content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
from grouper.permissions import permission_intersection def get_public_key_permissions(session, public_key): # type: (Session, PublicKey) -> List[Permission] """Returns the permissions that this public key has. Namely, this the set of permissions that the public key's owner has, intersected with the permissions allowed by this key's tags Returns: a list of all permissions this public key has """ # TODO: Fix circular dependency my_perms = user_permissions(session, public_key.user) for tag in get_public_key_tags(session, public_key): my_perms = permission_intersection(my_perms, get_public_key_tag_permissions(session, tag)) return list(my_perms)
9e9d33cda6fb342d00fb3e00b668ba89c654bc68
8,100
def _format_breed_name(name): """ Format breed name for displaying INPUT name: raw breed name, str OUTPUT name : cleaned breed name, str """ return name.split('.')[1].replace('_', ' ')
0c2680de9bd19e61d717fb84c1ce01e5095ddf35
8,101
import os def loadIndianPinesData(): """ 加载数据 :return: data, labels """ data_path = os.path.join(os.getcwd( ), '../Indian Pines') data = sio.loadmat(os.path.join(data_path, 'Indian_pines_corrected.mat'))['indian_pines_corrected'] labels = sio.loadmat(os.path.join(data_path, 'Indian_pines_gt.mat'))['indian_pines_gt'] return data, labels
3d54f79417fc5cec98708a38c47c3e34100ad639
8,102
def create_pid_redirected_error_handler(): """Creates an error handler for `PIDRedirectedError` error.""" def pid_redirected_error_handler(e): try: # Check that the source pid and the destination pid are of the same # pid_type assert e.pid.pid_type == e.destination_pid.pid_type # Redirection works only for the item route of the format # `/records/<pid_value>` location = url_for( request.url_rule.endpoint, pid_value=e.destination_pid.pid_value ) data = dict( status=301, message='Moved Permanently.', location=location, ) response = make_response(jsonify(data), data['status']) response.headers['Location'] = location return response except (AssertionError, BuildError, KeyError): raise e return pid_redirected_error_handler
3137c4d6447c5da9f500b3d4cd7a6a3a68325a92
8,103
def is_var_name_with_greater_than_len_n(var_name: str) -> bool: """ Given a variable name, return if this is acceptable according to the filtering heuristics. Here, we try to discard variable names like X, y, a, b etc. :param var_name: :return: """ unacceptable_names = {} if len(var_name) < min_var_name_len: return False elif var_name in unacceptable_names: return False return True
c4509b33cc7326c1709f526137e04a590cf3c7ad
8,104
from re import L def stacked_L(robot: RobotPlanar, q: list, q_goal: list): """ Stacks the L matrices for conviencne """ LL = [] LLinv = [] Ts_ee = robot.get_full_pose_fast_lambdify(list_to_variable_dict(q)) Ts_goal = robot.get_full_pose_fast_lambdify(list_to_variable_dict(q_goal)) for ee in robot.end_effectors: T_0_ee = SE2_to_SE3(Ts_ee[ee[0]]) Re = T_0_ee[0:3, 0:3] T_0_goal = SE2_to_SE3(Ts_goal[ee[0]]) Rd = T_0_goal[0:3, 0:3] ll, llinv = L(Rd, Re) LL.append(np.eye(3)) LLinv.append(np.eye(3)) LL.append(ll) LLinv.append(llinv) LL = block_diag(*LL) LLinv = block_diag(*LLinv) return LL, LLinv
a329ad79b9add95307195329b937a85cf9eeda50
8,105
from typing import Dict async def help() -> Dict: """Shows this help message.""" return { '/': help.__doc__, '/help': help.__doc__, '/registration/malaysia': format_docstring(get_latest_registration_data_malaysia.__doc__), '/registration/malaysia/latest': format_docstring(get_latest_registration_data_malaysia.__doc__), '/registration/malaysia/{date}': format_docstring(get_registration_data_malaysia.__doc__), '/vaccination/malaysia': format_docstring(get_latest_vax_data_malaysia.__doc__), '/vaccination/malaysia/latest': format_docstring(get_latest_vax_data_malaysia.__doc__), '/vaccination/malaysia/{date}': format_docstring(get_vax_data_malaysia.__doc__), '/registration/state': format_docstring(get_latest_registration_data_state.__doc__), '/registration/state/all/latest': format_docstring(get_latest_registration_data_state.__doc__), '/registration/state/all/{date}': format_docstring(get_registration_data_all_state.__doc__), '/registration/state/{state}/latest': format_docstring(get_latest_registration_data_for_state.__doc__), '/registration/state/{state}/{date}': format_docstring(get_registration_data_state.__doc__), '/vaccination/state': format_docstring(get_latest_vax_data_state.__doc__), '/vaccination/state/all/latest': format_docstring(get_latest_vax_data_state.__doc__), '/vaccination/state/all/{date}': format_docstring(get_vax_data_all_state.__doc__), '/vaccination/state/{state}/latest': format_docstring(get_latest_vax_data_for_state.__doc__), '/vaccination/state/{state}/{date}': format_docstring(get_vax_data_state.__doc__), }
4d72c66069956c469aea1d39fd68e20454f68e40
8,106
def eliminate_arrays(clusters, template): """ Eliminate redundant expressions stored in Arrays. """ mapper = {} processed = [] for c in clusters: if not c.is_dense: processed.append(c) continue # Search for any redundant RHSs seen = {} for e in c.exprs: f = e.lhs.function if not f.is_Array: continue v = seen.get(e.rhs) if v is not None: # Found a redundant RHS mapper[f] = v else: seen[e.rhs] = f if not mapper: # Do not waste time processed.append(c) continue # Replace redundancies subs = {} for f, v in mapper.items(): for i in filter_ordered(i.indexed for i in c.scope[f]): subs[i] = v[f.indices] exprs = [] for e in c.exprs: if e.lhs.function in mapper: # Drop the write continue exprs.append(e.xreplace(subs)) processed.append(c.rebuild(exprs)) return processed
2d5a59d9d5758963e029cc102d6a123c62ed8758
8,107
def data_generator(batch_size): """ Args: dataset: Dataset name seq_length: Length of sequence batch_size: Size of batch """ vocab_size = 20000 (x_train, y_train), (x_test, y_test) = imdb.load_data(num_words=vocab_size) x_train, y_train, x_test, y_test = tf.ragged.constant(x_train), tf.constant(y_train[..., None]), \ tf.ragged.constant(x_test), tf.constant(y_test[..., None]) # Shuffle only train dataset train_dataset = tf.data.Dataset.from_tensor_slices((x_train, y_train)) \ .shuffle(batch_size * 100).batch(batch_size) test_dataset = tf.data.Dataset.from_tensor_slices((x_test, y_test)).batch(batch_size) return train_dataset, test_dataset, vocab_size
ed1edfd0cbeac01bd1fcad6cc1fe36a94dc006e8
8,108
from datetime import datetime def now(): """ Get current timestamp Returns: str: timestamp string """ current_time = datetime.now() str_date = current_time.strftime("%d %B %Y, %I:%M:%S %p") return str_date
4c487416fa119cae0c5310678dfd96e0f737b937
8,109
def open_mfdataset( fname, convert_to_ppb=True, mech="cb6r3_ae6_aq", var_list=None, fname_pm25=None, surf_only=False, **kwargs ): # Like WRF-chem add var list that just determines whether to calculate sums or not to speed this up. """Method to open RFFS-CMAQ dyn* netcdf files. Parameters ---------- fname : string or list fname is the path to the file or files. It will accept hot keys in strings as well. convert_to_ppb : boolean If true the units of the gas species will be converted to ppbv mech: str Mechanism to be used for calculating sums. Mechanisms supported: "cb6r3_ae6_aq" var_list: list List of variables to include in output. MELODIES-MONET only reads in variables need to plot in order to save on memory and simulation cost especially for vertical data. If None, will read in all model data and calculate all sums. fname_pm25: string or list Optional path to the file or files for precalculated PM2.5 sums. It will accept hot keys in strings as well. surf_only: boolean Whether to save only surface data to save on memory and computational cost (True) or not (False). Returns ------- xarray.DataSet RRFS-CMAQ model dataset in standard format for use in MELODIES-MONET """ # Get dictionary of summed species for the mechanism of choice. dict_sum = dict_species_sums(mech=mech) if var_list is not None: # Read in only a subset of variables and only do calculations if needed. var_list_orig = var_list.copy() # Keep track of the original list before changes. list_calc_sum = [] list_remove_extra = [] # list of variables to remove after the sum to save in memory. for var_sum in [ "PM25", "PM10", "noy_gas", "noy_aer", "nox", "pm25_cl", "pm25_ec", "pm25_ca", "pm25_na", "pm25_nh4", "pm25_no3", "pm25_so4", "pm25_om", ]: if var_sum in var_list: if var_sum == "PM25": var_list.extend(dict_sum["aitken"]) var_list.extend(dict_sum["accumulation"]) var_list.extend(dict_sum["coarse"]) # Keep track to remove these later too list_remove_extra.extend(dict_sum["aitken"]) list_remove_extra.extend(dict_sum["accumulation"]) list_remove_extra.extend(dict_sum["coarse"]) elif var_sum == "PM10": var_list.extend(dict_sum["aitken"]) var_list.extend(dict_sum["accumulation"]) var_list.extend(dict_sum["coarse"]) # Keep track to remove these later too list_remove_extra.extend(dict_sum["aitken"]) list_remove_extra.extend(dict_sum["accumulation"]) list_remove_extra.extend(dict_sum["coarse"]) else: var_list.extend(dict_sum[var_sum]) # Keep track to remove these later too list_remove_extra.extend(dict_sum[var_sum]) var_list.remove(var_sum) list_calc_sum.append(var_sum) # append the other needed species. var_list.append("lat") var_list.append("lon") var_list.append("phalf") var_list.append("tmp") var_list.append("pressfc") var_list.append("dpres") var_list.append("hgtsfc") var_list.append("delz") # Remove duplicates just in case: var_list = list(dict.fromkeys(var_list)) list_remove_extra = list(dict.fromkeys(list_remove_extra)) # Select only those elements in list_remove_extra that are not in var_list_orig list_remove_extra_only = list(set(list_remove_extra) - set(var_list_orig)) # If variables in pm25 files are included remove these as these are not in the main file # And will be added later. for pm25_var in [ "PM25_TOT", "PM25_TOT_NSOM", "PM25_EC", "PM25_NH4", "PM25_NO3", "PM25_SO4", "PM25_OC", "PM25_OM", ]: if pm25_var in var_list: var_list.remove(pm25_var) # open the dataset using xarray dset = xr.open_mfdataset(fname, concat_dim="time", combine="nested", **kwargs)[var_list] else: # Read in all variables and do all calculations. dset = xr.open_mfdataset(fname, concat_dim="time", combine="nested", **kwargs) list_calc_sum = [ "PM25", "PM10", "noy_gas", "noy_aer", "nox", "pm25_cl", "pm25_ec", "pm25_ca", "pm25_na", "pm25_nh4", "pm25_no3", "pm25_so4", "pm25_om", ] if fname_pm25 is not None: # Add the processed pm2.5 species. dset_pm25 = xr.open_mfdataset(fname_pm25, concat_dim="time", combine="nested", **kwargs) dset_pm25 = dset_pm25.drop( labels=["lat", "lon", "pfull"] ) # Drop duplicate variables so can merge. # Slight differences in pfull value between the files, but I assume that these still represent the # same pressure levels from the model dynf* files. # Attributes are formatted differently in pm25 file so remove attributes and use those from dynf* files. dset_pm25.attrs = {} dset = dset.merge(dset_pm25) # Standardize some variable names dset = dset.rename( { "grid_yt": "y", "grid_xt": "x", "pfull": "z", "phalf": "z_i", # Interface pressure levels "lon": "longitude", "lat": "latitude", "tmp": "temperature_k", # standard temperature (kelvin) "pressfc": "surfpres_pa", "dpres": "dp_pa", # Change names so standard surfpres_pa and dp_pa "hgtsfc": "surfalt_m", "delz": "dz_m", } ) # Optional, but when available include altitude info # Calculate pressure. This has to go before sorting because ak and bk # are not sorted as they are in attributes dset["pres_pa_mid"] = _calc_pressure(dset) # Adjust pressure levels for all models such that the surface is first. dset = dset.sortby("z", ascending=False) dset = dset.sortby("z_i", ascending=False) # Note this altitude calcs needs to always go after resorting. # Altitude calculations are all optional, but for each model add values that are easy to calculate. dset["alt_msl_m_full"] = _calc_hgt(dset) dset["dz_m"] = dset["dz_m"] * -1.0 # Change to positive values. # Set coordinates dset = dset.reset_index( ["x", "y", "z", "z_i"], drop=True ) # For now drop z_i no variables use it. dset["latitude"] = dset["latitude"].isel(time=0) dset["longitude"] = dset["longitude"].isel(time=0) dset = dset.reset_coords() dset = dset.set_coords(["latitude", "longitude"]) # These sums and units are quite expensive and memory intensive, # so add option to shrink dataset to just surface when needed if surf_only: dset = dset.isel(z=0).expand_dims("z", axis=1) # Need to adjust units before summing for aerosols # convert all gas species to ppbv if convert_to_ppb: for i in dset.variables: if "units" in dset[i].attrs: if "ppmv" in dset[i].attrs["units"]: dset[i] *= 1000.0 dset[i].attrs["units"] = "ppbv" # convert "ug/kg to ug/m3" for i in dset.variables: if "units" in dset[i].attrs: if "ug/kg" in dset[i].attrs["units"]: # ug/kg -> ug/m3 using dry air density dset[i] = dset[i] * dset["pres_pa_mid"] / dset["temperature_k"] / 287.05535 dset[i].attrs["units"] = r"$\mu g m^{-3}$" # add lazy diagnostic variables # Note that because there are so many species to sum. Summing the aerosols is slowing down the code. if "PM25" in list_calc_sum: dset = add_lazy_pm25(dset, dict_sum) if "PM10" in list_calc_sum: dset = add_lazy_pm10(dset, dict_sum) if "noy_gas" in list_calc_sum: dset = add_lazy_noy_g(dset, dict_sum) if "noy_aer" in list_calc_sum: dset = add_lazy_noy_a(dset, dict_sum) if "nox" in list_calc_sum: dset = add_lazy_nox(dset, dict_sum) if "pm25_cl" in list_calc_sum: dset = add_lazy_cl_pm25(dset, dict_sum) if "pm25_ec" in list_calc_sum: dset = add_lazy_ec_pm25(dset, dict_sum) if "pm25_ca" in list_calc_sum: dset = add_lazy_ca_pm25(dset, dict_sum) if "pm25_na" in list_calc_sum: dset = add_lazy_na_pm25(dset, dict_sum) if "pm25_nh4" in list_calc_sum: dset = add_lazy_nh4_pm25(dset, dict_sum) if "pm25_no3" in list_calc_sum: dset = add_lazy_no3_pm25(dset, dict_sum) if "pm25_so4" in list_calc_sum: dset = add_lazy_so4_pm25(dset, dict_sum) if "pm25_om" in list_calc_sum: dset = add_lazy_om_pm25(dset, dict_sum) # Change the times to pandas format dset["time"] = dset.indexes["time"].to_datetimeindex(unsafe=True) # Turn off warning for now. This is just because the model is in julian time # Drop extra variables that were part of sum, but are not in original var_list # to save memory and computational time. # This is only revevant if var_list is provided if var_list is not None: if bool(list_remove_extra_only): # confirm list not empty dset = dset.drop_vars(list_remove_extra_only) return dset
59639b4bb45d4c1306ea8ecfa1241b86247ce16b
8,110
def projection(projection_matrix: tf.Tensor, flattened_vector: tf.Tensor) -> tf.Tensor: """Projects `flattened_vector` using `projection_matrix`. Args: projection_matrix: A rank-2 Tensor that specifies the projection. flattened_vector: A flat Tensor to be projected Returns: A flat Tensor returned from projection. """ return tf.reshape( projection_matrix @ (tf.transpose(projection_matrix) @ tf.reshape( flattened_vector, [-1, 1])), [-1])
7954247be2f3d130ac79f53e44b0509608fe85d6
8,111
def free_vars(e): """Get free variables from expression e. Parameters ---------- e: tvm.relay.Expr The input expression Returns ------- free : List[tvm.relay.Var] The list of free variables """ return _ir_pass.free_vars(e)
bfab6f5ff0ccadf8dba7af518401e6026efbcb20
8,112
def image_as_uint(im, bitdepth=None): """ Convert the given image to uint (default: uint8) If the dtype already matches the desired format, it is returned as-is. If the image is float, and all values are between 0 and 1, the values are multiplied by np.power(2.0, bitdepth). In all other situations, the values are scaled such that the minimum value becomes 0 and the maximum value becomes np.power(2.0, bitdepth)-1 (255 for 8-bit and 65535 for 16-bit). """ if not bitdepth: bitdepth = 8 if not isinstance(im, np.ndarray): raise ValueError("Image must be a numpy array") if bitdepth == 8: out_type = np.uint8 elif bitdepth == 16: out_type = np.uint16 else: raise ValueError("Bitdepth must be either 8 or 16") dtype_str1 = str(im.dtype) dtype_str2 = out_type.__name__ if (im.dtype == np.uint8 and bitdepth == 8) or ( im.dtype == np.uint16 and bitdepth == 16 ): # Already the correct format? Return as-is return im if dtype_str1.startswith("float") and np.nanmin(im) >= 0 and np.nanmax(im) <= 1: _precision_warn(dtype_str1, dtype_str2, "Range [0, 1].") im = im.astype(np.float64) * (np.power(2.0, bitdepth) - 1) + 0.499999999 elif im.dtype == np.uint16 and bitdepth == 8: _precision_warn(dtype_str1, dtype_str2, "Losing 8 bits of resolution.") im = np.right_shift(im, 8) elif im.dtype == np.uint32: _precision_warn( dtype_str1, dtype_str2, "Losing {} bits of resolution.".format(32 - bitdepth), ) im = np.right_shift(im, 32 - bitdepth) elif im.dtype == np.uint64: _precision_warn( dtype_str1, dtype_str2, "Losing {} bits of resolution.".format(64 - bitdepth), ) im = np.right_shift(im, 64 - bitdepth) else: mi = np.nanmin(im) ma = np.nanmax(im) if not np.isfinite(mi): raise ValueError("Minimum image value is not finite") if not np.isfinite(ma): raise ValueError("Maximum image value is not finite") if ma == mi: return im.astype(out_type) _precision_warn(dtype_str1, dtype_str2, "Range [{}, {}].".format(mi, ma)) # Now make float copy before we scale im = im.astype("float64") # Scale the values between 0 and 1 then multiply by the max value im = (im - mi) / (ma - mi) * (np.power(2.0, bitdepth) - 1) + 0.499999999 assert np.nanmin(im) >= 0 assert np.nanmax(im) < np.power(2.0, bitdepth) return im.astype(out_type)
a906eb7022a1823cd49bedb3858bac34e59fdf02
8,113
def unary_operator(op): """ Factory function for making unary operator methods for Factors. """ # Only negate is currently supported. valid_ops = {'-'} if op not in valid_ops: raise ValueError("Invalid unary operator %s." % op) @with_doc("Unary Operator: '%s'" % op) @with_name(unary_op_name(op)) def unary_operator(self): if self.dtype != float64_dtype: raise TypeError( "Can't apply unary operator {op!r} to instance of " "{typename!r} with dtype {dtypename!r}.\n" "{op!r} is only supported for Factors of dtype " "'float64'.".format( op=op, typename=type(self).__name__, dtypename=self.dtype.name, ) ) # This can't be hoisted up a scope because the types returned by # unary_op_return_type aren't defined when the top-level function is # invoked. if isinstance(self, NumericalExpression): return NumExprFactor( "{op}({expr})".format(op=op, expr=self._expr), self.inputs, dtype=float64_dtype, ) else: return NumExprFactor( "{op}x_0".format(op=op), (self,), dtype=float64_dtype, ) return unary_operator
04bc43c2f5e84db29b7a913de35d7a366464dfda
8,114
def compute_cost_with_regularization(A3, Y, parameters, lambd): """ Implement the cost function with L2 regularization. See formula (2) above. Arguments: A3 -- post-activation, output of forward propagation, of shape (output size, number of examples) Y -- "true" labels vector, of shape (output size, number of examples) parameters -- python dictionary containing parameters of the model Returns: cost - value of the regularized loss function (formula (2)) """ m = Y.shape[1] W1 = parameters["W1"] W2 = parameters["W2"] W3 = parameters["W3"] cross_entropy_cost = compute_cost(A3, Y) # This gives you the cross-entropy part of the cost L2_regularization_cost = (1. / m * lambd / 2) * (np.sum(np.square(W1)) + np.sum(np.square(W2)) + np.sum(np.square(W3))) cost = cross_entropy_cost + L2_regularization_cost return cost
5904cab44af1768779ed983fa001876d14faeb1d
8,115
import matplotlib.pyplot as plt from shapely.geometry import Point, MultiPolygon, MultiLineString from scipy import spatial def catalog_area(ra=[], dec=[], make_plot=True, NMAX=5000, buff=0.8, verbose=True): """Compute the surface area of a list of RA/DEC coordinates Parameters ---------- ra, dec : `~numpy.ndarray` RA and Dec. coordinates in decimal degrees make_plot : bool Make a figure. NMAX : int If the catalog has more then `NMAX` entries, draw `NMAX` random samples. buff : float Buffer in arcmin to add around each catalog point. Returns ------- area : float Computed catalog area in square arcminutes fig : `~matplotlib.figure.Figure` Figure object returned if `make_plot==True`. """ points = np.array([ra, dec])*1. center = np.mean(points, axis=1) points = (points.T - center)*60. # arcmin points[:, 0] *= np.cos(center[1]/180*np.pi) hull = spatial.ConvexHull(points) edge = points[hull.vertices, :] #pbuff = 1 if len(ra) > NMAX: rnd_idx = np.unique(np.cast[int](np.round(np.random.rand(NMAX)*len(ra)))) else: rnd_idx = np.arange(len(ra)) poly = Point(points[rnd_idx[0], :]).buffer(buff) for i, ix in enumerate(rnd_idx): if verbose: print(NO_NEWLINE + '{0} {1}'.format(i, ix)) poly = poly.union(Point(points[ix, :]).buffer(buff)) # Final (multi)Polygon pjoin = poly.buffer(-buff) if make_plot: fig = plt.figure() ax = fig.add_subplot(111) if isinstance(pjoin, MultiPolygon): for p_i in pjoin: if isinstance(p_i.boundary, MultiLineString): for s in p_i.boundary: p = s.xy ax.plot(p[0], p[1]) else: p = p_i.boundary.xy ax.plot(p[0], p[1]) else: p_i = pjoin if isinstance(p_i.boundary, MultiLineString): for s in p_i.boundary: p = s.xy ax.plot(p[0], p[1]) else: p = p_i.boundary.xy ax.plot(p[0], p[1]) ax.scatter(points[rnd_idx, 0], points[rnd_idx, 1], alpha=0.1, marker='+') ax.set_xlim(ax.get_xlim()[::-1]) ax.set_xlabel(r'$\Delta$RA ({0:.5f})'.format(center[0])) ax.set_ylabel(r'$\Delta$Dec. ({0:.5f})'.format(center[1])) ax.set_title('Total area: {0:.1f} arcmin$^2$'.format(pjoin.area)) ax.grid() fig.tight_layout(pad=0.1) return pjoin.area, fig else: return pjoin.area
bcc8f834b5ea7404213c629c2837e45ba42cd690
8,116
from operator import and_ def user_page(num_page=1): """Page with list of users route.""" form = SearchUserForm(request.args, meta={'csrf': False}) msg = False if form.validate(): search_by = int(request.args.get('search_by')) order_by = int(request.args.get('order_by')) search_string = str(request.args.get('search')) if len(search_string) >= MIN_SEARCH_STR: condition = user_search(search_string, search_by) else: condition = "" if search_string != "": msg = True order_list = [User.id, User.role_id, User.delete_date] order = order_list[order_by] search_users = db.session.query(User, Role).filter(and_( User.role_id == Role.id, condition)).order_by(order).paginate( per_page=PAGINATE_PAGE, page=num_page, error_out=True) if msg: flash("Search string is too small", category="danger") return render_template('user_page.html', form=form, users=search_users, get="?" + urlencode(request.args)) else: users = db.session.query(User, Role).filter( User.role_id == Role.id).order_by(User.id).paginate( per_page=PAGINATE_PAGE, page=num_page, error_out=True) return render_template('user_page.html', form=form, users=users, get="?" + urlencode(request.args))
3acf9cc4a274de456ad5ea0ee609857f550867ee
8,117
def validate_input(data: ConfigType) -> dict[str, str] | None: """Validate the input by the user.""" try: SIAAccount.validate_account(data[CONF_ACCOUNT], data.get(CONF_ENCRYPTION_KEY)) except InvalidKeyFormatError: return {"base": "invalid_key_format"} except InvalidKeyLengthError: return {"base": "invalid_key_length"} except InvalidAccountFormatError: return {"base": "invalid_account_format"} except InvalidAccountLengthError: return {"base": "invalid_account_length"} except Exception as exc: # pylint: disable=broad-except _LOGGER.exception("Unexpected exception from SIAAccount: %s", exc) return {"base": "unknown"} if not 1 <= data[CONF_PING_INTERVAL] <= 1440: return {"base": "invalid_ping"} return validate_zones(data)
56ced7cf0d3b02a484910b599c266e928303ddd7
8,118
import importlib def file_and_path_for_module(modulename): """Find the file and search path for `modulename`. Returns: filename: The filename of the module, or None. path: A list (possibly empty) of directories to find submodules in. """ filename = None path = [] try: spec = importlib.util.find_spec(modulename) except ImportError: pass else: if spec is not None: if spec.origin != "namespace": filename = spec.origin path = list(spec.submodule_search_locations or ()) return filename, path
