content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def removeBots(gdf, bot_list): """ A Function for removing Twitter bots. Parameters ---------- gdf: <gpd.GeoDataFrame> A GeoDataFrame from which Twitter bots should be removed. bot_list: <list> Input either 'home_unique_days' or 'home_unique_weeks' Output ------ <gpd.GeoDataFrame> A processed GeoDataFrame. Likely bots removed. """ copy = gdf for index, row in gdf.iterrows(): userid = str(row['user']['id']) for item in bot_list: bot_id = item['userid'] if bot_id == userid: gdf = gdf.drop(index) print("A bot dropped: ID", userid, ". Length of GDF now: ", len(gdf)) print("Processing: ", index, "/", len(copy)) return(gdf)
e938f46bcf5c87dfa81db96f127c88d948f061db
8,300
def getinput(prompt): """>> getinput <prompt> Get input, store it in '__input__'. """ local_dict = get_twill_glocals()[1] inp = input(prompt) local_dict['__input__'] = inp return inp
db26e8361518f1728edfb15c6417586f8c3ca73d
8,301
import os import torch def plot_qualitative_with_kde( named_trainer, dataset, named_trainer_compare=None, n_images=8, percentiles=None, # if None uses uniform linspace from n_images figsize=DFLT_FIGSIZE, title=None, seed=123, height_ratios=[1, 3], font_size=12, h_pad=-3, x_lim={}, is_smallest_xrange=False, kdeplot_kwargs={}, n_samples=1, upscale_factor=1, **kwargs, ): """ Plot qualitative samples using `plot_posterior_samples` but select the samples and mask to plot given the score at test time. Parameters ---------- named_trainer : list [name, NeuralNet] Trainer (model outputted of training) and the name under which it should be displayed. dataset : named_trainer_compare : list [name, NeuralNet], optional Like `named_trainer` but for a model against which to compare. n_images : int, optional Number of images to plot (at uniform interval of log like). Only used if `percentiles` is None. percentiles : list of float, optional Percentiles of log likelihood of the main model for which to select an image. The length of the list will correspond to the number fo images. figsize : tuple, optional title : str, optional seed : int, optional height_ratios : int iterable of length = nrows, optional Height ratios of the rows. font_size : int, optional h_pad : int, optional Padding between kde plot and images x_lim : dict, optional Dictionary containing one (or both) of "left", "right" correspomding to the x limit of kde plot. is_smallest_xrange : bool, optional Whether to rescale the x axis based on the range of percentils. kdeplot_kwargs : dict, optional Additional arguments to `sns.kdeplot` upscale_factor : float, optional Whether to upscale the image => extrapolation. Only if not uniform grid. kwargs !VERY DIRTY """ kwargs["n_samples"] = n_samples kwargs["is_plot_std"] = False kwargs["is_add_annot"] = False if percentiles is not None: n_images = len(percentiles) plt.rcParams.update({"font.size": font_size}) fig, axes = plt.subplots( 2, 1, figsize=figsize, gridspec_kw={"height_ratios": height_ratios} ) # a dictionary that has "upscale_factor" which is needed for downscaling when plotting # only is not grided CntxtTrgtDictUpscale = partial(CntxtTrgtDict, upscale_factor=upscale_factor) def _plot_kde_loglike(name, trainer): chckpnt_dirname = dict(trainer.callbacks_)["Checkpoint"].dirname test_eval_file = os.path.join(chckpnt_dirname, EVAL_FILENAME) test_loglike = np.loadtxt(test_eval_file, delimiter=",") sns.kdeplot( test_loglike, ax=axes[0], shade=True, label=name, cut=0, **kdeplot_kwargs ) sns.despine() return test_loglike def _grid_to_points(selected_data): cntxt_trgt_getter = GridCntxtTrgtGetter(upscale_factor=upscale_factor) for i in range(n_images): X = selected_data["Y_cntxt"][i] X_cntxt, Y_cntxt = cntxt_trgt_getter.select( X, None, selected_data["X_cntxt"][i] ) X_trgt, Y_trgt = cntxt_trgt_getter.select( X, None, selected_data["X_trgt"][i] ) yield CntxtTrgtDictUpscale( X_cntxt=X_cntxt, Y_cntxt=Y_cntxt, X_trgt=X_trgt, Y_trgt=Y_trgt ) def _plot_posterior_img_selected(name, trainer, selected_data, is_grided_trainer): is_uniform_grid = isinstance(trainer.module_, GridConvCNP) kwargs["img_indcs"] = [] kwargs["is_uniform_grid"] = is_uniform_grid kwargs["is_return"] = True if not is_uniform_grid: if is_grided_trainer: grids = [ plot_posterior_samples( dataset, data, trainer.module_.cpu(), **kwargs ) for i, data in enumerate(_grid_to_points(selected_data)) ] else: grids = [ plot_posterior_samples( dataset, CntxtTrgtDictUpscale( **{k: v[i] for k, v in selected_data.items()} ), trainer.module_.cpu(), **kwargs, ) for i in range(n_images) ] # images are padded by 2 pixels inbetween each but here you concatenate => will pad twice # => remove all the rleft padding for each besides first grids = [g[..., 2:] if i != 0 else g for i, g in enumerate(grids)] return torch.cat(grids, axis=-1) elif is_uniform_grid: if not is_grided_trainer: grids = [] for i in range(n_images): _, X_cntxt = points_to_grid( selected_data["X_cntxt"][i], selected_data["Y_cntxt"][i], dataset.shape[1:], background=torch.tensor([0.0] * dataset.shape[0]), ) Y_trgt, X_trgt = points_to_grid( selected_data["X_trgt"][i], selected_data["Y_trgt"][i], dataset.shape[1:], background=torch.tensor([0.0] * dataset.shape[0]), ) grids.append( plot_posterior_samples( dataset, dict( X_cntxt=X_cntxt, Y_cntxt=Y_trgt, # Y_trgt is all X because no masking for target (assumption) X_trgt=X_trgt, Y_trgt=Y_trgt, ), trainer.module_.cpu(), **kwargs, ) ) grids = [g[..., 2:] if i != 0 else g for i, g in enumerate(grids)] return torch.cat(grids, axis=-1) else: return plot_posterior_samples( dataset, {k: torch.cat(v, dim=0) for k, v in selected_data.items()}, trainer.module_.cpu(), **kwargs, ) name, trainer = named_trainer test_loglike = _plot_kde_loglike(name, trainer) if named_trainer_compare is not None: left = axes[0].get_xlim()[0] _ = _plot_kde_loglike(*named_trainer_compare) axes[0].set_xlim(left=left) # left bound by first model to not look strange if len(x_lim) != 0: axes[0].set_xlim(**x_lim) if percentiles is not None: idcs = [] values = [] for i, p in enumerate(percentiles): # value closest to percentile percentile_val = np.percentile(test_loglike, p, interpolation="nearest") idcs.append(np.argwhere(test_loglike == percentile_val).item()) values.append(percentile_val) sorted_idcs = list(np.sort(idcs))[::-1] if is_smallest_xrange: axes[0].set_xlim(left=values[0] - 0.05, right=values[-1] + 0.05) else: # find indices such that same space between all values = np.linspace(test_loglike.min(), test_loglike.max(), n_images) idcs = [(np.abs(test_loglike - v)).argmin() for v in values] sorted_idcs = list(np.sort(idcs))[::-1] axes[0].set_ylabel("Density") axes[0].set_xlabel("Test Log-Likelihood") selected_data = [] set_seed(seed) # make sure same order and indices for cntxt and trgt i = -1 saved_values = [] queue = sorted_idcs.copy() next_idx = queue.pop() for data in trainer.get_iterator(dataset, training=False): Xi, yi = unpack_data(data) for cur_idx in range(yi.size(0)): i += 1 if next_idx != i: continue selected_data.append( {k: v[cur_idx : cur_idx + 1, ...] for k, v in Xi.items()} ) if len(queue) == 0: break else: next_idx = queue.pop() # puts back to non sorted array selected_data = [selected_data[sorted_idcs[::-1].index(idx)] for idx in idcs] selected_data = {k: v for k, v in tuple_cont_to_cont_tuple(selected_data).items()} for v in values: axes[0].axvline(v, linestyle=":", alpha=0.7, c="tab:green") axes[0].legend(loc="upper left") if title is not None: axes[0].set_title(title, fontsize=18) is_grided_trainer = isinstance(trainer.module_, GridConvCNP) grid = _plot_posterior_img_selected(name, trainer, selected_data, is_grided_trainer) middle_img = dataset.shape[1] // 2 + 1 # half height y_ticks = [middle_img, middle_img * 3] y_ticks_labels = ["Context", name] if named_trainer_compare is not None: grid_compare = _plot_posterior_img_selected( *named_trainer_compare, selected_data, is_grided_trainer ) grid = torch.cat( (grid, grid_compare[:, grid_compare.size(1) // (n_samples + 1) + 1 :, :]), dim=1, ) y_ticks += [middle_img * (3 + 2 * n_samples)] y_ticks_labels += [named_trainer_compare[0]] axes[1].imshow(grid.permute(1, 2, 0).numpy()) axes[1].yaxis.set_major_locator(ticker.FixedLocator(y_ticks)) axes[1].set_yticklabels(y_ticks_labels, rotation="vertical", va="center") remove_axis(axes[1]) if percentiles is not None: axes[1].xaxis.set_major_locator( ticker.FixedLocator( [ (dataset.shape[2] // 2 + 1) * (i * 2 + 1) for i, p in enumerate(percentiles) ] ) ) axes[1].set_xticklabels(["{}%".format(p) for p in percentiles]) else: axes[1].set_xticks([]) fig.tight_layout(h_pad=h_pad)
f8b7c93c399c63df9cacc766da8fee99b6620ee8
8,302
import subprocess def get_git_doc_ref(): """Return the revision used for linking to source code on GitHub.""" global _head_ref if not _head_ref: try: branch = git_get_nearest_tracking_branch('.') _head_ref = _run_git(['rev-parse', branch]).strip() except subprocess.CalledProcessError: _head_ref = None return _head_ref
cf4cbd6dcf1a95dc56e25ebf996e05abc35e4c86
8,303
def update_trails(force=False, offline=False): """ Update trails from feeds """ success = False trails = {} duplicates = {} try: if not os.path.isdir(USERS_DIR): os.makedirs(USERS_DIR, 0755) except Exception, ex: exit("[!] something went wrong during creation of directory '%s' ('%s')" % (USERS_DIR, ex)) _chown(USERS_DIR) if config.UPDATE_SERVER: print "[i] retrieving trails from provided 'UPDATE_SERVER' server..." content = retrieve_content(config.UPDATE_SERVER) if not content or content.count(',') < 2: print "[x] unable to retrieve data from '%s'" % config.UPDATE_SERVER else: with _fopen(TRAILS_FILE, "w+b") as f: f.write(content) trails = load_trails() else: trail_files = set() for dirpath, dirnames, filenames in os.walk(os.path.abspath(os.path.join(ROOT_DIR, "trails"))) : for filename in filenames: trail_files.add(os.path.abspath(os.path.join(dirpath, filename))) if config.CUSTOM_TRAILS_DIR: for dirpath, dirnames, filenames in os.walk(os.path.abspath(os.path.join(ROOT_DIR, os.path.expanduser(config.CUSTOM_TRAILS_DIR)))) : for filename in filenames: trail_files.add(os.path.abspath(os.path.join(dirpath, filename))) if not trails and (force or not os.path.isfile(TRAILS_FILE) or (time.time() - os.stat(TRAILS_FILE).st_mtime) >= config.UPDATE_PERIOD or os.stat(TRAILS_FILE).st_size == 0 or any(os.stat(_).st_mtime > os.stat(TRAILS_FILE).st_mtime for _ in trail_files)): if not config.no_updates: print "[i] updating trails (this might take a while)..." else: print "[i] checking trails..." if not offline and (force or config.USE_FEED_UPDATES): _ = os.path.abspath(os.path.join(ROOT_DIR, "trails", "feeds")) if _ not in sys.path: sys.path.append(_) filenames = sorted(glob.glob(os.path.join(_, "*.py"))) else: filenames = [] _ = os.path.abspath(os.path.join(ROOT_DIR, "trails")) if _ not in sys.path: sys.path.append(_) filenames += [os.path.join(_, "static")] filenames += [os.path.join(_, "custom")] filenames = [_ for _ in filenames if "__init__.py" not in _] if config.DISABLED_FEEDS: filenames = [filename for filename in filenames if os.path.splitext(os.path.split(filename)[-1])[0] not in re.split(r"[^\w]+", config.DISABLED_FEEDS)] for i in xrange(len(filenames)): filename = filenames[i] try: module = __import__(os.path.basename(filename).split(".py")[0]) except (ImportError, SyntaxError), ex: print "[x] something went wrong during import of feed file '%s' ('%s')" % (filename, ex) continue for name, function in inspect.getmembers(module, inspect.isfunction): if name == "fetch": print(" [o] '%s'%s" % (module.__url__, " " * 20 if len(module.__url__) < 20 else "")) sys.stdout.write("[?] progress: %d/%d (%d%%)\r" % (i, len(filenames), i * 100 / len(filenames))) sys.stdout.flush() if config.DISABLED_TRAILS_INFO_REGEX and re.search(config.DISABLED_TRAILS_INFO_REGEX, getattr(module, "__info__", "")): continue try: results = function() for item in results.items(): if item[0].startswith("www.") and '/' not in item[0]: item = [item[0][len("www."):], item[1]] if item[0] in trails: if item[0] not in duplicates: duplicates[item[0]] = set((trails[item[0]][1],)) duplicates[item[0]].add(item[1][1]) if not (item[0] in trails and (any(_ in item[1][0] for _ in LOW_PRIORITY_INFO_KEYWORDS) or trails[item[0]][1] in HIGH_PRIORITY_REFERENCES)) or (item[1][1] in HIGH_PRIORITY_REFERENCES and "history" not in item[1][0]) or any(_ in item[1][0] for _ in HIGH_PRIORITY_INFO_KEYWORDS): trails[item[0]] = item[1] if not results and "abuse.ch" not in module.__url__: print "[x] something went wrong during remote data retrieval ('%s')" % module.__url__ except Exception, ex: print "[x] something went wrong during processing of feed file '%s' ('%s')" % (filename, ex) try: sys.modules.pop(module.__name__) del module except Exception: pass # custom trails from remote location if config.CUSTOM_TRAILS_URL: print(" [o] '(remote custom)'%s" % (" " * 20)) for url in re.split(r"[;,]", config.CUSTOM_TRAILS_URL): url = url.strip() if not url: continue url = ("http://%s" % url) if not "//" in url else url content = retrieve_content(url) if not content: print "[x] unable to retrieve data (or empty response) from '%s'" % url else: __info__ = "blacklisted" __reference__ = "(remote custom)" # urlparse.urlsplit(url).netloc for line in content.split('\n'): line = line.strip() if not line or line.startswith('#'): continue line = re.sub(r"\s*#.*", "", line) if '://' in line: line = re.search(r"://(.