title
stringlengths
5
246
categories
stringlengths
5
94
abstract
stringlengths
54
5.03k
authors
stringlengths
0
6.72k
doi
stringlengths
12
54
id
stringlengths
6
10
year
float64
2.02k
2.02k
venue
stringclasses
13 values
Provable Generalization of Overparameterized Meta-learning Trained with SGD
null
Despite the empirical success of deep meta-learning, theoretical understanding of overparameterized meta-learning is still limited. This paper studies the generalization of a widely used meta-learning approach, Model-Agnostic Meta-Learning (MAML), which aims to find a good initialization for fast adaptation to new tasks. Under a mixed linear regression model, we analyze the generalization properties of MAML trained with SGD in the overparameterized regime. We provide both upper and lower bounds for the excess risk of MAML, which captures how SGD dynamics affect these generalization bounds. With such sharp characterizations, we further explore how various learning parameters impact the generalization capability of overparameterized MAML, including explicitly identifying typical data and task distributions that can achieve diminishing generalization error with overparameterization, and characterizing the impact of adaptation learning rate on both excess risk and the early stopping time. Our theoretical findings are further validated by experiments.
Yu Huang, Yingbin Liang, Longbo Huang
null
null
2,022
neurips
Sparse Gaussian Process Hyperparameters: Optimize or Integrate?
null
The kernel function and its hyperparameters are the central model selection choice in a Gaussian process (Rasmussen and Williams, 2006).Typically, the hyperparameters of the kernel are chosen by maximising the marginal likelihood, an approach known as Type-II maximum likelihood (ML-II). However, ML-II does not account for hyperparameter uncertainty, and it is well-known that this can lead to severely biased estimates and an underestimation of predictive uncertainty. While there are several works which employ fully Bayesian characterisation of GPs, relatively few propose such approaches for the sparse GPs paradigm. In this work we propose an algorithm for sparse Gaussian process regression which leverages MCMC to sample from the hyperparameter posterior within the variational inducing point framework of (Titsias, 2009). This work is closely related to (Hensman et al, 2015b) but side-steps the need to sample the inducing points, thereby significantly improving sampling efficiency in the Gaussian likelihood case. We compare this scheme against natural baselines in literature along with stochastic variational GPs (SVGPs) along with an extensive computational analysis.
Vidhi Lalchand, Wessel Bruinsma, David Burt, Carl Edward Rasmussen
null
null
2,022
neurips
When Do Flat Minima Optimizers Work?
null
Recently, flat-minima optimizers, which seek to find parameters in low-loss neighborhoods, have been shown to improve a neural network's generalization performance over stochastic and adaptive gradient-based optimizers. Two methods have received significant attention due to their scalability: 1. Stochastic Weight Averaging (SWA), and 2. Sharpness-Aware Minimization (SAM). However, there has been limited investigation into their properties and no systematic benchmarking of them across different domains. We fill this gap here by comparing the loss surfaces of the models trained with each method and through broad benchmarking across computer vision, natural language processing, and graph representation learning tasks. We discover several surprising findings from these results, which we hope will help researchers further improve deep learning optimizers, and practitioners identify the right optimizer for their problem.
Jean Kaddour, Linqing Liu, Ricardo Silva, Matt J. Kusner
null
null
2,022
neurips
HierSpeech: Bridging the Gap between Text and Speech by Hierarchical Variational Inference using Self-supervised Representations for Speech Synthesis
null
This paper presents HierSpeech, a high-quality end-to-end text-to-speech (TTS) system based on a hierarchical conditional variational autoencoder (VAE) utilizing self-supervised speech representations. Recently, single-stage TTS systems, which directly generate raw speech waveform from text, have been getting interest thanks to their ability in generating high-quality audio within a fully end-to-end training pipeline. However, there is still a room for improvement in the conventional TTS systems. Since it is challenging to infer both the linguistic and acoustic attributes from the text directly, missing the details of attributes, specifically linguistic information, is inevitable, which results in mispronunciation and over-smoothing problem in their synthetic speech. To address the aforementioned problem, we leverage self-supervised speech representations as additional linguistic representations to bridge an information gap between text and speech. Then, the hierarchical conditional VAE is adopted to connect these representations and to learn each attribute hierarchically by improving the linguistic capability in latent representations. Compared with the state-of-the-art TTS system, HierSpeech achieves +0.303 comparative mean opinion score, and reduces the phoneme error rate of synthesized speech from 9.16% to 5.78% on the VCTK dataset. Furthermore, we extend our model to HierSpeech-U, an untranscribed text-to-speech system. Specifically, HierSpeech-U can adapt to a novel speaker by utilizing self-supervised speech representations without text transcripts. The experimental results reveal that our method outperforms publicly available TTS models, and show the effectiveness of speaker adaptation with untranscribed speech.
Sang-Hoon Lee, Seung-Bin Kim, Ji-Hyun Lee, Eunwoo Song, Min-Jae Hwang, Seong-Whan Lee
null
null
2,022
neurips
Multi-Agent Reinforcement Learning is a Sequence Modeling Problem
null
Large sequence models (SM) such as GPT series and BERT have displayed outstanding performance and generalization capabilities in natural language process, vision and recently reinforcement learning. A natural follow-up question is how to abstract multi-agent decision making also as an sequence modeling problem and benefit from the prosperous development of the SMs. In this paper, we introduce a novel architecture named Multi-Agent Transformer (MAT) that effectively casts cooperative multi-agent reinforcement learning (MARL) into SM problems wherein the objective is to map agents' observation sequences to agents' optimal action sequences. Our goal is to build the bridge between MARL and SMs so that the modeling power of modern sequence models can be unleashed for MARL. Central to our MAT is an encoder-decoder architecture which leverages the multi-agent advantage decomposition theorem to transform the joint policy search problem into a sequential decision making process; this renders only linear time complexity for multi-agent problems and, most importantly, endows MAT with monotonic performance improvement guarantee. Unlike prior arts such as Decision Transformer fit only pre-collected offline data, MAT is trained by online trial and error from the environment in an on-policy fashion. To validate MAT, we conduct extensive experiments on StarCraftII, Multi-Agent MuJoCo, Dexterous Hands Manipulation, and Google Research Football benchmarks. Results demonstrate that MAT achieves superior performance and data efficiency compared to strong baselines including MAPPO and HAPPO. Furthermore, we demonstrate that MAT is an excellent few-short learner on unseen tasks regardless of changes in the number of agents.See our project page at https://sites.google.com/view/multi-agent-transformer.
Muning Wen, Jakub Kuba, Runji Lin, Weinan Zhang, Ying Wen, Jun Wang, Yaodong Yang
null
null
2,022
neurips
SwinTrack: A Simple and Strong Baseline for Transformer Tracking
null
Recently Transformer has been largely explored in tracking and shown state-of-the-art (SOTA) performance. However, existing efforts mainly focus on fusing and enhancing features generated by convolutional neural networks (CNNs). The potential of Transformer in representation learning remains under-explored. In this paper, we aim to further unleash the power of Transformer by proposing a simple yet efficient fully-attentional tracker, dubbed SwinTrack, within classic Siamese framework. In particular, both representation learning and feature fusion in SwinTrack leverage the Transformer architecture, enabling better feature interactions for tracking than pure CNN or hybrid CNN-Transformer frameworks. Besides, to further enhance robustness, we present a novel motion token that embeds historical target trajectory to improve tracking by providing temporal context. Our motion token is lightweight with negligible computation but brings clear gains. In our thorough experiments, SwinTrack exceeds existing approaches on multiple benchmarks. Particularly, on the challenging LaSOT, SwinTrack sets a new record with 0.713 SUC score. It also achieves SOTA results on other benchmarks. We expect SwinTrack to serve as a solid baseline for Transformer tracking and facilitate future research. Our codes and results are released at https://github.com/LitingLin/SwinTrack.
Liting Lin, Heng Fan, Zhipeng Zhang, Yong Xu, Haibin Ling
null
null
2,022
neurips
Wasserstein Logistic Regression with Mixed Features
null
Recent work has leveraged the popular distributionally robust optimization paradigm to combat overfitting in classical logistic regression. While the resulting classification scheme displays a promising performance in numerical experiments, it is inherently limited to numerical features. In this paper, we show that distributionally robust logistic regression with mixed (\emph{i.e.}, numerical and categorical) features, despite amounting to an optimization problem of exponential size, admits a polynomial-time solution scheme. We subsequently develop a practically efficient cutting plane approach that solves the problem as a sequence of polynomial-time solvable exponential conic programs. Our method retains many of the desirable theoretical features of previous works, but---in contrast to the literature---it does not admit an equivalent representation as a regularized logistic regression, that is, it represents a genuinely novel variant of the logistic regression problem. We show that our method outperforms both the unregularized and the regularized logistic regression on categorical as well as mixed-feature benchmark instances.
Aras Selvi, Mohammad Reza Belbasi, Martin Haugh, Wolfram Wiesemann
null
null
2,022
neurips
Robust Bayesian Regression via Hard Thresholding
null
By combining robust regression and prior information, we develop an effective robust regression method that can resist adaptive adversarial attacks. Due to the widespread existence of noise and data corruption, it is necessary to recover the true regression parameters when a certain proportion of the response variables have been corrupted. Methods to overcome this problem often involve robust least-squares regression. However, few methods achieve good performance when dealing with severe adaptive adversarial attacks. Based on the combination of prior information and robust regression via hard thresholding, this paper proposes an algorithm that improves the breakdown point when facing adaptive adversarial attacks. Furthermore, to improve the robustness and reduce the estimation error caused by the inclusion of a prior, the idea of Bayesian reweighting is used to construct a more robust algorithm. We prove the theoretical convergence of proposed algorithms under mild conditions. Extensive experiments show that, under different dataset attacks, our algorithms achieve state-of-the-art results compared with other benchmark algorithms, demonstrating the robustness of the proposed approach.
Zheyi Fan, Zhaohui Li, Qingpei Hu
null
null
2,022
neurips
Symmetry Teleportation for Accelerated Optimization
null
Existing gradient-based optimization methods update parameters locally, in a direction that minimizes the loss function. We study a different approach, symmetry teleportation, that allows parameters to travel a large distance on the loss level set, in order to improve the convergence speed in subsequent steps. Teleportation exploits symmetries in the loss landscape of optimization problems. We derive loss-invariant group actions for test functions in optimization and multi-layer neural networks, and prove a necessary condition for teleportation to improve convergence rate. We also show that our algorithm is closely related to second order methods. Experimentally, we show that teleportation improves the convergence speed of gradient descent and AdaGrad for several optimization problems including test functions, multi-layer regressions, and MNIST classification.
Bo Zhao, Nima Dehmamy, Robin Walters, Rose Yu
null
null
2,022
neurips
A Variant of Anderson Mixing with Minimal Memory Size
null
Anderson mixing (AM) is a useful method that can accelerate fixed-point iterations by exploring the information from historical iterations. Despite its numerical success in various applications, the memory requirement in AM remains a bottleneck when solving large-scale optimization problems in a resource-limited machine. To address this problem, we propose a novel variant of AM method, called Min-AM, by storing only one vector pair, that is the minimal memory size requirement in AM. Our method forms a symmetric approximation to the inverse Hessian matrix and is proved to be equivalent to the full-memory Type-I AM for solving strongly convex quadratic optimization. Moreover, for general nonlinear optimization problems, we establish the convergence properties of Min-AM under reasonable assumptions and show that the mixing parameters can be adaptively chosen by estimating the eigenvalues of the Hessian. Finally, we extend Min-AM to solve stochastic programming problems. Experimental results on logistic regression and network training problems validate the effectiveness of the proposed Min-AM.
Fuchao Wei, Chenglong Bao, Yang Liu, Guangwen Yang
null
null
2,022
neurips
Learning Chaotic Dynamics in Dissipative Systems
null
Chaotic systems are notoriously challenging to predict because of their sensitivity to perturbations and errors due to time stepping. Despite this unpredictable behavior, for many dissipative systems the statistics of the long term trajectories are governed by an invariant measure supported on a set, known as the global attractor; for many problems this set is finite dimensional, even if the state space is infinite dimensional. For Markovian systems, the statistical properties of long-term trajectories are uniquely determined by the solution operator that maps the evolution of the system over arbitrary positive time increments. In this work, we propose a machine learning framework to learn the underlying solution operator for dissipative chaotic systems, showing that the resulting learned operator accurately captures short-time trajectories and long-time statistical behavior. Using this framework, we are able to predict various statistics of the invariant measure for the turbulent Kolmogorov Flow dynamics with Reynolds numbers up to $5000$.
Zongyi Li, Miguel Liu-Schiaffini, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew Stuart, Anima Anandkumar
null
null
2,022
neurips
Unknown-Aware Domain Adversarial Learning for Open-Set Domain Adaptation
null
Open-Set Domain Adaptation (OSDA) assumes that a target domain contains unknown classes, which are not discovered in a source domain. Existing domain adversarial learning methods are not suitable for OSDA because distribution matching with $\textit{unknown}$ classes leads to negative transfer. Previous OSDA methods have focused on matching the source and the target distribution by only utilizing $\textit{known}$ classes. However, this $\textit{known}$-only matching may fail to learn the target-$\textit{unknown}$ feature space. Therefore, we propose Unknown-Aware Domain Adversarial Learning (UADAL), which $\textit{aligns}$ the source and the target-$\textit{known}$ distribution while simultaneously $\textit{segregating}$ the target-$\textit{unknown}$ distribution in the feature alignment procedure. We provide theoretical analyses on the optimized state of the proposed $\textit{unknown-aware}$ feature alignment, so we can guarantee both $\textit{alignment}$ and $\textit{segregation}$ theoretically. Empirically, we evaluate UADAL on the benchmark datasets, which shows that UADAL outperforms other methods with better feature alignments by reporting state-of-the-art performances.
JoonHo Jang, Byeonghu Na, Dong Hyeok Shin, Mingi Ji, Kyungwoo Song, Il-chul Moon
null
null
2,022
neurips
Sharing Knowledge for Meta-learning with Feature Descriptions
null
Language is an important tool for humans to share knowledge. We propose a meta-learning method that shares knowledge across supervised learning tasks using feature descriptions written in natural language, which have not been used in the existing meta-learning methods. The proposed method improves the predictive performance on unseen tasks with a limited number of labeled data by meta-learning from various tasks. With the feature descriptions, we can find relationships across tasks even when their feature spaces are different. The feature descriptions are encoded using a language model pretrained with a large corpus, which enables us to incorporate human knowledge stored in the corpus into meta-learning. In our experiments, we demonstrate that the proposed method achieves better predictive performance than the existing meta-learning methods using a wide variety of real-world datasets provided by the statistical office of the EU and Japan.
