title
stringlengths 5
246
| categories
stringlengths 5
94
⌀ | abstract
stringlengths 54
5.03k
| authors
stringlengths 0
6.72k
| doi
stringlengths 12
54
⌀ | id
stringlengths 6
10
⌀ | year
float64 2.02k
2.02k
⌀ | venue
stringclasses 13
values |
---|---|---|---|---|---|---|---|
Few-shot Image Generation via Adaptation-Aware Kernel Modulation
| null |
Few-shot image generation (FSIG) aims to learn to generate new and diverse samples given an extremely limited number of samples from a domain, e.g., 10 training samples. Recent work has addressed the problem using transfer learning approach, leveraging a GAN pretrained on a large-scale source domain dataset and adapting that model to the target domain based on very limited target domain samples. Central to recent FSIG methods are knowledge preserving criteria, which aim to select a subset of source model's knowledge to be preserved into the adapted model. However, a major limitation of existing methods is that their knowledge preserving criteria consider only source domain/source task, and they fail to consider target domain/adaptation task in selecting source model's knowledge, casting doubt on their suitability for setups of different proximity between source and target domain. Our work makes two contributions. As our first contribution, we re-visit recent FSIG works and their experiments. Our important finding is that, under setups which assumption of close proximity between source and target domains is relaxed, existing state-of-the-art (SOTA) methods which consider only source domain/source task in knowledge preserving perform no better than a baseline fine-tuning method. To address the limitation of existing methods, as our second contribution, we propose Adaptation-Aware kernel Modulation (AdAM) to address general FSIG of different source-target domain proximity. Extensive experimental results show that the proposed method consistently achieves SOTA performance across source/target domains of different proximity, including challenging setups when source and target domains are more apart. Project Page: https://yunqing-me.github.io/AdAM/
|
Yunqing Zhao, Keshigeyan Chandrasegaran, Milad Abdollahzadeh, Ngai-Man (Man) Cheung
| null | null | 2,022 |
neurips
|
Improving Variational Autoencoders with Density Gap-based Regularization
| null |
Variational autoencoders (VAEs) are one of the most powerful unsupervised learning frameworks in NLP for latent representation learning and latent-directed generation. The classic optimization goal of VAEs is to maximize the Evidence Lower Bound (ELBo), which consists of a conditional likelihood for generation and a negative Kullback-Leibler (KL) divergence for regularization. In practice, optimizing ELBo often leads the posterior distribution of all samples converging to the same degenerated local optimum, namely posterior collapse or KL vanishing. There are effective ways proposed to prevent posterior collapse in VAEs, but we observe that they in essence make trade-offs between posterior collapse and the hole problem, i.e., the mismatch between the aggregated posterior distribution and the prior distribution. To this end, we introduce new training objectives to tackle both problems through a novel regularization based on the probabilistic density gap between the aggregated posterior distribution and the prior distribution. Through experiments on language modeling, latent space visualization, and interpolation, we show that our proposed method can solve both problems effectively and thus outperforms the existing methods in latent-directed generation. To the best of our knowledge, we are the first to jointly solve the hole problem and posterior collapse.
|
Jianfei Zhang, Jun Bai, Chenghua Lin, Yanmeng Wang, Wenge Rong
| null | null | 2,022 |
neurips
|
Rethinking Lipschitz Neural Networks and Certified Robustness: A Boolean Function Perspective
| null |
Designing neural networks with bounded Lipschitz constant is a promising way to obtain certifiably robust classifiers against adversarial examples. However, the relevant progress for the important $\ell_\infty$ perturbation setting is rather limited, and a principled understanding of how to design expressive $\ell_\infty$ Lipschitz networks is still lacking. In this paper, we bridge the gap by studying certified $\ell_\infty$ robustness from a novel perspective of representing Boolean functions. We derive two fundamental impossibility results that hold for any standard Lipschitz network: one for robust classification on finite datasets, and the other for Lipschitz function approximation. These results identify that networks built upon norm-bounded affine layers and Lipschitz activations intrinsically lose expressive power even in the two-dimensional case, and shed light on how recently proposed Lipschitz networks (e.g., GroupSort and $\ell_\infty$-distance nets) bypass these impossibilities by leveraging order statistic functions. Finally, based on these insights, we develop a unified Lipschitz network that generalizes prior works, and design a practical version that can be efficiently trained (making certified robust training free). Extensive experiments show that our approach is scalable, efficient, and consistently yields better certified robustness across multiple datasets and perturbation radii than prior Lipschitz networks.
|
Bohang Zhang, Du Jiang, Di He, Liwei Wang
| null | null | 2,022 |
neurips
|
RISE: Robust Individualized Decision Learning with Sensitive Variables
| null |
This paper introduces RISE, a robust individualized decision learning framework with sensitive variables, where sensitive variables are collectible data and important to the intervention decision, but their inclusion in decision making is prohibited due to reasons such as delayed availability or fairness concerns. A naive baseline is to ignore these sensitive variables in learning decision rules, leading to significant uncertainty and bias. To address this, we propose a decision learning framework to incorporate sensitive variables during offline training but not include them in the input of the learned decision rule during model deployment. Specifically, from a causal perspective, the proposed framework intends to improve the worst-case outcomes of individuals caused by sensitive variables that are unavailable at the time of decision. Unlike most existing literature that uses mean-optimal objectives, we propose a robust learning framework by finding a newly defined quantile- or infimum-optimal decision rule. The reliable performance of the proposed method is demonstrated through synthetic experiments and three real-world applications.
|
Xiaoqing Tan, Zhengling Qi, Christopher Seymour, Lu Tang
| null | null | 2,022 |
neurips
|
Understanding Deep Contrastive Learning via Coordinate-wise Optimization
| null |
We show that Contrastive Learning (CL) under a broad family of loss functions (including InfoNCE) has a unified formulation of coordinate-wise optimization on the network parameter $\vtheta$ and pairwise importance $\alpha$, where the \emph{max player} $\vtheta$ learns representation for contrastiveness, and the \emph{min player} $\alpha$ puts more weights on pairs of distinct samples that share similar representations. The resulting formulation, called \boldmethod{}, unifies not only various existing contrastive losses, which differ by how sample-pair importance $\alpha$ is constructed, but also is able to extrapolate to give novel contrastive losses beyond popular ones, opening a new avenue of contrastive loss design. These novel losses yield comparable (or better) performance on CIFAR10, STL-10 and CIFAR-100 than classic InfoNCE. Furthermore, we also analyze the max player in detail: we prove that with fixed $\alpha$, max player is equivalent to Principal Component Analysis (PCA) for deep linear network, and almost all local minima are global and rank-1, recovering optimal PCA solutions. Finally, we extend our analysis on max player to 2-layer ReLU networks, showing that its fixed points can have higher ranks. Codes are available in https://github.com/facebookresearch/luckmatters/tree/main/ssl/real-dataset.
|
Yuandong Tian
| null | null | 2,022 |
neurips
|
Bayesian Clustering of Neural Spiking Activity Using a Mixture of Dynamic Poisson Factor Analyzers
| null |
Modern neural recording techniques allow neuroscientists to observe the spiking activity of many neurons simultaneously. Although previous work has illustrated how activity within and between known populations of neurons can be summarized by low-dimensional latent vectors, in many cases what determines a unique population may be unclear. Neurons differ in their anatomical location, but also, in their cell types and response properties. Moreover, multiple distinct populations may not be well described by a single low-dimensional, linear representation.To tackle these challenges, we develop a clustering method based on a mixture of dynamic Poisson factor analyzers (DPFA) model, with the number of clusters treated as an unknown parameter. To do the analysis of DPFA model, we propose a novel Markov chain Monte Carlo (MCMC) algorithm to efficiently sample its posterior distribution. Validating our proposed MCMC algorithm with simulations, we find that it can accurately recover the true clustering and latent states and is insensitive to the initial cluster assignments. We then apply the proposed mixture of DPFA model to multi-region experimental recordings, where we find that the proposed method can identify novel, reliable clusters of neurons based on their activity, and may, thus, be a useful tool for neural data analysis.
|
Ganchao Wei, Ian H Stevenson, Xiaojing Wang
| null | null | 2,022 |
neurips
|
Learning to Follow Instructions in Text-Based Games
| null |
Text-based games present a unique class of sequential decision making problem in which agents interact with a partially observable, simulated environment via actions and observations conveyed through natural language. Such observations typically include instructions that, in a reinforcement learning (RL) setting, can directly or indirectly guide a player towards completing reward-worthy tasks. In this work, we study the ability of RL agents to follow such instructions. We conduct experiments that show that the performance of state-of-the-art text-based game agents is largely unaffected by the presence or absence of such instructions, and that these agents are typically unable to execute tasks to completion. To further study and address the task of instruction following, we equip RL agents with an internal structured representation of natural language instructions in the form of Linear Temporal Logic (LTL), a formal language that is increasingly used for temporally extended reward specification in RL. Our framework both supports and highlights the benefit of understanding the temporal semantics of instructions and in measuring progress towards achievement of such a temporally extended behaviour. Experiments with 500+ games in TextWorld demonstrate the superior performance of our approach.
|
Mathieu Tuli, Andrew Li, Pashootan Vaezipoor, Toryn Klassen, Scott Sanner, Sheila McIlraith
| null | null | 2,022 |
neurips
|
Beyond neural scaling laws: beating power law scaling via data pruning
| null |
Widely observed neural scaling laws, in which error falls off as a power of the training set size, model size, or both, have driven substantial performance improvements in deep learning. However, these improvements through scaling alone require considerable costs in compute and energy. Here we focus on the scaling of error with dataset size and show how in theory we can break beyond power law scaling and potentially even reduce it to exponential scaling instead if we have access to a high-quality data pruning metric that ranks the order in which training examples should be discarded to achieve any pruned dataset size. We then test this improved scaling prediction with pruned dataset size empirically, and indeed observe better than power law scaling in practice on ResNets trained on CIFAR-10, SVHN, and ImageNet. Next, given the importance of finding high-quality pruning metrics, we perform the first large-scale benchmarking study of ten different data pruning metrics on ImageNet. We find most existing high performing metrics scale poorly to ImageNet, while the best are computationally intensive and require labels for every image. We therefore developed a new simple, cheap and scalable self-supervised pruning metric that demonstrates comparable performance to the best supervised metrics. Overall, our work suggests that the discovery of good data-pruning metrics may provide a viable path forward to substantially improved neural scaling laws, thereby reducing the resource costs of modern deep learning.
|
Ben Sorscher, Robert Geirhos, Shashank Shekhar, Surya Ganguli, Ari Morcos
| null | null | 2,022 |
neurips
|
Surprising Instabilities in Training Deep Networks and a Theoretical Analysis
| null |
We empirically demonstrate numerical instabilities in training standard deep networks with SGD. Specifically, we show numerical error (on the order of the smallest floating point bit) induced from floating point arithmetic in training deep nets can be amplified significantly and result in significant test accuracy variance, comparable to the test accuracy variance due to stochasticity in SGD. We show how this is likely traced to instabilities of the optimization dynamics that are localized over iterations and regions of the weight tensor space. We do this by presenting a theoretical framework using numerical analysis of partial differential equations (PDE), and analyzing the gradient descent PDE of a one-layer convolutional neural network, which is sufficient to illustrate these instabilities. We show that it is stable only under certain conditions on the learning rate and weight decay. We reproduce the localized instabilities in the PDE for the one-layer network, which arise when the conditions are violated.
|
Yuxin Sun, DONG LAO, Ganesh Sundaramoorthi, Anthony Yezzi
| null | null | 2,022 |
neurips
|
Finite-Time Analysis of Adaptive Temporal Difference Learning with Deep Neural Networks
| null |
Temporal difference (TD) learning with function approximations (linear functions or neural networks) has achieved remarkable empirical success, giving impetus to the development of finite-time analysis. As an accelerated version of TD, the adaptive TD has been proposed and proved to enjoy finite-time convergence under the linear function approximation. Existing numerical results have demonstrated the superiority of adaptive algorithms to vanilla ones. Nevertheless, the performance guarantee of adaptive TD with neural network approximation remains widely unknown. This paper establishes the finite-time analysis for the adaptive TD with multi-layer ReLU network approximation whose samples are generated from a Markov decision process. Our established theory shows that if the width of the deep neural network is large enough, the adaptive TD using neural network approximation can find the (optimal) value function with high probabilities under the same iteration complexity as TD in general cases. Furthermore, we show that the adaptive TD using neural network approximation, with the same width and searching area, can achieve theoretical acceleration when the stochastic semi-gradients decay fast.
|
Tao Sun, Dongsheng Li, Bao Wang
| null | null | 2,022 |
neurips
|
Neural Estimation of Submodular Functions with Applications to Differentiable Subset Selection
| null |
Submodular functions and variants, through their ability to characterize diversity and coverage, have emerged as a key tool for data selection and summarization. Many recent approaches to learn submodular functions suffer from limited expressiveness. In this work, we propose FlexSubNet, a family of flexible neural models for both monotone and non-monotone submodular functions. To fit a latent submodular function from (set, value) observations, our method applies a concave function on modular functions in a recursive manner. We do not draw the concave function from a restricted family, but rather learn from data using a highly expressive neural network that implements a differentiable quadrature procedure. Such an expressive neural model for concave functions may be of independent interest. Next, we extend this setup to provide a novel characterization of monotone $\alpha$-submodular functions, a recently introduced notion of approximate submodular functions. We then use this characterization to design a novel neural model for such functions. Finally, we consider learning submodular set functions under distant supervision in the form of (perimeter, high-value-subset) pairs. This yields a novel subset selection method based on an order-invariant, yet greedy sampler built around the above neural set functions. Our experiments on synthetic and real data show that FlexSubNet outperforms several baselines.
|
Abir De, Soumen Chakrabarti
| null | null | 2,022 |
neurips
|
Maximum Class Separation as Inductive Bias in One Matrix
| null |
Maximizing the separation between classes constitutes a well-known inductive bias in machine learning and a pillar of many traditional algorithms. By default, deep networks are not equipped with this inductive bias and therefore many alternative solutions have been proposed through differential optimization. Current approaches tend to optimize classification and separation jointly: aligning inputs with class vectors and separating class vectors angularly. This paper proposes a simple alternative: encoding maximum separation as an inductive bias in the network by adding one fixed matrix multiplication before computing the softmax activations. The main observation behind our approach is that separation does not require optimization but can be solved in closed-form prior to training and plugged into a network. We outline a recursive approach to obtain the matrix consisting of maximally separable vectors for any number of classes, which can be added with negligible engineering effort and computational overhead. Despite its simple nature, this one matrix multiplication provides real impact. We show that our proposal directly boosts classification, long-tailed recognition, out-of-distribution detection, and open-set recognition, from CIFAR to ImageNet. We find empirically that maximum separation works best as a fixed bias; making the matrix learnable adds nothing to the performance. The closed-form implementation and code to reproduce the experiments are available on github.
