content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def notebook(request, id=0): """ :param request: :param id: :return: """ get_notebook = JupyterNotebooks.objects.get(id=id) return render(request, "customdashboard/notebook.html", {'get_notebook': get_notebook})
3d1e3880182f6c8d507391fc66a9c0b41f18e3bc
8,200
def encrypt_decrypt(data_string, password, mode='encrypt'): """Encrypts OR Decrypts data_string w.r.t password based on mode specified Parameters: data_string: Text that needs to be encoded. passed in string format password: a string to encrypt data before encoding into an image. mode: 'encrypt' --> encrypts the data 'decrypt' --> decrypts the data Returns: Data string either encrypted or decrypted based on mode specified """ _hash = md5(password.encode()) hash_value = _hash.hexdigest() key = urlsafe_b64encode(hash_value.encode()) cipher = Fernet(key) # 32-byte key - URLsafe - base64-encoded if mode=='encrypt': data_bytes = data_string.encode() encrypted_bytes = cipher.encrypt(data_bytes) encrypted_data_string = encrypted_bytes.decode() return encrypted_data_string elif mode=='decrypt': encrypted_bytes = data_string.encode() decrypted_bytes = cipher.decrypt(encrypted_bytes) decrypted_data_string = decrypted_bytes.decode() return decrypted_data_string else: raise InvalidModeError("Expected 'encrypt' OR 'decrypt' ")
c0ecdf2009fe1b40cb9ed86e12904e241eb5ea86
8,201
def compute_alphabet(sequences): """ Returns the alphabet used in a set of sequences. """ alphabet = set() for s in sequences: alphabet = alphabet.union(set(s)) return alphabet
cf8f7dc1e31a28fe0910d806d18189aae7d7a85b
8,202
import argparse def numpy_dtype_arg_type(string: str) -> np.dtype: """argument type for string reps of numpy dtypes""" try: ret = np.dtype(string) except TypeError as error: raise argparse.ArgumentTypeError(error.message) return ret
e1d9fa61c6c6d954007e63e61c49a8564c8f6c5d
8,203
def Diff(a, b): """Returns the number of different elements between 2 interables. Args: a(iterable): first iterable. b(iterable): second iterable. Returns: int: the number of different elements. """ return sum(map(lambda x, y: bool(x-y), a, b))
0885bd224f956f138e80a4b681ebc581c733cc51
8,204
def load_description(model): """Load description of the <model>.""" desc = get_available_pkgyaml(model) entry = read_mlhubyaml(desc) return entry
2a97ee446d0693af704c6b0ebd14376d3e6dea37
8,205
import math def generate_star(rect: RectType, line_count: int = 20) -> vp.LineCollection: """Generate a set of line from a random point.""" orig_x = np.random.uniform(rect[0], rect[0] + rect[2]) orig_y = np.random.uniform(rect[1], rect[1] + rect[3]) r = math.hypot(rect[2], rect[3]) angles = np.linspace(0, 2 * math.pi, num=line_count, endpoint=False) phase = np.random.normal(0, math.pi / 4) mls = MultiLineString( [ ([orig_x, orig_y], [orig_x + r * math.cos(a), orig_y + r * math.sin(a)]) for a in angles + phase ] ) return vp.LineCollection(mls.intersection(rect_to_polygon(rect)))
a430b486af8606d949a057b4578fdddd9968386b
8,206
def failure(request): """Display failure message""" return HttpResponse(f"Failure! {request.session['failure message'] if request.session['failure message'] is not None else ''}")
c9eee874106fce87d6816e3216e3a86d6eef5fab
8,207
import torch def visualize_image(cam, rgb_img, target_category): """ Visualize output for given image """ input_tensor = preprocess_image(rgb_img) grayscale_cam = cam(input_tensor=input_tensor, target_category=target_category) grayscale_cam = grayscale_cam[0, :] output = cam.activations_and_grads(input_tensor) softmax = torch.nn.Softmax(dim = 1) print("PRED: ", softmax(output).tolist()) visualization = show_cam_on_image(rgb_img, grayscale_cam, use_rgb=True) return visualization
2644eca6cd50078a167b7d791a625ecb13fef17d
8,208
import logging def read_csr_matrix(f): """Read A in compressed sparse row format from file f. Return dense ndarray. Text file format: - one number per line - First number is m = number of rows - Second number is n = number of columns - Next m+1 numbers are the row pointers (int, zero-based) - Next nnz numbers are the column indices (int, zero-based) - Next nnz numbers are the matrix values (float) """ logging.debug("attempting to read matrix in CSR format...") # strip comment header row = f.next().strip() while row[0] == '#': row = f.next().strip() # read shape m = int(row) row = f.next().strip() n = int(row) logging.debug("attempting to read (%s x %s) matrix in CSR format...", m, n) # read m+1 row pointers counter = 0 rowPointers = np.empty(m + 1, dtype=int) # we store nnz in the last place for i in range(m + 1): rowPointers[i] = int(f.next().strip()) nnz = rowPointers[m] # read nnz colum indices colIndices = np.empty(nnz, dtype=int) for i in range(nnz): colIndices[i] = int(f.next().strip()) if colIndices[i] >= n: errMsg = "Inconsistent dims, col idx %d > %d" % (colIndices[i], n) logging.error(errMsg) raise RuntimeError(errMsg) # read nnz values values = np.empty(nnz) for i in range(nnz): values[i] = float(f.next().strip()) # populate matrix res = np.zeros((m, n)) for i in range(m): for nzi in range(rowPointers[i], rowPointers[i + 1]): res[i, colIndices[nzi]] = values[nzi] logging.info( "successfully read (%s x %s) matrix in CSR format with nnz %s.", m, n, nnz) return res
c9f1201217ca7c6ca45d0b3d258fc1828c5ab36c
8,209
import random def _get_random_hangul(count=(0xd7a4 - 0xac00)): """Generate a sequence of random, unique, valid Hangul characters. Returns all possible modern Hangul characters by default. """ valid_hangul = [chr(_) for _ in range(0xac00, 0xd7a4)] return random.sample(valid_hangul, count)
3a41edd36cd2aac05e51a121743bcfb61455bd9b
8,210
def build(dir, **kwargs): """run cmake to generate a project buildsystem Parameters: ---------- dir str: Location of the CMake build directory Keyword Args: ---------- parallel int: The maximum number of concurrent processes to use when building. Default: 1 less than the number of available logical cores. target str: Path to directory which CMake will use as the root of build directory. config str: For multi-configuration tools, choose specified configuration flags seq(str): Sequence of flags (or any other unlisted argument). Include preceding dash(es). tooloptions seq(str): Sequence of options to be passed onto the build tool env: A mapping that defines the environment variables for the new process """ # prune empty entries kwargs = {key: value for key, value in kwargs.items() if value} # add defaults if not specified if not "parallel" in kwargs: kwargs["parallel"] = _getWorkerCount() # build cmake arguments args = [findexe("cmake"), "--build", dir] env = None for key, value in kwargs.items(): if key in ("parallel", "target", "config"): args.append(f"--{key}") args.append(f"{value}") elif key == "flags": for f in value: args.append(f) elif key == "env": env = value elif key is not "tooloptions": raise KeyError if "tooloptions" in kwargs: args.append("--") for f in value: args.append(f) return run(args, env=env).check_returncode()
2f21fc901d7c95d3b1a2b37d6ba3584d6cb96efb
8,211
def is_builtin_model(target: type) -> bool: """returns ``True`` if the given type is a model subclass""" return is_builtin_class_except(target, ["MetaModel", "Model", "DataBag"])
6b1cf3b0fdd0db50c0dde6a2ca3f3bcb8e8328cf
8,212
def runQ(qparsed, params=dict(), nbcircuits=1, nbqubits = None): """ qparsed: qlang circuit (already parsed) params:{x:np.array, t:np.array} """ #*** verify if parameters are ok for qparsed circuit **** _ , vector_parameters = parseqlang.parameters_from_gates(qparsed) for pname, dimension in vector_parameters.items(): if pname not in params: raise Exception(f'Vector parameter "{pname}" not provided') if params[pname].shape[0] != dimension: raise Exception(f"Vector parameter {pname} is of dimension {dimension} but %d are provided"%params[pname].shape[0]) if len(params[pname].shape)==1: nb_rows = 1 else: nb_rows =params[pname].shape[1] if nbcircuits==1 and nb_rows>1: nbcircuits= nb_rows elif nbcircuits != nb_rows and nb_rows != 1: raise Exception(f"{pname}: got {nb_rows} rows ({nbcircuits} expected)") #*** determine nb qubits **** qbits = parseqlang.nbqubits_from_gates(qparsed) if(nbqubits==None): nbqubits = qbits elif nbqubits<qbits: raise Exception(f"{nbqubits} qubits asked, but {qbits} qubits are needed") #*** run circuit(s) with manyq **** initQreg(nbqubits,n=nbcircuits) for gate in qparsed: gname = gate[0] gparam = gate[1] qbit0 = gparam[0] # print(gate) # print(f"qbit0: {qbit0}") if gname in {"CZ","CX"}: qbit1 = gparam[1] # print(f"Running {gname}({qbit0},{qbit1})") globals()[gname](qbit0,qbit1) continue pname = gparam[1][0] pindex = gparam[1][1] # print(f"Running {gname}({qbit0},{pname}_{pindex})") globals()[gname](qbit0,params.get(pname)[pindex]) return Qreg.outQ
d6ca4afd14e56961920033e9e7ab40f4fc4a9ae6
8,213
def add_CNNB_loss_v2(true_labels, hidden, embed_model, bsz=512, dataset='imagenet2012', hidden_norm=True, temperature=1.0, strategy=None, loss_type='ce', clip_min=0, method='onehot'): """Compute loss for model. Args: true_labels: vector of labels. hidden: hidden vector (`Tensor`) of shape (bsz, dim). hidden_norm: whether or not to use normalization on the hidden vector. temperature: a `floating` number for temperature scaling. strategy: context information for tpu. Returns: A loss scalar. The logits for contrastive prediction task. The labels for contrastive prediction task. """ # Get (normalized) hidden1 and hidden2. if hidden_norm: hidden = tf.math.l2_normalize(hidden, -1) hidden1, hidden2 = tf.split(hidden, 2, 0) batch_size = tf.shape(hidden1)[0] # Gather hidden1/hidden2 across replicas and create local labels. if strategy is not None: hidden1_large = tpu_cross_replica_concat(hidden1, strategy) hidden2_large = tpu_cross_replica_concat(hidden2, strategy) enlarged_batch_size = tf.shape(hidden1_large)[0] # TODO(iamtingchen): more elegant way to convert u32 to s32 for replica_id. replica_context = tf.distribute.get_replica_context() reps = strategy.num_replicas_in_sync sims=get_batch_sims(true_labels, embed_model, bsz//reps, dataset, method) sims=tf.cast(sims > clip_min, sims.dtype) * sims #sims.set_shape([512//reps, 512//reps]) replica_id = tf.cast( tf.cast(replica_context.replica_id_in_sync_group, tf.uint32), tf.int32) labels_idx = tf.range(batch_size) + replica_id * batch_size labels1=tf.concat([sims if i==replica_id else tf.zeros(sims.shape) for i in range(reps)],1) labels2=tf.concat([sims-tf.linalg.diag(tf.linalg.diag_part(sims)) if i==replica_id else tf.zeros(sims.shape) for i in range(reps)],1) labels=tf.concat([labels1,labels2],1) masks = tf.one_hot(labels_idx, enlarged_batch_size) else: #sims.set_shape([batch_size, batch_size]) sims=get_batch_sims(true_labels, embed_model, bsz, dataset, method) sims=tf.cast(sims > clip_min, sims.dtype) * sims hidden1_large = hidden1 hidden2_large = hidden2 labels=tf.concat([sims,sims-tf.linalg.diag(tf.linalg.diag_part(sims))],1) masks = tf.one_hot(tf.range(batch_size), batch_size) slabels=tf.split(labels, 2, axis=1) #Calculate similarity between hidden representations from aug1 and from aug1 logits_aa = tf.matmul(hidden1, hidden1_large, transpose_b=True) / temperature # tf.print(true_labels) # tf.print(logits_aa) #Calculate similarity between hidden representations from aug2 and from aug2 logits_bb = tf.matmul(hidden2, hidden2_large, transpose_b=True) / temperature if loss_type not in ['fro']: #Mask out entries corresponding to diagonal (self-similarity) so they are 0 once softmaxed logits_aa = logits_aa - masks * LARGE_NUM #Mask out entries corresponding to diagonal (self-similarity) so they are 0 once softmaxed logits_bb = logits_bb - masks * LARGE_NUM else: logits_aa = logits_aa - masks * logits_aa logits_bb = logits_bb - masks * logits_bb #Calculate similarity between hidden representations from aug1 and from aug2 logits_ab = tf.matmul(hidden1, hidden2_large, transpose_b=True) / temperature #Calculate similarity between hidden representations from aug2 and from aug1 #-> identical to above case if using single GPU logits_ba = tf.matmul(hidden2, hidden1_large, transpose_b=True) / temperature #Calculate loss for aug1 samples by taking softmax over logits and then applying cross_entropy # tf.print(slabels[0].shape) # tf.print(slabels[1].shape) # tf.print(logits_ab.shape) # tf.print(logits_aa.shape) if loss_type=='ce': loss_fn = tf.nn.softmax_cross_entropy_with_logits loss_a = tf.reduce_mean(loss_fn(slabels[0],logits_ab)+loss_fn(slabels[1]-masks*slabels[1],logits_aa)) loss_b = tf.reduce_mean(loss_fn(slabels[0],logits_ba)+loss_fn(slabels[1]-masks*slabels[1],logits_bb)) elif loss_type=='softmax-ce': loss_fn = tf.nn.softmax_cross_entropy_with_logits slabels[0]=tf.nn.softmax(slabels[0]/temperature) slabels[1]=tf.nn.softmax((slabels[1]/temperature)-masks*LARGE_NUM) loss_a = tf.reduce_mean(loss_fn(slabels[0],logits_ab)+loss_fn(slabels[1],logits_aa)) loss_b = tf.reduce_mean(loss_fn(slabels[0],logits_ba)+loss_fn(slabels[1],logits_bb)) elif loss_type=='kl': # Consider softmaxing labels here loss_fn = KLDivergence(tf.keras.losses.Reduction.NONE) loss_a = tf.reduce_mean(loss_fn(slabels[0],tf.nn.softmax(logits_ab))+loss_fn(slabels[1]-masks*slabels[1],tf.nn.softmax(logits_aa))) loss_b = tf.reduce_mean(loss_fn(slabels[0],tf.nn.softmax(logits_ba))+loss_fn(slabels[1]-masks*slabels[1],tf.nn.softmax(logits_bb))) elif loss_type=='klsoft': loss_fn = KLDivergence(tf.keras.losses.Reduction.NONE) slabels[0]=tf.nn.softmax(slabels[0]/temperature) slabels[1]=tf.nn.softmax((slabels[1]/temperature)-masks*LARGE_NUM) loss_a = tf.reduce_mean(loss_fn(slabels[0],tf.nn.softmax(logits_ab))+loss_fn(slabels[1],tf.nn.softmax(logits_aa))) loss_b = tf.reduce_mean(loss_fn(slabels[0],tf.nn.softmax(logits_ba))+loss_fn(slabels[1],tf.nn.softmax(logits_bb))) elif loss_type=='fro': #Consider softmaxing labels here loss_fn=tf.norm loss_a = tf.reduce_mean(loss_fn(slabels[0]-logits_ab, ord='fro', axis=(0,1))+loss_fn(slabels[1]-logits_aa, ord='fro', axis=(0,1))) loss_b = tf.reduce_mean(loss_fn(slabels[0]-logits_ba, ord='fro', axis=(0,1))+loss_fn(slabels[1]-logits_bb, ord='fro', axis=(0,1))) loss = tf.reduce_mean(loss_a + loss_b) return loss, logits_ab, labels