4e8d0edb3a5844bb3c523aed66f8eb7f0c646aaa
8,119
def hello_page(request): """Simple view to say hello. It is used to check the authentication system. """ text = "Welcome to test_project" if not request.user.is_anonymous: text = "Welcome '%s' to test_project" % request.user.username return HttpResponse(text, content_type='text/plain')
fee98ccca3c89d1f110bc828521cbc26af004325
8,120
from typing import Dict def hash_all(bv: Binary_View) -> Dict[str, Function]: """ Iterate over every function in the binary and calculate its hash. :param bv: binary view encapsulating the binary :return: a dictionary mapping hashes to functions """ sigs = {} for function in bv.functions: sigs[hash_function(function)] = function return sigs
3a3a046c9c7fe786c55d3e0d3993679f8ee71465
8,121
from typing import Union from typing import List def apply_deformation( deformation_indices: Union[List[bool], np.ndarray], bsf: np.ndarray ) -> np.ndarray: """Return Hadamard-deformed bsf at given indices.""" n = len(deformation_indices) deformed = np.zeros_like(bsf) if len(bsf.shape) == 1: if bsf.shape[0] != 2*n: raise ValueError( f'Deformation index length {n} does not match ' f'bsf shape {bsf.shape}, which should be {(2*n,)}' ) for i, deform in enumerate(deformation_indices): if deform: deformed[i] = bsf[i + n] deformed[i + n] = bsf[i] else: deformed[i] = bsf[i] deformed[i + n] = bsf[i + n] else: if bsf.shape[1] != 2*n: raise ValueError( f'Deformation index length {n} does not match ' f'bsf shape {bsf.shape}, which should be ' f'{(bsf.shape[0], 2*n)}.' ) for i, deform in enumerate(deformation_indices): if deform: deformed[:, i] = bsf[:, i + n] deformed[:, i + n] = bsf[:, i] else: deformed[:, i] = bsf[:, i] deformed[:, i + n] = bsf[:, i + n] return deformed
87e6a3403190f1139fef223d374df5f7e5f59257
8,122
def index(request): """Return the index.html file""" return render(request, 'index.html')
7ac6c9418e332aebe29a25c3954152adca3f7716
8,123
import logging def execute(cx, stmt, args=(), return_result=False): """ Execute query in 'stmt' over connection 'cx' (with parameters in 'args'). Be careful with query statements that have a '%' in them (say for LIKE) since this will interfere with psycopg2 interpreting parameters. Printing the query will not print AWS credentials IF the string used matches "CREDENTIALS '[^']*'". So be careful or you'll end up sending your credentials to the logfile. """ with cx.cursor() as cursor: executable_statement = mogrify(cursor, stmt, args) printable_stmt = remove_password(executable_statement.decode()) logger.debug("QUERY:\n%s\n;", printable_stmt) # lgtm[py/clear-text-logging-sensitive-data] with Timer() as timer: cursor.execute(executable_statement) if cursor.rowcount is not None and cursor.rowcount > 0: logger.debug( "QUERY STATUS: %s [rowcount=%d] (%s)", cursor.statusmessage, cursor.rowcount, timer ) else: logger.debug("QUERY STATUS: %s (%s)", cursor.statusmessage, timer) if cx.notices and logger.isEnabledFor(logging.DEBUG): for msg in cx.notices: logger.debug("QUERY " + msg.rstrip("\n")) del cx.notices[:] if return_result: return cursor.fetchall()
eaf02dd3177d56d7ca313cec476f3b3b110ee007
8,124
from typing import Optional from typing import Iterable from typing import Dict from typing import Type import click def parse_custom_builders(builders: Optional[Iterable[str]]) -> Dict[str, Type[AbstractBuilder]]: """ Parse the custom builders passed using the ``--builder NAME`` option on the command line. :param builders: """ custom_builders: Dict[str, Type[AbstractBuilder]] = {} if builders is None: return custom_builders entry_points = get_entry_points() for builder_name in builders: if builder_name not in entry_points: raise click.BadArgumentUsage( f"Unknown builder {builder_name!r}. \n" f"Is it registered as an entry point under 'whey.builder'?" ) else: custom_builders[builder_name] = entry_points[builder_name].load() return custom_builders
95216d12dfeacf319464b4f14be249ab3f12f10a
8,125
def construct_user_rnn_inputs(document_feature_size=10, creator_feature_size=None, user_feature_size=None, input_reward=False): """Returns user RNN inputs. Args: document_feature_size: Integer, length of document features. creator_feature_size: Integer or None, length of creator features. If None, no features about creators will be input. user_feature_size: Integer or None, length of user features. If None, no features about users will be input. input_reward: Boolean, whether to input previous reward to RNN layer. """ # Previous consumed document. rnn_input_doc_feature = tf.keras.layers.Input( shape=(None, document_feature_size), name='user_consumed_doc_feature') merged_embedding = rnn_input_doc_feature inputs = [rnn_input_doc_feature] # Previous consumed document-associated creator. if creator_feature_size is not None: # This vector includes creator's observable features and/or creator's hidden # states inferred by creator model. merged_embedding, inputs = _merge_inputs( (None, creator_feature_size), 'user_consumed_doc-creator_feature', merged_embedding, inputs) # User current context. if user_feature_size is not None: merged_embedding, inputs = _merge_inputs( (None, user_feature_size), 'user_current_feature', merged_embedding, inputs) # Previous reward. if input_reward: merged_embedding, inputs = _merge_inputs((None, 1), 'user_previous_reward', merged_embedding, inputs) return merged_embedding, inputs
cdc42e86ff7fee9a7487d05badeae1ef995a3357
8,126
def numpy_read(DATAFILE, BYTEOFFSET, NUM, PERMISSION, DTYPE): """ Read NumPy-compatible binary data. Modeled after MatSeis function read_file in util/waveread.m. """ f = open(DATAFILE, PERMISSION) f.seek(BYTEOFFSET, 0) data = np.fromfile(f, dtype=np.dtype(DTYPE), count=NUM) f.close() return data
9fc4b2de3eecefc649cb78fe7d8b545a09b8f786
8,127
def _process_pmid(s: str, sep: str = '|', prefix: str = 'pubmed:') -> str: """Filter for PubMed ids. :param s: string of PubMed ids :param sep: separator between PubMed ids :return: PubMed id """ for identifier in s.split(sep): identifier = identifier.strip() if identifier.startswith(prefix): return identifier
9a1fc49bf570c81f10b6b5470620d7fc0b54275e
8,128
import ast def _get_import(name, module: ast.Module): """ get from import by name """ for stm in ast.walk(module): if isinstance(stm, ast.ImportFrom): for iname in stm.names: if isinstance(iname, ast.alias): if iname.name == name: return 'from ' + str(stm.module) + ' import ' + name if isinstance(stm, ast.Import): pass return None
bc33a882c65f7fe44d446376db3a71631629ff04
8,129
import os def load_FIPS_data(): """ Load FIPS ref table """ directory = os.path.dirname(os.path.dirname(os.path.realpath(__file__))) filename = os.path.join(directory, 'ref_data', 'FIPS_ref_data.csv') df = pd.read_csv(filename) df['fips'] = df['fips'].astype(str) return df
e6e819cb8e820b96af2850f23b9f69af6fa4136e
8,130
from typing import Optional from typing import Tuple def number_of_qucosa_metadata_in_elasticsearch( host: str = SLUB_ELASTICSEARCH_SERVER_URL, http_auth: Optional[Tuple[str, str]] = None, index_name: str = "fulltext_qucosa", ) -> int: """Return the number of qucosa documents currently available at the SLUB elastic search server. Parameters ---------- host: str = SLUB_ELASTICSEARCH_SERVER_URL The hostname of the ElasticSearch server http_auth: Optional[Tuple[str, str]] Http basic auth parameters as tuple of username and password. If http_auth is None, but environment variables `SLUB_ELASTICSEARCH_SERVER_USER` and `SLUB_ELASTICSEARCH_SERVER_PASSWORD` are set, then these are used as username and password. index_name: str = "fulltext_qucosa" The name of the ElasticSearch index to be queried. Returns ------- int the number of qucosa documents """ es_server = _initialize_elasticsearch_connection(host, http_auth) return es_server.count(index=index_name, body={"query": {"match_all": {}}})["count"]
9e3628998f7c93d12b4855ec2d2c88278b1a5e2a
8,131
from typing import Tuple from typing import Sequence from typing import List from typing import Any from typing import get_type_hints from typing import Optional def codegen_py(typeit_schema: TypeitSchema, top: bool = True, indent: int = 4) -> Tuple[str, Sequence[str]]: """ :param typ: A type (NamedTuple definition) to generate a source for. :param top: flag to indicate that a toplevel structure is to be generated. When False, a sub-structure of the toplevel structure is to be generated. :param indent: keep indentation for source lines. :return: """ typ = typeit_schema.typ overrides = typeit_schema.overrides wrappers = typeit_schema.sequence_wrappers overrides_source: List[str] = [] if typ is None: type_name = 'None' elif typ is Any: type_name = 'Any' else: type_name = typ.__name__ required_imports = [ '# ------- generated by typeit -------', 'from typing import Any, NamedTuple, Optional, Sequence', ] wrapped_type_literal = ('Sequence[' * wrappers) + type_name + (']' * wrappers) if typ in PythonPrimitives: required_imports.extend([ 'from typeit import TypeConstructor', ]) if wrappers: generated_definitions = [ f'Main = {wrapped_type_literal}' ] else: generated_definitions = [] elif typ is Any: required_imports.extend([ 'from typeit import TypeConstructor', ]) generated_definitions = [ f'Main = {wrapped_type_literal}' ] else: required_imports.extend([ 'from typeit import TypeConstructor', ]) ind = ' ' * indent generated_definitions = [f'class {type_name}(NamedTuple):'] hints = get_type_hints(typ) if not hints: generated_definitions.extend([ f'{ind}...', ]) for field_name, field_type in hints.items(): # 1. Generate source code for the field type_literal = literal_for_type(field_type) if field_type not in BUILTIN_LITERALS_FOR_TYPES: # field_type: Union[NamedTuple, Sequence] # TODO: Sequence/List/PVector flag-based folded_lists_count = type_literal.count('Sequence[') if folded_lists_count: # field_type: Sequence[T] # traverse to the folded object for __ in range(folded_lists_count): field_type = field_type.__args__[0] if field_type not in BUILTIN_LITERALS_FOR_TYPES: sub, folded_overrides = codegen_py( TypeitSchema(field_type, overrides, wrappers), False ) generated_definitions.insert(0, f'{sub}{NEW_LINE}{NEW_LINE}') overrides_source.extend(folded_overrides) else: # field_type: NamedTuple # Generate a folded structure definition in the global scope # and then use it for the current field sub, folded_overrides = codegen_py( TypeitSchema(field_type, overrides, wrappers), False ) generated_definitions.insert(0, f'{sub}{NEW_LINE}{NEW_LINE}') overrides_source.extend(folded_overrides) generated_definitions.append(f'{ind}{field_name}: {type_literal}') # 2. Check if the field included into overrides field_override: Optional[str] = overrides.get(getattr(typ, field_name)) if field_override: overrides_source.append( f"{ind}{type_name}.{field_name}: '{field_override}'," ) if top: if wrappers: type_literal = 'Main' else: type_literal = type_name if overrides_source: overrides_part = [ LINE_SKIP, LINE_SKIP, 'overrides = {' + NEW_LINE + NEW_LINE.join(overrides_source) + NEW_LINE + '}' ] constructor_part = f'TypeConstructor & overrides ^ {type_literal}' else: overrides_part = [] constructor_part = f'TypeConstructor ^ {type_literal}' generated_definitions.extend(overrides_part) constructor_serializer_def = ( f'mk_{inflection.underscore(type_literal)}, ' f'serialize_{inflection.underscore(type_literal)} = {constructor_part}' ) generated_definitions.extend([ LINE_SKIP, LINE_SKIP, constructor_serializer_def, LINE_SKIP, ]) # TODO: import Sequence/List/PVector flag-based generated_definitions = ( required_imports + [LINE_SKIP, LINE_SKIP] + generated_definitions ) return NEW_LINE.join(generated_definitions), overrides_source
55a58893cb05a21e1d0c9715de7bad73ceec8fe4
8,132