Tomoharu Iwata, Atsutoshi Kumagai
null
null
2,022
neurips
CogView2: Faster and Better Text-to-Image Generation via Hierarchical Transformers
null
Development of transformer-based text-to-image models is impeded by its slow generation and complexity, for high-resolution images. In this work, we put forward a solution based on hierarchical transformers and local parallel autoregressive generation. We pretrain a 6B-parameter transformer with a simple and flexible self-supervised task, a cross-modal general language model (CogLM), and fine-tune it for fast super-resolution. The new text-to-image system, CogView2, shows very competitive generation compared to concurrent state-of-the-art DALL-E-2, and naturally supports interactive text-guided editing on images.
Ming Ding, Wendi Zheng, Wenyi Hong, Jie Tang
null
null
2,022
neurips
TaiSu: A 166M Large-scale High-Quality Dataset for Chinese Vision-Language Pre-training
null
Vision-Language Pre-training (VLP) has been shown to be an efficient method to improve the performance of models on different vision-and-language downstream tasks. Substantial studies have shown that neural networks may be able to learn some general rules about language and visual concepts from a large-scale weakly labeled image-text dataset. However, most of the public cross-modal datasets that contain more than 100M image-text pairs are in English; there is a lack of available large-scale and high-quality Chinese VLP datasets. In this work, we propose a new framework for automatic dataset acquisition and cleaning with which we construct a new large-scale and high-quality cross-modal dataset named as TaiSu, containing 166 million images and 219 million Chinese captions. Compared with the recently released Wukong dataset, our dataset is achieved with much stricter restrictions on the semantic correlation of image-text pairs. We also propose to combine texts collected from the web with texts generated by a pre-trained image-captioning model. To the best of our knowledge, TaiSu is currently the largest publicly accessible Chinese cross-modal dataset. Furthermore, we test our dataset on several vision-language downstream tasks. TaiSu outperforms BriVL by a large margin on the zero-shot image-text retrieval task and zero-shot image classification task. TaiSu also shows better performance than Wukong on the image-retrieval task without using image augmentation for training. Results demonstrate that TaiSu can serve as a promising VLP dataset, both for understanding and generative tasks. More information can be referred to https://github.com/ksOAn6g5/TaiSu.
Yulong Liu, Guibo Zhu, Bin Zhu, Qi Song, Guojing Ge, Haoran Chen, GuanHui Qiao, Ru Peng, Lingxiang Wu, Jinqiao Wang
null
null
2,022
neurips
Learning to Sample and Aggregate: Few-shot Reasoning over Temporal Knowledge Graphs
null
In this paper, we investigate a realistic but underexplored problem, called few-shot temporal knowledge graph reasoning, that aims to predict future facts for newly emerging entities based on extremely limited observations in evolving graphs. It offers practical value in applications that need to derive instant new knowledge about new entities in temporal knowledge graphs (TKGs) with minimal supervision. The challenges mainly come from the few-shot and time shift properties of new entities. First, the limited observations associated with them are insufficient for training a model from scratch. Second, the potentially dynamic distributions from the initially observable facts to the future facts ask for explicitly modeling the evolving characteristics of new entities. We correspondingly propose a novel Meta Temporal Knowledge Graph Reasoning (MetaTKGR) framework. Unlike prior work that relies on rigid neighborhood aggregation schemes to enhance low-data entity representation, MetaTKGR dynamically adjusts the strategies of sampling and aggregating neighbors from recent facts for new entities, through temporally supervised signals on future facts as instant feedback. Besides, such a meta temporal reasoning procedure goes beyond existing meta-learning paradigms on static knowledge graphs that fail to handle temporal adaptation with large entity variance. We further provide a theoretical analysis and propose a temporal adaptation regularizer to stabilize the meta temporal reasoning over time. Empirically, extensive experiments on three real-world TKGs demonstrate the superiority of MetaTKGR over eight state-of-the-art baselines by a large margin.
Ruijie Wang, Zheng Li, Dachun Sun, Shengzhong Liu, Jinning Li, Bing Yin, Tarek Abdelzaher
null
null
2,022
neurips
Trajectory Inference via Mean-field Langevin in Path Space
null
Trajectory inference aims at recovering the dynamics of a population from snapshots of its temporal marginals. To solve this task, a min-entropy estimator relative to the Wiener measure in path space was introduced in [Lavenant et al., 2021], and shown to consistently recover the dynamics of a large class of drift-diffusion processes from the solution of an infinite dimensional convex optimization problem. In this paper, we introduce a grid-free algorithm to compute this estimator. Our method consists in a family of point clouds (one per snapshot) coupled via Schrödinger bridges which evolve with noisy gradient descent. We study the mean-field limit of the dynamics and prove its global convergence to the desired estimator. Overall, this leads to an inference method with end-to-end theoretical guarantees that solves an interpretable model for trajectory inference. We also present how to adapt the method to deal with mass variations, a useful extension when dealing with single cell RNA-sequencing data where cells can branch and die.
Lénaïc Chizat, Stephen Zhang, Matthieu Heitz, Geoffrey Schiebinger
null
null
2,022
neurips
AdaptFormer: Adapting Vision Transformers for Scalable Visual Recognition
null
Pretraining Vision Transformers (ViTs) has achieved great success in visual recognition. A following scenario is to adapt a ViT to various image and video recognition tasks. The adaptation is challenging because of heavy computation and memory storage. Each model needs an independent and complete finetuning process to adapt to different tasks, which limits its transferability to different visual domains.To address this challenge, we propose an effective adaptation approach for Transformer, namely AdaptFormer, which can adapt the pre-trained ViTs into many different image and video tasks efficiently.It possesses several benefits more appealing than prior arts.Firstly, AdaptFormer introduces lightweight modules that only add less than 2% extra parameters to a ViT, while it is able to increase the ViT's transferability without updating its original pre-trained parameters, significantly outperforming the existing 100\% fully fine-tuned models on action recognition benchmarks.Secondly, it can be plug-and-play in different Transformers and scalable to many visual tasks.Thirdly, extensive experiments on five image and video datasets show that AdaptFormer largely improves ViTs in the target domains. For example, when updating just 1.5% extra parameters, it achieves about 10% and 19% relative improvement compared to the fully fine-tuned models on Something-Something~v2 and HMDB51, respectively. Code is available at https://github.com/ShoufaChen/AdaptFormer.
Shoufa Chen, Chongjian GE, Zhan Tong, Jiangliu Wang, Yibing Song, Jue Wang, Ping Luo
null
null
2,022
neurips
Evaluating Robustness to Dataset Shift via Parametric Robustness Sets
null
We give a method for proactively identifying small, plausible shifts in distribution which lead to large differences in model performance. These shifts are defined via parametric changes in the causal mechanisms of observed variables, where constraints on parameters yield a "robustness set" of plausible distributions and a corresponding worst-case loss over the set. While the loss under an individual parametric shift can be estimated via reweighting techniques such as importance sampling, the resulting worst-case optimization problem is non-convex, and the estimate may suffer from large variance. For small shifts, however, we can construct a local second-order approximation to the loss under shift and cast the problem of finding a worst-case shift as a particular non-convex quadratic optimization problem, for which efficient algorithms are available. We demonstrate that this second-order approximation can be estimated directly for shifts in conditional exponential family models, and we bound the approximation error. We apply our approach to a computer vision task (classifying gender from images), revealing sensitivity to shifts in non-causal attributes.
Nikolaj Thams, Michael Oberst, David Sontag
null
null
2,022
neurips
Reinforcement Learning with Neural Radiance Fields
null
It is a long-standing problem to find effective representations for training reinforcement learning (RL) agents. This paper demonstrates that learning state representations with supervision from Neural Radiance Fields (NeRFs) can improve the performance of RL compared to other learned representations or even low-dimensional, hand-engineered state information. Specifically, we propose to train an encoder that maps multiple image observations to a latent space describing the objects in the scene. The decoder built from a latent-conditioned NeRF serves as the supervision signal to learn the latent space. An RL algorithm then operates on the learned latent space as its state representation. We call this NeRF-RL. Our experiments indicate that NeRF as supervision leads to a latent space better suited for the downstream RL tasks involving robotic object manipulations like hanging mugs on hooks, pushing objects, or opening doors.Video: https://dannydriess.github.io/nerf-rl
Danny Driess, Ingmar Schubert, Pete Florence, Yunzhu Li, Marc Toussaint
null
null
2,022
neurips
Recursive Reasoning in Minimax Games: A Level $k$ Gradient Play Method
null
Despite the success of generative adversarial networks (GANs) in generating visually appealing images, they are notoriously challenging to train. In order to stabilize the learning dynamics in minimax games, we propose a novel recursive reasoning algorithm: Level $k$ Gradient Play (Lv.$k$ GP) algorithm. Our algorithm does not require sophisticated heuristics or second-order information, as do existing algorithms based on predictive updates. We show that as k increases, Lv.$k$ GP converges asymptotically towards an accurate estimation of players' future strategy.Moreover, we justify that Lv.$\infty$ GP naturally generalizes a line of provably convergent game dynamics which rely on predictive updates. Furthermore, we provide its local convergence property in nonconvex-nonconcave zero-sum games and global convergence in bilinear and quadratic games. By combining Lv.$k$ GP with Adam optimizer, our algorithm shows a clear advantage in terms of performance and computational overhead compared to other methods. Using a single Nvidia RTX3090 GPU and 30 times fewer parameters than BigGAN on CIFAR-10, we achieve an FID of 10.17 for unconditional image generation within 30 hours, allowing GAN training on common computational resources to reach state-of-the-art performance.
Zichu Liu, Lacra Pavel
null
null
2,022
neurips
Dynamic Sparse Network for Time Series Classification: Learning What to “See”
null
The receptive field (RF), which determines the region of time series to be “seen” and used, is critical to improve the performance for time series classification (TSC). However, the variation of signal scales across and within time series data, makes it challenging to decide on proper RF sizes for TSC. In this paper, we propose a dynamic sparse network (DSN) with sparse connections for TSC, which can learn to cover various RF without cumbersome hyper-parameters tuning. The kernels in each sparse layer are sparse and can be explored under the constraint regions by dynamic sparse training, which makes it possible to reduce the resource cost. The experimental results show that the proposed DSN model can achieve state-of-art performance on both univariate and multivariate TSC datasets with less than 50% computational cost compared with recent baseline methods, opening the path towards more accurate resource-aware methods for time series analyses. Our code is publicly available at: https://github.com/QiaoXiao7282/DSN.
Qiao Xiao, Boqian Wu, Yu Zhang, Shiwei Liu, Mykola Pechenizkiy, Elena Mocanu, Decebal Constantin Mocanu
null
null
2,022
neurips
Latent Planning via Expansive Tree Search
null
Planning enables autonomous agents to solve complex decision-making problems by evaluating predictions of the future. However, classical planning algorithms often become infeasible in real-world settings where state spaces are high-dimensional and transition dynamics unknown. The idea behind latent planning is to simplify the decision-making task by mapping it to a lower-dimensional embedding space. Common latent planning strategies are based on trajectory optimization techniques such as shooting or collocation, which are prone to failure in long-horizon and highly non-convex settings. In this work, we study long-horizon goal-reaching scenarios from visual inputs and formulate latent planning as an explorative tree search. Inspired by classical sampling-based motion planning algorithms, we design a method which iteratively grows and optimizes a tree representation of visited areas of the latent space. To encourage fast exploration, the sampling of new states is biased towards sparsely represented regions within the estimated data support. Our method, called Expansive Latent Space Trees (ELAST), relies on self-supervised training via contrastive learning to obtain (a) a latent state representation and (b) a latent transition density model. We embed ELAST into a model-predictive control scheme and demonstrate significant performance improvements compared to existing baselines given challenging visual control tasks in simulation, including the navigation for a deformable object.
Robert Gieselmann, Florian T. Pokorny
null
null
2,022
neurips
Semi-infinitely Constrained Markov Decision Processes
null
We propose a generalization of constrained Markov decision processes (CMDPs) that we call the \emph{semi-infinitely constrained Markov decision process} (SICMDP).Particularly, in a SICMDP model, we impose a continuum of constraints instead of a finite number of constraints as in the case of ordinary CMDPs.We also devise a reinforcement learning algorithm for SICMDPs that we call SI-CRL.We first transform the reinforcement learning problem into a linear semi-infinitely programming (LSIP) problem and then use the dual exchange method in the LSIP literature to solve it.To the best of our knowledge, we are the first to apply tools from semi-infinitely programming (SIP) to solve reinforcement learning problems.We present theoretical analysis for SI-CRL, identifying its sample complexity and iteration complexity.We also conduct extensive numerical examples to illustrate the SICMDP model and validate the SI-CRL algorithm.
Liangyu Zhang, Yang Peng, Wenhao Yang, Zhihua Zhang
null
null
2,022
neurips
Invertible Monotone Operators for Normalizing Flows
null
Normalizing flows model probability distributions by learning invertible transformations that transfer a simple distribution into complex distributions. Since the architecture of ResNet-based normalizing flows is more flexible than that of coupling-based models, ResNet-based normalizing flows have been widely studied in recent years. Despite their architectural flexibility, it is well-known that the current ResNet-based models suffer from constrained Lipschitz constants. In this paper, we propose the monotone formulation to overcome the issue of the Lipschitz constants using monotone operators and provide an in-depth theoretical analysis. Furthermore, we construct an activation function called Concatenated Pila (CPila) to improve gradient flow. The resulting model, Monotone Flows, exhibits an excellent performance on multiple density estimation benchmarks (MNIST, CIFAR-10, ImageNet32, ImageNet64). Code is available at https://github.com/mlvlab/MonotoneFlows.
Byeongkeun Ahn, Chiyoon Kim, Youngjoon Hong, Hyunwoo J. Kim
null
null
2,022
neurips
Poisson Flow Generative Models
null
We propose a new "Poisson flow" generative model~(PFGM) that maps a uniform distribution on a high-dimensional hemisphere into any data distribution. We interpret the data points as electrical charges on the $z=0$ hyperplane in a space augmented with an additional dimension $z$, generating a high-dimensional electric field (the gradient of the solution to Poisson equation). We prove that if these charges flow upward along electric field lines, their initial distribution in the $z=0$ plane transforms into a distribution on the hemisphere of radius $r$ that becomes uniform in the $r \to\infty$ limit. To learn the bijective transformation, we estimate the normalized field in the augmented space. For sampling, we devise a backward ODE that is anchored by the physically meaningful additional dimension: the samples hit the (unaugmented) data manifold when the $z$ reaches zero. Experimentally, PFGM achieves current state-of-the-art performance among the normalizing flow models on CIFAR-10, with an Inception score of $9.68$ and a FID score of $2.35$. It also performs on par with the state-of-the-art SDE approaches while offering $10\times $ to $20 \times$ acceleration on image generation tasks. Additionally, PFGM appears more tolerant of estimation errors on a weaker network architecture and robust to the step size in the Euler method. The code is available at https://github.com/Newbeeer/poisson_flow .