*)", line).group(1) line = line.rstrip('/') if line in trails and any(_ in trails[line][1] for _ in ("custom", "static")): continue if '/' in line: trails[line] = (__info__, __reference__) line = line.split('/')[0] elif re.search(r"\A\d+\.\d+\.\d+\.\d+\Z", line): trails[line] = (__info__, __reference__) else: trails[line.strip('.')] = (__info__, __reference__) for match in re.finditer(r"(\d+\.\d+\.\d+\.\d+)/(\d+)", content): prefix, mask = match.groups() mask = int(mask) if mask > 32: continue start_int = addr_to_int(prefix) & make_mask(mask) end_int = start_int | ((1 << 32 - mask) - 1) if 0 <= end_int - start_int <= 1024: address = start_int while start_int <= address <= end_int: trails[int_to_addr(address)] = (__info__, __reference__) address += 1 # basic cleanup for key in trails.keys(): if key not in trails: continue if config.DISABLED_TRAILS_INFO_REGEX: if re.search(config.DISABLED_TRAILS_INFO_REGEX, trails[key][0]): del trails[key] continue try: _key = key.decode("utf8").encode("idna") if _key != key: # for domains with non-ASCII letters (e.g. phishing) trails[_key] = trails[key] del trails[key] key = _key except: pass if not key or re.search(r"\A(?i)\.?[a-z]+\Z", key) and not any(_ in trails[key][1] for _ in ("custom", "static")): del trails[key] continue if re.search(r"\A\d+\.\d+\.\d+\.\d+\Z", key): if any(_ in trails[key][0] for _ in ("parking site", "sinkhole")) and key in duplicates: del duplicates[key] if trails[key][0] == "malware": trails[key] = ("potential malware site", trails[key][1]) if trails[key][0] == "ransomware": trails[key] = ("ransomware (malware)", trails[key][1]) if key.startswith("www.") and '/' not in key: _ = trails[key] del trails[key] key = key[len("www."):] if key: trails[key] = _ if '?' in key: _ = trails[key] del trails[key] key = key.split('?')[0] if key: trails[key] = _ if '//' in key: _ = trails[key] del trails[key] key = key.replace('//', '/') trails[key] = _ if key != key.lower(): _ = trails[key] del trails[key] key = key.lower() trails[key] = _ if key in duplicates: _ = trails[key] others = sorted(duplicates[key] - set((_[1],))) if others and " (+" not in _[1]: trails[key] = (_[0], "%s (+%s)" % (_[1], ','.join(others))) read_whitelist() for key in trails.keys(): if check_whitelisted(key) or any(key.startswith(_) for _ in BAD_TRAIL_PREFIXES): del trails[key] elif re.search(r"\A\d+\.\d+\.\d+\.\d+\Z", key) and (bogon_ip(key) or cdn_ip(key)): del trails[key] else: try: key.decode("utf8") trails[key][0].decode("utf8") trails[key][1].decode("utf8") except UnicodeDecodeError: del trails[key] try: if trails: with _fopen(TRAILS_FILE, "w+b") as f: writer = csv.writer(f, delimiter=',', quotechar='\"', quoting=csv.QUOTE_MINIMAL) for trail in trails: writer.writerow((trail, trails[trail][0], trails[trail][1])) success = True except Exception, ex: print "[x] something went wrong during trails file write '%s' ('%s')" % (TRAILS_FILE, ex) print "[i] update finished%s" % (40 * " ") if success: print "[i] trails stored to '%s'" % TRAILS_FILE return trails
2ff83a3681899d6dffa8bdcedcbb7e9839bbc919
8,304
def bq_to_rows(rows): """Reformat BigQuery's output to regular pnguin LOD data Reformat BigQuery's output format so we can put it into a DataFrame Args: rows (dict): A nested list of key-value tuples that need to be converted into a list of dicts Returns: list: A list of dictionaries based on the input x """ def _reformat(x): pairs = x.items() row = {} for pair in pairs: key, value = pair row[key] = value return row return [_reformat(x) for x in rows]
9ff842d1c41d7ebe5c822d4c07b2f26b5524b0fe
8,305
def network_config(session, args): """network config functions""" cmd = pluginlib.exists(args, 'cmd') if not isinstance(cmd, basestring): msg = "invalid command '%s'" % str(cmd) raise pluginlib.PluginError(msg) return if cmd not in ALLOWED_NETWORK_CMDS: msg = "Dom0 execution of '%s' is not permitted" % cmd raise pluginlib.PluginError(msg) return cmd_args = pluginlib.exists(args, 'args') return ALLOWED_NETWORK_CMDS[cmd](cmd_args)
d2a551166e7d5c445f1cba6404a3e526f4e7ecdd
8,306
from DB import dbget from DB import dbput def persistent_property(name,default_value=0.0): """A propery object to be used inside a class""" def get(self): class_name = getattr(self,"name",self.__class__.__name__) if not "{name}" in name: if class_name: dbname = class_name+"."+name else: dbname = name else: dbname = name.replace("{name}",class_name) ##debug("persistent_property.get: %s: %r, %r: %r" % (name,self,class_name,dbname)) t = dbget(dbname) if type(default_value) == str and default_value.startswith("self."): def_val = getattr(self,default_value[len("self."):]) else: def_val = default_value dtype = type(def_val) try: from numpy import nan,inf,array # for "eval" except: pass try: import wx # for "eval" except: pass try: t = dtype(eval(t)) except: t = def_val return t def set(self,value): class_name = getattr(self,"name",self.__class__.__name__) if not "{name}" in name: if class_name: dbname = class_name+"."+name else: dbname = name else: dbname = name.replace("{name}",class_name) ##debug("persistent_property.set: %s: %r, %r: %r" % (name,self,class_name,dbname)) dbput(dbname,repr(value)) return property(get,set)
44ed6d8a20b4d84c8c4d27410ba28a17d37f7ef1
8,307
def album_id(items, sp_album): """Iterate through results to find correct Discogs album id.""" try: artist = sp_album['artists'][0].lower().replace(" ", "") except IndexError: artist = "" owners = -1 discogs_id = -1 similarity = 0 title = sp_album['name'].lower().replace(" ", "") for album in items: # title format: artist - title index = album['title'].rfind(" - ") disc_artist = album['title'][:index].lower().replace(" ", "") disc_title = album['title'][index+3:].lower().replace(" ", "") # calculate string similarity for artist spelling deviations jw_similarity = jellyfish.jaro_winkler_similarity(artist, disc_artist) # comparison for use of symbols in titles (& vs and) if jellyfish.match_rating_comparison(disc_title, title): # If they are basically the same, then match the best artist if jellyfish.match_rating_comparison(artist, disc_artist): if album['community']['have'] > owners: owners = album['community']['have'] discogs_id = album['id'] similarity = jw_similarity # If they are the same and this release is more popular elif (jw_similarity == similarity and album['community']['have'] > owners): owners = album['community']['have'] discogs_id = album['id'] # If a better artist candidate is found elif jw_similarity > similarity: owners = album['community']['have'] discogs_id = album['id'] similarity = jw_similarity # we havent found the artist if the name is not similar enough if similarity < 0.85: return -1 return discogs_id
1c8f0f870c1a0c6c71de115ae6a0d15cf235af6f
8,308
def css_defaults(name, css_dict): """Находит первое значение по-умолчанию background -> #FFF color -> #FFF content -> "" """ cur = css_dict.get(name) or css_dict.get(name[1:-1]) if cur is None: return None default = cur.get('default') if default is not None: return default for v in cur['values']: if v.startswith('<') and v.endswith('>'): ret = css_defaults(v, css_dict) if ret is not None: return ret
8418af5e27dfc85a3ec70dea2e7416595ee86a1f
8,309
def yn_zeros(n,nt): """Compute nt zeros of the Bessel function Yn(x). """ return jnyn_zeros(n,nt)[2]
384ebc8fec6109de36d3c17d265b53c01a2195b6
8,310
def get_chebi_parents(chebi_ent): """ Get parents of ChEBI entity :param chebi_ent: :return: """ if hasattr(chebi_ent, 'OntologyParents'): return [ent.chebiId for ent in chebi_ent.OntologyParents if (ent.type == 'is a')] else: return []
bfdf3cbfae45c07a9f5f97a85f1c64f680ac49fc
8,311
def average_saccades_time(saccades_times): """ :param saccades_times: a list of tuples with (start_time_inclusive, end_time_exclusive) :return: returns the average time of saccades """ return sum([saccade_time[1] - saccade_time[0] for saccade_time in saccades_times]) / len(saccades_times)
a22a5d89ddd4317fa10ed6f5d920f17560028514
8,312
from typing import Optional from typing import List from typing import Tuple import logging def solve_tsp_local_search( distance_matrix: np.ndarray, x0: Optional[List[int]] = None, perturbation_scheme: str = "two_opt", max_processing_time: Optional[float] = None, log_file: Optional[str] = None, ) -> Tuple[List, float]: """Solve a TSP problem with a local search heuristic Parameters ---------- distance_matrix Distance matrix of shape (n x n) with the (i, j) entry indicating the distance from node i to j x0 Initial permutation. If not provided, it starts with a random path perturbation_scheme {"ps1", "ps2", "ps3", "ps4", "ps5", "ps6", ["two_opt"]} Mechanism used to generate new solutions. Defaults to "two_opt" max_processing_time {None} Maximum processing time in seconds. If not provided, the method stops only when a local minimum is obtained log_file If not `None`, creates a log file with details about the whole execution Returns ------- A permutation of nodes from 0 to n - 1 that produces the least total distance obtained (not necessarily optimal). The total distance the returned permutation produces. Notes ----- Here are the steps of the algorithm: 1. Let `x`, `fx` be a initial solution permutation and its objective value; 2. Perform a neighborhood search in `x`: 2.1 For each `x'` neighbor of `x`, if `fx'` < `fx`, set `x` <- `x'` and stop; 3. Repeat step 2 until all neighbors of `x` are tried and there is no improvement. Return `x`, `fx` as solution. """ x, fx = setup(distance_matrix, x0) max_processing_time = max_processing_time or np.inf if log_file: fh = logging.FileHandler(log_file) fh.setLevel(logging.INFO) logger.addHandler(fh) logger.setLevel(logging.INFO) tic = default_timer() stop_early = False improvement = True while improvement and (not stop_early): improvement = False for n_index, xn in enumerate(neighborhood_gen[perturbation_scheme](x)): if default_timer() - tic > max_processing_time: logger.warning("Stopping early due to time constraints") stop_early = True break fn = compute_permutation_distance(distance_matrix, xn) logger.info(f"Current value: {fx}; Neighbor: {n_index}") if fn < fx: improvement = True x, fx = xn, fn break # early stop due to first improvement local search return x, fx
f1b77b7fb3d1b83d18a7f2ba99d4a266e98f8462
8,313
def split(self, split_size_or_sections, dim=0, copy=True): """Return the split chunks along the given dimension. Parameters ---------- split_size_or_sections : Union[int, Sequence[int] The number or size of chunks. dim : int, optional, default=0 The dimension to split. copy : bool, optional, default=True Copy or create the views of input. Returns ------- Sequence[dragon.vm.torch.Tensor] The output tensors. See Also -------- `torch.split(...)`_ """ return array_ops.split(self, split_size_or_sections, dim, copy)
cd6725af62fc0f5cde758e23add206a2ddb7c0af
8,314
def HighFlowSingleInletTwoCompartmentGadoxetateModel(xData2DArray, Ve: float, Kbh: float, Khe: float, dummyVariable): """This function contains the algorithm for calculating how concentration varies with time using the High Flow Single Inlet Two Compartment Gadoxetate Model model. Input Parameters ---------------- xData2DArray - time and AIF concentration 1D arrays stacked into one 2D array. Ve - Plasma Volume Fraction (decimal fraction) Khe - Hepatocyte Uptake Rate (mL/min/mL) Kbh - 'Biliary Efflux Rate (mL/min/mL)'- Returns ------- modelConcs - list of calculated concentrations at each of the time points in array 'time'. """ try: # Logging and exception handling function. exceptionHandler.modelFunctionInfoLogger() # In order to use lmfit curve fitting, time and concentration must be # combined into one function input parameter, a 2D array, then separated into individual # 1 D arrays times = xData2DArray[:,0] AIFconcentrations = xData2DArray[:,1] Th = (1-Ve)/Kbh modelConcs = [] modelConcs = (Ve*AIFconcentrations + Khe*Th*tools.expconv(Th, times, AIFconcentrations, 'HighFlowSingleInletTwoCompartmentGadoxetateModel')) return(modelConcs) # Exception handling and logging code. except ZeroDivisionError as zde: exceptionHandler.handleDivByZeroException(zde) except Exception as e: exceptionHandler.handleGeneralException(e)
18684058926b9362b7a6b495cf1f48fd8c3188e4
8,315
import struct import numpy def read_cz_lsminfo(fh, byteorder, dtype, count, offsetsize): """Read CZ_LSMINFO tag from file and return as dict.""" assert byteorder == '<' magic_number, structure_size = struct.unpack('<II', fh.read(8)) if magic_number not in (50350412, 67127628): raise ValueError('invalid CZ_LSMINFO structure') fh.seek(-8, 1) if structure_size < numpy.dtype(TIFF.CZ_LSMINFO).itemsize: # adjust structure according to structure_size lsminfo = [] size = 0 for name, dtype in TIFF.CZ_LSMINFO: size += numpy.dtype(dtype).itemsize if size > structure_size: break lsminfo.append((name, dtype)) else: lsminfo = TIFF.CZ_LSMINFO lsminfo = fh.read_record(lsminfo, byteorder=byteorder) lsminfo = recarray2dict(lsminfo) # read LSM info subrecords at offsets for name, reader in TIFF.CZ_LSMINFO_READERS.items(): if reader is None: continue offset = lsminfo.get('Offset' + name, 0) if offset < 8: continue fh.seek(offset) try: lsminfo[name] = reader(fh) except ValueError: pass return lsminfo
1bcf4d22315503e2f21fcbacd6a0797fc2fd16a7
8,316
