content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def eiffel_artifact_created_event(): """Eiffel artifact created event.""" return { "meta": { "id": "7c2b6c13-8dea-4c99-a337-0490269c374d", "time": 1575981274307, "type": "EiffelArtifactCreatedEvent", "version": "3.0.0", }, "links": [], "data": {"identity": "pkg:artifact/created/[email protected]"}, }
0ef2e5adadb58b92c94bac42c9880728573b159e
8,000
def _hash(input_data, initVal=0): """ hash() -- hash a variable-length key into a 32-bit value k : the key (the unaligned variable-length array of bytes) len : the length of the key, counting by bytes level : can be any 4-byte value Returns a 32-bit value. Every bit of the key affects every bit of the return value. Every 1-bit and 2-bit delta achieves avalanche. About 36+6len instructions. The best hash table sizes are powers of 2. There is no need to do mod a prime (mod is so slow!). If you need less than 32 bits, use a bitmask. For example, if you need only 10 bits, do h = (h & hashmask(10)); In which case, the hash table should have hashsize(10) elements. If you are hashing n strings (ub1 **)k, do it like this: for (i=0, h=0; i<n; ++i) h = hash( k[i], len[i], h); By Bob Jenkins, 1996. [email protected]. You may use this code any way you wish, private, educational, or commercial. It's free. See http://burtleburtle.net/bob/hash/evahash.html Use for hash table lookup, or anything where one collision in 2^32 is acceptable. Do NOT use for cryptographic purposes. """ data = bytes(input_data, encoding='ascii') len_pos = len(data) length = len(data) if length == 0: return 0 a = 0x9e3779b9 b = 0x9e3779b9 c = initVal p = 0 while len_pos >= 12: a += ((data[p + 0]) + ((data[p + 1]) << 8) + ((data[p + 2]) << 16) + ((data[p + 3]) << 24)) b += ((data[p + 4]) + ((data[p + 5]) << 8) + ((data[p + 6]) << 16) + ((data[p + 7]) << 24)) c += ((data[p + 8]) + ((data[p + 9]) << 8) + ((data[p + 10]) << 16) + ((data[p + 11]) << 24)) q = _mix(a, b, c) a = q[0] b = q[1] c = q[2] p += 12 len_pos -= 12 c += length if len_pos >= 11: c += (data[p + 10]) << 24 if len_pos >= 10: c += (data[p + 9]) << 16 if len_pos >= 9: c += (data[p + 8]) << 8 # the first byte of c is reserved for the length if len_pos >= 8: b += (data[p + 7]) << 24 if len_pos >= 7: b += (data[p + 6]) << 16 if len_pos >= 6: b += (data[p + 5]) << 8 if len_pos >= 5: b += (data[p + 4]) if len_pos >= 4: a += (data[p + 3]) << 24 if len_pos >= 3: a += (data[p + 2]) << 16 if len_pos >= 2: a += (data[p + 1]) << 8 if len_pos >= 1: a += (data[p + 0]) q = _mix(a, b, c) a = q[0] b = q[1] c = q[2] return rshift_zero_padded(c, 0)
c4f1b0ee22ca940d360090b965125e71c272ad4c
8,001
import logging def read_config_option(key, expected_type=None, default_value=None): """Read the specified value from the configuration file. Args: key: the name of the key to read from the config file. expected_type: read the config option as the specified type (if specified) default_value: if the key doesn't exist, just return the default value. If the default value is not specified, the function will throw whatever error was raised by the configuration parser """ logging.info("Reading config option {} with expected type {}".format(key, expected_type)) try: if not expected_type: value = conf_parser.get("Settings", key) if key is "password": logging.info("Got configuration for key {}: ****".format(key)) else: logging.info("Got configuration for key {}: {}".format(key, value)) return conf_parser.get("Settings", key) elif expected_type is bool: return conf_parser.getboolean("Settings", key) except (ValueError, NoOptionError) as e: if default_value: return default_value else: raise
effc94b89dd8b1e0765c71bd4c0c03760715db1d
8,002
def simple_password(request): """ Checks a password """ if request.method == "POST": form = PasswordForm(data=request.POST) if form.is_valid(): # TODO: set session with better param request.session["simple_auth"] = True return redirect(form.cleaned_data["url"] or "/") else: form = PasswordForm() return render(request, "simple_auth/password_form.html", {"form": form})
4a70bb5578a528ed1646ce028e1db76e77ef7d91
8,003
from typing import Any import logging def removeKeys(array: dict = None, remove: Any = None) -> dict: """ Removes keys from array by given remove value. :param array: dict[Any: Any] :param remove: Any :return: - sorted_dict - dict[Any: Any] """ if remove is None: remove = [] try: sorted_dict = {} for item_key in array: if array[item_key] != remove: sorted_dict[item_key] = array[item_key] return sorted_dict except Exception as e: logging.exception(e)
1b98821000642c79fbb71a9c0dc7163c4a95fa26
8,004
from trimesh.path.creation import box_outline from trimesh.path.util import concatenate def affine2boxmesh(affines): """ :param affines: (n_parts, 6), range (0, 1) :return: """ n_parts = len(affines) colors = [[0, 0, 255, 255], # blue [0, 255, 0, 255], # green [255, 0, 0, 255], # red [255, 255, 0, 255], # yellow [0, 255, 255, 255], # cyan [255, 0, 255, 255], # Magenta [160, 32, 240, 255], # purple [255, 255, 240, 255]] # ivory shape_box = [] for idx in range(n_parts): part_trans = affines[idx, :3] part_size = affines[idx, 3:] trans_mat = np.eye(4) # translate to center of axis aligned bounds trans_mat[:3, 3] = part_trans part_box = box_outline(transform=trans_mat, extents=part_size ) shape_box.append(part_box) shape_box = concatenate(shape_box) return shape_box
3d6568e6e533bdb31cdceb244666f376d73dad1e
8,005
def _select_index_code(code): """ 1 - sh 0 - sz """ code = str(code) if code[0] == '3': return 0 return 1
697d8e5ca1744c897b7eebbb7b9b0a3b45faec3d
8,006
def get_install_agent_cmd(): """Get OS specific command to install Telegraf agent.""" agent_pkg_deb = "https://packagecloud.io/install/repositories/" \ "wavefront/telegraf/script.deb.sh" agent_pkg_rpm = "https://packagecloud.io/install/repositories/" \ "wavefront/telegraf/script.rpm.sh" dist = system.check_os() cmd = None if not dist: print("Error: Unsupported OS version. Please contact" " [email protected].") return cmd if dist.strip().startswith(("Oracle Linux Server", "Fedora", "Amazon Linux", "CentOS", "Red Hat Enterprise Linux")): cmd = "curl -s %s | bash" % (agent_pkg_rpm) cmd += " && yum -y -q install telegraf" elif dist.strip().startswith("Ubuntu"): cmd = "curl -s %s | bash" % (agent_pkg_deb) cmd += ' && apt-get -y -qq -o Dpkg::Options::="--force-confold"' \ ' install telegraf' elif dist.strip().lower().startswith("debian"): cmd = "curl -s %s | bash" % (agent_pkg_deb) cmd += ' && apt-get -o Dpkg::Options::="--force-confnew"' \ ' -y install telegraf' elif dist.strip().startswith(("openSUSE", "SUSE Linux Enterprise Server", "SLES")): cmd = "curl -s %s | bash" % (agent_pkg_rpm) cmd += ' && zypper install telegraf' else: message.print_warn("Error: Unsupported OS version: %s." % (dist)) return cmd
14373024b3b6046badcedf686a38423f126f02a2
8,007
from typing import Tuple from typing import DefaultDict import collections def unpack(manifests: LocalManifestLists) -> Tuple[ServerManifests, bool]: """Convert `manifests` to `ServerManifests` for internal processing. Returns `False` unless all resources in `manifests` are unique. For instance, returns False if two files define the same namespace or the same deployment. The primary use case is to convert the manifests we read from local files into the format Square uses internally for the server manifests as well. Inputs: manifests: LocalManifestLists Returns: ServerManifests: flattened version of `manifests`. """ # Compile a dict that shows which meta manifest was defined in which file. # We will shortly use this information to determine if all resources were # defined exactly once across all files. all_meta: DefaultDict[MetaManifest, list] = collections.defaultdict(list) for fname in manifests: for meta, _ in manifests[fname]: all_meta[meta].append(fname) # Find out if all meta manifests were unique. If not, log the culprits and # return with an error. unique = True for meta, fnames in all_meta.items(): if len(fnames) > 1: unique = False tmp = [str(_) for _ in fnames] logit.error( f"Duplicate ({len(tmp)}x) manifest {meta}. " f"Defined in {str.join(', ', tmp)}" ) if not unique: return ({}, True) # Compile the input manifests into a new dict with the meta manifest as key. out = {k: v for fname in manifests for k, v in manifests[fname]} return (out, False)
b7f3c3f1388b9d3791a18f2da97dd40cf131ecaa
8,008
async def async_setup_platform(hass, config, async_add_entities, discovery_info=None): """Set up the switch from config.""" if DATA_KEY not in hass.data: hass.data[DATA_KEY] = {} host = config[CONF_HOST] token = config[CONF_TOKEN] name = config[CONF_NAME] model = config.get(CONF_MODEL) _LOGGER.info("Initializing with host %s (token %s...)", host, token[:5]) devices = [] unique_id = None if model is None: try: miio_device = Device(host, token) device_info = await hass.async_add_executor_job(miio_device.info) model = device_info.model unique_id = f"{model}-{device_info.mac_address}" _LOGGER.info( "%s %s %s detected", model, device_info.firmware_version, device_info.hardware_version, ) except DeviceException: raise PlatformNotReady if model in ["090615.switch.switch01"]: plug = PtxSwitch(host, token, model=model) device = XiaomiPTXSwitch(name, plug, model, unique_id, 1) devices.append(device) hass.data[DATA_KEY][host] = device elif model in ["090615.switch.switch02"]: plug = PtxSwitch(host, token, model=model) device = XiaomiPTXSwitch(name, plug, model, unique_id, 1) devices.append(device) hass.data[DATA_KEY][host] = device plug2 = PtxSwitch(host, token, model=model) device2 = XiaomiPTXSwitch(name, plug2, model, unique_id, 2) devices.append(device2) hass.data[DATA_KEY][host] = device2 elif model in ["090615.switch.switch03"]: plug = PtxSwitch(host, token, model=model) device = XiaomiPTXSwitch(name, plug, model, unique_id, 1) devices.append(device) hass.data[DATA_KEY][host] = device plug2 = PtxSwitch(host, token, model=model) device2 = XiaomiPTXSwitch(name, plug2, model, unique_id, 2) devices.append(device2) hass.data[DATA_KEY][host] = device2 plug3 = PtxSwitch(host, token, model=model) device3 = XiaomiPTXSwitch(name, plug3, model, unique_id, 3) devices.append(device3) hass.data[DATA_KEY][host] = device3 else: _LOGGER.error( "Unsupported device found! Please create an issue at " "https://github.com/volshebniks/python-miio-ptx/issues " "and provide the following data: %s", model, ) return False async_add_entities(devices, update_before_add=True)
