content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def collect_subclasses(mod, cls, exclude=None): """Collecting all subclasses of `cls` in the module `mod` @param mod: `ModuleType` The module to collect from. @param cls: `type` or (`list` of `type`) The parent class(es). @keyword exclude: (`list` of `type`) Classes to not include. """ out = [] for name in dir(mod): attr = getattr(mod, name) if ( isinstance(attr, type) and (attr not in cls if isinstance(cls, (list, tuple)) else attr != cls) and issubclass(attr, cls) and (attr not in exclude if exclude else True)): out.append(attr) return out
30e64b93fca4d68c3621cae54bb256350875eb77
19,000
import typing from typing import Counter def check_collections_equivalent(a: typing.Collection, b: typing.Collection, allow_duplicates: bool = False, element_converter: typing.Callable = identity) -> typing.Tuple[str, list]: """ :param a: one collection to compare :param b: other collection to compare :param allow_duplicates: allow collections to contain multiple elements :param element_converter: optional function to convert elements of collections to a different value for comparison :return: (message, differences) """ a = Counter(map(element_converter, a)) b = Counter(map(element_converter, b)) if not allow_duplicates: duplicates = [] for name, counts in [['a', a], ['b', b]]: for key, count in counts.items(): if count > 1: duplicates.append([name, key, count]) if duplicates: return 'Duplicate elements ', ['|'.join(map(str, dup)) for dup in duplicates] diffs = [] for el in a | b: ac = a.get(el, 0) bc = b.get(el, 0) if ac != bc: 'Inconsistent element frequencies', diffs.append(f'{el} a={ac} b={bc}') if diffs: return "Inconsistent element frequencies: ", diffs return 'Collections equivalent', []
61d78f522a6e87927db6b32b46637f0bb6a10513
19,001
def voting_classifier(*args, **kwargs): """ same as in gradient_boosting_from_scratch() """ return VotingClassifier(*args, **kwargs)
ed92138c23b699672197d1b436773a5250685250
19,002
import re def replace_subject_with_object(sent, sub, obj): """Replace the subject with object and remove the original subject""" sent = re.sub(r'{}'.format(obj), r'', sent, re.IGNORECASE) sent = re.sub(r'{}'.format(sub), r'{} '.format(obj), sent, re.IGNORECASE) return re.sub(r'{\s{2,}', r' ', sent, re.IGNORECASE)
1c7f8115968c4e4ef10dcc3b83f0f259433f5082
19,003
def estimate_using_user_recent(list_type: str, username: str) -> int: """ Estimate the page number of a missing (entry which was just approved) entry and choose the max page number this requests a recent user's list, and uses checks if there are any ids in that list which arent in the approved cache """ assert list_type in {"anime", "manga"} logger.info(f"Estimating {list_type}list using {username}") appr = approved_ids() recently_updated_ids = user_recently_updated( list_type=list_type, username=username, offset=0 ) ids = appr.anime if list_type == "anime" else appr.manga sorted_approved = list(sorted(ids, reverse=True)) missing_approved = [] for aid in recently_updated_ids: if aid not in ids: missing_approved.append(aid) estimate_pages = [_estimate_page(aid, sorted_approved) for aid in missing_approved] max_page: int if len(estimate_pages) == 0: max_page = 0 else: max_page = max(estimate_pages) + 1 logger.info(f"Estimated {max_page} {list_type} pages for {username}") return max_page
b6a7a5bf6c0fa6e13021f10bf2fe613c4186f430
19,004
def codegen_reload_data(): """Parameters to codegen used to generate the fn_html2pdf package""" reload_params = {"package": u"fn_html2pdf", "incident_fields": [], "action_fields": [], "function_params": [u"html2pdf_data", u"html2pdf_data_type", u"html2pdf_stylesheet"], "datatables": [], "message_destinations": [u"fn_html2pdf"], "functions": [u"fn_html2pdf"], "phases": [], "automatic_tasks": [], "scripts": [], "workflows": [u"example_html2pdf"], "actions": [u"Example: HTML2PDF"] } return reload_params
45a5e974f3e02953a6d121e37c05022c448adae6
19,005
def instrument_keywords(instrument, caom=False): """Get the keywords for a given instrument service Parameters ---------- instrument: str The instrument name, i.e. one of ['niriss','nircam','nirspec', 'miri','fgs'] caom: bool Query CAOM service Returns ------- pd.DataFrame A DataFrame of the keywords """ # Retrieve one dataset to get header keywords sample = instrument_inventory(instrument, return_data=True, caom=caom, add_requests={'pagesize': 1, 'page': 1}) data = [[i['name'], i['type']] for i in sample['fields']] keywords = pd.DataFrame(data, columns=('keyword', 'dtype')) return keywords
271f58615dbdbcde4fda9a5248d8ae3b40b90f6d
19,006
from struct import unpack from time import mktime, strftime, gmtime def header_info(data_type, payload): """Report additional non-payload in network binary data. These can be status, time, grapic or control structures""" # Structures are defined in db_access.h. if payload == None: return "" data_type = type_name(data_type) if data_type.startswith("STS_"): status, severity = unpack(">HH", payload[0:4]) # Expecting status = 0 (normal), severity = 1 (success) return "{status:%d,severity:%d}" % (status, severity) elif data_type.startswith("TIME_"): status, severity = unpack(">HH", payload[0:4]) # The time stamp is represented as two uint32 values. The first is the # number of seconds passed since 1 Jan 1990 00:00 GMT. The second is the # number of nanoseconds within the second. seconds, nanoseconds = unpack(">II", payload[4:12]) offset = mktime((1990, 1, 1, 0, 0, 0, 0, 0, 0)) - mktime( (1970, 1, 1, 0, 0, 0, 0, 0, 0) ) t = seconds + nanoseconds * 1e-9 + offset timestamp = strftime("%Y-%m-%d %H:%M:%S GMT", gmtime(t)) return "{status:%d,severity:%d, timestamp:%s}" % (status, severity, timestamp) elif data_type.startswith("GR_"): status, severity = unpack(">HH", payload[0:4]) info = "status:%d,severity:%d, " % (status, severity) if data_type.endswith("STRING"): pass elif data_type.endswith("SHORT"): unit = payload[8:16].rstrip(b"\0") limits = unpack("6h", payload[16 : 16 + 6 * 2]) info += "unit=%r,limits=%r" % (unit, limits) elif data_type.endswith("FLOAT"): precision, = unpack(">h", payload[4:6]) unit = payload[8:16].rstrip(b"\0") limits = unpack(">6f", payload[16 : 16 + 6 * 4]) info += "precision=%r,unit=%r,limits=%r" % (precision, unit, limits) elif data_type.endswith("ENUM"): nstrings, = unpack(">h", payload[4:6]) strings = payload[6 : 6 + 16 * 26] info += "nstrings=%r" % nstrings elif data_type.endswith("CHAR"): unit = payload[8:16].rstrip(b"\0") limits = unpack("6b", payload[16 : 16 + 6 * 1]) info += "unit=%r,limits=%r" % (unit, limits) elif data_type.endswith("LONG"): unit = payload[8:16].rstrip(b"\0") limits = unpack("6i", payload[16 : 16 + 6 * 4]) info += "unit=%r,limits=%r" % (unit, limits) elif data_type.endswith("DOUBLE"): precision, = unpack(">h", payload[4:6]) unit = payload[8:16].rstrip(b"\0") limits = unpack(">6d", payload[16 : 16 + 6 * 8]) info += "precision=%r,unit=%r,limits=%r" % (precision, unit, limits) else: info += "?" info = info.restrip(", ") return "{" + info + "}" elif data_type.startswith("CTRL_"): status, severity = unpack(">HH", payload[0:4]) info = "status:%d,severity:%d, " % (status, severity) if data_type.endswith("STRING"): pass elif data_type.endswith("SHORT"): unit = payload[8:16].rstrip(b"\0") limits = unpack("8h", payload[16 : 16 + 8 * 2]) info += "unit=%r,limits=%r" % (unit, limits) elif data_type.endswith("FLOAT"): precision, = unpack(">h", payload[4:6]) unit = payload[8:16].rstrip(b"\0") limits = unpack(">8f", payload[16 : 16 + 8 * 4]) info += "precision=%r,unit=%r,limits=%r" % (precision, unit, limits) elif data_type.endswith("ENUM"): nstrings, = unpack(">h", payload[4:6]) strings = payload[6 : 6 + 16 * 26] info += "nstrings=%r" % nstrings elif data_type.endswith("CHAR"): unit = payload[8:16].rstrip(b"\0") limits = unpack("8b", payload[16 : 16 + 8 * 1]) info += "unit=%r,limits=%r" % (unit, limits) elif data_type.endswith("LONG"): unit = payload[8:16].rstrip(b"\0") limits = unpack("8i", payload[16 : 16 + 8 * 4]) info += "unit=%r,limits=%r" % (unit, limits) elif data_type.endswith("DOUBLE"): precision, = unpack(">h", payload[4:6]) unit = payload[8:16].rstrip(b"\0") limits = unpack(">8d", payload[16 : 16 + 8 * 8]) info += "precision=%r,unit=%r,limits=%r" % (precision, unit, limits) else: info += "?" info = info.rstrip(", ") return "{" + info + "}" return ""
6e83be0dff2d7f81a99419baf505e82957518c64
19,007
def dsa_verify(message, public, signature, constants=None): """Checks if the signature (r, s) is correct""" r, s = signature p, q, g = get_dsa_constants(constants) if r <= 0 or r >= q or s <= 0 or s >= q: return False w = inverse_mod(s, q) u1 = (bytes_to_num(sha1_hash(message)) * w) % q u2 = (r * w) % q v = ((pow(g, u1, p) * pow(public, u2, p)) % p) % q return v == r
9d6eeb9b5b2d84edd054cba01bdd47cb9bab120e
19,008
def set_up_cgi(): """ Return a configured instance of the CGI simulator on RST. Sets up the Lyot stop and filter from the configfile, turns off science instrument (SI) internal WFE, and reads the FPM setting from the configfile. :return: CGI instrument instance """ webbpsf.setup_logging('ERROR') #Set actuators numbesr mode_in = CONFIG_PASTIS.get('RST', 'mode') nbactuator = int(CONFIG_PASTIS.get('RST', 'nb_subapertures')) nbactuator_in = int(np.sqrt(nbactuator)) if nbactuator_in**2 != nbactuator: error_msg = f"The number of subapertures from config_pastis.ini is {nbactuator}, which is not the square of the actuators per row (={nbactuator_in})!" log.error(error_msg) raise ValueError(error_msg) cgi = webbpsf.roman.CGI(mode=mode_in, nbactuator=int(nbactuator_in)) cgi.include_si_wfe = False cgi.apodizer = CONFIG_PASTIS.get('RST', 'apodizer') cgi.fpm = CONFIG_PASTIS.get('RST', 'fpm') cgi.lyotstop = CONFIG_PASTIS.get('RST', 'lyotstop') cgi.camera = CONFIG_PASTIS.get('RST', 'camera') cgi.filter = CONFIG_PASTIS.get('RST', 'filter_name') return cgi
68559e88b9cebb5e2edb049f63d80c9545112804
19,009