Yilun Xu, Ziming Liu, Max Tegmark, Tommi Jaakkola
null
null
2,022
neurips
Bounding and Approximating Intersectional Fairness through Marginal Fairness
null
Discrimination in machine learning often arises along multiple dimensions (a.k.a. protected attributes); it is then desirable to ensure \emph{intersectional fairness}---i.e., that no subgroup is discriminated against. It is known that ensuring \emph{marginal fairness} for every dimension independently is not sufficient in general. Due to the exponential number of subgroups, however, directly measuring intersectional fairness from data is impossible. In this paper, our primary goal is to understand in detail the relationship between marginal and intersectional fairness through statistical analysis. We first identify a set of sufficient conditions under which an exact relationship can be obtained. Then, we prove bounds (easily computable through marginal fairness and other meaningful statistical quantities) in high-probability on intersectional fairness in the general case. Beyond their descriptive value, we show that these theoretical bounds can be leveraged to derive a heuristic improving the approximation and bounds of intersectional fairness by choosing, in a relevant manner, protected attributes for which we describe intersectional subgroups. Finally, we test the performance of our approximations and bounds on real and synthetic data-sets.
Mathieu Molina, Patrick Loiseau
null
null
2,022
neurips
Function Classes for Identifiable Nonlinear Independent Component Analysis
null
Unsupervised learning of latent variable models (LVMs) is widely used to represent data in machine learning. When such model reflects the ground truth factors and the mechanisms mapping them to observations, there is reason to expect that such models allow generalisation in downstream tasks. It is however well known that such identifiability guaranties are typically not achievable without putting constraints on the model class. This is notably the case for nonlinear Independent Component Analysis, in which the LVM maps statistically independent variables to observations via a deterministic nonlinear function. Several families of spurious solutions fitting perfectly the data, but that do not correspond to the ground truth factors can be constructed in generic settings. However, recent work suggests that constraining the function class of such models may promote identifiability. Specifically, function classes with constraints on their partial derivatives, gathered in the Jacobian matrix, have been proposed, such as orthogonal coordinate transformations (OCT), which impose orthogonality of the Jacobian columns. In the present work, we prove that a subclass of these transformations, conformal maps, is identifiable and provide novel theoretical results suggesting that OCTs have properties that prevent families of spurious solutions to spoil identifiability in a generic setting.
Simon Buchholz, Michel Besserve, Bernhard Schölkopf
null
null
2,022
neurips
VisFIS: Visual Feature Importance Supervision with Right-for-the-Right-Reason Objectives
null
Many past works aim to improve visual reasoning in models by supervising feature importance (estimated by model explanation techniques) with human annotations such as highlights of important image regions. However, recent work has shown that performance gains from feature importance (FI) supervision for Visual Question Answering (VQA) tasks persist even with random supervision, suggesting that these methods do not meaningfully align model FI with human FI. In this paper, we show that model FI supervision can meaningfully improve VQA model accuracy as well as performance on several Right-for-the-Right-Reason (RRR) metrics by optimizing for four key model objectives: (1) accurate predictions given limited but sufficient information (Sufficiency); (2) max-entropy predictions given no important information (Uncertainty); (3) invariance of predictions to changes in unimportant features (Invariance); and (4) alignment between model FI explanations and human FI explanations (Plausibility). Our best performing method, Visual Feature Importance Supervision (VISFIS), outperforms strong baselines on benchmark VQA datasets in terms of both in-distribution and out-of-distribution accuracy. While past work suggests that the mechanism for improved accuracy is through improved explanation plausibility, we show that this relationship depends crucially on explanation faithfulness (whether explanations truly represent the model’s internal reasoning). Predictions are more accurate when explanations are plausible and faithful, and not when they are plausible but not faithful. Lastly, we show that, surprisingly, RRR metrics are not predictive of out-of-distribution model accuracy when controlling for a model’s in-distribution accuracy, which calls into question the value of these metrics for evaluating model reasoning.
Zhuofan Ying, Peter Hase, Mohit Bansal
null
null
2,022
neurips
When to Ask for Help: Proactive Interventions in Autonomous Reinforcement Learning
null
A long-term goal of reinforcement learning is to design agents that can autonomously interact and learn in the world. A critical challenge to such autonomy is the presence of irreversible states which require external assistance to recover from, such as when a robot arm has pushed an object off of a table. While standard agents require constant monitoring to decide when to intervene, we aim to design proactive agents that can request human intervention only when needed. To this end, we propose an algorithm that efficiently learns to detect and avoid states that are irreversible, and proactively asks for help in case the agent does enter them. On a suite of continuous control environments with unknown irreversible states, we find that our algorithm exhibits better sample- and intervention-efficiency compared to existing methods.
Annie Xie, Fahim Tajwar, Archit Sharma, Chelsea Finn
null
null
2,022
neurips
On the Sample Complexity of Stabilizing LTI Systems on a Single Trajectory
null
Stabilizing an unknown dynamical system is one of the central problems in control theory. In this paper, we study the sample complexity of the learn-to-stabilize problem in Linear Time-Invariant (LTI) systems on a single trajectory. Current state-of-the-art approaches require a sample complexity linear in $n$, the state dimension, which incurs a state norm that blows up exponentially in $n$. We propose a novel algorithm based on spectral decomposition that only needs to learn ``a small part'' of the dynamical matrix acting on its unstable subspace. We show that, under proper assumptions, our algorithm stabilizes an LTI system on a single trajectory with $O(k \log n)$ samples, where $k$ is the instability index of the system. This represents the first sub-linear sample complexity result for the stabilization of LTI systems under the regime when $k = o(n)$.
Yang Hu, Adam Wierman, Guannan Qu
null
null
2,022
neurips
Taming Fat-Tailed (“Heavier-Tailed” with Potentially Infinite Variance) Noise in Federated Learning
null
In recent years, federated learning (FL) has emerged as an important distributed machine learning paradigm to collaboratively learn a global model with multiple clients, while keeping data local and private. However, a key assumption in most existing works on FL algorithms' convergence analysis is that the noise in stochastic first-order information has a finite variance. Although this assumption covers all light-tailed (i.e., sub-exponential) and some heavy-tailed noise distributions (e.g., log-normal, Weibull, and some Pareto distributions), it fails for many fat-tailed noise distributions (i.e., ``heavier-tailed'' with potentially infinite variance) that have been empirically observed in the FL literature. To date, it remains unclear whether one can design convergent algorithms for FL systems that experience fat-tailed noise. This motivates us to fill this gap in this paper by proposing an algorithmic framework called $\mathsf{FAT}$-$\mathsf{Clipping}~$ (\ul{f}ederated \ul{a}veraging with \ul{t}wo-sided learning rates and \ul{clipping}), which contains two variants: $\mathsf{FAT}$-$\mathsf{Clipping}~$ per-round ($\mathsf{FAT}$-$\mathsf{Clipping}$-$\mathsf{PR}$) and $\mathsf{FAT}$-$\mathsf{Clipping}~$ per-iteration ($\mathsf{FAT}$-$\mathsf{Clipping}$-$\mathsf{PI}$). Specifically, for the largest $\alpha \in (1,2]$ such that the fat-tailed noise in FL still has a bounded $\alpha$-moment, we show that both variants achieve $\mathcal{O}((mT)^{\frac{2-\alpha}{\alpha}})$ and $\mathcal{O}((mT)^{\frac{1-\alpha}{3\alpha-2}})$ convergence rates in the strongly-convex and general non-convex settings, respectively, where $m$ and $T$ are the numbers of clients and communication rounds. Moreover, at the expense of more clipping operations compared to $\mathsf{FAT}$-$\mathsf{Clipping}$-$\mathsf{PR}$, $\mathsf{FAT}$-$\mathsf{Clipping}$-$\mathsf{PI}~$ further enjoys a linear speedup effect with respect to the number of local updates at each client and being lower-bound-matching (i.e., order-optimal). Collectively, our results advance the understanding of designing efficient algorithms for FL systems that exhibit fat-tailed first-order oracle information.
Haibo Yang, Peiwen Qiu, Jia Liu
null
null
2,022
neurips
coVariance Neural Networks
null
Graph neural networks (GNN) are an effective framework that exploit inter-relationships within graph-structured data for learning. Principal component analysis (PCA) involves the projection of data on the eigenspace of the covariance matrix and draws similarities with the graph convolutional filters in GNNs. Motivated by this observation, we study a GNN architecture, called coVariance neural network (VNN), that operates on sample covariance matrices as graphs. We theoretically establish the stability of VNNs to perturbations in the covariance matrix, thus, implying an advantage over standard PCA-based data analysis approaches that are prone to instability due to principal components associated with close eigenvalues. Our experiments on real-world datasets validate our theoretical results and show that VNN performance is indeed more stable than PCA-based statistical approaches. Moreover, our experiments on multi-resolution datasets also demonstrate that VNNs are amenable to transferability of performance over covariance matrices of different dimensions; a feature that is infeasible for PCA-based approaches.
Saurabh Sihag, Gonzalo Mateos, Corey McMillan, Alejandro Ribeiro
null
null
2,022
neurips
Self-supervised Heterogeneous Graph Pre-training Based on Structural Clustering
null
Recent self-supervised pre-training methods on Heterogeneous Information Networks (HINs) have shown promising competitiveness over traditional semi-supervised Heterogeneous Graph Neural Networks (HGNNs). Unfortunately, their performance heavily depends on careful customization of various strategies for generating high-quality positive examples and negative examples, which notably limits their flexibility and generalization ability. In this work, we present SHGP, a novel Self-supervised Heterogeneous Graph Pre-training approach, which does not need to generate any positive examples or negative examples. It consists of two modules that share the same attention-aggregation scheme. In each iteration, the Att-LPA module produces pseudo-labels through structural clustering, which serve as the self-supervision signals to guide the Att-HGNN module to learn object embeddings and attention coefficients. The two modules can effectively utilize and enhance each other, promoting the model to learn discriminative embeddings. Extensive experiments on four real-world datasets demonstrate the superior effectiveness of SHGP against state-of-the-art unsupervised baselines and even semi-supervised baselines. We release our source code at: https://github.com/kepsail/SHGP.
Yaming Yang, Ziyu Guan, Zhe Wang, Wei Zhao, Cai Xu, Weigang Lu, Jianbin Huang
null
null
2,022
neurips
Operative dimensions in unconstrained connectivity of recurrent neural networks
null
Recurrent Neural Networks (RNN) are commonly used models to study neural computation. However, a comprehensive understanding of how dynamics in RNN emerge from the underlying connectivity is largely lacking. Previous work derived such an understanding for RNN fulfilling very specific constraints on their connectivity, but it is unclear whether the resulting insights apply more generally. Here we study how network dynamics are related to network connectivity in RNN trained without any specific constraints on several tasks previously employed in neuroscience. Despite the apparent high-dimensional connectivity of these RNN, we show that a low-dimensional, functionally relevant subspace of the weight matrix can be found through the identification of \textit{operative} dimensions, which we define as components of the connectivity whose removal has a large influence on local RNN dynamics. We find that a weight matrix built from only a few operative dimensions is sufficient for the RNN to operate with the original performance, implying that much of the high-dimensional structure of the trained connectivity is functionally irrelevant. The existence of a low-dimensional, operative subspace in the weight matrix simplifies the challenge of linking connectivity to network dynamics and suggests that independent network functions may be placed in specific, separate subspaces of the weight matrix to avoid catastrophic forgetting in continual learning.
Renate Krause, Matthew Cook, Sepp Kollmorgen, Valerio Mante, Giacomo Indiveri
null
null
2,022
neurips
Improved techniques for deterministic l2 robustness
null
Training convolutional neural networks (CNNs) with a strict 1-Lipschitz constraint under the l{2} norm is useful for adversarial robustness, interpretable gradients and stable training. 1-Lipschitz CNNs are usually designed by enforcing each layer to have an orthogonal Jacobian matrix (for all inputs) to prevent the gradients from vanishing during backpropagation. However, their performance often significantly lags behind that of heuristic methods to enforce Lipschitz constraints where the resulting CNN is not provably 1-Lipschitz. In this work, we reduce this gap by introducing (a) a procedure to certify robustness of 1-Lipschitz CNNs by replacing the last linear layer with a 1-hidden layer MLP that significantly improves their performance for both standard and provably robust accuracy, (b) a method to significantly reduce the training time per epoch for Skew Orthogonal Convolution (SOC) layers (>30\% reduction for deeper networks) and (c) a class of pooling layers using the mathematical property that the l{2} distance of an input to a manifold is 1-Lipschitz. Using these methods, we significantly advance the state-of-the-art for standard and provable robust accuracies on CIFAR-10 (gains of +1.79\% and +3.82\%) and similarly on CIFAR-100 (+3.78\% and +4.75\% across all networks.
Sahil Singla, Soheil Feizi
null
null
2,022
neurips
Exploring Figure-Ground Assignment Mechanism in Perceptual Organization
null
Perceptual organization is a challenging visual task that aims to perceive and group the individual visual element so that it is easy to understand the meaning of the scene as a whole. Most recent methods building upon advanced Convolutional Neural Network (CNN) come from learning discriminative representation and modeling context hierarchically. However, when the visual appearance difference between foreground and background is obscure, the performance of existing methods degrades significantly due to the visual ambiguity in the discrimination process. In this paper, we argue that the figure-ground assignment mechanism, which conforms to human vision cognitive theory, can be explored to empower CNN to achieve a robust perceptual organization despite visual ambiguity. Specifically, we present a novel Figure-Ground-Aided (FGA) module to learn the configural statistics of the visual scene and leverage it for the reduction of visual ambiguity. Particularly, we demonstrate the benefit of using stronger supervisory signals by teaching (FGA) module to perceive configural cues, \ie, convexity and lower region, that human deem important for the perceptual organization. Furthermore, an Interactive Enhancement Module (IEM) is devised to leverage such configural priors to assist representation learning, thereby achieving robust perception organization with complex visual ambiguities. In addition, a well-founded visual segregation test is designed to validate the capability of the proposed FGA mechanism explicitly. Comprehensive evaluation results demonstrate our proposed FGA mechanism can effectively enhance the capability of perception organization on various baseline models. Nevertheless, the model augmented via our proposed FGA mechanism also outperforms state-of-the-art approaches on four challenging real-world applications.