|
Tejaswi Kasarla, Gertjan Burghouts, Max van Spengler, Elise van der Pol, Rita Cucchiara, Pascal Mettes
| null | null | 2,022 |
neurips
|
WaveBound: Dynamic Error Bounds for Stable Time Series Forecasting
| null |
Time series forecasting has become a critical task due to its high practicality in real-world applications such as traffic, energy consumption, economics and finance, and disease analysis. Recent deep-learning-based approaches have shown remarkable success in time series forecasting. Nonetheless, due to the dynamics of time series data, deep networks still suffer from unstable training and overfitting. Inconsistent patterns appearing in real-world data lead the model to be biased to a particular pattern, thus limiting the generalization. In this work, we introduce the dynamic error bounds on training loss to address the overfitting issue in time series forecasting. Consequently, we propose a regularization method called WaveBound which estimates the adequate error bounds of training loss for each time step and feature at each iteration. By allowing the model to focus less on unpredictable data, WaveBound stabilizes the training process, thus significantly improving generalization. With the extensive experiments, we show that WaveBound consistently improves upon the existing models in large margins, including the state-of-the-art model.
|
Youngin Cho, Daejin Kim, DONGMIN KIM, MOHAMMAD AZAM KHAN, Jaegul Choo
| null | null | 2,022 |
neurips
|
Benign Underfitting of Stochastic Gradient Descent
| null |
We study to what extent may stochastic gradient descent (SGD) be understood as a ``conventional'' learning rule that achieves generalization performance by obtaining a good fit to training data. We consider the fundamental stochastic convex optimization framework, where (one pass, $\textit{without}$-replacement) SGD is classically known to minimize the population risk at rate $O(1/\sqrt n)$, and prove that, surprisingly, there exist problem instances where the SGD solution exhibits both empirical risk and generalization gap of $\Omega(1)$. Consequently, it turns out that SGD is not algorithmically stable in $\textit{any}$ sense, and its generalization ability cannot be explained by uniform convergence or any other currently known generalization bound technique for that matter (other than that of its classical analysis). We then continue to analyze the closely related $\textit{with}$-replacement SGD, for which we show that an analogous phenomenon does not occur and prove that its population risk does in fact converge at the optimal rate. Finally, we interpret our main results in the context of without-replacement SGD for finite-sum convex optimization problems, and derive upper and lower bounds for the multi-epoch regime that significantly improve upon previously known results.
|
Tomer Koren, Roi Livni, Yishay Mansour, Uri Sherman
| null | null | 2,022 |
neurips
|
Mean Estimation in High-Dimensional Binary Markov Gaussian Mixture Models
| null |
We consider a high-dimensional mean estimation problem over a binary hidden Markov model, which illuminates the interplay between memory in data, sample size, dimension, and signal strength in statistical inference. In this model, an estimator observes $n$ samples of a $d$-dimensional parameter vector $\theta_{*}\in\mathbb{R}^{d}$, multiplied by a random sign $ S_i $ ($1\le i\le n$), and corrupted by isotropic standard Gaussian noise. The sequence of signs $\{S_{i}\}_{i\in[n]}\in\{-1,1\}^{n}$ is drawn from a stationary homogeneous Markov chain with flip probability $\delta\in[0,1/2]$. As $\delta$ varies, this model smoothly interpolates two well-studied models: the Gaussian Location Model for which $\delta=0$ and the Gaussian Mixture Model for which $\delta=1/2$. Assuming that the estimator knows $\delta$, we establish a nearly minimax optimal (up to logarithmic factors) estimation error rate, as a function of $\|\theta_{*}\|,\delta,d,n$. We then provide an upper bound to the case of estimating $\delta$, assuming a (possibly inaccurate) knowledge of $\theta_{*}$. The bound is proved to be tight when $\theta_{*}$ is an accurately known constant. These results are then combined to an algorithm which estimates $\theta_{*}$ with $\delta$ unknown a priori, and theoretical guarantees on its error are stated.
|
Yihan Zhang, Nir Weinberger
| null | null | 2,022 |
neurips
|
Tight Lower Bounds on Worst-Case Guarantees for Zero-Shot Learning with Attributes
| null |
We develop a rigorous mathematical analysis of zero-shot learning with attributes. In this setting, the goal is to label novel classes with no training data, only detectors for attributes and a description of how those attributes are correlated with the target classes, called the class-attribute matrix. We develop the first non-trivial lower bound on the worst-case error of the best map from attributes to classes for this setting, even with perfect attribute detectors. The lower bound characterizes the theoretical intrinsic difficulty of the zero-shot problem based on the available information---the class-attribute matrix---and the bound is practically computable from it. Our lower bound is tight, as we show that we can always find a randomized map from attributes to classes whose expected error is upper bounded by the value of the lower bound. We show that our analysis can be predictive of how standard zero-shot methods behave in practice, including which classes will likely be confused with others.
|
Alessio Mazzetto, Cristina Menghini, Andrew Yuan, Eli Upfal, Stephen Bach
| null | null | 2,022 |
neurips
|
A Geometric Perspective on Variational Autoencoders
| null |
This paper introduces a new interpretation of the Variational Autoencoder framework by taking a fully geometric point of view. We argue that vanilla VAE models unveil naturally a Riemannian structure in their latent space and that taking into consideration those geometrical aspects can lead to better interpolations and an improved generation procedure. This new proposed sampling method consists in sampling from the uniform distribution deriving intrinsically from the learned Riemannian latent space and we show that using this scheme can make a vanilla VAE competitive and even better than more advanced versions on several benchmark datasets. Since generative models are known to be sensitive to the number of training samples we also stress the method's robustness in the low data regime.
|
Clément Chadebec, Stephanie Allassonniere
| null | null | 2,022 |
neurips
|
Effective Adaptation in Multi-Task Co-Training for Unified Autonomous Driving
| null |
Aiming towards a holistic understanding of multiple downstream tasks simultaneously, there is a need for extracting features with better transferability. Though many latest self-supervised pre-training methods have achieved impressive performance on various vision tasks under the prevailing pretrain-finetune paradigm, their generalization capacity to multi-task learning scenarios is yet to be explored. In this paper, we extensively investigate the transfer performance of various types of self-supervised methods, e.g., MoCo and SimCLR, on three downstream tasks, including semantic segmentation, drivable area segmentation, and traffic object detection, on the large-scale driving dataset BDD100K. We surprisingly find that their performances are sub-optimal or even lag far behind the single-task baseline, which may be due to the distinctions of training objectives and architectural design lied in the pretrain-finetune paradigm. To overcome this dilemma as well as avoid redesigning the resource-intensive pre-training stage, we propose a simple yet effective pretrain-adapt-finetune paradigm for general multi-task training, where the off-the-shelf pretrained models can be effectively adapted without increasing the training overhead. During the adapt stage, we utilize learnable multi-scale adapters to dynamically adjust the pretrained model weights supervised by multi-task objectives while leaving the pretrained knowledge untouched. Furthermore, we regard the vision-language pre-training model CLIP as a strong complement to the pretrain-adapt-finetune paradigm and propose a novel adapter named LV-Adapter, which incorporates language priors in the multi-task model via task-specific prompting and alignment between visual and textual features. Our experiments demonstrate that the adapt stage significantly improves the overall performance of those off-the-shelf pretrained models and the contextual features generated by LV-Adapter are of general benefits for downstream tasks.
|
Xiwen Liang, Yangxin Wu, Jianhua Han, Hang Xu, Chunjing XU, Xiaodan Liang
| null | null | 2,022 |
neurips
|
Robust Imitation of a Few Demonstrations with a Backwards Model
| null |
Behavior cloning of expert demonstrations can speed up learning optimal policies in a more sample-efficient way over reinforcement learning. However, the policy cannot extrapolate well to unseen states outside of the demonstration data, creating covariate shift (agent drifting away from demonstrations) and compounding errors. In this work, we tackle this issue by extending the region of attraction around the demonstrations so that the agent can learn how to get back onto the demonstrated trajectories if it veers off-course. We train a generative backwards dynamics model and generate short imagined trajectories from states in the demonstrations. By imitating both demonstrations and these model rollouts, the agent learns the demonstrated paths and how to get back onto these paths. With optimal or near-optimal demonstrations, the learned policy will be both optimal and robust to deviations, with a wider region of attraction. On continuous control domains, we evaluate the robustness when starting from different initial states unseen in the demonstration data. While both our method and other imitation learning baselines can successfully solve the tasks for initial states in the training distribution, our method exhibits considerably more robustness to different initial states.
|
Jung Yeon Park, Lawson Wong
| null | null | 2,022 |
neurips
|
Isometric 3D Adversarial Examples in the Physical World
| null |
Recently, several attempts have demonstrated that 3D deep learning models are as vulnerable to adversarial example attacks as 2D models. However, these methods are still far from stealthy and suffer from severe performance degradation in the physical world. Although 3D data is highly structured, it is difficult to bound the perturbations with simple metrics in the Euclidean space. In this paper, we propose a novel $\epsilon$-isometric ($\epsilon$-ISO) attack method to generate natural and robust 3D adversarial examples in the physical world by considering the geometric properties of 3D objects and the invariance to physical transformations. For naturalness, we constrain the adversarial example and the original one to be $\epsilon$-isometric by adopting the Gaussian curvature as the surrogate metric under a theoretical analysis. For robustness under physical transformations, we propose a maxima over transformation (MaxOT) method to actively search for the most difficult transformations rather than random ones to make the generated adversarial example more robust in the physical world. Extensive experiments on typical point cloud recognition models validate that our approach can improve the attack success rate and naturalness of the generated 3D adversarial examples than the state-of-the-art attack methods.
|
yibo miao, Yinpeng Dong, Jun Zhu, Xiao-Shan Gao
| null | null | 2,022 |
neurips
|
Graph Neural Networks with Adaptive Readouts
| null |
An effective aggregation of node features into a graph-level representation via readout functions is an essential step in numerous learning tasks involving graph neural networks. Typically, readouts are simple and non-adaptive functions designed such that the resulting hypothesis space is permutation invariant. Prior work on deep sets indicates that such readouts might require complex node embeddings that can be difficult to learn via standard neighborhood aggregation schemes. Motivated by this, we investigate the potential of adaptive readouts given by neural networks that do not necessarily give rise to permutation invariant hypothesis spaces. We argue that in some problems such as binding affinity prediction where molecules are typically presented in a canonical form it might be possible to relax the constraints on permutation invariance of the hypothesis space and learn a more effective model of the affinity by employing an adaptive readout function. Our empirical results demonstrate the effectiveness of neural readouts on more than 40 datasets spanning different domains and graph characteristics. Moreover, we observe a consistent improvement over standard readouts (i.e., sum, max, and mean) relative to the number of neighborhood aggregation iterations and different convolutional operators.
|
David Buterez, Jon Paul Janet, Steven J Kiddle, Dino Oglic, Pietro Liò
| null | null | 2,022 |
neurips
|
ELIAS: End-to-End Learning to Index and Search in Large Output Spaces
| null |
Extreme multi-label classification (XMC) is a popular framework for solving many real-world problems that require accurate prediction from a very large number of potential output choices. A popular approach for dealing with the large label space is to arrange the labels into a shallow tree-based index and then learn an ML model to efficiently search this index via beam search. Existing methods initialize the tree index by clustering the label space into a few mutually exclusive clusters based on pre-defined features and keep it fixed throughout the training procedure. This approach results in a sub-optimal indexing structure over the label space and limits the search performance to the quality of choices made during the initialization of the index. In this paper, we propose a novel method ELIAS which relaxes the tree-based index to a specialized weighted graph-based index which is learned end-to-end with the final task objective. More specifically, ELIAS models the discrete cluster-to-label assignments in the existing tree-based index as soft learnable parameters that are learned jointly with the rest of the ML model. ELIAS achieves state-of-the-art performance on several large-scale extreme classification benchmarks with millions of labels. In particular, ELIAS can be up to 2.5% better at precision@$1$ and up to 4% better at recall@$100$ than existing XMC methods. A PyTorch implementation of ELIAS along with other resources is available at https://github.com/nilesh2797/ELIAS.
|
Nilesh Gupta, Patrick Chen, Hsiang-Fu Yu, Cho-Jui Hsieh, Inderjit Dhillon
| null | null | 2,022 |
neurips
|
Trust Region Policy Optimization with Optimal Transport Discrepancies: Duality and Algorithm for Continuous Actions
| null |
Policy Optimization (PO) algorithms have been proven particularly suited to handle the high-dimensionality of real-world continuous control tasks. In this context, Trust Region Policy Optimization methods represent a popular approach to stabilize the policy updates. These usually rely on the Kullback-Leibler (KL) divergence to limit the change in the policy. The Wasserstein distance represents a natural alternative, in place of the KL divergence, to define trust regions or to regularize the objective function. However, state-of-the-art works either resort to its approximations or do not provide an algorithm for continuous state-action spaces, reducing the applicability of the method.In this paper, we explore optimal transport discrepancies (which include the Wasserstein distance) to define trust regions, and we propose a novel algorithm - Optimal Transport Trust Region Policy Optimization (OT-TRPO) - for continuous state-action spaces. We circumvent the infinite-dimensional optimization problem for PO by providing a one-dimensional dual reformulation for which strong duality holds.We then analytically derive the optimal policy update given the solution of the dual problem. This way, we bypass the computation of optimal transport costs and of optimal transport maps, which we implicitly characterize by solving the dual formulation.Finally, we provide an experimental evaluation of our approach across various control tasks. Our results show that optimal transport discrepancies can offer an advantage over state-of-the-art approaches.
|
Antonio Terpin, Nicolas Lanzetti, Batuhan Yardim, Florian Dorfler, Giorgia Ramponi
| null | null | 2,022 |
neurips
|
Communication Efficient Distributed Learning for Kernelized Contextual Bandits
| null |
We tackle the communication efficiency challenge of learning kernelized contextual bandits in a distributed setting. Despite the recent advances in communication-efficient distributed bandit learning, existing solutions are restricted to simple models like multi-armed bandits and linear bandits, which hamper their practical utility. In this paper, instead of assuming the existence of a linear reward mapping from the features to the expected rewards, we consider non-linear reward mappings, by letting agents collaboratively search in a reproducing kernel Hilbert space (RKHS). This introduces significant challenges in communication efficiency as distributed kernel learning requires the transfer of raw data, leading to a communication cost that grows linearly w.r.t. time horizon $T$. We addresses this issue by equipping all agents to communicate via a common Nystr\"{o}m embedding that gets updated adaptively as more data points are collected. We rigorously proved that our algorithm can attain sub-linear rate in both regret and communication cost.
