title
stringlengths
5
246
categories
stringlengths
5
94
abstract
stringlengths
54
5.03k
authors
stringlengths
0
6.72k
doi
stringlengths
12
54
id
stringlengths
6
10
year
float64
2.02k
2.02k
venue
stringclasses
13 values
ProtoVAE: A Trustworthy Self-Explainable Prototypical Variational Model
null
The need for interpretable models has fostered the development of self-explainable classifiers. Prior approaches are either based on multi-stage optimization schemes, impacting the predictive performance of the model, or produce explanations that are not transparent, trustworthy or do not capture the diversity of the data. To address these shortcomings, we propose ProtoVAE, a variational autoencoder-based framework that learns class-specific prototypes in an end-to-end manner and enforces trustworthiness and diversity by regularizing the representation space and introducing an orthonormality constraint. Finally, the model is designed to be transparent by directly incorporating the prototypes into the decision process. Extensive comparisons with previous self-explainable approaches demonstrate the superiority of ProtoVAE, highlighting its ability to generate trustworthy and diverse explanations, while not degrading predictive performance.
Srishti Gautam, Ahcène Boubekki, Stine Hansen, Suaiba Salahuddin, Robert Jenssen, Marina Höhne, Michael Kampffmeyer
null
null
2,022
neurips
Reproducibility in Optimization: Theoretical Framework and Limits
null
We initiate a formal study of reproducibility in optimization. We define a quantitative measure of reproducibility of optimization procedures in the face of noisy or error-prone operations such as inexact or stochastic gradient computations or inexact initialization. We then analyze several convex optimization settings of interest such as smooth, non-smooth, and strongly-convex objective functions and establish tight bounds on the limits of reproducibility in each setting. Our analysis reveals a fundamental trade-off between computation and reproducibility: more computation is necessary (and sufficient) for better reproducibility.
Kwangjun Ahn, Prateek Jain, Ziwei Ji, Satyen Kale, Praneeth Netrapalli, Gil I Shamir
null
null
2,022
neurips
Exact Shape Correspondence via 2D graph convolution
null
For exact 3D shape correspondence (matching or alignment), i.e., the task of matching each point on a shape to its exact corresponding point on the other shape (or to be more specific, matching at geodesic error 0), most existing methods do not perform well due to two main problems. First, on nearly-isometric shapes (i.e., low noise levels), most existing methods use the eigen-vectors (eigen-functions) of the Laplace Beltrami Operator (LBO) or other shape descriptors to update an initialized correspondence which is not exact, leading to an accumulation of update errors. Thus, though the final correspondence may generally be smooth, it is generally inexact. Second, on non-isometric shapes (noisy shapes), existing methods are generally not robust to noise as they usually assume near-isometry. In addition, existing methods that attempt to address the non-isometric shape problem (e.g., GRAMPA) are generally computationally expensive and do not generalise to nearly-isometric shapes. To address these two problems, we propose a 2D graph convolution-based framework called 2D-GEM. 2D-GEM is robust to noise on non-isometric shapes and with a few additional constraints, it also addresses the errors in the update on nearly-isometric shapes. We demonstrate the effectiveness of 2D-GEM by achieving a high accuracy of 90.5$\%$ at geodesic error 0 on the non-isometric benchmark SHREC16, i.e., TOPKIDS (while being much faster than GRAMPA), and on nearly-isometric benchmarks by achieving a high accuracy of 92.5$\%$ on TOSCA and 84.9$\%$ on SCAPE at geodesic error 0.
Barakeel Fanseu Kamhoua, Lin Zhang, Yongqiang Chen, Han Yang, MA Kaili, Bo Han, Bo Li, James Cheng
null
null
2,022
neurips
CARD: Classification and Regression Diffusion Models
null
Learning the distribution of a continuous or categorical response variable y given its covariates x is a fundamental problem in statistics and machine learning. Deep neural network-based supervised learning algorithms have made great progress in predicting the mean of y given x, but they are often criticized for their ability to accurately capture the uncertainty of their predictions. In this paper, we introduce classification and regression diffusion (CARD) models, which combine a denoising diffusion-based conditional generative model and a pre-trained conditional mean estimator, to accurately predict the distribution of y given x. We demonstrate the outstanding ability of CARD in conditional distribution prediction with both toy examples and real-world datasets, the experimental results on which show that CARD, in general, outperforms state-of-the-art methods, including Bayesian neural network-based one, designed for uncertainty estimation, especially when the conditional distribution of y given x is multi-modal. In addition, we utilize the stochastic nature of the generative model outputs to obtain a finer granularity in model confidence assessment at the instance level for classification tasks.
Xizewen Han, Huangjie Zheng, Mingyuan Zhou
null
null
2,022
neurips
Kernel Multimodal Continuous Attention
null
Attention mechanisms take an expectation of a data representation with respect to probability weights. Recently, (Martins et al. 2020, 2021) proposed continuous attention mechanisms, focusing on unimodal attention densities from the exponential and deformed exponential families: the latter has sparse support. (Farinhas et al 2021) extended this to to multimodality via Gaussian mixture attention densities. In this paper, we extend this to kernel exponential families (Canu and Smola 2006) and our new sparse counterpart, kernel deformed exponential families. Theoretically, we show new existence results for both kernel exponential and deformed exponential families, and that the deformed case has similar approximation capabilities to kernel exponential families. Lacking closed form expressions for the context vector, we use numerical integration: we show exponential convergence for both kernel exponential and deformed exponential families. Experiments show that kernel continuous attention often outperforms unimodal continuous attention, and the sparse variant tends to highlight peaks of time series.
Alexander Moreno, Zhenke Wu, Supriya Nagesh, Walter Dempsey, James M. Rehg
null
null
2,022
neurips
Hierarchical classification at multiple operating points
null
Many classification problems consider classes that form a hierarchy. Classifiers that are aware of this hierarchy may be able to make confident predictions at a coarse level despite being uncertain at the fine-grained level. While it is generally possible to vary the granularity of predictions using a threshold at inference time, most contemporary work considers only leaf-node prediction, and almost no prior work has compared methods at multiple operating points. We present an efficient algorithm to produce operating characteristic curves for any method that assigns a score to every class in the hierarchy. Applying this technique to evaluate existing methods reveals that top-down classifiers are dominated by a naive flat softmax classifier across the entire operating range. We further propose two novel loss functions and show that a soft variant of the structured hinge loss is able to significantly outperform the flat baseline. Finally, we investigate the poor accuracy of top-down classifiers and demonstrate that they perform relatively well on unseen classes.
Jack Valmadre
null
null
2,022
neurips
If Influence Functions are the Answer, Then What is the Question?
null
Influence functions efficiently estimate the effect of removing a single training data point on a model's learned parameters. While influence estimates align well with leave-one-out retraining for linear models, recent works have shown this alignment is often poor in neural networks. In this work, we investigate the specific factors that cause this discrepancy by decomposing it into five separate terms. We study the contributions of each term on a variety of architectures and datasets and how they vary with factors such as network width and training time. While practical influence function estimates may be a poor match to leave-one-out retraining for nonlinear networks, we show that they are often a good approximation to a different object we term the proximal Bregman response function (PBRF). Since the PBRF can still be used to answer many of the questions motivating influence functions, such as identifying influential or mislabeled examples, our results suggest that current algorithms for influence function estimation give more informative results than previous error analyses would suggest.
Juhan Bae, Nathan Ng, Alston Lo, Marzyeh Ghassemi, Roger B. Grosse
null
null
2,022
neurips
VisCo Grids: Surface Reconstruction with Viscosity and Coarea Grids
null
Surface reconstruction has been seeing a lot of progress lately by utilizing Implicit Neural Representations (INRs). Despite their success, INRs often introduce hard to control inductive bias (i.e., the solution surface can exhibit unexplainable behaviours), have costly inference, and are slow to train. The goal of this work is to show that replacing neural networks with simple grid functions, along with two novel geometric priors achieve comparable results to INRs, with instant inference, and improved training times. To that end we introduce VisCo Grids: a grid-based surface reconstruction method incorporating Viscosity and Coarea priors. Intuitively, the Viscosity prior replaces the smoothness inductive bias of INRs, while the Coarea favors a minimal area solution. Experimenting with VisCo Grids on a standard reconstruction baseline provided comparable results to the best performing INRs on this dataset.
Albert Pumarola, Artsiom Sanakoyeu, Lior Yariv, Ali Thabet, Yaron Lipman
null
null
2,022
neurips
Posterior Matching for Arbitrary Conditioning
null
Arbitrary conditioning is an important problem in unsupervised learning, where we seek to model the conditional densities $p(\mathbf{x}_u \mid \mathbf{x}_o)$ that underly some data, for all possible non-intersecting subsets $o, u \subset \{1, \dots , d\}$. However, the vast majority of density estimation only focuses on modeling the joint distribution $p(\mathbf{x})$, in which important conditional dependencies between features are opaque. We propose a simple and general framework, coined Posterior Matching, that enables Variational Autoencoders (VAEs) to perform arbitrary conditioning, without modification to the VAE itself. Posterior Matching applies to the numerous existing VAE-based approaches to joint density estimation, thereby circumventing the specialized models required by previous approaches to arbitrary conditioning. We find that Posterior Matching is comparable or superior to current state-of-the-art methods for a variety of tasks with an assortment of VAEs (e.g.~discrete, hierarchical, VaDE).
Ryan Strauss, Junier B Oliva
null
null
2,022
neurips
Simple Unsupervised Object-Centric Learning for Complex and Naturalistic Videos
null
Unsupervised object-centric learning aims to represent the modular, compositional, and causal structure of a scene as a set of object representations and thereby promises to resolve many critical limitations of traditional single-vector representations such as poor systematic generalization. Although there have been many remarkable advances in recent years, one of the most critical problems in this direction has been that previous methods work only with simple and synthetic scenes but not with complex and naturalistic images or videos. In this paper, we propose STEVE, an unsupervised model for object-centric learning in videos. Our proposed model makes a significant advancement by demonstrating its effectiveness on various complex and naturalistic videos unprecedented in this line of research. Interestingly, this is achieved by neither adding complexity to the model architecture nor introducing a new objective or weak supervision. Rather, it is achieved by a surprisingly simple architecture that uses a transformer-based image decoder conditioned on slots and the learning objective is simply to reconstruct the observation. Our experiment results on various complex and naturalistic videos show significant improvements compared to the previous state-of-the-art.
Gautam Singh, Yi-Fu Wu, Sungjin Ahn
null
null
2,022
neurips
Benefits of Permutation-Equivariance in Auction Mechanisms
null
Designing an incentive-compatible auction mechanism that maximizes the auctioneer's revenue while minimizes the bidders’ ex-post regret is an important yet intricate problem in economics. Remarkable progress has been achieved through learning the optimal auction mechanism by neural networks. In this paper, we consider the popular additive valuation and symmetric valuation setting; i.e., the valuation for a set of items is defined as the sum of all items’ valuations in the set, and the valuation distribution is invariant when the bidders and/or the items are permutated. We prove that permutation-equivariant neural networks have significant advantages: the permutation-equivariance decreases the expected ex-post regret, improves the model generalizability, while maintains the expected revenue invariant. This implies that the permutation-equivariance helps approach the theoretically optimal dominant strategy incentive compatible condition, and reduces the required sample complexity for desired generalization. Extensive experiments fully support our theory. To our best knowledge, this is the first work towards understanding the benefits of permutation-equivariance in auction mechanisms.
Tian Qin, Fengxiang He, Dingfeng Shi, Wenbing Huang, Dacheng Tao
null
null
2,022
neurips
SkinCon: A skin disease dataset densely annotated by domain experts for fine-grained debugging and analysis
null
For the deployment of artificial intelligence (AI) in high risk settings, such as healthcare, methods that provide interpretability/explainability or allow fine-grained error analysis are critical. Many recent methods for interpretability/explainability and fine-grained error analysis use concepts, which are meta-labels which are semantically meaningful to humans. However, there are only a few datasets that include concept-level meta-labels and most of these meta-labels are relevant for natural images that do not require domain expertise. Previous densely annotated datasets in medicine focused on meta-labels that are relevant to a single disease such as osteoarthritis or melanoma. In dermatology, skin disease is described using an established clinical lexicon that allow clinicians to describe physical exam findings to one another. To provide the first medical dataset densely annotated by domain experts to provide annotations useful across multiple disease processes, we developed SkinCon: a skin disease dataset densely annotated by dermatologists. SkinCon includes 3230 images from the Fitzpatrick 17k skin disease dataset densely annotated with 48 clinical concepts, 22 of which have at least 50 images representing the concept. The concepts used were chosen by two dermatologists considering the clinical descriptor terms used to describe skin lesions. Examples include "plaque", "scale", and "erosion". These same concepts were also used to label 656 skin disease images from the Diverse Dermatology Images dataset, providing an additional external dataset with diverse skin tone representations. We review the potential applications for the SkinCon dataset, such as probing models, concept-based explanations, concept bottlenecks, error analysis, and slice discovery. Furthermore, we use SkinCon to demonstrate two of these use cases: debugging mistakes of an existing dermatology AI model with concepts and developing interpretable models with post-hoc concept bottleneck models.
Roxana Daneshjou, Mert Yuksekgonul, Zhuo Ran Cai, Roberto Novoa, James Y. Zou
null
null
2,022
neurips
On Uncertainty, Tempering, and Data Augmentation in Bayesian Classification
null
Aleatoric uncertainty captures the inherent randomness of the data, such as measurement noise. In Bayesian regression, we often use a Gaussian observation model, where we control the level of aleatoric uncertainty with a noise variance parameter. By contrast, for Bayesian classification we use a categorical distribution with no mechanism to represent our beliefs about aleatoric uncertainty. Our work shows that explicitly accounting for aleatoric uncertainty significantly improves the performance of Bayesian neural networks. We note that many standard benchmarks, such as CIFAR-10, have essentially no aleatoric uncertainty. Moreover, we show that data augmentation in approximate inference softens the likelihood, leading to underconfidence and misrepresenting our beliefs about aleatoric uncertainty. Accordingly, we find that a cold posterior, tempered by a power greater than one, often more honestly reflects our beliefs about aleatoric uncertainty than no tempering --- providing an explicit link between data augmentation and cold posteriors. We further show that we can match or exceed the performance of posterior tempering by using a Dirichlet observation model, where we explicitly control the level of aleatoric uncertainty, without any need for tempering.