def _tuple_to_string(tup): """ Converts a tuple of pitches to a string Params: * tup (tuple): a tuple of pitch classes, like (11, 10, 5, 9, 3) Returns: * string: e.g., 'et593' """ def _convert(pitch): pitch = mod_12(pitch) if pitch not in (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11): # should never happen raise ValueError('unexpected pitch found: %s' % pitch) if pitch == 10: return 't' elif pitch == 11: return 'e' else: return str(pitch) output = [] for pitch in tup: output.append(_convert(pitch)) return ''.join(output)
61ee32199b85fe5ec645887641d6b28ff701eabd
8,133
def dashboard(): """Logged in Dashboard screen.""" session["redis_test"] = "This is a session variable." return render_template( "dashboard.jinja2", title="Flask-Session Tutorial.", template="dashboard-template", current_user=current_user, body="You are now logged in!", )
48472e2ad8c3b81adab98524103959a812ab9b30
8,134
def choose_top_k(scores_flat, config): """Chooses the top-k beams as successors. """ next_beam_scores, word_indices = tf.nn.top_k(scores_flat, k=config.beam_width) return next_beam_scores, word_indices
e8bbf86c8452b0b2153f591968370612986673e2
8,135
def train_valid_test_split(data, proportions='50:25:25'): """ Splits the data into 3 parts - training, validation and test sets :param proportions: proportions for the split, like 2:1:1 or 50:30:20 :param data: preprocessed data :return: X_train, Y_train, target_rtns_train, X_valid, Y_valid, target_rtns_valid, X_test, Y_test, target_rtns_test """ features = [c for c in data.columns if c not in ('ret','bin')] n = len(data) borders = [float(p) for p in proportions.split(':')] borders = borders / np.sum(borders) train_ids = (0, int(np.floor(n * borders[0]))) valid_ids = (train_ids[1] + 1, int(np.floor(n * np.sum(borders[:2])))) test_ids = (valid_ids[1] + 1, n) X_train = data[features].iloc[train_ids[0]:train_ids[1], :] X_valid = data[features].iloc[valid_ids[0]:valid_ids[1], :] X_test = data[features].iloc[test_ids[0]:test_ids[1], :] Y_train = data.bin.iloc[train_ids[0]:train_ids[1]] Y_valid = data.bin.iloc[valid_ids[0]:valid_ids[1]] Y_test = data.bin.iloc[test_ids[0]:test_ids[1]] target_rtns_train = data.ret.iloc[train_ids[0]:train_ids[1]] target_rtns_valid = data.ret.iloc[valid_ids[0]:valid_ids[1]] target_rtns_test = data.ret.iloc[test_ids[0]:test_ids[1]] return X_train, Y_train, target_rtns_train, X_valid, Y_valid, target_rtns_valid, X_test, Y_test, target_rtns_test
b8a9d160860aea9c224b72af32ef843b43b44656
8,136
def basis_ders_on_quad_grid(knots, degree, quad_grid, nders, normalization): """ Evaluate B-Splines and their derivatives on the quadrature grid. If called with normalization='M', this uses M-splines instead of B-splines. Parameters ---------- knots : array_like Knots sequence. degree : int Polynomial degree of B-splines. quad_grid: 2D numpy.ndarray (ne,nq) Coordinates of quadrature points of each element in 1D domain, which can be given by quadrature_grid() or chosen arbitrarily. nders : int Maximum derivative of interest. normalization : str Set to 'B' for B-splines, and 'M' for M-splines. Returns ------- basis: 4D numpy.ndarray Values of B-Splines and their derivatives at quadrature points in each element of 1D domain. Indices are . ie: global element (0 <= ie < ne ) . il: local basis function (0 <= il <= degree) . id: derivative (0 <= id <= nders ) . iq: local quadrature point (0 <= iq < nq ) """ # TODO: add example to docstring ne,nq = quad_grid.shape basis = np.zeros((ne, degree+1, nders+1, nq)) if normalization == 'M': scaling = 1. / basis_integrals(knots, degree) for ie in range(ne): xx = quad_grid[ie, :] for iq, xq in enumerate(xx): span = find_span(knots, degree, xq) ders = basis_funs_all_ders(knots, degree, xq, span, nders) if normalization == 'M': ders *= scaling[None, span-degree:span+1] basis[ie, :, :, iq] = ders.transpose() return basis
be1678ab5e758d9d7f9fa7710336fa892c46f9bf
8,137
import opcode def analyze_jumps(jumps): """takes the list of Jump tuples from group_jumps. returns JumpCmp. fails if input is weird (tell me more). """ # todo: more of a decompile, AST approach here? look at uncompyle. if jumps[-1].head is not None: raise BadJumpTable("last jump not an else") if len(jumps) < 3: raise BadJumpTable("too few, what's the point") head0 = jumps[0].head if head0[-2].code != opcode.opmap['COMPARE_OP'] or head0[-2].arg != 2: raise BadJumpTable('cmp not ==',0) if head0[-3].code != opcode.opmap['LOAD_CONST']: raise BadJumpTable('cmp right not LOAD_CONST',0) def compare_head(headi, i): if len(head0) != len(headi): raise BadJumpTable('length mismatch',i) if headi[-2].code != opcode.opmap['COMPARE_OP'] or headi[-2].arg != 2: raise BadJumpTable('cmp not ==',i) # todo below: it would be great if this didn't have to be a constant if headi[-3].code != opcode.opmap['LOAD_CONST']: raise BadJumpTable('cmp right not LOAD_CONST',i) if any(h0[1:]!=hi[1:] for h0,hi in zip(head0[:-3],headi[:-3])): raise BadJumpTable('preamble mismatch',i) for i in range(1,len(jumps)-1): compare_head(jumps[i].head,i) load_left = head0[:-3] # sans the const, sans the compare, sans the jump const2offset = {j.head[-3].arg:j.head[0].pos for j in jumps[:-1]} return JumpCmp(load_left, const2offset)
3f8730c957ad89b649281cf615ff826529c55b3c
8,138
def data(*args, **kwargs): """ The HTML <data> Element links a given content with a machine-readable translation. If the content is time- or date-related, the <time> must be used. """ return el('data', *args, **kwargs)
c948ea946b29369b78fbda0564a822d7b9bb0a06
8,139
import traceback import os def process_dir(dir, doc_type = 'Annual Return', parallel = False): """ Process all document directories in a directory. Parameters ---------- dir : str Relative path to directory containing the document directories doc_type : str Type of documents (default = 'Annual Return') parallel : bool Process directories in parallel for faster performance Returns ------- data_df : pandas.DataFrame Dataframe containing information about all document directories processed successfully failed_df : pandas.DataFrame Dataframe containing information about all document directories processed unsuccessfully and their corresponding traceback """ doc_data_list = [] failed_list = [] if parallel: completed = 0 def worker(input, output, failed): nonlocal completed for doc_dir in iter(input.get, 'STOP'): completed += 1 try: doc_data = process_doc_dir(doc_dir, doc_type) assert (isinstance(doc_data, pd.DataFrame) or isinstance(doc_data, pd.Series)) output.put(doc_data) except: exception = traceback.format_exc(7) failed.put((doc_dir, exception)) print(f'\t\t****{mp.current_process().name} is at iteration {completed}****') NUMBER_OF_PROCESSES = mp.cpu_count() doc_list = [f'{dir}/{doc_dir}' for doc_dir in os.listdir(dir) if os.path.isdir(f'{dir}/{doc_dir}')] num_doc = len(doc_list) print(f"\t\t****Total documents to be processed: {num_doc}****\n\n") task_manager = mp.Manager() done_manager = mp.Manager() failed_manager = mp.Manager() task_queue = task_manager.Queue() done_queue = done_manager.Queue() failed_queue = failed_manager.Queue() for doc_dir in doc_list: task_queue.put(doc_dir) for i in range(NUMBER_OF_PROCESSES): task_queue.put('STOP') process_list = [mp.Process(name=f'Process {str(i)}', target=worker, args=(task_queue, done_queue, failed_queue)) for i in range(NUMBER_OF_PROCESSES)] for process in process_list: process.start() for process in process_list: process.join() while not done_queue.empty(): doc_data_list.append(done_queue.get()) while not failed_queue.empty(): failed_list.append(failed_queue.get()) else: doc_list = [f'{dir}/{doc_dir}'.replace('//', '/') for doc_dir in os.listdir(dir) if os.path.isdir(f'{dir}/{doc_dir}'.replace('//', '/'))] num_doc = len(doc_list) print(f"\t\t****Total documents to be processed: {num_doc}****\n\n") for count, doc_dir in enumerate(doc_list): print(f'\t\t****{count} items processed out of {num_doc}****') try: doc_data = process_doc_dir(doc_dir, doc_type = doc_type) doc_data_list.append(doc_data) except: exception = traceback.format_exc(7) failed_list.append((doc_dir, exception)) if len(failed_list) != 0: failed_df = pd.Series(dict(failed_list)) else: failed_df = pd.Series(['There were no exceptions']) if len(doc_data_list) != 0: data_df = pd.concat(doc_data_list, axis = 0, sort=False) else: data_df = pd.Series(['No documents were scraped successfully']) print('\t\t****Task completed****') print(data_df) return (data_df, failed_df)
5d9dbb2d2df553b26ad94c306d282fa52c81baf1
8,140
import copy def get_crops(nodules, fmt='raw', nodule_shape=(32, 64, 64), batch_size=20, share=0.5, histo=None, variance=(36, 144, 144), hu_lims=(-1000, 400), **kwargs): """ Get pipeline that performs preprocessing and crops cancerous/non-cancerous nodules in a chosen proportion. Parameters ---------- nodules : pd.DataFrame contains: - 'seriesuid': index of patient or series. - 'z','y','x': coordinates of nodules center. - 'diameter': diameter, in mm. fmt : str can be either 'raw', 'blosc' or 'dicom'. nodule_shape : tuple, list or ndarray of int crop shape along (z,y,x). batch_size : int number of nodules in batch generated by pipeline. share : float share of cancer crops in the batch. histo : tuple :func:`numpy.histogramdd` output. Used for sampling non-cancerous crops variance : tuple, list or ndarray of float variances of normally distributed random shifts of nodules' start positions hu_lims : tuple, list of float seq of len=2, representing limits of hu-trimming in normalize_hu-action. **kwargs spacing : tuple (z,y,x) spacing after resize. shape : tuple (z,y,x) shape after crop/pad. method : str interpolation method ('pil-simd' or 'resize'). See :func:`~radio.CTImagesBatch.resize`. order : None or int order of scipy-interpolation (<=5), if used. padding : str mode of padding, any supported by :func:`numpy.pad`. Returns ------- pipeline """ # update args of unify spacing args_unify_spacing = copy(kwargs_default) args_unify_spacing.update(kwargs) # set up other args-dicts args_sample_nodules = dict(nodule_size=nodule_shape, batch_size=batch_size, share=share, histo=histo, variance=variance) # set up the pipeline pipeline = (Pipeline() .load(fmt=fmt) .fetch_nodules_info(nodules=nodules) .unify_spacing(**args_unify_spacing) .create_mask() .normalize_hu(min_hu=hu_lims[0], max_hu=hu_lims[1]) .sample_nodules(**args_sample_nodules) .run(lazy=True, batch_size=RUN_BATCH_SIZE, shuffle=True) ) return pipeline
51bc314a8675790f83d0b6b7276e094986317187
8,141
def get_dict_from_args(args): """Extracts a dict from task argument string.""" d = {} if args: for k,v in [p.strip().split('=') for p in args.split(',')]: d[k] = v return d
8fb05329f6119393f94215808c6ab9b3116ec759
8,142