|
Chuanhao Li, Huazheng Wang, Mengdi Wang, Hongning Wang
| null | null | 2,022 |
neurips
|
Low-Rank Modular Reinforcement Learning via Muscle Synergy
| null |
Modular Reinforcement Learning (RL) decentralizes the control of multi-joint robots by learning policies for each actuator. Previous work on modular RL has proven its ability to control morphologically different agents with a shared actuator policy. However, with the increase in the Degree of Freedom (DoF) of robots, training a morphology-generalizable modular controller becomes exponentially difficult. Motivated by the way the human central nervous system controls numerous muscles, we propose a Synergy-Oriented LeARning (SOLAR) framework that exploits the redundant nature of DoF in robot control. Actuators are grouped into synergies by an unsupervised learning method, and a synergy action is learned to control multiple actuators in synchrony. In this way, we achieve a low-rank control at the synergy level. We extensively evaluate our method on a variety of robot morphologies, and the results show its superior efficiency and generalizability, especially on robots with a large DoF like Humanoids++ and UNIMALs.
|
Heng Dong, Tonghan Wang, Jiayuan Liu, Chongjie Zhang
| null | null | 2,022 |
neurips
|
Improving Barely Supervised Learning by Discriminating Unlabeled Samples with Super-Class
| null |
In semi-supervised learning (SSL), a common practice is to learn consistent information from unlabeled data and discriminative information from labeled data to ensure both the immutability and the separability of the classification model. Existing SSL methods suffer from failures in barely-supervised learning (BSL), where only one or two labels per class are available, as the insufficient labels cause the discriminative information being difficult or even infeasible to learn. To bridge this gap, we investigate a simple yet effective way to leverage unlabeled samples for discriminative learning, and propose a novel discriminative information learning module to benefit model training. Specifically, we formulate the learning objective of discriminative information at the super-class level and dynamically assign different classes into different super-classes based on model performance improvement. On top of this on-the-fly process, we further propose a distribution-based loss to learn discriminative information by utilizing the similarity relationship between samples and super-classes. It encourages the unlabeled samples to stay closer to the distribution of their corresponding super-class than those of others. Such a constraint is softer than the direct assignment of pseudo labels, while the latter could be very noisy in BSL. We compare our method with state-of-the-art SSL and BSL methods through extensive experiments on standard SSL benchmarks. Our method can achieve superior results, \eg, an average accuracy of 76.76\% on CIFAR-10 with merely 1 label per class.
|
Guan Gui, Zhen Zhao, Lei Qi, Luping Zhou, Lei Wang, Yinghuan Shi
| null | null | 2,022 |
neurips
|
GStarX: Explaining Graph Neural Networks with Structure-Aware Cooperative Games
| null |
Explaining machine learning models is an important and increasingly popular area of research interest. The Shapley value from game theory has been proposed as a prime approach to compute feature importance towards model predictions on images, text, tabular data, and recently graph neural networks (GNNs) on graphs. In this work, we revisit the appropriateness of the Shapley value for GNN explanation, where the task is to identify the most important subgraph and constituent nodes for GNN predictions. We claim that the Shapley value is a non-ideal choice for graph data because it is by definition not structure-aware. We propose a Graph Structure-aware eXplanation (GStarX) method to leverage the critical graph structure information to improve the explanation. Specifically, we define a scoring function based on a new structure-aware value from the cooperative game theory proposed by Hamiache and Navarro (HN). When used to score node importance, the HN value utilizes graph structures to attribute cooperation surplus between neighbor nodes, resembling message passing in GNNs, so that node importance scores reflect not only the node feature importance, but also the node structural roles. We demonstrate that GStarX produces qualitatively more intuitive explanations, and quantitatively improves explanation fidelity over strong baselines on chemical graph property prediction and text graph sentiment classification. Code: https://github.com/ShichangZh/GStarX
|
Shichang Zhang, Yozen Liu, Neil Shah, Yizhou Sun
| null | null | 2,022 |
neurips
|
Rate-Distortion Theoretic Bounds on Generalization Error for Distributed Learning
| null |
In this paper, we use tools from rate-distortion theory to establish new upper bounds on the generalization error of statistical distributed learning algorithms. Specifically, there are $K$ clients whose individually chosen models are aggregated by a central server. The bounds depend on the compressibility of each client's algorithm while keeping other clients' algorithms un-compressed, and leveraging the fact that small changes in each local model change the aggregated model by a factor of only $1/K$. Adopting a recently proposed approach by Sefidgaran et al., and extending it suitably to the distributed setting, enables smaller rate-distortion terms which are shown to translate into tighter generalization bounds. The bounds are then applied to the distributed support vector machines (SVM), suggesting that the generalization error of the distributed setting decays faster than that of the centralized one with a factor of $\mathcal{O}(\sqrt{\log(K)/K})$. This finding is validated also experimentally. A similar conclusion is obtained for a multiple-round federated learning setup where each client uses stochastic gradient Langevin dynamics (SGLD).
|
Milad Sefidgaran, Romain Chor, Abdellatif Zaidi
| null | null | 2,022 |
neurips
|
Bridging the Gap from Asymmetry Tricks to Decorrelation Principles in Non-contrastive Self-supervised Learning
| null |
Recent non-contrastive methods for self-supervised representation learning show promising performance. While they are attractive since they do not need negative samples, it necessitates some mechanism to avoid collapsing into a trivial solution. Currently, there are two approaches to collapse prevention. One uses an asymmetric architecture on a joint embedding of input, e.g., BYOL and SimSiam, and the other imposes decorrelation criteria on the same joint embedding, e.g., Barlow-Twins and VICReg. The latter methods have theoretical support from information theory as to why they can learn good representation. However, it is not fully understood why the former performs equally well. In this paper, focusing on BYOL/SimSiam, which uses the stop-gradient and a predictor as asymmetric tricks, we present a novel interpretation of these tricks; they implicitly impose a constraint that encourages feature decorrelation similar to Barlow-Twins/VICReg. We then present a novel non-contrastive method, which replaces the stop-gradient in BYOL/SimSiam with the derived constraint; the method empirically shows comparable performance to the above SOTA methods in the standard benchmark test using ImageNet. This result builds a bridge from BYOL/SimSiam to the decorrelation-based methods, contributing to demystifying their secrets.
|
Kang-Jun Liu, Masanori Suganuma, Takayuki Okatani
| null | null | 2,022 |
neurips
|
Fine-Grained Analysis of Stability and Generalization for Modern Meta Learning Algorithms
| null |
The support/query episodic training strategy has been widely applied in modern meta learning algorithms. Supposing the $n$ training episodes and the test episodes are sampled independently from the same environment, previous work has derived a generalization bound of $O(1/\sqrt{n})$ for smooth non-convex functions via algorithmic stability analysis. In this paper, we provide fine-grained analysis of stability and generalization for modern meta learning algorithms by considering more general situations. Firstly, we develop matching lower and upper stability bounds for meta learning algorithms with two types of loss functions: (1) nonsmooth convex functions with $\alpha$-H{\"o}lder continuous subgradients $(\alpha \in [0,1))$; (2) smooth (including convex and non-convex) functions. Our tight stability bounds show that, in the nonsmooth convex case, meta learning algorithms can be inherently less stable than in the smooth convex case. For the smooth non-convex functions, our stability bound is sharper than the existing one, especially in the setting where the number of iterations is larger than the number $n$ of training episodes. Secondly, we derive improved generalization bounds for meta learning algorithms that hold with high probability. Specifically, we first demonstrate that, under the independent episode environment assumption, the generalization bound of $O(1/\sqrt{n})$ via algorithmic stability analysis is near optimal. To attain faster convergence rate, we show how to yield a deformed generalization bound of $O(\ln{n}/n)$ with the curvature condition of loss functions. Finally, we obtain a generalization bound for meta learning with dependent episodes whose dependency relation is characterized by a graph. Experiments on regression problems are conducted to verify our theoretical results.
|
Jiechao Guan, Yong Liu, Zhiwu Lu
| null | null | 2,022 |
neurips
|
Neural Temporal Walks: Motif-Aware Representation Learning on Continuous-Time Dynamic Graphs
| null |
Continuous-time dynamic graphs naturally abstract many real-world systems, such as social and transactional networks. While the research on continuous-time dynamic graph representation learning has made significant advances recently, neither graph topological properties nor temporal dependencies have been well-considered and explicitly modeled in capturing dynamic patterns. In this paper, we introduce a new approach, Neural Temporal Walks (NeurTWs), for representation learning on continuous-time dynamic graphs. By considering not only time constraints but also structural and tree traversal properties, our method conducts spatiotemporal-biased random walks to retrieve a set of representative motifs, enabling temporal nodes to be characterized effectively. With a component based on neural ordinary differential equations, the extracted motifs allow for irregularly-sampled temporal nodes to be embedded explicitly over multiple different interaction time intervals, enabling the effective capture of the underlying spatiotemporal dynamics. To enrich supervision signals, we further design a harder contrastive pretext task for model optimization. Our method demonstrates overwhelming superiority under both transductive and inductive settings on six real-world datasets.
|
Ming Jin, Yuan-Fang Li, Shirui Pan
| null | null | 2,022 |
neurips
|
Causality-driven Hierarchical Structure Discovery for Reinforcement Learning
| null |
Hierarchical reinforcement learning (HRL) has been proven to be effective for tasks with sparse rewards, for it can improve the agent's exploration efficiency by discovering high-quality hierarchical structures (e.g., subgoals or options). However, automatically discovering high-quality hierarchical structures is still a great challenge. Previous HRL methods can only find the hierarchical structures in simple environments, as they are mainly achieved through the randomness of agent's policies during exploration. In complicated environments, such a randomness-driven exploration paradigm can hardly discover high-quality hierarchical structures because of the low exploration efficiency. In this paper, we propose CDHRL, a causality-driven hierarchical reinforcement learning framework, to build high-quality hierarchical structures efficiently in complicated environments. The key insight is that the causalities among environment variables are naturally fit for modeling reachable subgoals and their dependencies; thus, the causality is suitable to be the guidance in building high-quality hierarchical structures. Roughly, we build the hierarchy of subgoals based on causality autonomously, and utilize the subgoal-based policies to unfold further causality efficiently. Therefore, CDHRL leverages a causality-driven discovery instead of a randomness-driven exploration for high-quality hierarchical structure construction. The results in two complex environments, 2D-Minecraft and Eden, show that CDHRL can discover high-quality hierarchical structures and significantly enhance exploration efficiency.
|
shaohui peng, Xing Hu, Rui Zhang, Ke Tang, Jiaming Guo, Qi Yi, Ruizhi Chen, xishan zhang, Zidong Du, Ling Li, Qi Guo, Yunji Chen
| null | null | 2,022 |
neurips
|
Green Hierarchical Vision Transformer for Masked Image Modeling
| null |
We present an efficient approach for Masked Image Modeling (MIM) with hierarchical Vision Transformers (ViTs), allowing the hierarchical ViTs to discard masked patches and operate only on the visible ones. Our approach consists of three key designs. First, for window attention, we propose a Group Window Attention scheme following the Divide-and-Conquer strategy. To mitigate the quadratic complexity of the self-attention w.r.t. the number of patches, group attention encourages a uniform partition that visible patches within each local window of arbitrary size can be grouped with equal size, where masked self-attention is then performed within each group. Second, we further improve the grouping strategy via the Dynamic Programming algorithm to minimize the overall computation cost of the attention on the grouped patches. Third, as for the convolution layers, we convert them to the Sparse Convolution that works seamlessly with the sparse data, i.e., the visible patches in MIM. As a result, MIM can now work on most, if not all, hierarchical ViTs in a green and efficient way. For example, we can train the hierarchical ViTs, e.g., Swin Transformer and Twins Transformer, about 2.7$\times$ faster and reduce the GPU memory usage by 70%, while still enjoying competitive performance on ImageNet classification and the superiority on downstream COCO object detection benchmarks.
|
Lang Huang, Shan You, Mingkai Zheng, Fei Wang, Chen Qian, Toshihiko Yamasaki
| null | null | 2,022 |
neurips
|
Understanding Benign Overfitting in Gradient-Based Meta Learning
| null |
Meta learning has demonstrated tremendous success in few-shot learning with limited supervised data. In those settings, the meta model is usually overparameterized. While the conventional statistical learning theory suggests that overparameterized models tend to overfit, empirical evidence reveals that overparameterized meta learning methods still work well -- a phenomenon often called ``benign overfitting.'' To understand this phenomenon, we focus on the meta learning settings with a challenging bilevel structure that we term the gradient-based meta learning, and analyze its generalization performance under an overparameterized meta linear regression model. While our analysis uses the relatively tractable linear models, our theory contributes to understanding the delicate interplay among data heterogeneity, model adaptation and benign overfitting in gradient-based meta learning tasks. We corroborate our theoretical claims through numerical simulations.
|
Lisha Chen, Songtao Lu, Tianyi Chen
| null | null | 2,022 |
neurips
|
Generative Neural Articulated Radiance Fields
| null |
Unsupervised learning of 3D-aware generative adversarial networks (GANs) using only collections of single-view 2D photographs has very recently made much progress. These 3D GANs, however, have not been demonstrated for human bodies and the generated radiance fields of existing frameworks are not directly editable, limiting their applicability in downstream tasks. We propose a solution to these challenges by developing a 3D GAN framework that learns to generate radiance fields of human bodies or faces in a canonical pose and warp them using an explicit deformation field into a desired body pose or facial expression. Using our framework, we demonstrate the first high-quality radiance field generation results for human bodies. Moreover, we show that our deformation-aware training procedure significantly improves the quality of generated bodies or faces when editing their poses or facial expressions compared to a 3D GAN that is not trained with explicit deformations.
|
Alexander Bergman, Petr Kellnhofer, Wang Yifan, Eric Chan, David Lindell, Gordon Wetzstein
| null | null | 2,022 |
neurips
|
AutoMS: Automatic Model Selection for Novelty Detection with Error Rate Control
| null |
Given an unsupervised novelty detection task on a new dataset, how can we automatically select a ''best'' detection model while simultaneously controlling the error rate of the best model? For novelty detection analysis, numerous detectors have been proposed to detect outliers on a new unseen dataset based on a score function trained on available clean data. However, due to the absence of labeled data for model evaluation and comparison, there is a lack of systematic approaches that are able to select a ''best'' model/detector (i.e., the algorithm as well as its hyperparameters) and achieve certain error rate control simultaneously. In this paper, we introduce a unified data-driven procedure to address this issue. The key idea is to maximize the number of detected outliers while controlling the false discovery rate (FDR) with the help of Jackknife prediction. We establish non-asymptotic bounds for the false discovery proportions and show that the proposed procedure yields valid FDR control under some mild conditions. Numerical experiments on both synthetic and real data validate the theoretical results and demonstrate the effectiveness of our proposed AutoMS method. The code is available at https://github.com/ZhangYifan1996/AutoMS.