Sanyam Kapoor, Wesley J. Maddox, Pavel Izmailov, Andrew G. Wilson
null
null
2,022
neurips
What Can the Neural Tangent Kernel Tell Us About Adversarial Robustness?
null
The adversarial vulnerability of neural nets, and subsequent techniques to create robust models have attracted significant attention; yet we still lack a full understanding of this phenomenon. Here, we study adversarial examples of trained neural networks through analytical tools afforded by recent theory advances connecting neural networks and kernel methods, namely the Neural Tangent Kernel (NTK), following a growing body of work that leverages the NTK approximation to successfully analyze important deep learning phenomena and design algorithms for new applications. We show how NTKs allow to generate adversarial examples in a training-free'' fashion, and demonstrate that they transfer to fool their finite-width neural net counterparts in thelazy'' regime. We leverage this connection to provide an alternative view on robust and non-robust features, which have been suggested to underlie the adversarial brittleness of neural nets. Specifically, we define and study features induced by the eigendecomposition of the kernel to better understand the role of robust and non-robust features, the reliance on both for standard classification and the robustness-accuracy trade-off. We find that such features are surprisingly consistent across architectures, and that robust features tend to correspond to the largest eigenvalues of the model, and thus are learned early during training. Our framework allows us to identify and visualize non-robust yet useful features. Finally, we shed light on the robustness mechanism underlying adversarial training of neural nets used in practice: quantifying the evolution of the associated empirical NTK, we demonstrate that its dynamics falls much earlier into the ``lazy'' regime and manifests a much stronger form of the well known bias to prioritize learning features within the top eigenspaces of the kernel, compared to standard training.
Nikolaos Tsilivis, Julia Kempe
null
null
2,022
neurips
Communication-efficient distributed eigenspace estimation with arbitrary node failures
null
We develop an eigenspace estimation algorithm for distributed environments with arbitrary node failures, where a subset of computing nodes can return structurally valid but otherwise arbitrarily chosen responses. Notably, this setting encompasses several important scenarios that arise in distributed computing and data-collection environments such as silent/soft errors, outliers or corrupted data at certain nodes, and adversarial responses. Our estimator builds upon and matches the performance of a recently proposed non-robust estimator up to an additive $\tilde{O}(\sigma \sqrt{\alpha})$ error, where $\sigma^2$ is the variance of the existing estimator and $\alpha$ is the fraction of corrupted nodes.
Vasileios Charisopoulos, Anil Damle
null
null
2,022
neurips
MoCoDA: Model-based Counterfactual Data Augmentation
null
The number of states in a dynamic process is exponential in the number of objects, making reinforcement learning (RL) difficult in complex, multi-object domains. For agents to scale to the real world, they will need to react to and reason about unseen combinations of objects. We argue that the ability to recognize and use local factorization in transition dynamics is a key element in unlocking the power of multi-object reasoning. To this end, we show that (1) known local structure in the environment transitions is sufficient for an exponential reduction in the sample complexity of training a dynamics model, and (2) a locally factored dynamics model provably generalizes out-of-distribution to unseen states and actions. Knowing the local structure also allows us to predict which unseen states and actions this dynamics model will generalize to. We propose to leverage these observations in a novel Model-based Counterfactual Data Augmentation (MoCoDA) framework. MoCoDA applies a learned locally factored dynamics model to an augmented distribution of states and actions to generate counterfactual transitions for RL. MoCoDA works with a broader set of local structures than prior work and allows for direct control over the augmented training distribution. We show that MoCoDA enables RL agents to learn policies that generalize to unseen states and actions. We use MoCoDA to train an offline RL agent to solve an out-of-distribution robotics manipulation task on which standard offline RL algorithms fail.
Silviu Pitis, Elliot Creager, Ajay Mandlekar, Animesh Garg
null
null
2,022
neurips
Why So Pessimistic? Estimating Uncertainties for Offline RL through Ensembles, and Why Their Independence Matters
null
Motivated by the success of ensembles for uncertainty estimation in supervised learning, we take a renewed look at how ensembles of $Q$-functions can be leveraged as the primary source of pessimism for offline reinforcement learning (RL). We begin by identifying a critical flaw in a popular algorithmic choice used by many ensemble-based RL algorithms, namely the use of shared pessimistic target values when computing each ensemble member's Bellman error. Through theoretical analyses and construction of examples in toy MDPs, we demonstrate that shared pessimistic targets can paradoxically lead to value estimates that are effectively optimistic. Given this result, we propose MSG, a practical offline RL algorithm that trains an ensemble of $Q$-functions with independently computed targets based on completely separate networks, and optimizes a policy with respect to the lower confidence bound of predicted action values. Our experiments on the popular D4RL and RL Unplugged offline RL benchmarks demonstrate that on challenging domains such as antmazes, MSG with deep ensembles surpasses highly well-tuned state-of-the-art methods by a wide margin. Additionally, through ablations on benchmarks domains, we verify the critical significance of using independently trained $Q$-functions, and study the role of ensemble size. Finally, as using separate networks per ensemble member can become computationally costly with larger neural network architectures, we investigate whether efficient ensemble approximations developed for supervised learning can be similarly effective, and demonstrate that they do not match the performance and robustness of MSG with separate networks, highlighting the need for new efforts into efficient uncertainty estimation directed at RL.
Kamyar Ghasemipour, Shixiang (Shane) Gu, Ofir Nachum
null
null
2,022
neurips
On Learning and Refutation in Noninteractive Local Differential Privacy
null
We study two basic statistical tasks in non-interactive local differential privacy (LDP): *learning* and *refutation*: learning requires finding a concept that best fits an unknown target function (from labelled samples drawn from a distribution), whereas refutation requires distinguishing between data distributions that are well-correlated with some concept in the class, versus distributions where the labels are random. Our main result is a complete characterization of the sample complexity of agnostic PAC learning for non-interactive LDP protocols. We show that the optimal sample complexity for any concept class is captured by the approximate $\gamma_2$ norm of a natural matrix associated with the class. Combined with previous work, this gives an *equivalence* between agnostic learning and refutation in the agnostic setting.
Alexander Edmonds, Aleksandar Nikolov, Toniann Pitassi
null
null
2,022
neurips
A permutation-free kernel two-sample test
null
The kernel Maximum Mean Discrepancy~(MMD) is a popular multivariate distance metric between distributions. The usual kernel-MMD test statistic (for two-sample testing) is a degenerate U-statistic under the null, and thus it has an intractable limiting null distribution. Hence, the standard approach for designing a level-$(1-\alpha)$ two-sample test using this statistic involves selecting the rejection threshold as the $(1-\alpha)$-quantile of the permutation distribution. The resulting nonparametric test has finite-sample validity but suffers from large computational cost, since the test statistic must be recomputed for every permutation. We propose the cross-MMD, a new quadratic time MMD test statistic based on sample-splitting and studentization. We prove that under mild assumptions, it has a standard normal limiting distribution under the null. Importantly, we also show that the resulting test is consistent against any fixed alternative, and when using the Gaussian kernel, it has minimax rate-optimal power against local alternatives. For large sample-sizes, our new cross-MMD provides a significant speedup over the MMD, for only a slight loss in power.
Shubhanshu Shekhar, Ilmun Kim, Aaditya Ramdas
null
null
2,022
neurips
Information-Theoretic GAN Compression with Variational Energy-based Model
null
We propose an information-theoretic knowledge distillation approach for the compression of generative adversarial networks, which aims to maximize the mutual information between teacher and student networks via a variational optimization based on an energy-based model. Because the direct computation of the mutual information in continuous domains is intractable, our approach alternatively optimizes the student network by maximizing the variational lower bound of the mutual information. To achieve a tight lower bound, we introduce an energy-based model relying on a deep neural network to represent a flexible variational distribution that deals with high-dimensional images and consider spatial dependencies between pixels, effectively. Since the proposed method is a generic optimization algorithm, it can be conveniently incorporated into arbitrary generative adversarial networks and even dense prediction networks, e.g., image enhancement models. We demonstrate that the proposed algorithm achieves outstanding performance in model compression of generative adversarial networks consistently when combined with several existing models.
Minsoo Kang, Hyewon Yoo, Eunhee Kang, Sehwan Ki, Hyong Euk Lee, Bohyung Han
null
null
2,022
neurips
Advancing Model Pruning via Bi-level Optimization
null
The deployment constraints in practical applications necessitate the pruning of large-scale deep learning models, i.e., promoting their weight sparsity. As illustrated by the Lottery Ticket Hypothesis (LTH), pruning also has the potential of improving their generalization ability. At the core of LTH, iterative magnitude pruning (IMP) is the predominant pruning method to successfully find ‘winning tickets’. Yet, the computation cost of IMP grows prohibitively as the targeted pruning ratio increases. To reduce the computation overhead, various efficient ‘one-shot’ pruning methods have been developed, but these schemes are usually unable to find winning tickets as good as IMP. This raises the question of how to close the gap between pruning accuracy and pruning efficiency? To tackle it, we pursue the algorithmic advancement of model pruning. Specifically, we formulate the pruning problem from a fresh and novel viewpoint, bi-level optimization (BLO). We show that the BLO interpretation provides a technically-grounded optimization base for an efficient implementation of the pruning-retraining learning paradigm used in IMP. We also show that the proposed bi-level optimization-oriented pruning method (termed BiP) is a special class of BLO problems with a bi-linear problem structure. By leveraging such bi-linearity, we theoretically show that BiP can be solved as easily as first-order optimization, thus inheriting the computation efficiency. Through extensive experiments on both structured and unstructured pruning with 5 model architectures and 4 data sets, we demonstrate that BiP can find better winning tickets than IMP in most cases, and is computationally as efficient as the one-shot pruning schemes, demonstrating $2-7\times$ speedup over IMP for the same level of model accuracy and sparsity.
Yihua Zhang, Yuguang Yao, Parikshit Ram, Pu Zhao, Tianlong Chen, Mingyi Hong, Yanzhi Wang, Sijia Liu
null
null
2,022
neurips
DeepFoids: Adaptive Bio-Inspired Fish Simulation with Deep Reinforcement Learning
null
Our goal is to synthesize realistic underwater scenes with various fish species in different fish cages, which can be utilized to train computer vision models to automate fish counting and sizing tasks. It is a challenging problem to prepare a sufficiently diverse labeled dataset of images from aquatic environments. We solve this challenge by introducing an adaptive bio-inspired fish simulation. The behavior of caged fish changes based on the species, size and number of fish, and the size and shape of the cage, among other variables. However, a method to autonomously achieve schooling behavior for caged fish did not exist. In this paper, we propose a method for achieving schooling behavior for any given combination of variables, using multi-agent deep reinforcement learning (DRL) in various fish cages in arbitrary environments. Furthermore, to visually reproduce the underwater scene in different locations and seasons, we incorporate a physically-based underwater simulation.
Yuko Ishiwaka, Xiao Zeng, Shun Ogawa, Donovan Westwater, Tadayuki Tone, Masaki Nakada
null
null
2,022
neurips
Optimal Positive Generation via Latent Transformation for Contrastive Learning
null
Contrastive learning, which learns to contrast positive with negative pairs of samples, has been popular for self-supervised visual representation learning. Although great effort has been made to design proper positive pairs through data augmentation, few works attempt to generate optimal positives for each instance. Inspired by semantic consistency and computational advantage in latent space of pretrained generative models, this paper proposes to learn instance-specific latent transformations to generate Contrastive Optimal Positives (COP-Gen) for self-supervised contrastive learning. Specifically, we formulate COP-Gen as an instance-specific latent space navigator which minimizes the mutual information between the generated positive pair subject to the semantic consistency constraint. Theoretically, the learned latent transformation creates optimal positives for contrastive learning, which removes as much nuisance information as possible while preserving the semantics. Empirically, using generated positives by COP-Gen consistently outperforms other latent transformation methods and even real-image-based methods in self-supervised contrastive learning.
Yinqi Li, Hong Chang, Bingpeng MA, Shiguang Shan, Xilin Chen
null
null
2,022
neurips
The price of unfairness in linear bandits with biased feedback
null
In this paper, we study the problem of fair sequential decision making with biased linear bandit feedback. At each round, a player selects an action described by a covariate and by a sensitive attribute. The perceived reward is a linear combination of the covariates of the chosen action, but the player only observes a biased evaluation of this reward, depending on the sensitive attribute. To characterize the difficulty of this problem, we design a phased elimination algorithm that corrects the unfair evaluations, and establish upper bounds on its regret. We show that the worst-case regret is smaller than $\mathcal{O}(\kappa_* ^{1/3}\log(T)^{1/3}T^{2/3})$, where $\kappa_*$ is an explicit geometrical constant characterizing the difficulty of bias estimation. We prove lower bounds on the worst-case regret for some sets of actions showing that this rate is tight up to a possible sub-logarithmic factor. We also derive gap-dependent upper bounds on the regret, and matching lower bounds for some problem instance. Interestingly, these results reveal a transition between a regime where the problem is as difficult as its unbiased counterpart, and a regime where it can be much harder.
Solenne Gaucher, Alexandra Carpentier, Christophe Giraud
null
null
2,022
neurips
Learning Debiased Classifier with Biased Committee
null
Neural networks are prone to be biased towards spurious correlations between classes and latent attributes exhibited in a major portion of training data, which ruins their generalization capability. We propose a new method for training debiased classifiers with no spurious attribute label. The key idea is to employ a committee of classifiers as an auxiliary module that identifies bias-conflicting data, i.e., data without spurious correlation, and assigns large weights to them when training the main classifier. The committee is learned as a bootstrapped ensemble so that a majority of its classifiers are biased as well as being diverse, and intentionally fail to predict classes of bias-conflicting data accordingly. The consensus within the committee on prediction difficulty thus provides a reliable cue for identifying and weighting bias-conflicting data. Moreover, the committee is also trained with knowledge transferred from the main classifier so that it gradually becomes debiased along with the main classifier and emphasizes more difficult data as training progresses. On five real-world datasets, our method outperforms prior arts using no spurious attribute label like ours and even surpasses those relying on bias labels occasionally. Our code is available at https://github.com/nayeong-v-kim/LWBC.
Nayeong Kim, SEHYUN HWANG, Sungsoo Ahn, Jaesik Park, Suha Kwak
null
null
2,022
neurips
MineDojo: Building Open-Ended Embodied Agents with Internet-Scale Knowledge
null
Autonomous agents have made great strides in specialist domains like Atari games and Go. However, they typically learn tabula rasa in isolated environments with limited and manually conceived objectives, thus failing to generalize across a wide spectrum of tasks and capabilities. Inspired by how humans continually learn and adapt in the open world, we advocate a trinity of ingredients for building generalist agents: 1) an environment that supports a multitude of tasks and goals, 2) a large-scale database of multimodal knowledge, and 3) a flexible and scalable agent architecture. We introduce MineDojo, a new framework built on the popular Minecraft game that features a simulation suite with thousands of diverse open-ended tasks and an internet-scale knowledge base with Minecraft videos, tutorials, wiki pages, and forum discussions. Using MineDojo's data, we propose a novel agent learning algorithm that leverages large pre-trained video-language models as a learned reward function. Our agent is able to solve a variety of open-ended tasks specified in free-form language without any manually designed dense shaping reward. We open-source the simulation suite, knowledge bases, algorithm implementation, and pretrained models (https://minedojo.org) to promote research towards the goal of generally capable embodied agents.