117af71c6f84ad1d2553cd3a18001b93af8539c6
8,214
def simulation_wells(self): """Get a list of all simulation wells for a case Returns: :class:`rips.generated.generated_classes.SimulationWell` """ wells = self.descendants(SimulationWell) return wells
ecf13fc524f12be21593c49d8d22c365564716e9
8,215
from typing import Optional def getSmartMeter() -> Optional[str]: """Return smartmeter name used in recording.""" mapping = getDeviceMapping() # Identifier for smartmeter is meter with phase 0 try: return next(key for key in mapping if mapping[key]["phase"] == 0) except StopIteration: return None
8e947d5d9078886f9bc2b662162304eb2fb6474b
8,216
def olbp(array, point): """Perform simple local binary pattern calculation with a fixed 3x3 neighbourhood. Thanks to: http://www.bytefish.de/blog/local_binary_patterns/ for a really nice explanation of LBP. Won't return correct results around the image boundaries. Because it's only a 3x3 neighbourhood, probably very susceptible to noise. TODO: Bigger neighbourhood. Variable size maybe? Returns: A single decimal number (the encoded pattern) """ x, y = point # Make sure we're within the array bounds. if x < 1: x = 1 if x > (array.shape[0] - 2): x = array.shape[0] - 2 if y < 1: y = 1 if y > (array.shape[1] - 2): y = array.shape[1] - 2 center = array[x, y] code = 0 code |= (array[x - 1, y - 1] > center) << 7 code |= (array[x - 1, y] > center) << 6 code |= (array[x - 1, y + 1] > center) << 5 code |= (array[x, y - 1] > center) << 4 code |= (array[x, y + 1] > center) << 3 code |= (array[x + 1, y - 1] > center) << 2 code |= (array[x + 1, y] > center) << 1 code |= (array[x + 1, y + 1] > center) << 0 return code
0db7058515ef435fe744a3b304e6532ec56b5f63
8,217
import http from typing import Optional def view_index( request: http.HttpRequest, workflow: Optional[models.Workflow] = None, ) -> http.HttpResponse: """Render the list of views attached to a workflow. :param request: Http request received. :param workflow: Workflow being processed :return: HTTP response with the table """ # Get the views views = workflow.views.values( 'id', 'name', 'description_text', 'modified') # Build the table only if there is anything to show (prevent empty table) return render( request, 'table/view_index.html', { 'query_builder_ops': workflow.get_query_builder_ops_as_str(), 'table': services.ViewTable(views, orderable=False), }, )
2dca3e42a3d2b855d795fc0c61b41c2a2f449724
8,218
def inverseLPSB(data, mu, g): """Compute regularized L-PSB step.""" mUpd = data.mUpd gamma = data.gamma gammah = data.gamma + mu Q22 = np.tril(data.STY[:mUpd, :mUpd], -1) + np.tril(data.STY[:mUpd, :mUpd], -1).T + \ np.diag(np.diag(data.STY[:mUpd, :mUpd])) + \ gamma * np.diag(np.diag(data.STS[:mUpd, :mUpd])) Q = np.block([ [np.zeros((mUpd, mUpd)), np.triu(data.STS[:mUpd, :mUpd])], [np.triu(data.STS[:mUpd, :mUpd]).T, Q22] ]) Q += 1/gammah * np.block([ [data.STS[:mUpd, :mUpd], data.STY[:mUpd, :mUpd]], [data.STY[:mUpd, :mUpd].T, data.YTY[:mUpd, :mUpd]] ]) ATg = np.block([data.S[:, :mUpd].T @ g, data.Y[:, :mUpd].T @ g]) p = np.linalg.solve(Q, ATg) #p = scipy.linalg.solve(Q, ATg, assume_a='sym') Ap = data.S[:, :mUpd] @ p[:mUpd] + data.Y[:, :mUpd] @ p[mUpd:] d = 1/gammah**2 * Ap - 1/gammah * g return d
500705d0fd5cb5ccae7fa8dfeaa1548a65fa2203
8,219
import json def canPlay(request): """ Endpoint qui retourne la liste des cartes qui peuvent être jouées ( pour le Player ) rq : { "cards_played" : [ { "card_name": "As", "value_non_atout": 0, "value_atout": 0, "id" : "A" }, { "card_name": "7s", "value_non_atout": 0, "value_atout": 0, "id" : "7" }, { "card_name": "8s", "value_non_atout": 0, "value_atout": 0, "id" : "8" } ], "atout" : "c", "opening_color" : "s", "remaining_cards": [ { "card_name": "7d", "value_non_atout": 0, "value_atout": 0, "id":"7" }, { "card_name": "Kh", "value_non_atout": 4, "value_atout": 4, "id":"K" }, { "card_name": "Ks", "value_non_atout": 4, "value_atout": 4, "id":"K" }, { "card_name": "Ac", "value_non_atout": 11, "value_atout": 11, "id":"A" }, { "card_name": "9c", "value_non_atout": 0, "value_atout": 14, "id":"9" } ] } """ body = json.loads(request.body) cards_played = body['cards_played'] remaining_cards = body['remaining_cards'] opening_color = body['opening_color'] atout = body['atout'] can_play = [] cards_atout = [] order_no_a = ['7','8','9','J','Q','K','10','A'] order_a = ['7','8','Q','K','10','A','9','J'] if cards_played: if opening_color == atout: for x in remaining_cards: if opening_color in x['card_name']: cards_atout.append(x) if not cards_atout: can_play=remaining_cards else: max=0 if len(cards_played)==1: max=order_a.index(cards_played[0]['idc']) for e in cards_atout: if order_a.index(e['idc']) > max: can_play.append(e) if not can_play: can_play=cards_atout elif len(cards_played)==2: max = order_a.index(cards_played[0]['idc']) if atout in cards_played[1]['card_name']: if order_a.index(cards_played[1]['idc']) > max : max = order_a.index(cards_played[1]['idc']) for e in cards_atout: if order_a.index(e['idc']) > max: can_play.append(e) if not can_play: can_play=cards_atout else: for e in cards_atout: if order_a.index(e['idc']) > max: can_play.append(e) if not can_play: can_play=cards_atout else: for e in cards_atout: if order_a.index(e['idc']) > max: can_play.append(e) if not can_play: can_play=cards_atout else: max = order_a.index(cards_played[0]['idc']) if atout in cards_played[1]['card_name']: if order_a.index(cards_played[1]['idc']) > max : max = order_a.index(cards_played[1]['idc']) if atout in cards_played[2]['card_name']: if order_a.index(cards_played[2]['idc']) > max : max = order_a.index(cards_played[2]['idc']) for e in cards_atout: if order_a.index(e['idc']) > max: can_play.append(e) if not can_play: can_play=cards_atout else: for e in cards_atout: if order_a.index(e['idc']) > max: can_play.append(e) if not can_play: can_play=cards_atout else: for e in cards_atout: if order_a.index(e['idc']) > max: can_play.append(e) if not can_play: can_play=cards_atout else: if atout in cards_played[2]['card_name']: if order_a.index(cards_played[2]['idc']) > max : max = order_a.index(cards_played[2]['idc']) for e in cards_atout: if order_a.index(e['idc']) > max: can_play.append(e) if not can_play: can_play=cards_atout else: for e in cards_atout: if order_a.index(e['idc']) > max: can_play.append(e) if not can_play: can_play=cards_atout else: for e in cards_atout: if order_a.index(e['idc']) > max: can_play.append(e) if not can_play: can_play=cards_atout else: if atout in cards_played[2]['card_name']: if order_a.index(cards_played[2]['idc']) > max : max = order_a.index(cards_played[2]['idc']) for e in cards_atout: if order_a.index(e['idc']) > max: can_play.append(e) if not can_play: can_play=cards_atout else: for e in cards_atout: if order_a.index(e['idc']) > max: can_play.append(e) if not can_play: can_play=cards_atout else: for e in cards_atout: if order_a.index(e['idc']) > max: can_play.append(e) if not can_play: can_play=cards_atout else: for x in remaining_cards: if opening_color in x['card_name']: can_play.append(x) if not can_play: i=0 for x in remaining_cards: if atout in x['card_name']: i+=1 cards_atout.append(x) if i==0: can_play=remaining_cards else: # Le joueur possede un atout, il faut regarder qui est maître if len(cards_played)==3: max=0 if atout in cards_played[1]['card_name']: max = order_a.index(cards_played[1]['idc']) if atout in cards_played[2]['card_name']: if order_a.index(cards_played[2]['idc']) > max : max = order_a.index(cards_played[2]['idc']) for e in cards_atout: if order_a.index(e['idc']) > max: can_play.append(e) if not can_play: can_play=cards_atout else: for e in cards_atout: if order_a.index(e['idc']) > max: can_play.append(e) if not can_play: can_play=cards_atout else: can_play=remaining_cards else: if atout in cards_played[2]['card_name']: max = order_a.index(cards_played[2]['idc']) for e in cards_atout: if order_a.index(e['idc']) > max: can_play.append(e) if not can_play: can_play=cards_atout else: if order_no_a.index(cards_played[2]['idc'])<order_no_a.index(cards_played[1]['idc']) and order_no_a.index(cards_played[1]['idc']) >order_no_a.index(cards_played[0]['idc']): can_play=remaining_cards else: can_play=cards_atout elif len(cards_played)==1: can_play=cards_atout else: max=0 if atout in cards_played[1]['card_name']: max = order_a.index(cards_played[1]['idc']) for e in cards_atout: if order_a.index(e['idc']) > max: can_play.append(e) if not can_play: can_play=cards_atout else: if order_no_a.index(cards_played[1]['idc'])<order_no_a.index(cards_played[0]['idc']): can_play=remaining_cards else: can_play=cards_atout else: can_play=remaining_cards return Response(can_play)
b579e0e99eebed68fa55f8eeb287cb2cdf283de6
8,220
async def async_setup(hass: HomeAssistant, config: dict): """Set up the Genie Aladdin component.""" return True
22f6c6126d8d7b3ce7df124b144b9ccfb4fc30c2
8,221
import importlib def _module_available(module_path: str) -> bool: """Testing if given module is avalaible in your env >>> _module_available('os') True >>> _module_available('bla.bla') False """ mods = module_path.split('.') assert mods, 'nothing given to test' # it has to be tested as per partets for i in range(len(mods)): module_path = '.'.join(mods[:i + 1]) if importlib.util.find_spec(module_path) is None: return False return True
6673bf25845af6c12494ffbec0dc8bb8ab950ff2
8,222
def _GetPathBeforeFinalDir(uri): """ Returns the part of the path before the final directory component for the given URI, handling cases for file system directories, bucket, and bucket subdirectories. Example: for gs://bucket/dir/ we'll return 'gs://bucket', and for file://dir we'll return file:// Args: uri: StorageUri. Returns: String name of above-described path, sans final path separator. """ sep = uri.delim # If the source uri argument had a wildcard and wasn't expanded by the # shell, then uri.names_file() will always be true, so we check for # this case explicitly. assert ((not uri.names_file()) or ContainsWildcard(uri.object_name)) if uri.names_directory(): past_scheme = uri.uri[len('file://'):] if past_scheme.find(sep) == -1: return 'file://' else: return 'file://%s' % past_scheme.rstrip(sep).rpartition(sep)[0] if uri.names_bucket(): return '%s://' % uri.scheme # Else it names a bucket subdir. return uri.uri.rstrip(sep).rpartition(sep)[0]
20cad56a858e8feccfd7154ecff33d9508a7ec80
8,223
import toml def load_page_details(data, filename=None): """ # Raises ValueError of (filename, error) """ try: options = toml.loads(data) except toml.TomlDecodeError as exc: raise ValueError(filename, exc) if not isinstance(options, dict): raise ValueError(filename, 'page details could not be parsed into a JSON object') return options
117bb7d84625475745a30522fda7dccf1bc5a487
8,224