|
Yifan Zhang, Haiyan Jiang, Haojie Ren, Changliang Zou, Dejing Dou
| null | null | 2,022 |
neurips
|
Efficient Frameworks for Generalized Low-Rank Matrix Bandit Problems
| null |
In the stochastic contextual low-rank matrix bandit problem, the expected reward of an action is given by the inner product between the action's feature matrix and some fixed, but initially unknown $d_1$ by $d_2$ matrix $\Theta^*$ with rank $r \ll \{d_1, d_2\}$, and an agent sequentially takes actions based on past experience to maximize the cumulative reward. In this paper, we study the generalized low-rank matrix bandit problem, which has been recently proposed in \cite{lu2021low} under the Generalized Linear Model (GLM) framework. To overcome the computational infeasibility and theoretical restrain of existing algorithms on this problem, we first propose the G-ESTT framework that modifies the idea from \cite{jun2019bilinear} by using Stein's method on the subspace estimation and then leverage the estimated subspaces via a regularization idea. Furthermore, we remarkably improve the efficiency of G-ESTT by using a novel exclusion idea on the estimated subspace instead, and propose the G-ESTS framework. We also show that both of our methods are the first algorithm to achieve the optimal $\tilde{O}((d_1+d_2)r\sqrt{T})$ bound of regret presented in \cite{lu2021low} up to logarithm terms under some mild conditions, which improves upon the current regret of $\tilde{O}((d_1+d_2)^{3/2} \sqrt{rT})$~\citep{lu2021low}. For completeness, we conduct experiments to illustrate that our proposed algorithms, especially G-ESTS, are also computationally tractable and consistently outperform other state-of-the-art (generalized) linear matrix bandit methods based on a suite of simulations.
|
Yue Kang, Cho-Jui Hsieh, Thomas Chun Man Lee
| null | null | 2,022 |
neurips
|
Learn to Match with No Regret: Reinforcement Learning in Markov Matching Markets
| null |
We study a Markov matching market involving a planner and a set of strategic agents on the two sides of the market.At each step, the agents are presented with a dynamical context, where the contexts determine the utilities. The planner controls the transition of the contexts to maximize the cumulative social welfare, while the agents aim to find a myopic stable matching at each step. Such a setting captures a range of applications including ridesharing platforms. We formalize the problem by proposing a reinforcement learning framework that integrates optimistic value iteration with maximum weight matching. The proposed algorithm addresses the coupled challenges of sequential exploration, matching stability, and function approximation. We prove that the algorithm achieves sublinear regret.
|
Yifei Min, Tianhao Wang, Ruitu Xu, Zhaoran Wang, Michael Jordan, Zhuoran Yang
| null | null | 2,022 |
neurips
|
Online Frank-Wolfe with Arbitrary Delays
| null |
The online Frank-Wolfe (OFW) method has gained much popularity for online convex optimization due to its projection-free property. Previous studies show that OFW can attain an $O(T^{3/4})$ regret bound for convex losses and an $O(T^{2/3})$ regret bound for strongly convex losses. However, they assume that each gradient queried by OFW is revealed immediately, which may not hold in practice and limits the application of OFW. To address this limitation, we propose a delayed variant of OFW, which allows gradients to be delayed by arbitrary rounds. The main idea is to perform an update similar to OFW after receiving any delayed gradient, and play the latest decision for each round. Despite its simplicity, we prove that our delayed variant of OFW is able to achieve an $O(T^{3/4}+dT^{1/4})$ regret bound for convex losses and an $O(T^{2/3}+d\log T)$ regret bound for strongly convex losses, where $d$ is the maximum delay. This is quite surprising since under a relatively large amount of delay (e.g., $d=O(\sqrt{T})$ for convex losses and $d=O(T^{2/3}/\log T)$ for strongly convex losses), the delayed variant of OFW enjoys the same regret bound as that of the original OFW.
|
Yuanyu Wan, Wei-Wei Tu, Lijun Zhang
| null | null | 2,022 |
neurips
|
A Data-Augmentation Is Worth A Thousand Samples: Analytical Moments And Sampling-Free Training
| null |
Data-Augmentation (DA) is known to improve performance across tasks and datasets. We propose a method to theoretically analyze the effect of DA and study questions such as: how many augmented samples are needed to correctly estimate the information encoded by that DA? How does the augmentation policy impact the final parameters of a model? We derive several quantities in close-form, such as the expectation and variance of an image, loss, and model's output under a given DA distribution. Up to our knowledge, we obtain the first explicit regularizer that corresponds to using DA during training for non-trivial transformations such as affine transformations, color jittering, or Gaussian blur. Those derivations open new avenues to quantify the benefits and limitations of DA. For example, given a loss at hand, we find that common DAs require tens of thousands of samples for the loss to be correctly estimated and for the model training to converge. We then show that for a training loss to have reduced variance under DA sampling, the model's saliency map (gradient of the loss with respect to the model's input) must align with the smallest eigenvector of the sample's covariance matrix under the considered DA augmentation; this is exactly the quantity estimated and regularized by TangentProp. Those findings also hint at a possible explanation on why models tend to shift their focus from edges to textures when specific DAs are employed.
|
Randall Balestriero, Ishan Misra, Yann LeCun
| null | null | 2,022 |
neurips
|
Towards Reliable Simulation-Based Inference with Balanced Neural Ratio Estimation
| null |
Modern approaches for simulation-based inference build upon deep learning surrogates to enable approximate Bayesian inference with computer simulators. In practice, the estimated posteriors' computational faithfulness is, however, rarely guaranteed. For example, Hermans et al., 2021 have shown that current simulation-based inference algorithms can produce posteriors that are overconfident, hence risking false inferences. In this work, we introduce Balanced Neural Ratio Estimation (BNRE), a variation of the NRE algorithm designed to produce posterior approximations that tend to be more conservative, hence improving their reliability, while sharing the same Bayes optimal solution. We achieve this by enforcing a balancing condition that increases the quantified uncertainty in low simulation budget regimes while still converging to the exact posterior as the budget increases. We provide theoretical arguments showing that BNRE tends to produce posterior surrogates that are more conservative than NRE's. We evaluate BNRE on a wide variety of tasks and show that it produces conservative posterior surrogates on all tested benchmarks and simulation budgets. Finally, we emphasize that BNRE is straightforward to implement over NRE and does not introduce any computational overhead.
|
Arnaud Delaunoy, Joeri Hermans, François Rozet, Antoine Wehenkel, Gilles Louppe
| null | null | 2,022 |
neurips
|
Large-Scale Retrieval for Reinforcement Learning
| null |
Effective decision making involves flexibly relating past experiences and relevant contextual information to a novel situation. In deep reinforcement learning (RL), the dominant paradigm is for an agent to amortise information that helps decision-making into its network weights via gradient descent on training losses. Here, we pursue an alternative approach in which agents can utilise large-scale context-sensitive database lookups to support their parametric computations. This allows agents to directly learn in an end-to-end manner to utilise relevant information to inform their outputs. In addition, new information can be attended to by the agent, without retraining, by simply augmenting the retrieval dataset. We study this approach for offline RL in 9x9 Go, a challenging game for which the vast combinatorial state space privileges generalisation over direct matching to past experiences. We leverage fast, approximate nearest neighbor techniques in order to retrieve relevant data from a set of tens of millions of expert demonstration states. Attending to this information provides a significant boost to prediction accuracy and game-play performance over simply using these demonstrations as training trajectories, providing a compelling demonstration of the value of large-scale retrieval in offline RL agents.
|
Peter Humphreys, Arthur Guez, Olivier Tieleman, Laurent Sifre, Theophane Weber, Timothy Lillicrap
| null | null | 2,022 |
neurips
|
A Projection-free Algorithm for Constrained Stochastic Multi-level Composition Optimization
| null |
We propose a projection-free conditional gradient-type algorithm for smooth stochastic multi-level composition optimization, where the objective function is a nested composition of $T$ functions and the constraint set is a closed convex set. Our algorithm assumes access to noisy evaluations of the functions and their gradients, through a stochastic first-order oracle satisfying certain standard unbiasedness and second-moment assumptions. We show that the number of calls to the stochastic first-order oracle and the linear-minimization oracle required by the proposed algorithm, to obtain an $\epsilon$-stationary solution, are of order $\mathcal{O}_T(\epsilon^{-2})$ and $\mathcal{O}_T(\epsilon^{-3})$ respectively, where $\mathcal{O}_T$ hides constants in $T$. Notably, the dependence of these complexity bounds on $\epsilon$ and $T$ are separate in the sense that changing one does not impact the dependence of the bounds on the other. For the case of $T=1$, we also provide a high-probability convergence result that depends poly-logarithmically on the inverse confidence level. Moreover, our algorithm is parameter-free and does not require any (increasing) order of mini-batches to converge unlike the common practice in the analysis of stochastic conditional gradient-type algorithms.
|
Tesi Xiao, Krishnakumar Balasubramanian, Saeed Ghadimi
| null | null | 2,022 |
neurips
|
Interaction Modeling with Multiplex Attention
| null |
Modeling multi-agent systems requires understanding how agents interact. Such systems are often difficult to model because they can involve a variety of types of interactions that layer together to drive rich social behavioral dynamics. Here we introduce a method for accurately modeling multi-agent systems. We present Interaction Modeling with Multiplex Attention (IMMA), a forward prediction model that uses a multiplex latent graph to represent multiple independent types of interactions and attention to account for relations of different strengths. We also introduce Progressive Layer Training, a training strategy for this architecture. We show that our approach outperforms state-of-the-art models in trajectory forecasting and relation inference, spanning three multi-agent scenarios: social navigation, cooperative task achievement, and team sports. We further demonstrate that our approach can improve zero-shot generalization and allows us to probe how different interactions impact agent behavior.
|
Fan-Yun Sun, Isaac Kauvar, Ruohan Zhang, Jiachen Li, Mykel J Kochenderfer, Jiajun Wu, Nick Haber
| null | null | 2,022 |
neurips
|
GALOIS: Boosting Deep Reinforcement Learning via Generalizable Logic Synthesis
| null |
Despite achieving superior performance in human-level control problems, unlike humans, deep reinforcement learning (DRL) lacks high-order intelligence (e.g., logic deduction and reuse), thus it behaves ineffectively than humans regarding learning and generalization in complex problems. Previous works attempt to directly synthesize a white-box logic program as the DRL policy, manifesting logic-driven behaviors. However, most synthesis methods are built on imperative or declarative programming, and each has a distinct limitation, respectively. The former ignores the cause-effect logic during synthesis, resulting in low generalizability across tasks. The latter is strictly proof-based, thus failing to synthesize programs with complex hierarchical logic. In this paper, we combine the above two paradigms together and propose a novel Generalizable Logic Synthesis (GALOIS) framework to synthesize hierarchical and strict cause-effect logic programs. GALOIS leverages the program sketch and defines a new sketch-based hybrid program language for guiding the synthesis. Based on that, GALOIS proposes a sketch-based program synthesis method to automatically generate white-box programs with generalizable and interpretable cause-effect logic. Extensive evaluations on various decision-making tasks with complex logic demonstrate the superiority of GALOIS over mainstream baselines regarding the asymptotic performance, generalizability, and great knowledge reusability across different environments.
|
Yushi Cao, Zhiming Li, Tianpei Yang, Hao Zhang, YAN ZHENG, Yi Li, Jianye Hao, Yang Liu
| null | null | 2,022 |
neurips
|
Low-rank lottery tickets: finding efficient low-rank neural networks via matrix differential equations
| null |
Neural networks have achieved tremendous success in a large variety of applications. However, their memory footprint and computational demand can render them impractical in application settings with limited hardware or energy resources. In this work, we propose a novel algorithm to find efficient low-rank subnetworks. Remarkably, these subnetworks are determined and adapted already during the training phase and the overall time and memory resources required by both training and evaluating them is significantly reduced. The main idea is to restrict the weight matrices to a low-rank manifold and to update the low-rank factors rather than the full matrix during training. To derive training updates that are restricted to the prescribed manifold, we employ techniques from dynamic model order reduction for matrix differential equations. Moreover, our method automatically and dynamically adapts the ranks during training to achieve a desired approximation accuracy.The efficiency of the proposed method is demonstrated through a variety of numerical experiments on fully-connected and convolutional networks.
|
Steffen Schotthöfer, Emanuele Zangrando, Jonas Kusch, Gianluca Ceruti, Francesco Tudisco
| null | null | 2,022 |
neurips
|
Outsourcing Training without Uploading Data via Efficient Collaborative Open-Source Sampling
| null |
As deep learning blooms with growing demand for computation and data resources, outsourcing model training to a powerful cloud server becomes an attractive alternative to training at a low-power and cost-effective end device. Traditional outsourcing requires uploading device data to the cloud server, which can be infeasible in many real-world applications due to the often sensitive nature of the collected data and the limited communication bandwidth. To tackle these challenges, we propose to leverage widely available open-source data, which is a massive dataset collected from public and heterogeneous sources (e.g., Internet images). We develop a novel strategy called Efficient Collaborative Open-source Sampling (ECOS) to construct a proximal proxy dataset from open-source data for cloud training, in lieu of client data. ECOS probes open-source data on the cloud server to sense the distribution of client data via a communication- and computation-efficient sampling process, which only communicates a few compressed public features and client scalar responses. Extensive empirical studies show that the proposed ECOS improves the quality of automated client labeling, model compression, and label outsourcing when applied in various learning scenarios. Source codes will be released.
|
Junyuan Hong, Lingjuan Lyu, Jiayu Zhou, Michael Spranger
| null | null | 2,022 |
neurips
|
Score-based Generative Modeling Secretly Minimizes the Wasserstein Distance
| null |
Score-based generative models are shown to achieve remarkable empirical performances in various applications such as image generation and audio synthesis. However, a theoretical understanding of score-based diffusion models is still incomplete. Recently, Song et al. showed that the training objective of score-based generative models is equivalent to minimizing the Kullback-Leibler divergence of the generated distribution from the data distribution. In this work, we show that score-based models also minimize the Wasserstein distance between them. Specifically, we prove that the Wasserstein distance is upper bounded by the square root of the objective function up to multiplicative constants and a fixed constant offset. Our proof is based on a novel application of the theory of optimal transport, which can be of independent interest to the society. Our numerical experiments support our findings. By analyzing our upper bounds, we provide a few techniques to obtain tighter upper bounds.