Linxi Fan, Guanzhi Wang, Yunfan Jiang, Ajay Mandlekar, Yuncong Yang, Haoyi Zhu, Andrew Tang, De-An Huang, Yuke Zhu, Anima Anandkumar
null
null
2,022
neurips
Private Synthetic Data for Multitask Learning and Marginal Queries
null
We provide a differentially private algorithm for producing synthetic data simultaneously useful for multiple tasks: marginal queries and multitask machine learning (ML). A key innovation in our algorithm is the ability to directly handle numerical features, in contrast to a number of related prior approaches which require numerical features to be first converted into {high cardinality} categorical features via {a binning strategy}. Higher binning granularity is required for better accuracy, but this negatively impacts scalability. Eliminating the need for binning allows us to produce synthetic data preserving large numbers of statistical queries such as marginals on numerical features, and class conditional linear threshold queries. Preserving the latter means that the fraction of points of each class label above a particular half-space is roughly the same in both the real and synthetic data. This is the property that is needed to train a linear classifier in a multitask setting. Our algorithm also allows us to produce high quality synthetic data for mixed marginal queries, that combine both categorical and numerical features. Our method consistently runs 2-5x faster than the best comparable techniques, and provides significant accuracy improvements in both marginal queries and linear prediction tasks for mixed-type datasets.
Giuseppe Vietri, Cedric Archambeau, Sergul Aydore, William Brown, Michael Kearns, Aaron Roth, Ankit Siva, Shuai Tang, Steven Z. Wu
null
null
2,022
neurips
Sample-Efficient Reinforcement Learning of Partially Observable Markov Games
null
This paper considers the challenging tasks of Multi-Agent Reinforcement Learning (MARL) under partial observability, where each agent only sees her own individual observations and actions that reveal incomplete information about the underlying state of system. This paper studies these tasks under the general model of multiplayer general-sum Partially Observable Markov Games (POMGs), which is significantly larger than the standard model of Imperfect Information Extensive-Form Games (IIEFGs). We identify a rich subclass of POMGs---weakly revealing POMGs---in which sample-efficient learning is tractable. In the self-play setting, we prove that a simple algorithm combining optimism and Maximum Likelihood Estimation (MLE) is sufficient to find approximate Nash equilibria, correlated equilibria, as well as coarse correlated equilibria of weakly revealing POMGs, in a polynomial number of samples when the number of agents is small. In the setting of playing against adversarial opponents, we show that a variant of our optimistic MLE algorithm is capable of achieving sublinear regret when being compared against the optimal maximin policies. To our best knowledge, this work provides the first line of sample-efficient results for learning POMGs.
Qinghua Liu, Csaba Szepesvari, Chi Jin
null
null
2,022
neurips
Modeling the Machine Learning Multiverse
null
Amid mounting concern about the reliability and credibility of machine learning research, we present a principled framework for making robust and generalizable claims: the multiverse analysis. Our framework builds upon the multiverse analysis introduced in response to psychology's own reproducibility crisis. To efficiently explore high-dimensional and often continuous ML search spaces, we model the multiverse with a Gaussian Process surrogate and apply Bayesian experimental design. Our framework is designed to facilitate drawing robust scientific conclusions about model performance, and thus our approach focuses on exploration rather than conventional optimization. In the first of two case studies, we investigate disputed claims about the relative merit of adaptive optimizers. Second, we synthesize conflicting research on the effect of learning rate on the large batch training generalization gap. For the machine learning community, the multiverse analysis is a simple and effective technique for identifying robust claims, for increasing transparency, and a step toward improved reproducibility.
Samuel J. Bell, Onno Kampman, Jesse Dodge, Neil Lawrence
null
null
2,022
neurips
Unifying Voxel-based Representation with Transformer for 3D Object Detection
null
In this work, we present a unified framework for multi-modality 3D object detection, named UVTR. The proposed method aims to unify multi-modality representations in the voxel space for accurate and robust single- or cross-modality 3D detection. To this end, the modality-specific space is first designed to represent different inputs in the voxel feature space. Different from previous work, our approach preserves the voxel space without height compression to alleviate semantic ambiguity and enable spatial connections. To make full use of the inputs from different sensors, the cross-modality interaction is then proposed, including knowledge transfer and modality fusion. In this way, geometry-aware expressions in point clouds and context-rich features in images are well utilized for better performance and robustness. The transformer decoder is applied to efficiently sample features from the unified space with learnable positions, which facilitates object-level interactions. In general, UVTR presents an early attempt to represent different modalities in a unified framework. It surpasses previous work in single- or multi-modality entries. The proposed method achieves leading performance in the nuScenes test set for both object detection and the following object tracking task. Code is made publicly available at https://github.com/dvlab-research/UVTR.
Yanwei Li, Yilun Chen, Xiaojuan Qi, Zeming Li, Jian Sun, Jiaya Jia
null
null
2,022
neurips
Truncated Matrix Power Iteration for Differentiable DAG Learning
null
Recovering underlying Directed Acyclic Graph (DAG) structures from observational data is highly challenging due to the combinatorial nature of the DAG-constrained optimization problem. Recently, DAG learning has been cast as a continuous optimization problem by characterizing the DAG constraint as a smooth equality one, generally based on polynomials over adjacency matrices. Existing methods place very small coefficients on high-order polynomial terms for stabilization, since they argue that large coefficients on the higher-order terms are harmful due to numeric exploding. On the contrary, we discover that large coefficients on higher-order terms are beneficial for DAG learning, when the spectral radiuses of the adjacency matrices are small, and that larger coefficients for higher-order terms can approximate the DAG constraints much better than the small counterparts. Based on this, we propose a novel DAG learning method with efficient truncated matrix power iteration to approximate geometric series based DAG constraints. Empirically, our DAG learning method outperforms the previous state-of-the-arts in various settings, often by a factor of $3$ or more in terms of structural Hamming distance.
Zhen Zhang, Ignavier Ng, Dong Gong, Yuhang Liu, Ehsan Abbasnejad, Mingming Gong, Kun Zhang, Javen Qinfeng Shi
null
null
2,022
neurips
Label-Aware Global Consistency for Multi-Label Learning with Single Positive Labels
null
In single positive multi-label learning (SPML), only one of multiple positive labels is observed for each instance. The previous work trains the model by simply treating unobserved labels as negative ones, and designs the regularization to constrain the number of expected positive labels. However, in many real-world scenarios, the true number of positive labels is unavailable, making such methods less applicable. In this paper, we propose to solve SPML problems by designing a Label-Aware global Consistency (LAC) regularization, which leverages the manifold structure information to enhance the recovery of potential positive labels. On one hand, we first perform pseudo-labeling for each unobserved label based on its prediction probability. The consistency regularization is then imposed on model outputs to balance the fitting of identified labels and exploring of potential positive labels. On the other hand, by enforcing label-wise embeddings to maintain global consistency, LAC loss encourages the model to learn more distinctive representations, which is beneficial for recovering the information of potential positive labels. Experiments on multiple benchmark datasets validate that the proposed method can achieve state-of-the-art performance for solving SPML tasks.
Ming-Kun Xie, Jiahao Xiao, Sheng-Jun Huang
null
null
2,022
neurips
Measures of Information Reflect Memorization Patterns
null
Neural networks are known to exploit spurious artifacts (or shortcuts) that co-occur with a target label, exhibiting heuristic memorization. On the other hand, networks have been shown to memorize training examples, resulting in example-level memorization. These kinds of memorization impede generalization of networks beyond their training distributions. Detecting such memorization could be challenging, often requiring researchers to curate tailored test sets. In this work, we hypothesize—and subsequently show—that the diversity in the activation patterns of different neurons is reflective of model generalization and memorization. We quantify the diversity in the neural activations through information-theoretic measures and find support for our hypothesis in experiments spanning several natural language and vision tasks. Importantly, we discover that information organization points to the two forms of memorization, even for neural activations computed on unlabeled in-distribution examples. Lastly, we demonstrate the utility of our findings for the problem of model selection.
Rachit Bansal, Danish Pruthi, Yonatan Belinkov
null
null
2,022
neurips
UDC: Unified DNAS for Compressible TinyML Models for Neural Processing Units
null
Deploying TinyML models on low-cost IoT hardware is very challenging, due to limited device memory capacity. Neural processing unit (NPU) hardware address the memory challenge by using model compression to exploit weight quantization and sparsity to fit more parameters in the same footprint. However, designing compressible neural networks (NNs) is challenging, as it expands the design space across which we must make balanced trade-offs. This paper demonstrates Unified DNAS for Compressible (UDC) NNs, which explores a large search space to generate state-of-the-art compressible NNs for NPU. ImageNet results show UDC networks are up to 3.35x smaller (iso-accuracy) or 6.25% more accurate (iso-model size) than previous work.
Igor Fedorov, Ramon Matas, Hokchhay Tann, Chuteng Zhou, Matthew Mattina, Paul Whatmough
null
null
2,022
neurips
Adversarial Unlearning: Reducing Confidence Along Adversarial Directions
null
Supervised learning methods trained with maximum likelihood objectives often overfit on training data. Most regularizers that prevent overfitting look to increase confidence on additional examples (e.g., data augmentation, adversarial training), or reduce it on training data (e.g., label smoothing). In this work we propose a complementary regularization strategy that reduces confidence on self-generated examples. The method, which we call RCAD (Reducing Confidence along Adversarial Directions), aims to reduce confidence on out-of-distribution examples lying along directions adversarially chosen to increase training loss. In contrast to adversarial training, RCAD does not try to robustify the model to output the original label, but rather regularizes it to have reduced confidence on points generated using much larger perturbations than in conventional adversarial training. RCAD can be easily integrated into training pipelines with a few lines of code. Despite its simplicity, we find on many classification benchmarks that RCAD can be added to existing techniques (e.g., label smoothing, MixUp training) to increase test accuracy by 1-3% in absolute value, with more significant gains in the low data regime. We also provide a theoretical analysis that helps to explain these benefits in simplified settings, showing that RCAD can provably help the model unlearn spurious features in the training data.
Amrith Setlur, Benjamin Eysenbach, Virginia Smith, Sergey Levine
null
null
2,022
neurips
How Would The Viewer Feel? Estimating Wellbeing From Video Scenarios
null
In recent years, deep neural networks have demonstrated increasingly strong abilities to recognize objects and activities in videos. However, as video understanding becomes widely used in real-world applications, a key consideration is developing human-centric systems that understand not only the content of the video but also how it would affect the wellbeing and emotional state of viewers. To facilitate research in this setting, we introduce two large-scale datasets with over 60,000 videos manually annotated for emotional response and subjective wellbeing. The Video Cognitive Empathy (VCE) dataset contains annotations for distributions of fine-grained emotional responses, allowing models to gain a detailed understanding of affective states. The Video to Valence (V2V) dataset contains annotations of relative pleasantness between videos, which enables predicting a continuous spectrum of wellbeing. In experiments, we show how video models that are primarily trained to recognize actions and find contours of objects can be repurposed to understand human preferences and the emotional content of videos. Although there is room for improvement, predicting wellbeing and emotional response is on the horizon for state-of-the-art models. We hope our datasets can help foster further advances at the intersection of commonsense video understanding and human preference learning.
Mantas Mazeika, Eric Tang, Andy Zou, Steven Basart, Jun Shern Chan, Dawn Song, David Forsyth, Jacob Steinhardt, Dan Hendrycks
null
null
2,022
neurips
Private Estimation with Public Data
null
We initiate the study of differentially private (DP) estimation with access to a small amount of public data. For private estimation of $d$-dimensional Gaussians, we assume that the public data comes from a Gaussian that may have vanishing similarity in total variation distance with the underlying Gaussian of the private data. We show that under the constraints of pure or concentrated DP, $d+1$ public data samples are sufficient to remove any dependence on the range parameters of the private data distribution from the private sample complexity, which is known to be otherwise necessary without public data. For separated Gaussian mixtures, we assume that the underlying public and private distributions are the same, and we consider two settings: (1) when given a dimension-independent amount of public data, the private sample complexity can be improved polynomially in terms of the number of mixture components, and any dependence on the range parameters of the distribution can be removed in the approximate DP case; (2) when given an amount of public data linear in the dimension, the private sample complexity can be made independent of range parameters even under concentrated DP, and additional improvements can be made to the overall sample complexity.
Alex Bie, Gautam Kamath, Vikrant Singhal
null
null
2,022
neurips
On Elimination Strategies for Bandit Fixed-Confidence Identification
null
Elimination algorithms for bandit identification, which prune the plausible correct answers sequentially until only one remains, are computationally convenient since they reduce the problem size over time. However, existing elimination strategies are often not fully adaptive (they update their sampling rule infrequently) and are not easy to extend to combinatorial settings, where the set of answers is exponentially large in the problem dimension. On the other hand, most existing fully-adaptive strategies to tackle general identification problems are computationally demanding since they repeatedly test the correctness of every answer, without ever reducing the problem size. We show that adaptive methods can be modified to use elimination in both their stopping and sampling rules, hence obtaining the best of these two worlds: the algorithms (1) remain fully adaptive, (2) suffer a sample complexity that is never worse of their non-elimination counterpart, and (3) provably eliminate certain wrong answers early. We confirm these benefits experimentally, where elimination improves significantly the computational complexity of adaptive methods on common tasks like best-arm identification in linear bandits.
Andrea Tirinzoni, Rémy Degenne
null
null
2,022
neurips
Most Activation Functions Can Win the Lottery Without Excessive Depth
null
The strong lottery ticket hypothesis has highlighted the potential for training deep neural networks by pruning, which has inspired interesting practical and theoretical insights into how neural networks can represent functions. For networks with ReLU activation functions, it has been proven that a target network with depth L can be approximated by the subnetwork of a randomly initialized neural network that has double the target's depth 2L and is wider by a logarithmic factor. We show that a depth L+1 is sufficient. This result indicates that we can expect to find lottery tickets at realistic, commonly used depths while only requiring logarithmic overparametrization. Our novel construction approach applies to a large class of activation functions and is not limited to ReLUs. Code is available on Github (RelationalML/LT-existence).
Rebekka Burkholz
null
null
2,022
neurips
A sharp NMF result with applications in network modeling
null
Given an $n \times n$ non-negative rank-$K$ matrix $\Omega$ where $m$ eigenvalues are negative, when can we write $\Omega = Z P Z'$ for non-negative matrices $Z \in \mathbb{R}^{n, K}$ and $P \in \mathbb{R}^{K, K}$? While most existing works focused on the case of $m = 0$, our primary interest is on the case of general $m$. With new proof ideas we develop, we present sharp results on when the NMF problem is solvable, which significantly extend existing results on this topic. The NMF problem is partially motivated by applications in network modeling. For a network with $K$ communities, rank-$K$ models are popular, with many proposals. The DCMM model is a recent rank-$K$ model which is especially useful and interpretable in practice. To enjoy such properties, it is of interest to study when a rank-$K$ model can be rewritten as a DCMM model. Using our NMF results, we show that for a rank-$K$ model with parameters in the most interesting range, we can always rewrite it as a DCMM model.