import warnings import cupy as cp from netver.utils.cuda_code import cuda_code def multi_area_propagation_gpu(input_domain, net_model, thread_number=32): """ Propagation of the input domain through the network to obtain the OVERESTIMATION of the output bound. The process is performed applying the linear combination node-wise and the necessary activation functions. The process is on GPU, completely parallelized on NVIDIA CUDA GPUs and c++ code. Parameters ---------- input_domain : list the input domain expressed as a 3-dim matrix. (a) a list of list for each splitted domain; (b) a list of bound for each input node and (c) a list of two element for the node, lower and upper net_model : tf.keras.Model tensorflow model to analyze, the model must be formatted in the 'tf.keras.Model(inputs, outputs)' format thread_number : int number of CUDA thread to use for each CUDA block, the choice is free and does not effect the results, can however effect the performance Returns: -------- reshaped_bound : list the propagated bound in the same format of the input domain (3-dim) """ # Ignore the standard warning from CuPy warnings.filterwarnings("ignore") # Import the necessary library for the parallelization (Cupy) and also the c++ CUDA code. # Load network shape, activations and weights layer_sizes = [] activations = [] full_weights = np.array([]) full_biases = np.array([]) # Iterate on each layer of the network, exluding the input (tf2 stuff) for layer in net_model.layers[1:]: # Obtain the activation function list if layer.activation == tf.keras.activations.linear: activations.append(0) elif layer.activation == tf.keras.activations.relu: activations.append(1) elif layer.activation == tf.keras.activations.tanh: activations.append(2) elif layer.activation == tf.keras.activations.sigmoid: activations.append(3) # Obtain the netowrk shape as a list layer_sizes.append(layer.input_shape[1]) # Obtain all the weights for paramters and biases weight, bias = layer.get_weights() full_weights = np.concatenate((full_weights, weight.T.reshape(-1))) full_biases = np.concatenate((full_biases, bias.reshape(-1))) # Fixe last layer size layer_sizes.append( net_model.output.shape[1] ) # Initialize the kernel loading the CUDA code my_kernel = cp.RawKernel(cuda_code, 'my_kernel') # Convert all the data in cupy array beore the kernel call max_layer_size = max(layer_sizes) results_cuda = cp.zeros(layer_sizes[-1] * 2 * len(input_domain), dtype=cp.float32) layer_sizes = cp.array(layer_sizes, dtype=cp.int32) activations = cp.array(activations, dtype=cp.int32) input_domain = cp.array(input_domain, dtype=cp.float32) full_weights = cp.array(full_weights, dtype=cp.float32) full_biases = cp.array(full_biases, dtype=cp.float32) # Define the number of CUDA block block_number = int(len(input_domain) / thread_number) + 1 # Create and launch the kernel, wait for the sync of all threads kernel_input = (input_domain, len(input_domain), layer_sizes, len(layer_sizes), full_weights, full_biases, results_cuda, max_layer_size, activations) my_kernel((block_number, ), (thread_number, ), kernel_input) cp.cuda.Stream.null.synchronize() # Reshape the results and convert in numpy array reshaped_bound = cp.asnumpy(results_cuda).reshape((len(input_domain), net_model.layers[-1].output_shape[1], 2)) # return reshaped_bound
a81aad5e05b7054c5b7fc5016941ffc6abea5948
8,143
def opensslCmsSignedDataCreate( conveyedInfoFile, cert, privateKey ): """Create a signed CMS encoded object given a conveyed-info file and base64 encode the response.""" opensslCmdArgs = [ "openssl", "cms", "-sign", "-in", conveyedInfoFile, "-signer", cert, "-inkey", privateKey, "-outform", "der", "-nodetach" ] conveyedInfoCmsSignedDerBase64 = runOpensslCmd( opensslCmdArgs, [ "base64" ] ) return conveyedInfoCmsSignedDerBase64
905ddbec7c252de6169f4fdedab19e0c6818fb39
8,144
import os def compute_kv(config): """Parse log data and calling draw""" result = {} for _cfg in config['data']: data = data_parser.log_kv(_cfg['path'], _cfg['phase'], _cfg['keys']) # clip from start idx if 'start_iter' in _cfg: start_idx = 0 for idx, iteration in enumerate(data['iter']): if iteration >= _cfg['start_iter']: start_idx = idx break data = utils.process_keys(utils.clip, data, start_idx) # downsampling all points including iter if 'iter_invl' in _cfg: invl = int(_cfg['iter_invl'] / (data['iter'][1]-data['iter'][0])) assert invl >= 1 data = utils.process_keys(utils.downsampling, data, invl) res_list = {} # compute max if _cfg['task'] == 'max': idx, value = _kv_max(data, _cfg['sort_key']) # broadcast to other key res_list['iter'] = data['iter'][idx] for key in _cfg['keys']: res_list[key] = data[key][idx] elif _cfg['task'] == 'min': idx, value = _kv_min(data, _cfg['sort_key']) # broadcast to other key res_list['iter'] = data['iter'][idx] for key in _cfg['keys']: res_list[key] = data[key][idx] # print print(_cfg['path']) for res in res_list: print(' ', res, res_list[res]) # add-in result result[os.path.basename(_cfg['path'])] = data return result
074563650c701820a8c8cf88b5cb56e25259f164
8,145
def change_app_header(uri, headers, body): """ Add Accept header for preview features of Github apps API """ headers["Accept"] = "application/vnd.github.machine-man-preview+json" return uri, headers, body
3610d1d482e057ba73a1901aed8430ff35d98f3b
8,146
def fib_fail(n: int) -> int: """doesn't work because it's missing the base case""" return fib_fail(n - 1) + fib_fail(n - 2)
6e8138b7ce330c9ab191367e3911fe8146240c25
8,147
def int2str(num, radix=10, alphabet=BASE85): """helper function for quick base conversions from integers to strings""" return NumConv(radix, alphabet).int2str(num)
6a7b6e7e090cccc20a0e0e3196e81f79cc5dabc5
8,148
def randomize_onesample(a, n_iter=10000, h_0=0, corrected=True, random_seed=None, return_dist=False): """Nonparametric one-sample T test through randomization. On each iteration, randomly flip the signs of the values in ``a`` and test the mean against 0. If ``a`` is two-dimensional, it is assumed to be shaped as (n_observations, n_tests), and a max-statistic based approach is used to correct the p values for multiple comparisons over tests. Parameters ---------- a : array-like input data to test n_iter : int number of randomization iterations h_0 : float, broadcastable to tests in a null hypothesis for the group mean corrected : bool correct the p values in the case of multiple tests random_seed : int or None seed to use for random number generator return_dist : bool if True, return the null distribution of t statistics Returns ------- obs_t : float or array of floats group mean T statistic(s) corresponding to tests in input obs_p : float or array of floats one-tailed p value that the population mean is greater than h_0 (1 - percentile under the null) dist : ndarray, optional if return_dist is True, the null distribution of t statistics """ a = np.asarray(a, np.float) if a.ndim < 2: a = a.reshape(-1, 1) n_samp, n_test = a.shape a -= h_0 rs = np.random.RandomState(random_seed) flipper = (rs.uniform(size=(n_samp, n_iter)) > 0.5) * 2 - 1 flipper = (flipper.reshape(n_samp, 1, n_iter) * np.ones((n_samp, n_test, n_iter), int)) rand_dist = a[:, :, None] * flipper err_denom = np.sqrt(n_samp - 1) std_err = rand_dist.std(axis=0) / err_denom t_dist = rand_dist.mean(axis=0) / std_err obs_t = a.mean(axis=0) / (a.std(axis=0) / err_denom) if corrected: obs_p = 1 - percentile_score(t_dist.max(axis=0), obs_t) / 100 else: obs_p = [] for obs_i, null_i in zip(obs_t, t_dist): obs_p.append(1 - percentile_score(null_i, obs_i) / 100) obs_p = np.array(obs_p) if a.shape[1] == 1: obs_t = np.asscalar(obs_t) obs_p = np.asscalar(obs_p) t_dist = t_dist.squeeze() if return_dist: return obs_t, obs_p, t_dist return obs_t, obs_p
2af8b9592f82b14dda1f59e41663e7253eb7dbe8
8,149
from typing import Optional from typing import Dict def git_get_project( directory: str, token: Optional[str] = None, revisions: Optional[Dict[str, str]] = None ) -> BuiltInCommand: """ Create an Evergreen command to clones the tracked project and check current revision. Also, applies patches if the task was created by a patch build. :param directory: Directory to clone into. :param token: Use a token to clone instead of ssh key. :param revisions: Map of revisions to use for modules. """ params = { "directory": directory, } add_if_exists(params, "token", token) add_if_exists(params, "revisions", revisions) return BuiltInCommand("git.get_project", params)
b4cc4e3335c6c91556d02c76761082d95baee775
8,150
import sys def main(args=None): """ec2mc script's entry point Args: args (list): Arguments for argparse. If None, set to sys.argv[1:]. """ if args is None: args = sys.argv[1:] try: # Classes of available commands in the commands directory commands = [ configure_cmd.Configure, aws_setup_cmd.AWSSetup, server_cmds.Server, servers_cmds.Servers, address_cmds.Address, user_cmds.User ] # Use argparse to turn args into namedtuple of arguments cmd_args = _argv_to_cmd_args(args, commands) # If basic configuration being done, skip config validation if cmd_args.command != "configure": # Validate config's config.json validate_config.main() # Validate config's aws_setup.json and YAML instance templates validate_setup.main() # Create an instance from the appropriate command class chosen_cmd = next(cmd(cmd_args) for cmd in commands if cmd.cmd_name() == cmd_args.command) # Validate IAM user has needed permissions to use the command halt.assert_empty(chosen_cmd.blocked_actions(cmd_args)) # Use the command chosen_cmd.main(cmd_args) except SystemExit: return False return True
a59c99d1c8f63f64ef69d45b7e19f239584ed7b0
8,151
def body_contour(binary_image): """Helper function to get body contour""" contours = find_contours(binary_image) areas = [cv2.contourArea(cnt) for cnt in contours] body_idx = np.argmax(areas) return contours[body_idx]
0ccfa7340d492f89c6c0090c296e7aede379754a
8,152
def rule_like(rule, pattern): """ Check if JsonLogic rule matches a certain 'pattern'. Pattern follows the same structure as a normal JsonLogic rule with the following extensions: - '@' element matches anything: 1 == '@' "jsonlogic" == '@' [1, 2] == '@' {'+': [1, 2]} == '@' {'+': [1, 2]} == {'@': [1, 2]} {'+': [1, 2]} == {'+': '@'} {'+': [1, 2]} == {'+': ['@', '@']} {'+': [1, 2]} == {'@': '@'} - 'number' element matches any numeric value: 1 == 'number' 2.34 == 'number' [1, 2] == ['number', 'number'] {'+': [1, 2]} == {'+': ['number', 'number']} - 'string' element matches any string value: "name" == 'string' {'cat': ["json", "logic"]} = {'cat': ['string', 'string']} - 'array' element matches an array of any length: [] == 'array' [1, 2, 3] = 'array' {'+': [1, 2]} == {'+': 'array'} Use this method to make sure JsonLogic rule is correctly constructed. """ if pattern == rule: return True if pattern == '@': return True if pattern == 'number': return _is_numeric(rule) if pattern == 'string': return _is_string(rule) if pattern == "array": return _is_array(rule) if is_logic(pattern): if is_logic(rule): # Both pattern and rule are a valid JsonLogic rule, go deeper pattern_operator = _get_operator(pattern) rule_operator = _get_operator(rule) if pattern_operator == '@' or pattern_operator == rule_operator: # Operators match, go deeper and try matching values return rule_like( _get_values(rule, rule_operator, normalize=False), _get_values(pattern, pattern_operator, normalize=False)) return False # All above assumptions failed if _is_array(pattern): if _is_array(rule): # Both pattern and rule are arrays, go deeper if len(pattern) == len(rule): # Length of pattern and rule arrays are the same, # go deeper and try matching each value return all( rule_like(rule_elem, pattern_elem) for rule_elem, pattern_elem in zip(rule, pattern)) return False # All above assumptions failed return False
cd058d799cdee4d548c3e2075e1555ea28e594f1
8,153
def apt_repo(module, *args): """run apt-repo with args and return its output""" # make args list to use in concatenation args = list(args) rc, out, err = module.run_command([APT_REPO_PATH] + args) if rc != 0: module.fail_json(msg="'%s' failed: %s" % (' '.join(['apt-repo'] + args), err)) return out
d4572cb9d586b973d461e4ac33709e582c26dda7
8,154
from typing import Optional from typing import Dict from typing import Any import httpx async def get_data( *, config: Box, region: Region, start: Optional[int] = None, end: Optional[int] = None, ) -> Dict[Any, Any]: """Return a new consumer token.""" lookup = f"awattar.{region.name.lower()}" awattar_config = config[lookup] endpoint = f"{awattar_config.host}{awattar_config.url}" + "{}" params = {} if start: params["start"] = str(start) if end: params["end"] = str(end) if params: url = endpoint.format("?" + urlencode(params)) else: url = endpoint.format("") timeout = 10.0 log.debug(f"Awattar URL: {url}") try: async with httpx.AsyncClient() as client: response = await client.get(url, timeout=timeout) except Exception as e: log.error(f"Caught an exception while fetching data from the Awattar API: {e}") raise try: data = response.json() except Exception as e: log.error(f"Could not JSON decode the Awattar response: {e}") raise return data
ed3795e1ae85f7bd65ce2f71fd922c261e993452
8,155
def get_rasterization_params() -> RasterizationParams: """ Construct the RasterizationParams namedtuple from the static configuration file :return: the rasterization parameters """ if cfg is None: load_cfg() # get rasterization section rasterization_dict = cfg[compute_dsm_tag][rasterization_tag] rasterization_params = RasterizationParams(*rasterization_dict.values()) return rasterization_params