Wei Zhai, Yang Cao, Jing Zhang, Zheng-Jun Zha
null
null
2,022
neurips
Learning Audio-Visual Dynamics Using Scene Graphs for Audio Source Separation
null
There exists an unequivocal distinction between the sound produced by a static source and that produced by a moving one, especially when the source moves towards or away from the microphone. In this paper, we propose to use this connection between audio and visual dynamics for solving two challenging tasks simultaneously, namely: (i) separating audio sources from a mixture using visual cues, and (ii) predicting the 3D visual motion of a sounding source using its separated audio. Towards this end, we present Audio Separator and Motion Predictor (ASMP) -- a deep learning framework that leverages the 3D structure of the scene and the motion of sound sources for better audio source separation. At the heart of ASMP is a 2.5D scene graph capturing various objects in the video and their pseudo-3D spatial proximities. This graph is constructed by registering together 2.5D monocular depth predictions from the 2D video frames and associating the 2.5D scene regions with the outputs of an object detector applied on those frames. The ASMP task is then mathematically modeled as the joint problem of: (i) recursively segmenting the 2.5D scene graph into several sub-graphs, each associated with a constituent sound in the input audio mixture (which is then separated) and (ii) predicting the 3D motions of the corresponding sound sources from the separated audio. To empirically evaluate ASMP, we present experiments on two challenging audio-visual datasets, viz. Audio Separation in the Wild (ASIW) and Audio Visual Event (AVE). Our results demonstrate that ASMP achieves a clear improvement in source separation quality, outperforming prior works on both datasets, while also estimating the direction of motion of the sound sources better than other methods.
Moitreya Chatterjee, Narendra Ahuja, Anoop Cherian
null
null
2,022
neurips
A Deep Learning Dataloader with Shared Data Preparation
null
Executing a family of Deep Neural Networks (DNNs) training jobs on the same or similar datasets in parallel is typical in current deep learning scenarios. It is time-consuming and resource-intensive because each job repetitively prepares (i.e., loads and preprocesses) the data independently, causing redundant consumption of I/O and computations. Although the page cache or a centralized cache component can alleviate the redundancies by reusing the data prep work, each job's data sampled uniformly at random presents a low sampling locality in the shared dataset that causes the heavy cache thrashing. Prior work tries to solve the problem by enforcing all training jobs iterating over the dataset in the same order and requesting each data in lockstep, leading to strong constraints: all jobs must have the same dataset and run simultaneously. In this paper, we propose a dependent sampling algorithm (DSA) and domain-specific cache policy to relax the constraints. Besides, a novel tree data structure is designed to efficiently implement DSA. Based on the proposed technologies, we implemented a prototype system, named Joader, which can share data prep work as long as the datasets share partially. We evaluate the proposed Joader in practical scenarios, showing a greater versatility and superiority over training speed improvement (up to 500% in ResNet18).
jian xie, Jingwei Xu, Guochang Wang, Yuan Yao, Zenan Li, Chun Cao, Hanghang Tong
null
null
2,022
neurips
Visual Clues: Bridging Vision and Language Foundations for Image Paragraph Captioning
null
People say, "A picture is worth a thousand words". Then how can we get the rich information out of the image? We argue that by using visual clues to bridge large pretrained vision foundation models and language models, we can do so without any extra cross-modal training. Thanks to the strong zero-shot capability of foundation models, we start by constructing a rich semantic representation of the image (e.g., image tags, object attributes / locations, captions) as a structured textual prompt, called visual clues, using a vision foundation model. Based on visual clues, we use large language model to produce a series of comprehensive descriptions for the visual content, which is then verified by the vision model again to select the candidate that aligns best with the image. We evaluate the quality of generated descriptions by quantitative and qualitative measurement. The results demonstrate the effectiveness of such a structured semantic representation.
Yujia Xie, Luowei Zhou, Xiyang Dai, Lu Yuan, Nguyen Bach, Ce Liu, Michael Zeng
null
null
2,022
neurips
BOME! Bilevel Optimization Made Easy: A Simple First-Order Approach
null
Bilevel optimization (BO) is useful for solving a variety of important machine learning problems including but not limited to hyperparameter optimization, meta-learning, continual learning, and reinforcement learning.Conventional BO methods need to differentiate through the low-level optimization process with implicit differentiation, which requires expensive calculations related to the Hessian matrix. There has been a recent quest for first-order methods for BO, but the methods proposed to date tend to be complicated and impractical for large-scale deep learning applications. In this work, we propose a simple first-order BO algorithm that depends only on first-order gradient information, requires no implicit differentiation, and is practical and efficient for large-scale non-convex functions in deep learning. We provide non-asymptotic convergence analysis of the proposed method to stationary points for non-convex objectives and present empirical results that show its superior practical performance.
Bo Liu, Mao Ye, Stephen Wright, Peter Stone, Qiang Liu
null
null
2,022
neurips
Sharper Convergence Guarantees for Asynchronous SGD for Distributed and Federated Learning
null
We study the asynchronous stochastic gradient descent algorithm, for distributed training over $n$ workers that might be heterogeneous. In this algorithm, workers compute stochastic gradients in parallel at their own pace and return them to the server without any synchronization.Existing convergence rates of this algorithm for non-convex smooth objectives depend on the maximum delay $\tau_{\max}$ and reach an $\epsilon$-stationary point after $O\!\left(\sigma^2\epsilon^{-2}+ \tau_{\max}\epsilon^{-1}\right)$ iterations, where $\sigma$ is the variance of stochastic gradients. In this work (i) we obtain a tighter convergence rate of $O\!\left(\sigma^2\epsilon^{-2}+ \sqrt{\tau_{\max}\tau_{avg}}\epsilon^{-1}\right)$ *without any change in the algorithm* where $\tau_{avg}$ is the average delay, which can be significantly smaller than $\tau_{\max}$. We also provide (ii) a simple delay-adaptive learning rate scheme, under which asynchronous SGD achieves a convergence rate of $O\!\left(\sigma^2\epsilon^{-2}+ \tau_{avg}\epsilon^{-1}\right)$, and does not require any extra hyperparameter tuning nor extra communications. Our result allows to show *for the first time* that asynchronous SGD is *always faster* than mini-batch SGD. In addition, (iii) we consider the case of heterogeneous functions motivated by federated learning applications and improve the convergence rate by proving a weaker dependence on the maximum delay compared to prior works.
Anastasiia Koloskova, Sebastian U. Stich, Martin Jaggi
null
null
2,022
neurips
The Curse of Unrolling: Rate of Differentiating Through Optimization
null
Computing the Jacobian of the solution of an optimization problem is a central problem in machine learning, with applications in hyperparameter optimization, meta-learning, optimization as a layer, and dataset distillation, to name a few. Unrolled differentiation is a popular heuristic that approximates the solution using an iterative solver and differentiates it through the computational path. This work provides a non-asymptotic convergence-rate analysis of this approach on quadratic objectives for gradient descent and the Chebyshev method. We show that to ensure convergence of the Jacobian, we can either 1) choose a large learning rate leading to a fast asymptotic convergence but accept that the algorithm may have an arbitrarily long burn-in phase or 2) choose a smaller learning rate leading to an immediate but slower convergence. We refer to this phenomenon as the curse of unrolling.Finally, we discuss open problems relative to this approach, such as deriving a practical update rule for the optimal unrolling strategy and making novel connections with the field of Sobolev orthogonal polynomials.
Damien Scieur, Gauthier Gidel, Quentin Bertrand, Fabian Pedregosa
null
null
2,022
neurips
Peer Prediction for Learning Agents
null
Peer prediction refers to a collection of mechanisms for eliciting information from human agents when direct verification of the obtained information is unavailable. They are designed to have a game-theoretic equilibrium where everyone reveals their private information truthfully. This result holds under the assumption that agents are Bayesian and they each adopt a fixed strategy across all tasks. Human agents however are observed in many domains to exhibit learning behavior in sequential settings. In this paper, we explore the dynamics of sequential peer prediction mechanisms when participants are learning agents. We first show that the notion of no regret alone for the agents’ learning algorithms cannot guarantee convergence to the truthful strategy. We then focus on a family of learning algorithms where strategy updates only depend on agents’ cumulative rewards and prove that agents' strategies in the popular Correlated Agreement (CA) mechanism converge to truthful reporting when they use algorithms from this family. This family of algorithms is not necessarily no-regret, but includes several familiar no-regret learning algorithms (e.g multiplicative weight update and Follow the Perturbed Leader) as special cases. Simulation of several algorithms in this family as well as the $\epsilon$-greedy algorithm, which is outside of this family, shows convergence to the truthful strategy in the CA mechanism.
Shi Feng, Fang-Yi Yu, Yiling Chen
null
null
2,022
neurips
A Unified Framework for Alternating Offline Model Training and Policy Learning
null
In offline model-based reinforcement learning (offline MBRL), we learn a dynamic model from historically collected data, and subsequently utilize the learned model and fixed datasets for policy learning, without further interacting with the environment. Offline MBRL algorithms can improve the efficiency and stability of policy learning over the model-free algorithms. However, in most of the existing offline MBRL algorithms, the learning objectives for the dynamic models and the policies are isolated from each other. Such an objective mismatch may lead to inferior performance of the learned agents. In this paper, we address this issue by developing an iterative offline MBRL framework, where we maximize a lower bound of the true expected return, by alternating between dynamic-model training and policy learning. With the proposed unified model-policy learning framework, we achieve competitive performance on a wide range of continuous-control offline reinforcement learning datasets. Source code is released at https://github.com/Shentao-YANG/AMPL_NeurIPS2022.
Shentao Yang, Shujian Zhang, Yihao Feng, Mingyuan Zhou
null
null
2,022
neurips
Mirror Descent with Relative Smoothness in Measure Spaces, with application to Sinkhorn and EM
null
Many problems in machine learning can be formulated as optimizing a convex functional over a vector space of measures. This paper studies the convergence of the mirror descent algorithm in this infinite-dimensional setting. Defining Bregman divergences through directional derivatives, we derive the convergence of the scheme for relatively smooth and convex pairs of functionals. Such assumptions allow to handle non-smooth functionals such as the Kullback--Leibler (KL) divergence. Applying our result to joint distributions and KL, we show that Sinkhorn's primal iterations for entropic optimal transport in the continuous setting correspond to a mirror descent, and we obtain a new proof of its (sub)linear convergence. We also show that Expectation Maximization (EM) can always formally be written as a mirror descent. When optimizing only on the latent distribution while fixing the mixtures parameters -- which corresponds to the Richardson--Lucy deconvolution scheme in signal processing -- we derive sublinear rates of convergence.
Pierre-Cyril Aubin-Frankowski, Anna Korba, Flavien Léger
null
null
2,022
neurips
Adjoint-aided inference of Gaussian process driven differential equations
null
Linear systems occur throughout engineering and the sciences, most notably as differential equations. In many cases the forcing function for the system is unknown, and interest lies in using noisy observations of the system to infer the forcing, as well as other unknown parameters. In differential equations, the forcing function is an unknown function of the independent variables (typically time and space), and can be modelled as a Gaussian process (GP). In this paper we show how the adjoint of a linear system can be used to efficiently infer forcing functions modelled as GPs, after using a truncated basis expansion of the GP kernel. We show how exact conjugate Bayesian inference for the truncated GP can be achieved, in many cases with substantially lower computation than would be required using MCMC methods. We demonstrate the approach on systems of both ordinary and partial differential equations, and show that the basis expansion approach approximates well the true forcing with a modest number of basis vectors. Finally, we show how to infer point estimates for the non-linear model parameters, such as the kernel length-scales, using Bayesian optimisation.
Paterne GAHUNGU, Christopher Lanyon, Mauricio A Álvarez, Engineer Bainomugisha, Michael T Smith, Richard Wilkinson
null
null
2,022
neurips
APT-36K: A Large-scale Benchmark for Animal Pose Estimation and Tracking
null
Animal pose estimation and tracking (APT) is a fundamental task for detecting and tracking animal keypoints from a sequence of video frames. Previous animal-related datasets focus either on animal tracking or single-frame animal pose estimation, and never on both aspects. The lack of APT datasets hinders the development and evaluation of video-based animal pose estimation and tracking methods, limiting the applications in real world, e.g., understanding animal behavior in wildlife conservation. To fill this gap, we make the first step and propose APT-36K, i.e., the first large-scale benchmark for animal pose estimation and tracking. Specifically, APT-36K consists of 2,400 video clips collected and filtered from 30 animal species with 15 frames for each video, resulting in 36,000 frames in total. After manual annotation and careful double-check, high-quality keypoint and tracking annotations are provided for all the animal instances. Based on APT-36K, we benchmark several representative models on the following three tracks: (1) supervised animal pose estimation on a single frame under intra- and inter-domain transfer learning settings, (2) inter-species domain generalization test for unseen animals, and (3) animal pose estimation with animal tracking. Based on the experimental results, we gain some empirical insights and show that APT-36K provides a useful animal pose estimation and tracking benchmark, offering new challenges and opportunities for future research. The code and dataset will be made publicly available at https://github.com/pandorgan/APT-36K.
Yuxiang Yang, Junjie Yang, Yufei Xu, Jing Zhang, Long Lan, Dacheng Tao
null
null
2,022
neurips
Learning Physics Constrained Dynamics Using Autoencoders
null
We consider the problem of estimating states (e.g., position and velocity) and physical parameters (e.g., friction, elasticity) from a sequence of observations when provided a dynamic equation that describes the behavior of the system. The dynamic equation can arise from first principles (e.g., Newton’s laws) and provide useful cues for learning, but its physical parameters are unknown. To address this problem, we propose a model that estimates states and physical parameters of the system using two main components. First, an autoencoder compresses a sequence of observations (e.g., sensor measurements, pixel images) into a sequence for the state representation that is consistent with physics by including a simulation of the dynamic equation. Second, an estimator is coupled with the autoencoder to predict the values of the physical parameters. We also theoretically and empirically show that using Fourier feature mappings improves generalization of the estimator in predicting physical parameters compared to raw state sequences. In our experiments on three visual and one sensor measurement tasks, our model imposes interpretability on latent states and achieves improved generalization performance for long-term prediction of system dynamics over state-of-the-art baselines.