Jiashun Jin
null
null
2,022
neurips
Escaping from the Barren Plateau via Gaussian Initializations in Deep Variational Quantum Circuits
null
Variational quantum circuits have been widely employed in quantum simulation and quantum machine learning in recent years. However, quantum circuits with random structures have poor trainability due to the exponentially vanishing gradient with respect to the circuit depth and the qubit number. This result leads to a general standpoint that deep quantum circuits would not be feasible for practical tasks. In this work, we propose an initialization strategy with theoretical guarantees for the vanishing gradient problem in general deep quantum circuits. Specifically, we prove that under proper Gaussian initialized parameters, the norm of the gradient decays at most polynomially when the qubit number and the circuit depth increase. Our theoretical results hold for both the local and the global observable cases, where the latter was believed to have vanishing gradients even for very shallow circuits. Experimental results verify our theoretical findings in quantum simulation and quantum chemistry.
Kaining Zhang, Liu Liu, Min-Hsiu Hsieh, Dacheng Tao
null
null
2,022
neurips
DaDA: Distortion-aware Domain Adaptation for Unsupervised Semantic Segmentation
null
Distributional shifts in photometry and texture have been extensively studied for unsupervised domain adaptation, but their counterparts in optical distortion have been largely neglected. In this work, we tackle the task of unsupervised domain adaptation for semantic image segmentation where unknown optical distortion exists between source and target images. To this end, we propose a distortion-aware domain adaptation (DaDA) framework that boosts the unsupervised segmentation performance. We first present a relative distortion learning (RDL) approach that is capable of modeling domain shifts in fine-grained geometric deformation based on diffeomorphic transformation. Then, we demonstrate that applying additional global affine transformations to the diffeomorphically transformed source images can further improve the segmentation adaptation. Besides, we find that our distortion-aware adaptation method helps to enhance self-supervised learning by providing higher-quality initial models and pseudo labels. To evaluate, we propose new distortion adaptation benchmarks, where rectilinear source images and fisheye target images are used for unsupervised domain adaptation. Extensive experimental results highlight the effectiveness of our approach over state-of-the-art methods under unknown relative distortion across domains. Datasets and more information are available at https://sait-fdd.github.io/.
Sujin Jang, Joohan Na, Dokwan Oh
null
null
2,022
neurips
Pre-activation Distributions Expose Backdoor Neurons
null
Convolutional neural networks (CNN) can be manipulated to perform specific behaviors when encountering a particular trigger pattern without affecting the performance on normal samples, which is referred to as backdoor attack. The backdoor attack is usually achieved by injecting a small proportion of poisoned samples into the training set, through which the victim trains a model embedded with the designated backdoor. In this work, we demonstrate that backdoor neurons are exposed by their pre-activation distributions, where populations from benign data and poisoned data show significantly different moments. This property is shown to be attack-invariant and allows us to efficiently locate backdoor neurons. On this basis, we make several proper assumptions on the neuron activation distributions, and propose two backdoor neuron detection strategies based on (1) the differential entropy of the neurons, and (2) the Kullback-Leibler divergence between the benign sample distribution and a poisoned statistics based hypothetical distribution. Experimental results show that our proposed defense strategies are both efficient and effective against various backdoor attacks.
Runkai Zheng, Rongjun Tang, Jianze Li, Li Liu
null
null
2,022
neurips
Neural Sheaf Diffusion: A Topological Perspective on Heterophily and Oversmoothing in GNNs
null
Cellular sheaves equip graphs with a ``geometrical'' structure by assigning vector spaces and linear maps to nodes and edges. Graph Neural Networks (GNNs) implicitly assume a graph with a trivial underlying sheaf. This choice is reflected in the structure of the graph Laplacian operator, the properties of the associated diffusion equation, and the characteristics of the convolutional models that discretise this equation. In this paper, we use cellular sheaf theory to show that the underlying geometry of the graph is deeply linked with the performance of GNNs in heterophilic settings and their oversmoothing behaviour. By considering a hierarchy of increasingly general sheaves, we study how the ability of the sheaf diffusion process to achieve linear separation of the classes in the infinite time limit expands. At the same time, we prove that when the sheaf is non-trivial, discretised parametric diffusion processes have greater control than GNNs over their asymptotic behaviour. On the practical side, we study how sheaves can be learned from data. The resulting sheaf diffusion models have many desirable properties that address the limitations of classical graph diffusion equations (and corresponding GNN models) and obtain competitive results in heterophilic settings. Overall, our work provides new connections between GNNs and algebraic topology and would be of interest to both fields.
Cristian Bodnar, Francesco Di Giovanni, Benjamin Chamberlain, Pietro Lió, Michael Bronstein
null
null
2,022
neurips
On Scrambling Phenomena for Randomly Initialized Recurrent Networks
null
Recurrent Neural Networks (RNNs) frequently exhibit complicated dynamics, and their sensitivity to the initialization process often renders them notoriously hard to train. Recent works have shed light on such phenomena analyzing when exploding or vanishing gradients may occur, either of which is detrimental for training dynamics. In this paper, we point to a formal connection between RNNs and chaotic dynamical systems and prove a qualitatively stronger phenomenon about RNNs than what exploding gradients seem to suggest. Our main result proves that under standard initialization (e.g., He, Xavier etc.), RNNs will exhibit \textit{Li-Yorke chaos} with \textit{constant} probability \textit{independent} of the network's width. This explains the experimentally observed phenomenon of \textit{scrambling}, under which trajectories of nearby points may appear to be arbitrarily close during some timesteps, yet will be far away in future timesteps. In stark contrast to their feedforward counterparts, we show that chaotic behavior in RNNs is preserved under small perturbations and that their expressive power remains exponential in the number of feedback iterations. Our technical arguments rely on viewing RNNs as random walks under non-linear activations, and studying the existence of certain types of higher-order fixed points called \textit{periodic points} in order to establish phase transitions from order to chaos.
Vaggos Chatziafratis, Ioannis Panageas, Clayton Sanford, Stelios Stavroulakis
null
null
2,022
neurips
Decoupling Classifier for Boosting Few-shot Object Detection and Instance Segmentation
null
This paper focus on few-shot object detection~(FSOD) and instance segmentation~(FSIS), which requires a model to quickly adapt to novel classes with a few labeled instances. The existing methods severely suffer from bias classification because of the missing label issue which naturally exists in an instance-level few-shot scenario and is first formally proposed by us. Our analysis suggests that the standard classification head of most FSOD or FSIS models needs to be decoupled to mitigate the bias classification. Therefore, we propose an embarrassingly simple but effective method that decouples the standard classifier into two heads. Then, these two individual heads are capable of independently addressing clear positive samples and noisy negative samples which are caused by the missing label. In this way, the model can effectively learn novel classes while mitigating the effects of noisy negative samples. Without bells and whistles, our model without any additional computation cost and parameters consistently outperforms its baseline and state-of-the-art by a large margin on PASCAL VOC and MS-COCO benchmarks for FSOD and FSIS tasks.\footnote{\url{https://csgaobb.github.io/Projects/DCFS}.}
Bin-Bin Gao, Xiaochen Chen, Zhongyi Huang, Congchong Nie, Jun Liu, Jinxiang Lai, GUANNAN JIANG, Xi Wang, Chengjie Wang
null
null
2,022
neurips
Unsupervised Learning under Latent Label Shift
null
What sorts of structure might enable a learner to discover classes from unlabeled data? Traditional approaches rely on feature-space similarity and heroic assumptions on the data. In this paper, we introduce unsupervised learning under Latent Label Shift (LLS), where the label marginals $p_d(y)$ shift but the class conditionals $p(x|y)$ do not. This work instantiates a new principle for identifying classes: elements that shift together group together. For finite input spaces, we establish an isomorphism between LLS and topic modeling: inputs correspond to words, domains to documents, and labels to topics. Addressing continuous data, we prove that when each label's support contains a separable region, analogous to an anchor word, oracle access to $p(d|x)$ suffices to identify $p_d(y)$ and $p_d(y|x)$ up to permutation. Thus motivated, we introduce a practical algorithm that leverages domain-discriminative models as follows: (i) push examples through domain discriminator $p(d|x)$; (ii) discretize the data by clustering examples in $p(d|x)$ space; (iii) perform non-negative matrix factorization on the discrete data; (iv) combine the recovered $p(y|d)$ with the discriminator outputs $p(d|x)$ to compute $p_d(y|x) \; \forall d$. With semisynthetic experiments, we show that our algorithm can leverage domain information to improve upon competitiveunsupervised classification methods. We reveal a failure mode of standard unsupervised classification methods when data-space similarity does not indicate true groupings, and show empirically that our method better handles this case. Our results establish a deep connection between distribution shift and topic modeling, opening promising lines for future work.
Manley Roberts, Pranav Mani, Saurabh Garg, Zachary Lipton
null
null
2,022
neurips
Large-batch Optimization for Dense Visual Predictions: Training Faster R-CNN in 4.2 Minutes
null
Training a large-scale deep neural network in a large-scale dataset is challenging and time-consuming. The recent breakthrough of large-batch optimization is a promising way to tackle this challenge. However, although the current advanced algorithms such as LARS and LAMB succeed in classification models, the complicated pipelines of dense visual predictions such as object detection and segmentation still suffer from the heavy performance drop in the large-batch training regime. To address this challenge, we propose a simple yet effective algorithm, named Adaptive Gradient Variance Modulator (AGVM), which can train dense visual predictors with very large batch size, enabling several benefits more appealing than prior arts. Firstly, AGVM can align the gradient variances between different modules in the dense visual predictors, such as backbone, feature pyramid network (FPN), detection, and segmentation heads. We show that training with a large batch size can fail with the gradient variances misaligned among them, which is a phenomenon primarily overlooked in previous work. Secondly, AGVM is a plug-and-play module that generalizes well to many different architectures (e.g., CNNs and Transformers) and different tasks (e.g., object detection, instance segmentation, semantic segmentation, and panoptic segmentation). It is also compatible with different optimizers (e.g., SGD and AdamW). Thirdly, a theoretical analysis of AGVM is provided. Extensive experiments on the COCO and ADE20K datasets demonstrate the superiority of AGVM. For example, AGVM demonstrates more stable generalization performance than prior arts under extremely large batch size (i.e., 10k). AGVM can train Faster R-CNN+ResNet50 in 4.2 minutes without losing performance. It enables training an object detector with one billion parameters in just 3.5 hours, reducing the training time by 20.9×, whilst achieving 62.2 mAP on COCO. The deliverables will be released at https://github.com/Sense-X/AGVM.
Zeyue Xue, Jianming Liang, Guanglu Song, Zhuofan Zong, Liang Chen, Yu Liu, Ping Luo
null
null
2,022
neurips
Optimal Transport-based Identity Matching for Identity-invariant Facial Expression Recognition
null
Identity-invariant facial expression recognition (FER) has been one of the challenging computer vision tasks. Since conventional FER schemes do not explicitly address the inter-identity variation of facial expressions, their neural network models still operate depending on facial identity. This paper proposes to quantify the inter-identity variation by utilizing pairs of similar expressions explored through a specific matching process. We formulate the identity matching process as an Optimal Transport (OT) problem. Specifically, to find pairs of similar expressions from different identities, we define the inter-feature similarity as a transportation cost. Then, optimal identity matching to find the optimal flow with minimum transportation cost is performed by Sinkhorn-Knopp iteration. The proposed matching method is not only easy to plug in to other models, but also requires only acceptable computational overhead. Extensive simulations prove that the proposed FER method improves the PCC/CCC performance by up to 10% or more compared to the runner-up on wild datasets. The source code and software demo are available at https://github.com/kdhht2334/ELIM_FER.
Daeha Kim, Byung Cheol Song
null
null
2,022
neurips
Learning to Branch with Tree MDPs
null
State-of-the-art Mixed Integer Linear Programming (MILP) solvers combine systematic tree search with a plethora of hard-coded heuristics, such as branching rules. While approaches to learn branching strategies have received increasing attention and have shown very promising results, most of the literature focuses on learning fast approximations of the \emph{strong branching} rule. Instead, we propose to learn branching rules from scratch with Reinforcement Learning (RL). We revisit the work of Etheve et al. (2020) and propose a generalization of Markov Decisions Processes (MDP), which we call \emph{tree MDP}, that provides a more suitable formulation of the branching problem. We derive a policy gradient theorem for tree MDPs that exhibits a better credit assignment compared to its temporal counterpart. We demonstrate through computational experiments that this new framework is suitable to tackle the learning-to-branch problem in MILP, and improves the learning convergence.
Lara Scavuzzo, Feng Chen, Didier Chetelat, Maxime Gasse, Andrea Lodi, Neil Yorke-Smith, Karen Aardal
null
null
2,022
neurips
Exploring through Random Curiosity with General Value Functions
null
Efficient exploration in reinforcement learning is a challenging problem commonly addressed through intrinsic rewards. Recent prominent approaches are based on state novelty or variants of artificial curiosity. However, directly applying them to partially observable environments can be ineffective and lead to premature dissipation of intrinsic rewards. Here we propose random curiosity with general value functions (RC-GVF), a novel intrinsic reward function that draws upon connections between these distinct approaches. Instead of using only the current observation’s novelty or a curiosity bonus for failing to predict precise environment dynamics, RC-GVF derives intrinsic rewards through predicting temporally extended general value functions. We demonstrate that this improves exploration in a hard-exploration diabolical lock problem. Furthermore, RC-GVF significantly outperforms previous methods in the absence of ground-truth episodic counts in the partially observable MiniGrid environments. Panoramic observations on MiniGrid further boost RC-GVF's performance such that it is competitive to baselines exploiting privileged information in form of episodic counts.
Aditya Ramesh, Louis Kirsch, Sjoerd van Steenkiste, Jürgen Schmidhuber
null
null
2,022
neurips
When Adversarial Training Meets Vision Transformers: Recipes from Training to Architecture
null
Vision Transformers (ViTs) have recently achieved competitive performance in broad vision tasks. Unfortunately, on popular threat models, naturally trained ViTs are shown to provide no more adversarial robustness than convolutional neural networks (CNNs). Adversarial training is still required for ViTs to defend against such adversarial attacks. In this paper, we provide the first and comprehensive study on the adversarial training recipe of ViTs via extensive evaluation of various training techniques across benchmark datasets. We find that pre-training and SGD optimizer are necessary for ViTs' adversarial training. Further considering ViT as a new type of model architecture, we investigate its adversarial robustness from the perspective of its unique architectural components. We find, when randomly masking gradients from some attention blocks or masking perturbations on some patches during adversarial training, the adversarial robustness of ViTs can be remarkably improved, which may potentially open up a line of work to explore the architectural information inside the newly designed models like ViTs. Our code is available at https://github.com/mo666666/When-Adversarial-Training-Meets-Vision-Transformers.