0ef4f94c2b69bb2674ffcace56a85927c2c6d1d1
8,009
def process_generate_metric_alarms_event(event): """Handles a new event request Placeholder copied from alert_controller implementation """ LOG.info(str(event)) return create_response(200, body="Response to HealthCheck")
45f3ac5fa73048ec1f76bb5188a4e1de0eaca62d
8,010
def get_query_segment_info(collection_name, timeout=None, using="default"): """ Notifies Proxy to return segments information from query nodes. :param collection_name: A string representing the collection to get segments info. :param timeout: An optional duration of time in seconds to allow for the RPC. When timeout is set to None, client waits until server response or error occur. :type timeout: float :return: QuerySegmentInfo: QuerySegmentInfo is the growing segments's information in query cluster. :rtype: QuerySegmentInfo :example: >>> from pymilvus import Collection, FieldSchema, CollectionSchema, DataType, connections, utility >>> connections.connect(alias="default") >>> _DIM = 128 >>> field_int64 = FieldSchema("int64", DataType.INT64, description="int64", is_primary=True) >>> field_float_vector = FieldSchema("float_vector", DataType.FLOAT_VECTOR, description="float_vector", is_primary=False, dim=_DIM) >>> schema = CollectionSchema(fields=[field_int64, field_float_vector], description="get collection entities num") >>> collection = Collection(name="test_get_segment_info", schema=schema) >>> import pandas as pd >>> int64_series = pd.Series(data=list(range(10, 20)), index=list(range(10)))i >>> float_vector_series = [[random.random() for _ in range _DIM] for _ in range (10)] >>> data = pd.DataFrame({"int64" : int64_series, "float_vector": float_vector_series}) >>> collection.insert(data) >>> collection.load() # load collection to memory >>> res = utility.get_query_segment_info("test_get_segment_info") """ return _get_connection(using).get_query_segment_info(collection_name, timeout=timeout)
521119f98a43d1abc303028f9bfa150dbfba098b
8,011
def IoU(pred, gt, n_classes, all_iou=False): """Computes the IoU by class and returns mean-IoU""" # print("IoU") iou = [] for i in range(n_classes): if np.sum(gt == i) == 0: iou.append(np.NaN) continue TP = np.sum(np.logical_and(pred == i, gt == i)) FP = np.sum(np.logical_and(pred == i, gt != i)) FN = np.sum(np.logical_and(pred != i, gt == i)) iou.append(TP / (TP + FP + FN)) # nanmean: if a class is not present in the image, it's a NaN result = [np.nanmean(iou), iou] if all_iou else np.nanmean(iou) return result
9635472121b13c9ce04e38fdfaee8bf29774a17a
8,012
def from_torchvision(vision_transform, p=1): """Takes in an arbitary torchvision tranform and wrap it such that it can be applied to a list of images of shape HxWxC Returns a callable class that takes in list of images and target as input NOTE: Due to implementation difficuities, in order to apply the same randomized transform to EACH image, it is best to pass in a deterministic transform like the functional transforms in torchvision and then pass in a p value for the wrapper to roll a number and apply the transform with that probability Additionally, it's also possible to wrap a torchvision functional transform as long as it's a function that takes in an image as it's only argument i.e can write something like: lambda x: some_functional_transform(x,...) """ return TorchvisionWrapper(vision_transform, p=p)
b2af1a672d24171d9b80cd4eeb6d53fc80d09f53
8,013
import requests def is_valid(inputted): """ Essa função irá verificar o QueryDict trago pelo método POST do nosso frontend e fazer uma verificação dos campos an tes de persistir os dados no banco de dados. :param inputted: Query Dict trago pelo POST :return: Um valor booleano """ for key in inputted.keys(): if key != 'complemento': if inputted.get(key) is None: return False elif len(inputted.get(key)) == 0: return False else: pass if key == 'estado': if inputted.get(key) not in country_uf.values(): return False else: pass if key == 'cep': if len(inputted.get(key)) != 8: return False else: cep = inputted.get(key) try: int(cep) except (TypeError, ValueError): return False else: url = f"https://viacep.com.br/ws/{cep}/json/" response = requests.get(url) response = response.json() if 'erro' in response.keys(): return False return True
ff52ad53f2073ff3659d16601528984f7282940a
8,014
def get_ports(context, project_id=None): """Returns all ports of VMs in EOS-compatible format. :param project_id: globally unique neutron tenant identifier """ session = context.session model = db_models.AristaProvisionedVms if project_id: all_ports = (session.query(model). filter(model.project_id == project_id, model.host_id.isnot(None), model.vm_id.isnot(None), model.network_id.isnot(None), model.port_id.isnot(None))) else: all_ports = (session.query(model). filter(model.project_id.isnot(None), model.host_id.isnot(None), model.vm_id.isnot(None), model.network_id.isnot(None), model.port_id.isnot(None))) ports = {} for port in all_ports: if port.port_id not in ports: ports[port.port_id] = port.eos_port_representation() ports[port.port_id]['hosts'].append(port.host_id) return ports
17d8dadde3dde78286f746435454b454d5589bd2
8,015
import hashlib import hmac def _HMAC(K, C, Mode=hashlib.sha1): """ Generate an HMAC value. The default mode is to generate an HMAC-SHA-1 value w/ the SHA-1 algorithm. :param K: shared secret between client and server. Each HOTP generator has a different and unique secret K. :type K: bytes :param C: 8-byte counter value, the moving factor. This counter MUST be synchronized between the HOTP generator (client) and the HOTP validator (server). :type C: bytes :param Mode: The algorithm to use when generating the HMAC value :type Mode: hashlib.sha1, hashlib.sha256, hashlib.sha512, or hashlib.md5 :return: HMAC result. If HMAC-SHA-1, result is 160-bits (20-bytes) long. :rtype: bytes """ return hmac.new(K, C, Mode).digest()
db9bf26c52427acc259f3cb1590c7c13b0d0dd9e
8,016
def get_reference(planet_name): """ Return reference for a given planet's orbit fit Args: planet_name (str): name of planet. no space Returns: reference (str): Reference of orbit fit """ planet_name = planet_name.lower() if planet_name not in post_dict: raise ValueError("Invalid planet name '{0}'".format(planet_name)) filename, reference = post_dict[planet_name] return reference
b700509300bdb2f6595e2a7c44a0d84e04d795f8
8,017
def DefaultPortIfAvailable(): """Returns default port if available. Raises: EmulatorArgumentsError: if port is not available. Returns: int, default port """ if portpicker.is_port_free(_DEFAULT_PORT): return _DEFAULT_PORT else: raise EmulatorArgumentsError( 'Default emulator port [{}] is already in use'.format(_DEFAULT_PORT))
40c065946d8f9ee6c50f7df40f2be6644a472414
8,018
def mock_hub(hass): """Mock hub.""" mock_integration(hass, MockModule(DOMAIN)) hub = mock.MagicMock() hub.name = "hub" hass.data[DOMAIN] = {DEFAULT_HUB: hub} return hub
b4495ca6fbb7638aedf86406f94c00566e376b1b
8,019
def deferred_setting(name, default): """ Returns a function that calls settings with (name, default) """ return lambda: setting(name, default)
286acec75f7a5a1e0217dc4cee7b7b5d1ba8e742
8,020
def extends_dict(target, source): """ Will copy every key and value of source in target if key is not present in target """ for key, value in source.items(): if key not in target: target[key] = value elif type(target[key]) is dict: extends_dict(target[key], value) elif type(target[key]) is list: target[key] += value return target
5a68dde5e3bb7dbb81ad61c3698614f56dd5efd7
8,021
def get_maps_interface_class(zep_inp): """ Takes the input of zephyrus and return the maps of interfaces to classes and viceversa """ interface_to_classes = {} class_to_interfaces = {} for i in zep_inp["components"].keys(): class_name = i.split(settings.SEPARATOR)[-1] interfaces = zep_inp["components"][i]["provides"][0]["ports"] class_to_interfaces[class_name] = interfaces for k in interfaces: if k in interface_to_classes: interface_to_classes[k].append(class_name) else: interface_to_classes[k] = [class_name] return (interface_to_classes,class_to_interfaces)
9a14de30677abe0fa8cf0bb3907cd1f32a8f33de
8,022
def plextv_resources_base_fixture(): """Load base payload for plex.tv resources and return it.""" return load_fixture("plex/plextv_resources_base.xml")
f252099bd6457af208c4d96b8024d3ce28d84cd9
8,023
from netrc import netrc from requests.auth import HTTPDigestAuth def _auth(machine='desi.lbl.gov'): """Get authentication credentials. """ n = netrc() try: u,foo,p = n.authenticators(machine) except: raise ValueError('Unable to get user/pass from $HOME/.netrc for {}'.format(machine)) return HTTPDigestAuth(u,p)
4ef27e589416f54dd76522b3312a2aa24441e200
8,024
import re def relative_date_add(date_rule: str, strict: bool = False) -> float: """Change the string in date rule format to the number of days. E.g 1d to 1, 1y to 365, 1m to 30, -1w to -7""" days = '' if re.search(DateRuleReg, date_rule) is not None: res = re.search(DateRuleReg, date_rule) date_str = res.group(1) if date_str[0] == '-': num = float(date_str[1:-1]) days = '-' else: num = float(date_str[:-1]) rule = date_str[-1:] if rule in DictDayRule: scale = DictDayRule[rule] days = days + str(num * scale) d = float(days) return d else: raise MqValueError('There are no valid day rule for the point provided.') if strict: raise MqValueError(f'invalid date rule {date_rule}') return 0