def plot_line( timstof_data, # alphatims.bruker.TimsTOF object selected_indices: np.ndarray, x_axis_label: str, colorscale_qualitative: str, title: str = "", y_axis_label: str = "intensity", remove_zeros: bool = False, trim: bool = True, height: int = 400 ) -> go.Figure: """Plot an XIC, mobilogram or spectrum as a lineplot. Parameters ---------- timstof_data : alphatims.bruker.TimsTOF object An alphatims.bruker.TimsTOF data object. selected_indices : np.ndarray The raw indices that are selected for this plot. These are typically obtained by slicing the TimsTOF data object with e.g. data[..., "raw"]. x_axis_label : str The label of the x-axis. Options are: - mz - rt - mobility y_axis_label : str Should not be set for a 1D line plot. Default is "intensity". title : str The title of the plot. Default is "". remove_zeros : bool If True, zeros are removed. Note that a line plot connects consecutive points, which can lead to misleading plots if non-zeros are removed. If False, use the full range of the appropriate dimension of the timstof_data. Default is False. trim : bool If True, zeros on the left and right are trimmed. Default is True. height : int Plot height. Default is 400. Returns ------- plotly.graph_objects.Figure object A lne plot showing an XIC, mobilogram or spectrum. """ axis_dict = { "mz": "m/z, Th", "rt": "RT, min", "mobility": "Inversed IM, V·s·cm\u207B\u00B2", "intensity": "Intensity", } x_axis_label = axis_dict[x_axis_label] y_axis_label = axis_dict[y_axis_label] labels = { 'm/z, Th': "mz_values", 'RT, min': "rt_values", 'Inversed IM, V·s·cm\u207B\u00B2': "mobility_values", } x_dimension = labels[x_axis_label] intensities = timstof_data.bin_intensities(selected_indices, [x_dimension]) if x_dimension == "mz_values": x_ticks = timstof_data.mz_values plot_title = "Spectrum" elif x_dimension == "mobility_values": x_ticks = timstof_data.mobility_values plot_title = "Mobilogram" elif x_dimension == "rt_values": x_ticks = timstof_data.rt_values / 60 plot_title = "XIC" non_zeros = np.flatnonzero(intensities) if len(non_zeros) == 0: x_ticks = np.empty(0, dtype=x_ticks.dtype) intensities = np.empty(0, dtype=intensities.dtype) else: if remove_zeros: x_ticks = x_ticks[non_zeros] intensities = intensities[non_zeros] elif trim: start = max(0, non_zeros[0] - 1) end = non_zeros[-1] + 2 x_ticks = x_ticks[start: end] intensities = intensities[start: end] fig = go.Figure() fig.add_trace( go.Scatter( x=x_ticks, y=intensities, mode='lines', text=[f'{x_axis_label}'.format(i + 1) for i in range(len(x_ticks))], hovertemplate='<b>%{text}:</b> %{x};<br><b>Intensity:</b> %{y}.', name=" ", marker=dict(color=getattr(px.colors.qualitative, colorscale_qualitative)[0]) ) ) fig.update_layout( title=dict( text=plot_title, font=dict( size=16, ), x=0.5, xanchor='center', yanchor='top' ), xaxis=dict( title=x_axis_label, titlefont_size=14, tickmode='auto', tickfont_size=14, ), yaxis=dict( title=y_axis_label, ), template="plotly_white", height=height, hovermode="x" ) return fig
5db0468710e49158c4b13fc56446a23949544e57
19,010
def all_gather(data): """ Run all_gather on arbitrary picklable data (not necessarily tensors) Args: data: any picklable object Returns: list[data]: list of data gathered from each rank """ world_size = get_world_size() if world_size == 1: return [data] data_list = [None] * world_size dist.all_gather_object(data_list, data) return data_list
46f34975d89766c842b6c20e312ad3dea4f3d7ff
19,011
import sys def get_title_count(titles, is_folder): """ Gets the final title count """ final_title_count = 0 if len(titles.all) == 0: if is_folder == False: sys.exit() else: return 0 else: for group, disc_titles in titles.all.items(): for title in disc_titles: final_title_count += 1 return final_title_count
bdd239698f98c845cbecb27924725c38257547b6
19,012
from ..utils import check_adata def draw_graph( adata, layout=None, color=None, alpha=None, groups=None, components=None, legend_loc='right margin', legend_fontsize=None, legend_fontweight=None, color_map=None, palette=None, right_margin=None, size=None, title=None, show=None, save=None, ax=None): """Scatter plot in graph-drawing basis. Parameters ---------- adata : AnnData Annotated data matrix. layout : {'fr', 'drl', ...}, optional (default: last computed) One of the `draw_graph` layouts, see sc.tl.draw_graph. By default, the last computed layout is taken. color : string or list of strings, optional (default: None) Keys for sample/cell annotation either as list `["ann1", "ann2"]` or string `"ann1,ann2,..."`. groups : str, optional (default: all groups) Restrict to a few categories in categorical sample annotation. components : str or list of str, optional (default: '1,2') String of the form '1,2' or ['1,2', '2,3']. legend_loc : str, optional (default: 'right margin') Location of legend, either 'on data', 'right margin' or valid keywords for matplotlib.legend. legend_fontsize : int (default: None) Legend font size. color_map : str (default: `matplotlib.rcParams['image.cmap']`) String denoting matplotlib color map. palette : list of str (default: None) Colors to use for plotting groups (categorical annotation). right_margin : float or list of floats (default: None) Adjust the width of the space right of each plotting panel. size : float (default: None) Point size. title : str, optional (default: None) Provide title for panels either as `["title1", "title2", ...]` or `"title1,title2,..."`. show : bool, optional (default: None) Show the plot. save : bool or str, optional (default: None) If True or a str, save the figure. A string is appended to the default filename. ax : matplotlib.Axes A matplotlib axes object. Returns ------- matplotlib.Axes object """ adata = check_adata(adata) if layout is None: layout = adata.add['draw_graph_layout'][-1] if 'X_draw_graph_' + layout not in adata.smp_keys(): raise ValueError('Did not find {} in adata.smp. Did you compute layout {}?' .format('draw_graph_' + layout, layout)) axs = scatter( adata, basis='draw_graph_' + layout, color=color, alpha=alpha, groups=groups, components=components, projection='2d', legend_loc=legend_loc, legend_fontsize=legend_fontsize, legend_fontweight=legend_fontweight, color_map=color_map, palette=palette, right_margin=right_margin, size=size, title=title, show=show, save=save, ax=ax) return axs
006121b0162afcf6b91703dac8c1ea3e6d1351bc
19,013
def post_token(): """ Receives authentication credentials in order to generate an access token to be used to access protected models. Tokens generated by this endpoint are JWT Tokens. """ # First we verify the request is an actual json request. If not, then we # responded with a HTTP 400 Bad Request result code. if not request.is_json: app.logger.warning('Request without JSON payload received on token endpoint') return jsonify({"msg": "Only JSON request is supported"}), 400 # Read credentials from json request params = request.get_json() # Try to ready username and password properties. If one of them is not found, # then we generate an error and stop execution. username = params.get('username', None) password = params.get('password', None) if not username: app.logger.warning('Request without username parameter received on token endpoint') return jsonify({"msg": "A username parameter must be provided"}), 400 if not password: app.logger.warning('Request without password parameter received on token endpoint') return jsonify({"msg": "A password parameter must be provided"}), 400 # If we get here, is because a username and password credentials were # provided, so now we must verify them. user = get_user_by_username(username) if user is not None: if user.authenticate(password): # ACCESS TOKEN access_token_expires = app.config['JWT_ACCESS_TOKEN_VALIDITY_HOURS'] access_token = create_access_token(identity=user.user_id, expires_delta=access_token_expires) # REFRESH TOKEN refresh_token_expires = app.config['JWT_REFRESH_TOKEN_VALIDITY_DAYS'] refresh_token = create_refresh_token(identity=user.user_id, expires_delta=refresh_token_expires) app.logger.info('A new token has been generated for user [' + user.user_id + "]") return jsonify({ 'access_token': access_token, 'expiration': access_token_expires.total_seconds(), 'refresh_token': refresh_token }), 200 else: app.logger.warning('Request with invalid username was received') return jsonify({"msg": "Unable to find user with [" + username + "] username"}), 404
d51de9aa201fdb0d879190c5f08352b43f425be4
19,014
def judgement(seed_a, seed_b): """Return amount of times last 16 binary digits of generators match.""" sample = 0 count = 0 while sample <= 40000000: new_a = seed_a * 16807 % 2147483647 new_b = seed_b * 48271 % 2147483647 bin_a = bin(new_a) bin_b = bin(new_b) last16_a = bin_a[-16:] last16_b = bin_b[-16:] if last16_a == last16_b: count += 1 seed_a = new_a seed_b = new_b sample += 1 return count
9d778909ba6b04e4ca3adbb542fce9ef89d7b2b7
19,015
def GJK(shape1, shape2): """ Implementation of the GJK algorithm PARAMETERS ---------- shape{1, 2}: Shape RETURN ------ : bool Signifies if the given shapes intersect or not. """ # Initialize algorithm parameters direction = Vec(shape1.center, shape2.center).direction A = support(shape1, shape2, direction) simplex = [A] direction = Vec(simplex[0], Point()).direction while True: # while new valid support found. `direction` is updated each iteration. B = support(shape1, shape2, direction) AB = Vec(simplex[0], B) if dot_vec_dir(AB, direction) <= 0: # No support past the origin return False else: simplex.append(B) if handle_simplex(simplex, direction): return True
4e3b24ec9fab1d2625c3d99ae3ffc2325c1dcaf8
19,016
def _set_int_config_parameter(value: OZWValue, new_value: int) -> int: """Set a ValueType.INT config parameter.""" try: new_value = int(new_value) except ValueError as err: raise WrongTypeError( ( f"Configuration parameter type {value.type} does not match " f"the value type {type(new_value)}" ) ) from err if (value.max is not None and new_value > value.max) or ( value.min is not None and new_value < value.min ): raise InvalidValueError( f"Value {new_value} out of range of parameter (Range: {value.min}-{value.max})" ) value.send_value(new_value) # type: ignore return new_value