Yichuan Mo, Dongxian Wu, Yifei Wang, Yiwen Guo, Yisen Wang
null
null
2,022
neurips
SHINE: SubHypergraph Inductive Neural nEtwork
null
Hypergraph neural networks can model multi-way connections among nodes of the graphs, which are common in real-world applications such as genetic medicine. In particular, genetic pathways or gene sets encode molecular functions driven by multiple genes, naturally represented as hyperedges. Thus, hypergraph-guided embedding can capture functional relations in learned representations. Existing hypergraph neural network models often focus on node-level or graph-level inference. There is an unmet need in learning powerful representations of subgraphs of hypergraphs in real-world applications. For example, a cancer patient can be viewed as a subgraph of genes harboring mutations in the patient, while all the genes are connected by hyperedges that correspond to pathways representing specific molecular functions. For accurate inductive subgraph prediction, we propose SubHypergraph Inductive Neural nEtwork (SHINE). SHINE uses informative genetic pathways that encode molecular functions as hyperedges to connect genes as nodes. SHINE jointly optimizes the objectives of end-to-end subgraph classification and hypergraph nodes' similarity regularization. SHINE simultaneously learns representations for both genes and pathways using strongly dual attention message passing. The learned representations are aggregated via a subgraph attention layer and used to train a multilayer perceptron for subgraph inferencing. We evaluated SHINE against a wide array of state-of-the-art (hyper)graph neural networks, XGBoost, NMF and polygenic risk score models, using large scale NGS and curated datasets. SHINE outperformed all comparison models significantly, and yielded interpretable disease models with functional insights.
Yuan Luo
null
null
2,022
neurips
QC-StyleGAN - Quality Controllable Image Generation and Manipulation
null
The introduction of high-quality image generation models, particularly the StyleGAN family, provides a powerful tool to synthesize and manipulate images. However, existing models are built upon high-quality (HQ) data as desired outputs, making them unfit for in-the-wild low-quality (LQ) images, which are common inputs for manipulation. In this work, we bridge this gap by proposing a novel GAN structure that allows for generating images with controllable quality. The network can synthesize various image degradation and restore the sharp image via a quality control code. Our proposed QC-StyleGAN can directly edit LQ images without altering their quality by applying GAN inversion and manipulation techniques. It also provides for free an image restoration solution that can handle various degradations, including noise, blur, compression artifacts, and their mixtures. Finally, we demonstrate numerous other applications such as image degradation synthesis, transfer, and interpolation.
Dat Viet Thanh Nguyen, Phong Tran The, Tan M. Dinh, Cuong Pham, Anh Tran
null
null
2,022
neurips
Quantized Training of Gradient Boosting Decision Trees
null
Recent years have witnessed significant success in Gradient Boosting Decision Trees (GBDT) for a wide range of machine learning applications. Generally, a consensus about GBDT's training algorithms is gradients and statistics are computed based on high-precision floating points. In this paper, we investigate an essentially important question which has been largely ignored by the previous literature - how many bits are needed for representing gradients in training GBDT? To solve this mystery, we propose to quantize all the high-precision gradients in a very simple yet effective way in the GBDT's training algorithm. Surprisingly, both our theoretical analysis and empirical studies show that the necessary precisions of gradients without hurting any performance can be quite low, e.g., 2 or 3 bits. With low-precision gradients, most arithmetic operations in GBDT training can be replaced by integer operations of 8, 16, or 32 bits. Promisingly, these findings may pave the way for much more efficient training of GBDT from several aspects: (1) speeding up the computation of gradient statistics in histograms; (2) compressing the communication cost of high-precision statistical information during distributed training; (3) the inspiration of utilization and development of hardware architectures which well support low-precision computation for GBDT training. Benchmarked on CPUs, GPUs, and distributed clusters, we observe up to 2$\times$ speedup of our simple quantization strategy compared with SOTA GBDT systems on extensive datasets, demonstrating the effectiveness and potential of the low-precision training of GBDT. The code will be released to the official repository of LightGBM.
Yu Shi, Guolin Ke, Zhuoming Chen, Shuxin Zheng, Tie-Yan Liu
null
null
2,022
neurips
pyKT: A Python Library to Benchmark Deep Learning based Knowledge Tracing Models
null
Knowledge tracing (KT) is the task of using students' historical learning interaction data to model their knowledge mastery over time so as to make predictions on their future interaction performance. Recently, remarkable progress has been made of using various deep learning techniques to solve the KT problem. However, the success behind deep learning based knowledge tracing (DLKT) approaches is still left somewhat unknown and proper measurement and analysis of these DLKT approaches remain a challenge. First, data preprocessing procedures in existing works are often private and custom, which limits experimental standardization. Furthermore, existing DLKT studies often differ in terms of the evaluation protocol and are far away real-world educational contexts. To address these problems, we introduce a comprehensive python based benchmark platform, \textsc{pyKT}, to guarantee valid comparisons across DLKT methods via thorough evaluations. The \textsc{pyKT} library consists of a standardized set of integrated data preprocessing procedures on 7 popular datasets across different domains, and 10 frequently compared DLKT model implementations for transparent experiments. Results from our fine-grained and rigorous empirical KT studies yield a set of observations and suggestions for effective DLKT, e.g., wrong evaluation setting may cause label leakage that generally leads to performance inflation; and the improvement of many DLKT approaches is minimal compared to the very first DLKT model proposed by Piech et al. \cite{piech2015deep}. We have open sourced \textsc{pyKT} and our experimental results at \url{https://pykt.org/}. We welcome contributions from other research groups and practitioners.
Zitao Liu, Qiongqiong Liu, Jiahao Chen, Shuyan Huang, Jiliang Tang, Weiqi Luo
null
null
2,022
neurips
Efficient Aggregated Kernel Tests using Incomplete $U$-statistics
null
We propose a series of computationally efficient, nonparametric tests for the two-sample, independence and goodness-of-fit problems, using the Maximum Mean Discrepancy (MMD), Hilbert Schmidt Independence Criterion (HSIC), and Kernel Stein Discrepancy (KSD), respectively. Our test statistics are incomplete $U$-statistics, with a computational cost that interpolates between linear time in the number of samples, and quadratic time, as associated with classical $U$-statistic tests. The three proposed tests aggregate over several kernel bandwidths to detect departures from the null on various scales: we call the resulting tests MMDAggInc, HSICAggInc and KSDAggInc. This procedure provides a solution to the fundamental kernel selection problem as we can aggregate a large number of kernels with several bandwidths without incurring a significant loss of test power. For the test thresholds, we derive a quantile bound for wild bootstrapped incomplete $U$-statistics, which is of independent interest. We derive non-asymptotic uniform separation rates for MMDAggInc and HSICAggInc, and quantify exactly the trade-off between computational efficiency and the attainable rates: this result is novel for tests based on incomplete $U$-statistics, to our knowledge. We further show that in the quadratic-time case, the wild bootstrap incurs no penalty to test power over more widespread permutation-based approaches, since both attain the same minimax optimal rates (which in turn match the rates that use oracle quantiles). We support our claims with numerical experiments on the trade-off between computational efficiency and test power. In all three testing frameworks, our proposed linear-time tests outperform the current linear-time state-of-the-art tests (or at least match their test power).
Antonin Schrab, Ilmun Kim, Benjamin Guedj, Arthur Gretton
null
null
2,022
neurips
Retrieve, Reason, and Refine: Generating Accurate and Faithful Patient Instructions
null
The "Patient Instruction" (PI), which contains critical instructional information provided both to carers and to the patient at the time of discharge, is essential for the patient to manage their condition outside hospital. An accurate and easy-to-follow PI can improve the self-management of patients which can in turn reduce hospital readmission rates. However, writing an appropriate PI can be extremely time consuming for physicians, and is subject to being incomplete or error-prone for (potentially overworked) physicians. Therefore, we propose a new task that can provide an objective means of avoiding incompleteness, while reducing clinical workload: the automatic generation of the PI, which is imagined as being a document that the clinician can review, modify, and approve as necessary (rather than taking the human "out of the loop"). We build a benchmark clinical dataset and propose the Re$^3$Writer, which imitates the working patterns of physicians to first retrieve related working experience from historical PIs written by physicians, then reason related medical knowledge. Finally, it refines the retrieved working experience and reasoned medical knowledge to extract useful information, which is used to generate the PI for previously-unseen patient according to their health records during hospitalization. Our experiments show that, using our method, the performance of 6 different models can be substantially boosted across all metrics, with up to 20%, 11%, and 19% relative improvements in BLEU-4, ROUGE-L, and METEOR, respectively. Meanwhile, we show results from human evaluations to measure the effectiveness in terms of its usefulness for clinical practice. The code is available at https://github.com/AI-in-Health/Patient-Instructions.
Fenglin Liu, Bang Yang, Chenyu You, Xian Wu, Shen Ge, Zhangdaihong Liu, Xu Sun, Yang Yang, David Clifton
null
null
2,022
neurips
Influencing Long-Term Behavior in Multiagent Reinforcement Learning
null
The main challenge of multiagent reinforcement learning is the difficulty of learning useful policies in the presence of other simultaneously learning agents whose changing behaviors jointly affect the environment's transition and reward dynamics. An effective approach that has recently emerged for addressing this non-stationarity is for each agent to anticipate the learning of other agents and influence the evolution of future policies towards desirable behavior for its own benefit. Unfortunately, previous approaches for achieving this suffer from myopic evaluation, considering only a finite number of policy updates. As such, these methods can only influence transient future policies rather than achieving the promise of scalable equilibrium selection approaches that influence the behavior at convergence. In this paper, we propose a principled framework for considering the limiting policies of other agents as time approaches infinity. Specifically, we develop a new optimization objective that maximizes each agent's average reward by directly accounting for the impact of its behavior on the limiting set of policies that other agents will converge to. Our paper characterizes desirable solution concepts within this problem setting and provides practical approaches for optimizing over possible outcomes. As a result of our farsighted objective, we demonstrate better long-term performance than state-of-the-art baselines across a suite of diverse multiagent benchmark domains.
Dong-Ki Kim, Matthew Riemer, Miao Liu, Jakob Foerster, Michael Everett, Chuangchuang Sun, Gerald Tesauro, Jonathan P. How
null
null
2,022
neurips
Convergent Representations of Computer Programs in Human and Artificial Neural Networks
null
What aspects of computer programs are represented by the human brain during comprehension? We leverage brain recordings derived from functional magnetic resonance imaging (fMRI) studies of programmers comprehending Python code to evaluate the properties and code-related information encoded in the neural signal. We first evaluate a selection of static and dynamic code properties, such as abstract syntax tree (AST)-related and runtime-related metrics. Then, to learn whether brain representations encode fine-grained information about computer programs, we train a probe to align brain recordings with representations learned by a suite of ML models. We find that both the Multiple Demand and Language systems--brain systems which are responsible for very different cognitive tasks, encode specific code properties and uniquely align with machine learned representations of code. These findings suggest at least two distinct neural mechanisms mediating computer program comprehension and evaluation, prompting the design of code model objectives that go beyond static language modeling.We make all the corresponding code, data, and analysis publicly available at https://github.com/ALFA-group/code-representations-ml-brain
Shashank Srikant, Ben Lipkin, Anna Ivanova, Evelina Fedorenko, Una-May O'Reilly
null
null
2,022
neurips
Data Distributional Properties Drive Emergent In-Context Learning in Transformers
null
Large transformer-based models are able to perform in-context few-shot learning, without being explicitly trained for it. This observation raises the question: what aspects of the training regime lead to this emergent behavior? Here, we show that this behavior is driven by the distributions of the training data itself. In-context learning emerges when the training data exhibits particular distributional properties such as burstiness (items appear in clusters rather than being uniformly distributed over time) and having a large number of rarely occurring classes. In-context learning also emerges more strongly when item meanings or interpretations are dynamic rather than fixed. These properties are exemplified by natural language, but are also inherent to naturalistic data in a wide range of other domains. They also depart significantly from the uniform, i.i.d. training distributions typically used for standard supervised learning. In our initial experiments, we found that in-context learning traded off against more conventional weight-based learning, and models were unable to achieve both simultaneously. However, our later experiments uncovered that the two modes of learning could co-exist in a single model when it was trained on data following a skewed Zipfian distribution -- another common property of naturalistic data, including language. In further experiments, we found that naturalistic data distributions were only able to elicit in-context learning in transformers, and not in recurrent models. Our findings indicate how the transformer architecture works together with particular properties of the training data to drive the intriguing emergent in-context learning behaviour of large language models, and indicate how future work might encourage both in-context and in-weights learning in domains beyond language.
Stephanie Chan, Adam Santoro, Andrew Lampinen, Jane Wang, Aaditya Singh, Pierre Richemond, James McClelland, Felix Hill
null
null
2,022
neurips
Towards Theoretically Inspired Neural Initialization Optimization
null
Automated machine learning has been widely explored to reduce human efforts in designing neural architectures and looking for proper hyperparameters. In the domain of neural initialization, however, similar automated techniques have rarely been studied. Most existing initialization methods are handcrafted and highly dependent on specific architectures. In this paper, we propose a differentiable quantity, named GradCoisne, with theoretical insights to evaluate the initial state of a neural network. Specifically, GradCosine is the cosine similarity of sample-wise gradients with respect to the initialized parameters. By analyzing the sample-wise optimization landscape, we show that both the training and test performance of a network can be improved by maximizing GradCosine under gradient norm constraint. Based on this observation, we further propose the neural initialization optimization (NIO) algorithm. Generalized from the sample-wise analysis into the real batch setting, NIO is able to automatically look for a better initialization with negligible cost compared with the training time. With NIO, we improve the classification performance of a variety of neural architectures on CIFAR10, CIFAR-100, and ImageNet. Moreover, we find that our method can even help to train large vision Transformer architecture without warmup.
Yibo Yang, Hong Wang, Haobo Yuan, Zhouchen Lin
null
null
2,022
neurips
LOT: Layer-wise Orthogonal Training on Improving l2 Certified Robustness
null
Recent studies show that training deep neural networks (DNNs) with Lipschitz constraints are able to enhance adversarial robustness and other model properties such as stability. In this paper, we propose a layer-wise orthogonal training method (LOT) to effectively train 1-Lipschitz convolution layers via parametrizing an orthogonal matrix with an unconstrained matrix. We then efficiently compute the inverse square root of a convolution kernel by transforming the input domain to the Fourier frequency domain. On the other hand, as existing works show that semi-supervised training helps improve empirical robustness, we aim to bridge the gap and prove that semi-supervised learning also improves the certified robustness of Lipschitz-bounded models. We conduct comprehensive evaluations for LOT under different settings. We show that LOT significantly outperforms baselines regarding deterministic l2 certified robustness, and scales to deeper neural networks. Under the supervised scenario, we improve the state-of-the-art certified robustness for all architectures (e.g. from 59.04% to 63.50% on CIFAR-10 and from 32.57% to 34.59% on CIFAR-100 at radius $\rho=36/255$ for 40-layer networks). With semi-supervised learning over unlabelled data, we are able to improve state-of-the-art certified robustness on CIFAR-10 at $\rho=108/255$ from 36.04% to 42.39%. In addition, LOT consistently outperforms baselines on different model architectures with only 1/3 evaluation time.