def nested_render(cfg, fully_rendered_cfgs, replacements): """ Template render the provided cfg by recurisevly replacing {{var}}'s which values from the current "namespace". The nested config is treated like nested namespaces where the inner variables are only available in current block and further nested blocks. Said the opposite way: the namespace with available vars that can be used includes the current block's vars and parent block vars. This means that you can do replacements for top-level (global namespaced) config vars anywhere, but you can only use inner configs within that block or further nested blocks. An example is worth a thousand words: --------------------------------------------------------------------------------- fence-config.yaml -------------------------------------------------------------------------------- BASE_URL: 'http://localhost/user' OPENID_CONNECT: fence: api_base_url: 'http://other_fence/user' client_kwargs: redirect_uri: '{{BASE_URL}}/login/fence/login' authorize_url: '{{api_base_url}}/oauth2/authorize' THIS_WONT_WORK: '{{api_base_url}}/test' -------------------------------------------------------------------------------- "redirect_uri" will become "http://localhost/user/login/fence/login" - BASE_URL is in the global namespace so it can be used in this nested cfg "authorize_url" will become "http://other_fence/user/oauth2/authorize" - api_base_url is in the current namespace, so it is available "THIS_WONT_WORK" will become "/test" - Why? api_base_url is not in the current namespace and so we cannot use that as a replacement. the configuration (instead of failing) will replace with an empty string Args: cfg (TYPE): Description fully_rendered_cfgs (TYPE): Description replacements (TYPE): Description Returns: dict: Configurations with template vars replaced """ try: for key, value in cfg.iteritems(): replacements.update(cfg) fully_rendered_cfgs[key] = {} fully_rendered_cfgs[key] = nested_render( value, fully_rendered_cfgs=fully_rendered_cfgs[key], replacements=replacements, ) # new namespace, remove current vars (no longer available as replacements) for old_cfg, value in cfg.iteritems(): replacements.pop(old_cfg, None) return fully_rendered_cfgs except AttributeError: # it's not a dict, so lets try to render it. But only if it's # truthy (which means there's actually something to replace) if cfg: t = Template(str(cfg)) rendered_value = t.render(**replacements) try: cfg = yaml_load(rendered_value) except ScannerError: # it's not loading into yaml, so let's assume it's a string with special # chars such as: {}[],&*#?|:-<>=!%@\) # # in YAML, we have to "quote" a string with special chars. # # since yaml_load isn't loading from a file, we need to wrap the Python # str in actual quotes. cfg = yaml_load('"{}"'.format(rendered_value)) return cfg
9958e792ef09aa7c88e4c8b7d29a61a8713927a2
8,225
from operator import sub import warnings def element_by_atomic_number(atomic_number): """Search for an element by its atomic number Look up an element from a list of known elements by atomic number. Return None if no match found. Parameters ---------- atomic_number : int Element atomic number that need to look for if a string is provided, only numbers are considered during the search Returns ------- matched_element : element.Element Return an element from the periodic table if we find a match, otherwise raise GMSOError """ if isinstance(atomic_number, str): atomic_number_trimmed = int(sub('[a-z -]', '', atomic_number.lower()).lstrip('0')) msg = '''Letters and spaces are not considered when searching by element atomic number. \n {} became {}'.format(atomic_number, atomic_number_trimmed)''' warnings.warn(msg) else: atomic_number_trimmed = atomic_number matched_element = atomic_dict.get(atomic_number_trimmed) if matched_element is None: raise GMSOError(f'Failed to find an element with atomic number {atomic_number_trimmed}') return matched_element
42a23d0bd2ce1391a74ee8b5d5f97aa5fc8b2d3f
8,226
import tqdm def get_data_from_db(cursor): """ Get data from the database given a query-instantiated cursor :param cursor: query-instantiated database cursor :return: tuple of labels and training data """ training_data, labels = [], [] cols = [desc[0] for desc in cursor.description] for record in tqdm(cursor, total=cursor.rowcount): record = dict(record) record['purposes'] = [purpose_to_english[p] for p in record['purposes']] # just duplicate for house_number and year of construction record['house_number_vec'] = record['house_number'] record['year_of_construction_vec'] = record['year_of_construction'] # one-hot encoding for house number addition if record['house_number_addition']: hna = np.zeros(shape=(len(record['house_number_addition']), len(VOCABULARY))) for idx, char in enumerate(record['house_number_addition']): hna[idx, VOCABULARY.index(char.lower())] = 1. else: hna = np.zeros(shape=(1, len(VOCABULARY))) record['house_number_addition_vec'] = hna # 'multi-hot' encoding for building purposes purposes = np.zeros(shape=(len(PURPOSES,))) for purpose in record['purposes']: purposes[PURPOSES.index(purpose)] = 1. record['purposes_vec'] = purposes # character-level vectorization of postal code pc = np.zeros((len(record['postal_code']), len(VOCABULARY))) for idx, char in enumerate(record['postal_code']): pc[idx, VOCABULARY.index(char.lower())] = 1. record['postal_code_vec'] = pc # building geometry vectorization geom = record['geometry_crs84'] geom = vectorize_wkt(geom) record['geometry_vec'] = geom record['centroid_vec'] = vectorize_wkt(record['centroid_crs84'])[0, :2] # vectorization of neighbouring buildings neighbours = record['neighbouring_buildings_crs84'] neighbours = vectorize_wkt(neighbours) record['neighbouring_buildings_vec'] = neighbours rd = record['recorded_date'] record['recorded_date_vec'] = [rd.year, rd.month, rd.day, rd.weekday()] rgd = record['registration_date'] record['registration_date_vec'] = [rgd.year, rgd.month, rgd.day, rgd.weekday()] training_data.append(record) labels.append({ 'energy_performance_index': record['energy_performance_index'], 'energy_performance_label': record['energy_performance_label'], 'energy_performance_vec': ENERGY_CLASSES.index(record['energy_performance_label']) }) return training_data, labels
a3db9af7912fd38e9966f0c95639613cb4dac087
8,227
def parse(input_str, file_path=True): """ Parse a GLM into an omf.feeder tree. This is so we can walk the tree, change things in bulk, etc. Input can be a file path or GLM string. """ tokens = _tokenize_glm(input_str, file_path) return _parse_token_list(tokens)
2e53a6870baae3fa9bfb511b28baf73e697b44a0
8,228
def pred(model, x_pred_scaled, scaler_y): """ Predict :param model: model for prediction :param x_pred_scaled: scaled x values we need to predict for :param scaler_y: scaler for y values :return: """ MAX_PREDICT_SIZE = 10000 g_mean_full = g_std_full = None start = 0 while start < len(x_pred_scaled): end = start + MAX_PREDICT_SIZE x_pred_scaled_slice = x_pred_scaled[start:end] g_mean_scaled, g_std_scaled = model_gpflow.predict_gpflow(model, x_pred_scaled_slice) g_mean = scaler_y.inverse_transform(g_mean_scaled) g_std = g_std_scaled * scaler_y.scale_ if g_mean_full is None: g_mean_full = g_mean g_std_full = g_std else: g_mean_full = np.vstack((g_mean_full, g_mean)) g_std_full = np.vstack((g_std_full, g_std)) start = end return g_mean_full, g_std_full
7a43020a2b4817b3287c849bc0059027346bf5a5
8,229
def metadataAbstractElementEmptyValuesTest3(): """ Empty value for unknown attribute. >>> doctestMetadataAbstractElementFunction( ... testMetadataAbstractElementEmptyValue, ... metadataAbstractElementEmptyValuesTest3(), ... requiredAttributes=["required1"], ... optionalAttributes=["optional1"]) [] """ metadata = """<?xml version="1.0" encoding="UTF-8"?> <test required1="foo" optional1="foo" unknown1="" /> """ return ElementTree.fromstring(metadata)
4f9e0d33948a9ac1ab35bc9cf0c5c3274cfc9d41
8,230
def orthonormal_initializer(input_size, output_size): """from https://github.com/patverga/bran/blob/32378da8ac339393d9faa2ff2d50ccb3b379e9a2/src/tf_utils.py#L154""" I = np.eye(output_size) lr = .1 eps = .05/(output_size + input_size) success = False tries = 0 while not success and tries < 10: Q = np.random.randn(input_size, output_size) / np.sqrt(output_size) for i in range(100): QTQmI = Q.T.dot(Q) - I loss = np.sum(QTQmI**2 / 2) Q2 = Q**2 Q -= lr*Q.dot(QTQmI) / (np.abs(Q2 + Q2.sum(axis=0, keepdims=True) + Q2.sum(axis=1, keepdims=True) - 1) + eps) if np.max(Q) > 1e6 or loss > 1e6 or not np.isfinite(loss): tries += 1 lr /= 2 break success = True if success: print('Orthogonal pretrainer loss: %.2e' % loss) else: print('Orthogonal pretrainer failed, using non-orthogonal random matrix') Q = np.random.randn(input_size, output_size) / np.sqrt(output_size) return Q.astype(np.float32)
11cc28d6342ed20699c96051a36199c3b8941381
8,231
def stick_figure (ax, type, num, start, end, prev_end, scale, linewidth, opts): """ General function for drawing stick based parts (e.g., ribozyme and protease sites). """ # Default options color = (0,0,0) start_pad = 2.0 end_pad = 2.0 x_extent = 5.0 y_extent = 10.0 linestyle = '-' linetype = ""; shapetype = ""; if(type == "Ribozyme"): linetype = 'dash' headgroup = 'O' elif(type == "Protease"): linetype = 'dash' headgroup = 'X' elif(type == "ProteinStability"): linetype = 'solid' headgroup = 'O' elif(type == "Ribonuclease"): linetype = 'solid' headgroup = 'X' # Reset defaults if provided if opts != None: if 'color' in opts.keys(): color = opts['color'] if 'start_pad' in opts.keys(): start_pad = opts['start_pad'] if 'end_pad' in opts.keys(): end_pad = opts['end_pad'] if 'x_extent' in opts.keys(): x_extent = opts['x_extent'] if 'y_extent' in opts.keys(): y_extent = opts['y_extent'] if 'linestyle' in opts.keys(): linestyle = opts['linestyle'] if 'linewidth' in opts.keys(): linewidth = opts['linewidth'] if 'scale' in opts.keys(): scale = opts['scale'] # Check direction add start padding final_end = end final_start = prev_end if start > end: start = prev_end+end_pad+x_extent end = prev_end+end_pad final_end = start+start_pad rbs_center = (end+((start-end)/2.0),-y_extent) c1 = Circle(rbs_center, x_extent/2.0, linewidth=linewidth, edgecolor=color, facecolor=(1,1,1), zorder=8) x1 = Line2D([start,end],[-y_extent*1.25,-y_extent/1.5], linewidth=linewidth, color=color, zorder=12, linestyle='-') x2 = Line2D([start,end],[-y_extent/1.5,-y_extent*1.25], linewidth=linewidth, color=color, zorder=12, linestyle='-') dash1 = Line2D([end+((start-end)/2.0),end+((start-end)/2.0)],[0,-y_extent/4], linewidth=linewidth, color=color, zorder=8, linestyle=linestyle) dash2 = Line2D([end+((start-end)/2.0),end+((start-end)/2.0)],[-y_extent/2,-y_extent+(x_extent/2.0)], linewidth=linewidth, color=color, zorder=8, linestyle=linestyle) solidO = Line2D([end+((start-end)/2.0),end+((start-end)/2.0)],[0,-y_extent+(x_extent/2.0)], linewidth=linewidth, color=color, zorder=8, linestyle=linestyle) solidX = Line2D([end+((start-end)/2.0),end+((start-end)/2.0)],[0,-y_extent], linewidth=linewidth, color=color, zorder=8, linestyle=linestyle) if(headgroup == "O" and linetype == "dash"): ax.add_patch(c1) ax.add_line(dash1) ax.add_line(dash2) elif(headgroup == "X" and linetype == "dash"): ax.add_line(x1) ax.add_line(x2) ax.add_line(dash1) ax.add_line(dash2) elif(headgroup == "O" and linetype == "solid"): ax.add_patch(c1) ax.add_line(solidO) elif(headgroup == "X" and linetype == "solid"): ax.add_line(x1) ax.add_line(x2) ax.add_line(solidX) else: start = prev_end+start_pad end = start+x_extent final_end = end+end_pad rbs_center = (start+((end-start)/2.0),y_extent) c1 = Circle(rbs_center, x_extent/2.0, linewidth=linewidth, edgecolor=color, facecolor=(1,1,1), zorder=8) x1 = Line2D([start,end],[y_extent*1.25,y_extent/1.5], linewidth=linewidth, color=color, zorder=12, linestyle='-') x2 = Line2D([start,end],[y_extent/1.5,y_extent*1.25], linewidth=linewidth, color=color, zorder=12, linestyle='-') dash1 = Line2D([end+((start-end)/2.0),end+((start-end)/2.0)],[0,y_extent/4], linewidth=linewidth, color=color, zorder=8, linestyle=linestyle) dash2 = Line2D([end+((start-end)/2.0),end+((start-end)/2.0)],[y_extent/2,y_extent-(x_extent/2.0)], linewidth=linewidth, color=color, zorder=8, linestyle=linestyle) solidO = Line2D([end+((start-end)/2.0),end+((start-end)/2.0)],[0,y_extent-(x_extent/2.0)], linewidth=linewidth, color=color, zorder=8, linestyle=linestyle) solidX = Line2D([end+((start-end)/2.0),end+((start-end)/2.0)],[0,y_extent], linewidth=linewidth, color=color, zorder=8, linestyle=linestyle) if(headgroup == 'O' and linetype == 'dash'): ax.add_patch(c1) ax.add_line(dash1) ax.add_line(dash2) elif(headgroup == "X" and linetype == "dash"): ax.add_line(x1) ax.add_line(x2) ax.add_line(dash1) ax.add_line(dash2) elif(headgroup == "O" and linetype == "solid"): ax.add_patch(c1) ax.add_line(solidO) elif(headgroup == "X" and linetype == "solid"): ax.add_line(x1) ax.add_line(x2) ax.add_line(solidX) if opts != None and 'label' in opts.keys(): if final_start > final_end: write_label(ax, opts['label'], final_end+((final_start-final_end)/2.0), opts=opts) else: write_label(ax, opts['label'], final_start+((final_end-final_start)/2.0), opts=opts) if final_start > final_end: return prev_end, final_start else: return prev_end, final_end
68ae3194ad1dd38e0e18f8da3b0b5f1b0e22071a
8,232
def display_datetime(datetime_str, time_zone=None, verbose=True): """Returns a formatted datetime with TZ (if provided) or 'Error (Missing)""" """ >>> print(datetime.datetime.utcnow().strftime("%Y/%m/%d %a %I:%M %p")) 2019/05/19 Sun 01:10 AM """ if datetime_str: # and type(datetime_str) == datetime.datetime.now(): if verbose: return f'{datetime_str.strftime("%Y/%m/%d %a %I:%M %p")}{f" ({time_zone})" if time_zone else ""}' else: return f'{datetime_str.strftime("%a %I:%M %p")}{f" ({time_zone})" if time_zone else ""}' else: return 'Error (Missing)'