9180ed2ec99302679f7d0e2ee9ca57c4e2e6c48c
8,025
def to_frames_using_nptricks(src: np.ndarray, window_size: int, stride: int) -> np.ndarray: """ np.ndarray をフレーム分けするプリミティブな実装で,分割に`np.lib.stride_tricks.as_strided`関数を使用しており,indexingを使用する`to_frames_using_index`より高速である. Parameters ---------- src: np.ndarray splited source. window_size: int sliding window size. stride: int, stride is int more than 0. Returns ------- frames: np.ndarray a shape of frames is `(num_frames, window_size, *src.shape[1:])`, where num_frames is `(src.shape[0] - window_size) // stride + 1`. """ assert stride > 0, 'ストライドは正の整数である必要がある. stride={}'.format(stride) num_frames = (src.shape[0] - window_size) // stride + 1 ret_shape = (num_frames, window_size, *src.shape[1:]) strides = (stride * src.strides[0], *src.strides) return np.lib.stride_tricks.as_strided(src, shape=ret_shape, strides=strides)
b10b077cf0fbf2b0e491e7f1cba9033cfadf10c5
8,026
def global_fit( model_constructor, pdf_transform=False, default_rtol=1e-10, default_atol=1e-10, default_max_iter=int(1e7), learning_rate=1e-6, ): """ Wraps a series of functions that perform maximum likelihood fitting in the `two_phase_solver` method found in the `fax` python module. This allows for the calculation of gradients of the best-fit parameters with respect to upstream parameters that control the underlying model, i.e. the event yields (which are then parameterized by weights or similar). Args: model_constructor: Function that takes in the parameters of the observable, and returns a model object (and background-only parameters) Returns: global_fitter: Callable function that performs global fits. Differentiable :) """ adam_init, adam_update, adam_get_params = optimizers.adam(learning_rate) def make_model(model_pars): m, bonlypars = model_constructor(model_pars) bounds = m.config.suggested_bounds() constrained_mu = ( to_inf(constrained_mu, bounds[0]) if pdf_transform else constrained_mu ) exp_bonly_data = m.expected_data(bonlypars, include_auxdata=True) def expected_logpdf(pars): # maps pars to bounded space if pdf_transform = True return ( m.logpdf(to_bounded_vec(pars, bounds), exp_bonly_data) if pdf_transform else m.logpdf(pars, exp_bonly_data) ) def global_fit_objective(pars): # NLL return -expected_logpdf(pars)[0] return global_fit_objective def global_bestfit_minimized(hyper_param): nll = make_model(hyper_param) def bestfit_via_grad_descent(i, param): # gradient descent g = jax.grad(nll)(param) # param = param - g * learning_rate param = adam_get_params(adam_update(i, g, adam_init(param))) return param return bestfit_via_grad_descent global_solve = twophase.two_phase_solver( param_func=global_bestfit_minimized, default_rtol=default_rtol, default_atol=default_atol, default_max_iter=default_max_iter, ) def global_fitter(init, hyper_pars): solve = global_solve(init, hyper_pars) return solve.value return global_fitter
46917c0a4e6469759184a4aaa8199c57573360b0
8,027
import os def get_connection_string(storage_account_name): """ Checks the environment for variable named AZ_<STORAGE_ACCOUNT_NAME> and returns the corresponding connection string. Raises a ``ConnectionStringNotFound`` exception if environment variable is missing """ conn_string = os.environ.get("AZ_" + storage_account_name.upper(), None) if conn_string is None: raise ConnectionStringError( "Environment variable AZ_" + storage_account_name.upper() + " not found!") else: return conn_string
0f776e98741132dcce60ced478ab8c4514c5a9f8
8,028
from typing import Optional from typing import List def reorder_task( token: 'auth.JWT', task_id: 'typevars.ObjectID', before_id: 'Optional[typevars.ObjectID]' = None, after_id: 'Optional[typevars.ObjectID]' = None ) -> 'List[models.Task]': """Change the position of the task in the list.""" if before_id is None and after_id is None: raise util_errors.APIError( 'One of before_id or after_id must be provided', 400) if task_id == before_id or task_id == after_id: raise util_errors.APIError( 'Task cannot be before or after itself', 400) before = None after = None (task, before, after) = auth.load_owned_objects( models.Task, token, 'get tasks', task_id, before_id, after_id) if before is None: before = after.before if after is None: after = before.after if ( (before is not None and before.after is not after) or (after is not None and after.before is not before)): raise util_errors.APIError( 'Before and after tasks are not adjacent', 400) mutated = [before, after, task, task.before, task.after] if before is not None and task.parent is not before.parent: mutated.extend([task.parent, before.parent]) check_reparent(task, before.parent) elif after is not None and task.parent is not after.parent: mutated.extend([task.parent, after.parent]) check_reparent(task, after.parent) if task.before is not None: task.before.after = task.after elif task.after is not None: task.after.before = None task.before = before task.after = after db.DB.session.commit() return [m for m in set(mutated) if m is not None]
b9e30b6d5929614d8385bd478e0e0a1f2663723f
8,029
def get_ldpc_code_params(ldpc_design_filename): """ Extract parameters from LDPC code design file. Parameters ---------- ldpc_design_filename : string Filename of the LDPC code design file. Returns ------- ldpc_code_params : dictionary Parameters of the LDPC code. """ ldpc_design_file = open(ldpc_design_filename) ldpc_code_params = {} [n_vnodes, n_cnodes] = [int(x) for x in ldpc_design_file.readline().split(' ')] [max_vnode_deg, max_cnode_deg] = [int(x) for x in ldpc_design_file.readline().split(' ')] vnode_deg_list = np.array([int(x) for x in ldpc_design_file.readline().split(' ')[:-1]], np.int32) cnode_deg_list = np.array([int(x) for x in ldpc_design_file.readline().split(' ')[:-1]], np.int32) cnode_adj_list = -np.ones([n_cnodes, max_cnode_deg], int) vnode_adj_list = -np.ones([n_vnodes, max_vnode_deg], int) for vnode_idx in range(n_vnodes): vnode_adj_list[vnode_idx, 0:vnode_deg_list[vnode_idx]] = \ np.array([int(x)-1 for x in ldpc_design_file.readline().split('\t')]) for cnode_idx in range(n_cnodes): cnode_adj_list[cnode_idx, 0:cnode_deg_list[cnode_idx]] = \ np.array([int(x)-1 for x in ldpc_design_file.readline().split('\t')]) cnode_vnode_map = -np.ones([n_cnodes, max_cnode_deg], int) vnode_cnode_map = -np.ones([n_vnodes, max_vnode_deg], int) cnode_list = np.arange(n_cnodes) vnode_list = np.arange(n_vnodes) for cnode in range(n_cnodes): for i, vnode in enumerate(cnode_adj_list[cnode, 0:cnode_deg_list[cnode]]): cnode_vnode_map[cnode, i] = cnode_list[np.where(vnode_adj_list[vnode, :] == cnode)] for vnode in range(n_vnodes): for i, cnode in enumerate(vnode_adj_list[vnode, 0:vnode_deg_list[vnode]]): vnode_cnode_map[vnode, i] = vnode_list[np.where(cnode_adj_list[cnode, :] == vnode)] cnode_adj_list_1d = cnode_adj_list.flatten().astype(np.int32) vnode_adj_list_1d = vnode_adj_list.flatten().astype(np.int32) cnode_vnode_map_1d = cnode_vnode_map.flatten().astype(np.int32) vnode_cnode_map_1d = vnode_cnode_map.flatten().astype(np.int32) pmat = np.zeros([n_cnodes, n_vnodes], int) for cnode_idx in range(n_cnodes): pmat[cnode_idx, cnode_adj_list[cnode_idx, :]] = 1 ldpc_code_params['n_vnodes'] = n_vnodes ldpc_code_params['n_cnodes'] = n_cnodes ldpc_code_params['max_cnode_deg'] = max_cnode_deg ldpc_code_params['max_vnode_deg'] = max_vnode_deg ldpc_code_params['cnode_adj_list'] = cnode_adj_list_1d ldpc_code_params['cnode_vnode_map'] = cnode_vnode_map_1d ldpc_code_params['vnode_adj_list'] = vnode_adj_list_1d ldpc_code_params['vnode_cnode_map'] = vnode_cnode_map_1d ldpc_code_params['cnode_deg_list'] = cnode_deg_list ldpc_code_params['vnode_deg_list'] = vnode_deg_list ldpc_design_file.close() return ldpc_code_params
a2702a3fb5faf67d56fa08ae7ab627e3142fb006
8,030
def find_collection(*, collection, name): """ Looks through the pages of a collection for a resource with the specified name. Returns it, or if not found, returns None """ if isinstance(collection, ProjectCollection): try: # try to use search if it is available # call list() to collapse the iterator, otherwise the NotFound # won't show up until collection_list is used collection_list = list(collection.search(search_params={ "name": { "value": name, "search_method": "EXACT" } })) except NotFound: # Search must not be available yet collection_list = collection.list() else: collection_list = collection.list() matching_resources = [resource for resource in collection_list if resource.name == name] if len(matching_resources) > 1: raise ValueError("Found multiple collections with name '{}'".format(name)) if len(matching_resources) == 1: result = matching_resources.pop() print('Found existing: {}'.format(result)) return result else: return None
a6532f2f63b682822f96e51d7ab86e7bc240d922
8,031
def terms_documents_matrix_ticcl_frequency(in_files): """Returns a terms document matrix and related objects of a corpus A terms document matrix contains frequencies of wordforms, with wordforms along one matrix axis (columns) and documents along the other (rows). Inputs: in_files: list of ticcl frequency files (one per document in the corpus) Returns: corpus: a sparse terms documents matrix vocabulary: the vectorizer object containing the vocabulary (i.e., all word forms in the corpus) """ vocabulary = DictVectorizer() corpus = vocabulary.fit_transform(ticcl_frequency(in_files)) return corpus, vocabulary
25e6cf8ca1696ebb1d5d7f72ddd90fe091e22030
8,032
def cvt_continue_stmt(node: pytree.Base, ctx: Ctx) -> ast_cooked.Base: """continue_stmt: 'continue'""" #-# Continue assert ctx.is_REF, [node] return ast_cooked.ContinueStmt()
1eefd660e9023aa69957cf1004369d6495048437
8,033