e9e168aa1959dfab141622a0d0f3751a1e042dfd
19,017
def split_dataset(dataset_file, trainpct): """ Split a file containing the full path to individual annotation files into train and test datasets, with a split defined by trainpct. Inputs: - dataset_file - a .txt or .csv file containing file paths pointing to annotation files. (Expects that these have no header) - trainpct = 0.8 produces an 80:20 train:test split """ if type(dataset_file) is list: full_dataset = pd.DataFrame(dataset_file, columns=["Filename"]) else: full_dataset = pd.read_csv(dataset_file, names=["Filename"]) print( "You've chosen a training percentage of: {} (this variable has type: {})".format( trainpct, type(trainpct) ) ) testsize = 1.0 - trainpct train, test = train_test_split( full_dataset, test_size=testsize, shuffle=True, random_state=42 ) # set the random seed so we get reproducible results! return train, test
0f24d29efdf3645a743bbb6d9e2e27b9087552be
19,018
def accession(data): """ Get the accession for the given data. """ return data["mgi_marker_accession_id"]
132dcbdd0712ae30ce7929e58c4bc8cdf73aacb2
19,019
def get_phase_dir(self): """Get the phase rotating direction of stator flux stored in LUT Parameters ---------- self : LUT a LUT object Returns ---------- phase_dir : int rotating direction of phases +/-1 """ if self.phase_dir not in [-1, 1]: # recalculate phase_dir from Phi_wind self.phase_dir = get_phase_dir_DataTime(self.Phi_wind[0]) return self.phase_dir
e335f78d6219f0db5a390cf47aaa7aa093f7c329
19,020
def atomic_number(request): """ An atomic number. """ return request.param
6f1a868c94d0a1ee4c84a76f04b4cabc3e0356e0
19,021
def plot_metric(title = 'Plot of registration metric vs iterations'): """Plots the mutual information over registration iterations Parameters ---------- title : str Returns ------- fig : matplotlib figure """ global metric_values, multires_iterations fig, ax = plt.subplots() ax.set_title(title) ax.set_xlabel('Iteration Number', fontsize=12) ax.set_ylabel('Mutual Information Cost', fontsize=12) ax.plot(metric_values, 'r') ax.plot(multires_iterations, [metric_values[index] for index in multires_iterations], 'b*', label = 'change in resolution') ax.legend() return fig
488d96876a469522263f6c7118b94b35a25e36de
19,022
from re import T def cross_entropy(model, _input, _target): """ Compute Cross Entropy between target and output diversity. Parameters ---------- model : Model Model for generating output for compare with target sample. _input : theano.tensor.matrix Input sample. _target : theano.tensor.matrix Target sample. Returns ------- theano.tensor.matrix Return Cross Entropy. """ return T.nnet.categorical_crossentropy(model.output(_input), _target).mean()
c65efe3185269d8f7132e23abbd517ca9273d481
19,023
def paste(): """Paste and redirect.""" text = request.form['text'] # TODO: make this better assert 0 <= len(text) <= ONE_MB, len(text) with UploadedFile.from_text(text) as uf: get_backend().store_object(uf) lang = request.form['language'] if lang != 'rendered-markdown': with HtmlToStore.from_html(render_template( 'paste.html', text=text, highlighter=get_highlighter(text, lang), raw_url=app.config['FILE_URL'].format(name=uf.name), )) as paste_obj: get_backend().store_html(paste_obj) else: with HtmlToStore.from_html(render_template( 'markdown.html', text=text, raw_url=app.config['FILE_URL'].format(name=uf.name), )) as paste_obj: get_backend().store_html(paste_obj) url = app.config['HTML_URL'].format(name=paste_obj.name) return redirect(url)
079b9ccda1cd652034ea0f0c2f83e115ecd5f8a4
19,024
def get_groups_links(groups, tenant_id, rel='self', limit=None, marker=None): """ Get the links to groups along with 'next' link """ url = get_autoscale_links(tenant_id, format=None) return get_collection_links(groups, url, rel, limit, marker)
35188c3c6d01026153a6e18365ae0b4b596a8883
19,025
def over(expr: ir.ValueExpr, window: win.Window) -> ir.ValueExpr: """Construct a window expression. Parameters ---------- expr A value expression window Window specification Returns ------- ValueExpr A window function expression See Also -------- ibis.window """ prior_op = expr.op() if isinstance(prior_op, ops.WindowOp): op = prior_op.over(window) else: op = ops.WindowOp(expr, window) result = op.to_expr() try: name = expr.get_name() except com.ExpressionError: pass else: result = result.name(name) return result
e9c8f656403520d5f3287de38c139b8fd8446d13
19,026
def node_value(node: Node) -> int: """ Computes the value of node """ if not node.children: return sum(node.entries) else: value = 0 for entry in node.entries: try: # Entries start at 1 so subtract all entries by 1 value += node_value(node.children[entry - 1]) except IndexError: pass return value
c22ac3f73995e138f7eb329499caba3fc67175a5
19,027
import re def load_mac_vendors() : """ parses wireshark mac address db and returns dict of mac : vendor """ entries = {} f = open('mac_vendors.db', 'r') for lines in f.readlines() : entry = lines.split() # match on first column being first six bytes r = re.compile(r'^([0-9A-F]{2}:[0-9A-F]{2}:[0-9A-F]{2})$') if len(entry) > 0 and r.match(entry[0]) : # lowercase as convention entries[entry[0].lower()] = entry[1] return entries
361e9c79de8b473c8757ae63384926d266b68bbf
19,028
def parse_time(s): """ Parse time spec with optional s/m/h/d/w suffix """ if s[-1].lower() in secs: return int(s[:-1]) * secs[s[-1].lower()] else: return int(s)
213c601143e57b5fe6cd123631c6cd562f2947e9
19,029
def resize_labels(labels, size): """Helper function to resize labels. Args: labels: A long tensor of shape `[batch_size, height, width]`. Returns: A long tensor of shape `[batch_size, new_height, new_width]`. """ n, h, w = labels.shape labels = F.interpolate(labels.view(n, 1, h, w).float(), size=size, mode='nearest') labels = labels.squeeze_(1).long() return labels
87c7127643e9e46878bc526ebed4068d40f25ece
19,030
import re def _extract_urls(html): """ Try to find all embedded links, whether external or internal """ # substitute real html symbols html = _replace_ampersands(html) urls = set() hrefrx = re.compile("""href\s*\=\s*['"](.*?)['"]""") for url in re.findall(hrefrx, html): urls.add(str(url)) srcrx = re.compile("""src\s*\=\s*['"](.*?)['"]""") for url in re.findall(srcrx, html): urls.add(str(url)) html = re.sub('%20', ' ', html, flags=re.DOTALL) # extract URLs that are not surrounded by quotes urlrx = re.compile("""[^'"](http[s]?://[\.a-zA-Z0-9/]+?)\s""") for url in re.findall(urlrx, html): urls.add(str(url)) # extract URLs that are surrounded by quotes # remove whitespace html = re.sub('\s+', '', html) urlrx = re.compile("'(http[s]?://[\.a-zA-Z0-9/]+?)'", flags=re.DOTALL) urlrx = re.compile('"(http[s]?://[\.a-zA-Z0-9/]+?)"', flags=re.DOTALL) for url in re.findall(urlrx, html): urls.add(url) # remove empty string if exists try: urls.remove('') except KeyError: pass return sorted(urls)
5303cf7b750926aa5919bbfa839bd227319aa9f7
19,031
def reorganize_data(texts): """ Reorganize data to contain tuples of a all signs combined and all trans combined :param texts: sentences in format of tuples of (sign, tran) :return: data reorganized """ data = [] for sentence in texts: signs = [] trans = [] for sign, tran in sentence: signs.append(sign) trans.append(tran) data.append((signs, trans)) return data
27b4efd99bbf470a9f8f46ab3e34c93c606d0234
19,032
def client_new(): """Create new client.""" form = ClientForm(request.form) if form.validate_on_submit(): c = Client(user_id=current_user.get_id()) c.gen_salt() form.populate_obj(c) db.session.add(c) db.session.commit() return redirect(url_for('.client_view', client_id=c.client_id)) return render_template( 'invenio_oauth2server/settings/client_new.html', form=form, )
b355f43cd80e0f7fef3027f5f1d1832c4e4ece5a
19,033
def query_schema_existence(conn, schema_name): """Function to verify whether the current database schema ownership is correct.""" with conn.cursor() as cur: cur.execute('SELECT EXISTS(SELECT 1 FROM information_schema.schemata WHERE SCHEMA_NAME = %s)', [schema_name]) return cur.fetchone().exists
9c556283d255f580fc69a9e41a4d452d15e1eb17
19,034
def get_number_of_params(model, trainable_only=False): """ Get the number of parameters in a PyTorch Model :param model(torch.nn.Model): :param trainable_only(bool): If True, only count the trainable parameters :return(int): The number of parameters in the model """ return int(np.sum([np.prod(param.size()) for param in model.parameters() if param.requires_grad or (not trainable_only)]))
4e02e977e9fc2949a62ce433c9ff6d732d74a746
19,035
import time import requests def chart1(request): """ This view tests the server speed for transferring JSON and XML objects. :param request: The AJAX request :return: JsonResponse of the dataset. """ full_url = HttpRequest.build_absolute_uri(request) relative = HttpRequest.get_full_path(request) base_url = full_url[:-len(relative)] request_amount = ['10', '100', '200', '500', '1000'] json_urls = list() xml_urls = list() for x in request_amount: json_urls.append(reverse('objects:leads_json', args=[x])) xml_urls.append(reverse('objects:leads_xml', args=[x])) json_data = list() xml_data = list() for x in json_urls: start = time.perf_counter() requests.get(base_url + x) end = time.perf_counter() json_data.append((end - start)) for x in xml_urls: start = time.perf_counter() requests.get(base_url + x) end = time.perf_counter() xml_data.append((end - start)) final_data = { 'labels': request_amount, 'datasets': [ { 'label': 'JSON', 'backgroundColor': 'rgba(255, 99, 132, 0.2)', 'borderColor': 'rgba(255,99,132,1)', 'data': json_data, 'borderWidth': 2, 'yAxisID': 'first-y-axis' }, { 'label': 'XML', 'backgroundColor': 'rgba(54, 162, 235, 0.2)', 'borderColor': 'rgba(54, 162, 235, 1)', 'data': xml_data, 'borderWidth': 2, 'yAxisID': 'first-y-axis' } ] } return JsonResponse(final_data)