def mi_alignment( alignment, mi_calculator=mi, null_value=DEFAULT_NULL_VALUE, excludes=DEFAULT_EXCLUDES, exclude_handler=None, ): """Calc mi over all position pairs in an alignment alignment: the full alignment object mi_calculator: a function which calculated MI from two entropies and their joint entropy -- see mi and normalized_mi for examples null_value: the value to be returned if mi cannot be calculated (e.g., if mi_calculator == normalized_mi and joint_h = 0.0) excludes: iterable objects containing characters that require special handling -- by default, if a position contains an exclude, null_value will be returned. For non-default handling, pass an exclude_handler exclude_handler: a function which takes a position and returns it with exclude characters processed in someway. """ aln_length = len(alignment) # Create result matrix result = zeros((aln_length, aln_length), float) # Compile postional entropies for each position in the alignment # I believe I started using this rather than alignment.uncertainties # b/c the latter relies on converting a ArrayAlignment to an Alignment -- # need to check into this. positional_entropies = alignment.entropy_per_pos() # Calculate pairwise MI between position_number and all alignment # positions, and return the results in a vector. for i in range(aln_length): for j in range(i + 1): result[i, j] = mi_pair( alignment, pos1=i, pos2=j, h1=positional_entropies[i], h2=positional_entropies[j], mi_calculator=mi_calculator, null_value=null_value, excludes=excludes, exclude_handler=exclude_handler, ) # copy the lower triangle to the upper triangle to make # the matrix symmetric ltm_to_symmetric(result) return result
f576b8c4df018bba787c7c46091e52b70badd9de
8,317
def Jaccard3d(a, b): """ This will compute the Jaccard Similarity coefficient for two 3-dimensional volumes Volumes are expected to be of the same size. We are expecting binary masks - 0's are treated as background and anything else is counted as data Arguments: a {Numpy array} -- 3D array with first volume b {Numpy array} -- 3D array with second volume Returns: float """ if len(a.shape) != 3 or len(b.shape) != 3: raise Exception(f"Expecting 3 dimensional inputs, got {a.shape} and {b.shape}") if a.shape != b.shape: raise Exception(f"Expecting inputs of the same shape, got {a.shape} and {b.shape}") # TASK: Write implementation of Jaccard similarity coefficient. Please do not use # the Dice3D function from above to do the computation ;) # <YOUR CODE GOES HERE> overlap = 0 for i in range(a.shape[0]): for j in range(a.shape[1]): for j in range(a.shape[2]): if (a[i, j, k] != 0 and b[i, j, k] != 0): overlap += 1 all_together = 0 for i in range(a.shape[0]): for j in range(a.shape[1]): for j in range(a.shape[2]): if (a[i, j, k] != 0 or b[i, j, k] != 0): all_together += 1 return overlap/all_together
a4452e523e484db50b99d36f9ee67c3508678ea6
8,318
def get_pod_obj(name, namespace=None): """ Returns the pod obj for the given pod Args: name (str): Name of the resources Returns: obj : A pod object """ ocp_obj = OCP(api_version='v1', kind=constants.POD, namespace=namespace) ocp_dict = ocp_obj.get(resource_name=name) pod_obj = Pod(**ocp_dict) return pod_obj
464aa15574ee65672f7963e6e5426753ff98ee72
8,319
import sys import subprocess def _input_password() -> str: """ Get password input by masking characters. Similar to getpass() but works with cygwin. """ sys.stdout.write("Password :\n") sys.stdout.flush() subprocess.check_call(["stty", "-echo"]) password = input() subprocess.check_call(["stty", "echo"]) return password
8d3dbc3f6221f3a2558dab5617227b2f6e4940ca
8,320
import os def file_size(file_path): """Return the file size.""" if os.path.isfile(file_path): file_info = os.stat(file_path) return convert_bytes(file_info.st_size)
ed28923767f0a7e708d66cb06fba7ad8120b69d7
8,321
def median_rank(PESSI_SORT, OPTI_SORT, A): """ Calculates the median rank of each action. :param PESSI_SORT: Dictionary containing the actions classified according to the pessimistic procedure. :param OPTI_SORT: Dictionary containing the actions classified according to the optimistic procedure. :param A: List containing the names of the actions as strings. :return med_rank: Dictionary containing the median rank of each action. The keys are the names of the actions and the values are the median ranks. """ med_rank = {} for a in A: med_rank[a] = (OPTI_SORT[1][a] + PESSI_SORT[1][a]) / 2 return med_rank
7f760847ae2a69edf07a593a6ebfb84dce4c4103
8,322
from typing import Optional import json def get_token( event: ApiGatewayEvent, _context: LambdaContext, node_api: Optional[NodeApi] = None ) -> dict: """Get token details given a token uid. *IMPORTANT: Any changes on the parameters should be reflected on the `cacheKeyParameters` for this method. """ node_api = node_api or NodeApi() id = event.query.get("id") if id is None: raise ApiError("invalid_parameters") response = node_api.get_token(id) return { "statusCode": 200, "body": json.dumps(response or UNKNOWN_ERROR_MSG), "headers": { "Content-Type": "application/json" } }
7be9e80aef60ad7f5befa3f21b597541eb79c4d0
8,323
import re def update_dictionary_entries(old_entries, need_to_add): """ Expects dictionary of species entries and unique list of species (as SMILES) that need to be added Creates new entries for the species that need to be added Returns old and new entries """ list(set(need_to_add)) for j, species in enumerate(need_to_add): molecule = rmgpy.molecule.Molecule(smiles=species) adjlist = molecule.to_adjacency_list() multiplicity = None if re.search('(?<=multiplicity ).*', adjlist): multiplicity = int( re.search('(?<=multiplicity ).*', adjlist).group(0)) adjlist = re.sub(r'multiplicity .*', f'multiplicity [{multiplicity}]', adjlist) group = rmgpy.molecule.group.Group() group.from_adjacency_list(adjlist) atom_counts = {} rel_label = '' for atom in ['C', 'H', 'O']: count = species.count(atom) if count > 0: rel_label = rel_label + atom + str(count) assert rel_label != '' """ 3 Scenerios: No old -> no need for ID number: max_ID = -1 Only one old -> needs to have ID of 1: max_ID = 0 Multiple old -> needs to have a unique ID: max_ID > 0 """ new_ID = None max_ID = -1 duplicate = False for old_label in old_entries: old_entry = old_entries[old_label] if group.is_isomorphic(old_entry.item): duplicate = True print(f'{old_entry} found to be duplicate') continue if rel_label not in old_label: continue if rel_label == old_label and max_ID == -1: # Atleast one with same label max_ID = 0 if old_label.find('-') > 0: old_label, ID_str = old_label.split('-') ID = int(ID_str) if old_label == rel_label and ID > max_ID: # Multiple exisitng labels max_ID = ID if max_ID > -1: # Existing label new_ID = max_ID + 1 rel_label = rel_label + '-' + str(new_ID) if not duplicate: entry = rmgpy.data.base.Entry() entry.label = rel_label entry.item = group assert rel_label not in list(old_entries.keys()) old_entries[rel_label] = entry entry_labels = [old_entries[key].label for key in old_entries] assert len(entry_labels) == len(list(set(entry_labels)) ), 'Non-unique labels in dictionary' return old_entries
9182c42349b76a7e72c3c1c134cb347ed0bd2a2d
8,324
import optparse import os import sys def ParseOptions(): """Parses the options passed to the program. @return: Options and arguments """ parser = optparse.OptionParser(usage="%prog [--no-backup]", prog=os.path.basename(sys.argv[0])) parser.add_option(cli.DEBUG_OPT) parser.add_option(cli.VERBOSE_OPT) parser.add_option(cli.YES_DOIT_OPT) parser.add_option("--no-backup", dest="backup", default=True, action="store_false", help="Whether to create backup copies of deleted files") (opts, args) = parser.parse_args() return VerifyOptions(parser, opts, args)
f697bc76956b30fbe9836cd8ba4fce40d726968c
8,325
def four_rooms(dims, doorway=1.): """ Args: dims: [dimx, dimy] dimensions of rectangle doorway: size of doorway Returns: adjmat: adjacency matrix xy: xy coordinates of each state for plotting labels: empty [] """ half_x, half_y = (dims[0]*.5, dims[1]*.5) quarter_x, quarter_y = (dims[0]*.25, dims[1]*.25) threequarter_x, threequarter_y = (dims[0]*.75, dims[1]*.75) adj, xy, _ = rectangle_mesh(dims) room = np.array([xy[:,0] < half_x, xy[:,1] < half_y], dtype=np.float32).T mask = np.array(distance.squareform(distance.pdist(room, "euclidean")) == 0, dtype=np.float32) labels = np.sum(room * np.array([[1, 2]]), 1) doorsx = [quarter_x, threequarter_x, half_x, half_x] doorsy = [half_y, half_y, quarter_y, threequarter_y] doors = np.array([doorsx, doorsy]).T inds = [] for d in doors: dist_to_door = np.sum(np.abs(xy - d[None, :]), 1) ind = np.where(dist_to_door == np.min(dist_to_door))[0] if len(ind) > 1: ind = ind[0] mask[ind, :] = 1 mask[:, ind] = 1 adj = adj * mask return adj, xy, labels
0744ab4b38ab0b5d0b96c53d45c88dc1e37f932e
8,326
def get_verse_url(verse: str) -> str: """Creates a URL for the verse text.""" node = CONNECTIONS[verse] volume = scripture_graph.VOLUMES_SHORT[node['volume']].lower() if volume == 'bom': volume = 'bofm' elif volume == 'd&c': volume = 'dc-testament' elif volume == 'pogp': volume = 'pgp' book = node['book'].lower() book_replacements = { ' ': '-', '.': '', '&': '', '—': '-', } for old, new in book_replacements.items(): book = book.replace(old, new) if book == 'd&c': book = 'dc' chapter = node['chapter'] i = node['verse'] return parse.urljoin(URL_BASE, f'{volume}/{book}/{chapter}.{i}?lang=eng#p{i}#{i}')
37ce47aa6e18e3f550e9adacb3bf16affb6154f8
8,327
from typing import cast from typing import List def get_ws_dependency_annotation(state: GlobalState) -> WSDependencyAnnotation: """ Returns the world state annotation :param state: A global state object """ annotations = cast( List[WSDependencyAnnotation], list(state.world_state.get_annotations(WSDependencyAnnotation)), ) if len(annotations) == 0: annotation = WSDependencyAnnotation() state.world_state.annotate(annotation) else: annotation = annotations[0] return annotation
ba44455594c4a1f63dac5adec95b2efe6a4b2af6
8,328
def get_gin_confg_strs(): """ Obtain both the operative and inoperative config strs from gin. The operative configuration consists of all parameter values used by configurable functions that are actually called during execution of the current program, and inoperative configuration consists of all parameter configured but not used by configurable functions. See ``gin.operative_config_str()`` and ``gin_utils.inoperative_config_str`` for more detail on how the config is generated. Returns: tuple: - md_operative_config_str (str): a markdown-formatted operative str - md_inoperative_config_str (str): a markdown-formatted inoperative str """ operative_config_str = gin.operative_config_str() md_operative_config_str = _markdownify_gin_config_str( operative_config_str, 'All parameter values used by configurable functions that are actually called' ) md_inoperative_config_str = gin_utils.inoperative_config_str() if md_inoperative_config_str: md_inoperative_config_str = _markdownify_gin_config_str( md_inoperative_config_str, "All parameter values configured but not used by program. The configured " "functions are either not called or called with explicit parameter values " "overriding the config.") return md_operative_config_str, md_inoperative_config_str
9f9081aafa6a4a43be37edd4002ee17ac518f5d4
8,329
def L(x, c, gamma): """Return c-centered Lorentzian line shape at x with HWHM gamma""" return gamma / (np.pi * ((x - c) ** 2 + gamma ** 2))
853ba2c978a50f9f43915342caebed2e3d5ead8d
8,330
import socket import logging def request_data_from_weather_station(): """ Send a command to the weather station to get current values. Returns ------- bytes received data, 0 if error occurred """ sock = socket.create_connection((WEATHER_HOST, WEATHER_PORT), GRAPHITE_TIMEOUT) sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) data = 0 try: sock.send(CMD_ACT) data = sock.recv(1024) except: logging.error('Error getting data from weather station!') finally: sock.close() if check_crc(data): return data logging.error('CRC failed! \r\n Data: %s', data) return 0
0bf28c3cf5db1f14446aa9866b9854b435378439
8,331
def solution2(arr): """improved solution1 #TLE """ if len(arr) == 1: return arr[0] max_sum = float('-inf') l = len(arr) for i in range(l): local_sum = arr[i] local_min = arr[i] max_sum = max(max_sum, local_sum) for j in range(i + 1, l): local_sum += arr[j] local_min = min(local_min, arr[j]) max_sum = max([max_sum, local_sum, local_sum - local_min]) return max_sum
835240bb4f70e5b6425a6ac0d2a4210e2c8a0ad0
8,332