Xiaojun Xu, Linyi Li, Bo Li
null
null
2,022
neurips
Regularized Molecular Conformation Fields
null
Predicting energetically favorable 3-dimensional conformations of organic molecules frommolecular graph plays a fundamental role in computer-aided drug discovery research.However, effectively exploring the high-dimensional conformation space to identify (meta) stable conformers is anything but trivial.In this work, we introduce RMCF, a novel framework to generate a diverse set of low-energy molecular conformations through samplingfrom a regularized molecular conformation field.We develop a data-driven molecular segmentation algorithm to automatically partition each molecule into several structural building blocks to reduce the modeling degrees of freedom.Then, we employ a Markov Random Field to learn the joint probability distribution of fragment configurations and inter-fragment dihedral angles, which enables us to sample from different low-energy regions of a conformation space.Our model constantly outperforms state-of-the-art models for the conformation generation task on the GEOM-Drugs dataset.We attribute the success of RMCF to modeling in a regularized feature space and learning a global fragment configuration distribution for effective sampling.The proposed method could be generalized to deal with larger biomolecular systems.
Lihao Wang, Yi Zhou, Yiqun Wang, Xiaoqing Zheng, Xuanjing Huang, Hao Zhou
null
null
2,022
neurips
Memory safe computations with XLA compiler
null
Software packages like TensorFlow and PyTorch are designed to support linear algebra operations, and their speed and usability determine their success. However, by prioritising speed, they often neglect memory requirements. As a consequence, the implementations of memory-intensive algorithms that are convenient in terms of software design can often not be run for large problems due to memory overflows. Memory-efficient solutions require complex programming approaches with significant logic outside the computational framework. This impairs the adoption and use of such algorithms. To address this, we developed an XLA compiler extension that adjusts the computational data-flow representation of an algorithm according to a user-specified memory limit. We show that k-nearest neighbour, sparse Gaussian process regression methods and Transformers can be run on a single device at a much larger scale, where standard implementations would have failed. Our approach leads to better use of hardware resources. We believe that further focus on removing memory constraints at a compiler level will widen the range of machine learning methods that can be developed in the future.
Artem Artemev, Yuze An, Tilman Roeder, Mark van der Wilk
null
null
2,022
neurips
Algorithms that Approximate Data Removal: New Results and Limitations
null
We study the problem of deleting user data from machine learning models trained using empirical risk minimization (ERM). Our focus is on learning algorithms which return the empirical risk minimizer and approximate unlearning algorithms that comply with deletion requests that come in an online manner. Leveraging the infintesimal jacknife, we develop an online unlearning algorithm that is both computationally and memory efficient. Unlike prior memory efficient unlearning algorithms, we target ERM trained models that minimize objectives with non-smooth regularizers, such as the commonly used $\ell_1$, elastic net, or nuclear norm penalties. We also provide generalization, deletion capacity, and unlearning guarantees that are consistent with state of the art methods. Across a variety of benchmark datasets, our algorithm empirically improves upon the runtime of prior methods while maintaining the same memory requirements and test accuracy. Finally, we open a new direction of inquiry by proving that all approximate unlearning algorithms introduced so far fail to unlearn in problem settings where common hyperparameter tuning methods, such as cross-validation, have been used to select models.
Vinith Suriyakumar, Ashia C. Wilson
null
null
2,022
neurips
Lottery Tickets on a Data Diet: Finding Initializations with Sparse Trainable Networks
null
A striking observation about iterative magnitude pruning (IMP; Frankle et al. 2020) is that—after just a few hundred steps of dense training—the method can find a sparse sub-network that can be trained to the same accuracy as the dense network. However, the same does not hold at step 0, i.e. random initialization. In this work, we seek to understand how this early phase of pre-training leads to a good initialization for IMP both through the lens of the data distribution and the loss landscape geometry. Empirically we observe that, holding the number of pre-training iterations constant, training on a small fraction of (randomly chosen) data suffices to obtain an equally good initialization for IMP. We additionally observe that by pre-training only on "easy" training data, we can decrease the number of steps necessary to find a good initialization for IMP compared to training on the full dataset or a randomly chosen subset. Finally, we identify novel properties of the loss landscape of dense networks that are predictive of IMP performance, showing in particular that more examples being linearly mode connected in the dense network correlates well with good initializations for IMP. Combined, these results provide new insight into the role played by the early phase training in IMP.
Mansheej Paul, Brett Larsen, Surya Ganguli, Jonathan Frankle, Gintare Karolina Dziugaite
null
null
2,022
neurips
Efficient learning of nonlinear prediction models with time-series privileged information
null
In domains where sample sizes are limited, efficient learning algorithms are critical. Learning using privileged information (LuPI) offers increased sample efficiency by allowing prediction models access to auxiliary information at training time which is unavailable when the models are used. In recent work, it was shown that for prediction in linear-Gaussian dynamical systems, a LuPI learner with access to intermediate time series data is never worse and often better in expectation than any unbiased classical learner. We provide new insights into this analysis and generalize it to nonlinear prediction tasks in latent dynamical systems, extending theoretical guarantees to the case where the map connecting latent variables and observations is known up to a linear transform. In addition, we propose algorithms based on random features and representation learning for the case when this map is unknown. A suite of empirical results confirm theoretical findings and show the potential of using privileged time-series information in nonlinear prediction.
Bastian Jung, Fredrik D. Johansson
null
null
2,022
neurips
Lower Bounds and Nearly Optimal Algorithms in Distributed Learning with Communication Compression
null
Recent advances in distributed optimization and learning have shown that communication compression is one of the most effective means of reducing communication. While there have been many results for convergence rates with compressed communication, a lower bound is still missing.Analyses of algorithms with communication compression have identified two abstract properties that guarantee convergence: the unbiased property or the contractive property. They can be applied either unidirectionally (compressing messages from worker to server) or bidirectionally. In the smooth and non-convex stochastic regime, this paper establishes a lower bound for distributed algorithms whether using unbiased or contractive compressors in unidirection or bidirection. To close the gap between this lower bound and the best existing upper bound, we further propose an algorithm, NEOLITHIC, that almost reaches our lower bound (except for a logarithm factor) under mild conditions. Our results also show that using contractive compressors in bidirection can yield iterative methods that converge as fast as those using unbiased compressors unidirectionally. We report experimental results that validate our findings.
Xinmeng Huang, Yiming Chen, Wotao Yin, Kun Yuan
null
null
2,022
neurips
Improved Convergence Rate of Stochastic Gradient Langevin Dynamics with Variance Reduction and its Application to Optimization
null
The stochastic gradient Langevin Dynamics is one of the most fundamental algorithms to solve sampling problems and non-convex optimization appearing in several machine learning applications. Especially, its variance reduced versions have nowadays gained particular attention. In this paper, we study two variants of this kind, namely, the Stochastic Variance Reduced Gradient Langevin Dynamics and the Stochastic Recursive Gradient Langevin Dynamics. We prove their convergence to the objective distribution in terms of KL-divergence under the sole assumptions of smoothness and Log-Sobolev inequality which are weaker conditions than those used in prior works for these algorithms. With the batch size and the inner loop length set to $\sqrt{n}$, the gradient complexity to achieve an $\epsilon$-precision is $\tilde{O}((n+dn^{1/2}\epsilon^{-1})\gamma^2 L^2\alpha^{-2})$, which is an improvement from any previous analyses. We also show some essential applications of our result to non-convex optimization.
Yuri Kinoshita, Taiji Suzuki
null
null
2,022
neurips
Double Bubble, Toil and Trouble: Enhancing Certified Robustness through Transitivity
null
In response to subtle adversarial examples flipping classifications of neural network models, recent research has promoted certified robustness as a solution. There, invariance of predictions to all norm-bounded attacks is achieved through randomised smoothing of network inputs. Today's state-of-the-art certifications make optimal use of the class output scores at the input instance under test: no better radius of certification (under the $L_2$ norm) is possible given only these score. However, it is an open question as to whether such lower bounds can be improved using local information around the instance under test. In this work, we demonstrate how today's ``optimal'' certificates can be improved by exploiting both the transitivity of certifications, and the geometry of the input space, giving rise to what we term Geometrically-Informed Certified Robustness. By considering the smallest distance to points on the boundary of a set of certifications this approach improves certifications for more than $80 \%$ of Tiny-Imagenet instances, yielding an on average $5\%$ increase in the associated certification. When incorporating training time processes that enhance the certified radius, our technique shows even more promising results, with a uniform $4$ percentage point increase in the achieved certified radius.
Andrew Cullen, Paul Montague, Shijie Liu, Sarah Erfani, Benjamin Rubinstein
null
null
2,022
neurips
Uncertainty Estimation Using Riemannian Model Dynamics for Offline Reinforcement Learning
null
Model-based offline reinforcement learning approaches generally rely on bounds of model error. Estimating these bounds is usually achieved through uncertainty estimation methods. In this work, we combine parametric and nonparametric methods for uncertainty estimation through a novel latent space based metric. In particular, we build upon recent advances in Riemannian geometry of generative models to construct a pullback metric of an encoder-decoder based forward model. Our proposed metric measures both the quality of out-of-distribution samples as well as the discrepancy of examples in the data. We leverage our combined method for uncertainty estimation in a pessimistic model-based framework, showing a significant improvement upon contemporary model-based offline approaches on continuous control and autonomous driving benchmarks.
Guy Tennenholtz, Shie Mannor
null
null
2,022
neurips
Layer Freezing & Data Sieving: Missing Pieces of a Generic Framework for Sparse Training
null
Recently, sparse training has emerged as a promising paradigm for efficient deep learning on edge devices. The current research mainly devotes the efforts to reducing training costs by further increasing model sparsity. However, increasing sparsity is not always ideal since it will inevitably introduce severe accuracy degradation at an extremely high sparsity level. This paper intends to explore other possible directions to effectively and efficiently reduce sparse training costs while preserving accuracy. To this end, we investigate two techniques, namely, layer freezing and data sieving. First, the layer freezing approach has shown its success in dense model training and fine-tuning, yet it has never been adopted in the sparse training domain. Nevertheless, the unique characteristics of sparse training may hinder the incorporation of layer freezing techniques. Therefore, we analyze the feasibility and potentiality of using the layer freezing technique in sparse training and find it has the potential to save considerable training costs. Second, we propose a data sieving method for dataset-efficient training, which further reduces training costs by ensuring only a partial dataset is used throughout the entire training process. We show that both techniques can be well incorporated into the sparse training algorithm to form a generic framework, which we dub SpFDE. Our extensive experiments demonstrate that SpFDE can significantly reduce training costs while preserving accuracy from three dimensions: weight sparsity, layer freezing, and dataset sieving. Our code and models will be released.
Geng Yuan, Yanyu Li, Sheng Li, Zhenglun Kong, Sergey Tulyakov, Xulong Tang, Yanzhi Wang, Jian Ren
null
null
2,022
neurips
AnimeRun: 2D Animation Visual Correspondence from Open Source 3D Movies
null
Visual correspondence of 2D animation is the core of many applications and deserves careful study. Existing correspondence datasets for 2D cartoon suffer from simple frame composition and monotonic movements, making them insufficient to simulate real animations. In this work, we present a new 2D animation visual correspondence dataset, AnimeRun, by converting open source 3D movies to full scenes in 2D style, including simultaneous moving background and interactions of multiple subjects. Statistics show that our proposed dataset not only resembles real anime more in image composition, but also possesses richer and more complex motion patterns compared to existing datasets. With this dataset, we establish a comprehensive benchmark by evaluating several existing optical flow and segment matching methods, and analyze shortcomings of these methods on animation data. Data are available at https://lisiyao21.github.io/projects/AnimeRun.
Li Siyao, Yuhang Li, Bo Li, Chao Dong, Ziwei Liu, Chen Change Loy
null
null
2,022
neurips
Practical Adversarial Attacks on Spatiotemporal Traffic Forecasting Models
null
Machine learning based traffic forecasting models leverage sophisticated spatiotemporal auto-correlations to provide accurate predictions of city-wide traffic states. However, existing methods assume a reliable and unbiased forecasting environment, which is not always available in the wild. In this work, we investigate the vulnerability of spatiotemporal traffic forecasting models and propose a practical adversarial spatiotemporal attack framework. Specifically, instead of simultaneously attacking all geo-distributed data sources, an iterative gradient guided node saliency method is proposed to identify the time-dependent set of victim nodes. Furthermore, we devise a spatiotemporal gradient descent based scheme to generate real-valued adversarial traffic states under a perturbation constraint.Meanwhile, we theoretically demonstrate the worst performance bound of adversarial traffic forecasting attacks. Extensive experiments on two real-world datasets show that the proposed two-step framework achieves up to 67.8% performance degradation on various advanced spatiotemporal forecasting models. Remarkably, we also show that adversarial training with our proposed attacks can significantly improve the robustness of spatiotemporal traffic forecasting models.
Fan LIU, Hao Liu, Wenzhao Jiang
null
null
2,022
neurips
A Unified Analysis of Federated Learning with Arbitrary Client Participation
null
Federated learning (FL) faces challenges of intermittent client availability and computation/communication efficiency. As a result, only a small subset of clients can participate in FL at a given time. It is important to understand how partial client participation affects convergence, but most existing works have either considered idealized participation patterns or obtained results with non-zero optimality error for generic patterns. In this paper, we provide a unified convergence analysis for FL with arbitrary client participation. We first introduce a generalized version of federated averaging (FedAvg) that amplifies parameter updates at an interval of multiple FL rounds. Then, we present a novel analysis that captures the effect of client participation in a single term. By analyzing this term, we obtain convergence upper bounds for a wide range of participation patterns, including both non-stochastic and stochastic cases, which match either the lower bound of stochastic gradient descent (SGD) or the state-of-the-art results in specific settings. We also discuss various insights, recommendations, and experimental results.