9adea0ffd838cbf3425cad5a0ab30bfe92829bc7
8,156
def rain_attenuation_probability(lat, lon, el, hs=None, Ls=None, P0=None): """ The following procedure computes the probability of non-zero rain attenuation on a given slant path Pr(Ar > 0). Parameters ---------- lat : number, sequence, or numpy.ndarray Latitudes of the receiver points lon : number, sequence, or numpy.ndarray Longitudes of the receiver points el : sequence, or number Elevation angle (degrees) hs : number, sequence, or numpy.ndarray, optional Heigh above mean sea level of the earth station (km). If local data for the earth station height above mean sea level is not available, an estimate is obtained from the maps of topographic altitude given in Recommendation ITU-R P.1511. Ls : number, sequence, or numpy.ndarray, optional Slant path length from the earth station to the rain height (km). If data about the rain height is not available, this value is estimated automatically using Recommendation ITU-R P.838 P0 : number, sequence, or numpy.ndarray, optional Probability of rain at the earth station, (0 ≤ P0 ≤ 1) Returns ------- p: Quantity Probability of rain attenuation on the slant path (%) References ---------- [1] Propagation data and prediction methods required for the design of Earth-space telecommunication systems: https://www.itu.int/dms_pubrec/itu-r/rec/p/R-REC-P.618-12-201507-I!!PDF-E.pdf """ type_output = get_input_type(lat) lat = prepare_input_array(lat) lon = prepare_input_array(lon) lon = np.mod(lon, 360) el = prepare_quantity(prepare_input_array(el), u.deg, 'Elevation angle') hs = prepare_quantity( hs, u.km, 'Heigh above mean sea level of the earth station') Ls = prepare_quantity( Ls, u.km, 'Heigh above mean sea level of the earth station') P0 = prepare_quantity(P0, u.pct, 'Point rainfall rate') val = __model.rain_attenuation_probability(lat, lon, el, hs, Ls, P0) return prepare_output_array(val, type_output) * 100 * u.pct
728879dc2b51de813f8e1c83a99a8117883c423f
8,157
import os import glob def discover(paths=None): """Get the full list of files found in the registered folders Args: paths (list, Optional): directories which host preset files or None. When None (default) it will list from the registered preset paths. Returns: list: valid .json preset file paths. """ presets = [] for path in paths or preset_paths(): path = os.path.normpath(path) if not os.path.isdir(path): continue # check for json files glob_query = os.path.abspath(os.path.join(path, "*.json")) filenames = glob.glob(glob_query) for filename in filenames: # skip private files if filename.startswith("_"): continue # check for file size if not check_file_size(filename): log.warning("Filesize is smaller than 1 byte for file '%s'", filename) continue if filename not in presets: presets.append(filename) return presets
c793fb1b6096cc99f5a5f337517a34b34008e71f
8,158
import itertools def largets_prime_factor(num): """ Returns the largest prime factor of num. """ prime_factors = [] for n in itertools.count(2): if n > num: break if num%n == 0: prime_factors.append(n) while (num%n == 0): num = num/n return max(prime_factors)
12100b6cdc2e0553295c1803e699544aa930bbfb
8,159
import os def delete_md5(md5): """Delete the data of the file that has the MD5 hash.""" file = File.query.filter(File.md5 == md5).one_or_none() schema = FileSchema() result = schema.dump(file) if file is not None: filename = f"{result['file_name']}.{result['file_type']}" if not os.path.exists(app.config['UPLOAD_FOLDER']): os.makedirs(app.config['UPLOAD_FOLDER']) folder = app.config['UPLOAD_FOLDER'] file_path = os.path.join(folder, filename) os.remove(file_path) db.session.delete(file) db.session.commit() return make_response(f"File with MD5 hash {md5} deleted.", 200) else: abort(404, f"File not found with MD5 hash: {md5}")
7bfd1491805d7430ee02423cc739d364c17264ed
8,160
def compute_eigenvectors(exx, exy, eyy): """ exx, eyy can be 1d arrays or 2D arrays :param exx: strain component, float or 1d array :param exy: strain component, float or 1d array :param eyy: strain component, float or 1d array :rtype: list """ e1, e2 = np.zeros(np.shape(exx)), np.zeros(np.shape(exx)); # eigenvalues v00, v01 = np.zeros(np.shape(exx)), np.zeros(np.shape(exx)); v10, v11 = np.zeros(np.shape(exx)), np.zeros(np.shape(exx)); # eigenvectors dshape = np.shape(exx); if len(dshape) == 1: for i in range(len(exx)): [e11, e22, v] = eigenvector_eigenvalue(exx[i], exy[i], eyy[i]); e1[i], e2 = e11, e22; # convention of this code returns negative eigenvalues compared to my other codes v00[i], v10[i] = v[0][0], v[1][0]; v01[i], v11[i] = v[0][1], v[1][1]; elif len(dshape) == 2: for j in range(dshape[0]): for i in range(dshape[1]): [e11, e22, v] = eigenvector_eigenvalue(exx[j][i], exy[j][i], eyy[j][i]); e1[j][i], e2[j][i] = e11, e22; v00[j][i], v01[j][i] = v[0][0], v[0][1]; v10[j][i], v11[j][i] = v[1][0], v[1][1]; return [e1, e2, v00, v01, v10, v11];
524fe0cabeda91ca3086c3e46e88f19a919ff489
8,161
def name_looks_valid(name: str) -> bool: """ Guesses if a name field is valid. Valid is defined as being at least two words, each beginning with a capital letter and ending with a lowercase letter. :param name: the name to check :return: whether this name is considered valid """ existing_parts = name.split() parts_that_look_like_names = list( filter(lambda part: fullmatch(r"[A-Z](?:[A-Za-z-']+)?[a-z]", part), existing_parts) ) if len(existing_parts) < 2 or len(parts_that_look_like_names) < 2: return False if len(parts_that_look_like_names) > 2 or len(existing_parts) == len(parts_that_look_like_names): return True return False
3f980ac4db9623c599733794253e6563abe698cb
8,162
import tqdm from pathlib import Path def convert_polygons_to_lines(src_polygons, dst_lines, crs=None, add_allone_col=False): """Convert polygons to lines. Arguments: src_polygons {path to geopandas-readable file} -- Filename of the the polygon vector dataset to be converted to lines. dst_lines {[type]} -- Filename where to write the line vector dataset to. Keyword Arguments: crs {dict or str} -- Output projection parameters as string or in dictionary format. This will reproject the data when a crs is given (not {None}) (default: {None}). add_allone_col {bool} -- Add an additional attribute column with all ones. This is useful, e.g. in case you want to use the lines with gdal_proximity afterwards (default: {True}). Returns: int -- Exit code 0 if successeful. """ gdf = gpd.read_file(src_polygons) geom_coords = gdf["geometry"] # featureset.get(5)["geometry"]["coordinates"] lines = [] row_ids = [] for i_row, pol in tqdm(enumerate(geom_coords), total=len(geom_coords)): boundary = pol.boundary if boundary.type == 'MultiLineString': for line in boundary: lines.append(line) row_ids.append(i_row) else: lines.append(boundary) row_ids.append(i_row) gdf_lines = gdf.drop("geometry", axis=1).iloc[row_ids, :] gdf_lines["Coordinates"] = lines gdf_lines = gpd.GeoDataFrame(gdf_lines, geometry='Coordinates', crs=gdf.crs) if crs is not None: gdf_lines = gdf_lines.to_crs(crs) if add_allone_col: gdf_lines["ALLONE"] = 1 Path(dst_lines).parent.mkdir(exist_ok=True, parents=True) gdf_lines.to_file(dst_lines) return 0
7340eccc3b02f70d38967f3c325c968bcec67f26
8,163
def format_decimal(amount): """ jinja2 filter function for decimal number treatment """ amt_whole = int(amount) amt_whole_len = len(str(amt_whole)) if amount < 1: amt_str = '{:0.15f}'.format(amount).rstrip("0").rstrip(".") elif amt_whole_len < 4: amt_str = '{:0.3f}'.format(amount).rstrip("0").rstrip(".") elif amt_whole_len < 6: amt_str = '{:0.2f}'.format(amount).rstrip("0").rstrip(".") elif amt_whole_len < 9: amt_str = '{:0.1f}'.format(amount).rstrip("0").rstrip(".") else: amt_str = '{}'.format(amt_whole) return amt_str
55ee4b6134abd409ade396233fa07061d0a30764
8,164
def remove_special_char(df, col): """Removes special characters such as % and $ from numeric variables and converts them into float""" df[col] = df[col].replace(regex = True, to_replace = r'[^0-9.\-]', value=r'') df[col] = df[col].astype("float") return df[col]
c6c4c86eb480d2f045e40b3eb831d0b8d5381d33
8,165
def getNonlinearInfo(numHiddenLayers, numBinary, unaryPerBinary): """ Generates a 2D list to be used as a nonlinearInfo argument in building an EQL/EQL-div model # Arguments numHiddenLayers: integer, number of hidden layers (i.e. layers including nonlinear keras layer components) numBinary: list of integers, available numbers to be used as number of binary functions in a nonlinear layer component unaryPerBinary: integer, number of unary function per binary function in a nonlinear layer component # Returns A 2D list of integers with dimension numHiddenLayers x 2. Rows represent layers, first column is number of unary functions, second column is number of binary functions """ nonlinearInfo = [0 for i in range(numHiddenLayers)] for i in range(numHiddenLayers): v = np.random.choice(numBinary) # binary nodes u = unaryPerBinary * v # unary nodes nonlinearInfo[i] = [u, v] return nonlinearInfo
e62f8d016501ad48aeae09ebd8e61b659618e0b0
8,166
import types def construct_magmad_gateway_payload(gateway_id: str, hardware_id: str) -> types.Gateway: """ Returns a default development magmad gateway entity given a desired gateway ID and a hardware ID pulled from the hardware secrets. Args: gateway_id: Desired gateway ID hardware_id: Hardware ID pulled from the VM Returns: Gateway object with fields filled in with reasonable default values """ return types.Gateway( name='TestGateway', description='Test Gateway', tier='default', id=gateway_id, device=types.GatewayDevice( hardware_id=hardware_id, key=types.ChallengeKey( key_type='ECHO', ), ), magmad=types.MagmadGatewayConfigs( autoupgrade_enabled=True, autoupgrade_poll_interval=60, checkin_interval=60, checkin_timeout=30, ), )
87826b72fd2f33a4a862ffbacbbce14f206dc086
8,167
import uuid import types import sys import traceback def endpoint(fun): """ REST HTTP method endpoints should use this decorator. It converts the return value of the underlying method to the appropriate output format and sets the relevant response headers. It also handles RestExceptions, which are 400-level exceptions in the REST endpoints, AccessExceptions resulting from access denial, and also handles any unexpected errors using 500 status and including a useful traceback in those cases. If you want a streamed response, simply return a generator function from the inner method. """ @wraps(fun) def endpointDecorator(self, *path, **params): _setCommonCORSHeaders() cherrypy.lib.caching.expires(0) cherrypy.request.girderRequestUid = str(uuid.uuid4()) setResponseHeader('Girder-Request-Uid', cherrypy.request.girderRequestUid) try: _preventRepeatedParams(params) val = fun(self, path, params) # If this is a partial response, we set the status appropriately if 'Content-Range' in cherrypy.response.headers: cherrypy.response.status = 206 val = _mongoCursorToList(val) if callable(val): # If the endpoint returned anything callable (function, # lambda, functools.partial), we assume it's a generator # function for a streaming response. cherrypy.response.stream = True _logRestRequest(self, path, params) return val() if isinstance(val, cherrypy.lib.file_generator): # Don't do any post-processing of static files return val if isinstance(val, types.GeneratorType): val = list(val) except RestException as e: val = _handleRestException(e) except AccessException as e: val = _handleAccessException(e) except GirderException as e: val = _handleGirderException(e) except ValidationException as e: val = _handleValidationException(e) except cherrypy.HTTPRedirect: raise except Exception: # These are unexpected failures; send a 500 status logger.exception('500 Error') cherrypy.response.status = 500 val = dict(type='internal', uid=cherrypy.request.girderRequestUid) if config.getServerMode() == ServerMode.PRODUCTION: # Sanitize errors in production mode val['message'] = 'An unexpected error occurred on the server.' else: # Provide error details in non-production modes t, value, tb = sys.exc_info() val['message'] = '%s: %s' % (t.__name__, repr(value)) val['trace'] = traceback.extract_tb(tb) resp = _createResponse(val) _logRestRequest(self, path, params) return resp return endpointDecorator