def hillas_parameters_4(pix_x, pix_y, image, recalculate_pixels=True): """Compute Hillas parameters for a given shower image. As for hillas_parameters_3 (old Whipple Fortran code), but more Pythonized MP: Parameters calculated as Whipple Reynolds et al 1993 paper: http://adsabs.harvard.edu/abs/1993ApJ...404..206R which should be the same as one of my ICRC 1991 papers and my thesis. Parameters ---------- pix_x : array_like Pixel x-coordinate pix_y : array_like Pixel y-coordinate image : array_like Pixel values corresponding recalculate_pixels : Boolean (default True) Recalculate the pixel higher multiples (e.g., if pixels move (!) or pixel list changes between calls) Returns ------- hillas_parameters : `MomentParameters` """ if type(pix_x) == Quantity: unit = pix_x.unit assert pix_x.unit == pix_y.unit else: unit = 1.0 ''' MP: Actually, I don't know why we need to strip the units... shouldn' the calculations all work with them?''' pix_x = Quantity(np.asanyarray(pix_x, dtype=np.float64)).value pix_y = Quantity(np.asanyarray(pix_y, dtype=np.float64)).value image = np.asanyarray(image, dtype=np.float64) assert pix_x.shape == image.shape assert pix_y.shape == image.shape (sumsig, sumxsig, sumysig, sumx2sig, sumy2sig, sumxysig, sumx3sig, sumx2ysig, sumxy2sig, sumy3sig) = np.zeros(10) # Call static_xy to initialize the "static variables" # Actually, would be nice to just call this if we # know the pixel positions have changed static_xy(pix_x, pix_y, recalculate_pixels) sumsig = image.sum() sumxsig = (image * pix_x).sum() sumysig = (image * pix_y).sum() sumx2sig = (image * static_xy.pix_x2).sum() sumy2sig = (image * static_xy.pix_y2).sum() sumxysig = (image * static_xy.pix_xy).sum() sumx3sig = (image * static_xy.pix_x3).sum() sumx2ysig = (image * static_xy.pix_x2y).sum() sumxy2sig = (image * static_xy.pix_xy2).sum() sumy3sig = (image * static_xy.pix_y3).sum() sumx4sig = (image * static_xy.pix_x4).sum() sumx3ysig = (image * static_xy.pix_x3y).sum() sumx2y2sig = (image * static_xy.pix_x2y2).sum() sumxy3sig = (image * static_xy.pix_xy3).sum() sumy4sig = (image * static_xy.pix_y4).sum() if sumsig == 0.0: raise (HillasParameterizationError(("Empty pixels!" "Cannot calculate image parameters." "Exiting..."))) xm = sumxsig / sumsig ym = sumysig / sumsig x2m = sumx2sig / sumsig y2m = sumy2sig / sumsig xym = sumxysig / sumsig x3m = sumx3sig / sumsig x2ym = sumx2ysig / sumsig xy2m = sumxy2sig / sumsig y3m = sumy3sig / sumsig x4m = sumx4sig / sumsig x3ym = sumx3ysig / sumsig x2y2m = sumx2y2sig / sumsig xy3m = sumxy3sig / sumsig y4m = sumy4sig / sumsig '''Doing this should be same as above, but its 4us slower !? (xm, ym, x2m, y2m, xym, x3m, x2ym, xy2m, y3m) = \ (sumxsig, sumysig, sumx2sig, sumy2sig, sumxysig, sumx3sig, sumx2ysig, sumxy2sig, sumy3sig) / sumsig''' xm2 = xm * xm ym2 = ym * ym xmym = xm * ym vx2 = x2m - xm2 vy2 = y2m - ym2 vxy = xym - xmym vx3 = x3m - 3.0 * xm * x2m + 2.0 * xm2 * xm vx2y = x2ym - x2m * ym - 2.0 * xym * xm + 2.0 * xm2 * ym vxy2 = xy2m - y2m * xm - 2.0 * xym * ym + 2.0 * xm * ym2 vy3 = y3m - 3.0 * ym * y2m + 2.0 * ym2 * ym d = vy2 - vx2 dist = np.sqrt(xm2 + ym2) # could use hypot(xm,ym), but already have squares phi = np.arctan2(ym, xm) # -- simpler formulae for length & width suggested CA 901019 z = np.hypot(d, 2.0 * vxy) length = np.sqrt((vx2 + vy2 + z) / 2.0) width = np.sqrt((vy2 + vx2 - z) / 2.0) # -- simpler formula for miss introduced CA, 901101 # -- revised MP 910112 if z == 0.0: miss = dist else: uu = 1 + d / z vv = 2 - uu miss = np.sqrt((uu * xm2 + vv * ym2) / 2.0 - xmym * (2.0 * vxy / z)) '''Change to faster caluclation of psi and avoid inaccuracy for hyp psi = np.arctan2((d + z) * ym + 2.0 * vxy * xm, 2.0 *vxy * ym - (d - z) * xm) hyp = np.sqrt(2 * z * (z + d)) #! should be simplification of sqrt((d+z) **2+(2*vxy)**2 ... but not accurate! hyp = np.hypot(d + z,2 * vxy) psi = np.arctan2(d + z, 2 * vxy) cpsi = np.cos(psi) spsi = np.sin(psi)''' tanpsi_numer = (d + z) * ym + 2.0 * vxy * xm tanpsi_denom = 2.0 * vxy * ym - (d - z) * xm psi = np.arctan2(tanpsi_numer, tanpsi_denom) # Code to de-interface with historical code size = sumsig m_x = xm m_y = ym length = length r = dist # Note, "skewness" is the same as the Whipple/MP "asymmetry^3", which is fine. # ... and also, Whipple/MP "asymmetry" * "length" = MAGIC "asymmetry" # ... so, MAGIC "asymmetry" = MAGIC "skewness"^(1/3) * "length" # I don't know what MAGIC's "asymmetry" is supposed to be. # -- Asymmetry and other higher moments if length != 0.0: vx4 = x4m - 4.0 * xm * x3m + 6.0 * xm2 * x2m - 3.0 * xm2 * xm2 vx3y = x3ym - 3.0 * xm * x2ym + 3.0 * xm2 * xym - x3m * ym \ + 3.0 * x2m * xmym - 3.0 * xm2 * xm * ym vx2y2 = x2y2m - 2.0 * ym * x2ym + x2m * ym2 \ - 2.0 * xm * xy2m + 4.0 * xym * xmym + xm2 * y2m - 3.0 * xm2 * ym2 vxy3 = xy3m - 3.0 * ym * xy2m + 3.0 * ym2 * xym - y3m * xm \ + 3.0 * y2m * xmym - 3.0 * ym2 * ym * xm vy4 = y4m - 4.0 * ym * y3m + 6.0 * ym2 * y2m - 3.0 * ym2 * ym2 hyp = np.hypot(tanpsi_numer, tanpsi_denom) if hyp != 0.: cpsi = tanpsi_denom / hyp spsi = tanpsi_numer / hyp else: cpsi = 1. spsi = 0. cpsi2 = cpsi * cpsi spsi2 = spsi * spsi cspsi = cpsi * spsi sk3bylen3 = (vx3 * cpsi * cpsi2 + 3.0 * vx2y * cpsi2 * spsi + 3.0 * vxy2 * cpsi * spsi2 + vy3 * spsi * spsi2) asym = np.copysign(np.power(np.abs(sk3bylen3), 1. / 3.), sk3bylen3) / length skewness = asym * asym * asym # for MP's asym... (not for MAGIC asym!) # Kurtosis kurt = (vx4 * cpsi2 * cpsi2 + 4.0 * vx3y * cpsi2 * cspsi + 6.0 * vx2y2 * cpsi2 * spsi2 + 4.0 * vxy3 * cspsi * spsi2 + vy4 * spsi2 * spsi2) kurtosis = kurt / (length * length * length * length) else: # Skip Higher Moments asym = 0.0 psi = 0.0 skewness = 0.0 kurtosis = 0.0 # Azwidth not used anymore # # -- Akerlof azwidth now used, 910112 # d = y2m - x2m # z = np.sqrt(d * d + 4 * xym * xym) # azwidth = np.sqrt((x2m + y2m - z) / 2.0) return MomentParameters(size=size, cen_x=m_x * unit, cen_y=m_y * unit, length=length * unit, width=width * unit, r=r * unit, phi=Angle(phi * u.rad), psi=Angle(psi * u.rad), miss=miss * unit, skewness=skewness, kurtosis=kurtosis)
87fa302b6e6b1b81b66d8e8fb7cc4e34da1583d9
8,333
from typing import List from typing import Optional def create_intrusion_set( name: str, aliases: List[str], author: Identity, primary_motivation: Optional[str], secondary_motivations: List[str], external_references: List[ExternalReference], object_marking_refs: List[MarkingDefinition], ) -> IntrusionSet: """Create an intrusion set.""" return IntrusionSet( created_by_ref=author, name=name, aliases=aliases, primary_motivation=primary_motivation, secondary_motivations=secondary_motivations, labels=["intrusion-set"], external_references=external_references, object_marking_refs=object_marking_refs, )
be8df574ac1be08c724620cf20495922cff5918e
8,334
from ..core import Tensor def broadcast_to(tensor, shape): """Broadcast an tensor to a new shape. Parameters ---------- tensor : array_like The tensor to broadcast. shape : tuple The shape of the desired array. Returns ------- broadcast : Tensor Raises ------ ValueError If the tensor is not compatible with the new shape according to Mars's broadcasting rules. Examples -------- >>> import mars.tensor as mt >>> x = mt.array([1, 2, 3]) >>> mt.broadcast_to(x, (3, 3)).execute() array([[1, 2, 3], [1, 2, 3], [1, 2, 3]]) """ tensor = tensor if isinstance(tensor, Tensor) else astensor(tensor) shape = tuple(shape) if isinstance(shape, (list, tuple)) else (shape,) if any(np.isnan(s) for s in tensor.shape): raise ValueError('input tensor has unknown shape, ' 'need to call `.execute()` first') if tensor.shape == shape: return tensor new_ndim = len(shape) - tensor.ndim if new_ndim < 0: raise ValueError('input operand has more dimensions than allowed by the axis remapping') if any(o != n for o, n in zip(tensor.shape, shape[new_ndim:]) if o != 1): raise ValueError('operands could not be broadcast together ' 'with remapped shapes [original->remapped]: {0} ' 'and requested shape {1}'.format(tensor.shape, shape)) op = TensorBroadcastTo(shape, dtype=tensor.dtype, sparse=tensor.issparse()) return op(tensor, shape)
3c738227f98d4ca8a6b1c0cc98cea769b697a987
8,335
def admin_required(handler_method): """Require that a user be an admin. To use it, decorate your method like this:: @admin_required def get(self): ... """ @wraps(handler_method) def check_admin(*args, **kwargs): """Perform the check.""" if current_user.is_anonymous: return redirect(url_for('home.login')) if current_user.is_admin: return handler_method(*args, **kwargs) abort(401) return check_admin
03cc9e9cd32ab0b239f45c70fffcd85108b0173c
8,336
import requests def get(path): """Get.""" verify() resp = requests.get(f"{URL}{path}", headers=auth) try: resp.raise_for_status() except requests.exceptions.HTTPError as e: error_msg(str(e)) return return resp.json()
c1661ac0e07ff467f15a429fe6fbf09d53a34ef9
8,337
def combine_dataframes(dfs: [pd.DataFrame]) -> pd.DataFrame: """ Receives a list of DataFrames and concatenates them. They must all have the same header. :param dfs: List of DataFrames :return: Single concatenated DataFrame """ df = pd.concat(dfs, sort=False) return df
b7c1cd94870638a3a975ea7c4f9c284cbd4ee0a9
8,338
import os def df_to_hdf5(df, key, dir_path): """ Save the DataFrame object as an HDF5 file. The file is stored in the directory specified and uses the key for the filename and 'h5' as the extension. :param df: DataFrame to save as a file :param key: ID for storage and retrieval :param dir_path: Directory to store the HDF5 data file """ file_path = os.path.join(dir_path, key + '.h5') df.to_hdf(file_path, key, complevel=9, complib='zlib') return file_path
aaf7e2d9f64da6f53b2fc908cc59d9331172c614
8,339
def _bound_accumulated_rotations(robot_name, command_dicts): """ Checks axes whose rotations have been accumulated to ensure they've not exceeded the stated limits. If they have, this function attempts to slide the commands by +/- 360 degrees. If the limits are still exceeded, this function returns the commands that exceed the limits by the least amount :param robot_name: :param animation_settings: :param command_dicts: :return: """ # TODO: Do this check using userOptions instead... # Get axes, if they exist command_axes = [] for command_dict in command_dicts: axes = command_dict[postproc.AXES] if postproc.AXES in command_dict else None command_axes.append(list(axes)) reconcile_axes = mimic_utils.get_reconcile_axes(robot_name) rotation_limits = mimic_utils.get_all_limits(robot_name)['Position'] # Make sure the user has selected use of axes if not all(x is None for x in command_axes): for i, reconcile_axis in enumerate(reconcile_axes): if reconcile_axis: valid_solutions = [] axis_number = i + 1 # Axis numbers are 1-indexed axis_name = 'Axis {}'.format(axis_number) # Get the axis limits limit_min = rotation_limits[axis_name]['Min Limit'] limit_max = rotation_limits[axis_name]['Max Limit'] # Create a list of commands for the axis to be checked axis_vals_init = [axis[i] for axis in command_axes] axis_min = min(axis_vals_init) axis_max = max(axis_vals_init) ''' print "#######################################################" print "Initial Axis {} vals: ".format(i+1), axis_vals_init print "Axis Min Limit: ", limit_min print "Axis Max Limit: ", limit_max print "Axis Min: ", axis_min print "Axis Max: ", axis_max ''' # If both the max and min axis values exceed their respective # limits, then there's nothing we can do about it, so we don't # modify the commands if axis_min < limit_min and axis_max > limit_max: # print '## Both limits exceeded, but no shift' continue # If no limits are violated, add the axes to the list of valid solutions if axis_min >= limit_min and axis_max <= limit_max: valid_solutions.append(axis_vals_init) # Get the shifted axes and append them to the valid_solutions if they're valide (i.e. not 'None') axis_vals_shift = _shift_accumulated_axes(axis_vals_init, limit_max, limit_min) if axis_vals_shift: valid_solutions.append(axis_vals_shift) # If we have no valid solitions, continue with the initial solition if len(valid_solutions) == 0: # print 'No valid solutions, returning initial solutions' sol = axis_vals_init # If we only have one valid solution, we can return that solution elif len(valid_solutions) == 1: # print 'Only one valid solution' sol = valid_solutions[0] # If we have two valid solutions, prompt the user to pick which one they want # if they have the option checked on the program UI, otherwise, return the # first solution else: # print 'Two valid solutions -> user choice' prompt_opt = pm.checkBox('cb_promptOnRedundantSolutions', value=True, query=True) # If the user option for this feature is selected, prompt the user if prompt_opt: user_selection = _get_bounded_solution_user_input(valid_solutions, axis_number) sol = valid_solutions[user_selection] # Otherwise, continue with the initial solution else: sol = axis_vals_init # Drop the final solution back into the command_dict for command_index in range(len(command_dicts)): command_axes[command_index][i] = sol[command_index] reconciled_axes = postproc.Axes(*command_axes[command_index]) command_dicts[command_index][postproc.AXES] = reconciled_axes return command_dicts
68ca1357178563975af9a3baeb1ba89177993af4
8,340
def get_email_manager(config: CFG, session: Session): """ :return: EmailManager instance """ #  TODO: Find a way to import properly without cyclic import smtp_config = SmtpConfiguration( config.EMAIL__NOTIFICATION__SMTP__SERVER, config.EMAIL__NOTIFICATION__SMTP__PORT, config.EMAIL__NOTIFICATION__SMTP__USER, config.EMAIL__NOTIFICATION__SMTP__PASSWORD, ) return EmailManager(config=config, smtp_config=smtp_config, session=session)
f5a7a3c934912e346b70ad12b475fd45d4d7069f
8,341
import numpy def _approx_sp(salt,pres): """Approximate TDl at SP. Approximate the temperature and liquid water density of sea-ice with the given salinity and pressure. :arg float salt: Salinity in kg/kg. :arg float pres: Pressure in Pa. :returns: Temperature and liquid water density (both in SI units). """ CDIF = _CLIQ-_CICE R0 = _LILTP/_TTP / CDIF r1 = (pres-_PTPE) * (_VITP-_VLTP)/_TTP / CDIF r2 = _RSAL*salt / CDIF w = -(1 - R0 + r1) * numpy.exp(-(1 - R0 - r2)) negz = 1 - (1 + _E*w)**_C_SP temp = (1 - R0 + r1)*_TTP/negz dliq = _dliq_default(temp,pres) return temp, dliq
b45727ad6f08cead1eb32477c8691233c38e9387
8,342
def _get_connection_params(resource): """Extract connection and params from `resource`.""" args = resource.split(";") if len(args) > 1: return args[0], args[1:] else: return args[0], []
87cdb607027774d58d1c3bf97ac164c48c32395c
8,343