Tsung-Yen Yang, Justinian Rosca, Karthik Narasimhan, Peter J Ramadge
null
null
2,022
neurips
Variational Model Perturbation for Source-Free Domain Adaptation
null
We aim for source-free domain adaptation, where the task is to deploy a model pre-trained on source domains to target domains. The challenges stem from the distribution shift from the source to the target domain, coupled with the unavailability of any source data and labeled target data for optimization. Rather than fine-tuning the model by updating the parameters, we propose to perturb the source model to achieve adaptation to target domains. We introduce perturbations into the model parameters by variational Bayesian inference in a probabilistic framework. By doing so, we can effectively adapt the model to the target domain while largely preserving the discriminative ability. Importantly, we demonstrate the theoretical connection to learning Bayesian neural networks, which proves the generalizability of the perturbed model to target domains. To enable more efficient optimization, we further employ a parameter sharing strategy, which substantially reduces the learnable parameters compared to a fully Bayesian neural network. Our model perturbation provides a new probabilistic way for domain adaptation which enables efficient adaptation to target domains while maximally preserving knowledge in source models. Experiments on several source-free benchmarks under three different evaluation settings verify the effectiveness of the proposed variational model perturbation for source-free domain adaptation.
Mengmeng Jing, Xiantong Zhen, Jingjing Li, Cees Snoek
null
null
2,022
neurips
Two-Stream Network for Sign Language Recognition and Translation
null
Sign languages are visual languages using manual articulations and non-manual elements to convey information. For sign language recognition and translation, the majority of existing approaches directly encode RGB videos into hidden representations. RGB videos, however, are raw signals with substantial visual redundancy, leading the encoder to overlook the key information for sign language understanding. To mitigate this problem and better incorporate domain knowledge, such as handshape and body movement, we introduce a dual visual encoder containing two separate streams to model both the raw videos and the keypoint sequences generated by an off-the-shelf keypoint estimator. To make the two streams interact with each other, we explore a variety of techniques, including bidirectional lateral connection, sign pyramid network with auxiliary supervision, and frame-level self-distillation. The resulting model is called TwoStream-SLR, which is competent for sign language recognition (SLR). TwoStream-SLR is extended to a sign language translation (SLT) model, TwoStream-SLT, by simply attaching an extra translation network. Experimentally, our TwoStream-SLR and TwoStream-SLT achieve state-of-the-art performance on SLR and SLT tasks across a series of datasets including Phoenix-2014, Phoenix-2014T, and CSL-Daily.
Yutong Chen, Ronglai Zuo, Fangyun Wei, Yu Wu, Shujie LIU, Brian Mak
null
null
2,022
neurips
Inference and Sampling for Archimax Copulas
null
Understanding multivariate dependencies in both the bulk and the tails of a distribution is an important problem for many applications, such as ensuring algorithms are robust to observations that are infrequent but have devastating effects. Archimax copulas are a family of distributions endowed with a precise representation that allows simultaneous modeling of the bulk and the tails of a distribution. Rather than separating the two as is typically done in practice, incorporating additional information from the bulk may improve inference of the tails, where observations are limited. Building on the stochastic representation of Archimax copulas, we develop a non-parametric inference method and sampling algorithm. Our proposed methods, to the best of our knowledge, are the first that allow for highly flexible and scalable inference and sampling algorithms, enabling the increased use of Archimax copulas in practical settings. We experimentally compare to state-of-the-art density modeling techniques, and the results suggest that the proposed method effectively extrapolates to the tails while scaling to higher dimensional data. Our findings suggest that the proposed algorithms can be used in a variety of applications where understanding the interplay between the bulk and the tails of a distribution is necessary, such as healthcare and safety.
Yuting Ng, Ali Hasan, Vahid Tarokh
null
null
2,022
neurips
On the non-universality of deep learning: quantifying the cost of symmetry
null
We prove limitations on what neural networks trained by noisy gradient descent (GD) can efficiently learn. Our results apply whenever GD training is equivariant, which holds for many standard architectures and initializations. As applications, (i) we characterize the functions that fully-connected networks can weak-learn on the binary hypercube and unit sphere, demonstrating that depth-2 is as powerful as any other depth for this task; (ii) we extend the merged-staircase necessity result for learning with latent low-dimensional structure [ABM22] to beyond the mean-field regime. Under cryptographic assumptions, we also show hardness results for learning with fully-connected networks trained by stochastic gradient descent (SGD).
Emmanuel Abbe, Enric Boix-Adsera
null
null
2,022
neurips
Neural Shape Deformation Priors
null
We present Neural Shape Deformation Priors, a novel method for shape manipulation that predicts mesh deformations of non-rigid objects from user-provided handle movements. State-of-the-art methods cast this problem as an optimization task, where the input source mesh is iteratively deformed to minimize an objective function according to hand-crafted regularizers such as ARAP. In this work, we learn the deformation behavior based on the underlying geometric properties of a shape, while leveraging a large-scale dataset containing a diverse set of non-rigid deformations. Specifically, given a source mesh and desired target locations of handles that describe the partial surface deformation, we predict a continuous deformation field that is defined in 3D space to describe the space deformation. To this end, we introduce transformer-based deformation networks that represent a shape deformation as a composition of local surface deformations. It learns a set of local latent codes anchored in 3D space, from which we can learn a set of continuous deformation functions for local surfaces. Our method can be applied to challenging deformations and generalizes well to unseen deformations. We validate our approach in experiments using the DeformingThing4D dataset, and compare to both classic optimization-based and recent neural network-based methods.
Jiapeng Tang, Lev Markhasin, Bi Wang, Justus Thies, Matthias Niessner
null
null
2,022
neurips
ShuffleMixer: An Efficient ConvNet for Image Super-Resolution
null
Lightweight and efficiency are critical drivers for the practical application of image super-resolution (SR) algorithms. We propose a simple and effective approach, ShuffleMixer, for lightweight image super-resolution that explores large convolution and channel split-shuffle operation. In contrast to previous SR models that simply stack multiple small kernel convolutions or complex operators to learn representations, we explore a large kernel ConvNet for mobile-friendly SR design. Specifically, we develop a large depth-wise convolution and two projection layers based on channel splitting and shuffling as the basic component to mix features efficiently. Since the contexts of natural images are strongly locally correlated, using large depth-wise convolutions only is insufficient to reconstruct fine details. To overcome this problem while maintaining the efficiency of the proposed module, we introduce Fused-MBConvs into the proposed network to model the local connectivity of different features. Experimental results demonstrate that the proposed ShuffleMixer is about $3 \times$ smaller than the state-of-the-art efficient SR methods, e.g. CARN, in terms of model parameters and FLOPs while achieving competitive performance.
Long Sun, Jinshan Pan, Jinhui Tang
null
null
2,022
neurips
Bayesian Risk Markov Decision Processes
null
We consider finite-horizon Markov Decision Processes where parameters, such as transition probabilities, are unknown and estimated from data. The popular distributionally robust approach to addressing the parameter uncertainty can sometimes be overly conservative. In this paper, we propose a new formulation, Bayesian risk Markov decision process (BR-MDP), to address parameter uncertainty in MDPs, where a risk functional is applied in nested form to the expected total cost with respect to the Bayesian posterior distributions of the unknown parameters. The proposed formulation provides more flexible risk attitudes towards parameter uncertainty and takes into account the availability of data in future time stages. To solve the proposed formulation with the conditional value-at-risk (CVaR) risk functional, we propose an efficient approximation algorithm by deriving an analytical approximation of the value function and utilizing the convexity of CVaR. We demonstrate the empirical performance of the BR-MDP formulation and proposed algorithms on a gambler’s betting problem and an inventory control problem.
Yifan Lin, Yuxuan Ren, Enlu Zhou
null
null
2,022
neurips
All Politics is Local: Redistricting via Local Fairness
null
In this paper, we propose to use the concept of local fairness for auditing and ranking redistricting plans. Given a redistricting plan, a deviating group is a population-balanced contiguous region in which a majority of individuals are of the same interest and in the minority of their respective districts; such a set of individuals have a justified complaint with how the redistricting plan was drawn. A redistricting plan with no deviating groups is called locally fair. We show that the problem of auditing a given plan for local fairness is NP-complete. We present an MCMC approach for auditing as well as ranking redistricting plans. We also present a dynamic programming based algorithm for the auditing problem that we use to demonstrate the efficacy of our MCMC approach. Using these tools, we test local fairness on real-world election data, showing that it is indeed possible to find plans that are almost or exactly locally fair. Further, we show that such plans can be generated while sacrificing very little in terms of compactness and existing fairness measures such as competitiveness of the districts or seat shares of the plans.
Shao-Heng Ko, Erin Taylor, Pankaj Agarwal, Kamesh Munagala
null
null
2,022
neurips
Probable Domain Generalization via Quantile Risk Minimization
null
Domain generalization (DG) seeks predictors which perform well on unseen test distributions by leveraging data drawn from multiple related training distributions or domains. To achieve this, DG is commonly formulated as an average- or worst-case problem over the set of possible domains. However, predictors that perform well on average lack robustness while predictors that perform well in the worst case tend to be overly-conservative. To address this, we propose a new probabilistic framework for DG where the goal is to learn predictors that perform well with high probability. Our key idea is that distribution shifts seen during training should inform us of probable shifts at test time, which we realize by explicitly relating training and test domains as draws from the same underlying meta-distribution. To achieve probable DG, we propose a new optimization problem called Quantile Risk Minimization (QRM). By minimizing the $\alpha$-quantile of predictor's risk distribution over domains, QRM seeks predictors that perform well with probability $\alpha$. To solve QRM in practice, we propose the Empirical QRM (EQRM) algorithm and provide: (i) a generalization bound for EQRM; and (ii) the conditions under which EQRM recovers the causal predictor as $\alpha \to 1$. In our experiments, we introduce a more holistic quantile-focused evaluation protocol for DG, and demonstrate that EQRM outperforms state-of-the-art baselines on datasets from WILDS and DomainBed.
Cian Eastwood, Alexander Robey, Shashank Singh, Julius von Kügelgen, Hamed Hassani, George J. Pappas, Bernhard Schölkopf
null
null
2,022
neurips
Neural Topological Ordering for Computation Graphs
null
Recent works on machine learning for combinatorial optimization have shown that learning based approaches can outperform heuristic methods in terms of speed and performance. In this paper, we consider the problem of finding an optimal topological order on a directed acyclic graph (DAG) with focus on the memory minimization problem which arises in compilers. We propose an end-to-end machine learning based approach for topological ordering using an encoder-decoder framework. Our encoder is a novel attention based graph neural network architecture called \emph{Topoformer} which uses different topological transforms of a DAG for message passing. The node embeddings produced by the encoder are converted into node priorities which are used by the decoder to generate a probability distribution over topological orders. We train our model on a dataset of synthetically generated graphs called layered graphs. We show that our model outperforms, or is on-par, with several topological ordering baselines while being significantly faster on synthetic graphs with up to 2k nodes. We also train and test our model on a set of real-world computation graphs, showing performance improvements.
Mukul Gagrani, Corrado Rainone, Yang Yang, Harris Teague, Wonseok Jeon, Roberto Bondesan, Herke van Hoof, Christopher Lott, Weiliang Zeng, Piero Zappi
null
null
2,022
neurips
S-PIFu: Integrating Parametric Human Models with PIFu for Single-view Clothed Human Reconstruction
null
We present three novel strategies to incorporate a parametric body model into a pixel-aligned implicit model for single-view clothed human reconstruction. Firstly, we introduce ray-based sampling, a novel technique that transforms a parametric model into a set of highly informative, pixel-aligned 2D feature maps. Next, we propose a new type of feature based on blendweights. Blendweight-based labels serve as soft human parsing labels and help to improve the structural fidelity of reconstructed meshes. Finally, we show how we can extract and capitalize on body part orientation information from a parametric model to further improve reconstruction quality. Together, these three techniques form our S-PIFu framework, which significantly outperforms state-of-the-arts methods in all metrics. Our code is available at https://github.com/kcyt/SPIFu.
Kennard Chan, Guosheng Lin, Haiyu Zhao, Weisi Lin
null
null
2,022
neurips
A Single-timescale Analysis for Stochastic Approximation with Multiple Coupled Sequences
null
Stochastic approximation (SA) with multiple coupled sequences has found broad applications in machine learning such as bilevel learning and reinforcement learning (RL). In this paper, we study the finite-time convergence of nonlinear SA with multiple coupled sequences. Different from existing multi-timescale analysis, we seek scenarios where a fine-grained analysis can provide a tight performance guarantee for single-timescale multi-sequence SA (STSA). At the heart of our analysis is the smoothness property of the fixed points in multi-sequence SA that holds in many applications. When all sequences have strongly monotone increments, we establish the iteration complexity of $\mathcal{O}(\epsilon^{-1})$ to achieve $\epsilon$-accuracy, which improves the existing $\mathcal{O}(\epsilon^{-1.5})$ complexity for two coupled sequences. When the main sequence does not have a strongly monotone increment, we establish the iteration complexity of $\mathcal{O}(\epsilon^{-2})$. We showcase the power of our result by applying it to stochastic bilevel and compositional optimization problems, as well as RL problems, all of which recover the best known or lead to improvements over their existing guarantees.
Han Shen, Tianyi Chen
null
null
2,022
neurips
Outlier Suppression: Pushing the Limit of Low-bit Transformer Language Models
null
Transformer architecture has become the fundamental element of the widespread natural language processing~(NLP) models. With the trends of large NLP models, the increasing memory and computation costs hinder their efficient deployment on resource-limited devices. Therefore, transformer quantization attracts wide research interest. Recent work recognizes that structured outliers are the critical bottleneck for quantization performance. However, their proposed methods increase the computation overhead and still leave the outliers there. To fundamentally address this problem, this paper delves into the inherent inducement and importance of the outliers. We discover that $\boldsymbol \gamma$ in LayerNorm (LN) acts as a sinful amplifier for the outliers, and the importance of outliers varies greatly where some outliers provided by a few tokens cover a large area but can be clipped sharply without negative impacts. Motivated by these findings, we propose an outlier suppression framework including two components: Gamma Migration and Token-Wise Clipping. The Gamma Migration migrates the outlier amplifier to subsequent modules in an equivalent transformation, contributing to a more quantization-friendly model without any extra burden. The Token-Wise Clipping takes advantage of the large variance of token range and designs a token-wise coarse-to-fine pipeline, obtaining a clipping range with minimal final quantization loss in an efficient way. This framework effectively suppresses the outliers and can be used in a plug-and-play mode. Extensive experiments prove that our framework surpasses the existing works and, for the first time, pushes the 6-bit post-training BERT quantization to the full-precision (FP) level. Our code is available at https://github.com/wimh966/outlier_suppression.
