampling-based probabilistic inference in spiking neural networks, yielding potential inspiration for neuromorphic computing and testable predictions for neurobiology.
Paul Masset, Jacob Zavatone-Veth, J. Patrick Connor, Venkatesh Murthy, Cengiz Pehlevan
null
null
2,022
neurips
Non-convex online learning via algorithmic equivalence
null
We study an algorithmic equivalence technique between non-convex gradient descent and convex mirror descent. We start by looking at a harder problem of regret minimization in online non-convex optimization. We show that under certain geometric and smoothness conditions, online gradient descent applied to non-convex functions is an approximation of online mirror descent applied to convex functions under reparameterization. In continuous time, the gradient flow with this reparameterization was shown to be \emph{exactly} equivalent to continuous-time mirror descent by Amid and Warmuth, but theory for the analogous discrete time algorithms is left as an open problem. We prove an $O(T^{\frac{2}{3}})$ regret bound for non-convex online gradient descent in this setting, answering this open problem. Our analysis is based on a new and simple algorithmic equivalence method.
Udaya Ghai, Zhou Lu, Elad Hazan
null
null
2,022
neurips
Finding Naturally Occurring Physical Backdoors in Image Datasets
null
Extensive literature on backdoor poison attacks has studied attacks and defenses for backdoors using “digital trigger patterns.” In contrast, “physical backdoors” use physical objects as triggers, have only recently been identified, and are qualitatively different enough to resist most defenses targeting digital trigger backdoors. Research on physical backdoors is limited by access to large datasets containing real images of physical objects co-located with misclassification targets. Building these datasets is time- and labor-intensive.This work seeks to address the challenge of accessibility for research on physical backdoor attacks. We hypothesize that there may be naturally occurring physically co-located objects already present in popular datasets such as ImageNet. Once identified, a careful relabeling of these data can transform them into training samples for physical backdoor attacks. We propose a method to scalably identify these subsets of potential triggers in existing datasets, along with the specific classes they can poison. We call these naturally occurring trigger-class subsets natural backdoor datasets. Our techniques successfully identify natural backdoors in widely-available datasets, and produce models behaviorally equivalent to those trained on manually curated datasets. We release our code to allow the research community to create their own datasets for research on physical backdoor attacks.
Emily Wenger, Roma Bhattacharjee, Arjun Nitin Bhagoji, Josephine Passananti, Emilio Andere, Heather Zheng, Ben Zhao
null
null
2,022
neurips
To update or not to update? Neurons at equilibrium in deep models
null
Recent advances in deep learning optimization showed that, with some a-posteriori information on fully-trained models, it is possible to match the same performance by simply training a subset of their parameters. Such a discovery has a broad impact from theory to applications, driving the research towards methods to identify the minimum subset of parameters to train without look-ahead information exploitation. However, the methods proposed do not match the state-of-the-art performance, and rely on unstructured sparsely connected models.In this work we shift our focus from the single parameters to the behavior of the whole neuron, exploiting the concept of neuronal equilibrium (NEq). When a neuron is in a configuration at equilibrium (meaning that it has learned a specific input-output relationship), we can halt its update; on the contrary, when a neuron is at non-equilibrium, we let its state evolve towards an equilibrium state, updating its parameters. The proposed approach has been tested on different state-of-the-art learning strategies and tasks, validating NEq and observing that the neuronal equilibrium depends on the specific learning setup.
Andrea Bragagnolo, Enzo Tartaglione, Marco Grangetto
null
null
2,022
neurips
Beyond Time-Average Convergence: Near-Optimal Uncoupled Online Learning via Clairvoyant Multiplicative Weights Update
null
In this paper we provide a novel and simple algorithm, Clairvoyant Multiplicative Weights Updates (CMWU), for convergence to \textit{Coarse Correlated Equilibria} (CCE) in general games. CMWU effectively corresponds to the standard MWU algorithm but where all agents, when updating their mixed strategies, use the payoff profiles based on tomorrow's behavior, i.e. the agents are clairvoyant. CMWU achieves constant regret of $\ln(m)/\eta$ in all normal-form games with m actions and fixed step-sizes $\eta$. Although CMWU encodes in its definition a fixed point computation, which in principle could result in dynamics that are neither computationally efficient nor uncoupled, we show that both of these issues can be largely circumvented. Specifically, as long as the step-size $\eta$ is upper bounded by $\frac{1}{(n-1)V}$, where $n$ is the number of agents and $[0,V]$ is the payoff range, then the CMWU updates can be computed linearly fast via a contraction map. This implementation results in an uncoupled online learning dynamic that admits a $O(\log T)$-sparse sub-sequence where each agent experiences at most $O(nV\log m)$ regret. This implies that the CMWU dynamics converge with rate $O(nV \log m \log T / T)$ to a CCE and improves on the current state-of-the-art convergence rate.