Shiqiang Wang, Mingyue Ji
null
null
2,022
neurips
ETAB: A Benchmark Suite for Visual Representation Learning in Echocardiography
null
Echocardiography is one of the most commonly used diagnostic imaging modalities in cardiology. Application of deep learning models to echocardiograms can enable automated identification of cardiac structures, estimation of cardiac function, and prediction of clinical outcomes. However, a major hindrance to realizing the full potential of deep learning is the lack of large-scale, fully curated and annotated data sets required for supervised training. High-quality pre-trained representations that can transfer useful visual features of echocardiograms to downstream tasks can help adapt deep learning models to new setups using fewer examples. In this paper, we design a suite of benchmarks that can be used to pre-train and evaluate echocardiographic representations with respect to various clinically-relevant tasks using publicly accessible data sets. In addition, we develop a unified evaluation protocol---which we call the echocardiographic task adaptation benchmark (ETAB)---that measures how well a visual representation of echocardiograms generalizes to common downstream tasks of interest. We use our benchmarking framework to evaluate state-of-the-art vision modeling pipelines. We envision that our standardized, publicly accessible benchmarks would encourage future research and expedite progress in applying deep learning to high-impact problems in cardiovascular medicine.
Ahmed M. Alaa, Anthony Philippakis, David Sontag
null
null
2,022
neurips
Trustworthy Monte Carlo
null
Monte Carlo integration is a key technique for designing randomized approximation schemes for counting problems, with applications, e.g., in machine learning and statistical physics. The technique typically enables massively parallel computation, however, with the risk that some of the delegated computations contain spontaneous or adversarial errors. We present an orchestration of the computations such that the outcome is accompanied with a proof of correctness that can be verified with substantially less computational resources than it takes to run the computations from scratch with state-of-the-art algorithms. Specifically, we adopt an algebraic proof system developed in computational complexity theory, in which the proof is represented by a polynomial; evaluating the polynomial at a random point amounts to a verification of the proof with probabilistic guarantees. We give examples of known Monte Carlo estimators that admit verifiable extensions with moderate computational overhead: for the permanent of zero--one matrices, for the model count of disjunctive normal form formulas, and for the gradient of logistic regression models. We also discuss the prospects and challenges of engineering efficient verifiable approximation schemes more generally.
Juha Harviainen, Mikko Koivisto, Petteri Kaski
null
null
2,022
neurips
Fairness without Demographics through Knowledge Distillation
null
Most of existing work on fairness assumes available demographic information in the training set. In practice, due to legal or privacy concerns, when demographic information is not available in the training set, it is crucial to find alternative objectives to ensure fairness. Existing work on fairness without demographics follows Rawlsian Max-Min fairness objectives. However, such constraints could be too strict to improve group fairness, and could lead to a great decrease in accuracy. In light of these limitations, in this paper, we propose to solve the problem from a new perspective, i.e., through knowledge distillation. Our method uses soft label from an overfitted teacher model as an alternative, and we show from preliminary experiments that soft labelling is beneficial for improving fairness. We analyze theoretically the fairness of our method, and we show that our method can be treated as an error-based reweighing. Experimental results on three datasets show that our method outperforms state-of-the-art alternatives, with notable improvements in group fairness and with relatively small decrease in accuracy.
Junyi Chai, Taeuk Jang, Xiaoqian Wang
null
null
2,022
neurips
An $\alpha$-No-Regret Algorithm For Graphical Bilinear Bandits
null
We propose the first regret-based approach to the \emph{Graphical Bilinear Bandits} problem, where $n$ agents in a graph play a stochastic bilinear bandit game with each of their neighbors. This setting reveals a combinatorial NP-hard problem that prevents the use of any existing regret-based algorithm in the (bi-)linear bandit literature. In this paper, we fill this gap and present the first regret-based algorithm for graphical bilinear bandits using the principle of optimism in the face of uncertainty. Theoretical analysis of this new method yields an upper bound of $\tilde{O}(\sqrt{T})$ on the $\alpha$-regret and evidences the impact of the graph structure on the rate of convergence. Finally, we show through various experiments the validity of our approach.
Geovani Rizk, Igor Colin, Albert Thomas, Rida Laraki, Yann Chevaleyre
null
null
2,022
neurips
Deconfounded Representation Similarity for Comparison of Neural Networks
null
Similarity metrics such as representational similarity analysis (RSA) and centered kernel alignment (CKA) have been used to understand neural networks by comparing their layer-wise representations. However, these metrics are confounded by the population structure of data items in the input space, leading to inconsistent conclusions about the \emph{functional} similarity between neural networks, such as spuriously high similarity of completely random neural networks and inconsistent domain relations in transfer learning. We introduce a simple and generally applicable fix to adjust for the confounder with covariate adjustment regression, which improves the ability of CKA and RSA to reveal functional similarity and also retains the intuitive invariance properties of the original similarity measures. We show that deconfounding the similarity metrics increases the resolution of detecting functionally similar neural networks across domains. Moreover, in real-world applications, deconfounding improves the consistency between CKA and domain similarity in transfer learning, and increases the correlation between CKA and model out-of-distribution accuracy similarity.
Tianyu Cui, Yogesh Kumar, Pekka Marttinen, Samuel Kaski
null
null
2,022
neurips
A Win-win Deal: Towards Sparse and Robust Pre-trained Language Models
null
Despite the remarkable success of pre-trained language models (PLMs), they still face two challenges: First, large-scale PLMs are inefficient in terms of memory footprint and computation. Second, on the downstream tasks, PLMs tend to rely on the dataset bias and struggle to generalize to out-of-distribution (OOD) data. In response to the efficiency problem, recent studies show that dense PLMs can be replaced with sparse subnetworks without hurting the performance. Such subnetworks can be found in three scenarios: 1) the fine-tuned PLMs, 2) the raw PLMs and then fine-tuned in isolation, and even inside 3) PLMs without any parameter fine-tuning. However, these results are only obtained in the in-distribution (ID) setting. In this paper, we extend the study on PLMs subnetworks to the OOD setting, investigating whether sparsity and robustness to dataset bias can be achieved simultaneously. To this end, we conduct extensive experiments with the pre-trained BERT model on three natural language understanding (NLU) tasks. Our results demonstrate that \textbf{sparse and robust subnetworks (SRNets) can consistently be found in BERT}, across the aforementioned three scenarios, using different training and compression methods. Furthermore, we explore the upper bound of SRNets using the OOD information and show that \textbf{there exist sparse and almost unbiased BERT subnetworks}. Finally, we present 1) an analytical study that provides insights on how to promote the efficiency of SRNets searching process and 2) a solution to improve subnetworks' performance at high sparsity. The code is available at \url{https://github.com/llyx97/sparse-and-robust-PLM}.
Yuanxin Liu, Fandong Meng, Zheng Lin, Jiangnan Li, Peng Fu, Yanan Cao, Weiping Wang, Jie Zhou
null
null
2,022
neurips
Asymptotics of smoothed Wasserstein distances in the small noise regime
null
We study the behavior of the Wasserstein-$2$ distance between discrete measures $\mu$ and $\nu$ in $\mathbb{R}^d$ when both measures are smoothed by small amounts of Gaussian noise. This procedure, known as Gaussian-smoothed optimal transport, has recently attracted attention as a statistically attractive alternative to the unregularized Wasserstein distance. We give precise bounds on the approximation properties of this proposal in the small noise regime, and establish the existence of a phase transition: we show that, if the optimal transport plan from $\mu$ to $\nu$ is unique and a perfect matching, there exists a critical threshold such that the difference between $W_2(\mu, \nu)$ and the Gaussian-smoothed OT distance $W_2(\mu \ast \mathcal{N}_\sigma, \nu\ast \mathcal{N}_\sigma)$ scales like $\exp(-c /\sigma^2)$ for $\sigma$ below the threshold, and scales like $\sigma$ above it. These results establish that for $\sigma$ sufficiently small, the smoothed Wasserstein distance approximates the unregularized distance exponentially well.
Yunzi Ding, Jonathan Niles-Weed
null
null
2,022
neurips
Sleeper Agent: Scalable Hidden Trigger Backdoors for Neural Networks Trained from Scratch
null
As the curation of data for machine learning becomes increasingly automated, dataset tampering is a mounting threat. Backdoor attackers tamper with training data to embed a vulnerability in models that are trained on that data. This vulnerability is then activated at inference time by placing a "trigger'' into the model's input. Typical backdoor attacks insert the trigger directly into the training data, although the presence of such an attack may be visible upon inspection. In contrast, the Hidden Trigger Backdoor Attack achieves poisoning without placing a trigger into the training data at all. However, this hidden trigger attack is ineffective at poisoning neural networks trained from scratch. We develop a new hidden trigger attack, Sleeper Agent, which employs gradient matching, data selection, and target model re-training during the crafting process. Sleeper Agent is the first hidden trigger backdoor attack to be effective against neural networks trained from scratch. We demonstrate its effectiveness on ImageNet and in black-box settings. Our implementation code can be found at: https://github.com/hsouri/Sleeper-Agent.
Hossein Souri, Liam Fowl, Rama Chellappa, Micah Goldblum, Tom Goldstein
null
null
2,022
neurips
Pareto Set Learning for Expensive Multi-Objective Optimization
null
Expensive multi-objective optimization problems can be found in many real-world applications, where their objective function evaluations involve expensive computations or physical experiments. It is desirable to obtain an approximate Pareto front with a limited evaluation budget. Multi-objective Bayesian optimization (MOBO) has been widely used for finding a finite set of Pareto optimal solutions. However, it is well-known that the whole Pareto set is on a continuous manifold and can contain infinite solutions. The structural properties of the Pareto set are not well exploited in existing MOBO methods, and the finite-set approximation may not contain the most preferred solution(s) for decision-makers. This paper develops a novel learning-based method to approximate the whole Pareto set for MOBO, which generalizes the decomposition-based multi-objective optimization algorithm (MOEA/D) from finite populations to models. We design a simple and powerful acquisition search method based on the learned Pareto set, which naturally supports batch evaluation. In addition, with our proposed model, decision-makers can readily explore any trade-off area in the approximate Pareto set for flexible decision-making. This work represents the first attempt to model the Pareto set for expensive multi-objective optimization. Experimental results on different synthetic and real-world problems demonstrate the effectiveness of our proposed method.
Xi Lin, Zhiyuan Yang, Xiaoyuan Zhang, Qingfu Zhang
null
null
2,022
neurips
Fine-tuning Language Models over Slow Networks using Activation Quantization with Guarantees
null
Communication compression is a crucial technique for modern distributed learning systems to alleviate their communication bottlenecks over slower networks. Despite recent intensive studies of gradient compression for data parallel-style training, compressing the activations for models trained with pipeline parallelism is still an open problem. In this paper, we propose AQ-SGD, a novel activation compression algorithm for communication-efficient pipeline parallelism training over slow networks. Different from previous efforts in activation compression, instead of compressing activation values directly, AQ-SGD compresses the changes of the activations. This allows us to show, to the best of our knowledge for the first time, that one can still achieve $O(1/\sqrt{T})$ convergence rate for non-convex objectives under activation compression, without making assumptions on gradient unbiasedness that do not hold for deep learning models with non-linear activation functions. We then show that AQ-SGD can be optimized and implemented efficiently, without additional end-to-end runtime overhead. We evaluated AQ-SGD to fine-tune language models with up to 1.5 billion parameters, compressing activation to 2-4 bits. AQ-SGD provides up to $4.3\times$ end-to-end speed-up in slower networks, without sacrificing model quality. Moreover, we also show that AQ-SGD can be combined with state-of-the-art gradient compression algorithms to enable end-to-end communication compression: All communications between machines, including model gradients, forward activations, and backward gradients are compressed into lower precision. This provides up to $4.9\times$ end-to-end speed-up, without sacrificing model quality.
Jue WANG, Binhang Yuan, Luka Rimanic, Yongjun He, Tri Dao, Beidi Chen, Christopher Ré, Ce Zhang
null
null
2,022
neurips
Dynamic Pricing with Monotonicity Constraint under Unknown Parametric Demand Model
null
We consider the Continuum Bandit problem where the goal is to find the optimal action under an unknown reward function, with an additional monotonicity constraint (or, "markdown" constraint) that requires that the action sequence be non-increasing. This problem faithfully models a natural single-product dynamic pricing problem, called "markdown pricing", where the objective is to adaptively reduce the price over a finite sales horizon to maximize expected revenues. Jia et al '21 and Chen '21 independently showed a tight $T^{3/4}$ regret bound over $T$ rounds under *minimal* assumptions of unimodality and Lipschitzness in the reward (or, "revenue") function. This bound shows that the demand learning in markdown pricing is harder than unconstrained (i.e., without the monotonicity constraint) pricing under unknown demand which suffers regret only of the order of $T^{2/3}$ under the same assumptions (Kleinberg '04). However, in practice the demand functions are usually assumed to have certain functional forms (e.g. linear or exponential), rendering the demand-learning easier and suggesting lower regret bounds. We investigate two fundamental questions, assuming the underlying demand curve comes from a given parametric family: (1) Can we improve the $T^{3/4}$ regret bound for markdown pricing, under extra assumptions on the functional forms of the demand functions? (2) Is markdown pricing still harder than unconstrained pricing, under these additional assumptions? To answer these, we introduce a concept called markdown dimension that measures the complexity of the parametric family and present tight regret bounds under this framework, thereby completely settling the aforementioned questions.
Su Jia, Andrew Li, R Ravi
null
null
2,022
neurips
Non-monotonic Resource Utilization in the Bandits with Knapsacks Problem
null
Bandits with knapsacks (BwK) is an influential model of sequential decision-making under uncertainty that incorporates resource consumption constraints. In each round, the decision-maker observes an outcome consisting of a reward and a vector of nonnegative resource consumptions, and the budget of each resource is decremented by its consumption. In this paper we introduce a natural generalization of the stochastic BwK problem that allows non-monotonic resource utilization. In each round, the decision-maker observes an outcome consisting of a reward and a vector of resource drifts that can be positive, negative or zero, and the budget of each resource is incremented by its drift. Our main result is a Markov decision process (MDP) policy that has constant regret against a linear programming (LP) relaxation when the decision-maker knows the true outcome distributions. We build upon this to develop a learning algorithm that has logarithmic regret against the same LP relaxation when the decision-maker does not know the true outcome distributions. We also present a reduction from BwK to our model that shows our regret bound matches existing results.
Raunak Kumar, Robert Kleinberg
null
null
2,022
neurips
Diagnosing failures of fairness transfer across distribution shift in real-world medical settings
null
Diagnosing and mitigating changes in model fairness under distribution shift is an important component of the safe deployment of machine learning in healthcare settings. Importantly, the success of any mitigation strategy strongly depends on the \textit{structure} of the shift. Despite this, there has been little discussion of how to empirically assess the structure of a distribution shift that one is encountering in practice. In this work, we adopt a causal framing to motivate conditional independence tests as a key tool for characterizing distribution shifts. Using our approach in two medical applications, we show that this knowledge can help diagnose failures of fairness transfer, including cases where real-world shifts are more complex than is often assumed in the literature. Based on these results, we discuss potential remedies at each step of the machine learning pipeline.