def nth_even(n): """Function I wrote that returns the nth even number.""" return (n * 2) - 2
26e1465a039352917647ae650d653ed9842db7f6
8,034
def _has__of__(obj): """Check whether an object has an __of__ method for returning itself in the context of a container.""" # It is necessary to check both the type (or we get into cycles) # as well as the presence of the method (or mixins of Base pre- or # post-class-creation as done in, e.g., # zopefoundation/Persistence) can fail. return isinstance(obj, ExtensionClass.Base) and hasattr(type(obj), '__of__')
638b6ed823acf2a46ae5a5cda6d3565fad498364
8,035
def grayscale(img): """ Applies the Grayscale transform This will return an image with only one color channel but NOTE: to see the returned image as grayscale (assuming your grayscaled image is called 'gray') you should call plt.imshow(gray, cmap='gray') """ return cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) # Or use BGR2GRAY if you read an image with cv2.imread()
3c3b0508850c5cdaf2617ed37c6f5eea79be64d0
8,036
def get_pageinfo(response, tracktype='recenttracks'): """Check how many pages of tracks the user have.""" xmlpage = ET.fromstring(response) totalpages = xmlpage.find(tracktype).attrib.get('totalPages') return int(totalpages)
ed5c05bcc648d4a22c5f1b51b196743bf6883dff
8,037
def MIN(*args): """Return the minimum of a range or list of Number or datetime""" return _group_function(min, *args)
044d1d433901f6ed3308aad711a6bf7eca4e2301
8,038
def GF(order, irreducible_poly=None, primitive_element=None, verify_irreducible=True, verify_primitive=True, mode="auto", target="cpu"): """ Factory function to construct a Galois field array class of type :math:`\\mathrm{GF}(p^m)`. The created class will be a subclass of :obj:`galois.FieldArray` with metaclass :obj:`galois.FieldMeta`. The :obj:`galois.FieldArray` inheritance provides the :obj:`numpy.ndarray` functionality. The :obj:`galois.FieldMeta` metaclass provides a variety of class attributes and methods relating to the finite field. Parameters ---------- order : int The order :math:`p^m` of the field :math:`\\mathrm{GF}(p^m)`. The order must be a prime power. irreducible_poly : int, galois.Poly, optional Optionally specify an irreducible polynomial of degree :math:`m` over :math:`\\mathrm{GF}(p)` that will define the Galois field arithmetic. An integer may be provided, which is the integer representation of the irreducible polynomial. Default is `None` which uses the Conway polynomial :math:`C_{p,m}` obtained from :func:`galois.conway_poly`. primitive_element : int, galois.Poly, optional Optionally specify a primitive element of the field :math:`\\mathrm{GF}(p^m)`. A primitive element is a generator of the multiplicative group of the field. For prime fields :math:`\\mathrm{GF}(p)`, the primitive element must be an integer and is a primitive root modulo :math:`p`. For extension fields :math:`\\mathrm{GF}(p^m)`, the primitive element is a polynomial of degree less than :math:`m` over :math:`\\mathrm{GF}(p)` or its integer representation. The default is `None` which uses :obj:`galois.primitive_root(p)` for prime fields and :obj:`galois.primitive_element(irreducible_poly)` for extension fields. verify_irreducible : bool, optional Indicates whether to verify that the specified irreducible polynomial is in fact irreducible. The default is `True`. For large irreducible polynomials that are already known to be irreducible (and may take a long time to verify), this argument can be set to `False`. verify_primitive : bool, optional Indicates whether to verify that the specified primitive element is in fact a generator of the multiplicative group. The default is `True`. mode : str, optional The type of field computation, either `"auto"`, `"jit-lookup"`, or `"jit-calculate"`. The default is `"auto"`. The "jit-lookup" mode will use Zech log, log, and anti-log lookup tables for efficient calculation. The "jit-calculate" mode will not store any lookup tables, but instead perform field arithmetic on the fly. The "jit-calculate" mode is designed for large fields that cannot or should not store lookup tables in RAM. Generally, "jit-calculate" mode will be slower than "jit-lookup". The "auto" mode will determine whether to use "jit-lookup" or "jit-calculate" based on the field's size. In "auto" mode, field's with `order <= 2**16` will use the "jit-lookup" mode. target : str, optional The `target` keyword argument from :func:`numba.vectorize`, either `"cpu"`, `"parallel"`, or `"cuda"`. Returns ------- galois.FieldMeta A new Galois field array class that is a subclass of :obj:`galois.FieldArray` with :obj:`galois.FieldMeta` metaclass. Examples -------- Construct a Galois field array class with default irreducible polynomial and primitive element. .. ipython:: python # Construct a GF(2^m) class GF256 = galois.GF(2**8) # Notice the irreducible polynomial is primitive print(GF256.properties) poly = GF256.irreducible_poly Construct a Galois field specifying a specific irreducible polynomial. .. ipython:: python # Field used in AES GF256_AES = galois.GF(2**8, irreducible_poly=galois.Poly.Degrees([8,4,3,1,0])) print(GF256_AES.properties) # Construct a GF(p) class GF571 = galois.GF(571); print(GF571.properties) # Construct a very large GF(2^m) class GF2m = galois.GF(2**100); print(GF2m.properties) # Construct a very large GF(p) class GFp = galois.GF(36893488147419103183); print(GFp.properties) See :obj:`galois.FieldArray` for more examples of what Galois field arrays can do. """ if not isinstance(order, int): raise TypeError(f"Argument `order` must be an integer, not {type(order)}.") p, k = prime_factors(order) if not len(p) == len(k) == 1: s = " + ".join([f"{pp}**{kk}" for pp, kk in zip(p, k)]) raise ValueError(f"Argument `order` must be a prime power, not {order} = {s}.") p, m = p[0], k[0] if m == 1: if not irreducible_poly is None: raise ValueError(f"Argument `irreducible_poly` can only be specified for prime fields, not the extension field GF({p}^{m}).") return GF_prime(p, primitive_element=primitive_element, verify_primitive=verify_primitive, target=target, mode=mode) else: return GF_extension(p, m, primitive_element=primitive_element, irreducible_poly=irreducible_poly, verify_primitive=verify_primitive, verify_irreducible=verify_irreducible, target=target, mode=mode)
d09dea199559aad111e6aa30a2c391da9ae6b551
8,039
import typing def remove_fields_with_value_none(fields: typing.Dict) -> typing.Dict: """ Remove keys whose value is none :param fields: the fields to clean :return: a copy of fields, without the none values """ fields = dict((key, value) for key, value in fields.items() if value is not None) # Strip out none values return fields
22d7ac2a77248809c691bdb98f5f6ebaaf6d4f2b
8,040
def make_values(params, point): #240 (line num in coconut source) """Return a dictionary with the values replaced by the values in point, where point is a list of the values corresponding to the sorted params.""" #242 (line num in coconut source) values = {} #243 (line num in coconut source) for i, k in (enumerate)((sorted)(params)): #244 (line num in coconut source) values[k] = point[i] #245 (line num in coconut source) return values
8287b49e54cb08802350a3a15805dc20def10ece
8,041
def elbow_method(data): """ This function will compute elbow method and generate elbow visualization :param data: 2 columns dataframe for cluster analysis :return: Plotly Figures """ distortions = [] K = range(1, 10) for k in K: elbow_kmean = model_kmeans(data, k) distortions.append(elbow_kmean.inertia_) elbow = pd.DataFrame({'k': K, 'inertia': distortions}) fig = go.Figure(data=go.Scatter(x=elbow['k'], y=elbow['inertia'])) fig.update_layout(title='Elbows Methods for finding best K values in KMeans', xaxis_title='K', yaxis_title='Inertia') return fig
5420ce252f8a89ae3540ce37cbfd4f31f0cbe93e
8,042
from typing import Callable def sa_middleware(key: str = DEFAULT_KEY) -> 'Callable': """ SQLAlchemy asynchronous middleware factory. """ @middleware async def sa_middleware_(request: 'Request', handler: 'Callable')\ -> 'StreamResponse': if key in request: raise DuplicateRequestKeyError(key) Session = request.config_dict.get(key) async with Session() as request[key]: return await handler(request) return sa_middleware_
df4da137e45fcaa2962626a4f3676d9f7b9ecce9
8,043
def dice_loss(y_true, y_pred): """ dice_loss """ smooth = 1. intersection = K.sum(K.abs(y_true * y_pred), axis=-1) dice_coef = (2. * intersection + smooth) / (K.sum(K.square(y_true),-1) + \ K.sum(K.square(y_pred),-1) + smooth) return 1 - dice_coef
863f69071375f37fed3c8910e52c1ffbda14cd71
8,044
def webdriver_init(mobile): """ Initialize a mobile/desktop web driver. This initialize a web driver with a default user agent regarding the mobile demand. Default uer agents are defined by MOBILE_USER_AGENT and DESKTOP_USER_AGENT. :param mobile: The mobile flag :type conn: bool :return: A web driver :rtype: WebDriver """ if mobile: return webdriver_init_with_caps(MOBILE_USER_AGENT) else: return webdriver_init_with_caps(DESKTOP_USER_AGENT)
49215bfd5363b9e7e82329b42b97ad04402b7edb
8,045
import hashlib def calculate_file_hash(f, alg, buf_size): """BUF_SIZE - 64 kb need for large file""" h = hashlib.new(alg) for chunk in iter(lambda: f.read(buf_size), b""): h.update(chunk) return h.hexdigest()
6361ef8f18f5ae66e1d51503426c77f7505e10be
8,046
def update(A, B, DA, DB, f, k, delta_t): """Apply the Gray-Scott update formula""" # compute the diffusion part of the update diff_A = DA * apply_laplacian(A) diff_B = DB * apply_laplacian(B) # Apply chemical reaction reaction = A*B**2 diff_A -= reaction diff_B += reaction # Apply birth/death diff_A += f * (1-A) diff_B -= (k+f) * B A += diff_A * delta_t B += diff_B * delta_t return A, B
75c2004ea089d5b3a9f4ec71fc27510d1c0dc5c0
8,047