Georgios Piliouras, Ryann Sim, Stratis Skoulakis
null
null
2,022
neurips
Unsupervised Representation Learning from Pre-trained Diffusion Probabilistic Models
null
Diffusion Probabilistic Models (DPMs) have shown a powerful capacity of generating high-quality image samples. Recently, diffusion autoencoders (Diff-AE) have been proposed to explore DPMs for representation learning via autoencoding. Their key idea is to jointly train an encoder for discovering meaningful representations from images and a conditional DPM as the decoder for reconstructing images. Considering that training DPMs from scratch will take a long time and there have existed numerous pre-trained DPMs, we propose \textbf{P}re-trained \textbf{D}PM \textbf{A}uto\textbf{E}ncoding (\textbf{PDAE}), a general method to adapt existing pre-trained DPMs to the decoders for image reconstruction, with better training efficiency and performance than Diff-AE. Specifically, we find that the reason that pre-trained DPMs fail to reconstruct an image from its latent variables is due to the information loss of forward process, which causes a gap between their predicted posterior mean and the true one. From this perspective, the classifier-guided sampling method can be explained as computing an extra mean shift to fill the gap, reconstructing the lost class information in samples. These imply that the gap corresponds to the lost information of the image, and we can reconstruct the image by filling the gap. Drawing inspiration from this, we employ a trainable model to predict a mean shift according to encoded representation and train it to fill as much gap as possible, in this way, the encoder is forced to learn as much information as possible from images to help the filling. By reusing a part of network of pre-trained DPMs and redesigning the weighting scheme of diffusion loss, PDAE can learn meaningful representations from images efficiently. Extensive experiments demonstrate the effectiveness, efficiency and flexibility of PDAE.
Zijian Zhang, Zhou Zhao, Zhijie Lin
null
null
2,022
neurips
FiLM-Ensemble: Probabilistic Deep Learning via Feature-wise Linear Modulation
null
The ability to estimate epistemic uncertainty is often crucial when deploying machine learning in the real world, but modern methods often produce overconfident, uncalibrated uncertainty predictions. A common approach to quantify epistemic uncertainty, usable across a wide class of prediction models, is to train a model ensemble. In a naive implementation, the ensemble approach has high computational cost and high memory demand. This challenges in particular modern deep learning, where even a single deep network is already demanding in terms of compute and memory, and has given rise to a number of attempts to emulate the model ensemble without actually instantiating separate ensemble members. We introduce FiLM-Ensemble, a deep, implicit ensemble method based on the concept of Feature-wise Linear Modulation (FiLM). That technique was originally developed for multi-task learning, with the aim of decoupling different tasks. We show that the idea can be extended to uncertainty quantification: by modulating the network activations of a single deep network with FiLM, one obtains a model ensemble with high diversity, and consequently well-calibrated estimates of epistemic uncertainty, with low computational overhead in comparison. Empirically, FiLM-Ensemble outperforms other implicit ensemble methods, and it comes very close to the upper bound of an explicit ensemble of networks (sometimes even beating it), at a fraction of the memory cost.
Mehmet Ozgur Turkoglu, Alexander Becker, Hüseyin Anil Gündüz, Mina Rezaei, Bernd Bischl, Rodrigo Caye Daudt, Stefano D'Aronco, Jan Wegner, Konrad Schindler
null
null
2,022
neurips
Revisiting Neural Scaling Laws in Language and Vision
null
The remarkable progress in deep learning in recent years is largely driven by improvements in scale, where bigger models are trained on larger datasets for longer schedules. To predict the benefit of scale empirically, we argue for a more rigorous methodology based on the extrapolation loss, instead of reporting the best-fitting (interpolating) parameters. We then present a recipe for estimating scaling law parameters reliably from learning curves. We demonstrate that it extrapolates more accurately than previous methods in a wide range of architecture families across several domains, including image classification, neural machine translation (NMT) and language modeling, in addition to tasks from the BIG-Bench evaluation benchmark. Finally, we release a benchmark dataset comprising of 90 evaluation tasks to facilitate research in this domain.