|
Dohyun Kwon, Ying Fan, Kangwook Lee
| null | null | 2,022 |
neurips
|
Continuous MDP Homomorphisms and Homomorphic Policy Gradient
| null |
Abstraction has been widely studied as a way to improve the efficiency and generalization of reinforcement learning algorithms. In this paper, we study abstraction in the continuous-control setting. We extend the definition of MDP homomorphisms to encompass continuous actions in continuous state spaces. We derive a policy gradient theorem on the abstract MDP, which allows us to leverage approximate symmetries of the environment for policy optimization. Based on this theorem, we propose an actor-critic algorithm that is able to learn the policy and the MDP homomorphism map simultaneously, using the lax bisimulation metric. We demonstrate the effectiveness of our method on benchmark tasks in the DeepMind Control Suite. Our method's ability to utilize MDP homomorphisms for representation learning leads to improved performance when learning from pixel observations.
|
Sahand Rezaei-Shoshtari, Rosie Zhao, Prakash Panangaden, David Meger, Doina Precup
| null | null | 2,022 |
neurips
|
TaSIL: Taylor Series Imitation Learning
| null |
We propose Taylor Series Imitation Learning (TaSIL), a simple augmentation to standard behavior cloning losses in the context of continuous control. TaSIL penalizes deviations in the higher-order Tayler series terms between the learned and expert policies. We show that experts satisfying a notion of incremental input-to-state stability are easy to learn, in the sense that that a small TaSIL-augmented imitation loss over expert trajectories guarantees a small imitation loss over trajectories generated by the learned policy. We provide sample-complexity bounds for TaSIL that scale as $\tilde{\mathcal{O}}(1/n)$ in the realizable setting, for $n$ the number of expert demonstrations. Finally, we demonstrate experimentally the relationship between the robustness of the expert policy and the order of Taylor expansion required in TaSIL, and compare standard Behavior Cloning, DART, and DAgger with TaSIL-loss-augmented variants. In all cases, we show significant improvement over baselines across a variety of MuJoCo tasks.
|
Daniel Pfrommer, Thomas Zhang, Stephen Tu, Nikolai Matni
| null | null | 2,022 |
neurips
|
Uncertainty-Aware Reinforcement Learning for Risk-Sensitive Player Evaluation in Sports Game
| null |
A major task of sports analytics is player evaluation. Previous methods commonly measured the impact of players' actions on desirable outcomes (e.g., goals or winning) without considering the risk induced by stochastic game dynamics. In this paper, we design an uncertainty-aware Reinforcement Learning (RL) framework to learn a risk-sensitive player evaluation metric from stochastic game dynamics. To embed the risk of a player’s movements into the distribution of action-values, we model their 1) aleatoric uncertainty, which represents the intrinsic stochasticity in a sports game, and 2) epistemic uncertainty, which is due to a model's insufficient knowledge regarding Out-of-Distribution (OoD) samples. We demonstrate how a distributional Bellman operator and a feature-space density model can capture these uncertainties. Based on such uncertainty estimation, we propose a Risk-sensitive Game Impact Metric (RiGIM) that measures players' performance over a season by conditioning on a specific confidence level. Empirical evaluation, based on over 9M play-by-play ice hockey and soccer events, shows that RiGIM correlates highly with standard success measures and has a consistent risk sensitivity.
|
Guiliang Liu, Yudong Luo, Oliver Schulte, Pascal Poupart
| null | null | 2,022 |
neurips
|
Multi-agent Dynamic Algorithm Configuration
| null |
Automated algorithm configuration relieves users from tedious, trial-and-error tuning tasks. A popular algorithm configuration tuning paradigm is dynamic algorithm configuration (DAC), in which an agent learns dynamic configuration policies across instances by reinforcement learning (RL). However, in many complex algorithms, there may exist different types of configuration hyperparameters, and such heterogeneity may bring difficulties for classic DAC which uses a single-agent RL policy. In this paper, we aim to address this issue and propose multi-agent DAC (MA-DAC), with one agent working for one type of configuration hyperparameter. MA-DAC formulates the dynamic configuration of a complex algorithm with multiple types of hyperparameters as a contextual multi-agent Markov decision process and solves it by a cooperative multi-agent RL (MARL) algorithm. To instantiate, we apply MA-DAC to a well-known optimization algorithm for multi-objective optimization problems. Experimental results show the effectiveness of MA-DAC in not only achieving superior performance compared with other configuration tuning approaches based on heuristic rules, multi-armed bandits, and single-agent RL, but also being capable of generalizing to different problem classes. Furthermore, we release the environments in this paper as a benchmark for testing MARL algorithms, with the hope of facilitating the application of MARL.
|
Ke Xue, Jiacheng Xu, Lei Yuan, Miqing Li, Chao Qian, Zongzhang Zhang, Yang Yu
| null | null | 2,022 |
neurips
|
Gradient flow dynamics of shallow ReLU networks for square loss and orthogonal inputs
| null |
The training of neural networks by gradient descent methods is a cornerstone of the deep learning revolution. Yet, despite some recent progress, a complete theory explaining its success is still missing. This article presents, for orthogonal input vectors, a precise description of the gradient flow dynamics of training one-hidden layer ReLU neural networks for the mean squared error at small initialisation. In this setting, despite non-convexity, we show that the gradient flow converges to zero loss and characterise its implicit bias towards minimum variation norm. Furthermore, some interesting phenomena are highlighted: a quantitative description of the initial alignment phenomenon and a proof that the process follows a specific saddle to saddle dynamics.
|
Etienne Boursier, Loucas PILLAUD-VIVIEN, Nicolas Flammarion
| null | null | 2,022 |
neurips
|
Pay attention to your loss : understanding misconceptions about Lipschitz neural networks
| null |
Lipschitz constrained networks have gathered considerable attention in the deep learning community, with usages ranging from Wasserstein distance estimation to the training of certifiably robust classifiers. However they remain commonly considered as less accurate, and their properties in learning are still not fully understood. In this paper we clarify the matter: when it comes to classification 1-Lipschitz neural networks enjoy several advantages over their unconstrained counterpart. First, we show that these networks are as accurate as classical ones, and can fit arbitrarily difficult boundaries. Then, relying on a robustness metric that reflects operational needs we characterize the most robust classifier: the WGAN discriminator. Next, we show that 1-Lipschitz neural networks generalize well under milder assumptions. Finally, we show that hyper-parameters of the loss are crucial for controlling the accuracy-robustness trade-off. We conclude that they exhibit appealing properties to pave the way toward provably accurate, and provably robust neural networks.
|
Louis Béthune, Thibaut Boissin, Mathieu Serrurier, Franck Mamalet, Corentin Friedrich, Alberto Gonzalez Sanz
| null | null | 2,022 |
neurips
|
Weisfeiler and Leman Go Walking: Random Walk Kernels Revisited
| null |
Random walk kernels have been introduced in seminal work on graph learning and were later largely superseded by kernels based on the Weisfeiler-Leman test for graph isomorphism. We give a unified view on both classes of graph kernels. We study walk-based node refinement methods and formally relate them to several widely-used techniques, including Morgan's algorithm for molecule canonization and the Weisfeiler-Leman test. We define corresponding walk-based kernels on nodes that allow fine-grained parameterized neighborhood comparison, reach Weisfeiler-Leman expressiveness, and are computed using the kernel trick. From this we show that classical random walk kernels with only minor modifications regarding definition and computation are as expressive as the widely-used Weisfeiler-Leman subtree kernel but support non-strict neighborhood comparison. We verify experimentally that walk-based kernels reach or even surpass the accuracy of Weisfeiler-Leman kernels in real-world classification tasks.
|
Nils M. Kriege
| null | null | 2,022 |
neurips
|
Algorithms with Prediction Portfolios
| null |
The research area of algorithms with predictions has seen recent success showing how to incorporate machine learning into algorithm design to improve performance when the predictions are correct, while retaining worst-case guarantees when they are not. Most previous work has assumed that the algorithm has access to a single predictor. However, in practice, there are many machine learning methods available, often with incomparable generalization guarantees, making it hard to pick a best method a priori. In this work we consider scenarios where multiple predictors are available to the algorithm and the question is how to best utilize them. Ideally, we would like the algorithm's performance to depend on the quality of the {\em best} predictor. However, utilizing more predictions comes with a cost, since we now have to identify which prediction is best. We study the use of multiple predictors for a number of fundamental problems, including matching, load balancing, and non-clairvoyant scheduling, which have been well-studied in the single predictor setting. For each of these problems we introduce new algorithms that take advantage of multiple predictors, and prove bounds on the resulting performance.
|
Michael Dinitz, Sungjin Im, Thomas Lavastida, Benjamin Moseley, Sergei Vassilvitskii
| null | null | 2,022 |
neurips
|
Experimental Design for Linear Functionals in Reproducing Kernel Hilbert Spaces
| null |
Optimal experimental design seeks to determine the most informative allocation of experiments to infer an unknown statistical quantity. In this work, we investigate optimal design of experiments for {\em estimation of linear functionals in reproducing kernel Hilbert spaces (RKHSs)}. This problem has been extensively studied in the linear regression setting under an estimability condition, which allows estimating parameters without bias. We generalize this framework to RKHSs, and allow for the linear functional to be only approximately inferred, i.e., with a fixed bias. This scenario captures many important modern applications such as estimation of gradient maps, integrals and solutions to differential equations. We provide algorithms for constructing bias-aware designs for linear functionals. We derive non-asymptotic confidence sets for fixed and adaptive designs under sub-Gaussian noise, enabling us to certify estimation with bounded error with high probability.
|
Mojmir Mutny, Andreas Krause
| null | null | 2,022 |
neurips
|
Versatile Multi-stage Graph Neural Network for Circuit Representation
| null |
Due to the rapid growth in the scale of circuits and the desire for knowledge transfer from old designs to new ones, deep learning technologies have been widely exploited in Electronic Design Automation (EDA) to assist circuit design. In chip design cycles, we might encounter heterogeneous and diverse information sources, including the two most informative ones: the netlist and the design layout. However, handling each information source independently is sub-optimal. In this paper, we propose a novel way to integrate the multiple information sources under a unified heterogeneous graph named Circuit Graph, where topological and geometrical information is well integrated. Then, we propose Circuit GNN to fully utilize the features of vertices, edges as well as heterogeneous information during the message passing process. It is the first attempt to design a versatile circuit representation that is compatible across multiple EDA tasks and stages. Experiments on the two most representative prediction tasks in EDA show that our solution reaches state-of-the-art performance in both logic synthesis and global placement chip design stages. Besides, it achieves a 10x speed-up on congestion prediction compared to the state-of-the-art model.
|
Shuwen Yang, Zhihao Yang, Dong Li, Yingxueff Zhang, Zhanguang Zhang, Guojie Song, Jianye Hao
| null | null | 2,022 |
neurips
|
End-to-end Algorithm Synthesis with Recurrent Networks: Extrapolation without Overthinking
| null |
Machine learning systems perform well on pattern matching tasks, but their ability to perform algorithmic or logical reasoning is not well understood. One important reasoning capability is algorithmic extrapolation, in which models trained only on small/simple reasoning problems can synthesize complex strategies for large/complex problems at test time. Algorithmic extrapolation can be achieved through recurrent systems, which can be iterated many times to solve difficult reasoning problems. We observe that this approach fails to scale to highly complex problems because behavior degenerates when many iterations are applied -- an issue we refer to as "overthinking." We propose a recall architecture that keeps an explicit copy of the problem instance in memory so that it cannot be forgotten. We also employ a progressive training routine that prevents the model from learning behaviors that are specific to iteration number and instead pushes it to learn behaviors that can be repeated indefinitely. These innovations prevent the overthinking problem, and enable recurrent systems to solve extremely hard extrapolation tasks.
|
Arpit Bansal, Avi Schwarzschild, Eitan Borgnia, Zeyad Emam, Furong Huang, Micah Goldblum, Tom Goldstein
| null | null | 2,022 |
neurips
|
Smooth Fictitious Play in Stochastic Games with Perturbed Payoffs and Unknown Transitions
| null |
Recent extensions to dynamic games of the well known fictitious play learning procedure in static games were proved to globally converge to stationary Nash equilibria in two important classes of dynamic games (zero-sum and identical-interest discounted stochastic games). However, those decentralized algorithms need the players to know exactly the model (the transition probabilities and their payoffs at every stage). To overcome these strong assumptions, our paper introduces regularizations of the recent algorithms which are moreover, model-free (players don't know the transitions and their payoffs are perturbed at every stage). Our novel procedures can be interpreted as extensions to stochastic games of the classical smooth fictitious play learning procedures in static games (where players best responses are regularized, thanks to a smooth perturbation of their payoff functions). We prove the convergence of our family of procedures to stationary regularized Nash equilibria in the same classes of dynamic games (zero-sum and identical interests discounted stochastic games). The proof uses the continuous smooth best-response dynamics counterparts, and stochastic approximation methods. In the case of a MDP (a one-player stochastic game), our procedures globally converge to the optimal stationary policy of the regularized problem. In that sense, they can be seen as an alternative to the well known Q-learning procedure.
|
Lucas Baudin, Rida Laraki
| null | null | 2,022 |
neurips
|
OOD Link Prediction Generalization Capabilities of Message-Passing GNNs in Larger Test Graphs
| null |
This work provides the first theoretical study on the ability of graph Message Passing Neural Networks (gMPNNs) ---such as Graph Neural Networks (GNNs)--- to perform inductive out-of-distribution (OOD) link prediction tasks, where deployment (test) graph sizes are larger than training graphs. We first prove non-asymptotic bounds showing that link predictors based on permutation-equivariant (structural) node embeddings obtained by gMPNNs can converge to a random guess as test graphs get larger. We then propose a theoretically-sound gMPNN that outputs structural pairwise (2-node) embeddings and prove non-asymptotic bounds showing that, as test graphs grow, these embeddings converge to embeddings of a continuous function that retains its ability to predict links OOD. Empirical results on random graphs show agreement with our theoretical results.