794e99aede341eef177cf1b5e617613a0ee5aeb1
8,168
def script_rename_number(config): """ The scripting version of `rename_number`. This function applies the rename to the entire directory. It also adds the tags to the header file of each fits. Parameters ---------- config : ConfigObj The configuration object that is to be used for this function. Returns ------- None """ # Extract the configuration parameters. data_directory = core.config.extract_configuration( config_object=config, keys=['data_directory']) begin_garbage = core.config.extract_configuration( config_object=config, keys=['renaming','begin_garbage']) # Obtain the labels. labels, raw = rename_number(data_directory=data_directory, begin_garbage=begin_garbage) # Add to all file headers. Assume that the order has not # changed between renaming steps. core.error.ifas_info("Adding the file number under the `NUMBER` card " "in the headers of the fits files in {data_dir} " "based on the file order." .format(data_dir=data_directory)) fits_files = core.io.get_fits_filenames(data_directory=data_directory) for (filedex, headerdex) in zip(fits_files, raw): __ = core.io.append_astropy_header_card( file_name=filedex, header_cards={'NUMBER':headerdex}) # Finally rename the files based on parallel appending. Glob # provides the directory. core.error.ifas_info("Appending the file number to the end of " "the files in {data_dir}." .format(data_dir=data_directory)) core.io.rename_by_parallel_append(file_names=fits_files, appending_names=labels, directory=None) return None
bd0c14cbec43644ed5b6e7b9e23e1c1f71f51984
8,169
def jasper10x4(**kwargs): """ Jasper 10x4 model from 'Jasper: An End-to-End Convolutional Neural Acoustic Model,' https://arxiv.org/abs/1904.03288. Parameters: ---------- pretrained : bool, default False Whether to load the pretrained weights for model. root : str, default '~/.chainer/models' Location for keeping the model parameters. """ return get_jasper(version=("jasper", "10x4"), model_name="jasper10x4", **kwargs)
4b8e210a619a28ca0d28ee6ba85fd7a7acf15335
8,170
def swap(lst, idx1, idx2): """ >>> swap([0, 1, 2], 0, 1) [1, 0, 2] >>> swap([0, 1, 2], 0, 0) [0, 1, 2] """ # print("Swapping [{}, {}] from {}".format(idx1, idx2, lst)) lst[idx1], lst[idx2] = lst[idx2], lst[idx1] # print("resulting to {}".format(lst)) return lst
81dee804db05eedaa1a9b5611e836a4c1da89b4b
8,171
def substring_index(column, delim=' ', cnt=1): """ Returns the substring from string ``column`` before ``cnt`` occurrences of the delimiter ``delim``. If ``cnt`` is positive, everything the left of the final delimiter (counting from left) is returned. If ``cnt`` is negative, every to the right of the final delimiter (counting from the right) is returned. substring_index performs a case-sensitive match when searching for ``delim``. """ return _with_expr(exprs.SubstringIndex, column, delim, cnt)
b17fe73e19ece0d9e2511f8b45c43accb65f4138
8,172
def askPrize(mon: int) -> str: """ Args : n:欲查詢的期別 Returns: 查詢結果字串 """ (date, data) = initData(mon) date = f"{date}月\n" ssp_prize = f"特別獎:{data[0]}\n" sp_prize = f"特獎:{data[1]}\n" first_prize = f"頭獎:{data[2]}、{data[3]}、{data[4]}\n" six_prize = f"六獎:{data[2][5:]}、{data[3][5:]}、{data[4][5:]}、{data[5]}\n" return date + ssp_prize + sp_prize + first_prize + six_prize
1fcd388a38823a53719e8b50b02d2758b8ebe6dc
8,173
import pickle import tokenize def get_letters_df(letters_dict_pickle): """Get the letters Pandas Dataframe Parameters ---------- letters_dict_pickle: string Path to the dict with the letters text Returns ------- Pandas DataFrame Pandas DataFrame with a columns with the tokens """ with open(letters_dict_pickle, 'rb') as handle: letters_dict = pickle.load(handle) letters_df = pd.DataFrame(letters_dict, index=[const.LETTER_TEXT]).T letters_df[const.TOKENIZED] = letters_df[const.LETTER_TEXT].apply(tokenize) return letters_df
f6c40627ae917d51ce30cd572bb02c378ca7f7e2
8,174
def lorenzmod1(XYZ, t, a=0.1, b=4, dz=14, d=0.08): """ The Lorenz Mod 1 Attractor. x0 = (0,1,0) """ x, y, z = XYZ x_dt = -a * x + y**2 - z**2 + a * dz y_dt = x * (y - b * z) + d z_dt = -z + x * (b * y + z) return x_dt, y_dt, z_dt
17dbd87b25968ca0e24b6e6fc602007932983f54
8,175
def binomial_p(x, n, p0, reps=10**5, alternative='greater', keep_dist=False, seed=None): """ Parameters ---------- sample : array-like list of elements consisting of x in {0, 1} where 0 represents a failure and 1 represents a seccuess p0 : int hypothesized number of successes in n trials n : int number of trials reps : int number of repetitions (default: 10**5) alternative : {'greater', 'less', 'two-sided'} alternative hypothesis to test (default: 'greater') keep_dis : boolean flag for whether to store and return the array of values of the test statistics (default: false) seed : RandomState instance or {None, int, RandomState instance} If None, the pseudorandom number generator is the RandomState instance used by `np.random`; If int, seed is the seed used by the random number generator; If RandomState instance, seed is the pseudorandom number generator Returns ------- float estimated p-value float test statistic list distribution of test statistics (only if keep_dist == True) """ if n < x: raise ValueError("Cannot observe more ones than the population size") prng = get_prng(seed) def generate(): return prng.binomial(n, p0, 1)[0] if keep_dist: permutations = np.empty(reps) for i in range(reps): permutations[i] = generate() if alternative == 'two-sided': hits_up = np.sum(permutations >= x) hits_low = np.sum(permutations <= x) p_value = 2*np.min([hits_up/reps, hits_low/reps, 0.5]) elif alternative == 'greater': p_value = np.mean(permutations >= x) else: p_value = np.mean(permutations <= x) return p_value, x, permutations else: hits_up = 0 hits_low = 0 for i in range(reps): ts = generate() hits_up += (ts >= x) hits_low += (ts <= x) if alternative == 'two-sided': p_value = 2*np.min([hits_up/reps, hits_low/reps, 0.5]) elif alternative == 'greater': p_value = hits_up/reps else: p_value = hits_low/reps return p_value, x
486257dfc1c517313556d08c8e2ad4ed3e85980d
8,176
def is_guild_owner() -> commands.check: """ Returns True under the following conditions: - **ctx.author** is the owner of the guild where this command was called from """ def predicate(ctx): if ctx.guild is None: raise commands.NoPrivateMessage('This command can only be used in a server.') author: Member = ctx.author if author != ctx.guild.owner.id: commands.MissingPermissions('This command can only be run by the owner of this guild.') return commands.check(predicate)
3f3c9a5d5990794bced7b021c646041e514e72ed
8,177
def round_grade(grade: int) -> int: """ Round the grade according to policy. Parameters ---------- grade: int Raw grade. Returns ------- rounded_grade: int Rounded grade. """ if grade < 38: rounded_grade = grade else: closest_multiple_5 = (grade // 5 + 1) * 5 if (closest_multiple_5 - grade) >= 3: rounded_grade = grade else: rounded_grade = closest_multiple_5 return rounded_grade
8f1be9575d98b4ed24ff1e5904a5345d7ebc3e48
8,178
def patch_indecies(i_max: int, j_max: int, ps: int, pstr: int): """ Given the sizes i_max and j_max of an image, it extracts the top-left corner pixel location of all the patches of size (ps,ps) and distant "pstr" pixels away from each other. If pstr < ps, the patches are overlapping. Input: i_max, j_max - int, sizes of the image ps - int, patch size pstr - int, patch stride Output: idx - int, array of [total_num_patches, 2], pixels locations """ idx = [] for i in range(0, i_max - ps + 1, pstr): for j in range(0, j_max - ps + 1, pstr): idx.append([i, j]) return tf.convert_to_tensor(idx)
6b760311513b3ded56f85690bab6622c999cc40d
8,179
def model_fn(): """ Defines a convolutional neural network for steering prediction. """ model = Sequential() # Input layer and normalization model.add(InputLayer(input_shape=(20, 80, 1))) model.add(Lambda(lambda x: (x / 255.0) - 0.5)) # Convolutional layer 1 model.add(Conv2D(filters=48, kernel_size=(3,3), strides=(1,1), activation='relu')) model.add(MaxPooling2D(pool_size=(2,2))) # Convolutional layer 2 model.add(Conv2D(filters=64, kernel_size=(3,3), strides=(1,1), activation='relu')) model.add(MaxPooling2D(pool_size=(2,2))) # Dropout for regularization. model.add(Dropout(0.2)) # Full connected layer model.add(Flatten()) model.add(Dense(100)) # Predicted steering model.add(Dense(1)) print(model.summary()) return model
42b85775635ee71ac6ed76f64170776eb36b5953
8,180
def authenticate(request): """Return the user model instance associated with the given request If no user is retrieved, return an instance of `AnonymousUser` """ token, _ = get_token_from_request(request) jwt_info = { 'token': token, 'case': TokenCase.OK, 'payload': None, } if not token: jwt_info['case'] = TokenCase.NO_TOKEN return get_user(), jwt_info try: payload = decode(token) user_pk = payload[JWT_CONFIG.user_pk_key] return get_user(user_pk=user_pk), jwt_info except jwt.ExpiredSignatureError: jwt_info['case'] = TokenCase.EXPIRED except jwt.DecodeError: jwt_info['case'] = TokenCase.DECODE_ERROR except jwt.InvalidTokenError: jwt_info['case'] = TokenCase.INVALID_TOKEN except KeyError: jwt_info['case'] = TokenCase.MISSING_KEY return get_user(), jwt_info
15d2d4343673cd30f2b201b834bd26889813d4ab
8,181
def _urpc_test_func_2(buf): """! @brief u-RPC variable length data test function. @param buf A byte string buffer @return The same byte string repeated three times """ return buf*3
f13f7dcf45eaa0706b69eb09c63d29ba2bbd3d60
8,182
from datetime import datetime def main(): """ Use Netmiko to connect to each of the devices. Execute 'show version' on each device. Record the amount of time required to do this """ start_time = datetime.now() for device in devices: print() print('#' * 40) output = show_version(device) print(output) print() print('#' * 40) print("\nBenoetigte Zeit: " + str(datetime.now() - start_time)) return None
9182a63ea3e6a98d995c4ae00126175164cd6dfc
8,183
from typing import Iterable import warnings def infer_data_type(data_container: Iterable): """ For a given container of data, infer the type of data as one of continuous, categorical, or ordinal. For now, it is a one-to-one mapping as such: - str: categorical - int: ordinal - float: continuous There may be better ways that are not currently implemented below. For example, with a list of numbers, we can check whether the number of unique entries is less than or equal to 12, but has over 10000+ entries. This would be a good candidate for floats being categorical. :param data_container: A generic container of data points. :type data_container: `iterable` """ warnings.warn( "`infer_data_type` is deprecated! " "Please use `infer_data_family` instead!" ) # Defensive programming checks. # 0. Ensure that we are dealing with lists or tuples, and nothing else. assert isinstance(data_container, list) or isinstance( data_container, tuple ), "data_container should be a list or tuple." # 1. Don't want to deal with only single values. assert ( len(set(data_container)) > 1 ), "There should be more than one value in the data container." # 2. Don't want to deal with mixed data. assert is_data_homogenous(data_container), "Data are not of a homogenous type!" # Once we check that the data type of the container is homogenous, we only # need to check the first element in the data container for its type. datum = data_container[0] # Return statements below # treat binomial data as categorical # TODO: make tests for this. if len(set(data_container)) == 2: return "categorical" elif isinstance(datum, str): return "categorical" elif isinstance(datum, int): return "ordinal" elif isinstance(datum, float): return "continuous" else: raise ValueError("Not possible to tell what the data type is.")