import subprocess def download_archive(url, out_path): """Downloads a file from the specified URL to the specified path on disk.""" return subprocess.call(['curl', url, '-o', out_path])
e3c59f542a8fa662169d74428ed98dbf79d3d705
8,344
from typing import Union import requests from typing import List from typing import Dict from typing import Any from typing import Callable from typing import cast import operator def listdata( resp: Union[requests.Response, List[Dict[str, Any]]], *keys: Union[str, Callable[[], bool]], sort: Union[bool, str] = True, full: bool = False, # returns dicts instead of tuples ) -> List[tuple]: """Return data from a given requests.Response object. Only non reserved fields are returned. By default data are converted to List[Tuple[Any]], but if `full` is True, then List[Dict[str, Any] is returned. Usage: >>> data = [ ... {'_id': 1, 'odd': 1, 'even': 2}, ... {'_id': 2, 'odd': 3, 'even': 4}, ... {'_id': 3, 'odd': 5, 'even': 6}, ... } >>> listdata(data) [ (1, 2), (3, 4), (5, 6), ] >>> listdata(data, 'even') [2, 4, 6] >>> listdata(data, 'odd', 'even') [ (1, 2), (3, 4), (5, 6), ] >>> listdata(data, full=True) data = [ {'odd': 1, 'even': 2}, {'odd': 3, 'even': 4}, {'odd': 5, 'even': 6}, } """ # Prepare data if isinstance(resp, list): data = resp elif resp.headers['content-type'].startswith('text/html'): data = resp.context assert resp.status_code == 200, pformat(data) assert 'data' in data, pformat(data) assert 'header' in data, pformat(data) header = data['header'] keys = keys or [k for k in header if not k.startswith('_')] data = [ {k: v.value for k, v in zip(header, row)} for row in cast(List[List[Cell]], data['data']) ] else: data = resp.json() assert resp.status_code == 200, pformat(data) assert '_data' in data, pformat(data) data = data['_data'] keys = keys or sorted({ k for d in flatten(data) for k in d if not k.startswith('_') }) # Clean data if full: data = [take(keys, row) for row in data] elif len(keys) == 1: k = keys[0] data = [take(k, row) for row in data] else: data = [tuple(take(k, row) for k in keys) for row in data] # Sort if sort is True: data = sorted(data, key=str) elif sort: if full: sort_key = operator.itemgetter(sort) else: sort_key = operator.itemgetter(keys.index(sort)) data = sorted(data, key=sort_key) return data
878df7c56f97a3fe2c92499955bb760888673bbc
8,345
import os import yaml def create_chart_data(start_path, excluded_dashboards=excluded_dashboards): """Read chart names and SQL code from the repository. Args: start_path (str): "./dashboards" excluded_dashboards (list): list of dashboards to exclude from testing (e.g. WIP, Untitled, etc) Returns: chart_results (array of dict): contains name, dashboard owner and SQL code for each chart """ chart_results = [] print("Processing the charts data...\n") for path, _, files in os.walk(start_path): for filename in files: if ('sql' in filename) and ('text' not in filename) and all(dashboard not in path for dashboard in excluded_dashboards): chart_dict = {} path_sql = os.path.join(path, filename) dashboard_with_id = path_sql.split('/')[2] chart_with_id = path_sql.split('/')[3] chart_dict["NAME"] = 'chart_' + dashboard_with_id.split('.')[0] + '_' + chart_with_id.replace(".", "_") try: with open(path_sql) as f: chart_dict['SQL_CODE'] = f.read() except Exception as e: print(e) path_chart_yaml = os.path.join(path, filename.replace(".sql", ".yaml")) try: with open(path_chart_yaml) as f: parsed_yaml_file = yaml.load(f, Loader=yaml.FullLoader) chart_name = parsed_yaml_file['display_name'] except Exception as e: print(e) path_dashboard_yaml = os.path.join(start_path, dashboard_with_id, dashboard_with_id.split('.')[0] + '.yaml') try: with open(path_dashboard_yaml) as f: parsed_yaml_file = yaml.load(f, Loader=yaml.FullLoader) dashboard_name = parsed_yaml_file['display_name'] chart_dict["OWNER"] = parsed_yaml_file['dashboard_preferences']['settings']['owner'] or "No Owner" chart_dict["BI_NAME"] = (dashboard_name + ": " + chart_name) or "No Name" except Exception as e: chart_dict["OWNER"] = "No Owner" chart_dict["BI_NAME"] = "No Name" print(e) chart_results.append(chart_dict) return chart_results
7c3de75b033f2467058fea2843bcc21a0488ab59
8,346
def get_current_pkg(): """ Returns: パッケージ名 (str): 常に大文字表記で返ってくる """ return eval_foreign_vm_copy("(send *package* :name)")
16c768dace7a4e88f7d7eb21aab58ce917f2ce43
8,347
def _normalise_trigger(value: float) -> float: """ Helper function used to normalise the controller trigger values into a common range. :param value: Value to be normalised :raises: ValueError :return: Normalised value """ return _normalise(value, _HARDWARE_TRIGGER_MIN, _HARDWARE_TRIGGER_MAX, _INTENDED_TRIGGER_MIN, _INTENDED_TRIGGER_MAX)
d5653da9f625896865a3fd9601d3f2707cba6e8c
8,348
def full_process(s): """Process string by -- removing all but letters and numbers -- trim whitespace -- force to lower case""" if s is None: return "" #Here we weill force a return of "" if it is of None, empty, or not valid #Merged from validate_string try: s = unicode(s) len(s) > 0 except TypeError: return "" # Keep only Letters and Numbers (see Unicode docs). string_out = StringProcessor.replace_with_whitespace(s) # Force into lowercase. string_out = StringProcessor.to_lower_case(string_out) # Remove leading and trailing whitespaces. string_out = StringProcessor.strip(string_out) return string_out
071ba938708f170b914576895f7cab1aa8cb1cc3
8,349
import math def ldexp(space, x, i): """ldexp(x, i) -> x * (2**i) """ return math2(space, math.ldexp, x, i)
ef083d77ff36acbc7d7dfede0772e9e8bf34b17a
8,350
def menu(): """ Print a menu with all the functionalities. Returns: The choice of the user. """ print "=" * 33 + "\nMENU\n" + "=" * 33 descriptions = ["Load host from external file", "Add a new host", "Print selected hosts", "Check active hosts", "Select only active hosts", "Select bots", "Execute command locally", "Execute command on bots", "Run external script", "Open shell in a host", "Exit"] for num, func in enumerate(descriptions): print "[" + str(num) + "] " + func choice = raw_input(">>> ") return choice
29bdce7c50cea7d9bbc5a27b71c803db91fe4eef
8,351
from typing import Optional from typing import Container from typing import List async def objects_get(bucket: Optional[str] = None, index: Index = Depends(Provide[Container.index]), buckets: Buckets = Depends(Provide[Container.buckets])) -> List[Object]: """ searches for objects """ if not bucket: return index.get_all() buckets.validate_bucket(bucket) return index.get_all(bucket)
f6949922ac5c355469fbaf450758180ac422f33a
8,352
import json def thumbnail_create(request, repo_id): """create thumbnail from repo file list return thumbnail src """ content_type = 'application/json; charset=utf-8' result = {} repo = get_repo(repo_id) if not repo: err_msg = _(u"Library does not exist.") return HttpResponse(json.dumps({"error": err_msg}), status=400, content_type=content_type) path = request.GET.get('path', None) if not path: err_msg = _(u"Invalid arguments.") return HttpResponse(json.dumps({"error": err_msg}), status=400, content_type=content_type) if repo.encrypted or not ENABLE_THUMBNAIL or \ check_folder_permission(request, repo_id, path) is None: err_msg = _(u"Permission denied.") return HttpResponse(json.dumps({"error": err_msg}), status=403, content_type=content_type) size = request.GET.get('size', THUMBNAIL_DEFAULT_SIZE) success, status_code = generate_thumbnail(request, repo_id, size, path) if success: src = get_thumbnail_src(repo_id, size, path) result['encoded_thumbnail_src'] = urlquote(src) return HttpResponse(json.dumps(result), content_type=content_type) else: err_msg = _('Failed to create thumbnail.') return HttpResponse(json.dumps({'err_msg': err_msg}), status=status_code, content_type=content_type)
876f9af7d61336f0f91f0b7277943265fb6e7a35
8,353
import uvloop import asyncio def initialize_event_loop(): """Attempt to use uvloop.""" try: asyncio.set_event_loop_policy(uvloop.EventLoopPolicy()) except ImportError: pass return asyncio.get_event_loop()
cba229f5330bc89a60607f9523d3727b6db30094
8,354
def _setup_pgops(multi_actions=False, normalise_entropy=False, sequence_length=4, batch_size=2, num_mvn_actions=3, num_discrete_actions=5): """Setup polices, actions, policy_vars and (optionally) entropy_scale_op.""" t = sequence_length b = batch_size a = num_mvn_actions c = num_discrete_actions # MVN actions mu = tf.placeholder(tf.float32, shape=(t, b, a)) sigma = tf.placeholder(tf.float32, shape=(t, b, a)) mvn_policies = tfp.distributions.MultivariateNormalDiag( loc=mu, scale_diag=sigma) mvn_actions = tf.placeholder(tf.float32, shape=(t, b, a)) mvn_params = [mu, sigma] if multi_actions: # Create a list of n_cat Categorical distributions n_cat = 2 cat_logits = [tf.placeholder(tf.float32, shape=(t, b, c)) for _ in xrange(n_cat)] cat_policies = [tfp.distributions.Categorical(logits=logits) for logits in cat_logits] cat_actions = [tf.placeholder(tf.int32, shape=(t, b)) for _ in xrange(n_cat)] cat_params = [[logits] for logits in cat_logits] # Create an exponential distribution exp_rate = tf.placeholder(tf.float32, shape=(t, b)) exp_policies = tfp.distributions.Exponential(rate=exp_rate) exp_actions = tf.placeholder(tf.float32, shape=(t, b)) exp_params = [exp_rate] # Nest all policies and nest corresponding actions and parameters policies = [mvn_policies, cat_policies, exp_policies] actions = [mvn_actions, cat_actions, exp_actions] policy_vars = [mvn_params, cat_params, exp_params] else: # No nested policy structure policies = mvn_policies actions = mvn_actions policy_vars = mvn_params entropy_scale_op = None if normalise_entropy: # Scale op that divides by total action dims def scale_op(policies): policies = nest.flatten(policies) num_dims = [tf.to_float(tf.reduce_prod(policy.event_shape_tensor())) for policy in policies] return 1. / tf.reduce_sum(tf.stack(num_dims)) entropy_scale_op = scale_op return policies, actions, policy_vars, entropy_scale_op
5d6ddc58db39496fed3c99c214c1f835ee49f2ea
8,355
async def definition_delete(hub, ctx, name, **kwargs): """ .. versionadded:: 1.0.0 Delete a policy definition. :param name: The name of the policy definition to delete. CLI Example: .. code-block:: bash azurerm.resource.policy.definition_delete testpolicy """ result = False polconn = await hub.exec.azurerm.utils.get_client(ctx, "policy", **kwargs) try: # pylint: disable=unused-variable policy = polconn.policy_definitions.delete(policy_definition_name=name) result = True except (CloudError, ErrorResponseException) as exc: await hub.exec.azurerm.utils.log_cloud_error("resource", str(exc), **kwargs) return result
7f3e6b2b3b6bbcea590a042b923fd797a56840ee
8,356
import optparse def parse_options(argv): """Parses and checks the command-line options. Returns: A tuple containing the options structure and a list of categories to be traced. """ usage = 'Usage: %prog [options] [category1 [category2 ...]]' desc = 'Example: %prog -b 32768 -t 15 gfx input view sched freq' parser = optparse.OptionParser(usage=usage, description=desc) parser.add_option('-o', dest='output_file', help='write trace output to FILE', default=None, metavar='FILE') parser.add_option('-t', '--time', dest='trace_time', type='int', help='trace for N seconds', metavar='N') parser.add_option('-l', '--list-categories', dest='list_categories', default=False, action='store_true', help='list the available categories and exit') parser.add_option('-j', '--json', dest='write_json', default=False, action='store_true', help='write a JSON file') parser.add_option('--link-assets', dest='link_assets', default=False, action='store_true', help='(deprecated)') parser.add_option('--from-file', dest='from_file', action='store', help='read the trace from a file (compressed) rather than' 'running a live trace') parser.add_option('--asset-dir', dest='asset_dir', default='trace-viewer', type='string', help='(deprecated)') parser.add_option('-e', '--serial', dest='device_serial_number', default=_get_default_serial(), type='string', help='adb device serial number') parser.add_option('--target', dest='target', default='android', type='string', help='chose tracing target (android or linux)') parser.add_option('--timeout', dest='timeout', type='int', help='timeout for start and stop tracing (seconds)') parser.add_option('--collection-timeout', dest='collection_timeout', type='int', help='timeout for data collection (seconds)') atrace_ftrace_options = optparse.OptionGroup(parser, 'Atrace and Ftrace options') atrace_ftrace_options.add_option('-b', '--buf-size', dest='trace_buf_size', type='int', help='use a trace buffer size ' ' of N KB', metavar='N') atrace_ftrace_options.add_option('--no-fix-threads', dest='fix_threads', default=True, action='store_false', help='don\'t fix missing or truncated ' 'thread names') atrace_ftrace_options.add_option('--no-fix-tgids', dest='fix_tgids', default=True, action='store_false', help='Do not run extra commands to restore' ' missing thread to thread group id ' 'mappings.') atrace_ftrace_options.add_option('--no-fix-circular', dest='fix_circular', default=True, action='store_false', help='don\'t fix truncated circular traces') parser.add_option_group(atrace_ftrace_options) # Add the other agent parsing options to the parser. For Systrace on the # command line, all agents are added. For Android, only the compatible agents # will be added. for module in ALL_MODULES: option_group = module.add_options(parser) if option_group: parser.add_option_group(option_group) options, categories = parser.parse_args(argv[1:]) if options.output_file is None: options.output_file = 'trace.json' if options.write_json else 'trace.html' if options.link_assets or options.asset_dir != 'trace-viewer': parser.error('--link-assets and --asset-dir are deprecated.') if options.trace_time and options.trace_time < 0: parser.error('the trace time must be a non-negative number') if (options.trace_buf_size is not None) and (options.trace_buf_size <= 0): parser.error('the trace buffer size must be a positive number') return (options, categories)