|
Yangze Zhou, Gitta Kutyniok, Bruno Ribeiro
| null | null | 2,022 |
neurips
|
SparCL: Sparse Continual Learning on the Edge
| null |
Existing work in continual learning (CL) focuses on mitigating catastrophic forgetting, i.e., model performance deterioration on past tasks when learning a new task. However, the training efficiency of a CL system is under-investigated, which limits the real-world application of CL systems under resource-limited scenarios. In this work, we propose a novel framework called Sparse Continual Learning (SparCL), which is the first study that leverages sparsity to enable cost-effective continual learning on edge devices. SparCL achieves both training acceleration and accuracy preservation through the synergy of three aspects: weight sparsity, data efficiency, and gradient sparsity. Specifically, we propose task-aware dynamic masking (TDM) to learn a sparse network throughout the entire CL process, dynamic data removal (DDR) to remove less informative training data, and dynamic gradient masking (DGM) to sparsify the gradient updates. Each of them not only improves efficiency, but also further mitigates catastrophic forgetting. SparCL consistently improves the training efficiency of existing state-of-the-art (SOTA) CL methods by at most 23X less training FLOPs, and, surprisingly, further improves the SOTA accuracy by at most 1.7%. SparCL also outperforms competitive baselines obtained from adapting SOTA sparse training methods to the CL setting in both efficiency and accuracy. We also evaluate the effectiveness of SparCL on a real mobile phone, further indicating the practical potential of our method.
|
Zifeng Wang, Zheng Zhan, Yifan Gong, Geng Yuan, Wei Niu, Tong Jian, Bin Ren, Stratis Ioannidis, Yanzhi Wang, Jennifer Dy
| null | null | 2,022 |
neurips
|
Non-Stationary Bandits under Recharging Payoffs: Improved Planning with Sublinear Regret
| null |
The stochastic multi-armed bandit setting has been recently studied in the non-stationary regime, where the mean payoff of each action is a non-decreasing function of the number of rounds passed since it was last played. This model captures natural behavioral aspects of the users which crucially determine the performance of recommendation platforms, ad placement systems, and more. Even assuming prior knowledge of the mean payoff functions, computing an optimal planning in the above model is NP-hard, while the state-of-the-art is a $1/4$-approximation algorithm for the case where at most one arm can be played per round. We first focus on the setting where the mean payoff functions are known. In this setting, we significantly improve the best-known guarantees for the planning problem by developing a polynomial-time $(1-{1}/{e})$-approximation algorithm (asymptotically and in expectation), based on a novel combination of randomized LP rounding and a time-correlated (interleaved) scheduling method. Furthermore, our algorithm achieves improved guarantees -- compared to prior work -- for the case where more than one arms can be played at each round. Moving to the bandit setting, when the mean payoff functions are initially unknown, we show how our algorithm can be transformed into a bandit algorithm with sublinear regret.
|
Orestis Papadigenopoulos, Constantine Caramanis, Sanjay Shakkottai
| null | null | 2,022 |
neurips
|
I2Q: A Fully Decentralized Q-Learning Algorithm
| null |
Fully decentralized multi-agent reinforcement learning has shown great potentials for many real-world cooperative tasks, where the global information, \textit{e.g.}, the actions of other agents, is not accessible. Although independent Q-learning is widely used for decentralized training, the transition probabilities are non-stationary since other agents are updating policies simultaneously, which leads to non-guaranteed convergence of independent Q-learning. To deal with non-stationarity, we first introduce stationary ideal transition probabilities, on which independent Q-learning could converge to the global optimum. Further, we propose a fully decentralized method, I2Q, which performs independent Q-learning on the modeled ideal transition function to reach the global optimum. The modeling of ideal transition function in I2Q is fully decentralized and independent from the learned policies of other agents, helping I2Q be free from non-stationarity and learn the optimal policy. Empirically, we show that I2Q can achieve remarkable improvement in a variety of cooperative multi-agent tasks.
|
Jiechuan Jiang, Zongqing Lu
| null | null | 2,022 |
neurips
|
Chroma-VAE: Mitigating Shortcut Learning with Generative Classifiers
| null |
Deep neural networks are susceptible to shortcut learning, using simple features to achieve low training loss without discovering essential semantic structure. Contrary to prior belief, we show that generative models alone are not sufficient to prevent shortcut learning, despite an incentive to recover a more comprehensive representation of the data than discriminative approaches. However, we observe that shortcuts are preferentially encoded with minimal information, a fact that generative models can exploit to mitigate shortcut learning. In particular, we propose Chroma-VAE, a two-pronged approach where a VAE classifier is initially trained to isolate the shortcut in a small latent subspace, allowing a secondary classifier to be trained on the complementary, shortcut-free latent subspace. In addition to demonstrating the efficacy of Chroma-VAE on benchmark and real-world shortcut learning tasks, our work highlights the potential for manipulating the latent space of generative classifiers to isolate or interpret specific correlations.
|
Wanqian Yang, Polina Kirichenko, Micah Goldblum, Andrew G. Wilson
| null | null | 2,022 |
neurips
|
Adaptively Exploiting d-Separators with Causal Bandits
| null |
Multi-armed bandit problems provide a framework to identify the optimal intervention over a sequence of repeated experiments. Without additional assumptions, minimax optimal performance (measured by cumulative regret) is well-understood. With access to additional observed variables that d-separate the intervention from the outcome (i.e., they are a d-separator), recent "causal bandit" algorithms provably incur less regret. However, in practice it is desirable to be agnostic to whether observed variables are a d-separator. Ideally, an algorithm should be adaptive; that is, perform nearly as well as an algorithm with oracle knowledge of the presence or absence of a d-separator. In this work, we formalize and study this notion of adaptivity, and provide a novel algorithm that simultaneously achieves (a) optimal regret when a d-separator is observed, improving on classical minimax algorithms, and (b) significantly smaller regret than recent causal bandit algorithms when the observed variables are not a d-separator. Crucially, our algorithm does not require any oracle knowledge of whether a d-separator is observed. We also generalize this adaptivity to other conditions, such as the front-door criterion.
|
Blair Bilodeau, Linbo Wang, Dan Roy
| null | null | 2,022 |
neurips
|
A Unified Hard-Constraint Framework for Solving Geometrically Complex PDEs
| null |
We present a unified hard-constraint framework for solving geometrically complex PDEs with neural networks, where the most commonly used Dirichlet, Neumann, and Robin boundary conditions (BCs) are considered. Specifically, we first introduce the "extra fields'' from the mixed finite element method to reformulate the PDEs so as to equivalently transform the three types of BCs into linear forms. Based on the reformulation, we derive the general solutions of the BCs analytically, which are employed to construct an ansatz that automatically satisfies the BCs. With such a framework, we can train the neural networks without adding extra loss terms and thus efficiently handle geometrically complex PDEs, alleviating the unbalanced competition between the loss terms corresponding to the BCs and PDEs. We theoretically demonstrate that the "extra fields'' can stabilize the training process. Experimental results on real-world geometrically complex PDEs showcase the effectiveness of our method compared with state-of-the-art baselines.
|
Songming Liu, Hao Zhongkai, Chengyang Ying, Hang Su, Jun Zhu, Ze Cheng
| null | null | 2,022 |
neurips
|
Spectrum Random Masking for Generalization in Image-based Reinforcement Learning
| null |
Generalization in image-based reinforcement learning (RL) aims to learn a robust policy that could be applied directly on unseen visual environments, which is a challenging task since agents usually tend to overfit to their training environment. To handle this problem, a natural approach is to increase the data diversity by image based augmentations. However, different with most vision tasks such as classification and detection, RL tasks are not always invariant to spatial based augmentations due to the entanglement of environment dynamics and visual appearance. In this paper, we argue with two principles for augmentations in RL: First, the augmented observations should facilitate learning a universal policy, which is robust to various distribution shifts. Second, the augmented data should be invariant to the learning signals such as action and reward. Following these rules, we revisit image-based RL tasks from the view of frequency domain and propose a novel augmentation method, namely Spectrum Random Masking (SRM),which is able to help agents to learn the whole frequency spectrum of observation for coping with various distributions and compatible with the pre-collected action and reward corresponding to original observation. Extensive experiments conducted on DMControl Generalization Benchmark demonstrate the proposed SRM achieves the state-of-the-art performance with strong generalization potentials.
|
Yangru Huang, Peixi Peng, Yifan Zhao, Guangyao Chen, Yonghong Tian
| null | null | 2,022 |
neurips
|
Planning to the Information Horizon of BAMDPs via Epistemic State Abstraction
| null |
The Bayes-Adaptive Markov Decision Process (BAMDP) formalism pursues the Bayes-optimal solution to the exploration-exploitation trade-off in reinforcement learning. As the computation of exact solutions to Bayesian reinforcement-learning problems is intractable, much of the literature has focused on developing suitable approximation algorithms. In this work, before diving into algorithm design, we first define, under mild structural assumptions, a complexity measure for BAMDP planning. As efficient exploration in BAMDPs hinges upon the judicious acquisition of information, our complexity measure highlights the worst-case difficulty of gathering information and exhausting epistemic uncertainty. To illustrate its significance, we establish a computationally-intractable, exact planning algorithm that takes advantage of this measure to show more efficient planning. We then conclude by introducing a specific form of state abstraction with the potential to reduce BAMDP complexity and gives rise to a computationally-tractable, approximate planning algorithm.
|
Dilip Arumugam, Satinder Singh
| null | null | 2,022 |
neurips
|
Pyramid Attention For Source Code Summarization
| null |
This paper presents a multi-granularity method for source code summarization, which generates a concise functional description for the given code snippet. We notice that skilled programmers write and read source codes hierarchically and pay close attention to conceptual entities like statements, tokens, sub-tokens, and the mapping relations between them. The entities have specific emphasis according to their granularities, e.g., statements in coarse-granularity reveal the global logical semantics of code, and the sub-tokens in fine-granularity are more related to the textual semantics. Driven by this observation, we demonstrate that a multi-granularity formulation incorporating these conceptual entities benefit the code summarization task. Concretely, the source code is transformed into a pyramidal representation, and then a pyramid attention mechanism is applied for efficient feature aggregation among different hierarchies in it. We instantiate our multi-granularity method using the proposed pyramid attention and name it PA-former (Pyramid Attention transformer). We evaluated it on two source code summarization benchmarks where it surpasses the prior works and achieves new state-of-the-art results. Our code and data are available at https://github.com/leichainju/pa-former.
|
Lei Chai, Ming LI
| null | null | 2,022 |
neurips
|
SIREN: Shaping Representations for Detecting Out-of-Distribution Objects
| null |
Detecting out-of-distribution (OOD) objects is indispensable for safely deploying object detectors in the wild. Although distance-based OOD detection methods have demonstrated promise in image classification, they remain largely unexplored in object-level OOD detection. This paper bridges the gap by proposing a distance-based framework for detecting OOD objects, which relies on the model-agnostic representation space and provides strong generality across different neural architectures. Our proposed framework SIREN contributes two novel components: (1) a representation learning component that uses a trainable loss function to shape the representations into a mixture of von Mises-Fisher (vMF) distributions on the unit hypersphere, and (2) a test-time OOD detection score leveraging the learned vMF distributions in a parametric or non-parametric way. SIREN achieves competitive performance on both the recent detection transformers and CNN-based models, improving the AUROC by a large margin compared to the previous best method. Code is publicly available at https://github.com/deeplearning-wisc/siren.
|
Xuefeng Du, Gabriel Gozum, Yifei Ming, Yixuan Li
| null | null | 2,022 |
neurips
|
Optimal and Adaptive Monteiro-Svaiter Acceleration
| null |
We develop a variant of the Monteiro-Svaiter (MS) acceleration framework that removes the need to solve an expensive implicit equation at every iteration. Consequently, for any $p\ge 2$ we improve the complexity of convex optimization with Lipschitz $p$th derivative by a logarithmic factor, matching a lower bound. We also introduce an MS subproblem solver that requires no knowledge of problem parameters, and implement it as either a second- or first-order method by solving linear systems or applying MinRes, respectively. On logistic regression problems our method outperforms previous accelerated second-order methods, but under-performs Newton's method; simply iterating our first-order adaptive subproblem solver is competitive with L-BFGS.
|
Yair Carmon, Danielle Hausler, Arun Jambulapati, Yujia Jin, Aaron Sidford
| null | null | 2,022 |
neurips
|
Instability and Local Minima in GAN Training with Kernel Discriminators
| null |
Generative Adversarial Networks (GANs) are a widely-used tool for generative modeling of complex data. Despite their empirical success, the training of GANs is not fully understood due to the joint training of the generator and discriminator. This paper analyzes these joint dynamics when the true samples, as well as the generated samples, are discrete, finite sets, and the discriminator is kernel-based. A simple yet expressive framework for analyzing training called the $\textit{Isolated Points Model}$ is introduced. In the proposed model, the distance between true samples greatly exceeds the kernel width so that each generated point is influenced by at most one true point. The model enables precise characterization of the conditions for convergence both to good and bad minima. In particular, the analysis explains two common failure modes: (i) an approximate mode collapse and (ii) divergence. Numerical simulations are provided that predictably replicate these behaviors.
|
Evan Becker, Parthe Pandit, Sundeep Rangan, Alyson K. Fletcher
| null | null | 2,022 |
neurips
|
Language Conditioned Spatial Relation Reasoning for 3D Object Grounding
| null |
Localizing objects in 3D scenes based on natural language requires understanding and reasoning about spatial relations. In particular, it is often crucial to distinguish similar objects referred by the text, such as "the left most chair" and "a chair next to the window". In this work we propose a language-conditioned transformer model for grounding 3D objects and their spatial relations. To this end, we design a spatial self-attention layer that accounts for relative distances and orientations between objects in input 3D point clouds. Training such a layer with visual and language inputs enables to disambiguate spatial relations and to localize objects referred by the text. To facilitate the cross-modal learning of relations, we further propose a teacher-student approach where the teacher model is first trained using ground-truth object labels, and then helps to train a student model using point cloud inputs. We perform ablation studies showing advantages of our approach. We also demonstrate our model to significantly outperform the state of the art on the challenging Nr3D, Sr3D and ScanRefer 3D object grounding datasets.
|
Shizhe Chen, Pierre-Louis Guhur, Makarand Tapaswi, Cordelia Schmid, Ivan Laptev
| null | null | 2,022 |
neurips
|
Constrained Langevin Algorithms with L-mixing External Random Variables
| null |
Langevin algorithms are gradient descent methods augmented with additive noise, and are widely used in Markov Chain Monte Carlo (MCMC) sampling, optimization, and machine learning. In recent years, the non-asymptotic analysis of Langevin algorithms for non-convex learning has been extensively explored. For constrained problems with non-convex losses over a compact convex domain with IID data variables, the projected Langevin algorithm achieves a deviation of $O(T^{-1/4} (\log T)^{1/2})$ from its target distribution \cite{lamperski2021projected} in $1$-Wasserstein distance. In this paper, we obtain a deviation of $O(T^{-1/2} \log T)$ in $1$-Wasserstein distance for non-convex losses with $L$-mixing data variables and polyhedral constraints (which are not necessarily bounded). This improves on the previous bound for constrained problems and matches the best-known bound for unconstrained problems.