6eb88d3ef1aed85799832d5751ec4e30c54aaa07
19,036
def conv3x3(in_planes, out_planes, stride=1, dilation=1): """3x3 convolution with padding""" return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=dilation, bias=False)
115dd9e8afdaa850293fa08c103ab2966eceedbf
19,037
import mimetypes def img_mime_type(img): """Returns image MIME type or ``None``. Parameters ---------- img: `PIL.Image` PIL Image object. Returns ------- mime_type : `str` MIME string like "image/jpg" or ``None``. """ if img.format: ext = "." + img.format return mimetypes.types_map.get(ext.lower()) return None
fe46af6e5c03a1ae80cb809c81ab358ac5c085fa
19,038
import logging def set_log_level(verbose, match=None, return_old=False): """Convenience function for setting the logging level Parameters ---------- verbose : bool, str, int, or None The verbosity of messages to print. If a str, it can be either DEBUG, INFO, WARNING, ERROR, or CRITICAL. Note that these are for convenience and are equivalent to passing in logging.DEBUG, etc. For bool, True is the same as 'INFO', False is the same as 'WARNING'. match : str | None String to match. Only those messages that both contain a substring that regexp matches ``'match'`` (and the ``verbose`` level) will be displayed. return_old : bool If True, return the old verbosity level and old match. Notes ----- If ``verbose=='debug'``, then the ``vispy`` method emitting the log message will be prepended to each log message, which is useful for debugging. If ``verbose=='debug'`` or ``match is not None``, then a small performance overhead is added. Thus it is suggested to only use these options when performance is not crucial. See also -------- vispy.util.use_log_level """ # This method is responsible for setting properties of the handler and # formatter such that proper messages (possibly with the vispy caller # prepended) are displayed. Storing log messages is only available # via the context handler (use_log_level), so that configuration is # done by the context handler itself. if isinstance(verbose, bool): verbose = 'info' if verbose else 'warning' if isinstance(verbose, str): verbose = verbose.lower() if verbose not in logging_types: raise ValueError('Invalid argument "%s"' % verbose) verbose = logging_types[verbose] else: raise TypeError('verbose must be a bool or string') logger = logging.getLogger('vispy') old_verbose = logger.level old_match = _lh._vispy_set_match(match) logger.setLevel(verbose) if verbose <= logging.DEBUG: _lf._vispy_set_prepend(True) else: _lf._vispy_set_prepend(False) out = None if return_old: out = (old_verbose, old_match) return out
62fbf9ad0639625073e6aff23f93389b1b0be24e
19,039
def check_satisfy_dataset(w, D, involved_predicates=[]): """ This function is to check whether all facts in ``D'' have been installed in each of ruler intervals of the given Window ``w'' if facts in ruler intervals holds in ``D''. Args: w (a Window instance): D (dictionary of dictionary object): contain all facts involved_predicates (a list of str): contain all predicates that are needed to be checked. Returns: boolean """ for ruler_interval in w.ruler_intervals: for predicate in involved_predicates: if type(D[predicate]) == list: interval_list = D[predicate] if interval_intesection_intervallist(ruler_interval, interval_list) and Atom(predicate) not \ in w.get_ruler_intervals_literals()[ruler_interval]: return False else: for entity, interval_list in D[predicate].items(): if interval_intesection_intervallist(ruler_interval, interval_list) and Atom(predicate) not \ in w.get_ruler_intervals_literals()[ruler_interval]: return False return True
b2715ca1eba03bbcf0581fdfeb97177cde8d12d7
19,040
def interp_at(d, g, varargs=None, dim=None, dask="parallelized"): """ Interpolates a variable to another. Example : varargs = [THETA, mld] : THETA(t, z, y, x) is interpolated with Z=mld(t, y, x) """ var, coordvar = varargs dim = ( dim if dim is not None else set(d[var].dims).difference(d[coordvar].dims).pop() ) X = d[dim].values data = xr.apply_ufunc( _interp1DAt, d[var], d[coordvar], input_core_dims=[[dim], []], dask=dask, output_dtypes=[float], kwargs={"X": X}, keep_attrs=True, ) data.attrs.update( long_name=d[var].attrs.get("long_name", var) + " interpolated to {} along {}".format(coordvar, dim), name="{}_{}_{}".format(var, dim, coordvar), ) return data
a31cccee447deb2fd2612460471598d74e347c53
19,041
def get_history(): """Get command usage history from History.sublime-project""" f = open('%s/%s/%s' % (sublime.packages_path(), "TextTransmute", "History.sublime-project"), 'r') content = f.readlines() f.close() return [x.strip() for x in content]
fab11f52c2b90d1fb29ace944c8f80f67fc9170e
19,042
from typing import Dict from typing import Callable from typing import Any import asyncio def inprogress(metric: Gauge, labels: Dict[str, str] = None) -> Callable[..., Any]: """ This decorator provides a convenient way to track in-progress requests (or other things) in a callable. This decorator function wraps a function with code to track how many of the measured items are in progress. The metric is incremented before calling the wrapped function and decremented when the wrapped function is complete. :param metric: a metric to increment and decrement. The metric object being updated is expected to be a Gauge metric object. :param labels: a dict of extra labels to associate with the metric. :return: a coroutine function that wraps the decortated function """ if not isinstance(metric, Gauge): raise Exception( "inprogess decorator expects a Gauge metric but got: {}".format(metric) ) def track(func): """ This function wraps a decorated callable with metric incremeting and decrementing logic. :param func: the callable to be tracked. :returns: the return value from the decorated callable. """ @wraps(func) async def func_wrapper(*args, **kwds): metric.inc(labels) rv = func(*args, **kwds) if isinstance(rv, asyncio.Future) or asyncio.iscoroutine(rv): rv = await rv metric.dec(labels) return rv return func_wrapper return track
c10adbb07796c26fd59d1038a786b25b6346fd97
19,043
from typing import Optional import base64 def b58_wrapper_to_b64_public_address(b58_string: str) -> Optional[str]: """Convert a b58-encoded PrintableWrapper address into a b64-encoded PublicAddress protobuf""" wrapper = b58_wrapper_to_protobuf(b58_string) if wrapper: public_address = wrapper.public_address public_address_bytes = public_address.SerializeToString() return base64.b64encode(public_address_bytes).decode("utf-8") return None
a4c46800c0d22ef96d3fa622b6a37bf55e1960da
19,044
def render_to_AJAX(status, messages): """return an HTTP response for an AJAX request""" xmlc = Context({'status': status, 'messages': messages}) xmlt = loader.get_template("AJAXresponse.xml") response = xmlt.render(xmlc) return HttpResponse(response)
cb5ad3ead4d5bee9a710767d1f49c81b2b137441
19,045
def parse_params(environ, *include): """Parse out the filter, sort, etc., parameters from a request""" if environ.get('QUERY_STRING'): params = parse_qs(environ['QUERY_STRING']) else: params = {} param_handlers = ( ('embedded', params_serializer.unserialize_string, None), ('filter', params_serializer.unserialize_string, None), ('sort', params_serializer.unserialize_string, None), ('offset', int, 0), ('limit', int, 0), ('show_hidden', bool_field, False) ) results = {} if len(include) > 0: include = set(include) else: include = None for name, fn, default in param_handlers: if include and name not in include: continue results[name] = parse_param(params, name, fn, default=default) if not include or 'context' in include: results['context'] = get_context(environ) return results
ff8d263e4495804e1bb30d0c4da352b2437fc8f8
19,046
def create_dict_facade_for_object_vars_and_mapping_with_filters(cls, # type: Type[Mapping] include, # type: Union[str, Tuple[str]] exclude, # type: Union[str, Tuple[str]] private_name_prefix=None # type: str ): # type: (...) -> DictMethods """ :param cls: :param include: :param exclude: :param private_name_prefix: if provided, only the fields not starting with this prefix will be exposed. Otherwise all will be exposed :return: """ public_fields_only = private_name_prefix is not None def __iter__(self): """ Generated by @autodict. Implements the __iter__ method from collections.Iterable by relying on a filtered vars(self) :param self: :return: """ myattrs = tuple(att_name for att_name in iterate_on_vars(self)) for att_name in chain(myattrs, (o for o in super(cls, self).__iter__() if o not in myattrs)): # filter based on the name (include/exclude + private/public) if is_attr_selected(att_name, include=include, exclude=exclude) and \ (not public_fields_only or not att_name.startswith(private_name_prefix)): # use that name yield att_name def __getitem__(self, key): """ Generated by @autodict. Implements the __getitem__ method from collections.Mapping by relying on a filtered getattr(self, key) """ if hasattr(self, key): key = possibly_replace_with_property_name(self.__class__, key) if is_attr_selected(key, include=include, exclude=exclude) and \ (not public_fields_only or not key.startswith(private_name_prefix)): return getattr(self, key) else: try: # noinspection PyUnresolvedReferences return super(cls, self).__getitem__(key) except Exception as e: raise KeyError('@autodict generated dict view - {key} is a ' 'hidden field and super[{key}] raises an exception: {etyp} {err}' ''.format(key=key, etyp=type(e).__name__, err=e)) else: try: # noinspection PyUnresolvedReferences return super(cls, self).__getitem__(key) except Exception as e: raise KeyError('@autodict generated dict view - {key} is an ' 'invalid field name (was the constructor called?). Delegating to ' 'super[{key}] raises an exception: {etyp} {err}' ''.format(key=key, etyp=type(e).__name__, err=e)) return DictMethods(iter=__iter__, getitem=__getitem__)
cccdc19b43ca269cfedb4f7d6ad1d7b8abba78e1
19,047
import time def now(): """ 此时的时间戳 :return: """ return int(time.time())