df6910fb6600f8c4573eced74dfcd8bc6ec1a5ad
8,357
def get_data_for_file(folder, ports): """Parses the pcap files in the specified folder, and outputs data for the specified ports """ # Load private keys and port->provider mappings keys, providers, nodes = read_keys(os.path.join(folder, 'keys')) print 'Loading packets' # Load packets with open(os.path.join(folder, 'network.pcap'), 'rb') as f: cap = dpkt.pcap.Reader(f) packets = [] for ts, buf in cap: eth = dpkt.sll.SLL(buf) if eth.type != 3: # tcpdump captures both type 3 and 4 packets, resulting in duplicates continue eth.time = ts try: eth.data.src = socket.inet_ntoa(eth.data.src) eth.data.dst = socket.inet_ntoa(eth.data.dst) except: pass packets.append(eth) # Load config config = json.load(open(os.path.join(folder, 'config.json'))) # Invert exponential parameters to get rate loops, drop, payload = 1/config['EXP_PARAMS_LOOPS'], 1 / \ config['EXP_PARAMS_DROP'], 1/config['EXP_PARAMS_PAYLOAD'] lambda_total = loops + drop + payload print "λ_loop = %f, λ_drop = %f, λ_payload = %f, λ = %f" % ( loops, drop, payload, lambda_total) data = [] for port in ports: print "Parsing port %d from %s" % (port, folder) # Filter packets by source port filtered = [x for x in packets if x.data.data.sport == port] print "Analysing all packets" all_mean = analyse_packets(filtered, packets[0].time, packets[-1].time) print "-----------------" decrypted_filtered = [(x, decrypt_packet( x, keys[nodes[get_addr(x.data.dst, x.data.data.dport)]], keys)) for x in filtered] real_filtered = [ x for x, decrypt in decrypted_filtered if decrypt[0] == 'REAL'] if len(real_filtered) == 0: print "Warning, 0 real packets" real_mean = None else: print "Analysing real packets" real_mean = analyse_packets( real_filtered, packets[0].time, packets[-1].time) print "\n-----------------\n" data.append((port, loops, drop, payload, lambda_total, all_mean, real_mean)) return data
be81404b54231bde3444d3b3545cafa1c836c074
8,358
async def create_channel_in_db( context: 'Context', game_config: 'GameConfig', channel_id: str, finished: bool = False ) -> Channel: """Utility function to create a channel in the database :param context: The Discord Context. :param game_config: The GameConfig to use for extra info. :param finished: Whether or not the channel is finished. :return: The Channel that was created""" owner = (await sync_to_async(User.objects.get_or_create)(id=context.author.id))[0] return await sync_to_async(Channel.objects.create)( id=channel_id, owner=owner, guild_id=context.guild.id, game=game_config.game, finished=finished )
a2ea09b436c4eeabd37c0c8220d791d89db3912f
8,359
def retry(times, func, *args, **kwargs): """Try to execute multiple times function mitigating exceptions. :param times: Amount of attempts to execute function :param func: Function that should be executed :param args: *args that are passed to func :param kwargs: **kwargs that are passed to func :raises Exception: Raise any exception that can raise func :returns: Result of func(*args, **kwargs) """ for i in range(times): try: return func(*args, **kwargs) except Exception: if i == times - 1: raise
7e9fd482a70409d62ea108ddaa83440fcd2b024f
8,360
def _apply_prediction(G, func, ebunch=None): """Applies the given function to each edge in the specified iterable of edges. `G` is an instance of :class:`networkx.Graph`. `ebunch` is an iterable of pairs of nodes. If not specified, all non-edges in the graph `G` will be used. """ if ebunch is None: ebunch = nx.non_edges(G) return sorted([(u, v, func(G, u, v)) for u, v in ebunch], key = lambda t:t[2], reverse = True)
5e046bf7608337f6ed046a71b8a3983f53109d46
8,361
def import_class(class_object): """ Import a class given a string with its name in the format module.module.classname """ d = class_object.rfind(".") class_name = class_object[d + 1:len(class_object)] m = __import__(class_object[0:d], globals(), locals(), [class_name]) return getattr(m, class_name)
82df3ed7d646bd423ccefacc00493e917f13c430
8,362
def anonymous_fun_0_(empty_closure_0_): """ empty_closure_0_: () """ def anonymous_fun_1_(par_map_input_1_): """ par_map_input_1_: Double """ def anonymous_fun_2_(par_map_input_0_): """ par_map_input_0_: Double """ def anonymous_fun_3_(fused_input_0_): """ fused_input_0_: (Double,Double) """ def anonymous_fun_4_(maybeRow_1_): """ maybeRow_1_: Maybe Double """ if maybeRow_1_ is not None: cond_result_0_ = maybeRow_1_ else: cond_result_0_ = 0.0 return cond_result_0_ def anonymous_fun_5_(row_1_): """ row_1_: Double """ if row_1_ < 5.0: cond_result_1_ = row_1_ else: cond_result_1_ = None return cond_result_1_ def anonymous_fun_6_(maybeRow_0_): """ maybeRow_0_: Maybe Double """ if maybeRow_0_ is not None: cond_result_2_ = maybeRow_0_ else: cond_result_2_ = 0.0 return cond_result_2_ def anonymous_fun_7_(row_0_): """ row_0_: Double """ if row_0_ > 10.0: cond_result_3_ = row_0_ else: cond_result_3_ = None return cond_result_3_ return ((fun_comp(anonymous_fun_4_,anonymous_fun_5_))(fused_input_0_[0]),(fun_comp(anonymous_fun_6_,anonymous_fun_7_))(fused_input_0_[1])) def anonymous_fun_8_(dbrow_0_): """ dbrow_0_: Double """ return (dbrow_0_,dbrow_0_) def anonymous_fun_9_(fused_input_1_): """ fused_input_1_: (Double,Double) """ def anonymous_fun_10_(maybeRow_1_): """ maybeRow_1_: Maybe Double """ if maybeRow_1_ is not None: cond_result_4_ = maybeRow_1_ else: cond_result_4_ = 0.0 return cond_result_4_ def anonymous_fun_11_(row_1_): """ row_1_: Double """ if row_1_ < 5.0: cond_result_5_ = row_1_ else: cond_result_5_ = None return cond_result_5_ def anonymous_fun_12_(maybeRow_0_): """ maybeRow_0_: Maybe Double """ if maybeRow_0_ is not None: cond_result_6_ = maybeRow_0_ else: cond_result_6_ = 0.0 return cond_result_6_ def anonymous_fun_13_(row_0_): """ row_0_: Double """ if row_0_ > 10.0: cond_result_7_ = row_0_ else: cond_result_7_ = None return cond_result_7_ return ((fun_comp(anonymous_fun_10_,anonymous_fun_11_))(fused_input_1_[0]),(fun_comp(anonymous_fun_12_,anonymous_fun_13_))(fused_input_1_[1])) def anonymous_fun_14_(dbrow_1_): """ dbrow_1_: Double """ return (dbrow_1_,dbrow_1_) return ((fun_comp(anonymous_fun_3_,anonymous_fun_8_))(par_map_input_0_),(fun_comp(anonymous_fun_9_,anonymous_fun_14_))(par_map_input_0_)) def anonymous_fun_15_(fused_input_2_): """ fused_input_2_: (Double,Double) """ def anonymous_fun_16_(maybeRow_1_): """ maybeRow_1_: Maybe Double """ if maybeRow_1_ is not None: cond_result_8_ = maybeRow_1_ else: cond_result_8_ = 0.0 return cond_result_8_ def anonymous_fun_17_(row_1_): """ row_1_: Double """ if row_1_ < 5.0: cond_result_9_ = row_1_ else: cond_result_9_ = None return cond_result_9_ def anonymous_fun_18_(maybeRow_0_): """ maybeRow_0_: Maybe Double """ if maybeRow_0_ is not None: cond_result_10_ = maybeRow_0_ else: cond_result_10_ = 0.0 return cond_result_10_ def anonymous_fun_19_(row_0_): """ row_0_: Double """ if row_0_ > 10.0: cond_result_11_ = row_0_ else: cond_result_11_ = None return cond_result_11_ return ((fun_comp(anonymous_fun_16_,anonymous_fun_17_))(fused_input_2_[0]),(fun_comp(anonymous_fun_18_,anonymous_fun_19_))(fused_input_2_[1])) def anonymous_fun_20_(dbrow_2_): """ dbrow_2_: Double """ return (dbrow_2_,dbrow_2_) return (anonymous_fun_2_(par_map_input_1_),(fun_comp(anonymous_fun_15_,anonymous_fun_20_))(par_map_input_1_)) return anonymous_fun_1_
2ea827153fadc359d056f4b981dbb5d3bf3711ee
8,363
def get_examples(mode='train'): """ dataset[0][0] examples """ examples = { 'train': ({'id': '0a25cb4bc1ab6f474c699884e04601e4', 'title': '', 'context': '第35集雪见缓缓张开眼睛,景天又惊又喜之际,长卿和紫萱的仙船驶至,见众人无恙,' '也十分高兴。众人登船,用尽合力把自身的真气和水分输给她。雪见终于醒过来了,但却一脸木然,全无反应。众人向常胤求助,却发现人世界竟没有雪见的身世纪录。长卿询问清微的身世,' '清微语带双关说一切上了天界便有答案。长卿驾驶仙船,众人决定立马动身,往天界而去。众人来到一荒山,长卿指出,魔界和天界相连。由魔界进入通过神魔之井,便可登天。众人至魔界入口,' '仿若一黑色的蝙蝠洞,但始终无法进入。后来花楹发现只要有翅膀便能飞入。于是景天等人打下许多乌鸦,模仿重楼的翅膀,制作数对翅膀状巨物。刚佩戴在身,便被吸入洞口。众人摔落在地,' '抬头发现魔界守卫。景天和众魔套交情,自称和魔尊重楼相熟,众魔不理,打了起来。', 'question': '仙剑奇侠传3第几集上天界', 'answers': ['第35集'], 'answer_starts': [0]}), } return examples[mode]
0b5fb45bcac847cd3f7e7b3e5b264e350c891211
8,364
from IPython.core.display import HTML def display_tables(tables, max_rows=10, datetime_fmt='%Y-%m-%d %H:%M:%S', row=True): """Display mutiple tables side by side on a Jupyter Notebook. Args: tables (dict[str, DataFrame]): ``dict`` containing table names and pandas DataFrames. max_rows (int): Max rows to show per table. Defaults to 10. datetime_fmt (str): Format with which to display datetime columns. """ # Import here to avoid making IPython a hard dependency names = [] data = [] for name, table in tables.items(): table = table.copy() for column in table.columns: column_data = table[column] if column_data.dtype.kind == 'M': table[column] = column_data.dt.strftime(datetime_fmt) names.append('<td style="text-align:left"><b>{}</b></td>'.format(name)) data.append('<td>{}</td>'.format(table.head(max_rows).to_html(index=False))) if row: html = '<table><tr>{}</tr><tr>{}</tr></table>'.format( ''.join(names), ''.join(data), ) else: rows = [ '<tr>{}</tr><tr>{}</tr>'.format(name, table) for name, table in zip(names, data) ] html = '<table>{}</table>'.format(''.join(rows)) return HTML(html)
904a900e97aab4809ea5057025a5a7a075429942
8,365
def get_visible_enemy_units(observation, as_list=False, as_dict=True): """ This function takes an observation and returns a list of the enemy units that are on screen and are visible. A unit is considered visible if is either visible (in the protos sense) or if it is snapshotted and finished. The definition of display_type can be found here: https://github.com/Blizzard/s2client-proto/blob/master/s2clientprotocol/raw.proto#L55 """ if as_list == as_dict: raise ValueError("One and only one of as_list and as_dict should be True") if as_list == True: visible_enemy_units = [] for unit in observation.raw_data.units: if unit.alliance == 4 and unit.is_on_screen: if unit.display_type == 1 or ( unit.display_type == 2 and unit.build_progress == 1 ): visible_enemy_units.append(get_unit_doc(unit)) if as_dict == True: # TO-DO: fix this one, this is the root of all bugs. visible_enemy_units = {} for unit in observation.raw_data.units: if unit.alliance == 4 and unit.is_on_screen: if unit.display_type == 1 or ( unit.display_type == 2 and unit.build_progress == 1 ): if str(unit.unit_type) not in visible_enemy_units: visible_enemy_units[str(unit.unit_type)] = [get_unit_doc(unit)] else: visible_enemy_units[str(unit.unit_type)].append( get_unit_doc(unit) ) return visible_enemy_units
e134892664e70427c67093812b3a79cc45c8f29c
8,366
def prepare_default_result_dict(key, done, nodes): """Prepares the default result `dict` using common values returned by any operation on the DHT. Returns: dict: with keys `(k, d, n)` for the key, done and nodes; `n` is a list of `dict` with keys `(i, a, x)` for id, address, and expiration. """ d = { "k": key, "d": done, } nb = [] for n in nodes: _node = n.getNode() nb.append({ "i": n.getId().toString(), "a": _node.getAddr(), "x": _node.isExpired() }) d["n"] = nb return d
420beb66352fee7b4d38f6b4cf628cbaa86a03df
8,367
def MatchScorer(match, mismatch): """Factory function that returns a score function set to match and mismatch. match and mismatch should both be numbers. Typically, match should be positive and mismatch should be negative. Resulting function has signature f(x,y) -> number. """ def scorer(x, y): if x == y: return match else: return mismatch return scorer
fe3829efc64cb4d9785e52b8af6949c147481902
8,368
import random def random_choice(context: RuntimeContext, *choices): """Template helper for random choices. Supports structures like this: random_choice: - a - b - <<c>> Or like this: random_choice: - choice: pick: A probability: 50% - choice: pick: A probability: 50% Probabilities are really just weights and don't need to add up to 100. Pick-items can have arbitrary internal complexity. Pick-items are lazily evaluated. """ if not choices: raise ValueError("No choices supplied!") if getattr(choices[0], "function_name", None) == "choice": choices = [choice.render(context) for choice in choices] rc = weighted_choice(choices) else: rc = random.choice(choices) if hasattr(rc, "render"): rc = rc.render(context) return rc
cc74c4106e2263e4b46ef25ed5cb83839040bb5f
8,369
def _compute_paddings(height_pad_amt, width_pad_amt, patch_axes): """Convert the total pad amounts to the format needed by tf.pad().""" top_pad = height_pad_amt // 2 bottom_pad = height_pad_amt - top_pad left_pad = width_pad_amt // 2 right_pad = width_pad_amt - left_pad paddings = [[0, 0] for _ in range(4)] paddings[patch_axes[0]] = [top_pad, bottom_pad] paddings[patch_axes[1]] = [left_pad, right_pad] return paddings
3a5154ba0fa6808bc6dc8e20fcb4203324762ba9
8,370
def tab_size(computer, name, value): """Compute the ``tab-size`` property.""" if isinstance(value, int): return value else: return length(computer, name, value)
f121cc308f4c88e021e240767ae03479a26a46f6
8,371