|
Yuping Zheng, Andrew Lamperski
| null | null | 2,022 |
neurips
|
On the Robustness of Deep Clustering Models: Adversarial Attacks and Defenses
| null |
Clustering models constitute a class of unsupervised machine learning methods which are used in a number of application pipelines, and play a vital role in modern data science. With recent advancements in deep learning-- deep clustering models have emerged as the current state-of-the-art over traditional clustering approaches, especially for high-dimensional image datasets. While traditional clustering approaches have been analyzed from a robustness perspective, no prior work has investigated adversarial attacks and robustness for deep clustering models in a principled manner. To bridge this gap, we propose a blackbox attack using Generative Adversarial Networks (GANs) where the adversary does not know which deep clustering model is being used, but can query it for outputs. We analyze our attack against multiple state-of-the-art deep clustering models and real-world datasets, and find that it is highly successful. We then employ some natural unsupervised defense approaches, but find that these are unable to mitigate our attack. Finally, we attack Face++, a production-level face clustering API service, and find that we can significantly reduce its performance as well. Through this work, we thus aim to motivate the need for truly robust deep clustering models.
|
Anshuman Chhabra, Ashwin Sekhari, Prasant Mohapatra
| null | null | 2,022 |
neurips
|
Exploiting the Relationship Between Kendall's Rank Correlation and Cosine Similarity for Attribution Protection
| null |
Model attributions are important in deep neural networks as they aid practitioners in understanding the models, but recent studies reveal that attributions can be easily perturbed by adding imperceptible noise to the input. The non-differentiable Kendall's rank correlation is a key performance index for attribution protection. In this paper, we first show that the expected Kendall's rank correlation is positively correlated to cosine similarity and then indicate that the direction of attribution is the key to attribution robustness. Based on these findings, we explore the vector space of attribution to explain the shortcomings of attribution defense methods using $\ell_p$ norm and propose integrated gradient regularizer (IGR), which maximizes the cosine similarity between natural and perturbed attributions. Our analysis further exposes that IGR encourages neurons with the same activation states for natural samples and the corresponding perturbed samples. Our experiments on different models and datasets confirm our analysis on attribution protection and demonstrate a decent improvement in adversarial robustness.
|
Fan Wang, Adams Wai Kin Kong
| null | null | 2,022 |
neurips
|
MVP-N: A Dataset and Benchmark for Real-World Multi-View Object Classification
| null |
Combining information from multiple views is essential for discriminating similar objects. However, existing datasets for multi-view object classification have several limitations, such as synthetic and coarse-grained objects, no validation split for hyperparameter tuning, and a lack of view-level information quantity annotations for analyzing multi-view-based methods. To address this issue, this study proposes a new dataset, MVP-N, which contains 44 retail products, 16k real captured views with human-perceived information quantity annotations, and 9k multi-view sets. The fine-grained categorization of objects naturally generates multi-view label noise owing to the inter-class view similarity, allowing the study of learning from noisy labels in the multi-view case. Moreover, this study benchmarks four multi-view-based feature aggregation methods and twelve soft label methods on MVP-N. Experimental results show that MVP-N will be a valuable resource for facilitating the development of real-world multi-view object classification methods. The dataset and code are publicly available at https://github.com/SMNUResearch/MVP-N.
|
REN WANG, Jiayue Wang, Tae Sung Kim, JINSUNG KIM, Hyuk-Jae Lee
| null | null | 2,022 |
neurips
|
AutoST: Towards the Universal Modeling of Spatio-temporal Sequences
| null |
The analysis of spatio-temporal sequences plays an important role in many real-world applications, demanding a high model capacity to capture the interdependence among spatial and temporal dimensions. Previous studies provided separated network design in three categories: spatial first, temporal first, and spatio-temporal synchronous. However, the manually-designed heterogeneous models can hardly meet the spatio-temporal dependency capturing priority for various tasks. To address this, we proposed a universal modeling framework with three distinctive characteristics: (i) Attention-based network backbone, including S2T Layer (spatial first), T2S Layer (temporal first), and STS Layer (spatio-temporal synchronous). (ii) The universal modeling framework, named UniST, with a unified architecture that enables flexible modeling priorities with the proposed three different modules. (iii) An automatic search strategy, named AutoST, automatically searches the optimal spatio-temporal modeling priority by network architecture search. Extensive experiments on five real-world datasets demonstrate that UniST with any single type of our three proposed modules can achieve state-of-the-art performance. Furthermore, AutoST can achieve overwhelming performance with UniST.
|
Jianxin Li, Shuai Zhang, Hui Xiong, Haoyi Zhou
| null | null | 2,022 |
neurips
|
Wavelet Feature Maps Compression for Image-to-Image CNNs
| null |
Convolutional Neural Networks (CNNs) are known for requiring extensive computational resources, and quantization is among the best and most common methods for compressing them. While aggressive quantization (i.e., less than 4-bits) performs well for classification, it may cause severe performance degradation in image-to-image tasks such as semantic segmentation and depth estimation. In this paper, we propose Wavelet Compressed Convolution (WCC)---a novel approach for high-resolution activation maps compression integrated with point-wise convolutions, which are the main computational cost of modern architectures. To this end, we use an efficient and hardware-friendly Haar-wavelet transform, known for its effectiveness in image compression, and define the convolution on the compressed activation map. We experiment with various tasks that benefit from high-resolution input. By combining WCC with light quantization, we achieve compression rates equivalent to 1-4bit activation quantization with relatively small and much more graceful degradation in performance. Our code is available at https://github.com/BGUCompSci/WaveletCompressedConvolution.
|
Shahaf E. Finder, Yair Zohav, Maor Ashkenazi, Eran Treister
| null | null | 2,022 |
neurips
|
Contrastive Graph Structure Learning via Information Bottleneck for Recommendation
| null |
Graph convolution networks (GCNs) for recommendations have emerged as an important research topic due to their ability to exploit higher-order neighbors. Despite their success, most of them suffer from the popularity bias brought by a small number of active users and popular items. Also, a real-world user-item bipartite graph contains many noisy interactions, which may hamper the sensitive GCNs. Graph contrastive learning show promising performance for solving the above challenges in recommender systems. Most existing works typically perform graph augmentation to create multiple views of the original graph by randomly dropping edges/nodes or relying on predefined rules, and these augmented views always serve as an auxiliary task by maximizing their correspondence. However, we argue that the graph structures generated from these vanilla approaches may be suboptimal, and maximizing their correspondence will force the representation to capture information irrelevant for the recommendation task. Here, we propose a Contrastive Graph Structure Learning via Information Bottleneck (CGI) for recommendation, which adaptively learns whether to drop an edge or node to obtain optimized graph structures in an end-to-end manner. Moreover, we innovatively introduce the Information Bottleneck into the contrastive learning process to avoid capturing irrelevant information among different views and help enrich the final representation for recommendation. Extensive experiments on public datasets are provided to show that our model significantly outperforms strong baselines.
|
Chunyu Wei, Jian Liang, Di Liu, Fei Wang
| null | null | 2,022 |
neurips
|
Evaluated CMI Bounds for Meta Learning: Tightness and Expressiveness
| null |
Recent work has established that the conditional mutual information (CMI) framework of Steinke and Zakynthinou (2020) is expressive enough to capture generalization guarantees in terms of algorithmic stability, VC dimension, and related complexity measures for conventional learning (Harutyunyan et al., 2021, Haghifam et al., 2021). Hence, it provides a unified method for establishing generalization bounds. In meta learning, there has so far been a divide between information-theoretic results and results from classical learning theory. In this work, we take a first step toward bridging this divide. Specifically, we present novel generalization bounds for meta learning in terms of the evaluated CMI (e-CMI). To demonstrate the expressiveness of the e-CMI framework, we apply our bounds to a representation learning setting, with $n$ samples from $\hat n$ tasks parameterized by functions of the form $f_i \circ h$. Here, each $f_i \in \mathcal F$ is a task-specific function, and $h \in \mathcal H$ is the shared representation. For this setup, we show that the e-CMI framework yields a bound that scales as $\sqrt{ \mathcal C(\mathcal H)/(n\hat n) + \mathcal C(\mathcal F)/n} $, where $\mathcal C(\cdot)$ denotes a complexity measure of the hypothesis class. This scaling behavior coincides with the one reported in Tripuraneni et al. (2020) using Gaussian complexity.
|
Fredrik Hellström, Giuseppe Durisi
| null | null | 2,022 |
neurips
|
Data Augmentation for Compositional Data: Advancing Predictive Models of the Microbiome
| null |
Data augmentation plays a key role in modern machine learning pipelines. While numerous augmentation strategies have been studied in the context of computer vision and natural language processing, less is known for other data modalities. Our work extends the success of data augmentation to compositional data, i.e., simplex-valued data, which is of particular interest in microbiology, geochemistry, and other applications. Drawing on key principles from compositional data analysis, such as the \emph{Aitchison geometry of the simplex} and subcompositions, we define novel augmentation strategies for this data modality. Incorporating our data augmentations into standard supervised learning pipelines results in consistent performance gains across a wide range of standard benchmark datasets. In particular, we set a new state-of-the-art for key disease prediction tasks including colorectal cancer, type 2 diabetes, and Crohn's disease. In addition, our data augmentations enable us to define a novel contrastive learning model, which improves on previous representation learning approaches for microbiome compositional data.
|
Elliott Gordon-Rodriguez, Thomas Quinn, John P. Cunningham
| null | null | 2,022 |
neurips
|
Graph Neural Networks are Dynamic Programmers
| null |
Recent advances in neural algorithmic reasoning with graph neural networks (GNNs) are propped up by the notion of algorithmic alignment. Broadly, a neural network will be better at learning to execute a reasoning task (in terms of sample complexity) if its individual components align well with the target algorithm. Specifically, GNNs are claimed to align with dynamic programming (DP), a general problem-solving strategy which expresses many polynomial-time algorithms. However, has this alignment truly been demonstrated and theoretically quantified? Here we show, using methods from category theory and abstract algebra, that there exists an intricate connection between GNNs and DP, going well beyond the initial observations over individual algorithms such as Bellman-Ford. Exposing this connection, we easily verify several prior findings in the literature, produce better-grounded GNN architectures for edge-centric tasks, and demonstrate empirical results on the CLRS algorithmic reasoning benchmark. We hope our exposition will serve as a foundation for building stronger algorithmically aligned GNNs.
|
Andrew J Dudzik, Petar Veličković
| null | null | 2,022 |
neurips
|
Finding Optimal Arms in Non-stochastic Combinatorial Bandits with Semi-bandit Feedback and Finite Budget
| null |
We consider the combinatorial bandits problem with semi-bandit feedback under finite sampling budget constraints, in which the learner can carry out its action only for a limited number of times specified by an overall budget. The action is to choose a set of arms, whereupon feedback for each arm in the chosen set is received. Unlike existing works, we study this problem in a non-stochastic setting with subset-dependent feedback, i.e., the semi-bandit feedback received could be generated by an oblivious adversary and also might depend on the chosen set of arms. In addition, we consider a general feedback scenario covering both the numerical-based as well as preference-based case and introduce a sound theoretical framework for this setting guaranteeing sensible notions of optimal arms, which a learner seeks to find. We suggest a generic algorithm suitable to cover the full spectrum of conceivable arm elimination strategies from aggressive to conservative. Theoretical questions about the sufficient and necessary budget of the algorithm to find the best arm are answered and complemented by deriving lower bounds for any learning algorithm for this problem scenario.
|
Jasmin Brandt, Viktor Bengs, Björn Haddenhorst, Eyke Hüllermeier
| null | null | 2,022 |
neurips
|
Multiclass Learnability Beyond the PAC Framework: Universal Rates and Partial Concept Classes
| null |
In this paper we study the problem of multiclass classification with a bounded number of different labels $k$, in the realizable setting. We extend the traditional PAC model to a) distribution-dependent learning rates, and b) learning rates under data-dependent assumptions. First, we consider the universal learning setting (Bousquet, Hanneke, Moran, van Handel and Yehudayoff, STOC'21), for which we provide a complete characterization of the achievable learning rates that holds for every fixed distribution. In particular, we show the following trichotomy: for any concept class, the optimal learning rate is either exponential, linear or arbitrarily slow. Additionally, we provide complexity measures of the underlying hypothesis class that characterize when these rates occur. Second, we consider the problem of multiclass classification with structured data (such as data lying on a low dimensional manifold or satisfying margin conditions), a setting which is captured by partial concept classes (Alon, Hanneke, Holzman and Moran, FOCS'21). Partial concepts are functions that can be undefined in certain parts of the input space. We extend the traditional PAC learnability of total concept classes to partial concept classes in the multiclass setting and investigate differences between partial and total concepts.
|
Alkis Kalavasis, Grigoris Velegkas, Amin Karbasi
| null | null | 2,022 |
neurips
|
Symplectic Spectrum Gaussian Processes: Learning Hamiltonians from Noisy and Sparse Data
| null |
Hamiltonian mechanics is a well-established theory for modeling the time evolution of systems with conserved quantities (called Hamiltonian), such as the total energy of the system. Recent works have parameterized the Hamiltonian by machine learning models (e.g., neural networks), allowing Hamiltonian dynamics to be obtained from state trajectories without explicit mathematical modeling. However, the performance of existing models is limited as we can observe only noisy and sparse trajectories in practice. This paper proposes a probabilistic model that can learn the dynamics of conservative or dissipative systems from noisy and sparse data. We introduce a Gaussian process that incorporates the symplectic geometric structure of Hamiltonian systems, which is used as a prior distribution for estimating Hamiltonian systems with additive dissipation. We then present its spectral representation, Symplectic Spectrum Gaussian Processes (SSGPs), for which we newly derive random Fourier features with symplectic structures. This allows us to construct an efficient variational inference algorithm for training the models while simulating the dynamics via ordinary differential equation solvers. Experiments on several physical systems show that SSGP offers excellent performance in predicting dynamics that follow the energy conservation or dissipation law from noisy and sparse data.
|
Yusuke Tanaka, Tomoharu Iwata, naonori ueda
| null | null | 2,022 |
neurips
|
Biologically plausible solutions for spiking networks with efficient coding
| null |
Understanding how the dynamics of neural networks is shaped by the computations they perform is a fundamental question in neuroscience. Recently, the framework of efficient coding proposed a theory of how spiking neural networks can compute low-dimensional stimulus signals with high efficiency. Efficient spiking networks are based on time-dependent minimization of a loss function related to information coding with spikes. To inform the understanding of the function and dynamics of biological networks in the brain, however, the mathematical models have to be informed by biology and obey the same constraints as biological networks. Currently, spiking network models of efficient coding have been extended to include some features of biological plausibility, such as architectures with excitatory and inhibitory neurons. However, biological realism of efficient coding theories is still limited to simple cases and does not include single neuron and network properties that are known to be key in biological circuits. Here, we revisit the theory of efficient coding with spikes to develop spiking neural networks that are closer to biological circuits. Namely, we find a biologically plausible spiking model realizing efficient coding in the case of a generalized leaky integrate-and-fire network with excitatory and inhibitory units, equipped with fast and slow synaptic currents, local homeostatic currents such as spike-triggered adaptation, hyperpolarization-activated rebound current, heterogeneous firing thresholds and resets, heterogeneous postsynaptic potentials, and structured, low-rank connectivity. We show how the rank of E-E connectivity matrix shapes network responses.