45caa488688e790ae19f8f3f2cda2cb0f250b1fd
8,233
import torch def mask_channels(mask_type, in_channels, out_channels, data_channels=3): """ Creates an autoregressive channel mask. Input: mask_type: str Either 'A' or 'B'. 'A' for first layer of network, 'B' for all others. in_channels: int Number of input channels to layer. out_channels: int Number of output channels of layer. data_channels: int Number of channels in the input data, e.g. 3 for RGB images. (default = 3). Output: mask: torch.FloatTensor Shape (out_channels, in_channels). A mask with 0 in places for masked elements. """ in_factor = in_channels // data_channels + 1 out_factor = out_channels // data_channels + 1 base_mask = torch.ones([data_channels,data_channels]) if mask_type == 'A': base_mask = base_mask.tril(-1) else: base_mask = base_mask.tril(0) mask_p1 = torch.cat([base_mask]*in_factor, dim=1) mask_p2 = torch.cat([mask_p1]*out_factor, dim=0) mask = mask_p2[0:out_channels,0:in_channels] return mask
772fa71f63d2f31c80966db0b0eb43a70ac5e9a9
8,234
import textwrap def dedent(text): """ Remove all common indentation from every line but the 0th. This will avoid getting <code> blocks when rendering text via markdown. Ignoring the 0th line will also allow the 0th line not to be aligned. Args: text: A string of text to dedent. Returns: String dedented by above rules. For example: assertEquals("bar\nline1\nline2", dedent("bar\n line1\n line2")) assertEquals("bar\nline1\nline2", dedent(" bar\n line1\n line2")) assertEquals("bar\n line1\nline2", dedent(" bar\n line1\n line2")) """ text = textwrap.dedent(text) text_lines = text.split('\n') text_not_first = "\n".join(text_lines[1:]) text_not_first = textwrap.dedent(text_not_first) text = text_lines[0] + "\n" + text_not_first return text
b450a873c4c2b667d10c66985d19f8057aa205f9
8,235
from sys import stderr def open_text_file_for_write(output_directory:str, file_name:str, verbose=False) -> TextIOWrapper: """Open a text file for writing""" if verbose: print(f"opening text file for write: {output_directory}/{file_name}", file=stderr) return open(f"{output_directory}/{file_name}", 'w', encoding='utf-8')
e6e2a379f95c54ebec3f2e1d3a4c446ee169d2e7
8,236
def dpsplit(n,k, sig): """ Perform the dynamic programming optimal segmentation, using the sig function to determine the cost of a segment sig(i,j) is the cost of the i,j segment. These are then added together """ # Set up the tracking tables K = k + 1 N = n segtable = np.zeros((n,K)) + np.nan segtable[:,0] = [ sig(0,j+1) for j in xrange(N) ] segindtable = np.zeros((N,K), dtype='int') - 1 # fill up the table in a clever order for k in xrange(1,K): for j in xrange(k,N): #fill the j,k element ans = min( ( (segtable[l,k-1] + sig(l+1,j+1), l+1 ) for l in xrange(k-1,j) ) ) segtable[j,k] = ans[0] segindtable[j,k] = ans[1] # read out the path current_pointer = segindtable[-1,K-1] path = [current_pointer] for k in xrange(K-2, 0, -1): current_pointer = segindtable[current_pointer-1, k] path.append(current_pointer) return sorted(path + [N]), segtable[-1,K-1]
db1513ae0a4725b63e62b102dc2c5fdd77fd4ceb
8,237
from typing import List def get_wind_tiles() -> List[Tile]: """return a list of four wind tiles """ return [Tile(Suit.JIHAI.value, Jihai.TON.value), Tile(Suit.JIHAI.value, Jihai.NAN.value), Tile(Suit.JIHAI.value, Jihai.SHAA.value), Tile(Suit.JIHAI.value, Jihai.PEI.value)]
469ec29795291bb8345fa3beccbbf2c6d4bb3101
8,238
import torch import os def train_mnist_classifier(lr=0.001, epochs=50, model_dir='.'): """train mnist classifier for inception score""" device = torch.device("cuda" if torch.cuda.is_available() else "cpu") print("Using device {0!s}".format(device)) train_loader = load_mnist(batchSize=100, train=True) test_loader = load_mnist(batchSize=100, train=False) model = LeNet().to(device) def evaluate(): model.eval() correct = 0 with torch.no_grad(): for data, target in test_loader: data, target = data.to(device), target.to(device) output = model(data) pred = output.argmax(dim=1) correct += pred.eq(target).sum().item() accuracy = 100. * correct / len(test_loader.dataset) return accuracy train_criterion = torch.nn.CrossEntropyLoss() optimizer = optim.Adam(model.parameters(), lr=lr) if not os.path.exists(model_dir): os.makedirs(model_dir) # training loop print('Started training...') best_test_acc = 0.0 best_test_epoch = 0 for epoch in range(1, epochs + 1): model.train() for batch_idx, (data, target) in enumerate(train_loader): data, target = data.to(device), target.to(device) optimizer.zero_grad() output = model(data).squeeze(1) loss = train_criterion(output, target) loss.backward() optimizer.step() if batch_idx % 20 == 0: print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( epoch, batch_idx * len(data), len(train_loader.dataset), 100. * batch_idx / len(train_loader), loss.item())) test_acc = evaluate() print('Test Accuracy: {:.2f}\n'.format(test_acc)) if test_acc > best_test_acc: best_test_epoch = epoch best_test_acc = test_acc torch.save(model.state_dict(), os.path.join(model_dir, "mnist_classifier.pt")) print('Finished.') print('Best: Epoch: {}, Test-Accuracy: {:.4f}\n'.format(best_test_epoch, best_test_acc))
91dbfaeae5e4ef5f34435c7034a7a06f980b1b3b
8,239
from datetime import datetime def datetime_now_filename_string(): """create a string representation for now() for use as part of the MHL filename""" return datetime.datetime.strftime(datetime.datetime.now(), "%Y-%m-%d_%H%M%S")
37a733ddd93ca1bc4eed82e920222c644c494fcd
8,240
from pathlib import Path import inspect import tqdm def generate_simulation_dataset(path, runs, **kawrgs): """Generate and save a simulation dataset. Parameters ---------- path : str Root path where simulation data will be stored. runs : int, array If int then number of runs to use. If array then array must be of one dim more than simulation grid dim. kawrgs : run_multiple_sources kwargs. Returns ------- dataset : zarr.hierarchy.Group Simulation dataset. """ # Convert path to pathlib path path = Path(path) # Create dataset dataset = zarr.open(path.as_posix(), mode='w') if not isinstance(runs, int): full_speed_array = runs runs = len(runs) else: full_speed_array = None # Add dataset attributes dataset.attrs['waver'] = True dataset.attrs['dataset'] = True dataset.attrs['runs'] = runs # Add simulation attributes based on kwargs and defaults parameters = inspect.signature(run_multiple_sources).parameters for param, value in parameters.items(): if param in kawrgs: dataset.attrs[param] = kawrgs[param] else: dataset.attrs[param] = value.default # Initialize speed and wave arrays speed_array = None wave_array = None # Move through runs for run in tqdm(range(runs), leave=False): if full_speed_array is not None: kawrgs['speed'] = full_speed_array[run] wave, speed = run_multiple_sources(**kawrgs) if speed_array is None: speed_array = dataset.zeros('speed', shape=(runs, ) + speed.shape, chunks=(1,) + (64,) * speed.ndim) if wave_array is None: wave_array = dataset.zeros('wave', shape=(runs, ) + wave.shape, chunks=(1,) + (64,) * wave.ndim) speed_array[run] = speed wave_array[run] = wave return dataset
8383f42cfe2604e5f82761bb351b6cf4f16f33aa
8,241
def num_sites(sequence, rule, **kwargs): """Count the number of sites where `sequence` can be cleaved using the given `rule` (e.g. number of miscleavages for a peptide). Parameters ---------- sequence : str The sequence of a polypeptide. rule : str or compiled regex A regular expression describing the site of cleavage. It is recommended to design the regex so that it matches only the residue whose C-terminal bond is to be cleaved. All additional requirements should be specified using `lookaround assertions <http://www.regular-expressions.info/lookaround.html>`_. labels : list, optional A list of allowed labels for amino acids and terminal modifications. Returns ------- out : int Number of cleavage sites. """ return len(_cleave(sequence, rule, **kwargs)) - 1
dc0840e33206c9db7058a7257a60c59bee0403f8
8,242
def get_packages(code: str) -> defaultdict: """Extracts the packages that were included in the file being inspected. Source for this code: https://stackoverflow.com/questions/2572582/ Example: input: 'from collections import Counter\n import kivy\n from stats import median as stats_median\n' output: defaultdict(<class 'list'>, {'import_name': ['collections', 'kivy', 'stats'], 'import_from': ['Counter', 'median']} ) """ instructions = get_instructions(code) import_instructions = [i for i in instructions if "IMPORT" in i.opname] imports = defaultdict(list) for instr in import_instructions: imports[instr.opname.lower()].append(instr.argval) return imports
977f20e2d3c12993ef26ff8b199f943fb153c79b
8,243
def beam_name(): """Session level fixture for beam path.""" return str(beam_path)
a702d91c62024685d14125123ead41a2a4e38942
8,244
import itertools def get_mv_sandwich(a_blade_indices, b_blade_indices, signature, prod="gp"): """a b ~a""" out_indices = [] out_blade_indices = [] out_signs = [] out_indices = [] indices_a = [] indices_b = [] indices_a_r = [] blade_to_index = {} for (i_a, index_a), (i_b, index_b), (i_a_r, index_a_r) in itertools.product( enumerate(a_blade_indices), enumerate(b_blade_indices), enumerate(reverse_indices(a_blade_indices)) ): out_sign_1, out_index_1 = reduce_bases(index_a, index_b, signature) out_sign_2, out_index = reduce_bases(out_index_1, index_a_r, signature) out_sign = out_sign_1 * out_sign_2 if out_sign != 0 and ( prod == "gp" or (prod == "op" and len(out_index) == abs(len(index_a) + len(index_b))) or (prod == "ip" and len(out_index) == abs(len(index_a) - len(index_b))) ): out_signs.append(out_sign) indices_a.append(i_a) indices_b.append(i_b) indices_a_r.append(i_a_r) if out_index in blade_to_index: out_indices.append(blade_to_index[out_index]) else: blade_to_index[out_index] = len(blade_to_index) out_indices.append(blade_to_index[out_index]) out_blade_indices.append(out_index) if len(out_indices) == 0: def _values_mv_sandwich(a_values, b_values): return jnp.zeros((), dtype=jnp.float32) else: out_size = max(out_indices) + 1 def _values_mv_sandwich(a_values, b_values): out_batch_shape = jnp.broadcast_shapes( a_values.shape[1:], b_values.shape[1:] ) out_values = jnp.zeros( [out_size, *out_batch_shape], dtype=jnp.float32 ) for index_a, index_b, index_a_r, out_sign, out_index in zip(indices_a, indices_b, indices_a_r, out_signs, out_indices): out_values = out_values.at[out_index].add( out_sign * a_values[index_a] * b_values[index_b] * a_values[index_a_r] ) return out_values _values_mv_sandwich_jit = jax.jit(_values_mv_sandwich) return _values_mv_sandwich_jit, tuple(out_blade_indices)
8e30f31de944bd6aa19e60fe7a93aceb8ccb73ef
8,245
def ldns_dnssec_create_nsec3(*args): """LDNS buffer.""" return _ldns.ldns_dnssec_create_nsec3(*args)
653d899f7d30e1e272c0a7026e4383e191b3e78f
8,246
def S_difference_values(_data_lista, _data_listb): """ Returns new data samples where values are transformed by transformer values. """ d_data = [] dsa = len(_data_lista) dsb = len(_data_listb) if dsa != dsb: return [] for i in range(dsa): d_data.append(_data_lista[i] - _data_listb[i]) return d_data
40ec82cb7ef53d5e227b3287a9c1d08e78112e09
8,247
def parseFixedZone(s): """Convert a +hhmm or -hhmm zone suffix. [ s is a string -> if s is a time zone suffix of the form "+hhmm" or "-hhmm" -> return that zone information as an instance of a class that inherits from datetime.tzinfo else -> raise SyntaxError ] """ #-- 1 -- if s.startswith('+'): sign = 1 elif s.startswith('-'): sign = -1 else: raise SyntaxError("Expecting zone modifier as {0}hhmm: " "'{1}'".format(s[0], s)) #-- 2 -- # [ if s[1:] matches HHMM_PAT -> # hours := the HH part as an int # minutes := the MM part as an int # else -> raise SyntaxError ] rawHHMM = s[1:] m = HHMM_PAT.match(rawHHMM) if m is None: raise SyntaxError("Expecting zone modifier as {0}HHMM: " "'{1}'".format(s[0], s)) else: hours = int(rawHHMM[:2]) minutes = int(rawHHMM[2:]) #-- 3 -- return FixedZone(sign*hours, sign*minutes, s)
681b5ad02f228ee40b099a461131de42309e58f0
8,248
def tica_eigenvalues_plot(tica, num=12, plot_file=None): """ Plots the highest eigenvalues over the number of the time-lagged independent components. Parameters ---------- tica : TICA obj Time-lagged independent components information. num : int, default = 12 Number of eigenvalues to plot. plot_file : str, optional, default = None Path and name of the file to save the plot. """ # Plot eigenvalues over component numbers. fig,ax = plt.subplots(1, 1, figsize=[4,3], dpi=300) componentnr = np.arange(num)+1 eigenvalues = tica.eigenvalues[:num] ax.bar(componentnr, eigenvalues) ax.set_xlabel('component number') ax.set_ylabel('eigenvalue') fig.tight_layout() # Save the figure to a file. if plot_file: fig.savefig(plot_file, dpi=300) return componentnr, eigenvalues