def match_complete(user_id=""): """Switch 'complete' to true in matches table for user, return tallies.""" print("match_complete", user_id) user = sm.get_user(user_id) # Note: 0/1 used for 'complete' b/c Booleans not allowed in SimpleObjects this_match, i = current_match_i(user) temp = this_match['complete'] temp[i] = 1 this_match['complete'] = temp return _get_tallies(user)
1af499c671f209ba8bc9333e372947c90b9a2b8c
8,372
def compute_range_map(flow, downsampling_factor=1, reduce_downsampling_bias=True, resize_output=True): """Count how often each coordinate is sampled. Counts are assigned to the integer coordinates around the sampled coordinates using weights from bilinear interpolation. Args: flow: A float tensor of shape (batch size x height x width x 2) that represents a dense flow field. downsampling_factor: An integer, by which factor to downsample the output resolution relative to the input resolution. Downsampling increases the bin size but decreases the resolution of the output. The output is normalized such that zero flow input will produce a constant ones output. reduce_downsampling_bias: A boolean, whether to reduce the downsampling bias near the image boundaries by padding the flow field. resize_output: A boolean, whether to resize the output at the input resolution. Returns: A float tensor of shape [batch_size, height, width, 1] that denotes how often each pixel is sampled. """ # Get input shape. input_shape = flow.shape.as_list() if len(input_shape) != 4: raise NotImplementedError() batch_size, input_height, input_width, _ = input_shape flow_height = input_height flow_width = input_width # Apply downsampling (and move the coordinate frame appropriately). output_height = input_height // downsampling_factor output_width = input_width // downsampling_factor if downsampling_factor > 1: # Reduce the bias that comes from downsampling, where pixels at the edge # will get lower counts that pixels in the middle of the image, by padding # the flow field. if reduce_downsampling_bias: p = downsampling_factor // 2 flow_height += 2 * p flow_width += 2 * p # Apply padding in multiple steps to padd with the values on the edge. for _ in range(p): flow = tf.pad( tensor=flow, paddings=[[0, 0], [1, 1], [1, 1], [0, 0]], mode='SYMMETRIC') coords = flow_to_warp(flow) - p # Update the coordinate frame to the downsampled one. coords = (coords + (1 - downsampling_factor) * 0.5) / downsampling_factor elif downsampling_factor == 1: coords = flow_to_warp(flow)#after warpping image else: raise ValueError('downsampling_factor must be an integer >= 1.') # Split coordinates into an integer part and a float offset for interpolation. coords_floor = tf.floor(coords)#返回一个具有相同类型的张量,不大于的最大整数 coords_offset = coords - coords_floor coords_floor = tf.cast(coords_floor, 'int32') # Define a batch offset for flattened indexes into all pixels. batch_range = tf.reshape(tf.range(batch_size), [batch_size, 1, 1]) idx_batch_offset = tf.tile( batch_range, [1, flow_height, flow_width]) * output_height * output_width # Flatten everything. coords_floor_flattened = tf.reshape(coords_floor, [-1, 2])#zhengshu coords_offset_flattened = tf.reshape(coords_offset, [-1, 2])#xiaoshu idx_batch_offset_flattened = tf.reshape(idx_batch_offset, [-1])#suoyin # Initialize results. idxs_list = [] weights_list = [] # Loop over differences di and dj to the four neighboring pixels. for di in range(2): for dj in range(2): # Compute the neighboring pixel coordinates. idxs_i = coords_floor_flattened[:, 0] + di idxs_j = coords_floor_flattened[:, 1] + dj # Compute the flat index into all pixels. idxs = idx_batch_offset_flattened + idxs_i * output_width + idxs_j # Only count valid pixels. mask = tf.reshape( tf.compat.v1.where( tf.logical_and( tf.logical_and(idxs_i >= 0, idxs_i < output_height), tf.logical_and(idxs_j >= 0, idxs_j < output_width))), [-1]) valid_idxs = tf.gather(idxs, mask) valid_offsets = tf.gather(coords_offset_flattened, mask) # Compute weights according to bilinear interpolation. weights_i = (1. - di) - (-1)**di * valid_offsets[:, 0] weights_j = (1. - dj) - (-1)**dj * valid_offsets[:, 1] weights = weights_i * weights_j # Append indices and weights to the corresponding list. idxs_list.append(valid_idxs) weights_list.append(weights) # Concatenate everything. idxs = tf.concat(idxs_list, axis=0) weights = tf.concat(weights_list, axis=0) # Sum up weights for each pixel and reshape the result. counts = tf.math.unsorted_segment_sum( weights, idxs, batch_size * output_height * output_width) count_image = tf.reshape(counts, [batch_size, output_height, output_width, 1]) if downsampling_factor > 1: # Normalize the count image so that downsampling does not affect the counts. count_image /= downsampling_factor**2 if resize_output: count_image = resize( count_image, input_height, input_width, is_flow=False) return count_image
fa73194435ae893dcd359f93f1488a6b654f8d31
8,373
from typing import List def get_wer(refs: List[str], hyps: List[str]): """ args: refs (list of str): reference texts hyps (list of str): hypothesis/prediction texts """ n_words, n_errors = 0, 0 for ref, hyp in zip(refs, hyps): ref, hyp = ref.split(), hyp.split() n_words += len(ref) n_errors += editdistance.eval(ref, hyp) return safe_divide(n_errors, n_words)
fb142f4d048bffca1a1119e4a2e7c68e1effcbfc
8,374
def get_first(somelist, function): """ Returns the first item of somelist for which function(item) is True """ for item in somelist: if function(item): return item return None
81976910c46102d3b15803d215f3bf5a554f9beb
8,375
def np_cross(a, b): """ Simple numba compatible cross product of vectors """ return np.array([ a[1] * b[2] - a[2] * b[1], a[2] * b[0] - a[0] * b[2], a[0] * b[1] - a[1] * b[0], ])
0d19a1bfdf7bf5d6835203f61654edc8263b3bbd
8,376
import sys import locale def get_process_output(process, encoding=None): """Get the output from the process.""" output = process.communicate() returncode = process.returncode if not encoding: try: encoding = sys.stdout.encoding except Exception: encoding = locale.getpreferredencoding() if returncode != 0: raise RuntimeError("Runtime Error: %s" % (output[0].rstrip().decode(encoding, errors='replace'))) return output[0].decode(encoding, errors='replace')
84622c05e84627d0651d21194391c672fb111b6f
8,377
import tqdm from sys import stdout def dct_2d(pixel_blocks: np.ndarray, verbose: int = 0) -> np.ndarray: """ Does 8x8 2D DCT on an image represented by pixel blocks. :param pixel_blocks: A np.ndarray of shape AxBx8x8x3, where A = H/8, B = W/8. :param verbose: An int; if greater than 0 will print out a tqdm progress bar. :return: A np.ndarray of shape AxBx8x8x3, where A = H/8, B = W/8. """ to_return = list() if verbose > 0: pbar = tqdm(total=pixel_blocks.shape[0] * pixel_blocks.shape[1], file=stdout) for row in pixel_blocks: current_row = list() for pixel_block in row: current_row.append(dct_2d_on_8x8_block(pixel_block)) if verbose > 0: pbar.update() to_return.append(current_row) if verbose > 0: pbar.close() return np.array(to_return)
00e6421d186635032fd4afc1fd932ee977c71c70
8,378
import itertools def remove_duplicates(llist): """ Removes any and all duplicate entries in the specified list. This function is intended to be used during dataset merging and therefore must be able to handle list-of-lists. :param llist: The list to prune. :return: A list of unique elements only. """ if not llist: return [] llist.sort() return [x for x, _ in itertools.groupby(llist)]
cbdf1a4db99a7a5fac37f25776cc1387ed8c54e0
8,379
def images_in_bbox(bbox: dict, **filters) -> str: """ Gets a complete list of images with custom filter within a BBox :param bbox: Bounding box coordinates Format:: >>> { ... 'west': 'BOUNDARY_FROM_WEST', ... 'south': 'BOUNDARY_FROM_SOUTH', ... 'east': 'BOUNDARY_FROM_EAST', ... 'north': 'BOUNDARY_FROM_NORTH' ... } :type bbox: dict :param filters: Different filters that may be applied to the output Example filters:: - max_captured_at - min_captured_at - image_type: pano, flat, or all - compass_angle - sequence_id - organization_id :type filters: dict :return: Output is a GeoJSON string that represents all the within a bbox after passing given filters :rtype: str Usage:: >>> import mapillary as mly >>> mly.interface.set_access_token('MLY|XXX') >>> mly.interface.images_in_bbox( ... bbox={ ... 'west': 'BOUNDARY_FROM_WEST', ... 'south': 'BOUNDARY_FROM_SOUTH', ... 'east': 'BOUNDARY_FROM_EAST', ... 'north': 'BOUNDARY_FROM_NORTH' ... }, ... max_captured_at='YYYY-MM-DD HH:MM:SS', ... min_captured_at='YYYY-MM-DD HH:MM:SS', ... image_type='pano', ... compass_angle=(0, 360), ... sequence_id='SEQUENCE_ID', ... organization_id='ORG_ID' ... ) """ return image.get_images_in_bbox_controller( bounding_box=bbox, layer="image", zoom=14, filters=filters )
317554d0f666753cdfc8a3657f7f0b92d5af141d
8,380
def find_start_time_from_afl(project_base_dir): """ Finds the start time of a project from afl directories. This time is taken from the fuzzer_stats entry of the first config iteration's fuzzer. """ try: first_main_dir = main_dirs_for_proj(project_base_dir)[0] except: #if fuzzware-project dir exists but contains no mainXXX dirs return 0 first_fuzzer_dir = fuzzer_dirs_for_main_dir(first_main_dir)[0] fuzzer_stats_path = first_fuzzer_dir.joinpath("fuzzer_stats") with open(fuzzer_stats_path, "r") as f: start_time = int(f.readline().split(": ")[1]) return start_time
f8f21b65e1901615e16953da48ac39008dcb240b
8,381
def filter_none_values(d, recursive=True): """ Returns a filtered copy of a dict, with all keys associated with 'None' values removed. adapted from: http://stackoverflow.com/q/20558699 adapted from: http://stackoverflow.com/a/20558778 :param d: a dict-like object. :param recursive: If True, performs the operation recursively on inner elements of the object. :return: a new dict (of the same type as the original) containing the original dict's values, except as modified per this function's documented effects. >>> filter_none_values(None) is None True >>> filter_none_values(1) Traceback (most recent call last): TypeError: d is not a dict-like object. >>> filter_none_values({}) {} >>> filter_none_values({'a': 1, 'b': None, 'c': '3'}) {'a': 1, 'c': '3'} >>> filter_none_values({'a': 1, 'b': [1, None, 3], 'c': '3'}) {'a': 1, 'c': '3', 'b': [1, 3]} >>> filter_none_values({'a': 1, 'b': [1, {'ba': 1, 'bb': None, 'bc': '3'}, 3], 'c': '3'}) {'a': 1, 'c': '3', 'b': [1, {'ba': 1, 'bc': '3'}, 3]} >>> from collections import OrderedDict as od; filter_none_values(od((('a', 1), ('b', None), ('c', '3')))) OrderedDict([('a', 1), ('c', '3')]) >>> from collections import OrderedDict as od; filter_none_values({'r': od((('a', 1), ('b', None), ('c', '3')))}) {'r': OrderedDict([('a', 1), ('c', '3')])} >>> from json import loads; repr(filter_none_values(loads('{"a": 1, "b": null, "c": 3}'))) "{u'a': 1, u'c': 3}" >>> from json import loads; repr(filter_none_values(loads('{"a": 1, "b": [], "c": 3}'))) "{u'a': 1, u'c': 3, u'b': []}" >>> from json import loads; repr(filter_none_values(loads('{"a": 1, "b": {"ba": null}, "c": 3}'))) "{u'a': 1, u'c': 3, u'b': {}}" >>> from json import loads; repr(filter_none_values(loads('{"a": 1, "b": {"ba": []}, "c": 3}'))) "{u'a': 1, u'c': 3, u'b': {u'ba': []}}" >>> from json import loads; repr(filter_none_values(loads('{"a": 1, "b": {"ba": {"baa": null}}, "c": 3}'))) "{u'a': 1, u'c': 3, u'b': {u'ba': {}}}" """ # def my_remove_none(obj): # """Note: adapted from remove_none.""" # if isinstance(obj, (collections.Sequence, list, tuple, set)): # return type(obj)(remove_none(x) for x in obj if x is not None) # elif isinstance(obj, (collections.Mapping, dict)): # return type(obj)((remove_none(k), remove_none(v)) # for k, v in obj.items() if k is not None and v is not None) # else: # return obj def remove_none(obj): """Note: This one seems to be functionally equivalent to purify (at least for the cases I tested).""" if isinstance(obj, (list, tuple, set)): return type(obj)(remove_none(x) for x in obj if x is not None) elif isinstance(obj, dict): return type(obj)((remove_none(k), remove_none(v)) for k, v in obj.items() if k is not None and v is not None) else: return obj def purify(o): """Note: This one seems to be functionally equivalent to remove_none (at least for the cases I tested).""" if hasattr(o, 'items'): oo = type(o)() for k in o: if k is not None and o[k] is not None: oo[k] = purify(o[k]) elif hasattr(o, '__iter__'): oo = [] for it in o: if it is not None: oo.append(purify(it)) else: return o return type(o)(oo) def strip_none(data): """Note: This one doesn't support OrderedDict, etc.""" if isinstance(data, dict): return {k: strip_none(v) for k, v in data.items() if k is not None and v is not None} elif isinstance(data, list): return [strip_none(item) for item in data if item is not None] elif isinstance(data, tuple): return tuple(strip_none(item) for item in data if item is not None) elif isinstance(data, set): return {strip_none(item) for item in data if item is not None} else: return data if d is None: return None elif not hasattr(d, 'items'): raise TypeError('d is not a dict-like object.') if recursive: # return my_remove_none(d) # return remove_none(d) return purify(d) # return strip_none(d) else: d = d.copy() # remove all bad keys bad_keys = [k for k, v in d.items() if v is None] for k in bad_keys: d.pop(k) return d
2a25ae331c99196c6f6eed7d5fe055f27583b1d2
8,382
def nonseq(): """ Return non sequence """ return 1
7c8f4a616a6761153226d961be02f6cf5b0cc54a
8,383