|
Veronika Koren, Stefano Panzeri
| null | null | 2,022 |
neurips
|
Self-Aware Personalized Federated Learning
| null |
In the context of personalized federated learning (FL), the critical challenge is to balance local model improvement and global model tuning when the personal and global objectives may not be exactly aligned. Inspired by Bayesian hierarchical models, we develop a self-aware personalized FL method where each client can automatically balance the training of its local personal model and the global model that implicitly contributes to other clients' training. Such a balance is derived from the inter-client and intra-client uncertainty quantification. A larger inter-client variation implies more personalization is needed. Correspondingly, our method uses uncertainty-driven local training steps an aggregation rule instead of conventional local fine-tuning and sample size-based aggregation. With experimental studies on synthetic data, Amazon Alexa audio data, and public datasets such as MNIST, FEMNIST, CIFAR10, and Sent140, we show that our proposed method can achieve significantly improved personalization performance compared with the existing counterparts.
|
Huili Chen, Jie Ding, Eric W. Tramel, Shuang Wu, Anit Kumar Sahu, Salman Avestimehr, Tao Zhang
| null | null | 2,022 |
neurips
|
SPD: Synergy Pattern Diversifying Oriented Unsupervised Multi-agent Reinforcement Learning
| null |
Reinforcement learning typically relies heavily on a well-designed reward signal, which gets more challenging in cooperative multi-agent reinforcement learning. Alternatively, unsupervised reinforcement learning (URL) has delivered on its promise in the recent past to learn useful skills and explore the environment without external supervised signals. These approaches mainly aimed for the single agent to reach distinguishable states, insufficient for multi-agent systems due to that each agent interacts with not only the environment, but also the other agents. We propose Synergy Pattern Diversifying Oriented Unsupervised Multi-agent Reinforcement Learning (SPD) to learn generic coordination policies for agents with no extrinsic reward. Specifically, we devise the Synergy Pattern Graph (SPG), a graph depicting the relationships of agents at each time step. Furthermore, we propose an episode-wise divergence measurement to approximate the discrepancy of synergy patterns. To overcome the challenge of sparse return, we decompose the discrepancy of synergy patterns to per-time-step pseudo-reward. Empirically, we show the capacity of SPD to acquire meaningful coordination policies, such as maintaining specific formations in Multi-Agent Particle Environment and pass-and-shoot in Google Research Football. Furthermore, we demonstrate that the same instructive pretrained policy's parameters can serve as a good initialization for a series of downstream tasks' policies, achieving higher data efficiency and outperforming state-of-the-art approaches in Google Research Football.
|
Yuhang Jiang, Jianzhun Shao, Shuncheng He, Hongchang Zhang, Xiangyang Ji
| null | null | 2,022 |
neurips
|
Dynamic Learning in Large Matching Markets
| null |
We study a sequential matching problem faced by "large" centralized platforms where "jobs" must be matched to "workers" subject to uncertainty about worker skill proficiencies. Jobs arrive at discrete times with "job-types" observable upon arrival. To capture the "choice overload" phenomenon, we posit an unlimited supply of workers where each worker is characterized by a vector of attributes (aka "worker-types") drawn from an underlying population-level distribution. The distribution as well as mean payoffs for possible worker-job type-pairs are unobservables and the platform's goal is to sequentially match incoming jobs to workers in a way that maximizes its cumulative payoffs over the planning horizon. We establish lower bounds on the "regret" of any matching algorithm in this setting and propose a novel rate-optimal learning algorithm that adapts to aforementioned primitives "online." Our learning guarantees highlight a distinctive characteristic of the problem: achievable performance only has a "second-order" dependence on worker-type distributions; we believe this finding may be of interest more broadly.
|
Anand Kalvit, Assaf Zeevi
| null | null | 2,022 |
neurips
|
Model-Based Imitation Learning for Urban Driving
| null |
An accurate model of the environment and the dynamic agents acting in it offers great potential for improving motion planning. We present MILE: a Model-based Imitation LEarning approach to jointly learn a model of the world and a policy for autonomous driving. Our method leverages 3D geometry as an inductive bias and learns a highly compact latent space directly from high-resolution videos of expert demonstrations. Our model is trained on an offline corpus of urban driving data, without any online interaction with the environment. MILE improves upon prior state-of-the-art by 31% in driving score on the CARLA simulator when deployed in a completely new town and new weather conditions. Our model can predict diverse and plausible states and actions, that can be interpretably decoded to bird's-eye view semantic segmentation. Further, we demonstrate that it can execute complex driving manoeuvres from plans entirely predicted in imagination. Our approach is the first camera-only method that models static scene, dynamic scene, and ego-behaviour in an urban driving environment. The code and model weights are available at https://github.com/wayveai/mile.
|
Anthony Hu, Gianluca Corrado, Nicolas Griffiths, Zachary Murez, Corina Gurau, Hudson Yeo, Alex Kendall, Roberto Cipolla, Jamie Shotton
| null | null | 2,022 |
neurips
|
Boosting Out-of-distribution Detection with Typical Features
| null |
Out-of-distribution (OOD) detection is a critical task for ensuring the reliability and safety of deep neural networks in real-world scenarios. Different from most previous OOD detection methods that focus on designing OOD scores or introducing diverse outlier examples to retrain the model, we delve into the obstacle factors in OOD detection from the perspective of typicality and regard the feature's high-probability region of the deep model as the feature's typical set. We propose to rectify the feature into its typical set and calculate the OOD score with the typical features to achieve reliable uncertainty estimation. The feature rectification can be conducted as a plug-and-play module with various OOD scores. We evaluate the superiority of our method on both the commonly used benchmark (CIFAR) and the more challenging high-resolution benchmark with large label space (ImageNet). Notably, our approach outperforms state-of-the-art methods by up to 5.11% in the average FPR95 on the ImageNet benchmark.
|
Yao Zhu, YueFeng Chen, Chuanlong Xie, Xiaodan Li, Rong Zhang, Hui Xue', Xiang Tian, bolun zheng, Yaowu Chen
| null | null | 2,022 |
neurips
|
Additive MIL: Intrinsically Interpretable Multiple Instance Learning for Pathology
| null |
Multiple Instance Learning (MIL) has been widely applied in pathology towards solving critical problems such as automating cancer diagnosis and grading, predicting patient prognosis, and therapy response. Deploying these models in a clinical setting requires careful inspection of these black boxes during development and deployment to identify failures and maintain physician trust. In this work, we propose a simple formulation of MIL models, which enables interpretability while maintaining similar predictive performance. Our Additive MIL models enable spatial credit assignment such that the contribution of each region in the image can be exactly computed and visualized. We show that our spatial credit assignment coincides with regions used by pathologists during diagnosis and improves upon classical attention heatmaps from attention MIL models. We show that any existing MIL model can be made additive with a simple change in function composition. We also show how these models can debug model failures, identify spurious features, and highlight class-wise regions of interest, enabling their use in high-stakes environments such as clinical decision-making.
|
Syed Ashar Javed, Dinkar Juyal, Harshith Padigela, Amaro Taylor-Weiner, Limin Yu, Aaditya Prakash
| null | null | 2,022 |
neurips
|
MetaTeacher: Coordinating Multi-Model Domain Adaptation for Medical Image Classification
| null |
In medical image analysis, we often need to build an image recognition system for a target scenario with the access to small labeled data and abundant unlabeled data, as well as multiple related models pretrained on different source scenarios. This presents the combined challenges of multi-source-free domain adaptation and semi-supervised learning simultaneously. However, both problems are typically studied independently in the literature, and how to effectively combine existing methods is non-trivial in design. In this work, we introduce a novel MetaTeacher framework with three key components: (1) A learnable coordinating scheme for adaptive domain adaptation of individual source models, (2) A mutual feedback mechanism between the target model and source models for more coherent learning, and (3) A semi-supervised bilevel optimization algorithm for consistently organizing the adaption of source models and the learning of target model. It aims to leverage the knowledge of source models adaptively whilst maximize their complementary benefits collectively to counter the challenge of limited supervision. Extensive experiments on five chest x-ray image datasets show that our method outperforms clearly all the state-of-the-art alternatives. The code is available at https://github.com/wongzbb/metateacher.
|
Zhenbin Wang, Mao Ye, Xiatian Zhu, Liuhan Peng, Liang Tian, Yingying Zhu
| null | null | 2,022 |
neurips
|
SAPA: Similarity-Aware Point Affiliation for Feature Upsampling
| null |
We introduce point affiliation into feature upsampling, a notion that describes the affiliation of each upsampled point to a semantic cluster formed by local decoder feature points with semantic similarity. By rethinking point affiliation, we present a generic formulation for generating upsampling kernels. The kernels encourage not only semantic smoothness but also boundary sharpness in the upsampled feature maps. Such properties are particularly useful for some dense prediction tasks such as semantic segmentation. The key idea of our formulation is to generate similarity-aware kernels by comparing the similarity between each encoder feature point and the spatially associated local region of decoder features. In this way, the encoder feature point can function as a cue to inform the semantic cluster of upsampled feature points. To embody the formulation, we further instantiate a lightweight upsampling operator, termed Similarity-Aware Point Affiliation (SAPA), and investigate its variants. SAPA invites consistent performance improvements on a number of dense prediction tasks, including semantic segmentation, object detection, depth estimation, and image matting. Code is available at: https://github.com/poppinace/sapa
|
Hao Lu, Wenze Liu, Zixuan Ye, Hongtao Fu, Yuliang Liu, Zhiguo Cao
| null | null | 2,022 |
neurips
|
Invariant and Transportable Representations for Anti-Causal Domain Shifts
| null |
Real-world classification problems must contend with domain shift, the (potential) mismatch between the domain where a model is deployed and the domain(s) where the training data was gathered. Methods to handle such problems must specify what structure is held in common between the domains and what is allowed to vary. A natural assumption is that causal (structural) relationships are invariant in all domains. Then, it is tempting to learn a predictor for label $Y$ that depends only on its causal parents. However, many real-world problems are ``anti-causal'' in the sense that $Y$ is a cause of the covariates $X$---in this case, $Y$ has no causal parents and the naive causal invariance is useless. In this paper, we study representation learning under a particular notion of domain shift that both respects causal invariance and that naturally handles the ``anti-causal'' structure. We show how to leverage the shared causal structure of the domains to learn a representation that both admits an invariant predictor and that also allows fast adaptation in new domains. The key is to translate causal assumptions into learning principles that disentangle ``invariant'' and ``non-stable'' features. Experiments on both synthetic and real-world data demonstrate the effectiveness of the proposed learning algorithm.
|
Yibo Jiang, Victor Veitch
| null | null | 2,022 |
neurips
|
Biological Learning of Irreducible Representations of Commuting Transformations
| null |
A longstanding challenge in neuroscience is to understand neural mechanisms underlying the brain’s remarkable ability to learn and detect transformations of objects due to motion. Translations and rotations of images can be viewed as orthogonal transformations in the space of pixel intensity vectors. Every orthogonal transformation can be decomposed into rotations within irreducible two-dimensional subspaces (or representations). For sets of commuting transformations, known as toroidal groups, Cohen and Welling proposed a mathematical framework for learning the irreducible representations. We explore the possibility that the brain also learns irreducible representations using a biologically plausible learning mechanism. The first is based on SVD of the anti-symmetrized outer product of the vectors representing consecutive images and is implemented by a single-layer neural network. The second is based on PCA of the difference between consecutive frames and is implemented in a two-layer network but with greater biological plausibility. Both networks learn image rotations (replicating Cohen and Welling’s results) as well as translations. It would be interesting to search for the proposed networks in nascent connectomics and physiology datasets.
|
Alexander Genkin, David Lipshutz, Siavash Golkar, Tiberiu Tesileanu, Dmitri Chklovskii
| null | null | 2,022 |
neurips
|
Bayesian inference via sparse Hamiltonian flows
| null |
A Bayesian coreset is a small, weighted subset of data that replaces the full dataset during Bayesian inference, with the goal of reducing computational cost. Although past work has shown empirically that there often exists a coreset with low inferential error, efficiently constructing such a coreset remains a challenge. Current methods tend to be slow, require a secondary inference step after coreset construction, and do not provide bounds on the data marginal evidence. In this work, we introduce a new method---sparse Hamiltonian flows---that addresses all three of these challenges. The method involves first subsampling the data uniformly, and then optimizing a Hamiltonian flow parametrized by coreset weights and including periodic momentum quasi-refreshment steps. Theoretical results show that the method enables an exponential compression of the dataset in a representative model, and that the quasi-refreshment steps reduce the KL divergence to the target. Real and synthetic experiments demonstrate that sparse Hamiltonian flows provide accurate posterior approximations with significantly reduced runtime compared with competing dynamical-system-based inference methods.
|
Naitong Chen, Zuheng Xu, Trevor Campbell
| null | null | 2,022 |
neurips
|
Diversity vs. Recognizability: Human-like generalization in one-shot generative models
| null |
Robust generalization to new concepts has long remained a distinctive feature of human intelligence. However, recent progress in deep generative models has now led to neural architectures capable of synthesizing novel instances of unknown visual concepts from a single training example. Yet, a more precise comparison between these models and humans is not possible because existing performance metrics for generative models (i.e., FID, IS, likelihood) are not appropriate for the one-shot generation scenario. Here, we propose a new framework to evaluate one-shot generative models along two axes: sample recognizability vs. diversity (i.e., intra-class variability). Using this framework, we perform a systematic evaluation of representative one-shot generative models on the Omniglot handwritten dataset. We first show that GAN-like and VAE-like models fall on opposite ends of the diversity-recognizability space. Extensive analyses of the effect of key model parameters further revealed that spatial attention and context integration have a linear contribution to the diversity-recognizability trade-off. In contrast, disentanglement transports the model along a parabolic curve that could be used to maximize recognizability. Using the diversity-recognizability framework, we were able to identify models and parameters that closely approximate human data.
|
Victor Boutin, Lakshya Singhal, Xavier Thomas, Thomas Serre
| null | null | 2,022 |
neurips
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.