Xiuying Wei, Yunchen Zhang, Xiangguo Zhang, Ruihao Gong, Shanghang Zhang, Qi Zhang, Fengwei Yu, Xianglong Liu
null
null
2,022
neurips
A composable machine-learning approach for steady-state simulations on high-resolution grids
null
In this paper we show that our Machine Learning (ML) approach, CoMLSim (Composable Machine Learning Simulator), can simulate PDEs on highly-resolved grids with higher accuracy and generalization to out-of-distribution source terms and geometries than traditional ML baselines. Our unique approach combines key principles of traditional PDE solvers with local-learning and low-dimensional manifold techniques to iteratively simulate PDEs on large computational domains. The proposed approach is validated on more than 5 steady-state PDEs across different PDE conditions on highly-resolved grids and comparisons are made with the commercial solver, Ansys Fluent as well as 4 other state-of-the-art ML methods. The numerical experiments show that our approach outperforms ML baselines in terms of 1) accuracy across quantitative metrics and 2) generalization to out-of-distribution conditions as well as domain sizes. Additionally, we provide results for a large number of ablations experiments conducted to highlight components of our approach that strongly influence the results. We conclude that our local-learning and iterative-inferencing approach reduces the challenge of generalization that most ML models face.
Rishikesh Ranade, Chris Hill, Lalit Ghule, Jay Pathak
null
null
2,022
neurips
Confident Adaptive Language Modeling
null
Recent advances in Transformer-based large language models (LLMs) have led to significant performance improvements across many tasks. These gains come with a drastic increase in the models' size, potentially leading to slow and costly use at inference time. In practice, however, the series of generations made by LLMs is composed of varying levels of difficulty. While certain predictions truly benefit from the models' full capacity, other continuations are more trivial and can be solved with reduced compute. In this work, we introduce Confident Adaptive Language Modeling (CALM), a framework for dynamically allocating different amounts of compute per input and generation timestep. Early exit decoding involves several challenges that we address here, such as: (1) what confidence measure to use; (2) connecting sequence-level constraints to local per-token exit decisions; and (3) attending back to missing hidden representations due to early exits in previous tokens. Through theoretical analysis and empirical experiments on three diverse text generation tasks, we demonstrate the efficacy of our framework in reducing compute---potential speedup of up to $\times 3$---while provably maintaining high performance.
Tal Schuster, Adam Fisch, Jai Gupta, Mostafa Dehghani, Dara Bahri, Vinh Tran, Yi Tay, Donald Metzler
null
null
2,022
neurips
Locating and Editing Factual Associations in GPT
null
We analyze the storage and recall of factual associations in autoregressive transformer language models, finding evidence that these associations correspond to localized, directly-editable computations. We first develop a causal intervention for identifying neuron activations that are decisive in a model's factual predictions. This reveals a distinct set of steps in middle-layer feed-forward modules that mediate factual predictions while processing subject tokens. To test our hypothesis that these computations correspond to factual association recall, we modify feed-forward weights to update specific factual associations using Rank-One Model Editing (ROME). We find that ROME is effective on a standard zero-shot relation extraction (zsRE) model-editing task, comparable to existing methods. To perform a more sensitive evaluation, we also evaluate ROME on a new dataset of counterfactual assertions, on which it simultaneously maintains both specificity and generalization, whereas other methods sacrifice one or another. Our results confirm an important role for mid-layer feed-forward modules in storing factual associations and suggest that direct manipulation of computational mechanisms may be a feasible approach for model editing. The code, dataset, visualizations, and an interactive demo notebook are available in the supplemental materials.
Kevin Meng, David Bau, Alex Andonian, Yonatan Belinkov
null
null
2,022
neurips
EF-BV: A Unified Theory of Error Feedback and Variance Reduction Mechanisms for Biased and Unbiased Compression in Distributed Optimization
null
In distributed or federated optimization and learning, communication between the different computing units is often the bottleneck and gradient compression is widely used to reduce the number of bits sent within each communication round of iterative methods. There are two classes of compression operators and separate algorithms making use of them. In the case of unbiased random compressors with bounded variance (e.g., rand-k), the DIANA algorithm of Mishchenko et al. (2019), which implements a variance reduction technique for handling the variance introduced by compression, is the current state of the art. In the case of biased and contractive compressors (e.g., top-k), the EF21 algorithm of Richtárik et al. (2021), which instead implements an error-feedback mechanism, is the current state of the art. These two classes of compression schemes and algorithms are distinct, with different analyses and proof techniques. In this paper, we unify them into a single framework and propose a new algorithm, recovering DIANA and EF21 as particular cases. Our general approach works with a new, larger class of compressors, which has two parameters, the bias and the variance, and includes unbiased and biased compressors as particular cases. This allows us to inherit the best of the two worlds: like EF21 and unlike DIANA, biased compressors, like top-k, whose good performance in practice is recognized, can be used. And like DIANA and unlike EF21, independent randomness at the compressors allows to mitigate the effects of compression, with the convergence rate improving when the number of parallel workers is large. This is the first time that an algorithm with all these features is proposed. We prove its linear convergence under certain conditions. Our approach takes a step towards better understanding of two so-far distinct worlds of communication-efficient distributed learning.
Laurent Condat, Kai Yi, Peter Richtarik
null
null
2,022
neurips
Parameters or Privacy: A Provable Tradeoff Between Overparameterization and Membership Inference
null
A surprising phenomenon in modern machine learning is the ability of a highly overparameterized model to generalize well (small error on the test data) even when it is trained to memorize the training data (zero error on the training data). This has led to an arms race towards increasingly overparameterized models (c.f., deep learning). In this paper, we study an underexplored hidden cost of overparameterization: the fact that overparameterized models may be more vulnerable to privacy attacks, in particular the membership inference attack that predicts the (potentially sensitive) examples used to train a model. We significantly extend the relatively few empirical results on this problem by theoretically proving for an overparameterized linear regression model in the Gaussian data setting that membership inference vulnerability increases with the number of parameters. Moreover, a range of empirical studies indicates that more complex, nonlinear models exhibit the same behavior. Finally, we extend our analysis towards ridge-regularized linear regression and show in the Gaussian data setting that increased regularization also increases membership inference vulnerability in the overparameterized regime.
Jasper Tan, Blake Mason, Hamid Javadi, Richard Baraniuk
null
null
2,022
neurips
DataMUX: Data Multiplexing for Neural Networks
null
In this paper, we introduce \emph{data multiplexing} (DataMUX), a technique that enables deep neural networks to process multiple inputs simultaneously using a single compact representation. DataMUX demonstrates that neural networks are capable of generating accurate predictions over \emph{mixtures} of inputs, resulting in increased inference throughput with minimal extra memory requirements. Our approach uses two key components -- 1) a multiplexing layer that performs a fixed linear transformation to each input before combining them to create a "mixed" representation of the same size as a single input, which is then processed by the base network, and 2) a demultiplexing layer that converts the base network's output back into independent representations before producing predictions for each input. We show the viability of DataMUX for different architectures (Transformers, and to a much lesser extent MLPs and CNNs) across six different tasks spanning sentence classification, named entity recognition and image classification. For instance, DataMUX for Transformers can multiplex up to 20x/40x inputs, achieving up to 11x/18x increase in inference throughput with absolute performance drops of $<2\%$ and $<4\%$ respectively compared to a vanilla Transformer on MNLI, a natural language inference task. We also provide a theoretical construction for multiplexing in self-attention networks and analyze the effect of various design elements in DataMUX.
Vishvak Murahari, Carlos Jimenez, Runzhe Yang, Karthik Narasimhan
null
null
2,022
neurips
CEBaB: Estimating the Causal Effects of Real-World Concepts on NLP Model Behavior
null
The increasing size and complexity of modern ML systems has improved their predictive capabilities but made their behavior harder to explain. Many techniques for model explanation have been developed in response, but we lack clear criteria for assessing these techniques. In this paper, we cast model explanation as the causal inference problem of estimating causal effects of real-world concepts on the output behavior of ML models given actual input data. We introduce CEBaB, a new benchmark dataset for assessing concept-based explanation methods in Natural Language Processing (NLP). CEBaB consists of short restaurant reviews with human-generated counterfactual reviews in which an aspect (food, noise, ambiance, service) of the dining experience was modified. Original and counterfactual reviews are annotated with multiply-validated sentiment ratings at the aspect-level and review-level. The rich structure of CEBaB allows us to go beyond input features to study the effects of abstract, real-world concepts on model behavior. We use CEBaB to compare the quality of a range of concept-based explanation methods covering different assumptions and conceptions of the problem, and we seek to establish natural metrics for comparative assessments of these methods.
Eldar D Abraham, Karel D&#x27;Oosterlinck, Amir Feder, Yair Gat, Atticus Geiger, Christopher Potts, Roi Reichart, Zhengxuan Wu
null
null
2,022
neurips
Active Labeling: Streaming Stochastic Gradients
null
The workhorse of machine learning is stochastic gradient descent.To access stochastic gradients, it is common to consider iteratively input/output pairs of a training dataset.Interestingly, it appears that one does not need full supervision to access stochastic gradients, which is the main motivation of this paper.After formalizing the "active labeling" problem, which focuses on active learning with partial supervision, we provide a streaming technique that provably minimizes the ratio of generalization error over the number of samples.We illustrate our technique in depth for robust regression.
Vivien Cabannes, Francis Bach, Vianney Perchet, Alessandro Rudi
null
null
2,022
neurips
Revisiting Realistic Test-Time Training: Sequential Inference and Adaptation by Anchored Clustering
null
Deploying models on target domain data subject to distribution shift requires adaptation. Test-time training (TTT) emerges as a solution to this adaptation under a realistic scenario where access to full source domain data is not available and instant inference on target domain is required. Despite many efforts into TTT, there is a confusion over the experimental settings, thus leading to unfair comparisons. In this work, we first revisit TTT assumptions and categorize TTT protocols by two key factors. Among the multiple protocols, we adopt a realistic sequential test-time training (sTTT) protocol, under which we further develop a test-time anchored clustering (TTAC) approach to enable stronger test-time feature learning. TTAC discovers clusters in both source and target domain and match the target clusters to the source ones to improve generalization. Pseudo label filtering and iterative updating are developed to improve the effectiveness and efficiency of anchored clustering. We demonstrate that under all TTT protocols TTAC consistently outperforms the state-of-the-art methods on six TTT datasets. We hope this work will provide a fair benchmarking of TTT methods and future research should be compared within respective protocols. A demo code is available at https://github.com/Gorilla-Lab-SCUT/TTAC.
Yongyi Su, Xun Xu, Kui Jia
null
null
2,022
neurips
Label Noise in Adversarial Training: A Novel Perspective to Study Robust Overfitting
null
We show that label noise exists in adversarial training. Such label noise is due to the mismatch between the true label distribution of adversarial examples and the label inherited from clean examples – the true label distribution is distorted by the adversarial perturbation, but is neglected by the common practice that inherits labels from clean examples. Recognizing label noise sheds insights on the prevalence of robust overfitting in adversarial training, and explains its intriguing dependence on perturbation radius and data quality. Also, our label noise perspective aligns well with our observations of the epoch-wise double descent in adversarial training. Guided by our analyses, we proposed a method to automatically calibrate the label to address the label noise and robust overfitting. Our method achieves consistent performance improvements across various models and datasets without introducing new hyper-parameters or additional tuning.
Chengyu Dong, Liyuan Liu, Jingbo Shang
null
null
2,022
neurips
Biologically-plausible backpropagation through arbitrary timespans via local neuromodulators
null
The spectacular successes of recurrent neural network models where key parameters are adjusted via backpropagation-based gradient descent have inspired much thought as to how biological neuronal networks might solve the corresponding synaptic credit assignment problem [1, 2, 3]. There is so far little agreement, however, as to how biological networks could implement the necessary backpropagation through time, given widely recognized constraints of biological synaptic network signaling architectures. Here, we propose that extra-synaptic diffusion of local neuromodulators such as neuropeptides may afford an effective mode of backpropagation lying within the bounds of biological plausibility. Going beyond existing temporal truncation-based gradient approximations [4, 5, 6], our approximate gradient-based update rule, ModProp, propagates credit information through arbitrary time steps. ModProp suggests that modulatory signals can act on receiving cells by convolving their eligibility traces via causal, time-invariant and synapse-type-specific filter taps. Our mathematical analysis of ModProp learning, together with simulation results on benchmark temporal tasks, demonstrate the advantage of ModProp over existing biologically-plausible temporal credit assignment rules. These results suggest a potential neuronal mechanism for signaling credit information related to recurrent interactions over a longer time horizon. Finally, we derive an in-silico implementation of ModProp that could serve as a low-complexity and causal alternative to backpropagation through time.
Yuhan Helena Liu, Stephen Smith, Stefan Mihalas, Eric Shea-Brown, Uygar Sümbül
null
null
2,022
neurips
TOIST: Task Oriented Instance Segmentation Transformer with Noun-Pronoun Distillation
null
Current referring expression comprehension algorithms can effectively detect or segment objects indicated by nouns, but how to understand verb reference is still under-explored. As such, we study the challenging problem of task oriented detection, which aims to find objects that best afford an action indicated by verbs like sit comfortably on. Towards a finer localization that better serves downstream applications like robot interaction, we extend the problem into task oriented instance segmentation. A unique requirement of this task is to select preferred candidates among possible alternatives. Thus we resort to the transformer architecture which naturally models pair-wise query relationships with attention, leading to the TOIST method. In order to leverage pre-trained noun referring expression comprehension models and the fact that we can access privileged noun ground truth during training, a novel noun-pronoun distillation framework is proposed. Noun prototypes are generated in an unsupervised manner and contextual pronoun features are trained to select prototypes. As such, the network remains noun-agnostic during inference. We evaluate TOIST on the large-scale task oriented dataset COCO-Tasks and achieve +10.7% higher $\rm{mAP^{box}}$ than the best-reported results. The proposed noun-pronoun distillation can boost $\rm{mAP^{box}}$ and $\rm{mAP^{mask}}$ by +2.6% and +3.6%. Codes and models are publicly available.
Pengfei Li, Beiwen Tian, Yongliang Shi, Xiaoxue Chen, Hao Zhao, Guyue Zhou, Ya-Qin Zhang
null
null
2,022
neurips
Policy Optimization with Linear Temporal Logic Constraints
null
We study the problem of policy optimization (PO) with linear temporal logic (LTL) constraints. The language of LTL allows flexible description of tasks that may be unnatural to encode as a scalar cost function. We consider LTL-constrained PO as a systematic framework, decoupling task specification from policy selection, and an alternative to the standard of cost shaping. With access to a generative model, we develop a model-based approach that enjoys a sample complexity analysis for guaranteeing both task satisfaction and cost optimality (through a reduction to a reachability problem). Empirically, our algorithm can achieve strong performance even in low sample regimes.