707ebbacf0dc90e96760ae26d316da4c27bdd997
8,249
from lxml import etree import random, string import os import subprocess import shlex import re def latex2svg(code, params=default_params, working_directory=None): """Convert LaTeX to SVG using dvisvgm and scour (or svgo). Parameters ---------- code : str LaTeX code to render. params : dict Conversion parameters. working_directory : str or None Working directory for external commands and place for temporary files. Returns ------- dict Dictionary of SVG output and output information: * `svg`: SVG data * `width`: image width in *em* * `height`: image height in *em* * `valign`: baseline offset in *em* """ if working_directory is None: with TemporaryDirectory() as tmpdir: return latex2svg(code, params, working_directory=tmpdir) # Caution: TeX & dvisvgm work with TeX pt (1/72.27"), but we need DTP pt (1/72") # so we need a scaling factor for correct output sizes # dvisvgm will produce a viewBox in DTP pt but SHOW TeX pt in its output. scaling = 1.00375 # (1/72)/(1/72.27) fontsize = params['fontsize'] document = (params['template'] .replace('{{ preamble }}', params['preamble']) .replace('{{ fontsize }}', str(fontsize)) .replace('{{ code }}', code)) with open(os.path.join(working_directory, 'code.tex'), 'w') as f: f.write(document) # Run LaTeX and create DVI file try: ret = subprocess.run(shlex.split(params['latex_cmd']+' code.tex'), stdout=subprocess.PIPE, stderr=subprocess.PIPE, cwd=working_directory) ret.check_returncode() except FileNotFoundError: raise RuntimeError('latex not found') # Add LIBGS to environment if supplied env = os.environ.copy() if params['libgs']: env['LIBGS'] = params['libgs'] # Convert DVI to SVG dvisvgm_cmd = params['dvisvgm_cmd'] + ' --scale=%f' % params['scale'] dvisvgm_cmd += ' code.dvi' try: ret = subprocess.run(shlex.split(dvisvgm_cmd), stdout=subprocess.PIPE, stderr=subprocess.PIPE, cwd=working_directory, env=env) ret.check_returncode() except FileNotFoundError: raise RuntimeError('dvisvgm not found') # Parse dvisvgm output for size and alignment def get_size(output): regex = r'\b([0-9.]+)pt x ([0-9.]+)pt' match = re.search(regex, output) if match: return (float(match.group(1)) / fontsize * scaling, float(match.group(2)) / fontsize * scaling) else: return None, None def get_measure(output, name): regex = r'\b%s=([0-9.e-]+)pt' % name match = re.search(regex, output) if match: return float(match.group(1)) / fontsize * scaling else: return None output = ret.stderr.decode('utf-8') width, height = get_size(output) depth = get_measure(output, 'depth') # no baseline offset if depth not found if depth is None: depth = 0.0 # Modify SVG attributes, to a get a self-contained, scaling SVG # read SVG, discarding all comments ("<-- Generated by… -->") parser = etree.XMLParser(remove_comments=True) xml = etree.parse(os.path.join(working_directory, 'code.svg'), parser) svg = xml.getroot() svg.set('width', f'{width:.6f}em') svg.set('height', f'{height:.6f}em') svg.set('style', f'vertical-align:{-depth:.6f}em') xml.write(os.path.join(working_directory, 'code.svg')) # Run optimizer to get a minified oneliner with (pseudo-)unique Ids # generate random prefix using ASCII letters (ID may not start with a digit) prefix = ''.join(random.choice(string.ascii_letters) for n in range(3)) svgo_cmd = (params['svgo_cmd'] .replace('{{ infile }}', 'code.svg') .replace('{{ outfile }}', 'optimized.svg')) svgo_config = (params['svgo_config'] .replace('{{ prefix }}', prefix)) # with scour, input & output files must be different scour_cmd = (params['scour_cmd'] .replace('{{ prefix }}', prefix+'_') .replace('{{ infile }}', 'code.svg') .replace('{{ outfile }}', 'optimized.svg')) if params['optimizer'] == 'scour': # optimize SVG using scour (default) try: ret = subprocess.run(shlex.split(scour_cmd), stdout=subprocess.PIPE, stderr=subprocess.PIPE, cwd=working_directory, env=env) ret.check_returncode() except FileNotFoundError: raise RuntimeError('scour not found') with open(os.path.join(working_directory, 'optimized.svg'), 'r') as f: svg = f.read() elif params['optimizer'] == 'svgo': # optimize SVG using svgo (optional) # write svgo params file with open(os.path.join(working_directory, 'svgo.config.js'), 'w') as f: f.write(svgo_config) try: ret = subprocess.run(shlex.split(svgo_cmd), stdout=subprocess.PIPE, stderr=subprocess.PIPE, cwd=working_directory, env=env) ret.check_returncode() except FileNotFoundError: raise RuntimeError('svgo not found') with open(os.path.join(working_directory, 'optimized.svg'), 'r') as f: svg = f.read() else: # no optimization, just return SVG with open(os.path.join(working_directory, 'code.svg'), 'r') as f: svg = f.read() return {'svg': svg, 'valign': round(-depth,6), 'width': round(width,6), 'height': round(height,6)}
5bfc425d206d0d0ee61e6ef2bff7db061d5750c0
8,250
def _split_train_test(features, labels, train_set, random_seed): """Split the dataset into training and test sets. Parameters ---------- features : pandas.DataFrame Features of the dataset events. labels : pandas.DataFrame Labels of the dataset events. train_set : {float, list-like} If float, it is the fraction of objects that will be used as training set. If list, it is the IDs of the objects to use as training set. random_seed : {int, RandomState instance} Random seed or random state instance to use. It allows reproducible results. Returns ------- X_train : pandas.DataFrame Features of the events with which to train the classifier. X_test : pandas.DataFrame Features of the events with which to test the classifier. y_train : pandas.core.series.Series Labels of the events with which to train the classifier. y_test : pandas.core.series.Series Labels of the events with which to test the classifier. """ if np.isscalar(train_set): # `train_set` was the size of training set X_train, X_test, y_train, y_test = model_selection.train_test_split( features, labels, train_size=train_set, random_state=random_seed) else: # `train_set` was a list of object names X_train = features.loc[train_set] y_train = labels.loc[train_set] is_not_train_set = ~ features.index.isin(train_set) X_test = features[is_not_train_set] y_test = labels[is_not_train_set] return X_train, X_test, y_train, y_test
67210e0462cdd4be58f5446b6220f921aa8c4ea0
8,251
from sideboard.lib._services import _register_rpc_services import os def parse_config(requesting_file_path, is_plugin=True): """ Parse the config files for a given sideboard plugin, or sideboard itself. It's expected that this function is called from one of the files in the top-level of your module (typically the __init__.py file) Args: requesting_file_path (str): The __file__ of the module requesting the parsed config file. An example value is:: /opt/sideboard/plugins/plugin-package-name/plugin_module_name/__init__.py the containing directory (here, `plugin_module_name`) is assumed to be the module name of the plugin that is requesting a parsed config. is_plugin (bool): Indicates whether a plugin is making the request or Sideboard itself is making the request. If True (default) add plugin-relevant information to the returned config. Also, treat it as if it's a plugin Returns: ConfigObj: The resulting configuration object. """ module_dir, root_dir = get_module_and_root_dirs(requesting_file_path, is_plugin) specfile = os.path.join(module_dir, 'configspec.ini') spec = configobj.ConfigObj(specfile, interpolation=False, list_values=False, encoding='utf-8', _inspec=True) # to allow more/better interpolations root_conf = ['root = "{}"\n'.format(root_dir), 'module_root = "{}"\n'.format(module_dir)] temp_config = configobj.ConfigObj(root_conf, interpolation=False, encoding='utf-8') for config_path in get_config_files(requesting_file_path, is_plugin): # this gracefully handles nonexistent files temp_config.merge(configobj.ConfigObj(config_path, encoding='utf-8', interpolation=False)) # combining the merge files to one file helps configspecs with interpolation with NamedTemporaryFile(delete=False) as config_outfile: temp_config.write(config_outfile) temp_name = config_outfile.name config = configobj.ConfigObj(temp_name, encoding='utf-8', configspec=spec) validation = config.validate(Validator(), preserve_errors=True) unlink(temp_name) if validation is not True: raise ConfigurationError('configuration validation error(s) (): {!r}'.format( configobj.flatten_errors(config, validation)) ) if is_plugin: sideboard_config = globals()['config'] config['plugins'] = deepcopy(sideboard_config['plugins']) if 'rpc_services' in config: _register_rpc_services(config['rpc_services']) if 'default_url' in config: priority = config.get('default_url_priority', 0) if priority >= sideboard_config['default_url_priority']: sideboard_config['default_url'] = config['default_url'] return config
d8cfd06356d8f20040646b48da7c236e71db90fa
8,252
def generate_enc_keypair(): """ Generate Curve25519 keypair :returns tuple: A byte pair containing the encryption key and decryption key. """ private_key = PrivateKey.generate() return private_key.public_key.encode(), private_key.encode()
c2ba00b6463d7ab1708dcc43d9cafba2d11af0c6
8,253
from typing import List from typing import Tuple def filter_molecular_components( components: List[Component], ) -> Tuple[List[Component], List[Component]]: """Separate list of components into molecular and non-molecular components. Args: components: A list of structure components, generated using :obj:`pymatgen.analysis.dimensionality.get_structure_components`. Returns: The filtered components as a tuple of ``(molecular_components, other_components)``. """ molecular_components = [c for c in components if c["dimensionality"] == 0] other_components = [c for c in components if c["dimensionality"] != 0] return molecular_components, other_components
72a43a5195ef3d35ca8216225dcae7f699c7bbd5
8,254
import types def argument(name, type): """ Set the type of a command argument at runtime. This is useful for more specific types such as mitmproxy.types.Choice, which we cannot annotate directly as mypy does not like that. """ def decorator(f: types.FunctionType) -> types.FunctionType: assert name in f.__annotations__ f.__annotations__[name] = type return f return decorator
8f93c8e8cd4289d2b4747feb93ecfe3df74350f7
8,255
async def async_google_actions_request_sync(cloud): """Request a Google Actions sync request.""" return await cloud.websession.post( f"{cloud.google_actions_report_state_url}/request_sync", headers={AUTHORIZATION: f"Bearer {cloud.id_token}"}, )
5d75e4b67bc04878108066660b0f43939a1eab4e
8,256
def convert_time_string_to_secs(string: str) -> int: """ Takes a string in the format '1h30m25s' and converts it to an integer in seconds. This functions uses the regular expression RE_CONVERT_TIME above for matching the string. """ match = regexp_time.match(string) if not match: raise ValueError("String {0} has an invalid representation") h, m, s, ms, us = match.groups() h = int(h) if h else 0 m = int(m) if m else 0 s = int(float(s)) if s else 0 total_time_seconds = h*3600 + m*60 + s return total_time_seconds
b520fde06640cd3d22a6c619031633bf21383687
8,257
def polar_cube(c, index, n=512, interp='cubic'): """VIMS cube polar projected. Parameters ---------- c: pyvims.VIMS Cube to interpolate. index: int, float, str, list, tuple VIMS band or wavelength to plot. n: int, optional Number of pixel for the grid interpolation. interp: str, optional Interpolation method """ # Pixel data data = c[index] # Choose which pole to display n_pole = c.sc_lat > 0 # Pixel positions in polar projection pixels = polar_proj(c.ground_lon, c.ground_lat, n_pole=n_pole) # Contour positions in polar projection contour = polar_proj(*c.clonlat, n_pole=n_pole) # Interpolate data (with mask) z, grid, extent = polar_interp(pixels, data, contour, n=n, method=interp) return z, grid, extent, pixels, contour, n_pole
6a02932e8685a1cdd43e6831b2a3544bd903a40b
8,258
from nibabel.gifti.parse_gifti_fast import ParserCreate, Outputter import gzip def _load_surf_files_gifti_gzip(surf_file): """Load surface data Gifti files which are gzipped. This function is used by load_surf_mesh and load_surf_data for extracting gzipped files. Part of the code can be removed while bumping nibabel 2.0.2 """ with gzip.open(surf_file) as f: as_bytes = f.read() if LooseVersion(nibabel.__version__) >= LooseVersion('2.1.0'): parser = gifti.GiftiImage.parser() parser.parse(as_bytes) gifti_img = parser.img else: parser = ParserCreate() parser.buffer_text = True out = Outputter() parser.StartElementHandler = out.StartElementHandler parser.EndElementHandler = out.EndElementHandler parser.CharacterDataHandler = out.CharacterDataHandler parser.Parse(as_bytes) gifti_img = out.img return gifti_img
2fdc083a208f1a288b7d99bd3863bff22d36bf50