39c05a695bfe4239ebb3fab6f3a5d0967bea6820
19,048
def get_yourContactINFO(rows2): """ Function that returns your personal contact info details """ yourcontactINFO = rows2[0] return yourcontactINFO
beea815755a2e6817fb57a37ccc5aa479455bb81
19,049
def hafnian( A, loop=False, recursive=True, rtol=1e-05, atol=1e-08, quad=True, approx=False, num_samples=1000 ): # pylint: disable=too-many-arguments """Returns the hafnian of a matrix. For more direct control, you may wish to call :func:`haf_real`, :func:`haf_complex`, or :func:`haf_int` directly. Args: A (array): a square, symmetric array of even dimensions. loop (bool): If ``True``, the loop hafnian is returned. Default is ``False``. recursive (bool): If ``True``, the recursive algorithm is used. Note: the recursive algorithm does not currently support the loop hafnian. If ``loop=True``, then this keyword argument is ignored. rtol (float): the relative tolerance parameter used in ``np.allclose``. atol (float): the absolute tolerance parameter used in ``np.allclose``. quad (bool): If ``True``, the hafnian algorithm is performed with quadruple precision. approx (bool): If ``True``, an approximation algorithm is used to estimate the hafnian. Note that the approximation algorithm can only be applied to matrices ``A`` that only have non-negative entries. num_samples (int): If ``approx=True``, the approximation algorithm performs ``num_samples`` iterations for estimation of the hafnian of the non-negative matrix ``A``. Returns: np.int64 or np.float64 or np.complex128: the hafnian of matrix A. """ # pylint: disable=too-many-return-statements,too-many-branches input_validation(A, rtol=rtol, atol=atol) matshape = A.shape if matshape == (0, 0): return 1 if matshape[0] % 2 != 0 and not loop: return 0.0 if np.allclose(np.diag(np.diag(A)), A, rtol=rtol, atol=atol): if loop: return np.prod(np.diag(A)) return 0 if matshape[0] % 2 != 0 and loop: A = np.pad(A, pad_width=((0, 1), (0, 1)), mode="constant") A[-1, -1] = 1.0 matshape = A.shape if matshape[0] == 2: if loop: return A[0, 1] + A[0, 0] * A[1, 1] return A[0][1] if matshape[0] == 4: if loop: result = ( A[0, 1] * A[2, 3] + A[0, 2] * A[1, 3] + A[0, 3] * A[1, 2] + A[0, 0] * A[1, 1] * A[2, 3] + A[0, 1] * A[2, 2] * A[3, 3] + A[0, 2] * A[1, 1] * A[3, 3] + A[0, 0] * A[2, 2] * A[1, 3] + A[0, 0] * A[3, 3] * A[1, 2] + A[0, 3] * A[1, 1] * A[2, 2] + A[0, 0] * A[1, 1] * A[2, 2] * A[3, 3] ) return result return A[0, 1] * A[2, 3] + A[0, 2] * A[1, 3] + A[0, 3] * A[1, 2] if approx: if np.any(np.iscomplex(A)): raise ValueError("Input matrix must be real") if np.any(A < 0): raise ValueError("Input matrix must not have negative entries") if A.dtype == np.complex: # array data is complex type if np.any(np.iscomplex(A)): # array values contain non-zero imaginary parts return haf_complex(A, loop=loop, recursive=recursive, quad=quad) # all array values have zero imaginary parts return haf_real(np.float64(A.real), loop=loop, recursive=recursive, quad=quad) if np.issubdtype(A.dtype, np.integer) and not loop: # array data is an integer type, and the user is not # requesting the loop hafnian return haf_int(np.int64(A)) if np.issubdtype(A.dtype, np.integer) and loop: # array data is an integer type, and the user is # requesting the loop hafnian. Currently no # integer function for loop hafnians, have to instead # convert to float and use haf_real A = np.float64(A) return haf_real( A, loop=loop, recursive=recursive, quad=quad, approx=approx, nsamples=num_samples )
0e90f1d372bf7be636ae8eb333d2c59a387b58f1
19,050
def filter_out_nones(data): """ Filter out any falsey values from data. """ return (l for l in data if l)
39eb0fb7aafe799246d231c5a7ad8a150ed4341e
19,051
import IPython import IPython.display def start(args_string): """Launch and display a TensorBoard instance as if at the command line. Args: args_string: Command-line arguments to TensorBoard, to be interpreted by `shlex.split`: e.g., "--logdir ./logs --port 0". Shell metacharacters are not supported: e.g., "--logdir 2>&1" will point the logdir at the literal directory named "2>&1". """ context = _get_context() try: except ImportError: IPython = None if context == _CONTEXT_NONE: handle = None print("Launching TensorBoard...") else: handle = IPython.display.display( IPython.display.Pretty("Launching TensorBoard..."), display_id=True, ) def print_or_update(message): if handle is None: print(message) else: handle.update(IPython.display.Pretty(message)) parsed_args = shlex.split(args_string, comments=True, posix=True) start_result = manager.start(parsed_args) if isinstance(start_result, manager.StartLaunched): _display( port=start_result.info.port, print_message=False, display_handle=handle, ) elif isinstance(start_result, manager.StartReused): template = ( "Reusing TensorBoard on port {port} (pid {pid}), started {delta} ago. " "(Use '!kill {pid}' to kill it.)" ) message = template.format( port=start_result.info.port, pid=start_result.info.pid, delta=_time_delta_from_info(start_result.info), ) print_or_update(message) _display( port=start_result.info.port, print_message=False, display_handle=None, ) elif isinstance(start_result, manager.StartFailed): def format_stream(name, value): if value == "": return "" elif value is None: return "\n<could not read %s>" % name else: return "\nContents of %s:\n%s" % (name, value.strip()) message = ( "ERROR: Failed to launch TensorBoard (exited with %d).%s%s" % ( start_result.exit_code, format_stream("stderr", start_result.stderr), format_stream("stdout", start_result.stdout), ) ) print_or_update(message) elif isinstance(start_result, manager.StartExecFailed): the_tensorboard_binary = ( "%r (set by the `TENSORBOARD_BINARY` environment variable)" % (start_result.explicit_binary,) if start_result.explicit_binary is not None else "`tensorboard`" ) if start_result.os_error.errno == errno.ENOENT: message = ( "ERROR: Could not find %s. Please ensure that your PATH contains " "an executable `tensorboard` program, or explicitly specify the path " "to a TensorBoard binary by setting the `TENSORBOARD_BINARY` " "environment variable." % (the_tensorboard_binary,) ) else: message = "ERROR: Failed to start %s: %s" % ( the_tensorboard_binary, start_result.os_error, ) print_or_update(textwrap.fill(message)) elif isinstance(start_result, manager.StartTimedOut): message = ( "ERROR: Timed out waiting for TensorBoard to start. " "It may still be running as pid %d." % start_result.pid ) print_or_update(message) else: raise TypeError( "Unexpected result from `manager.start`: %r.\n" "This is a TensorBoard bug; please report it." % start_result )
dae8ed95b7989af185b5681dfef79fcbd5d354ab
19,052
def BytesToGb(size): """Converts a disk size in bytes to GB.""" if not size: return None if size % constants.BYTES_IN_ONE_GB != 0: raise calliope_exceptions.ToolException( 'Disk size must be a multiple of 1 GB. Did you mean [{0}GB]?' .format(size // constants.BYTES_IN_ONE_GB + 1)) return size // constants.BYTES_IN_ONE_GB
49bc846ce6887fd47ac7be70631bddd8353c72ed
19,053
def build_report(drivers: dict, desc=False) -> [[str, str, str], ...]: """ Creates a race report: [[Driver.name, Driver.team, Driver.time], ...] Default order of drivers from best time to worst. """ sorted_drivers = sort_drivers_dict(drivers, desc) return [driver.get_stats for driver in sorted_drivers.values()]
c8c84319c0a14867b21d09c8b66ea434d13786aa
19,054
def add_sites_sheet(ws, cols, lnth): """ """ for col in cols: cell = "{}1".format(col) ws[cell] = "='Capacity_km2_MNO'!{}".format(cell) for col in cols[:2]: for i in range(2, lnth): cell = "{}{}".format(col, i) ws[cell] = "='Capacity_km2_MNO'!{}".format(cell) for col in cols[2:]: for i in range(2, lnth): cell = "{}{}".format(col, i) part1 = "=MIN(IF('Lookups'!$H$3:$H$250>'Data_km2'!{}".format(cell) part2 = ",'Lookups'!$E$3:$E$250))*Area!{}".format(cell) ws[cell] = part1 + part2 ws.formula_attributes[cell] = {'t': 'array', 'ref': "{}:{}".format(cell, cell)} columns = ['C','D','E','F','G','H','I','J','K','L'] ws = format_numbers(ws, columns, (1, 200), 'Comma [0]', 0) set_border(ws, 'A1:L{}'.format(lnth-1), "thin", "000000") return ws
c1db2b585021e8eef445963f8c300d726600e12a
19,055
import itertools def testBinaryFile(filePath): """ Test if a file is in binary format :param fileWithPath(str): File Path :return: """ file = open(filePath, "rb") #Read only a couple of lines in the file binaryText = None for line in itertools.islice(file, 20): if b"\x00" in line: #Return to the beginning of the binary file file.seek(0) #Read the file in one step binaryText = file.read() break file.close() #Return the result return binaryText
809a962881335ce0a3a05e341a13b413c381fedf
19,056
import psutil import sys import os import subprocess def launch_experiment( script, run_slot, affinity_code, log_dir, variant, run_ID, args, python_executable=None, set_egl_device=False, ): """Launches one learning run using ``subprocess.Popen()`` to call the python script. Calls the script as: ``python {script} {slot_affinity_code} {log_dir} {run_ID} {*args}`` If ``affinity_code["all_cpus"]`` is provided, then the call is prepended with ``tasket -c ..`` and the listed cpus (this is the most sure way to keep the run limited to these CPU cores). Also saves the `variant` file. Returns the process handle, which can be monitored. Use ``set_egl_device=True`` to set an environment variable ``EGL_DEVICE_ID`` equal to the same value as the cuda index for the algorithm. For example, can use with DMControl environment modified to look for this environment variable when selecting a GPU for headless rendering. """ slot_affinity_code = prepend_run_slot(run_slot, affinity_code) affinity = affinity_from_code(slot_affinity_code) pp = psutil.Process() availabele_cpus = pp.cpu_affinity() all_cpus = tuple([availabele_cpus[this_cpu%len(availabele_cpus)] for this_cpu in affinity['all_cpus']]) affinity['all_cpus'] = affinity['master_cpus'] = all_cpus workers_cpus = tuple([tuple([availabele_cpus[this_cpu%len(availabele_cpus)] for this_cpu in this_worker_cpus]) for this_worker_cpus in affinity['workers_cpus']]) affinity['workers_cpus'] = workers_cpus call_list = list() if isinstance(affinity, dict) and affinity.get("all_cpus", False): cpus = ",".join(str(c) for c in affinity["all_cpus"]) elif isinstance(affinity, list) and affinity[0].get("all_cpus", False): cpus = ",".join(str(c) for aff in affinity for c in aff["all_cpus"]) else: cpus = () if cpus: call_list += ["taskset", "-c", cpus] # PyTorch obeys better than just psutil. py = python_executable if python_executable else sys.executable or "python" call_list += [py, script, "-a",slot_affinity_code,"-d", log_dir,"-i", str(run_ID)] call_list += [str(a) for a in args] save_variant(variant, log_dir) print("\ncall string:\n", " ".join(call_list)) if set_egl_device and affinity.get("cuda_idx", None) is not None: egl_device_id = str(affinity["cuda_idx"]) egl_env = os.environ.copy() egl_env["EGL_DEVICE_ID"] = egl_device_id print(f"Assigning EGL_DEVICE_ID={egl_device_id}") p = subprocess.Popen(call_list, env=egl_env) else: p = subprocess.Popen(call_list) return p