Ibrahim M. Alabdulmohsin, Behnam Neyshabur, Xiaohua Zhai
null
null
2,022
neurips
Trading off Utility, Informativeness, and Complexity in Emergent Communication
null
Emergent communication (EC) research often focuses on optimizing task-specific utility as a driver for communication. However, there is increasing evidence that human languages are shaped by task-general communicative constraints and evolve under pressure to optimize the Information Bottleneck (IB) tradeoff between the informativeness and complexity of the lexicon. Here, we integrate these two approaches by trading off utility, informativeness, and complexity in EC. To this end, we propose Vector-Quantized Variational Information Bottleneck (VQ-VIB), a method for training neural agents to encode inputs into discrete signals embedded in a continuous space. We evaluate our approach in multi-agent reinforcement learning settings and in color reference games and show that: (1) VQ-VIB agents can continuously adapt to changing communicative needs and, in the color domain, align with human languages; (2) the emergent VQ-VIB embedding spaces are semantically meaningful and perceptually grounded; and (3) encouraging informativeness leads to faster convergence rates and improved utility, both in VQ-VIB and in prior neural architectures for symbolic EC, with VQ-VIB achieving higher utility for any given complexity. This work offers a new framework for EC that is grounded in information-theoretic principles that are believed to characterize human language evolution and that may facilitate human-agent interaction.
Mycal Tucker, Roger Levy, Julie A. Shah, Noga Zaslavsky
null
null
2,022
neurips
A general approximation lower bound in $L^p$ norm, with applications to feed-forward neural networks
null
We study the fundamental limits to the expressive power of neural networks. Given two sets $F$, $G$ of real-valued functions, we first prove a general lower bound on how well functions in $F$ can be approximated in $L^p(\mu)$ norm by functions in $G$, for any $p \geq 1$ and any probability measure $\mu$. The lower bound depends on the packing number of $F$, the range of $F$, and the fat-shattering dimension of $G$. We then instantiate this bound to the case where $G$ corresponds to a piecewise-polynomial feedforward neural network, and describe in details the application to two sets $F$: Hölder balls and multivariate monotonic functions. Beside matching (known or new) upper bounds up to log factors, our lower bounds shed some light on the similarities or differences between approximation in $L^p$ norm or in sup norm, solving an open question by DeVore et al. (2021). Our proof strategy differs from the sup norm case and uses a key probability result of Mendelson (2002).
El Mehdi Achour, Armand Foucault, Sébastien Gerchinovitz, François Malgouyres
null
null
2,022
neurips
Meta-Reward-Net: Implicitly Differentiable Reward Learning for Preference-based Reinforcement Learning
null
Setting up a well-designed reward function has been challenging for many reinforcement learning applications. Preference-based reinforcement learning (PbRL) provides a new framework that avoids reward engineering by leveraging human preferences (i.e., preferring apples over oranges) as the reward signal. Therefore, improving the efficacy of data usage for preference data becomes critical. In this work, we propose Meta-Reward-Net (MRN), a data-efficient PbRL framework that incorporates bi-level optimization for both reward and policy learning. The key idea of MRN is to adopt the performance of the Q-function as the learning target. Based on this, MRN learns the Q-function and the policy in the inner level while updating the reward function adaptively according to the performance of the Q-function on the preference data in the outer level. Our experiments on robotic simulated manipulation tasks and locomotion tasks demonstrate that MRN outperforms prior methods in the case of few preference labels and significantly improves data efficiency, achieving state-of-the-art in preference-based RL. Ablation studies further demonstrate that MRN learns a more accurate Q-function compared to prior work and shows obvious advantages when only a small amount of human feedback is available. The source code and videos of this project are released at https://sites.google.com/view/meta-reward-net.
Runze Liu, Fengshuo Bai, Yali Du, Yaodong Yang
null
null
2,022
neurips
One-shot Neural Backdoor Erasing via Adversarial Weight Masking
null
Recent studies show that despite achieving high accuracy on a number of real-world applications, deep neural networks (DNNs) can be backdoored: by injecting triggered data samples into the training dataset, the adversary can mislead the trained model into classifying any test data to the target class as long as the trigger pattern is presented. To nullify such backdoor threats, various methods have been proposed. Particularly, a line of research aims to purify the potentially compromised model. However, one major limitation of this line of work is the requirement to access sufficient original training data: the purifying performance is a lot worse when the available training data is limited. In this work, we propose Adversarial Weight Masking (AWM), a novel method capable of erasing the neural backdoors even in the one-shot setting. The key idea behind our method is to formulate this into a min-max optimization problem: first, adversarially recover the non-robust perturbation patterns and then (soft) mask the network weights that are sensitive to the recovered patterns. Comprehensive evaluations of several benchmark datasets suggest that AWM can largely improve the purifying effects over other state-of-the-art methods on various available training dataset sizes.