Jessica Schrouff, Natalie Harris, Sanmi Koyejo, Ibrahim M. Alabdulmohsin, Eva Schnider, Krista Opsahl-Ong, Alexander Brown, Subhrajit Roy, Diana Mincu, Christina Chen, Awa Dieng, Yuan Liu, Vivek Natarajan, Alan Karthikesalingam, Katherine A. Heller, Silvia Chiappa, Alexander D'Amour
null
null
2,022
neurips
Efficient identification of informative features in simulation-based inference
null
Simulation-based Bayesian inference (SBI) can be used to estimate the parameters of complex mechanistic models given observed model outputs without requiring access to explicit likelihood evaluations. A prime example for the application of SBI in neuroscience involves estimating the parameters governing the response dynamics of Hodgkin-Huxley (HH) models from electrophysiological measurements, by inferring a posterior over the parameters that is consistent with a set of observations. To this end, many SBI methods employ a set of summary statistics or scientifically interpretable features to estimate a surrogate likelihood or posterior. However, currently, there is no way to identify how much each summary statistic or feature contributes to reducing posterior uncertainty. To address this challenge, one could simply compare the posteriors with and without a given feature included in the inference process. However, for large or nested feature sets, this would necessitate repeatedly estimating the posterior, which is computationally expensive or even prohibitive. Here, we provide a more efficient approach based on the SBI method neural likelihood estimation (NLE): We show that one can marginalize the trained surrogate likelihood post-hoc before inferring the posterior to assess the contribution of a feature. We demonstrate the usefulness of our method by identifying the most important features for inferring parameters of an example HH neuron model. Beyond neuroscience, our method is generally applicable to SBI workflows that rely on data features for inference used in other scientific fields.
Jonas Beck, Michael Deistler, Yves Bernaerts, Jakob H Macke, Philipp Berens
null
null
2,022
neurips
Towards Lightweight Black-Box Attack Against Deep Neural Networks
null
Black-box attacks can generate adversarial examples without accessing the parameters of target model, largely exacerbating the threats of deployed deep neural networks (DNNs). However, previous works state that black-box attacks fail to mislead target models when their training data and outputs are inaccessible. In this work, we argue that black-box attacks can pose practical attacks in this extremely restrictive scenario where only several test samples are available. Specifically, we find that attacking the shallow layers of DNNs trained on a few test samples can generate powerful adversarial examples. As only a few samples are required, we refer to these attacks as lightweight black-box attacks. The main challenge to promoting lightweight attacks is to mitigate the adverse impact caused by the approximation error of shallow layers. As it is hard to mitigate the approximation error with few available samples, we propose Error TransFormer (ETF) for lightweight attacks. Namely, ETF transforms the approximation error in the parameter space into a perturbation in the feature space and alleviates the error by disturbing features. In experiments, lightweight black-box attacks with the proposed ETF achieve surprising results. For example, even if only 1 sample per category available, the attack success rate in lightweight black-box attacks is only about 3% lower than that of the black-box attacks with complete training data.
Chenghao Sun, Yonggang Zhang, Wan Chaoqun, Qizhou Wang, Ya Li, Tongliang Liu, Bo Han, Xinmei Tian
null
null
2,022
neurips
Agreement-on-the-line: Predicting the Performance of Neural Networks under Distribution Shift
null
Recently, Miller et al. showed that a model's in-distribution (ID) accuracy has a strong linear correlation with its out-of-distribution (OOD) accuracy, on several OOD benchmarks, a phenomenon they dubbed ``accuracy-on-the-line''. While a useful tool for model selection (i.e., the model most likely to perform the best OOD is the one with highest ID accuracy), this fact does not help to estimate the actual OOD performance of models without access to a labeled OOD validation set. In this paper, we show a similar surprising phenomena also holds for the agreement between pairs of neural network classifiers: whenever accuracy-on-the-line holds, we observe that the OOD agreement between the predictions of any two pairs of neural networks (with potentially different architectures) also observes a strong linear correlation with their ID agreement. Furthermore, we observe that the slope and bias of OOD vs ID agreement closely matches that of OOD vs ID accuracy. This phenomenon which we call agreement-on-the-line, has important practical applications: without any labeled data, we can predict the OOD accuracy of classifiers, since OOD agreement can be estimated with just unlabeled data. Our prediction algorithm outperforms previous methods both in shifts where agreement-on-the-line holds and, surprisingly, when accuracy is not on the line. This phenomenon also provides new insights into neural networks: unlike accuracy-on-the-line, agreement-on-the-line only appears to hold for neural network classifiers.
Christina Baek, Yiding Jiang, Aditi Raghunathan, J. Zico Kolter
null
null
2,022
neurips
Federated Learning from Pre-Trained Models: A Contrastive Learning Approach
null
Federated Learning (FL) is a machine learning paradigm that allows decentralized clients to learn collaboratively without sharing their private data. However, excessive computation and communication demands pose challenges to current FL frameworks, especially when training large-scale models. To prevent these issues from hindering the deployment of FL systems, we propose a lightweight framework where clients jointly learn to fuse the representations generated by multiple fixed pre-trained models rather than training a large-scale model from scratch. This leads us to a more practical FL problem by considering how to capture more client-specific and class-relevant information from the pre-trained models and jointly improve each client's ability to exploit those off-the-shelf models. Here, we design a Federated Prototype-wise Contrastive Learning (FedPCL) approach which shares knowledge across clients through their class prototypes and builds client-specific representations in a prototype-wise contrastive manner. Sharing prototypes rather than learnable model parameters allows each client to fuse the representations in a personalized way while keeping the shared knowledge in a compact form for efficient communication. We perform a thorough evaluation of the proposed FedPCL in the lightweight framework, measuring and visualizing its ability to fuse various pre-trained models on popular FL datasets.
Yue Tan, Guodong Long, Jie Ma, LU LIU, Tianyi Zhou, Jing Jiang
null
null
2,022
neurips
Large-Scale Differentiable Causal Discovery of Factor Graphs
null
A common theme in causal inference is learning causal relationships between observed variables, also known as causal discovery. This is usually a daunting task, given the large number of candidate causal graphs and the combinatorial nature of the search space. Perhaps for this reason, most research has so far focused on relatively small causal graphs, with up to hundreds of nodes. However, recent advances in fields like biology enable generating experimental data sets with thousands of interventions followed by rich profiling of thousands of variables, raising the opportunity and urgent need for large causal graph models. Here, we introduce the notion of factor directed acyclic graphs ($f$-DAGs) as a way to restrict the search space to non-linear low-rank causal interaction models. Combining this novel structural assumption with recent advances that bridge the gap between causal discovery and continuous optimization, we achieve causal discovery on thousands of variables. Additionally, as a model for the impact of statistical noise on this estimation procedure, we study a model of edge perturbations of the $f$-DAG skeleton based on random graphs and quantify the effect of such perturbations on the $f$-DAG rank. This theoretical analysis suggests that the set of candidate $f$-DAGs is much smaller than the whole DAG space and thus may be more suitable as a search space in the high-dimensional regime where the underlying skeleton is hard to assess. We propose Differentiable Causal Discovery of Factor Graphs (DCD-FG), a scalable implementation of $f$-DAG constrained causal discovery for high-dimensional interventional data. DCD-FG uses a Gaussian non-linear low-rank structural equation model and shows significant improvements compared to state-of-the-art methods in both simulations as well as a recent large-scale single-cell RNA sequencing data set with hundreds of genetic interventions.
Romain Lopez, Jan-Christian Huetter, Jonathan Pritchard, Aviv Regev
null
null
2,022
neurips
Approximate Euclidean lengths and distances beyond Johnson-Lindenstrauss
null
A classical result of Johnson and Lindenstrauss states that a set of $n$ high dimensional data points can be projected down to $O(\log n/\epsilon^2)$ dimensions such that the square of their pairwise distances is preserved up to a small distortion $\epsilon\in(0,1)$. It has been proved that the JL lemma is optimal for the general case, therefore, improvements can only be explored for special cases. This work aims to improve the $\epsilon^{-2}$ dependency based on techniques inspired by the Hutch++ Algorithm, which reduces $\epsilon^{-2}$ to $\epsilon^{-1}$ for the related problem of implicit matrix trace estimation. We first present an algorithm to estimate the Euclidean lengths of the rows of a matrix. We prove for it element-wise probabilistic bounds that are at least as good as standard JL approximations in the worst-case, but are asymptotically better for matrices with decaying spectrum. Moreover, for any matrix, regardless of its spectrum, the algorithm achieves $\epsilon$-accuracy for the total, Frobenius norm-wise relative error using only $O(\epsilon^{-1})$ queries. This is a quadratic improvement over the norm-wise error of standard JL approximations. We also show how these results can be extended to estimate (i) the Euclidean distances between data points and (ii) the statistical leverage scores of tall-and-skinny data matrices, which are ubiquitous for many applications, with analogous theoretical improvements. Proof-of-concept numerical experiments are presented to validate the theoretical analysis.
Aleksandros Sobczyk, Mathieu Luisier
null
null
2,022
neurips
Measuring and Reducing Model Update Regression in Structured Prediction for NLP
null
Recent advance in deep learning has led to rapid adoption of machine learning based NLP models in a wide range of applications. Despite the continuous gain in accuracy, backward compatibility is also an important aspect for industrial applications, yet it received little research attention. Backward compatibility requires that the new model does not regress on cases that were correctly handled by its predecessor. This work studies model update regression in structured prediction tasks. We choose syntactic dependency parsing and conversational semantic parsing as representative examples of structured prediction tasks in NLP. First, we measure and analyze model update regression in different model update settings. Next, we explore and benchmark existing techniques for reducing model update regression including model ensemble and knowledge distillation. We further propose a simple and effective method, Backward-Congruent Re-ranking (BCR), by taking into account the characteristics of structured output. Experiments show that BCR can better mitigate model update regression than model ensemble and knowledge distillation approaches.
Deng Cai, Elman Mansimov, Yi-An Lai, Yixuan Su, Lei Shu, Yi Zhang
null
null
2,022
neurips
Theoretically Provable Spiking Neural Networks
null
Spiking neural networks have attracted increasing attention in recent years due to their potential of handling time-dependent data. Many algorithms and techniques have been developed; however, theoretical understandings of many aspects of spiking neural networks are far from clear. A recent work [Zhang and Zhou, 2021] disclosed that typical spiking neural networks could hardly work on spatio-temporal data due to their bifurcation dynamics and suggested that the self-connection structure has to be added. In this paper, we theoretically investigate the approximation ability and computational efficiency of spiking neural networks with self connections, and show that the self-connection structure enables spiking neural networks to approximate discrete dynamical systems using a polynomial number of parameters within polynomial time complexities. Our theoretical results may shed some insight for the future studies of spiking neural networks.
Shao-Qun Zhang, Zhi-Hua Zhou
null
null
2,022
neurips
Multivariate Time-Series Forecasting with Temporal Polynomial Graph Neural Networks
null
Modeling multivariate time series (MTS) is critical in modern intelligent systems. The accurate forecast of MTS data is still challenging due to the complicated latent variable correlation. Recent works apply the Graph Neural Networks (GNNs) to the task, with the basic idea of representing the correlation as a static graph. However, predicting with a static graph causes significant bias because the correlation is time-varying in the real-world MTS data. Besides, there is no gap analysis between the actual correlation and the learned one in their works to validate the effectiveness. This paper proposes a temporal polynomial graph neural network (TPGNN) for accurate MTS forecasting, which represents the dynamic variable correlation as a temporal matrix polynomial in two steps. First, we capture the overall correlation with a static matrix basis. Then, we use a set of time-varying coefficients and the matrix basis to construct a matrix polynomial for each time step. The constructed result empirically captures the precise dynamic correlation of six synthetic MTS datasets generated by a non-repeating random walk model. Moreover, the theoretical analysis shows that TPGNN can achieve perfect approximation under a commutative condition. We conduct extensive experiments on two traffic datasets with prior structure and four benchmark datasets. The results indicate that TPGNN achieves the state-of-the-art on both short-term and long-term MTS forecastings.
Yijing Liu, Qinxian Liu, Jian-Wei Zhang, Haozhe Feng, Zhongwei Wang, Zihan Zhou, Wei Chen
null
null
2,022
neurips
InsPro: Propagating Instance Query and Proposal for Online Video Instance Segmentation
null
Video instance segmentation (VIS) aims at segmenting and tracking objects in videos. Prior methods typically generate frame-level or clip-level object instances first and then associate them by either additional tracking heads or complex instance matching algorithms. This explicit instance association approach increases system complexity and fails to fully exploit temporal cues in videos. In this paper, we design a simple, fast and yet effective query-based framework for online VIS. Relying on an instance query and proposal propagation mechanism with several specially developed components, this framework can perform accurate instance association implicitly. Specifically, we generate frame-level object instances based on a set of instance query-proposal pairs propagated from previous frames. This instance query-proposal pair is learned to bind with one specific object across frames through conscientiously developed strategies. When using such a pair to predict an object instance on the current frame, not only the generated instance is automatically associated with its precursors on previous frames, but the model gets a good prior for predicting the same object. In this way, we naturally achieve implicit instance association in parallel with segmentation and elegantly take advantage of temporal clues in videos. To show the effectiveness of our method InsPro, we evaluate it on two popular VIS benchmarks, i.e., YouTube-VIS 2019 and YouTube-VIS 2021. Without bells-and-whistles, our InsPro with ResNet-50 backbone achieves 43.2 AP and 37.6 AP on these two benchmarks respectively, outperforming all other online VIS methods.
Fei He, Haoyang Zhang, Naiyu Gao, Jian Jia, Yanhu Shan, Xin Zhao, Kaiqi Huang
null
null
2,022
neurips
Concentration of Data Encoding in Parameterized Quantum Circuits
null
Variational quantum algorithms have been acknowledged as the leading strategy to realize near-term quantum advantages in meaningful tasks, including machine learning and optimization. When applied to tasks involving classical data, such algorithms generally begin with data encoding circuits and train quantum neural networks (QNNs) to minimize target functions. Although QNNs have been widely studied to improve these algorithms' performance on practical tasks, there is a gap in systematically understanding the influence of data encoding on the eventual performance. In this paper, we make progress in filling this gap by considering the common data encoding strategies based on parameterized quantum circuits. We prove that, under reasonable assumptions, the distance between the average encoded state and the maximally mixed state could be explicitly upper-bounded with respect to the width and depth of the encoding circuit. This result in particular implies that the average encoded state will concentrate on the maximally mixed state at an exponential speed on depth. Such concentration seriously limits the capabilities of quantum classifiers, and strictly restricts the distinguishability of encoded states from a quantum information perspective. To support our findings, we numerically verify these results on both synthetic and public data sets. Our results highlight the significance of quantum data encoding and may shed light on the future design of quantum encoding strategies.
Guangxi Li, Ruilin Ye, Xuanqiang Zhao, Xin Wang
null
null
2,022
neurips