29acb675619943d88424231fbfb9d574e5fc03b2
19,057
def dup_max_norm(f, K): """ Returns maximum norm of a polynomial in ``K[x]``. Examples ======== >>> from sympy.polys import ring, ZZ >>> R, x = ring("x", ZZ) >>> R.dup_max_norm(-x**2 + 2*x - 3) 3 """ if not f: return K.zero else: return max(dup_abs(f, K))
1ba4744781a3f5cb8e71b59bc6588579f88a6d43
19,058
def greedy_algorithm(pieces, material_size): """Implementation of the First-Fit Greedy Algorithm Inputs: pieces - list[] of items to place optimally material_size - length of Boards to cut from, assumes unlimited supply Output: Optimally laid out BoardCollection.contents, which is a list[] of Boards""" bc = BoardCollection() bc.append(Board(material_size)) pieces.sort(reverse=True) # sort in ascending order # we must copy pieces, else our actual list will get modified for piece in pieces.copy(): piece_added = False # for recording state: did we add this piece to BoardCollection yet? # if piece fits, add it on that Board, remove it from the list, mark it as such and break out of for loop for board in bc.contents: if board.space_remaining >= piece: board.insert(piece) pieces.remove(piece) piece_added = True break # if it hasn't been added yet, make a new Board and put it there if piece_added is False: bc.append(Board(material_size)) bc.last.insert(piece) pieces.remove(piece) return bc.contents
f42b2372b50385c693765d65614d73a8b21f496b
19,059
def start_tv_session(hypes): """ Run one evaluation against the full epoch of data. Parameters ---------- hypes : dict Hyperparameters Returns ------- tuple (sess, saver, summary_op, summary_writer, threads) """ # Build the summary operation based on the TF collection of Summaries. summary_op = tf.merge_all_summaries() # Create a saver for writing training checkpoints. if 'keep_checkpoint_every_n_hours' in hypes['solver']: kc = hypes['solver']['keep_checkpoint_every_n_hours'] else: kc = 10000.0 saver = tf.train.Saver(max_to_keep=utils.cfg.max_to_keep, keep_checkpoint_every_n_hours=kc) # Create a session for running Ops on the Graph. sess = tf.Session() # Run the Op to initialize the variables. init = tf.initialize_all_variables() sess.run(init) # Start the queue runners. coord = tf.train.Coordinator() threads = tf.train.start_queue_runners(sess=sess, coord=coord) # Instantiate a SummaryWriter to output summaries and the Graph. summary_writer = tf.train.SummaryWriter(hypes['dirs']['output_dir'], graph=sess.graph) return sess, saver, summary_op, summary_writer, coord, threads
f54cfa17871badf2cbe92200144a758d0fc2dc41
19,060
def factor_size(value, factor): """ Factors the given thumbnail size. Understands both absolute dimensions and percentages. """ if type(value) is int: size = value * factor return str(size) if size else '' if value[-1] == '%': value = int(value[:-1]) return '{0}%'.format(value * factor) size = int(value) * factor return str(size) if size else ''
41b061fb368d56ba18b52cd7a6a3322292671d83
19,061
def categoryProfile(request, pk): """ Displays the profile of a :class:`gestion.models.Category`. pk The primary key of the :class:`gestion.models.Category` to display profile. """ category = get_object_or_404(Category, pk=pk) return render(request, "gestion/category_profile.html", {"category": category})
87318332c7e317a49843f5becda8196951743ce5
19,062
def eoms(_x, t, _params): """Rigidy body equations of motion. _x is an array/list in the following order: q1: Yaw q2: Lean |-(Euler 3-1-2 angles used to orient A q3: Pitch / q4: N[1] displacement of mass center. q5: N[2] displacement of mass center. q6: N[3] displacement of mass center. u1: A[1] measure number of angular velocity u2: A[2] measure number of angular velocity u3: A[3] measure number of angular velocity u4: N[1] velocity of mass center. u5: N[2] velocity of mass center. u6: N[3] velocity of mass center. _params is an array/list in the following order: m: Mass of first pendulum point mass. g: Gravitational constant. I11: Principal moment of inertia about A[1] I22: Principal moment of inertia about A[2] I33: Principal moment of inertia about A[3] """ # Unpack function arguments q1, q2, q3, q4, q5, q6, u1, u2, u3, u4, u5, u6 = _x # Unpack function parameters m, g, I11, I22, I33 = _params # Trigonometric functions c2 = cos(q2) c3 = cos(q3) s3 = sin(q3) t2 = tan(q2) # Calculate return values q1d = c3*u3/c2 - s3*u1/c2 q2d = c3*u1 + s3*u3 q3d = s3*t2*u1 - c3*t2*u3 + u2 q4d = u4 q5d = u5 q6d = u6 u1d = (I22 - I33)*u2*u3/I11 u2d = (I33 - I11)*u1*u3/I22 u3d = -(I22 - I11)*u1*u2/I33 u4d = 0 u5d = 0 u6d = g # Return calculated values return [q1d, q2d, q3d, q4d, q5d, q6d, u1d, u2d, u3d, u4d, u5d, u6d]
3868411e2c082617311f59f3b39deec9d3a370fa
19,063
def memoize_with_hashable_args(func): """Decorator for fast caching of functions which have hashable args. Note that it will convert np.NaN to None for caching to avoid this common case causing a cache miss. """ _cached_results_ = {} hash_override = getattr(func, "__hash_override__", None) if hash_override is None: hash_override = get_hash(func) @wraps(func) def memoized(*args): try: lookup_args = tuple(x if pd.notnull(x) else None for x in args) res = _cached_results_[lookup_args] except KeyError: res = func(*args) _cached_results_[lookup_args] = res return res memoized._cached_results_ = _cached_results_ # pylint: disable=protected-access memoized.__hash_override__ = hash_override return memoized
b5e55b35042688d9131e05e36a56bf0f6515f336
19,064
def orthogonalize(vec1, vec2): """Given two vectors vec1 and vec2, project out the component of vec1 that is along the vec2-direction. @param[in] vec1 The projectee (i.e. output is some modified version of vec1) @param[in] vec2 The projector (component subtracted out from vec1 is parallel to this) @return answer A copy of vec1 but with the vec2-component projected out. """ v2u = vec2/np.linalg.norm(vec2) return vec1 - v2u*np.dot(vec1, v2u)
aceca85edfc6ed4a6c3b21cb169f993b0b30c889
19,065
import re def tokenize(text): """ Function to process text data taking following steps: 1) normalization and punctuation removal: convert to lower case and remove punctuations 2) tokenization: splitting each sentence into sequence of words 3) stop words removal: removal of words which do not add a meaning to the sentence 4) lemmatization: reducting words to their root form Args: text (str): string with message Returns: clean_tokens: cleaned tokens of the message with word list """ # normalize case and remove punctuation text = re.sub(r"[^a-zA-Z0-9]", " ", text.lower()) # tokenize text and innitiate lemmatizer tokens = word_tokenize(text) lemmatizer = WordNetLemmatizer() # remove stopwords tokens = [w for w in tokens if w not in stopwords.words('english')] # iterate through each token clean_tokens = [] for tok in tokens: # lemmatize and remove leading/ trailing white space clean_tok = lemmatizer.lemmatize(tok).strip() clean_tokens.append(clean_tok) return clean_tokens
769949bc2d4a23d4064b8addcaa7dbfc29346549
19,066
def extract_text(bucketname, filepath): """Return OCR data associated with filepaths""" textract = boto3.client('textract') response = textract.detect_document_text( Document={ 'S3Object': { 'Bucket': bucketname, 'Name': filepath } }) return response
fde7c1bc99003bf8f094538d402a66b6d0c8bcb4
19,067
def box1_input(input): """uses above to return input to player 1""" return get_input(1, input)
c619be2f73fc124eb3198c27542af014eeffd3f8
19,068
def _get_xy_from_geometry(df): """ Return a numpy array with two columns, where the first holds the `x` geometry coordinate and the second column holds the `y` geometry coordinate """ # NEW: use the centroid.x and centroid.y to support Polygon() and Point() geometries x = df.geometry.centroid.x y = df.geometry.centroid.y return np.column_stack((x, y))
6a1345607d3c75190dd9fd22ea45aad82901282a
19,069
def create_styled_figure( title, name=None, tooltips=None, plot_width=PLOT_WIDTH, ): """Return a styled, empty figure of predetermined height and width. Args: title (str): Title of the figure. name (str): Name of the plot for later retrieval by bokeh. If not given the title is set as name tooltips (list, optional): List of bokeh tooltips to add to the figure. Returns: fig (bokeh Figure) """ assert plot_width is not None name = name if name is not None else title fig = figure( plot_height=PLOT_HEIGHT, plot_width=plot_width, title=title.title(), tooltips=tooltips, name=name, y_axis_type="linear", sizing_mode="scale_width", ) fig.title.text_font_size = "15pt" # set minimum borders fig.min_border_left = MIN_BORDER_LEFT fig.min_border_right = MIN_BORDER_RIGHT fig.min_border_top = MIN_BORDER_TOP fig.min_border_bottom = MIN_BORDER_BOTTOM # remove toolbar fig.toolbar_location = TOOLBAR_LOCATION # remove grid fig.grid.visible = GRID_VISIBLE # remove minor ticks fig.axis.minor_tick_line_color = MINOR_TICK_LINE_COLOR # remove tick lines fig.axis.major_tick_out = MAJOR_TICK_OUT fig.axis.major_tick_in = MAJOR_TICK_IN # remove outline fig.outline_line_width = OUTLINE_LINE_WIDTH return fig