Shuwen Chai, Jinghui Chen
null
null
2,022
neurips
Active Learning Through a Covering Lens
null
Deep active learning aims to reduce the annotation cost for the training of deep models, which is notoriously data-hungry. Until recently, deep active learning methods were ineffectual in the low-budget regime, where only a small number of examples are annotated. The situation has been alleviated by recent advances in representation and self-supervised learning, which impart the geometry of the data representation with rich information about the points. Taking advantage of this progress, we study the problem of subset selection for annotation through a “covering” lens, proposing ProbCover – a new active learning algorithm for the low budget regime, which seeks to maximize Probability Coverage. We then describe a dual way to view the proposed formulation, from which one can derive strategies suitable for the high budget regime of active learning, related to existing methods like Coreset. We conclude with extensive experiments, evaluating ProbCover in the low-budget regime. We show that our principled active learning strategy improves the state-of-the-art in the low-budget regime in several image recognition benchmarks. This method is especially beneficial in the semi-supervised setting, allowing state-of-the-art semi-supervised methods to match the performance of fully supervised methods, while using much fewer labels nonetheless. Code is available at https://github.com/avihu111/TypiClust.
Ofer Yehuda, Avihu Dekel, Guy Hacohen, Daphna Weinshall
null
null
2,022
neurips
Training Uncertainty-Aware Classifiers with Conformalized Deep Learning
null
Deep neural networks are powerful tools to detect hidden patterns in data and leverage them to make predictions, but they are not designed to understand uncertainty and estimate reliable probabilities. In particular, they tend to be overconfident. We begin to address this problem in the context of multi-class classification by developing a novel training algorithm producing models with more dependable uncertainty estimates, without sacrificing predictive power. The idea is to mitigate overconfidence by minimizing a loss function, inspired by advances in conformal inference, that quantifies model uncertainty by carefully leveraging hold-out data. Experiments with synthetic and real data demonstrate this method can lead to smaller conformal prediction sets with higher conditional coverage, after exact calibration with hold-out data, compared to state-of-the-art alternatives.
Bat-Sheva Einbinder, Yaniv Romano, Matteo Sesia, Yanfei Zhou
null
null
2,022
neurips
A Combinatorial Perspective on the Optimization of Shallow ReLU Networks
null
The NP-hard problem of optimizing a shallow ReLU network can be characterized as a combinatorial search over each training example’s activation pattern followed by a constrained convex problem given a fixed set of activation patterns. We explore the implications of this combinatorial aspect of ReLU optimization in this work. We show that it can be naturally modeled via a geometric and combinatoric object known as a zonotope with its vertex set isomorphic to the set of feasible activation patterns. This assists in analysis and provides a foundation for further research. We demonstrate its usefulness when we explore the sensitivity of the optimal loss to perturbations of the training data. Later we discuss methods of zonotope vertex selection and its relevance to optimization. Overparameterization assists in training by making a randomly chosen vertex more likely to contain a good solution. We then introduce a novel polynomial-time vertex selection procedure that provably picks a vertex containing the global optimum using only double the minimum number of parameters required to fit the data. We further introduce a local greedy search heuristic over zonotope vertices and demonstrate that it outperforms gradient descent on underparameterized problems.
Michael S Matena, Colin A. Raffel
null
null
2,022
neurips
Efficient Phi-Regret Minimization in Extensive-Form Games via Online Mirror Descent
null
A conceptually appealing approach for learning Extensive-Form Games (EFGs) is to convert them to Normal-Form Games (NFGs). This approach enables us to directly translate state-of-the-art techniques and analyses in NFGs to learning EFGs, but typically suffers from computational intractability due to the exponential blow-up of the game size introduced by the conversion. In this paper, we address this problem in natural and important setups for the \emph{$\Phi$-Hedge} algorithm---A generic algorithm capable of learning a large class of equilibria for NFGs. We show that $\Phi$-Hedge can be directly used to learn Nash Equilibria (zero-sum settings), Normal-Form Coarse Correlated Equilibria (NFCCE), and Extensive-Form Correlated Equilibria (EFCE) in EFGs. We prove that, in those settings, the \emph{$\Phi$-Hedge} algorithms are equivalent to standard Online Mirror Descent (OMD) algorithms for EFGs with suitable dilated regularizers, and run in polynomial time. This new connection further allows us to design and analyze a new class of OMD algorithms based on modifying its log-partition function. In particular, we design an improved algorithm with balancing techniques that achieves a sharp $\widetilde{\mathcal{O}}(\sqrt{XAT})$ EFCE-regret under bandit-feedback in an EFG with $X$ information sets, $A$ actions, and $T$ episodes. To our best knowledge, this is the first such rate and matches the information-theoretic lower bound.
Yu Bai, Chi Jin, Song Mei, Ziang Song, Tiancheng Yu
null
null
2,022
neurips