import io def load_image(path, color_space = None, target_size = None): """Loads an image as an numpy array Arguments: path: Path to image file target_size: Either, None (default to original size) or tuple of ints '(image height, image width)' """ img = io.imread(path) if target_size: img = cv2.resize(img, target_size, interpolation = cv2.INTER_CUBIC) return img
882210dff5dfa46596562483966b4a72c37aa7a8
8,384
def kubernetes_node_label_to_dict(node_label): """Load Kubernetes node label to Python dict.""" if node_label: label_name, value = node_label.split("=") return {label_name: value} return {}
c856d4e6d1f2169f7028ce842edc881cbca4e783
8,385
def get_category_user_problem(cat_name, username): """ 获取直接在指定目录下的用户AC的题目、尚未AC的题目和尚未做过的题目的情况 :param cat_name: :param username: :return: """ cat = __Category.objects.filter(name=cat_name).first() user = __User.objects.filter(username=username).first() if user is None or cat is None: return {'solved': [], 'not_solved': [], 'not_tried': []} query_dict = {} relation = __ProblemUserRelation.objects.filter(user=user).values('problem_id', 'solved').distinct() for i in relation: query_dict[i['problem_id']] = i['solved'] problems = cat.problem.filter(category_relation__direct=True).values('id', 'title') solved = [] not_solved = [] not_tried = [] for i in problems: if i['id'] in query_dict: if query_dict[i['id']] is True: solved.append(i) else: not_solved.append(i) else: not_tried.append(i) return {'solved': solved, 'not_solved': not_solved, 'not_tried': not_tried}
96e78d527f5bd0002345973eb085e04246e936ae
8,386
import math def floatToJson(x): """Custom rule for converting non-finite numbers to JSON as quoted strings: ``"inf"``, ``"-inf"``, and ``"nan"``. This avoids Python's bad habit of putting literal ``Infinity``, ``-Infinity``, and ``NaN`` in the JSON (without quotes).""" if x in ("nan", "inf", "-inf"): return x elif math.isnan(x): return "nan" elif math.isinf(x) and x > 0.0: return "inf" elif math.isinf(x): return "-inf" else: return x
938700c100d9176f6d950aee9ddf8f90109bedcc
8,387
import os def get_datafiles(datadir, prefix = ""): """ Scan directory for all csv files prefix: used in recursive call """ datafiles = [] for fname in os.listdir(datadir): fpath = os.path.join(datadir, fname) datafile = os.path.join(prefix, fname) if os.path.isdir(fpath): datafiles += get_datafiles(fpath, datafile) elif fname.endswith(".csv"): datafiles.append(datafile) return datafiles
9d975985a7b16af75436f8941881982f8a39d5d7
8,388
import os def auto_delete_file_on_change(sender, instance, **kwargs): """ Deletes old file from filesystem when corresponding `MediaFile` object is updated with new file. """ if not instance.pk: return False try: old_file = sender.objects.get(pk=instance.pk).url_banner except sender.DoesNotExist: return False new_file = instance.url_banner if not old_file == new_file: if os.path.isfile(old_file.path): os.remove(old_file.path)
fa65394c95f3312e694e006751a7833c8d989af5
8,389
import math def systematic_uncertainties(): """tabulates sources of uncertainty and sums them in quadrature""" result_m = [ 0.066, # [0.07-0.12] 0.066 ± 0.019 0.019, # [0.12-0.20] 0.019 ± 0.009 0.002, # [0.20-0.30] 0.002 ± 0.009 -0.006, # [0.30-0.45] -0.006 ± 0.014 0.007, # [0.45-0.65] 0.007 ± 0.023 0.012 # [0.65-1.00] 0.012 ± 0.040 ] result_p = [ 0.026, # [0.07-0.12] 0.026 ± 0.019 0.021, # [0.12-0.20] 0.021 ± 0.008 0.002, # [0.20-0.30] 0.002 ± 0.009 -0.014, # [0.30-0.45] -0.014 ± 0.013 0.024, # [0.45-0.65] 0.024 ± 0.022 0.046 # [0.65-1.00] 0.046 ± 0.037 ] pid_contamination = 0.10 pid_asym_m = [ ( 0.051 , 0.038), # [0.07-0.12] 0.051 ± 0.038 (-0.017 , 0.016), # [0.12-0.20] -0.017 ± 0.016 (-0.032 , 0.016), # [0.20-0.30] -0.032 ± 0.016 (-0.006 , 0.023), # [0.30-0.45] -0.006 ± 0.023 (-0.031 , 0.042), # [0.45-0.65] -0.031 ± 0.042 ( 0.089 , 0.085) # [0.65-1.00] 0.089 ± 0.085 ] pid_asym_p = [ ( 0.005 , 0.036), # [0.07-0.12] 0.005 ± 0.036 ( 0.006 , 0.015), # [0.12-0.20] 0.006 ± 0.015 (-0.006 , 0.015), # [0.20-0.30] -0.006 ± 0.015 ( 0.018 , 0.020), # [0.30-0.45] 0.018 ± 0.020 (-0.038 , 0.032), # [0.45-0.65] -0.038 ± 0.032 ( 0.142 , 0.059) # [0.65-1.00] 0.142 ± 0.059 ] for i in range(len(pid_asym_m)): val, err = pid_asym_m[i] pid_asym_m[i] = max( val-result_m[i], err) for i in range(len(pid_asym_p)): val, err = pid_asym_p[i] pid_asym_p[i] = max( val-result_p[i], err) beam_vector = 0.0102 asigma_m = [ 0.035, # [0.07-0.12] 0.005 ± 0.035 0.015, # [0.12-0.20] -0.012 ± 0.015 0.016, # [0.20-0.30] -0.014 ± 0.016 0.027, # [0.30-0.45] -0.027 ± 0.023 0.066, # [0.45-0.65] -0.066 ± 0.040 0.073 # [0.65-1.00] -0.072 ± 0.073 ] asigma_p = [ 0.034, # [0.07-0.12] -0.001 ± 0.034 0.014, # [0.12-0.20] -0.007 ± 0.014 0.015, # [0.20-0.30] 0.007 ± 0.015 0.025, # [0.30-0.45] -0.025 ± 0.022 0.039, # [0.45-0.65] -0.039 ± 0.037 0.061 # [0.65-1.00] 0.033 ± 0.061 ] mcasym_m = [ 0.0066, # [0.07-0.12] 0.0012 ± 0.0066 0.0057, # [0.12-0.20] 0.0057 ± 0.0025 0.0089, # [0.20-0.30] 0.0089 ± 0.0020 0.0077, # [0.30-0.45] 0.0077 ± 0.0026 0.0042, # [0.45-0.65] 0.0038 ± 0.0042 0.0070 # [0.65-1.00] 0.0053 ± 0.0070 ] mcasym_p = [ 0.0047, # [0.07-0.12] -0.0014 ± 0.0047 0.0077, # [0.12-0.20] 0.0077 ± 0.0024 0.0147, # [0.20-0.30] 0.0147 ± 0.0023 0.0105, # [0.30-0.45] 0.0105 ± 0.0024 0.0057, # [0.45-0.65] 0.0057 ± 0.0044 0.0112 # [0.65-1.00] 0.0112 ± 0.0081 ] pt_shift_m = [ 0, 0, 0.003, # [0.20-0.30] 0.006 low, 0.001 high, 0.003 avg 0.005, # [0.30-0.45] 0.007 low, 0.003 high, 0.005 avg 0.016, # [0.45-0.65] 0.020 low, 0.012 high, 0.016 avg 0.010 # [0.65-1.00] 0.011 low, 0.008 high, 0.010 avg ] pt_shift_p = [ 0, 0, 0.004, # [0.20-0.30] 0.005 low, 0.003 high, 0.004 avg 0.007, # [0.30-0.45] 0.008 low, 0.006 high, 0.007 avg 0.016, # [0.45-0.65] 0.023 low, 0.008 high, 0.016 avg 0.016 # [0.65-1.00] 0.012 low, 0.020 high, 0.016 avg ] relative_luminosity = 9.4e-4 minus = [0.0 for bin in zbins[:-1]] plus = [0.0 for bin in zbins[:-1]] start = len(zbins) == 5 and 2 or 0 for i in range(start, start+len(zbins)-1): minus[i-start] = math.sqrt( pow(relative_luminosity, 2) + pow(pid_contamination*pid_asym_m[i], 2) + pow(beam_vector*asigma_m[i], 2) + pow(mcasym_m[i], 2) + pow(pt_shift_m[i], 2) ) plus[i-start] = math.sqrt( pow(relative_luminosity, 2) + pow(pid_contamination*pid_asym_p[i], 2) + pow(beam_vector*asigma_p[i], 2) + pow(mcasym_p[i], 2) + pow(pt_shift_p[i], 2) ) return {'minus':minus, 'plus':plus}
71941441b09a593ebc2a3e396d2b86684bc75cfe
8,390
def extract_metamap(json_, key): """ Task function to parse and extract concepts from json_ style dic, using the MetaMap binary. Input: - json_ : dic, json-style dictionary generated from the Parse object related to the specific type of input - key : str, string denoting the type of medical text to read from. Used to find the correct paragraph in the settings.yaml file. Output: - json_ : dic, the previous json-style dictionary enriched with medical concepts """ # outerfield for the documents in json docfield = settings['out']['json']['itemfield'] # textfield to read text from textfield = settings['out']['json']['json_text_field'] N = len(json_[docfield]) for i, doc in enumerate(json_[docfield]): text = clean_text(doc[textfield]) if len(text) > 5000: chunks = create_text_batches(text) results = {'text': text, 'sents': []} sent_id = 0 for chunk in chunks: tmp = metamap_wrapper(chunk) for sent in tmp['sents']: sent['sent_id'] = sent_id sent_id += 1 results['sents'].append(sent) else: results = metamap_wrapper(text) json_[docfield][i].update(results) proc = int(i/float(N)*100) if proc % 10 == 0 and proc > 0: time_log('We are at %d/%d documents -- %0.2f %%' % (i, N, proc)) return json_
543b1470f36ee85dde2c2447ecc204544ef8fd52
8,391
def get_testinfo_by_reference(ref_name, ref_type): """ get test content by reference name @params: ref_name: reference name, e.g. api_v1_Account_Login_POST($UserName, $Password) ref_type: "api" or "suite" """ function_meta = parse_function(ref_name) func_name = function_meta["func_name"] call_args = function_meta["args"] test_info = get_test_definition(func_name, ref_type) def_args = test_info.get("function_meta").get("args", []) if len(call_args) != len(def_args): raise exception.ParamsError("call args mismatch defined args!") args_mapping = {} for index, item in enumerate(def_args): if call_args[index] == item: continue args_mapping[item] = call_args[index] if args_mapping: test_info = substitute_variables_with_mapping(test_info, args_mapping) return test_info
967b32149ae094d2ef86cc88b2131047b98b1f09
8,392
import logging def game_info(uuid: str) -> dict: """ return info about game by uuid :param uuid: :return: message """ logging.info(uuid) logging.info(games.keys()) if UUID(uuid) in games.keys(): select_game: Game = games.get(UUID(uuid)) return { "uuid": uuid, "start_time": select_game.start_time, "field": select_game.field, } else: return {"Error": f"{uuid} game not found!"}
15faaab2f256830a0f2537ada4c742f703a74783
8,393
def miller_rabin(n, a): """ Miller-Rabin Primality Test Returns true if n is a (probable) prime Returns false if n is a composite number """ s = 0 d = n - 1 while d % 2 == 0: s = s + 1 d = d >> 1 x = square_and_multiply(a, d, n) if x != 1 and x + 1 != n: for r in range(1, s): x = square_and_multiply(x, 2, n) if x == 1: return False elif x == n - 1: a = 0 break if a: return False return True
2de6b54c05d4052e5d2c8fd915a0a2814a7da28f
8,394
def luhn_sum_v1(num): """ First version of luhn_sum; uses a list which it modifies in-place. """ nums = [int(i) for i in reversed(str(num))] for i in xrange(1, len(nums), 2): nums[i] *= 2 return sum(sum(divmod(i, 10)) for i in nums)
c2ff96069710a2321d9871608d0d9bbaddc18d30
8,395
def get_rate_discounted_rate(item_code, customer, company, so_number = None): """ This function is use to get discounted rate and rate """ item_group = frappe.get_value("Item", item_code, 'item_group') # parent_item_group = frappe.get_value("Item Group", item_group, 'parent_item_group') count = frappe.db.sql(f""" SELECT COUNT(*) FROM `tabDelivery Note Item` as soi JOIN `tabDelivery Note` as so ON so.`name` = soi.`parent` WHERE soi.`item_group` = '{item_group}' AND soi.`docstatus` = 1 AND so.customer = '{customer}' AND so.`company` = '{company}' LIMIT 1 """) where_clause = '' if count[0][0]: where_clause = f"soi.item_group = '{item_group}' AND" data = None if so_number: data = frappe.db.sql(f""" SELECT soi.`rate` as `rate` FROM `tabDelivery Note Item` as soi JOIN `tabDelivery Note` as so ON soi.parent = so.name WHERE {where_clause} so.`customer` = '{customer}' AND so.`company` = '{company}' AND so.`docstatus` != 2 AND so.`name` = '{so_number}' ORDER BY soi.`creation` DESC LIMIT 1 """, as_dict = True) if not data: data = frappe.db.sql(f""" SELECT soi.`rate` as `rate` FROM `tabDelivery Note Item` as soi JOIN `tabDelivery Note` as so ON soi.parent = so.name WHERE {where_clause} so.`customer` = '{customer}' AND so.`company` = '{company}' AND so.`docstatus` != 2 ORDER BY soi.`creation` DESC LIMIT 1 """, as_dict = True) return data[0] if data else {'rate': 0}
8560bf5846a0500941840d59fb79cd721196a7ca
8,396
from typing import Dict from typing import Any import os import logging import json def lambda_handler(event: Dict[str, Any], context: Dict[str, Any]) -> str: """ Lambda function to parse notification events and forward to Slack :param event: lambda expected event object :param context: lambda expected context object :returns: none """ if os.environ.get("LOG_EVENTS", "False") == "True": logging.info(f"Event logging enabled: `{json.dumps(event)}`") for record in event["Records"]: sns = record["Sns"] subject = sns["Subject"] message = sns["Message"] region = sns["TopicArn"].split(":")[3] payload = get_slack_message_payload( message=message, region=region, subject=subject ) response = send_slack_notification(payload=payload) if json.loads(response)["code"] != 200: response_info = json.loads(response)["info"] logging.error( f"Error: received status `{response_info}` using event `{event}` and context `{context}`" ) return response
6b6251b42063a91605b98eb31810af410dbf2617
8,397
def sum_obs_np(A): """summation over axis 0 (obs) equivalent to np.sum(A, 0)""" return np.einsum("ij -> j", A) if A.ndim > 1 else np.sum(A)
c14abc00b2ea6fa64c32fe7ac10f0007cb4705e8
8,398
def _macos_command_line_infoplist_impl(ctx): """Implementation of the internal `macos_command_line_infoplist` rule. This rule is an internal implementation detail of `macos_command_line_application` and should not be used directly by clients. It merges Info.plists as would occur for a bundle but then propagates an `objc` provider with the necessary linkopts to embed the plist in a binary. Args: ctx: The rule context. Returns: A `struct` containing the `objc` provider that should be propagated to a binary that should have this plist embedded. """ bundle_id = ctx.attr.bundle_id infoplists = ctx.files.infoplists if ctx.attr.version and AppleBundleVersionInfo in ctx.attr.version: version = ctx.attr.version[AppleBundleVersionInfo] else: version = None if not bundle_id and not infoplists and not version: fail("Internal error: at least one of bundle_id, infoplists, or version " + "should have been provided") plist_results = plist_actions.merge_infoplists( ctx, None, infoplists, bundle_id = bundle_id, exclude_executable_name = True, extract_from_ctxt = True, include_xcode_env = True, ) merged_infoplist = plist_results.output_plist return [ linker_support.sectcreate_objc_provider( "__TEXT", "__info_plist", merged_infoplist, ), ]
d70a47def85cff62fc21e907a9f0a246a9b1c192
8,399