9618aef33e45908dcb29981c52e8d53821c98642
8,184
import typing import subprocess def Preprocess( src: str, cflags: typing.List[str], timeout_seconds: int = 60, strip_preprocessor_lines: bool = True, ): """Run input code through the compiler frontend to inline macros. This uses the repository clang binary. Args: src: The source code to preprocess. cflags: A list of flags to be passed to clang. timeout_seconds: The number of seconds to allow before killing clang. strip_preprocessor_lines: Whether to strip the extra lines introduced by the preprocessor. Returns: The preprocessed code. Raises: ClangException: In case of an error. ClangTimeout: If clang does not complete before timeout_seconds. """ cmd = [ "timeout", "-s9", str(timeout_seconds), str(CLANG), "-E", "-c", "-", "-o", "-", ] + cflags app.Log(2, "$ %s", " ".join(cmd)) process = subprocess.Popen( cmd, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE, universal_newlines=True, ) stdout, stderr = process.communicate(src) if process.returncode == 9: raise errors.ClangTimeout( f"Clang preprocessor timed out after {timeout_seconds}s" ) elif process.returncode != 0: raise errors.ClangException(stderr) if strip_preprocessor_lines: return StripPreprocessorLines(stdout) else: return stdout
bc9bb6b451cf4d9883c4d76637871d244b490e86
8,185
def versionString(version): """Create version string.""" ver = [str(v) for v in version] numbers, rest = ver[:2 if ver[2] == '0' else 3], ver[3:] return '.'.join(numbers) + '-'.join(rest)
2feec3f8ac5a1f2b848d0805dfa0c3ff53a44ead
8,186
import warnings import builtins def any(iterable, pred): """Returns True if ANY element in the given iterable is True for the given pred function""" warnings.warn( "pipe.any is deprecated, use the builtin any(...) instead.", DeprecationWarning, stacklevel=4, ) return builtins.any(pred(x) for x in iterable)
32f48ab7a6be329b8758ba3dbbe6721923890e11
8,187
import argparse import os def get_parser(): """ Parser of nuth kaab independent main TODO: To clean with main. Keep independent main ? """ parser = argparse.ArgumentParser( os.path.basename(__file__), description="Universal co-registration method " "presented in Nuth & Kaab 2011." "NB : 1) It is supposed that both dsms share common reference" " (whether it is geoid or ellipsoid)." " 2) DSMs must be georefenced.", ) parser.add_argument("dsm_to", type=str, help="master dsm") parser.add_argument( "dsm_from", type=str, help="slave dsm you wish to coregister to dsm_to" ) parser.add_argument( "-outfile", action="store_true", help="saves output coregistered DSM" ) parser.add_argument( "-nb_iters", dest="nb_iters", type=int, default=6, help="number of iterations", ) parser.add_argument( "-dirplot", dest="plot", type=str, default=None, help="path to output plot directory. " "Plots are printed if set to None (default)", ) parser.add_argument( "-nodata1", dest="nodata1", type=str, default=None, help="no data value for DSM to compare " "(default value is read in metadata)", ) parser.add_argument( "-nodata2", dest="nodata2", type=str, default=None, help="no data value for Reference DSM " "(default value is read in metadata)", ) parser.add_argument( "-save_diff", action="store_true", help="store on file system a ./initial_dh.tiff and a ./final_dh.tiff " "with dsms differences before and after coregistration", ) return parser
9bc9e8318704ecd50bf504c54c24a1684146db42
8,188
def build_prev_df_n( dispositions) -> pd.DataFrame: """Build admissions dataframe from Parameters.""" days = np.array(range(0, n_days)) data_dict = dict( zip( ["day", "hosp", "icu", "vent"], [days] + [disposition for disposition in dispositions], ) ) projection = pd.DataFrame.from_dict(data_dict) # New cases projection_admits = projection.iloc[:-1, :] - projection.shift(1) projection_admits["day"] = range(projection_admits.shape[0]) projection_admits.loc[0,'hosp'] = 25 return projection_admits
e17ca1ab78e16aeaeac0afa5a1a9fa193cb9777f
8,189
import html def main() -> VDOMNode: """Main entry point.""" vdom = html("<{Heading} />") return vdom
c29d55ec4d469373e5504cc089e8370d0573a719
8,190
def GT(x=None, y=None): """ Compares two values and returns: true when the first value is greater than the second value. false when the first value is less than or equivalent to the second value. See https://docs.mongodb.com/manual/reference/operator/aggregation/gt/ for more details :param x: first value or expression :param y: second value or expression :return: Aggregation operator """ if x is None and y is None: return {'$gt': []} return {'$gt': [x, y]}
62a4321d5d36306b9cc5b910e7eac0eec4d914f3
8,191
def pymongo_formatter(credentials): """Returns a DSN for a pymongo-MongoDB connection. Note that the username and password will still be needed separately in the constructor. Args: credentials (dict): The credentials dictionary from the relationships. Returns: (string) A formatted pymongo DSN. """ return '{0}:{1}/{2}'.format( credentials['host'], credentials['port'], credentials['path'] )
69216575258f297c368ec3015c1c14569bb82cd2
8,192
def sigma_disp_over_vcirc(gal, R=None): """The velocity dispersion over circular velocity computed at R=x*Rs [km/s]. Isotropic NFW is assumed. :param R: radius [kpc] :param gal: galaxy object """ # get Rs (rho, rs, c) = reconstruct_density_DM(gal, DM_profile='NFW') # make array of r, preferably with gal.R if R is None: x_arr = np.array(gal.R / rs) ratio_arr = sigma_over_vcirc(x_arr) else: R, is_scalar = tl.treat_as_arr(R) x_arr = np.array(R / rs) ratio_arr = sigma_over_vcirc(x_arr) if is_scalar: ratio_arr = np.squeeze(ratio_arr) return ratio_arr
f05bb1f1a7ca2e0899ab67bb1c2a355236e3e810
8,193
def filters(param: str, default_value: str, base_key: str, key_manager: KeyManager) -> list: """Filter combo box selector for parameter""" update_type = '|filters|' row = combo_row(param, default_value, base_key, key_manager, update_type) return row
6645d369116d10cc4392810c9228f0e72fc21fd5
8,194
def get_scanner(fs_id): """ get scanner 3T or 1.5T""" sc = fs_id.split("_")[2] if sc in ("15T", "1.5T", "15t", "1.5t"): scanner = "15T" elif sc in ("3T", "3t"): scanner = "3T" else: print("scanner for subject " + fs_id + " cannot be identified as either 1.5T or 3T...") print("Please double check the IDs in the list of subjects") scanner = "false" return scanner
f905bd16f3103b0c6c02193d30fb945646afb54c
8,195
def _find_query_rank(similarities, library_keys, query_keys): """tf.py_func wrapper around _find_query_rank_helper. Args: similarities: [batch_size, num_library_elements] float Tensor. These are not assumed to be sorted in any way. library_keys: [num_library_elements] string Tensor, where each column j of similarities corresponds to library_key j. query_keys: [num_queries] string Tensor Returns: query_ranks: a dictionary with keys 'highest', 'lowest' and 'avg', where each value is a [batch_size] Tensor. The 'lowest' Tensor contains for each batch the lowest index of a library key that matches the query key for that batch element when the library keys are sorted in descending order by similarity score. The 'highest' and 'avg' Tensors are defined similarly. The first two are tf.int32 and the final is a tf.float32. Note that the behavior of these metrics is undefined when there are ties within a row of similarities. best_query_similarities: the value of the similarities evaluated at the lowest query rank. """ (highest_rank, lowest_rank, avg_rank, best_query_similarities) = tf.py_func( _find_query_rank_helper, [similarities, library_keys, query_keys], (tf.int32, tf.int32, tf.float32, tf.float32), stateful=False) query_ranks = { 'highest': highest_rank, 'lowest': lowest_rank, 'avg': avg_rank } return query_ranks, best_query_similarities
f3b002b77c77845681b35c3d6f629f6290324a47
8,196
def random_adjust_brightness(image, max_delta=0.2, seed=None): """Randomly adjusts brightness. """ delta = tf.random_uniform([], -max_delta, max_delta, seed=seed) image = tf.image.adjust_brightness(image / 255, delta) * 255 image = tf.clip_by_value(image, clip_value_min=0.0, clip_value_max=255.0) return image
9d371ebb268708b983a523ce71a64103d3e46717
8,197
import re def get_assign_ops_and_restore_dict(filename, restore_all=False): """Helper function to read variable checkpoints from filename. Iterates through all vars in restore_all=False else all trainable vars. It attempts to match variables by name and variable shape. Returns a possibly empty list of assign_ops, and a possibly empty dictionary for tf.train.Saver() """ def check_name_and_shape(name, var, shape_map): if name in shape_map: # Cannot check variables with unknown sizes such as cudnn rnns if str(var.shape) == "<unknown>": # Just return True and hope the shapes match return True if var.shape == shape_map[name]: return True return False assign_ops = [] restore_dict = {} try: reader = tf.train.NewCheckpointReader(filename) var_to_shape_map = reader.get_variable_to_shape_map() variables = tf.trainable_variables() if restore_all: variables = tf.get_collection(tf.GraphKeys.VARIABLES) for var in variables: idx = var.name.find(":") if idx != -1: true_name = var.name[:idx] loss_idx = re.search("Loss_Optimization", true_name) if 'EmbeddingMatrix' in true_name: embed_restore, assign = _restore_embed(var, var_to_shape_map, reader) if assign: assign_ops.append(embed_restore) else: restore_dict[true_name] = embed_restore if check_name_and_shape(true_name, var, var_to_shape_map): tensor = reader.get_tensor(true_name) if tensor.dtype != var.dtype.as_numpy_dtype(): assign_ops.append(var.assign(tf.cast(tensor, var.dtype))) else: restore_dict[true_name] = var elif loss_idx: loss_idx = loss_idx.end() if FP32_TEST.search(true_name): true_name = FP32_TEST.sub("", true_name) else: true_name = (true_name[:loss_idx] + "/Loss_Optimization/FP32-master-copy" + true_name[loss_idx:]) if check_name_and_shape(true_name, var, var_to_shape_map): tensor = reader.get_tensor(true_name) if tensor.dtype != var.dtype.as_numpy_dtype(): assign_ops.append(var.assign(tf.cast(tensor, var.dtype))) else: restore_dict[true_name] = var else: print("Not restoring {}".format(var.name)) if true_name not in var_to_shape_map: print("true name [{}] was not in shape map".format(true_name)) else: if var.shape != var_to_shape_map[true_name]: print(("var.shape [{}] does not match var_to_shape_map[true_name]" "[{}]").format(var.shape, var_to_shape_map[true_name])) print("WARNING: Run will mostly error out due to this") except Exception as e: # pylint: disable=broad-except print(str(e)) if "corrupted compressed block contents" in str(e): print("It's likely that your checkpoint file has been compressed " "with SNAPPY.") if ("Data loss" in str(e) and (any([e in filename for e in [".index", ".meta", ".data"]]))): proposed_file = ".".join(filename.split(".")[0:-1]) v2_file_error_template = """ It's likely that this is a V2 checkpoint and you need to provide the filename *prefix*. Try removing the '.' and extension. Try: inspect checkpoint --file_name = {}""" print(v2_file_error_template.format(proposed_file)) raise ValueError("Error in loading checkpoint") return assign_ops, restore_dict
d93583c914bbe066b6a62d1f2041ab60cd511ab6
8,198
def log_creations(model, **extra_kwargs_for_emit): """ Sets up signal handlers so that whenever an instance of `model` is created, an Entry will be emitted. Any further keyword arguments will be passed to the constructor of Entry as-is. As a special case, if you specify the sentinel value `INSTANCE` as the value of a keyword argument, the newly created instance of `model` will be passed instead. If the value of the keyword argument is a function, it will be called with the newly created instance to determine the value of the keyword argument to the Entry constructor. For examples on usage, see `feedback/handlers/feedback_message.py`. """ meta = model._meta entry_type_name = '{app_label}.{model_name}.created'.format( app_label=meta.app_label, model_name=meta.model_name, ) @receiver(post_save, sender=model, weak=False) def on_save_emit_event_log_entry(sender, instance, created, **kwargs): if not created: return kwargs_for_emit = dict() for key, value in extra_kwargs_for_emit.items(): if value is INSTANCE: value = instance elif callable(value): value = value(instance) kwargs_for_emit[key] = value emit(entry_type_name, **kwargs_for_emit) return on_save_emit_event_log_entry
4eee202ccb335c658c1f6bf15b02f00955eb3da7
8,199