8,259
import platform def get_platform_system(): """return platform.system platform module has many regexp, so importing it is slow... import only if required """ return platform.system()
2531f1883d5acd0c192c0061d7cbf29637197706
8,260
def populate_sql( sql: sqlparse.sql.Statement, example: NLToSQLExample, anonymize_values: bool ) -> bool: """ Creates a sequence of output / decoder actions from a raw SQL query. Args: sql: The SQL query to convert. example: The NLToSQLExample object to add output actions. anonymize_values: Whether to anonymize values by replacing with a placeholder. Raises: ParseError: if the SQL query can't be parsed. Returns: Boolean indicating whether all actions copying values from the input utterance were successfully completed. """ successful_copy = True for item in sql: if item.ttype == sqlparse.tokens.Text.Whitespace: continue if _is_punctuation(item) and (item.value in ("(", ")")): _add_simple_step(item, example) continue if _is_punctuation(item) and (item.value in (",",)): _add_simple_step(item, example) continue if _is_parenthesis(item): successful_copy = ( populate_sql(item, example, anonymize_values) and successful_copy ) continue if _is_wildcard(item): _add_simple_step(item, example) continue if _is_select(item) or _is_from(item): _add_simple_step(item, example) continue if _is_where(item): successful_copy = ( _parse_where(item, example, anonymize_values) and successful_copy ) continue if _is_function(item): successful_copy = ( _parse_function(item, example, anonymize_values) and successful_copy ) continue if _is_identifier(item): successful_copy = ( _parse_identifier(item, example, anonymize_values) and successful_copy ) continue if _is_identifier_list(item): successful_copy = ( _parse_identifier_list(item, example, anonymize_values) and successful_copy ) continue if _is_keyword(item) and item.value.lower() in ( "group", "order", "by", "having", "order by", "group by", ): _add_simple_step(item, example) continue if _is_keyword(item) and item.value.lower() in ( "count", "avg", "min", "max", "sum", ): _add_simple_step(item, example) continue if _is_operation(item): successful_copy = ( _parse_operation(item, example, anonymize_values) and successful_copy ) continue if _is_keyword(item) and item.value.lower() in ("between", "and", "or"): _add_simple_step(item, example) continue if _is_order(item): _add_simple_step(item, example) continue if _is_keyword(item) and item.value.lower() in ("is", "not null", "in", "not"): _add_simple_step(item, example) continue if _is_keyword(item) and item.value.lower() in ("distinct",): _add_simple_step(item, example) continue if _is_keyword(item) and item.value.lower() in ("limit",): _add_simple_step(item, example) continue if _is_keyword(item) and item.value.lower() in ("join", "on"): _add_simple_step(item, example) continue if _is_keyword(item) and item.value.lower() in ("intersect", "union"): _add_simple_step(item, example) continue if _is_keyword(item) and item.value.lower() in ("except",): _add_simple_step(item, example) continue if _is_integer(item) and example.gold_sql_query.actions[ len(example.gold_sql_query.actions) - 1 ].symbol in ("limit", "between", "and"): prev_len = len(example.gold_sql_query.actions) successful_copy = ( _add_simple_value(item, example, anonymize_values) and successful_copy ) if len(example.gold_sql_query.actions) == prev_len: raise ValueError( "Gold query did not change length when adding simple value!" ) continue if _is_comparison(item): successful_copy = ( _parse_comparison(item, example, anonymize_values) and successful_copy ) continue _debug_state(item, example) raise ParseError("Incomplete _parse_sql") return successful_copy
54aaa9465eebdad55e04ec6c840ee760de4e79ee
8,261
import sympy def factorial(n): """Stop sympy blindly calculating factorials no matter how large. If 'n' is a number of some description, ensure that it is smaller than a cutoff, otherwise sympy will simply evaluate it, no matter how long that may take to complete! - 'n' should be a sympy object, that sympy.factorial(...) can use. """ if isinstance(n, (Integer, Float, Rational)) and n > 50: raise ValueError("[Factorial]: Too large integer to compute factorial effectively!") else: return sympy.factorial(n)
73dc223df2b23a93aafb0ec2b897f1668869e07a
8,262
import re def getSupplier(num): """" get the supplier for a card number Attributes: @num: card number """ supplier = str() for key, value in suppliers.items(): if bool(re.match(value, num)): supplier = key break if supplier == "": supplier = "Ukwnow" return supplier
2572a0595d03cc3056b1155f8a3f0b007ec65b9e
8,263
from typing import Optional import torch def load_torch_hub_model(repo: str, model: str, *args, **kwargs): """Tries to load a torch hub model and handles different exceptions that could be raised. Args: repo: The GitHub repository containing the models. model: The model name to download. max_retries: The maximum number of tries to download the model. Returns: The downloaded torch model. """ error: Optional[Exception] = None for _ in range(TORCH_HUB_DOWNLOAD_MAX_RETRIES + 1): try: try: return torch.hub.load( repo, model, *args, **kwargs, ) except RuntimeError: return torch.hub.load( repo, model, *args, **kwargs, force_reload=True, ) except Exception as e: error = e assert error is not None raise error
3cc928f1026d276290ed97360a0cfebbcde82bb8
8,264
def compute_medoid(data): """ Get medoid of data Parameters ---------- data: ndarray Data points Returns ------ medoid: ndarray Medoid """ dist_mat = pairwise_distances(data) return data[np.argmin(dist_mat.sum(axis=0))]
3fd071cd6c48566caa3a52ead26f06621682703d
8,265
def int_sphere(fx, xgrid): """ Computes integrals over the sphere defined by the logarithmic grid provided as input Parameters ---------- fx : array_like The function (array) to be integrated xgrid : ndarray The logarithmic radial grid Returns ------- I_sph : float The value of the integrand Notes ----- The integral formula is given by .. math:: I = 4 \pi \int \dd{x} e^{3x} f(x) """ func_int = 4.0 * pi * np.exp(3.0 * xgrid) * fx I_sph = np.trapz(func_int, xgrid) return I_sph
d92962cde5200f0c25d8bd0e1011c969e2287125
8,266
import os def run( func, args=[], kwargs={}, service="lambda", capture_response=False, remote_aws_lambda_function_name=None, remote_aws_region=None, **task_kwargs ): """ Instead of decorating a function with @task, you can just run it directly. If you were going to do func(*args, **kwargs), then you will call this: import zappa.asynchronous.run zappa.asynchronous.run(func, args, kwargs) If you want to use SNS, then do: zappa.asynchronous.run(func, args, kwargs, service='sns') and other arguments are similar to @task """ lambda_function_name = remote_aws_lambda_function_name or os.environ.get( "AWS_LAMBDA_FUNCTION_NAME" ) aws_region = remote_aws_region or os.environ.get("AWS_REGION") task_path = get_func_task_path(func) return ASYNC_CLASSES[service]( lambda_function_name=lambda_function_name, aws_region=aws_region, capture_response=capture_response, **task_kwargs ).send(task_path, args, kwargs)
fdf1c4b8f654c27c2ac04a945b44e54b19e1b00f
8,267
def run_webserver(destination_root_dir): """ Run a local """ destination_root_dir = destination_root_dir if destination_root_dir.startswith('/'): destination_root_dir = destination_root_dir[1:] if destination_root_dir.endswith('/'): destination_root_dir = destination_root_dir[:-1] app = Flask(__name__) @app.route('/') @app.route('/<path:filename>') def serve_static_html(filename='index.html'): """ Serve static HTML files :type filename: str :param filename: Path to the static HTML file """ if filename.startswith(destination_root_dir): filename = filename.replace('{}/'.format(destination_root_dir), '') return redirect('/{}'.format(filename)) response = make_response( send_from_directory('/{}'.format(destination_root_dir), filename)) response.cache_control.no_cache = True return response app.run()
df5d26ae754009135061abb4a1a2d1cad0937e97
8,268
from typing import Union from typing import List def sym_to_elm(symbols: Union[str, List, np.ndarray], order: Union[np.ndarray, List[str]]): """Transform symbols to elements.""" if not isinstance(order, list): order = order.tolist() if not isinstance(symbols, (str, list)): symbols = symbols.tolist() if isinstance(symbols, str): if symbols in order: return order.index(symbols) else: return -1 else: return np.array([sym_to_elm(s, order) for s in symbols])
16e2a88b353556068e8c1a3fa7c831264fd9f3c5
8,269
def set_custom_field( custom_field_id: str = None, person_id: str = None, owner_id: str = None, term_id: str = None, value: str = None, option_index: str = None): """ Sets a custom field value for a particular person, organization, or donation. :param custom_field_id: The numeric ID of the custom field you're interested in. :param person_id: The numeric ID of the person you're interested in. :param owner_id: The numeric ID of object you're interested in, if they are not a person. :param term_id: The numeric ID of the term you're interested in. :param value: The value for this field. :param option_index: For RADIOs and SELECTs, you can pass in the index of the selected option. :returns: String containing xml or an lxml element. """ return get_anonymous( 'setCustomField', custom_field_id=custom_field_id, person_id=person_id, owner_id=owner_id, term_id=term_id, value=value, option_index=option_index)
3d9471c62644e8e19f7b6faa03f3b503d5db7673
8,270
def ixn_is_increases_activity(ixn: ChemGeneIxn): """Checks if the interaction results in the decrease of the activity of the protein of the gene :param pyctd.manager.models.ChemGeneIxn ixn: A chemical-gene interaction :rtype: bool """ return _ixn_is_changes_protein(ixn, 'increases^activity')
0b324a953ed2a90a9a357965ad4e5ef4a635c2df
8,271
def load(csv, sep=';'): """ Load data into dataframe :param csv: :param sep: :return: """ data = pd.read_csv(csv, sep=sep) return data
da988e31601b13a767178b4d6613d948100ddfc9
8,272
import os import json def get_docs(request): """ вернуть список [ {doc_id, doc_name}, {doc_id, doc_name}, ] """ doc_set_id = request.GET["doc_set_id"] docs = Document.objects.filter(doc_set_id=doc_set_id) response_data = [] for doc in docs: filename, file_extension = os.path.splitext(doc.get_path()) doc_name, _ = os.path.splitext(doc.doc_name) out_name = f"{filename}.pdf" response_data.append( { "doc_id": doc.id, "doc_name": f"{doc_name}.pdf", "path": out_name.split("/static")[1], } ) return HttpResponse(json.dumps(response_data), content_type="application/json")
86d395b5a391a25b141d9d7f2139cf40ead94d41
8,273
def count_lost_norm4(matrix): """calculate 4th lost points: Proportion of dark modules in entire symbol: 50 + (5 + k) or 50 - (5 + k), return k * 10 Args: matrix ([type]): [description] Returns: [int]: [description] """ dark_sum = np.sum(matrix) modules_num = matrix.size dark_ratio = dark_sum / modules_num k = abs((dark_ratio * 100 - 50)) / 5 return int(k) * 10
ad05892952af5cfc5dbd8273bbc1357d31b1a295
8,274
def sumaDigits(s): """assumes s is a string and returns the sum of the decimal digits in s. For example if s is 'a2b3c' it returns 5""" suma = 0 for c in s: try: suma+=int(c) except ValueError: continue return suma
47b09476925d45741d97eca5362e736f83a8185d
8,275
def f5_list_policy_file_types_command(client: Client, policy_md5: str) -> CommandResults: """ Get a list of all policy file types. Args: client (Client): f5 client. policy_md5 (str): MD5 hash of the policy. """ result = client.list_policy_file_types(policy_md5) table_name = 'f5 data for listing policy file types:' readable_output, printable_result = build_command_result(result, table_name) command_results = CommandResults( outputs_prefix='f5.FileType', outputs_key_field='id', readable_output=readable_output, outputs=printable_result, raw_response=result ) return command_results
b2b57d281b0cc3ea0ff7430d2033255071761a46
8,276
def recurrent_layer(input, act=None, bias_attr=None, param_attr=None, name=None, reverse=False, layer_attr=None): """ Simple recurrent unit layer. It is just a fully connect layer through both time and neural network. For each sequence [start, end] it performs the following computation\: .. math:: out_{i} = act(in_{i}) \\ \\ \\text{for} \\ i = start \\\\ out_{i} = act(in_{i} + out_{i-1} * W) \\ \\ \\text{for} \\ start < i <= end If reversed is true, the order is reversed\: .. math:: out_{i} = act(in_{i}) \\ \\ \\text{for} \\ i = end \\\\ out_{i} = act(in_{i} + out_{i+1} * W) \\ \\ \\text{for} \\ start <= i < end :param input: Input Layer :type input: LayerOutput :param act: activation. :type act: BaseActivation :param bias_attr: bias attribute. :type bias_attr: ParameterAttribute :param param_attr: parameter attribute. :type param_attr: ParameterAttribute :param name: name of the layer :type name: basestring :param layer_attr: Layer Attribute. :type layer_attr: ExtraLayerAttribute :return: LayerOutput object. :rtype: LayerOutput """ Layer( name=name, type=LayerType.RECURRENT_LAYER, inputs=Input(input.name, **param_attr.attr), active_type=act.name, bias=ParamAttr.to_bias(bias_attr), reversed=reverse, **ExtraAttr.to_kwargs(layer_attr)) return LayerOutput( name=name, layer_type=LayerType.RECURRENT_LAYER, parents=[input], size=input.size, activation=act, reverse=reverse)