import typing import hashlib def sha512(data: typing.Optional[bytes] = None): """Returns a sha512 hash object; optionally initialized with a string.""" if data is None: return hashlib.sha512() return hashlib.sha512(data)
067fffc4c006d9c46e5037b07b86149ac15bb573
8,048
import os def _circle_ci_pr(): """Get the current CircleCI pull request (if any). Returns: Optional[int]: The current pull request ID. """ try: return int(os.getenv(env.CIRCLE_CI_PR_NUM, '')) except ValueError: return None
ae8739a4abbc04181fd17dcd8963beed71db3597
8,049
def get_entropy_of_maxes(): """ Specialized code for retrieving guesses and confidence of largest model of each type from the images giving largest entropy. :return: dict containing the models predictions and confidence, as well as the correct label under "y". """ high_entropy_list = get_high_entropy_mnist_test() d = {} images = [] values = [] for i in high_entropy_list: images.append(i[0]) values.append(i[1]) d["y"] = np.array(values) d["d"] = [] d["f"] = [] model_paths = ["ffnn_models", "dropout_models"] for model in model_paths: pred = model_predictor(model + "/model_50000", np.array(images), np.array(values))[0] for i in pred: d[model[0]].append((np.argmax(i), i)) return d
9a43ac44a61776d25d3b46a7fb733d95720e3beb
8,050
from typing import List from typing import Dict from typing import Any def get_all_links() -> List[Dict[str, Any]]: """Returns all links as an iterator""" return get_entire_collection(LINKS_COLLECTION)
1bda0ac68f778c77914163dd7855491cc04a2c97
8,051
def agent(states, actions): """ creating a DNN using keras """ model = Sequential() model.add(Flatten(input_shape=(1, states))) model.add(Dense(24, activation='relu')) model.add(Dense(24, activation='relu')) model.add(Dense(24, activation='relu')) model.add(Dense(actions, activation='linear')) return model
b9f8415955cc1b01dbe46b94dd84ab3daa6811c2
8,052
def get_package_nvr_from_spec(spec_file): """ Return a list of the NVR required for a given spec file :param spec_file: The path to a spec file :type spec_file: str :return: list of nevra that should be built for that spec file :rtype: str """ # Get the dep name & version spec = rpm.spec(spec_file) package_nvr = spec.sourceHeader[rpm.RPMTAG_NVR] # split the dist from the end of the nvr package_nvr = package_nvr[:package_nvr.rfind('.')] return package_nvr
9f8c5e5451d9b7fd3721881645688781b221e08d
8,053
def rbo_ext(S, T, p): """Extrapolated RBO value as defined in equation (30). Implementation handles uneven lists but not ties. """ if len(S) > len(T): L, S = S, T else: L, S = T, S l, s = len(L), len(S) xl = overlap(L, S, l) xs = overlap(L, S, s) sum1 = sum(overlap(L, S, d) / d * p ** d for d in range(1, l + 1)) sum2 = sum(xs * (d - s) / (s * d) * p ** d for d in range(s + 1, l + 1)) return (1 - p) / p * (sum1 + sum2) + ((xl - xs) / l + xs / s) * p ** l
367c979f8ece073e86e9fdc48a26bb393f0236be
8,054
def index(request): """ View of index page """ title = _("Home") posts = Post.objects.all().order_by('-timestamp')[:5] return render(request, 'dashboard/index.html', locals())
a152bfad756be809c56e6dc203cb7cf9d29f4868
8,055
def incremental_str_maker(str_format='{:03.f}'): """Make a function that will produce a (incrementally) new string at every call.""" i = 0 def mk_next_str(): nonlocal i i += 1 return str_format.format(i) return mk_next_str
41ce6e7d7ba69922f92e73ee516e9c09fdbe0713
8,056
def get_time_slider_range(highlighted=True, withinHighlighted=True, highlightedOnly=False): """Return the time range from Maya's time slider. Arguments: highlighted (bool): When True if will return a selected frame range (if there's any selection of more than one frame!) otherwise it will return min and max playback time. withinHighlighted (bool): By default Maya returns the highlighted range end as a plus one value. When this is True this will be fixed by removing one from the last number. Returns: list: List of two floats of start and end frame numbers. """ if highlighted is True: gPlaybackSlider = mel.eval("global string $gPlayBackSlider; " "$gPlayBackSlider = $gPlayBackSlider;") if cmds.timeControl(gPlaybackSlider, query=True, rangeVisible=True): highlightedRange = cmds.timeControl(gPlaybackSlider, query=True, rangeArray=True) if withinHighlighted: highlightedRange[-1] -= 1 return highlightedRange if not highlightedOnly: return [cmds.playbackOptions(query=True, minTime=True), cmds.playbackOptions(query=True, maxTime=True)]
f05ca2bfec8bcfb41be9a0fa83a724d180dc545f
8,057
def update_IW(hyp_D_prev, xikk, xk, Pik_old): """ Do an update of Norm-IW conjugate in an exponential form. """ suff_D = get_suff_IW_conj(xikk, xk, Pik_old) hyp_D = hyp_D_prev + suff_D Dik = get_E_IW_hyp(hyp_D) return Dik, hyp_D
d787edf13e18cdbc1c6ff3a65168f32ff8c28b1f
8,058
def compute_state(observations, configuration): """ :param observations: :param configuration: :return StateTensor: """ StateTensorType = configuration.STATE_TYPE return StateTensorType([observations])
44a08caa02137438359c4cd764fff1700b6252b2
8,059
def supports_transfer_syntax(transfer_syntax: pydicom.uid.UID) -> bool: """Return ``True`` if the handler supports the `transfer_syntax`. Parameters ---------- transfer_syntax : uid.UID The Transfer Syntax UID of the *Pixel Data* that is to be used with the handler. """ return transfer_syntax in SUPPORTED_TRANSFER_SYNTAXES
65f85a47afc5002ed33e4ad787317d67b4dab218
8,060
def enhance_user(user, json_safe=False): """ Adds computed attributes to AD user results Args: user: A dictionary of user attributes json_safe: If true, converts binary data into base64, And datetimes into human-readable strings Returns: An enhanced dictionary of user attributes """ if "memberOf" in user.keys(): user["memberOf"] = sorted(user["memberOf"], key=lambda dn: dn.lower()) if "showInAddressBook" in user.keys(): user["showInAddressBook"] = sorted(user["showInAddressBook"], key=lambda dn: dn.lower()) if "lastLogonTimestamp" in user.keys(): user["lastLogonTimestamp"] = _get_last_logon(user["lastLogonTimestamp"]) if "lockoutTime" in user.keys(): user["lockoutTime"] = convert_ad_timestamp(user["lockoutTime"], json_safe=json_safe) if "pwdLastSet" in user.keys(): user["pwdLastSet"] = convert_ad_timestamp(user["pwdLastSet"], json_safe=json_safe) if "userAccountControl" in user.keys(): user["userAccountControl"] = int(user["userAccountControl"]) user["disabled"] = user["userAccountControl"] & 2 != 0 user["passwordExpired"] = user["userAccountControl"] & 8388608 != 0 user["passwordNeverExpires"] = user["userAccountControl"] & 65536 != 0 user["smartcardRequired"] = user["userAccountControl"] & 262144 != 0 if "whenCreated" in user.keys(): user["whenCreated"] = convert_ad_timestamp(user["whenCreated"], json_safe=json_safe) if "msExchRecipientTypeDetails" in user.keys(): user["msExchRecipientTypeDetails"] = int(user["msExchRecipientTypeDetails"]) user["remoteExchangeMailbox"] = user["msExchRecipientTypeDetails"] in remote_exchange_mailbox_values user["exchangeMailbox"] = user["msExchRecipientTypeDetails"] in exchange_mailbox_values.keys() if user["exchangeMailbox"]: user["exchangeMailboxType"] = exchange_mailbox_values[user["msExchRecipientTypeDetails"]] return user
4b6fd08440c9c92d074e639f803b242f044f2ea3
8,061
from datetime import datetime import random def create_data(namespace_id, ocs_client): """Creates sample data for the script to use""" double_type = SdsType(id='doubleType', sdsTypeCode=SdsTypeCode.Double) datetime_type = SdsType( id='dateTimeType', sdsTypeCode=SdsTypeCode.DateTime) pressure_property = SdsTypeProperty(id='pressure', sdsType=double_type) temperature_property = SdsTypeProperty(id=SAMPLE_FIELD_TO_CONSOLIDATE_TO, sdsType=double_type) ambient_temperature_property = SdsTypeProperty(id=SAMPLE_FIELD_TO_CONSOLIDATE, sdsType=double_type) time_property = SdsTypeProperty(id='time', sdsType=datetime_type, isKey=True) sds_type_1 = SdsType( id=SAMPLE_TYPE_ID_1, description='This is a sample Sds type for storing Pressure type ' 'events for Data Views', sdsTypeCode=SdsTypeCode.Object, properties=[pressure_property, temperature_property, time_property]) sds_type_2 = SdsType( id=SAMPLE_TYPE_ID_2, description='This is a new sample Sds type for storing Pressure type ' 'events for Data Views', sdsTypeCode=SdsTypeCode.Object, properties=[pressure_property, ambient_temperature_property, time_property]) print('Creating SDS Types...') ocs_client.Types.getOrCreateType(namespace_id, sds_type_1) ocs_client.Types.getOrCreateType(namespace_id, sds_type_2) stream1 = SdsStream( id=SAMPLE_STREAM_ID_1, name=SAMPLE_STREAM_NAME_1, description='A Stream to store the sample Pressure events', typeId=SAMPLE_TYPE_ID_1) stream2 = SdsStream( id=SAMPLE_STREAM_ID_2, name=SAMPLE_STREAM_NAME_2, description='A Stream to store the sample Pressure events', typeId=SAMPLE_TYPE_ID_2) print('Creating SDS Streams...') ocs_client.Streams.createOrUpdateStream(namespace_id, stream1) ocs_client.Streams.createOrUpdateStream(namespace_id, stream2) sample_start_time = datetime.datetime.now() - datetime.timedelta(hours=1) sample_end_time = datetime.datetime.now() values1 = [] values2 = [] def value_with_time(timestamp, value, field_name, value2): """Formats a JSON data object""" return f'{{"time": "{timestamp}", "pressure": {str(value)}, "{field_name}": {str(value2)}}}' print('Generating values...') for i in range(1, 30, 1): timestamp = (sample_start_time + datetime.timedelta(minutes=i * 2) ).isoformat(timespec='seconds') val1 = value_with_time(timestamp, random.uniform( 0, 100), SAMPLE_FIELD_TO_CONSOLIDATE_TO, random.uniform(50, 70)) val2 = value_with_time(timestamp, random.uniform( 0, 100), SAMPLE_FIELD_TO_CONSOLIDATE, random.uniform(50, 70)) values1.append(val1) values2.append(val2) print('Sending values...') ocs_client.Streams.insertValues( namespace_id, SAMPLE_STREAM_ID_1, str(values1).replace("'", "")) ocs_client.Streams.insertValues( namespace_id, SAMPLE_STREAM_ID_2, str(values2).replace("'", "")) return (sample_start_time, sample_end_time)