Cameron Voloshin, Hoang Le, Swarat Chaudhuri, Yisong Yue
null
null
2,022
neurips
Pruning has a disparate impact on model accuracy
null
Network pruning is a widely-used compression technique that is able to significantly scale down overparameterized models with minimal loss of accuracy. This paper shows that pruning may create or exacerbate disparate impacts. The paper sheds light on the factors to cause such disparities, suggesting differences in gradient norms and distance to decision boundary across groups to be responsible for this critical issue. It analyzes these factors in detail, providing both theoretical and empirical support, and proposes a simple, yet effective, solution that mitigates the disparate impacts caused by pruning.
Cuong Tran, Ferdinando Fioretto, Jung-Eun Kim, Rakshit Naidu
null
null
2,022
neurips
When Combinatorial Thompson Sampling meets Approximation Regret
null
We study the Combinatorial Thompson Sampling policy (CTS) for combinatorial multi-armed bandit problems (CMAB), within an approximation regret setting. Although CTS has attracted a lot of interest, it has a drawback that other usual CMAB policies do not have when considering non-exact oracles: for some oracles, CTS has a poor approximation regret (scaling linearly with the time horizon $T$) [Wang and Chen, 2018]. A study is then necessary to discriminate the oracles on which CTS could learn. This study was started by Kong et al. [2021]: they gave the first approximation regret analysis of CTS for the greedy oracle, obtaining an upper bound of order $\mathcal{O}{\left(\log(T)/\Delta^2\right)}$, where $\Delta$ is some minimal reward gap. In this paper, our objective is to push this study further than the simple case of the greedy oracle. We provide the first $\mathcal{O}{\left(\log(T)/\Delta\right)}$ approximation regret upper bound for CTS, obtained under a specific condition on the approximation oracle, allowing a reduction to the exact oracle analysis. We thus term this condition Reduce2Exact, and observe that it is satisfied in many concrete examples. Moreover, it can be extended to the probabilistically triggered arms setting, thus capturing even more problems, such as online influence maximization.
Pierre Perrault
null
null
2,022
neurips
$\alpha$-ReQ : Assessing Representation Quality in Self-Supervised Learning by measuring eigenspectrum decay
null
Self-Supervised Learning (SSL) with large-scale unlabelled datasets enables learning useful representations for multiple downstream tasks. However, assessing the quality of such representations efficiently poses nontrivial challenges. Existing approaches train linear probes (with frozen features) to evaluate performance on a given task. This is expensive both computationally, since it requires retraining a new prediction head for each downstream task, and statistically, requires task-specific labels for multiple tasks. This poses a natural question, how do we efficiently determine the "goodness" of representations learned with SSL across a wide range of potential downstream tasks? In particular, a task-agnostic statistical measure of representation quality, that predicts generalization without explicit downstream task evaluation, would be highly desirable. In this work, we analyze characteristics of learned representations $\mathbf{f_\theta}$, in well-trained neural networks with canonical architectures \& across SSL objectives. We observe that the eigenspectrum of the empirical feature covariance $\mathrm{Cov}(\mathbf{f_\theta}$) can be well approximated with the family of power-law distribution. We analytically and empirically (using multiple datasets, e.g. CIFAR, STL10, MIT67, ImageNet) demonstrate that the decay coefficient $\alpha$ serves as a measure of representation quality for tasks that are solvable with a linear readout, i.e. there exist well-defined intervals for $\alpha$ where models exhibit excellent downstream generalization. Furthermore, our experiments suggest that key design parameters in SSL algorithms, such as BarlowTwins, implicitly modulate the decay coefficient of the eigenspectrum ($\alpha$). As $\alpha$ depends only on the features themselves, this measure for model selection with hyperparameter tuning for BarlowTwins enables search with less compute.
Kumar K Agrawal, Arnab Kumar Mondal, Arna Ghosh, Blake Richards
null
null
2,022
neurips
Tikhonov Regularization is Optimal Transport Robust under Martingale Constraints
null
Distributionally robust optimization (DRO) has been shown to offer a principled way to regularize learning models. In this paper, we find that Tikhonov regularization is distributionally robust in an optimal transport sense (i.e. if an adversary chooses distributions in a suitable optimal transport neighborhood of the empirical measure), provided that suitable martingale constraints are also imposed. Further, we introduce a relaxation of the martingale constraints which not only provide a unified viewpoint to a class of existing robust methods but also lead to new regularization tools. To realize these novel tools, provably efficient computational algorithms are proposed. As a byproduct, the strong duality theorem proved in this paper can be potentially applied to other problems of independent interest.
Jiajin Li, Sirui Lin, Jose Blanchet, Viet Anh Nguyen
null
null
2,022
neurips
Sequence Model Imitation Learning with Unobserved Contexts
null
We consider imitation learning problems where the learner's ability to mimic the expert increases throughout the course of an episode as more information is revealed. One example of this is when the expert has access to privileged information: while the learner might not be able to accurately reproduce expert behavior early on in an episode, by considering the entire history of states and actions, they might be able to eventually identify the hidden context and act as the expert would. We prove that on-policy imitation learning algorithms (with or without access to a queryable expert) are better equipped to handle these sorts of asymptotically realizable problems than off-policy methods. This is because on-policy algorithms provably learn to recover from their initially suboptimal actions, while off-policy methods treat their suboptimal past actions as though they came from the expert. This often manifests as a latching behavior: a naive repetition of past actions. We conduct experiments in a toy bandit domain that show that there exist sharp phase transitions of whether off-policy approaches are able to match expert performance asymptotically, in contrast to the uniformly good performance of on-policy approaches. We demonstrate that on several continuous control tasks, on-policy approaches are able to use history to identify the context while off-policy approaches actually perform worse when given access to history.
Gokul Swamy, Sanjiban Choudhury, J. Bagnell, Steven Z. Wu
null
null
2,022
neurips
Beyond Mahalanobis Distance for Textual OOD Detection
null
As the number of AI systems keeps growing, it is fundamental to implement and develop efficient control mechanisms to ensure the safe and proper functioning of machine learning (ML) systems. Reliable out-of-distribution (OOD) detection aims to detect test samples that are statistically far from the training distribution, as they might cause failures of in-production systems. In this paper, we propose a new detector called TRUSTED. Different from previous works, TRUSTED key components (i) include a novel OOD score relying on the concept of statistical data depth, (ii) rely on the idea’s full potential that all hidden layers of the network carry information regarding OOD. Our extensive experiments, comparing over 51k model configurations including different checkpoints, seed and various datasets, demonstrate that TRUSTED achieve state-of-the-art performances by producing an improvement of over 3 AUROC points.
Pierre Colombo, Eduardo Dadalto, Guillaume Staerman, Nathan Noiry, Pablo Piantanida
null
null
2,022
neurips
Multi-Fidelity Best-Arm Identification
null
In several real-world applications, a learner has access to multiple environment simulators, each with a different precision (e.g., simulation accuracy) and cost (e.g., computational time). In such a scenario, the learner faces the trade-off between selecting expensive accurate simulators or preferring cheap imprecise ones. We formalize this setting as a multi-fidelity variant of the stochastic best-arm identification problem, where querying the original arm is expensive, but multiple and biased approximations (i.e., fidelities) are available at lower costs. The learner's goal, in this setting, is to sequentially choose which simulator to query in order to minimize the total cost, while guaranteeing to identify the optimal arm with high probability. We first derive a lower bound on the identification cost, assuming that the maximum bias of each fidelity is known to the learner. Then, we propose a novel algorithm, Iterative Imprecise Successive Elimination (IISE), which provably reduces the total cost w.r.t. algorithms that ignore the multi-fidelity structure and whose cost complexity upper bound mimics the structure of the lower bound. Furthermore, we show that the cost complexity of IISE can be further reduced when the agent has access to a more fine-grained knowledge of the error introduced by the approximators.Finally, we numerically validate IISE, showing the benefits of our method in simulated domains.
Riccardo Poiani, Alberto Maria Metelli, Marcello Restelli
null
null
2,022
neurips
FasterRisk: Fast and Accurate Interpretable Risk Scores
null
Over the last century, risk scores have been the most popular form of predictive model used in healthcare and criminal justice. Risk scores are sparse linear models with integer coefficients; often these models can be memorized or placed on an index card. Typically, risk scores have been created either without data or by rounding logistic regression coefficients, but these methods do not reliably produce high-quality risk scores. Recent work used mathematical programming, which is computationally slow. We introduce an approach for efficiently producing a collection of high-quality risk scores learned from data. Specifically, our approach produces a pool of almost-optimal sparse continuous solutions, each with a different support set, using a beam-search algorithm. Each of these continuous solutions is transformed into a separate risk score through a "star ray" search, where a range of multipliers are considered before rounding the coefficients sequentially to maintain low logistic loss. Our algorithm returns all of these high-quality risk scores for the user to consider. This method completes within minutes and can be valuable in a broad variety of applications.
Jiachang Liu, Chudi Zhong, Boxuan Li, Margo Seltzer, Cynthia Rudin
null
null
2,022
neurips
Unsupervised Multi-View Object Segmentation Using Radiance Field Propagation
null
We present radiance field propagation (RFP), a novel approach to segmenting objects in 3D during reconstruction given only unlabeled multi-view images of a scene. RFP is derived from emerging neural radiance field-based techniques, which jointly encodes semantics with appearance and geometry. The core of our method is a novel propagation strategy for individual objects' radiance fields with a bidirectional photometric loss, enabling an unsupervised partitioning of a scene into salient or meaningful regions corresponding to different object instances. To better handle complex scenes with multiple objects and occlusions, we further propose an iterative expectation-maximization algorithm to refine object masks. To the best of our knowledge, RFP is the first unsupervised approach for tackling 3D scene object segmentation for neural radiance field (NeRF) without any supervision, annotations, or other cues such as 3D bounding boxes and prior knowledge of object class. Experiments demonstrate that RFP achieves feasible segmentation results that are more accurate than previous unsupervised image/scene segmentation approaches, and are comparable to existing supervised NeRF-based methods. The segmented object representations enable individual 3D object editing operations. Codes and datasets will be made publicly available.
Xinhang Liu, Jiaben Chen, Huai Yu, Yu-Wing Tai, Chi-Keung Tang
null
null
2,022
neurips
Mind the Gap: Understanding the Modality Gap in Multi-modal Contrastive Representation Learning
null
We present modality gap, an intriguing geometric phenomenon of the representation space of multi-modal models. Specifically, we show that different data modalities (e.g. images and text) are embedded at arm's length in their shared representation in multi-modal models such as CLIP. Our systematic analysis demonstrates that this gap is caused by a combination of model initialization and contrastive learning optimization. In model initialization, we show empirically and theoretically that the representation of a common deep neural network is restricted to a narrow cone. As a consequence, in a multi-modal model with two encoders, the representations of the two modalities are clearly apart when the model is initialized. During optimization, contrastive learning keeps the different modalities separate by a certain distance, which is influenced by the temperature parameter in the loss function. Our experiments further demonstrate that varying the modality gap distance has a significant impact in improving the model's downstream zero-shot classification performance and fairness.
Victor Weixin Liang, Yuhui Zhang, Yongchan Kwon, Serena Yeung, James Y. Zou
null
null
2,022
neurips
Revisiting Sliced Wasserstein on Images: From Vectorization to Convolution
null
The conventional sliced Wasserstein is defined between two probability measures that have realizations as \textit{vectors}. When comparing two probability measures over images, practitioners first need to vectorize images and then project them to one-dimensional space by using matrix multiplication between the sample matrix and the projection matrix. After that, the sliced Wasserstein is evaluated by averaging the two corresponding one-dimensional projected probability measures. However, this approach has two limitations. The first limitation is that the spatial structure of images is not captured efficiently by the vectorization step; therefore, the later slicing process becomes harder to gather the discrepancy information. The second limitation is memory inefficiency since each slicing direction is a vector that has the same dimension as the images. To address these limitations, we propose novel slicing methods for sliced Wasserstein between probability measures over images that are based on the convolution operators. We derive \emph{convolution sliced Wasserstein} (CSW) and its variants via incorporating stride, dilation, and non-linear activation function into the convolution operators. We investigate the metricity of CSW as well as its sample complexity, its computational complexity, and its connection to conventional sliced Wasserstein distances. Finally, we demonstrate the favorable performance of CSW over the conventional sliced Wasserstein in comparing probability measures over images and in training deep generative modeling on images.
Khai Nguyen, Nhat Ho
null
null
2,022
neurips
RankFeat: Rank-1 Feature Removal for Out-of-distribution Detection
null
The task of out-of-distribution (OOD) detection is crucial for deploying machine learning models in real-world settings. In this paper, we observe that the singular value distributions of the in-distribution (ID) and OOD features are quite different: the OOD feature matrix tends to have a larger dominant singular value than the ID feature, and the class predictions of OOD samples are largely determined by it. This observation motivates us to propose RankFeat, a simple yet effective post hoc approach for OOD detection by removing the rank-1 matrix composed of the largest singular value and the associated singular vectors from the high-level feature. RankFeat achieves state-of-the-art performance and reduces the average false positive rate (FPR95) by 17.90% compared with the previous best method. Extensive ablation studies and comprehensive theoretical analyses are presented to support the empirical results.
Yue Song, Nicu Sebe, Wei Wang
null
null
2,022
neurips
SemiFL: Semi-Supervised Federated Learning for Unlabeled Clients with Alternate Training
null
Federated Learning allows the training of machine learning models by using the computation and private data resources of many distributed clients. Most existing results on Federated Learning (FL) assume the clients have ground-truth labels. However, in many practical scenarios, clients may be unable to label task-specific data due to a lack of expertise or resource. We propose SemiFL to address the problem of combining communication-efficient FL such as FedAvg with Semi-Supervised Learning (SSL). In SemiFL, clients have completely unlabeled data and can train multiple local epochs to reduce communication costs, while the server has a small amount of labeled data. We provide a theoretical understanding of the success of data augmentation-based SSL methods to illustrate the bottleneck of a vanilla combination of communication-efficient FL with SSL. To address this issue, we propose alternate training to 'fine-tune global model with labeled data' and 'generate pseudo-labels with the global model.' We conduct extensive experiments and demonstrate that our approach significantly improves the performance of a labeled server with unlabeled clients training with multiple local epochs. Moreover, our method outperforms many existing SSFL baselines and performs competitively with the state-of-the-art FL and SSL results.