caeb7eb887d84c5e1ebaf83b01a71ce15917a27f
19,070
def render_text(string, padding=5, width=None, height=None, size=12, font="Arial", fgcolor=(0, 0, 0), bgcolor=None): """ Render text to an image and return it Not specifying bgcolor will give a transparent image, but that will take a *lot* more work to build. Specifying a bgcolor, width, and height will heavily optimize things. """ actor = text.text_actor(string, fgcolor, size, font) if bgcolor is None: mask = True # Set it to the opposite of fgcolor so we can mask using it bgcolor = (1 - fgcolor[0], 1 - fgcolor[1], 1 - fgcolor[1]) else: mask = False lines = string.split("\n") if width is None: # EM is defined as the square of the line height, and is the guide for making fonts # We can use that as an upper bound (assuming font size is ~ line # height) width = size * max([len(s) for s in lines]) if height is None: height = size * len(lines) image = actor_to_image(actor, bgcolor, width, height) if mask: image = mask_color(image, bgcolor) image = crop_blank_space(image) width, height, _ = image.GetDimensions() return pad_image( image, pad_width=width + padding * 2, pad_height=height + padding * 2) else: return image
9402aa9cbcbb920b73723d74b944f5940db9e0e0
19,071
def pretty_spectrogram(d,log = True, thresh= 5, fft_size = 512, step_size = 64): """ creates a spectrogram log: take the log of the spectrgram thresh: threshold minimum power for log spectrogram """ specgram = np.abs(stft(d, fftsize=fft_size, step=step_size, real=False, compute_onesided=True)) if log == True: specgram /= specgram.max() # volume normalize to max 1 specgram = np.log10(specgram) # take log specgram[specgram < -thresh] = -thresh # set anything less than the threshold as the threshold else: specgram[specgram < thresh] = thresh # set anything less than the threshold as the threshold return specgram
eaae2893944df28dcefb607bac3e8648db265acf
19,072
def check_for_win(position, board, player): """ check for wins on 3x3 board on rows,cols,diag,anti-diag args: position (int 1-9, user input) board (np.array 2d) player ("X" or "O") """ #initialize win to False win = False #check win on rows for row in board: if np.all(row==player): win = True #check win on cols (index 0,1,2) for i in range(3): if(np.all(board[:,i]==player)): win = True #check win on diagonals if np.all(board.diagonal()==player): win = True #check win on anti-diagonals if np.all(np.fliplr(board).diagonal()==player): win = True return win
fad580912f3a281ce605fd743732481915c352ea
19,073
def wrap_http_exception(app: FastAPI): """ https://doc.acrobits.net/api/client/intro.html#web-service-responses """ @app.exception_handler(StarletteHTTPException) async def http_exception_handler(request, exc): return JSONResponse({'message': exc.detail}, exc.status_code)
b43eea9b59eb50eaefd3d52a5569d6952518f61b
19,074
import random def perm_2sample(group1, group2, nrand=10000, tail=0, paired=True): # Take from JW's functions """ non-parametric permutation test (Efron & Tibshirani, 1998) tail = 0 (test A~=B), 1 (test A>B), -1 (test A<B) """ a = group1 b = group2 ntra = len(a) ntrb = len(b) meana = np.mean(a) meanb = np.mean(b) triala = np.zeros(nrand) trialb = np.zeros(nrand) if paired: for i in range(nrand): alldat = np.vstack((a,b)).T for j in range(ntra): alldat[j,:] = alldat[j,np.argsort(np.random.rand(2))] triala[i] = alldat[:,0].mean() trialb[i] = alldat[:,1].mean() else: alldat = np.concatenate((a,b)) indices = np.arange(alldat.shape[0]) for i in range(nrand): random.shuffle(indices) triala[i] = np.mean(alldat[indices[:ntra]]) trialb[i] = np.mean(alldat[indices[ntra:]]) if tail == 0: p_value = sum(abs(triala-trialb)>=abs(meana-meanb)) / float(nrand) else: p_value = sum((tail*(triala-trialb))>=(tail*(meana-meanb))) / float(nrand) return(meana-meanb, p_value)
afb3c56d277c583eeb34089bcd808e7e6e662ec7
19,075
def softmax_op(node): """ This function computes its softmax along an axis. Parameters: ---- node : Node Input variable. Returns: ---- A new Node instance created by Op. """ return SoftmaxOp()(node)
42004658214b7b7c083d40fe43393f1cf450175b
19,076
def full_chain(): """ :return: Returns entire blockchain in memory (current_chain.blockchain) """ response = { 'chain': current_chain.blockchain, 'length': len(current_chain.blockchain), } return response, 200
0161195e3dc28b9157ee824f8d3103029f058498
19,077
def normalizer(x, mi, ma, eps=1e-20, dtype=np.float32): """ Number expression evaluation for normalization Parameters ---------- x : np array of Image patch mi : minimum input percentile value ma : maximum input percentile value eps: avoid dividing by zero dtype: type of numpy array, float 32 defaut """ if dtype is not None: x = x.astype(dtype, copy=False) mi = dtype(mi) if np.isscalar(mi) else mi.astype(dtype, copy=False) ma = dtype(ma) if np.isscalar(ma) else ma.astype(dtype, copy=False) eps = dtype(eps) x = (x - mi) / (ma - mi + eps) x = normalizeZeroOne(x) return x
0f39a4d02bc3f3897d0b2070567a45eb68ade2d4
19,078
def do(args): """ Main Entry Point. """ build_worktree = qibuild.parsers.get_build_worktree(args) sourceme = build_worktree.generate_sourceme() print(sourceme) return sourceme
d706fe7f8a277f58dd8f184212851d087b7890d1
19,079
import json import traceback def policy_action(module, state=None, policy_name=None, policy_arn=None, policy_document=None, path=None, description=None): """ Execute the actions needed to bring the policy into the specified state. Args: module (obj): Ansible module state (str): Ansible state - 'present' | 'absent' policy_name (str): Policy name. One and only one of policy name or policy ARN must be given. policy_arn (str): Policy ARN. One and only one of policy name or policy ARN must be given. policy_document(dict): JSON policy document path (str): Policy path description (str): Policy description. Defaults to 'policy_name' Returns: Success: (bool) changed, (dict) policy object (see boto3.get_policy docs) Failure: Invokes module.fail_json with suitable text at point of error """ changed = False policy = None error = {} if state == 'present': try: if isinstance(policy_document, dict): policy_document = json.dumps(policy_document) response = policy_m.create_policy( policy_name=policy_name, path=path, policy_document=policy_document, description=description) if 'error' in response: error = response['error'] else: if response['state'] == 'New': changed = True policy = response['policy'] except Exception as e: module.fail_json(msg='policy action {0} failed: {1} {2}'.format('present', e,traceback.format_exc())) elif state == 'absent': try: response = policy_m.delete_policy( policy_name=policy_name, path=path) if 'error' in response: error = response['error'] else: changed = True policy = response['policy'] except Exception as e: module.fail_json(msg='policy action {0} failed: {1} {2}'.format('absent', e,traceback.format_exc())) else: error = {"error": "state must be either 'present' or 'absent'"} if error: module.fail_json(msg='policy action failed: {0}'.format(error)) return changed, policy
5da4c4649170e81569cc3e77fa102fd0043cebd9
19,080
def GET_v1_metrics_location(days=1): """Return some data about the locations users have reported from. """ if days > 7: days = 7 from_time = f'-{days}d' locations = fetch_graphite_sum('*.geoip.*', from_time=from_time) return jsonify(locations=locations)
e9765f338c1adbbb46e203024b7637af45e2f217
19,081
def add_default_to_usage_help( usage_help: str, default: str or int or float or bool ) -> str: """Adds default value to usage help string. Args: usage_help (str): usage help for click option. default (str or int or float): default value as string for click option. Returns: str: New usage_help value. """ if default is not None: return f"{usage_help} default={default}" return usage_help
a40cf9a68f18beeafcb965c51e0329b4e8216fb4
19,082
def describe_deformation(el_disps, bfg): """ Describe deformation of a thin incompressible 2D membrane in 3D space, composed of flat finite element faces. The coordinate system of each element (face), i.e. the membrane mid-surface, should coincide with the `x`, `y` axes of the `x-y` plane. Parameters ---------- el_disps : array The displacements of element nodes, shape `(n_el, n_ep, dim)`. bfg : array The in-plane base function gradients, shape `(n_el, n_qp, dim-1, n_ep)`. Returns ------- mtx_c ; array The in-plane right Cauchy-Green deformation tensor :math:`C_{ij}`, :math:`i, j = 1, 2`. c33 : array The component :math:`C_{33}` computed from the incompressibility condition. mtx_b : array The discrete Green strain variation operator. """ sh = bfg.shape n_ep = sh[3] dim = el_disps.shape[2] sym2 = dim2sym(dim-1) # Repeat el_disps by number of quadrature points. el_disps_qp = insert_strided_axis(el_disps, 1, bfg.shape[1]) # Transformed (in-plane) displacement gradient with # shape (n_el, n_qp, 2 (-> a), 3 (-> i)), du_i/dX_a. du = dot_sequences(bfg, el_disps_qp) # Deformation gradient F w.r.t. in plane coordinates. # F_{ia} = dx_i / dX_a, # a \in {1, 2} (rows), i \in {1, 2, 3} (columns). mtx_f = du + nm.eye(dim - 1, dim, dtype=du.dtype) # Right Cauchy-Green deformation tensor C. # C_{ab} = F_{ka} F_{kb}, a, b \in {1, 2}. mtx_c = dot_sequences(mtx_f, mtx_f, 'ABT') # C_33 from incompressibility. c33 = 1.0 / (mtx_c[..., 0, 0] * mtx_c[..., 1, 1] - mtx_c[..., 0, 1]**2) # Discrete Green strain variation operator. mtx_b = nm.empty((sh[0], sh[1], sym2, dim * n_ep), dtype=nm.float64) mtx_b[..., 0, 0*n_ep:1*n_ep] = bfg[..., 0, :] * mtx_f[..., 0, 0:1] mtx_b[..., 0, 1*n_ep:2*n_ep] = bfg[..., 0, :] * mtx_f[..., 0, 1:2] mtx_b[..., 0, 2*n_ep:3*n_ep] = bfg[..., 0, :] * mtx_f[..., 0, 2:3] mtx_b[..., 1, 0*n_ep:1*n_ep] = bfg[..., 1, :] * mtx_f[..., 1, 0:1] mtx_b[..., 1, 1*n_ep:2*n_ep] = bfg[..., 1, :] * mtx_f[..., 1, 1:2] mtx_b[..., 1, 2*n_ep:3*n_ep] = bfg[..., 1, :] * mtx_f[..., 1, 2:3] mtx_b[..., 2, 0*n_ep:1*n_ep] = bfg[..., 1, :] * mtx_f[..., 0, 0:1] \ + bfg[..., 0, :] * mtx_f[..., 1, 0:1] mtx_b[..., 2, 1*n_ep:2*n_ep] = bfg[..., 0, :] * mtx_f[..., 1, 1:2] \ + bfg[..., 1, :] * mtx_f[..., 0, 1:2] mtx_b[..., 2, 2*n_ep:3*n_ep] = bfg[..., 0, :] * mtx_f[..., 1, 2:3] \ + bfg[..., 1, :] * mtx_f[..., 0, 2:3] return mtx_c, c33, mtx_b