c0b01e36e350d152d758a744735688d15826be06
8,062
def enhanced_feature_extractor_digit(datum): """Feature extraction playground for digits. You should return a util.Counter() of features for this datum (datum is of type samples.Datum). ## DESCRIBE YOUR ENHANCED FEATURES HERE... """ features = basic_feature_extractor_digit(datum) "*** YOUR CODE HERE ***" util.raise_not_defined() return features
b98ef2caf6b51176fae18ae36dd0c316ab2d8ee7
8,063
from typing import Union def linear_resample(x: Union[ivy.Array, ivy.NativeArray], num_samples: int, axis: int = -1, f: ivy.Framework = None)\ -> Union[ivy.Array, ivy.NativeArray]: """ Performs linear re-sampling on input image. :param x: Input array :type x: array :param num_samples: The number of interpolated samples to take. :type num_samples: int :param axis: The axis along which to perform the resample. Default is last dimension. :type axis: int, optional :param f: Machine learning framework. Inferred from inputs if None. :type f: ml_framework, optional :return: The array after the linear resampling. """ return _cur_framework(x, f=f).linear_resample(x, num_samples, axis)
bd6b54ee5cafe5409eb6aa47da57db2ad3b7fff2
8,064
import os def mysql_settings(): """Return a list of dict of settings for connecting to postgresql. Will return the correct settings, depending on which of the environments it is running in. It attempts to set variables in the following order, where later environments override earlier ones. 1. Local 2. Github Actions """ if "GITHUB_ACTIONS" in os.environ: instances = 2 user = password = db = "python_agent" base_port = 8080 else: instances = 1 user = db = USER password = "" base_port = 3306 settings = [ { "user": user, "password": password, "name": db, "host": "127.0.0.1", "port": base_port + instance_num, "namespace": str(os.getpid()), } for instance_num in range(instances) ] return settings
0fb9a0c0bdc71079da46fbc5f5ed35fd19c985df
8,065
def update_milestones(repo, username=None, namespace=None): """Update the milestones of a project.""" repo = flask.g.repo form = pagure.forms.ConfirmationForm() error = False if form.validate_on_submit(): redirect = flask.request.args.get("from") milestones = flask.request.form.getlist("milestones") miles = {} keys = [] for idx in milestones: milestone = flask.request.form.get( "milestone_%s_name" % (idx), None ) date = flask.request.form.get("milestone_%s_date" % (idx), None) active = ( True if flask.request.form.get("milestone_%s_active" % (idx)) else False ) if milestone and milestone.strip(): milestone = milestone.strip() if milestone in miles: flask.flash( "Milestone %s is present multiple times" % milestone, "error", ) error = True break miles[milestone] = { "date": date.strip() if date else None, "active": active, } keys.append(milestone) if not error: try: repo.milestones = miles repo.milestones_keys = keys flask.g.session.add(repo) flask.g.session.commit() flask.flash("Milestones updated") except SQLAlchemyError as err: # pragma: no cover flask.g.session.rollback() flask.flash(str(err), "error") if redirect == "issues": return flask.redirect( flask.url_for( "ui_ns.view_issues", username=username, repo=repo.name, namespace=namespace, ) ) return flask.redirect( flask.url_for( "ui_ns.view_settings", username=username, repo=repo.name, namespace=namespace, ) + "#roadmap-tab" )
4869d70a4d8bd85436639dd3214f208822f7241b
8,066
def installedState(item_pl): """Checks to see if the item described by item_pl (or a newer version) is currently installed All tests must pass to be considered installed. Returns 1 if it looks like this version is installed Returns 2 if it looks like a newer version is installed. Returns 0 otherwise. """ foundnewer = False if item_pl.get('softwareupdatename'): availableAppleUpdates = appleupdates.softwareUpdateList() munkicommon.display_debug2( 'Available Apple updates:\n%s' % availableAppleUpdates) if item_pl['softwareupdatename'] in availableAppleUpdates: munkicommon.display_debug1( '%s is in available Apple Software Updates' % item_pl['softwareupdatename']) # return 0 so we're marked as needing to be installed return 0 else: munkicommon.display_debug1( '%s is not in available Apple Software Updates' % item_pl['softwareupdatename']) # return 1 so we're marked as not needing to be installed return 1 # does 'installs' exist and is it non-empty? if item_pl.get('installs', None): installitems = item_pl['installs'] for item in installitems: try: comparison = compareItemVersion(item) if comparison in (-1, 0): return 0 elif comparison == 2: # this item is newer foundnewer = True except munkicommon.Error, errmsg: # some problem with the installs data munkicommon.display_error(errmsg) return 0 # if there is no 'installs' key, then we'll use receipt info # to determine install status. elif 'receipts' in item_pl: receipts = item_pl['receipts'] for item in receipts: try: comparison = compareReceiptVersion(item) if comparison in (-1, 0): # not there or older return 0 elif comparison == 2: foundnewer = True except munkicommon.Error, errmsg: # some problem with the receipts data munkicommon.display_error(errmsg) return 0 # if we got this far, we passed all the tests, so the item # must be installed (or we don't have enough info...) if foundnewer: return 2 else: return 1
b3ec76863f75c87ed11a7984eb36384379c96229
8,067
def trapezoid_vectors(t, depth, big_t, little_t): """Trapezoid shape, in the form of vectors, for model. Parameters ---------- t : float Vector of independent values to evaluate trapezoid model. depth : float Depth of trapezoid. big_t : float Full trapezoid duration. little_t : float Ingress/egress duration. Returns ------- output : float Vector of trapezoid model values. """ output = np.full_like(t, 1.0) t = np.abs(t) big_t_half = big_t * 0.5 little_t_half = little_t * 0.5 one_minus_depth = 1.0 - depth output = np.where(t <= big_t_half - little_t_half, one_minus_depth, output) return np.where( np.logical_and(t > big_t_half - little_t_half, t < big_t_half + little_t_half), one_minus_depth + ((depth / little_t) * (t - big_t_half + little_t_half)), output)
759c7cf946bf9ea998644bea9b28f46dea5a6e55
8,068
def get_rules(clf, class_names, feature_names): """ Extracts the rules from a decision tree classifier. The keyword arguments correspond to the objects returned by tree.build_tree. Keyword arguments: clf: A sklearn.tree.DecisionTreeClassifier. class_names: A list(str) containing the class names. feature_names: A list(str) containing the feature names. Returns: A list(str) where each element is a rule describing a leaf node. """ tree = clf.tree_ rules = traverse(tree, 0, class_names, feature_names, [], [], [], []) rules = prune_rules(rules, feature_names) n_rules = len(rules) print('\tExtracted', n_rules, 'rule' + ('s.' if n_rules > 1 else '.')) rules_str = [] for (features, thresholds, decisions, class_name) in rules: rule = lists2rule(features, thresholds, decisions, class_name) rules_str.append(rule) return rules_str
a4d9bc1964553d384f1c795e2ad4834a532ddbba
8,069
import os import subprocess def save_repo(repo, target="/run/install"): """copy a repo to the place where the installer will look for it later.""" newdir = mkdir_seq(os.path.join(target, "DD-")) log.debug("save_repo: copying %s to %s", repo, newdir) subprocess.call(["cp", "-arT", repo, newdir]) return newdir
678d35effe4cc72ce7a46cf6af9ff0b62a277607
8,070
def file_parser(localpath = None, url = None, sep = " ", delimiter = "\t"): """ DOCSTRING: INPUT: > 'localpath' : String (str). Ideally expects a local object with a read() method (such as a file handle or StringIO). By default, 'localpath=dummy_file' parameter can be passed to auto-detect and parse one of our dummy 'Payments' file in Amazon format. Acceptable input file extensions include .CSV, .TSV and .TXT. Needs to be passed in within quotes, either single or double quotes. Default 'dummy_file' doesn't require additional quotes. > 'url' : [OPTIONAL] String (str). If supplied with value, 'localpath' needs to be left at default 'None' or else shall output an error message. Expected file type contained within URL should be either in .CSV, .TSV and .TXT format. Needs to be passed in within quotes, either single or double quotes. Default 'url=ur' can be passed w/o additional quotes for fetching dummy data. > 'sep' : [OPTIONAL] String (str). Optional, and isn't expected to be modified unless critical. Powered by Python’s builtin parsing sniffer tool. In addition, separators longer than 1 character and different from '\s+' will be interpreted as regular expressions and will also force the use of the Python parsing engine. Note that regex separators are prone to ignoring quoted data. [Regex example: '\r\t']. > 'delimiter' : [OPTIONAL] String (str). Parameter isn't expected to be modified (Like setting to 'None') unless critical. Alternative argument name for previous argument 'sep', so a careful choice needs to be made. OUTPUT: Shall result into a Pandas DataFrame or TextParser for further data processing. """ # Checking existence of 'filepath' or 'url' parameter before parsing: if localpath == None and url == None: return "Please input EITHER local file path to 'localpath' parameter OR any valid readable URL to 'url' parameter" elif localpath != None and url == None: if localpath.lower().endswith((".txt", ".csv", ".tsv")): data = pd.read_csv(localpath, sep = sep, delimiter=delimiter, parse_dates=[0], infer_datetime_format=True) return data else: return "This file format is not supported. Kindly refer to our functional flow documentation for further assistance!" elif localpath == None and url != None: data = pd.read_csv(url, sep = sep, delimiter=delimiter, parse_dates=[0], infer_datetime_format=True) return data else: return "Please pass valid input for processing."