Enmao Diao, Jie Ding, Vahid Tarokh
null
null
2,022
neurips
Jump Self-attention: Capturing High-order Statistics in Transformers
null
The recent success of Transformer has benefited many real-world applications, with its capability of building long dependency through pairwise dot-products. However, the strong assumption that elements are directly attentive to each other limits the performance of tasks with high-order dependencies such as natural language understanding and Image captioning. To solve such problems, we are the first to define the Jump Self-attention (JAT) to build Transformers. Inspired by the pieces moving of English Draughts, we introduce the spectral convolutional technique to calculate JAT on the dot-product feature map. This technique allows JAT's propagation in each self-attention head and is interchangeable with the canonical self-attention. We further develop the higher-order variants under the multi-hop assumption to increase the generality. Moreover, the proposed architecture is compatible with the pre-trained models. With extensive experiments, we empirically show that our methods significantly increase the performance on ten different tasks.
Haoyi Zhou, Siyang Xiao, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li
null
null
2,022
neurips
Learning to Generate Inversion-Resistant Model Explanations
null
The wide adoption of deep neural networks (DNNs) in mission-critical applications has spurred the need for interpretable models that provide explanations of the model's decisions. Unfortunately, previous studies have demonstrated that model explanations facilitate information leakage, rendering DNN models vulnerable to model inversion attacks. These attacks enable the adversary to reconstruct original images based on model explanations, thus leaking privacy-sensitive features. To this end, we present Generative Noise Injector for Model Explanations (GNIME), a novel defense framework that perturbs model explanations to minimize the risk of model inversion attacks while preserving the interpretabilities of the generated explanations. Specifically, we formulate the defense training as a two-player minimax game between the inversion attack network on the one hand, which aims to invert model explanations, and the noise generator network on the other, which aims to inject perturbations to tamper with model inversion attacks. We demonstrate that GNIME significantly decreases the information leakage in model explanations, decreasing transferable classification accuracy in facial recognition models by up to 84.8% while preserving the original functionality of model explanations.
Hoyong Jeong, Suyoung Lee, Sung Ju Hwang, Sooel Son
null
null
2,022
neurips
Learning Infinite-Horizon Average-Reward Restless Multi-Action Bandits via Index Awareness
null
We consider the online restless bandits with average-reward and multiple actions, where the state of each arm evolves according to a Markov decision process (MDP), and the reward of pulling an arm depends on both the current state of the corresponding MDP and the action taken. Since finding the optimal control is typically intractable for restless bandits, existing learning algorithms are often computationally expensive or with a regret bound that is exponential in the number of arms and states. In this paper, we advocate \textit{index-aware reinforcement learning} (RL) solutions to design RL algorithms operating on a much smaller dimensional subspace by exploiting the inherent structure in restless bandits. Specifically, we first propose novel index policies to address dimensionality concerns, which are provably optimal. We then leverage the indices to develop two low-complexity index-aware RL algorithms, namely, (i) GM-R2MAB, which has access to a generative model; and (ii) UC-R2MAB, which learns the model using an upper confidence style online exploitation method. We prove that both algorithms achieve a sub-linear regret that is only polynomial in the number of arms and states. A key differentiator between our algorithms and existing ones stems from the fact that our RL algorithms contain a novel exploitation that leverages our proposed provably optimal index policies for decision-makings.
GUOJUN XIONG, Shufan Wang, Jian Li
null
null
2,022
neurips
A Rotated Hyperbolic Wrapped Normal Distribution for Hierarchical Representation Learning
null
We present a rotated hyperbolic wrapped normal distribution (RoWN), a simple yet effective alteration of a hyperbolic wrapped normal distribution (HWN). The HWN expands the domain of probabilistic modeling from Euclidean to hyperbolic space, where a tree can be embedded with arbitrary low distortion in theory. In this work, we analyze the geometric properties of the diagonal HWN, a standard choice of distribution in probabilistic modeling. The analysis shows that the distribution is inappropriate to represent the data points at the same hierarchy level through their angular distance with the same norm in the Poincar\'e disk model. We then empirically verify the presence of limitations of HWN, and show how RoWN, the proposed distribution, can alleviate the limitations on various hierarchical datasets, including noisy synthetic binary tree, WordNet, and Atari 2600 Breakout. The code is available at https://github.com/ml-postech/RoWN.
Seunghyuk Cho, Juyong Lee, Jaesik Park, Dongwoo Kim
null
null
2,022
neurips
Graph Learning Assisted Multi-Objective Integer Programming
null
Objective-space decomposition algorithms (ODAs) are widely studied for solving multi-objective integer programs. However, they often encounter difficulties in handling scalarized problems, which could cause infeasibility or repetitive nondominated points and thus induce redundant runtime. To mitigate the issue, we present a graph neural network (GNN) based method to learn the reduction rule in the ODA. We formulate the algorithmic procedure of generic ODAs as a Markov decision process, and parameterize the policy (reduction rule) with a novel two-stage GNN to fuse information from variables, constraints and especially objectives for better state representation. We train our model with imitation learning and deploy it on a state-of-the-art ODA. Results show that our method significantly improves the solving efficiency of the ODA. The learned policy generalizes fairly well to larger problems or more objectives, and the proposed GNN outperforms existing ones for integer programming in terms of test and generalization accuracy.
Yaoxin Wu, Wen Song, Zhiguang Cao, Jie Zhang, Abhishek Gupta, Mingyan Lin
null
null
2,022
neurips
Probing Classifiers are Unreliable for Concept Removal and Detection
null
Neural network models trained on text data have been found to encode undesirable linguistic or sensitive concepts in their representation. Removing such concepts is non-trivial because of a complex relationship between the concept, text input, and the learnt representation. Recent work has proposed post-hoc and adversarial methods to remove such unwanted concepts from a model's representation. Through an extensive theoretical and empirical analysis, we show that these methods can be counter-productive: they are unable to remove the concepts entirely, and in the worst case may end up destroying all task-relevant features. The reason is the methods' reliance on a probing classifier as a proxy for the concept. Even under the most favorable conditions for learning a probing classifier when a concept's relevant features in representation space alone can provide 100% accuracy, we prove that a probing classifier is likely to use non-concept features and thus post-hoc or adversarial methods will fail to remove the concept correctly. These theoretical implications are confirmed by experiments on models trained on synthetic, Multi-NLI, and Twitter datasets. For sensitive applications of concept removal such as fairness, we recommend caution against using these methods and propose a spuriousness metric to gauge the quality of the final classifier.
Abhinav Kumar, Chenhao Tan, Amit Sharma
null
null
2,022
neurips
STNDT: Modeling Neural Population Activity with Spatiotemporal Transformers
null
Modeling neural population dynamics underlying noisy single-trial spiking activities is essential for relating neural observation and behavior. A recent non-recurrent method - Neural Data Transformers (NDT) - has shown great success in capturing neural dynamics with low inference latency without an explicit dynamical model. However, NDT focuses on modeling the temporal evolution of the population activity while neglecting the rich covariation between individual neurons. In this paper we introduce SpatioTemporal Neural Data Transformer (STNDT), an NDT-based architecture that explicitly models responses of individual neurons in the population across time and space to uncover their underlying firing rates. In addition, we propose a contrastive learning loss that works in accordance with mask modeling objective to further improve the predictive performance. We show that our model achieves state-of-the-art performance on ensemble level in estimating neural activities across four neural datasets, demonstrating its capability to capture autonomous and non-autonomous dynamics spanning different cortical regions while being completely agnostic to the specific behaviors at hand. Furthermore, STNDT spatial attention mechanism reveals consistently important subsets of neurons that play a vital role in driving the response of the entire population, providing interpretability and key insights into how the population of neurons performs computation.
Trung Le, Eli Shlizerman
null
null
2,022
neurips
The Role of Baselines in Policy Gradient Optimization
null
We study the effect of baselines in on-policy stochastic policy gradient optimization, and close the gap between the theory and practice of policy optimization methods. Our first contribution is to show that the \emph{state value} baseline allows on-policy stochastic \emph{natural} policy gradient (NPG) to converge to a globally optimal policy at an $O(1/t)$ rate, which was not previously known. The analysis relies on two novel findings: the expected progress of the NPG update satisfies a stochastic version of the non-uniform \L{}ojasiewicz (N\L{}) inequality, and with probability 1 the state value baseline prevents the optimal action's probability from vanishing, thus ensuring sufficient exploration. Importantly, these results provide a new understanding of the role of baselines in stochastic policy gradient: by showing that the variance of natural policy gradient estimates remains unbounded with or without a baseline, we find that variance reduction \emph{cannot} explain their utility in this setting. Instead, the analysis reveals that the primary effect of the value baseline is to \textbf{reduce the aggressiveness of the updates} rather than their variance. That is, we demonstrate that a finite variance is \emph{not necessary} for almost sure convergence of stochastic NPG, while controlling update aggressiveness is both necessary and sufficient. Additional experimental results verify these theoretical findings.
Jincheng Mei, Wesley Chung, Valentin Thomas, Bo Dai, Csaba Szepesvari, Dale Schuurmans
null
null
2,022
neurips
FACT: Learning Governing Abstractions Behind Integer Sequences
null
Integer sequences are of central importance to the modeling of concepts admitting complete finitary descriptions. We introduce a novel view on the learning of such concepts and lay down a set of benchmarking tasks aimed at conceptual understanding by machine learning models. These tasks indirectly assess model ability to abstract, and challenge them to reason both interpolatively and extrapolatively from the knowledge gained by observing representative examples. To further aid research in knowledge representation and reasoning, we present FACT, the Finitary Abstraction Comprehension Toolkit. The toolkit surrounds a large dataset of integer sequences comprising both organic and synthetic entries, a library for data pre-processing and generation, a set of model performance evaluation tools, and a collection of baseline model implementations, enabling the making of the future advancements with ease.
Peter Belcak, Ard Kastrati, Flavio Schenker, Roger Wattenhofer
null
null
2,022
neurips
SignRFF: Sign Random Fourier Features
null
The industry practice has been moving to embedding based retrieval (EBR). For example, in many applications, the embedding vectors are trained by some form of two-tower models. During serving phase, candidates (embedding vectors) are retrieved according to the rankings of cosine similarities either exhaustively or by approximate near neighbor (ANN) search algorithms. For those applications, it is natural to apply ``sign random projections'' (SignRP) or variants, on the trained embedding vectors to facilitate efficient data storage and cosine distance computations. SignRP is also one of the standard indexing schemes for conducting approximate near neighbor search. In the literature, SignRP has been popular and, to an extent, becomes the default method for ``locality sensitive hashing'' (LSH). In this paper, we propose ``sign random Fourier features'' (SignRFF) as an alternative to SignRP. The original method of random Fourier features (RFF) is a standard technique for approximating the Gaussian kernel (as opposed to the linear cosine kernel), in the literature of large-scale machine learning. Basically, RFF applies a simple nonlinear transformation on the samples generated by random projections (RP). Thus, in the pipeline of EBR, it is straightforward to replace SignRP by SignRFF. This paper explains, in a principled manner, why it makes sense to do so. In this paper, a new analytical measure called \textbf{Ranking Efficiency (RE)} is developed, which in retrospect is closely related to the ``two-sample mean'' $t$-test statistic for binomial variables. RE provides a systematic and unified framework for comparing different LSH methods. We compare our proposed SignRP with SignRP, KLSH (kernel LSH), as well SQ-RFF (which is another 1-bit coding scheme for RFF). According to the RE expression, SignRFF consistently outperforms KLSH (for Gaussian kernel) and SQ-RFF. SignRFF also outperforms SignRP in the relatively high similarity region. The theoretical comparison results are consistent with our empirical findings. In addition, experiments are conducted to compare SignRFF with a wide range of data-dependent and deep learning based hashing methods and show the advantage of SignRFF with a sufficient number of hash bits.
Xiaoyun Li, Ping Li
null
null
2,022
neurips
SCL-WC: Cross-Slide Contrastive Learning for Weakly-Supervised Whole-Slide Image Classification
null
Weakly-supervised whole-slide image (WSI) classification (WSWC) is a challenging task where a large number of unlabeled patches (instances) exist within each WSI (bag) while only a slide label is given. Despite recent progress for the multiple instance learning (MIL)-based WSI analysis, the major limitation is that it usually focuses on the easy-to-distinguish diagnosis-positive regions while ignoring positives that occupy a small ratio in the entire WSI. To obtain more discriminative features, we propose a novel weakly-supervised classification method based on cross-slide contrastive learning (called SCL-WC), which depends on task-agnostic self-supervised feature pre-extraction and task-specific weakly-supervised feature refinement and aggregation for WSI-level prediction. To enable both intra-WSI and inter-WSI information interaction, we propose a positive-negative-aware module (PNM) and a weakly-supervised cross-slide contrastive learning (WSCL) module, respectively. The WSCL aims to pull WSIs with the same disease types closer and push different WSIs away. The PNM aims to facilitate the separation of tumor-like patches and normal ones within each WSI. Extensive experiments demonstrate state-of-the-art performance of our method in three different classification tasks (e.g., over 2% of AUC in Camelyon16, 5% of F1 score in BRACS, and 3% of AUC in DiagSet). Our method also shows superior flexibility and scalability in weakly-supervised localization and semi-supervised classification experiments (e.g., first place in the BRIGHT challenge). Our code will be available at https://github.com/Xiyue-Wang/SCL-WC.
Xiyue Wang, Jinxi Xiang, Jun Zhang, Sen Yang, Zhongyi Yang, Ming-Hui Wang, Jing Zhang, Wei Yang, Junzhou Huang, Xiao Han
null
null
2,022
neurips
SAPipe: Staleness-Aware Pipeline for Data Parallel DNN Training
null
Data parallelism across multiple machines is widely adopted for accelerating distributed deep learning, but it is hard to achieve linear speedup due to the heavy communication. In this paper, we propose SAPipe, a performant system that pushes the training speed of data parallelism to its fullest extent. By introducing partial staleness, the communication overlaps the computation with minimal staleness in SAPipe. To mitigate additional problems incurred by staleness, SAPipe adopts staleness compensation techniques including weight prediction and delay compensation with provably lower error bounds. Additionally, SAPipe presents an algorithm-system co-design with runtime optimization to minimize system overhead for the staleness training pipeline and staleness compensation. We have implemented SAPipe in the BytePS framework, compatible to both TensorFlow and PyTorch. Our experiments show that SAPipe achieves up to 157% speedups over BytePS (non-stale), and outperforms PipeSGD in accuracy by up to 13.7%.
Yangrui Chen, Cong Xie, Meng Ma, Juncheng Gu, Yanghua Peng, Haibin Lin, Chuan Wu, Yibo Zhu
null
null
2,022
neurips