b616d372a9324c11aa1bb524d96844ce1e8c47e5
8,277
def mean_center(X): """ @param X: 2-dimensional matrix of number data @type X: numpy array @return: Mean centered X (always has same dimensions as X) """ (rows, cols) = shape(X) new_X = zeros((rows, cols), float) _averages = average(X, 0) for row in range(rows): new_X[row, 0:cols] = X[row, 0:cols] - _averages[0:cols] return new_X
54885596c95856b0ce0f7fe68d2922641e7a830a
8,278
import collections import csv def csv_to_json(order_sentence_file: str, order_comment_file: str, os_filter_file: str=None) -> dict: """ Conversion of CSV to dictionary/JSON for sequenced PowerPlans and clinical category :param order_sentence_file: :param order_comment_file: :return: """ output_dict = collections.defaultdict() details_dict = create_os_details_dict(os_file=order_sentence_file, comp_file=order_comment_file, os_filter_file=os_filter_file) with open(order_comment_file, "r") as f: reader = csv.DictReader(f) row = next(reader) field_names = list(row.keys()) with open(order_comment_file, 'r') as f: reader = csv.DictReader(f, fieldnames=field_names) next(reader) for row in reader: powerplan = row['POWERPLAN_DESCRIPTION'] if not powerplan: continue phase = row['PHASE'] powerplan_display_method = row['PLAN_DISPLAY_METHOD'] phase_display_method = row['PHASE_DISPLAY_METHOD'] dcp_clin_cat = row['DCP_CLIN_CAT'] dcp_clin_sub_cat = row['DCP_CLIN_SUB_CAT'] sequence = int(row['SEQUENCE'].strip()) bgcolor_red = row['BGCOLOR_RED'] bgcolor_green = row['BGCOLOR_GREEN'] bgcolor_blue = row['BGCOLOR_BLUE'] synonym = row['COMPONENT'] iv_synonym = row.get("IV_COMPONENT") orderable_type_flag = int(row.get("ORDERABLE_TYPE_FLAG")) target_duration = row['TARGET_DURATION'] start_offset = row['START_OFFSET'] link_duration_to_phase = row['LINK_DURATION_TO_PHASE'] required_ind = row['REQUIRED_IND'] include_ind = row['INCLUDE_IND'] chemo_ind = row['CHEMO_IND'] chemo_related_ind = row['CHEMO_RELATED_IND'] persistent_ind = row['PERSISTENT_IND'] linking_rule = row.get("LINKING_RULE") linking_rule_quantity = row.get("LINKING_RULE_QUANTITY") linking_rule_flag = row.get("LINKING_RULE_FLAG") linking_override_reason = row.get("LINKING_OVERRIDE_REASON") assigned_dots = row.get("ASSIGNED_DOTS") if row['ORDER_SENTENCE_ID'] is not None: order_sentence_id = int(float(row['ORDER_SENTENCE_ID'])) else: order_sentence_id = 0 if row['ORDER_SENTENCE_SEQ'] is not None and row['ORDER_SENTENCE_SEQ']: sent_seq = int(row['ORDER_SENTENCE_SEQ'].strip()) else: sent_seq = 0 if powerplan not in output_dict: output_dict[powerplan] = { 'display_method': powerplan_display_method, 'phases': {} } phase_dict = output_dict.get(powerplan).get('phases') if not phase: phase = powerplan phase_display_method = powerplan_display_method if phase not in phase_dict: phase_dict[phase] = { 'phase_display_method': phase_display_method, 'components': [] } comp_dict = phase_dict.get(phase).get('components') component_idx = find_key_val_idx_in_list( lst=comp_dict, key='sequence', value=sequence ) if component_idx is None: comp_dict.append({ 'synonym': synonym, 'orderable_type_flag': orderable_type_flag, 'dcp_clin_cat': dcp_clin_cat, 'dcp_clin_sub_cat': dcp_clin_sub_cat, 'sequence': sequence, 'target_duration': target_duration, 'start_offset': start_offset, 'link_duration_to_phase': link_duration_to_phase, 'required_ind': required_ind, 'include_ind': include_ind, 'chemo_ind': chemo_ind, 'chemo_related_ind': chemo_related_ind, 'persistent_ind': persistent_ind, 'linking_rule': linking_rule, 'linking_rule_quantity': linking_rule_quantity, 'linking_rule_flag': linking_rule_flag, 'linking_override_reason': linking_override_reason, 'assigned_dots': assigned_dots, 'bgcolor_red': bgcolor_red, 'bgcolor_green': bgcolor_green, 'bgcolor_blue': bgcolor_blue, 'order_sentences': [] }) component_idx = -1 sent_list = comp_dict[component_idx].get('order_sentences') # sentence_idx = find_key_val_idx_in_list( # lst=sent_list, key='sequence', value=sent_seq # ) order_sentence_details = details_dict.get(order_sentence_id) if order_sentence_id > 0: sent_list.append({ 'sequence': sent_seq, 'order_sentence_id': order_sentence_id, 'order_sentence_details': order_sentence_details, 'iv_synonym': iv_synonym }) sentence_idx = -1 # TODO: Refactor this to have a domain key and a powerplans key that # will hold the powerplans dictionary if 'b0783' in order_comment_file.lower(): domain = 'b0783' elif 'p0783' in order_comment_file.lower(): domain = 'p0783' output = dict() output['domain'] = domain output['powerplans'] = output_dict return output
9a4021168624773233dbea5eb6a5e6f0b7eacee5
8,279
import csv from io import StringIO def process_xlsform(xls, default_name): """ Process XLSForm file and return the survey dictionary for the XLSForm. """ # FLOW Results package is a JSON file. file_object = None if xls.name.endswith('csv'): # a csv file gets closed in pyxform, make a copy xls.seek(0) file_object = BytesIO() file_object.write(xls.read()) file_object.seek(0) xls.seek(0) try: return parse_file_to_json(xls.name, file_object=file_object or xls) except csv.Error as e: if is_newline_error(e): xls.seek(0) file_object = StringIO( u'\n'.join(xls.read().splitlines())) return parse_file_to_json( xls.name, default_name=default_name, file_object=file_object) raise e
af695bef6f063b2bfa7862e856e16ab42be2db96
8,280
def unflatten(X: np.ndarray, Y: np.ndarray, shape: tuple): """ Unflattens images with shape defined by list of tuples s X is an array (1D), unflattened to 2D Y is an array (1D) of flattened mask (flattened 2D label) array Not that X and Y are not compatible dimensions s denotes dimensions of the *INPUT* image len(s) == 3 : reshape to 2D label image len(s) == 2 : input is flattened image, ignore. """ # This need to be tested. Yout = Y.copy() Yout[Y!=LABEL_IGNORE] = X Yout = np.reshape(Yout,(shape[0], shape[1])) return Yout
7a1a79b165d44efd55c2e66936e072298cd5d648
8,281
from typing import Dict from typing import Any from typing import List import logging from pathlib import Path def collate_features(model_config: Dict[str, Any], dummy_features: List[str]) -> List[str]: """Saves and returns final list of simple and dummy features.""" simple_features = list(model_config.get("simple_features", {}).keys()) features = simple_features + dummy_features logging.info( f"Model uses {len(simple_features)} simple features and" + f"{len(dummy_features)} dummy features" + f"for {len(features)} features total" ) output_path = Path(utils.get_model_path(model_config), "features.txt") logging.info(f"Saving list of features to {output_path}") with open(output_path, "w") as f: for feature in features: f.write(feature) f.write("\n") return features
e66e3aceb0b5bf093a4fc3165a30694875903b73
8,282
from typing import Type def new_dga(*, key_mo=None, pred=None, deg_diff=None) -> Type[DgaGb]: """Return a dynamically created subclass of GbDga. When key_mo=None, use revlex ordering by default.""" class_name = f"GbDga_{DgaGb._index_subclass}" DgaGb._index_subclass += 1 if deg_diff is not None: deg_diff = Vector(deg_diff) else: raise BA.MyDegreeError("degree of differential not supplied") dct = { "gens": {}, "rels": {}, "_rels_buffer": {}, "key_mo": key_mo, "pred": pred or pred_always_true, "dim_grading": None, "deg_diff": deg_diff, } return type(class_name, (DgaGb,), dct)
32cfa58eec7512dd7b39b2298608df538a232ef9
8,283
def is_xarray(array): """Return True if array is a xarray.DataArray Parameters ---------- array : array-like Returns ------- test : bool """ return isinstance(array,xr.DataArray)
edf14a0c87e6590e6a583425ec830e51defe5fa1
8,284
from typing import Counter def _check_duplicate_gnames(block_id, block_dict, extra_args): """ Return False if any duplicate group names exist in /etc/group file, else return True """ gnames = _execute_shell_command("cat /etc/group | cut -f1 -d\":\"", python_shell=True).strip() gnames = gnames.split('\n') if gnames != "" else [] duplicate_gnames = [k for k, v in Counter(gnames).items() if v > 1] if duplicate_gnames is None or duplicate_gnames == []: return True return str(duplicate_gnames)
2a181ca67f87f0f90eb97c1df0e7ae8db6ee2206
8,285
def join_nonempty(l): """ Join all of the nonempty string with a plus sign. >>> join_nonempty(('x1 + x2 + x1:x2', 'x3 + x4')) 'x1 + x2 + x1:x2 + x3 + x4' >>> join_nonempty(('abc', '', '123', '')) 'abc + 123' """ return ' + '.join(s for s in l if s != '')
041948f95caaef14cb96e761f08b4a84fba37d6e
8,286
import torch def correct_msa_restypes(protein): """Correct MSA restype to have the same order as rc.""" new_order_list = rc.MAP_HHBLITS_AATYPE_TO_OUR_AATYPE new_order = torch.tensor( [new_order_list] * protein["msa"].shape[1], device=protein["msa"].device, ).transpose(0, 1) protein["msa"] = torch.gather(new_order, 0, protein["msa"]) perm_matrix = np.zeros((22, 22), dtype=np.float32) perm_matrix[range(len(new_order_list)), new_order_list] = 1.0 for k in protein: if "profile" in k: num_dim = protein[k].shape.as_list()[-1] assert num_dim in [ 20, 21, 22, ], "num_dim for %s out of expected range: %s" % (k, num_dim) protein[k] = torch.dot(protein[k], perm_matrix[:num_dim, :num_dim]) return protein
881736333e3153c9c7713f7a54252eba705b7bb8
8,287
def plot_bootstrap_lr_grp(dfboot, df, grp='grp', prm='premium', clm='claim', title_add='', force_xlim=None): """ Plot bootstrapped loss ratio, grouped by grp """ count_txt_h_kws, mean_txt_kws, pest_mean_point_kws, mean_point_kws = _get_kws_styling() if dfboot[grp].dtypes != 'object': dfboot = dfboot.copy() dfboot[grp] = dfboot[grp].map(lambda x: f's{x}') mn = dfboot.groupby(grp)['lr'].mean().tolist() pest_mn = df.groupby(grp).apply(lambda g: np.nan_to_num(g[clm], 0).sum() / g[prm].sum()).values f = plt.figure(figsize=(14, 2+(len(mn)*.25))) #, constrained_layout=True) gs = gridspec.GridSpec(1, 2, width_ratios=[11, 1], figure=f) ax0 = f.add_subplot(gs[0]) ax1 = f.add_subplot(gs[1], sharey=ax0) _ = sns.violinplot(x='lr', y=grp, data=dfboot, kind='violin', cut=0, scale='count', width=0.6, palette='cubehelix_r', ax=ax0) _ = [ax0.plot(v, i%len(mn), **mean_point_kws) for i, v in enumerate(mn)] _ = [ax0.annotate(f'{v:.1%}', xy=(v, i%len(mn)), **mean_txt_kws) for i, v in enumerate(mn)] _ = [ax0.plot(v, i%len(pest_mn), **pest_mean_point_kws) for i, v in enumerate(pest_mn)] elems = [Line2D([0],[0], label='population (bootstrap)', **mean_point_kws), Line2D([0],[0], label='sample', **pest_mean_point_kws)] _ = ax0.legend(handles=elems, title='Mean LRs') #loc='upper right', if force_xlim is not None: _ = ax0.set(xlim=force_xlim) _ = sns.countplot(y=grp, data=df, ax=ax1, palette='cubehelix_r') ct = df.groupby(grp).size().tolist() _ = [ax1.annotate(f'{v}', xy=(v, i%len(ct)), **count_txt_h_kws) for i, v in enumerate(ct)] ypos = 1.01 if title_add != '': ypos = 1.03 title_add = f'\n{title_add}' title = (f'Grouped Loss Ratios (Population Estimates via Bootstrapping)' + f' - grouped by {grp}') _ = f.suptitle(f'{title}{title_add}', y=ypos) plt.tight_layout() return gs
11a0276ab1eac233db537943b5af67f0452f89db
8,288
def ajax_user_search(request): """ returns the user search result. currently this is not used since search user feature changed to form post. """ if request.method=='POST': username=request.POST.get('username','') users=User.objects.filter(username__contains=username) try: brand=int(request.POST['company']) users=users.filter(userprofile__work_for=brand) except: pass return render_to_response('ajax/user_search.html', {'users':users,}, mimetype='text/html')
8318b881280e47ff28ea8db259df607b1e5bf7fb
8,289
def shortest_path(start, end): """ Using 2-way BFS, finds the shortest path from start_position to end_position. Returns a list of moves. You can use the rubik.quarter_twists move set. Each move can be applied using rubik.perm_apply """ if start == (7, 8, 6, 20, 18, 19, 3, 4, 5, 16, 17, 15, 0, 1, 2, 14, 12, 13, 10, 11, 9, 21, 22, 23): return None return bfs((start, None), end)
c75b54b434c09f6d570f79c40453bd465a2a439b
8,290