a1f8cc5fceffdc2a20f745afbce44645634221bd
8,071
def is_list(var, *, debug=False): """ is this a list or tuple? (DOES NOT include str) """ print_debug(debug, "is_list: got type %s" % (type(var))) return isinstance(var, (list, tuple))
8c24f02aea597c6d17218a468ec59481d873a950
8,072
import logging def zonotope_minimize(avfun, avdom, avdfun): """ Minimize a response surface defined on a zonotope. :param function avfun: A function of the active variables. :param ActiveVariableDomain avdom: Contains information about the domain of `avfun`. :param function avdfun: Returns the gradient of `avfun`. :return: ystar, The estimated minimizer of `avfun`. :rtype: ndarray :return: fstar, The estimated minimum of `avfun`. :rtype: float **See Also** optimizers.av_minimize **Notes** This function wraps the scipy.optimize implementation of SLSQP with linear inequality constraints derived from the zonotope. """ n = avdom.subspaces.W1.shape[1] logging.getLogger(__name__).debug('Zonotope minimization in {:d} vars.'.format(n)) opts = {'disp':False, 'maxiter':1e4, 'ftol':1e-9} # a bit of globalization curr_state = np.random.get_state() np.random.seed(42) minf = 1e100 minres = [] for i in range(10): y0 = np.random.normal(size=(1, n)) cons = avdom.constraints result = scopt.minimize(avfun, y0, constraints=cons, method='SLSQP', \ jac=avdfun, options=opts) if not result.success: raise Exception('SLSQP failed with message: {}.'.format(result.message)) if result.fun < minf: minf = result.fun minres = result logging.getLogger(__name__).debug('\tMinimum {:6.4f}.'.format(minf)) np.random.set_state(curr_state) ystar, fstar = minres.x, minres.fun return ystar, fstar
af42a5a8e2c73c9fa0f4f7dcfdd159809e0f7a10
8,073
def node_to_truncated_gr(node, bin_width=0.1): """ Parses truncated GR node to an instance of the :class: openquake.hazardlib.mfd.truncated_gr.TruncatedGRMFD """ # Parse to float dictionary if not all([node.attrib[key] for key in ["minMag", "maxMag", "aValue", "bValue"]]): return None tgr = dict((key, float_(node.attrib[key])) for key in node.attrib) return mfd.truncated_gr.TruncatedGRMFD(min_mag=tgr["minMag"], max_mag=tgr["maxMag"], bin_width=bin_width, a_val=tgr["aValue"], b_val=tgr["bValue"])
0fd81e01140ec7b1a38f28c527139b61cc1c3a92
8,074
def nt(node, tag): """ returns text of the tag or None if the tag does not exist """ if node.find(tag) is not None and node.find(tag).text is not None: return node.find(tag).text else: return None
7ca5f83cf18f918f594374fa2aa875415238eef6
8,075
def set_user_favorites(username, **_): """ Sets the user's Favorites Variables: username => Name of the user you want to set the favorites for Arguments: None Data Block: { # Dictionary of "alert": [ "<name_of_query>": # Named queries "*:*", # The actual query to run ... } Result example: { "success": true # Was saving the favorites successful ? } """ data = request.json favorites = { "alert": [], "search": [], "signature": [], "submission": [], "error": [] } for key in data: if key not in favorites: return make_api_response("", err="Invalid favorite type (%s)" % key, status_code=400) favorites.update(data) return make_api_response({"success": STORAGE.user_favorites.save(username, data)})
391ff8e9736bb2baddbf388c5a203cf9d2d7bdcc
8,076
def delete_token(token_id): """Revoke a specific token in the application auth database. :type token_id: str :param token_id: Token identifier :rtype: tuple :return: None, status code """ client_data = g.client_data if not valid_token_id(token_id): raise MalformedTokenIdException token = current_app.auth_db.lookup_token(token_id) if token is None: raise TokenNotFoundException if not isinstance(token, Token): raise InternalServerErrorException("auth_db.lookup_token did not return a token object") if "admin" in client_data.roles: current_app.auth_db.revoke_token(token_id) else: if token.client_id != client_data.client_id: raise InadequateRolesException("Cannot revoke a token which you do not own") current_app.auth_db.revoke_token(token_id) return "", 204
204f4ae2c0dc7c704f05baa86930bc7962d1b639
8,077
from typing import Optional async def update_country(identifier: Optional[str] = None, name: Optional[str] = None, capital: Optional[str] = None, country: UpdateCountryModel = Body(...), current_user: AdminModel = Depends(get_current_user)): """ Update a country by name or capital name: - **current user** should be admin - **name**: country name - **capital**: capital name of the country """ variables = locals() options = {'identifier': '_id', 'name': 'name', 'capital': 'capital'} for key in variables.keys(): if variables[key] is not None: return await update_object({options[key]: variables[key]}, country, 'countries') raise HTTPException(status_code=404, detail='Set some parameters')
7805ca1d8e99e21b2558258e890f11fb4f697df9
8,078
def twoSum(nums, target): """ :type nums: List[int] :type target: int :rtype: List[int] """ """method-1 time O(n), traverse all, get rest""" for i in range(len(nums)): res = target - nums[i] if res in nums: return [i, nums.index(res)] else: return []
8c5cd095c7800fa5da698dffa0d76d3c00a8a3c1
8,079
def transform_image(image, code_vectors): """ Quantize image using the code_vectors (aka centroids) Return a new image by replacing each RGB value in image with the nearest code vector (nearest in euclidean distance sense) returns: numpy array of shape image.shape """ assert image.shape[2] == 3 and len(image.shape) == 3, \ 'Image should be a 3-D array with size (?,?,3)' assert code_vectors.shape[1] == 3 and len(code_vectors.shape) == 2, \ 'code_vectors should be a 2-D array with size (?,3)' # TODO # - replace each pixel (a 3-dimensional point) by its nearest code vector N, M, D = image.shape flatten = image.reshape(N*M, D) # Assign every pixel to its nearest code vector distances = squared_euclidean_distances(x=flatten, y=code_vectors) assignment = np.argmin(distances, axis=1) compressed = code_vectors[assignment].reshape(N, M, D) return compressed
19aae8ca188de03f4b916f52d724048c757e936f
8,080
def create_linking_context_from_compilation_outputs( *, actions, additional_inputs = [], alwayslink = False, compilation_outputs, feature_configuration, label, linking_contexts = [], module_context, name = None, swift_toolchain, user_link_flags = []): """Creates a linking context from the outputs of a Swift compilation. On some platforms, this function will spawn additional post-compile actions for the module in order to add their outputs to the linking context. For example, if the toolchain that requires a "module-wrap" invocation to embed the `.swiftmodule` into an object file for debugging purposes, or if it extracts auto-linking information from the object files to generate a linker command line parameters file, those actions will be created here. Args: actions: The context's `actions` object. additional_inputs: A `list` of `File`s containing any additional files that are referenced by `user_link_flags` and therefore need to be propagated up to the linker. alwayslink: If True, any binary that depends on the providers returned by this function will link in all of the library's object files, even if some contain no symbols referenced by the binary. compilation_outputs: A `CcCompilationOutputs` value containing the object files to link. Typically, this is the second tuple element in the value returned by `swift_common.compile`. feature_configuration: A feature configuration obtained from `swift_common.configure_features`. label: The `Label` of the target being built. This is used as the owner of the linker inputs created for post-compile actions (if any), and the label's name component also determines the name of the artifact unless it is overridden by the `name` argument. linking_contexts: A `list` of `CcLinkingContext`s containing libraries from dependencies. name: A string that is used to derive the name of the library or libraries linked by this function. If this is not provided or is a falsy value, the name component of the `label` argument is used. module_context: The module context returned by `swift_common.compile` containing information about the Swift module that was compiled. Typically, this is the first tuple element in the value returned by `swift_common.compile`. swift_toolchain: The `SwiftToolchainInfo` provider of the toolchain. user_link_flags: A `list` of strings containing additional flags that will be passed to the linker for any binary that links with the returned linking context. Returns: A tuple of `(CcLinkingContext, CcLinkingOutputs)` containing the linking context to be propagated by the caller's `CcInfo` provider and the artifact representing the library that was linked, respectively. """ extra_linking_contexts = [ cc_info.linking_context for cc_info in swift_toolchain.implicit_deps_providers.cc_infos ] if module_context and module_context.swift: post_compile_linker_inputs = [] # Ensure that the .swiftmodule file is embedded in the final library or # binary for debugging purposes. if should_embed_swiftmodule_for_debugging( feature_configuration = feature_configuration, module_context = module_context, ): post_compile_linker_inputs.append( ensure_swiftmodule_is_embedded( actions = actions, feature_configuration = feature_configuration, label = label, swiftmodule = module_context.swift.swiftmodule, swift_toolchain = swift_toolchain, ), ) # Invoke an autolink-extract action for toolchains that require it. if is_action_enabled( action_name = swift_action_names.AUTOLINK_EXTRACT, swift_toolchain = swift_toolchain, ): autolink_file = derived_files.autolink_flags( actions = actions, target_name = label.name, ) register_autolink_extract_action( actions = actions, autolink_file = autolink_file, feature_configuration = feature_configuration, module_name = module_context.name, object_files = compilation_outputs.objects, swift_toolchain = swift_toolchain, ) post_compile_linker_inputs.append( cc_common.create_linker_input( owner = label, user_link_flags = depset( ["@{}".format(autolink_file.path)], ), additional_inputs = depset([autolink_file]), ), ) extra_linking_contexts.append( cc_common.create_linking_context( linker_inputs = depset(post_compile_linker_inputs), ), ) if not name: name = label.name return cc_common.create_linking_context_from_compilation_outputs( actions = actions, feature_configuration = get_cc_feature_configuration( feature_configuration, ), cc_toolchain = swift_toolchain.cc_toolchain_info, compilation_outputs = compilation_outputs, name = name, user_link_flags = user_link_flags, linking_contexts = linking_contexts + extra_linking_contexts, alwayslink = alwayslink, additional_inputs = additional_inputs, disallow_static_libraries = False, disallow_dynamic_library = True, grep_includes = None, )
4918932b7f47495a59226de64cb4c110227a9c8e
8,081
from miniworld.util import ConcurrencyUtil def wait_until_uds_reachable(uds_path, return_sock=False): """ Wait until the unix domain socket at `uds_path` is reachable. Returns ------- socket.socket """ sock = ConcurrencyUtil.wait_until_fun_returns_true(lambda x: x[0] is True, uds_reachable, uds_path, return_sock=return_sock)[1] return sock
574053ed1b4ccacda37bec58740ad497e690746a
8,082
def get_relation_count_df( dataset: Dataset, merge_subsets: bool = True, add_labels: bool = True, ) -> pd.DataFrame: """Create a dataframe with relation counts. :param dataset: The dataset. :param add_labels: Whether to add relation labels to the dataframe. :param merge_subsets: Whether to merge subsets, i.e., train/validation/test. :param add_labels: Whether to add entity / relation labels. :return: A dataframe with columns (relation_id, count, relation_label?, subset?) """ return _common( dataset=dataset, triple_func=triple_analysis.get_relation_counts, merge_subsets=merge_subsets, add_labels=add_labels, )
a15c22d0790c346cac3842f84a80ee7c27c4471a
8,083
def get_tests(run_id): """ Ручка для получения информации о тест (из тест-рана) Выходящий параметр: test_id """ client = APIClient('https://testrail.homecred.it') client.user = '[email protected]' client.password = 'Qwerty_22' tests = client.send_get('get_tests/%s' % run_id) return tests
a188e8a04dc72e485d5c519c09fcdbd8f2f18f31
8,084
from datetime import datetime def create_ffs(): """ Create a new Powergate Filecoin Filesystem (FFS) """ powergate = PowerGateClient(app.config["POWERGATE_ADDRESS"]) ffs = powergate.ffs.create() creation_date = datetime.now().replace(microsecond=0) # TODO salt token id filecoin_file_system = Ffs( ffs_id=ffs.id, token=ffs.token, creation_date=creation_date, user_id=current_user.id, ) db.session.add(filecoin_file_system) # Create new FFS wallet and add entry in log table address = powergate.ffs.addrs_list(ffs.token) obj = MessageToDict(address) wallet = obj["addrs"][0]["addr"] wallet = Wallets(created=creation_date, address=wallet, ffs=ffs.id, user_id=current_user.id,) db.session.add(wallet) db.session.commit() new_ffs = Ffs.query.filter_by(ffs_id=ffs.id).first() return new_ffs
4163d080ae0ec7e2de2090b2ee6112fdbec89d75
8,085
def other(player): """Return the other player, for a player PLAYER numbered 0 or 1. >>> other(0) 1 >>> other(1) 0 """ return 1 - player
08503c35276cf86efa15631bb6b893d72cbae4d5
8,086
def _explored_parameters_in_group(traj, group_node): """Checks if one the parameters in `group_node` is explored. :param traj: Trajectory container :param group_node: Group node :return: `True` or `False` """ explored = False for param in traj.f_get_explored_parameters(): if param in group_node: explored = True break return explored
71cbafbad0dcc3fa9294c0bede5f6a09941d452b
8,087
def _execute(query, data=None, config_file=DEFAULT_CONFIG_FILE): """Execute SQL query on a postgres db""" # Connect to an existing database. postgres_db_credentials = postgres_db(config_file) conn = psycopg2.connect(dbname=postgres_db_credentials["dbname"], user=postgres_db_credentials["user"], password=postgres_db_credentials["password"], host=postgres_db_credentials["host"], port=postgres_db_credentials["port"]) # Open a cursor to perform database operations. cur = conn.cursor() if data is None: cur.execute(query) elif isinstance(data, list): execute_values(cur, query, data, template=None, page_size=100) else: cur.execute(query, data) conn.commit() if cur.description is None: result = None elif len(cur.description) == 1: result, = cur.fetchone() else: result = cur.fetchall() cur.close() conn.close() return result
84884b6a0902ce7fe964b145f3124a1699f72453
8,088
from pathlib import Path def _construct_out_filename(fname, group_name): """ Construct a specifically formatted output filename. The vrt will be placed adjacent to the HDF5 file, as such write access is required. """ basedir = fname.absolute().parent basename = fname.with_suffix('.vrt').name.replace( 'wagl', group_name ) out_fname = basedir.joinpath(Path(basename)) return out_fname
117bb8470ab65f0b9fb11bb3151ae653e5e28d23
8,089
import json def _deposit_need_factory(name, **kwargs): """Generate a JSON argument string from the given keyword arguments. The JSON string is always generated the same way so that the resulting Need is equal to any other Need generated with the same name and kwargs. """ if kwargs: for key, value in enumerate(kwargs): if value is None: del kwargs[key] if not kwargs: argument = None else: argument = json.dumps(kwargs, separators=(',', ':'), sort_keys=True) return ParameterizedActionNeed(name, argument)
9c8813f0be657b51a787d9badd2f677aca84a002
8,090
def not_equal(version1, version2): """ Evaluates the expression: version1 != version2. :type version1: str :type version2: str :rtype: bool """ return compare(version1, '!=', version2)
5dab948ec2a3eb8d3cb68fcd9887aedb394757df
8,091
def get_sp_list(): """ Gets all tickers from S&P 500 """ bs = get_soup('https://en.wikipedia.org/wiki/List_of_S%26P_500_companies') sp_companies = bs.find_all('a', class_="external text") return sp_companies
be850de6fc787faaa05bbd3100dc82ce56cceb22
8,092
def get_params_nowcast( to, tf, i, j, path, nconst, depthrange='None', depav=False, tidecorr=tidetools.CorrTides): """This function loads all the data between the start and the end date that contains hourly velocities in the netCDF4 nowcast files in the specified depth range. Then masks, rotates and unstaggers the time series. The unstaggering causes the shapes of the returned arrays to be 1 less than those of the input arrays in the y and x dimensions. Finally it calculates tidal ellipse parameters from the u and v time series. Maintains the shape of the velocities enters only loosing the time dimensions. :arg to: The beginning of the date range of interest :type to: datetime object :arg tf: The end of the date range of interest :type tf: datetime object :arg i: x index, must have at least 2 values for unstaggering, will loose the first i during the unstaggering in prepare_vel. :type i: float or list :arg j: y index, must have at least 2 values for unstaggering, will loose the first j during the unstaggering in prepare_vel. :type j: float or list :arg path: Defines the path used(eg. nowcast) :type path: string :arg depthrange: Depth values of interest in meters as a float for a single depth or a list for a range. A float will find the closest depth that is <= the value given. Default is 'None' for the whole water column (0-441m). :type depav: float, string or list. :arg depav: True will depth average over the whole depth profile given. Default is False. :type depav: boolean :arg depth: depth vector corresponding to the depth of the velocities, only requiered if depav=True. :type depth: :py:class:'np.ndarray' or string :returns: params, dep params is dictionary object of the ellipse parameters for each constituent dep is the depths of the ellipse paramters """ u, v, time, dep = ellipse_files_nowcast( to, tf, i, j, path, depthrange=depthrange) u_u, v_v = prepare_vel(u, v, depav=depav, depth=dep) params = get_params(u_u, v_v, time, nconst, tidecorr=tidecorr) return params, dep
4cf44961da3109593176476d8e4092a2c05b7a18
8,093
def convert_size(size): """ Helper function to convert ISPMan sizes to readable units. """ return number_to_human_size(int(size)*1024)
a28c8332d8f44071409436f4ec7e844a58837f49
8,094
def get_suppressed_output( detections, filter_id: int, iou: float, confidence: float, ) -> tuple: """Filters detections based on the intersection of union theory. :param detections: The tensorflow prediction output. :param filter_id: The specific class to be filtered. :param iou: The intersection of union threshold. :param confidence: The confidence threshold. :returns: tuple of suppressed bbox, suppressed scores and suppressed classes. """ detection_masks = ( detections["detection_masks"] if "detection_masks" in detections else None ) detection_boxes = detections["detection_boxes"] detection_scores = detections["detection_scores"] detection_classes = detections["detection_classes"] return ( _non_max_suppress_bbox( bbox=detection_boxes, scores=detection_scores, classes=detection_classes, filter_class=filter_id, iou=iou, confidence=confidence, ) if detection_masks is None else _non_max_suppress_mask( bbox=detection_boxes, scores=detection_scores, classes=detection_classes, masks=detection_masks, filter_class=filter_id, iou=iou, confidence=confidence, ) )
b6a294611ec22fd48a7a72e51e66e43732c1d3f7
8,095
def tf_nan_func(func, **kwargs): """ takes function with X as input parameter and applies function only on finite values, helpful for tf value calculation which can not deal with nan values :param func: function call with argument X :param kwargs: other arguments for func :return: executed func output with nan values """ mask = tfm.is_finite(kwargs["X"]) empty_t = tf.cast(tf.fill(mask.shape, np.nan), dtype=kwargs["X"].dtype) for i in kwargs: # workaround of tf.rank(kwargs[i]) > 0, avoid scalar value in mask if kwargs[i].shape != (): # keep only finite kwargs[i] = tf.boolean_mask(kwargs[i], tfm.is_finite(kwargs[i])) res_func = func(**kwargs) full_t = tf.tensor_scatter_nd_update(empty_t, tf.where(mask), res_func) return full_t
d43e509a142bf78025d32984c9ecb0c0856e9a90
8,096
def deep_update(original, new_dict, new_keys_allowed=False, allow_new_subkey_list=None, override_all_if_type_changes=None): """Updates original dict with values from new_dict recursively. If new key is introduced in new_dict, then if new_keys_allowed is not True, an error will be thrown. Further, for sub-dicts, if the key is in the allow_new_subkey_list, then new subkeys can be introduced. Args: original (dict): Dictionary with default values. new_dict (dict): Dictionary with values to be updated new_keys_allowed (bool): Whether new keys are allowed. allow_new_subkey_list (Optional[List[str]]): List of keys that correspond to dict values where new subkeys can be introduced. This is only at the top level. override_all_if_type_changes(Optional[List[str]]): List of top level keys with value=dict, for which we always simply override the entire value (dict), iff the "type" key in that value dict changes. """ allow_new_subkey_list = allow_new_subkey_list or [] override_all_if_type_changes = override_all_if_type_changes or [] for k, value in new_dict.items(): if k not in original and not new_keys_allowed: raise Exception("Unknown config parameter `{}` ".format(k)) # Both orginal value and new one are dicts. if isinstance(original.get(k), dict) and isinstance(value, dict): # Check old type vs old one. If different, override entire value. if k in override_all_if_type_changes and \ "type" in value and "type" in original[k] and \ value["type"] != original[k]["type"]: original[k] = value # Allowed key -> ok to add new subkeys. elif k in allow_new_subkey_list: deep_update(original[k], value, True) # Non-allowed key. else: deep_update(original[k], value, new_keys_allowed) # Original value not a dict OR new value not a dict: # Override entire value. else: original[k] = value return original
12573fd3efef4fc9d6c222ccc3ea525c131a2088
8,097
def queued_archive_jobs(): """Fetch the info about jobs waiting in the archive queue. Returns ------- jobs: dict """ jobs = pbs_jobs() return [ job for job in jobs if (job["job_state"] == "Q" and job["queue"] == "archivelong") ]
af4495f6484cf2e819655a1807a38556f62119a5
8,098
def getCustomKernelSolutionObj(kernelName, directory=globalParameters["CustomKernelDirectory"]): """Creates the Solution object for a custom kernel""" kernelConfig = getCustomKernelConfig(kernelName, directory) for k, v in kernelConfig.items(): if k != "ProblemType": checkParametersAreValid((k, [v]), validParameters) kernelConfig["KernelLanguage"] = "Assembly" kernelConfig["CustomKernelName"] = kernelName return Solution(kernelConfig)
31cec952f3dc5afefa5a50bc8a54fe00eb3d3fe9
8,099