import torch def prep_param_lists(model, flat_master=False): """ Creates a list of FP32 master parameters for a given model, as in `Training Neural Networks with Mixed Precision: Real Examples`_. Args: model (torch.nn.Module): Existing Pytorch model flat_master (bool, optional, default=False): Flatten the master parameters into a single tensor, as a performance optimization. Returns: A tuple (``model_params``, ``master_params``). ``model_params`` is a list of the model's parameters for later use with :func:`model_grads_to_master_grads` and :func:`master_params_to_model_params`. ``master_params`` is a list of FP32 master gradients. If ``flat_master=True``, ``master_params`` will be a list with one element. Example:: model_params, master_params = prep_param_lists(model) .. warning:: Currently, if ``flat_master=True``, all the model's parameters must be the same type. If the model has parameters of different types, use ``flat_master=False``, or use :class:`FP16_Optimizer`. .. _`Training Neural Networks with Mixed Precision: Real Examples`: http://on-demand.gputechconf.com/gtc/2018/video/S81012/ """ model_params = [param for param in model.parameters() if param.requires_grad] if flat_master: # Give the user some more useful error messages try: # flatten_dense_tensors returns a contiguous flat array. # http://pytorch.org/docs/master/_modules/torch/_utils.html master_params = _flatten_dense_tensors( [param.data for param in model_params] ).float() except BaseException: print( "Error in prep_param_lists: model may contain a mixture of parameters " "of different types. Use flat_master=False, or use F16_Optimizer." ) raise master_params = torch.nn.Parameter(master_params) master_params.requires_grad = True # master_params.register_hook(backwards_debug_hook) if master_params.grad is None: master_params.grad = master_params.new(*master_params.size()) return model_params, [master_params] else: master_params = [param.clone().float().detach() for param in model_params] for param in master_params: param.requires_grad = True return model_params, master_params
36ec1b264af2b05c4fc13a295d007e0ac830b821
8,291
def to_matrix_vector(transform): """ Code from nilearn module, available at: https://github.com/nilearn/nilearn/blob/master/nilearn/image/resampling.py Split an homogeneous transform into its matrix and vector components. The transformation must be represented in homogeneous coordinates. It is split into its linear transformation matrix and translation vector components. This function does not normalize the matrix. This means that for it to be the inverse of from_matrix_vector, transform[-1, -1] must equal 1, and transform[-1, :-1] must equal 0. Parameters ---------- transform: numpy.ndarray Homogeneous transform matrix. Example: a (4, 4) transform representing linear transformation and translation in 3 dimensions. Returns ------- matrix, vector: numpy.ndarray The matrix and vector components of the transform matrix. For an (N, N) transform, matrix will be (N-1, N-1) and vector will be a 1D array of shape (N-1,). See Also -------- from_matrix_vector """ ndimin = transform.shape[0] - 1 ndimout = transform.shape[1] - 1 matrix = transform[0:ndimin, 0:ndimout] vector = transform[0:ndimin, ndimout] return matrix, vector
b971f3b53199a16bbf2343ed544389cbc21f1644
8,292
def sieveEr(N): """ input: positive integer 'N' > 2 returns a list of prime numbers from 2 up to N. This function implements the algorithm called sieve of erathostenes. """ # precondition assert isinstance(N,int) and (N > 2), "'N' must been an int and > 2" # beginList: conatins all natural numbers from 2 upt to N beginList = [x for x in range(2,N+1)] ans = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(beginList)): for j in range(i+1,len(beginList)): if (beginList[i] != 0) and \ (beginList[j] % beginList[i] == 0): beginList[j] = 0 # filters actual prime numbers. ans = [x for x in beginList if x != 0] # precondition assert isinstance(ans,list), "'ans' must been from type list" return ans
8d48d2a491341d5302307597ad64ac4a37b1abb8
8,293
def validate_fields(item, fields=None): """ Check that all requested fields were returned :param item: comment or submission :param fields: list[str] :return: list[str] """ actual_fields = item.d_.keys() if fields is None: requested_fields = actual_fields else: requested_fields = fields missing_fields = set(requested_fields).difference(actual_fields) # drop extra fields returned from api final_fields = set(requested_fields).intersection(actual_fields) return final_fields, missing_fields
88bd6d20ba1cc04f8478128f7f32192ef680762b
8,294
import warnings def _parallel_build_trees(tree, forest, X, y, sample_weight, tree_idx, n_trees, verbose=0, class_weight=None, target_imbalance_ratio=None): """Private function used to fit a single tree in parallel.""" if verbose > 1: print("building tree %d of %d" % (tree_idx + 1, n_trees)) if forest.bootstrap: n_samples = X.shape[0] if sample_weight is None: curr_sample_weight = np.ones((n_samples,), dtype=np.float64) else: curr_sample_weight = sample_weight.copy() indices = _generate_sample_indices(tree.random_state, y, target_imbalance_ratio, verbose) sample_counts = bincount(indices, minlength=n_samples) curr_sample_weight *= sample_counts if class_weight == 'subsample': with warnings.catch_warnings(): warnings.simplefilter('ignore', DeprecationWarning) curr_sample_weight *= compute_sample_weight('auto', y, indices) elif class_weight == 'balanced_subsample': curr_sample_weight *= compute_sample_weight('balanced', y, indices) tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) else: tree.fit(X, y, sample_weight=sample_weight, check_input=False) return tree
a5c027d96bd96522544e56bd427ae39a5075e6b8
8,295
from typing import Iterable def remove_nones(sequence: Iterable) -> list: """Removes elements where bool(x) evaluates to False. Examples -------- Normal usage:: remove_nones(['m', '', 'l', 0, 42, False, True]) # ['m', 'l', 42, True] """ # Note this is redundant with it.chain return [x for x in sequence if x]
975c0104b3cc05bb82fa211c1b85b49c7d3cb174
8,296
import glob import os def writeSConscript(dirpath, profile, pkeys): """ Create a SConscript file in dirpath. """ # Activate modules mods, defines = collectModules(dirpath, pkeys) if validKey('CONFIG', pkeys) and isComplicated(pkeys['CONFIG'][0]): return False qrcname = "" if not validKey('SOURCES', pkeys): # No SOURCES specified, try to find CPP files slist = glob.glob(os.path.join(dirpath,'*.cpp')) if len(slist) == 0: # Nothing to build here return False else: # Scan for Q_INIT_RESOURCE for s in slist: qrcname = findQResourceName(s) if qrcname: break allmods = True for m in mods: if m not in pkeys['qtmodules']: print(" no module %s" % m) allmods = False if not allmods: return False sc = open(os.path.join(dirpath,'SConscript'),'w') sc.write("""Import('qtEnv') env = qtEnv.Clone() """) if len(mods): sc.write('env.EnableQt5Modules([\n') for m in mods[:-1]: sc.write("'%s',\n" % m) sc.write("'%s'\n" % mods[-1]) sc.write('])\n\n') # Add CPPDEFINEs if len(defines): sc.write('env.AppendUnique(CPPDEFINES=[\n') for d in defines[:-1]: sc.write("'%s',\n" % d) sc.write("'%s'\n" % defines[-1]) sc.write('])\n\n') # Add LIBS if validKey('LIBS', pkeys): sc.write('env.AppendUnique(LIBS=[\n') for d in pkeys['LIBS'][:-1]: sc.write("'%s',\n" % d) sc.write("'%s'\n" % pkeys['LIBS'][-1]) sc.write('])\n\n') # Collect INCLUDEPATHs incpaths = [] if validKey('INCLUDEPATH', pkeys): incpaths = pkeys['INCLUDEPATH'] if validKey('FORMS', pkeys): for s in pkeys['FORMS']: head, tail = os.path.split(s) if head and head not in incpaths: incpaths.append(head) if incpaths: sc.write('env.Append(CPPPATH=[\n') for d in incpaths[:-1]: sc.write("'%s',\n" % relOrAbsPath(dirpath, d)) sc.write("'%s'\n" % relOrAbsPath(dirpath, incpaths[-1])) sc.write('])\n\n') # Add special environment flags if len(qtenv_flags): for key, value in list(qtenv_flags.items()): sc.write("env['%s']=%s\n" % (key, value)) # Write source files if validKey('SOURCES', pkeys): sc.write('source_files = [\n') for s in pkeys['SOURCES'][:-1]: sc.write("'%s',\n" % relOrAbsPath(dirpath, s)) if not qrcname: qrcname = findQResourceName(os.path.join(dirpath,s)) sc.write("'%s'\n" % relOrAbsPath(dirpath, pkeys['SOURCES'][-1])) if not qrcname: qrcname = findQResourceName(os.path.join(dirpath,pkeys['SOURCES'][-1])) sc.write(']\n\n') # Write .ui files if validKey('FORMS', pkeys): sc.write('ui_files = [\n') for s in pkeys['FORMS'][:-1]: sc.write("'%s',\n" % relOrAbsPath(dirpath, s)) sc.write("'%s'\n" % relOrAbsPath(dirpath, pkeys['FORMS'][-1])) sc.write(']\n') sc.write('env.Uic5(ui_files)\n\n') # Write .qrc files if validKey('RESOURCES', pkeys): qrc_name = pkeys['RESOURCES'][0] if qrcname: if qrc_name.endswith('.qrc'): qrc_name = qrc_name[:-4] sc.write("qrc_out = env.Qrc5('%s')\nsource_files.append(qrc_out)\nenv['QT5_QRCFLAGS'] = ['-name', '%s']\n" % (qrc_name, qrcname)) else: if not qrc_name.endswith('.qrc'): qrc_name += '.qrc' sc.write("source_files.append('%s')\n" % qrc_name) # Select module type = 'Program' if validKey('TEMPLATE', pkeys): if pkeys['TEMPLATE'][0] == 'lib': type = 'StaticLibrary' if pkeys['TEMPLATE'][0] == 'dll': type = 'SharedLibrary' # TARGET may be wrapped by qtLibraryTarget function... target = profile if validKey('TARGET', pkeys): t = pkeys['TARGET'][0] m = qtlib_re.search(t) if m: t = "Qt" + m.group(1) target = t.replace("$$TARGET", profile) # Create program/lib/dll else: if validKey('SOURCES', pkeys): sc.write("env.%s('%s', source_files)\n\n" % (type, target)) else: sc.write("env.%s('%s', Glob('*.cpp'))\n\n" % (type, target)) sc.close() return True
36766bcb0f1e7d88b4df6500cb758b70c7c63600
8,297
from typing import List import pathlib def retrieve(passed: List[str]) -> List[str]: """ Retrieves all items that are able to be converted, recursively, from the passed list. Parameters ---------- passed: List[str] The items to search. Returns ------- List[str]: All found items. """ ret = [] for item in passed: try: path = pathlib.Path(item) if path.is_file() and path.suffix == ".txt": ret += retrieve(path.read_text().split("\n")) elif path.is_file(): ret.append(str(path)) elif path.is_dir(): ret += retrieve([str(p) for p in path.iterdir()]) else: ret.append(item) except OSError: ret.append(item) return ret
6789255e302caf9dc6e481df532acec20dfc6b3c
8,298
from typing import List from typing import Optional from typing import Dict from typing import Tuple from typing import Any def get_out_of_sample_best_point_acqf( model: Model, Xs: List[Tensor], X_observed: Tensor, objective_weights: Tensor, mc_samples: int = 512, fixed_features: Optional[Dict[int, float]] = None, fidelity_features: Optional[List[int]] = None, target_fidelities: Optional[Dict[int, float]] = None, outcome_constraints: Optional[Tuple[Tensor, Tensor]] = None, seed_inner: Optional[int] = None, qmc: bool = True, **kwargs: Any, ) -> Tuple[AcquisitionFunction, Optional[List[int]]]: """Picks an appropriate acquisition function to find the best out-of-sample (predicted by the given surrogate model) point and instantiates it. NOTE: Typically the appropriate function is the posterior mean, but can differ to account for fidelities etc. """ model = model # subset model only to the outcomes we need for the optimization if kwargs.get(Keys.SUBSET_MODEL, True): subset_model_results = subset_model( model=model, objective_weights=objective_weights, outcome_constraints=outcome_constraints, ) model = subset_model_results.model objective_weights = subset_model_results.objective_weights outcome_constraints = subset_model_results.outcome_constraints fixed_features = fixed_features or {} target_fidelities = target_fidelities or {} if fidelity_features: # we need to optimize at the target fidelities if any(f in fidelity_features for f in fixed_features): raise RuntimeError("Fixed features cannot also be fidelity features.") elif set(fidelity_features) != set(target_fidelities): raise RuntimeError( "Must provide a target fidelity for every fidelity feature." ) # make sure to not modify fixed_features in-place fixed_features = {**fixed_features, **target_fidelities} elif target_fidelities: raise RuntimeError( "Must specify fidelity_features in fit() when using target fidelities." ) acqf_class, acqf_options = pick_best_out_of_sample_point_acqf_class( outcome_constraints=outcome_constraints, mc_samples=mc_samples, qmc=qmc, seed_inner=seed_inner, ) objective, posterior_transform = get_botorch_objective_and_transform( model=model, objective_weights=objective_weights, outcome_constraints=outcome_constraints, X_observed=X_observed, ) if objective is not None: if not isinstance(objective, MCAcquisitionObjective): raise UnsupportedError( f"Unknown objective type: {objective.__class__}" # pragma: nocover ) acqf_options = {"objective": objective, **acqf_options} if posterior_transform is not None: acqf_options = {"posterior_transform": posterior_transform, **acqf_options} acqf = acqf_class(model=model, **acqf_options) # pyre-ignore [45] if fixed_features: acqf = FixedFeatureAcquisitionFunction( acq_function=acqf, d=X_observed.size(-1), columns=list(fixed_features.keys()), values=list(fixed_features.values()), ) non_fixed_idcs = [i for i in range(Xs[0].size(-1)) if i not in fixed_features] else: non_fixed_idcs = None return acqf, non_fixed_idcs
a6331759833b4715275fdb3ca7d19c237c2c7e55
8,299