e748a8ecf3cc369fb03ba835b6f0c762eeafbf07
19,083
import re def remove_emails(text): """Returns A String with the emails removed """ result = re.sub(EMAIL_REGEX, "", text) return result
08d30119f5e32a92c3df3a7b5612ba99390e7df9
19,084
def _fit_model_residual_with_radial(lmparams, star, self, interpfunc): """Residual function for fitting individual profile parameters :param lmparams: lmfit Parameters object :param star: A Star instance. :param self: PSF instance :param interpfunc: The interpolation function :returns chi: Chi of observed pixels to model pixels """ all_params = lmparams.valuesdict().values() flux, du, dv = all_params[:3] params = all_params[3:] prof = self.getProfile(params) image, weight, image_pos = star.data.getImage() # use for getting drawprofile star.fit.flux = flux star.fit.center = (du, dv) star_drawn = drawProfile(self, star, prof, params, use_fit=True, interpfunc=interpfunc) image_model = star_drawn.image chi = (np.sqrt(weight.array) * (image_model.array - image.array)).flatten() return chi
77f4031dbf7522236c36a8e096c965766df16ccb
19,085
def _whoami(): # type: () -> Tuple[str,str] """ Return the current operating system account as (username, fullname) """ username = getuser() fullname = username if GET_PW_NAM: pwnam = getpwnam(username) if pwnam: fullname = pwnam.pw_gecos.split(",", 1)[0] return (username, fullname)
508189e4798e83425b754ad6cde617a3b0d1ec9f
19,086
from typing import Sequence def text_set_class( set_class: Sequence, ) -> str: """Converts a set class into a string representing its interval vector. """ id_dict = {0: "one", 1: "two", 2: "three", 3: "four", 4: "five", 5: "six"} result = "" for i, el in enumerate(interval_vector(set_class)): for _ in range(el): result += id_dict[i] + " " return result.rstrip()
f430ddf4b32f64f37df5fb9ec984ce5a809b09a1
19,087
def Span_read(stream): """Read a span from an 88.1 protocol stream.""" start = Address_read(stream) width = Offset_read(stream) return Span(start, width)
0bbd5d62a1111dd056a939ee272ea200e1f7abd9
19,088
def temp_database(tmpdir_factory): """ Initalize the Database """ tmpdb = str(tmpdir_factory.mktemp('temp'))+"/testdb.sqlite" return tmpdb
5cfcb27e6ac76766e21a1612691dbe79d1713abd
19,089
import ast def get_classes(pyfile_path): """ Obtiene las clases que están dentro de un fichero python :param str pyfile_path: nombre del fichero a inspeccionar :return: devuelve una lista con todas las clases dentro de un fichero python :rtype: list .. code-block:: python >> get_classes('./data.py') ['Module', 'PythonFile'] """ with open(pyfile_path, 'r') as f: inspection = ast.parse(f.read()) return [class_.name for class_ in inspection.body if isinstance(class_, ast.ClassDef)]
72f376d10fd02574085a0236e10ea8901033ebd0
19,090
from typing import List def transpose_outer_dimensions(outer_dimensions: ST_Type, diff_dimensions: ST_Type, ports_to_transpose: List) -> Kind: """ Transpose the outer dimensions of a set of ports, move them inside the diff dimensions. The outer dimensions that are sseqs are the same for all elements, so treat as inner dimensions. :param outer_dimensions: The outer dimensions that need to be moved inside :param diff_dimensions: The dimensions that need to be moved outside :param ports_to_transpose: The ports :return: """ # always remove tseqs as they don't affect the magma types num_outer_dimensions = num_nested_layers(remove_tseqs(outer_dimensions)) num_diff_dimensions = num_nested_layers(remove_tseqs(diff_dimensions)) # these are the indexes of the dimensions on the untransposed type outer_dimensions_indexes_untransposed = list(range(num_outer_dimensions)) diff_dimensions_indexes_untransposed = list(range(num_outer_dimensions, num_outer_dimensions + num_diff_dimensions)) sseq_dims_transposed = diff_dimensions_indexes_untransposed + outer_dimensions_indexes_untransposed # performing the transpose with blockers added so right dimensions not converted ports_to_transpose_with_block = add_blocker(ports_to_transpose, len(sseq_dims_transposed)) orig_arr = np.asarray(ports_to_transpose_with_block) transposed_arr = orig_arr.transpose(sseq_dims_transposed) transposed_list_with_blocks = transposed_arr.tolist() return remove_blocker(transposed_list_with_blocks)
ca51943223bbca58f871a9cb4c6b296ae941e87d
19,091
def pad_or_clip_nd(tensor, output_shape): """Pad or Clip given tensor to the output shape. Args: tensor: Input tensor to pad or clip. output_shape: A list of integers / scalar tensors (or None for dynamic dim) representing the size to pad or clip each dimension of the input tensor. Returns: Input tensor padded and clipped to the output shape. """ tensor_shape = tf.shape(tensor) clip_size = [ tf.where(tensor_shape[i] - shape > 0, shape, -1) if shape is not None else -1 for i, shape in enumerate(output_shape) ] clipped_tensor = tf.slice( tensor, begin=tf.zeros(len(clip_size), dtype=tf.int32), size=clip_size) # Pad tensor if the shape of clipped tensor is smaller than the expected # shape. clipped_tensor_shape = tf.shape(clipped_tensor) trailing_paddings = [ shape - clipped_tensor_shape[i] if shape is not None else 0 for i, shape in enumerate(output_shape) ] paddings = tf.stack( [ tf.zeros(len(trailing_paddings), dtype=tf.int32), trailing_paddings ], axis=1) padded_tensor = tf.pad(clipped_tensor, paddings=paddings) output_static_shape = [ dim if not isinstance(dim, tf.Tensor) else None for dim in output_shape ] padded_tensor.set_shape(output_static_shape) return padded_tensor
a22b6872b4af4424411d26232af0c21fda7c55df
19,092
def dynamic_lstm(x, n_neuron, act_fn=tanh, seq_len=None): """ assert x is batch_major, aka [batch, time, ...] """ cell_class = lstm with tf.variable_scope("fw"): cell_fw = cell_class(n_neuron, activation=act_fn, cell_clip=15.0) o, s = tf.nn.dynamic_rnn( cell_fw, x, seq_len, dtype=tf.float32) return o, s
4f2df8155281e3664d5d8521918af5c84a211a34
19,093
def ho2ax_single(ho): """Conversion from a single set of homochoric coordinates to an un-normalized axis-angle pair :cite:`rowenhorst2015consistent`. Parameters ---------- ho : numpy.ndarray 1D array of (x, y, z) as 64-bit floats. Returns ------- ax : numpy.ndarray 1D array of (x, y, z, angle) as 64-bit floats. Notes ----- This function is optimized with Numba, so care must be taken with array shapes and data types. """ # Constants stolen directly from EMsoft # fmt: off fit_parameters = np.array([ 0.9999999999999968, -0.49999999999986866, -0.025000000000632055, -0.003928571496460683, -0.0008164666077062752, -0.00019411896443261646, -0.00004985822229871769, -0.000014164962366386031, -1.9000248160936107e-6, -5.72184549898506e-6, 7.772149920658778e-6, -0.00001053483452909705, 9.528014229335313e-6, -5.660288876265125e-6, 1.2844901692764126e-6, 1.1255185726258763e-6, -1.3834391419956455e-6, 7.513691751164847e-7, -2.401996891720091e-7, 4.386887017466388e-8, -3.5917775353564864e-9 ]) # fmt: on ho_magnitude = np.sum(ho**2) if (ho_magnitude > -1e-8) and (ho_magnitude < 1e-8): ax = np.array([0, 0, 1, 0], dtype=np.float64) else: # Convert the magnitude to the rotation angle hom = ho_magnitude s = fit_parameters[0] + fit_parameters[1] * hom for i in nb.prange(2, 21): hom = hom * ho_magnitude s = s + fit_parameters[i] * hom hon = ho / np.sqrt(ho_magnitude) s = 2 * np.arccos(s) if np.abs(s - np.pi) < 1e-8: # pragma: no cover ax = np.append(hon, np.pi) else: ax = np.append(hon, s) return ax
50ec25eb488ea894f6a5c6a00feab27b93954200
19,094
import json def task_export_commit(request): """提交导出任务""" try: datas = json.loads(request.body.decode()) taskSetting = PlTaskSetting.objects.get(id=datas["params"]["id"]) try: exportJob = PlExportJob.objects.get(task_setting_id=taskSetting.id) except ObjectDoesNotExist: exportJob = PlExportJob(task_setting_id=taskSetting.id, run_time=timezone.now() - timedelta(weeks=100)) exportJob.save() # 先保存一遍,保证数据库中一定存在,因为下面要使用update语句更新符合条件的这个任务,防止并发问题 if 0 != exportJob.status: return response(-3, message="已经有导出任务提交,请先终止") # 执行更新,使用更新带条件操作是为了防止并发 updateRows = PlExportJob.objects.filter(task_setting_id=taskSetting.id, status=0).update( status = 1, req_stop = 0, process = 0, worker_name = "", download_addr = "", task_setting_info = json.dumps(model_to_dict(taskSetting)), export_setting_info = json.dumps(datas["params"]["setting"]) ) if updateRows <= 0: return response(-4, message="更新失败") result = response() except ObjectDoesNotExist: result = response(-1, message="监控任务不存在,可能已经被删除。") except DatabaseError: result = response(-2, message="数据库查询异常") return result
4ec543af62e9abab9194b22cf54e22de2551ce24
19,095
def getExceptionMessage(exceptionDetails: dict) -> str: """Get exception message from `exceptionDetails` object.""" exception = exceptionDetails.get('exception') if exception: return exception.get('description') message = exceptionDetails.get('text', '') stackTrace = exceptionDetails.get('stackTrace', dict()) if stackTrace: for callframe in stackTrace.get('callFrames'): location = ( str(callframe.get('url', '')) + ':' + str(callframe.get('lineNumber', '')) + ':' + str(callframe.get('columnNumber')) ) functionName = callframe.get('functionName', '<anonymous>') message = message + f'\n at {functionName} ({location})' return message
ba3d15aa383de9f55600a72ba113c37fd042d3a4
19,096
def evaluate_by_net(net, input_fn, **kwargs): """encapsulate evaluate """ ret = evaluate( graph=net.graph, sess=net.session, fea_ph=net.features_ph, label_ph=net.labels_ph, outputs=net.outputs, input_fn=input_fn, **kwargs ) return ret
a58b80b5e93dbb4251eb71393f8a9f70ddff813b
19,097
import array def ordinate(values,maxrange,levels): """Ordinate values given a maximum data range and number of levels Parameters: 1. values: an array of continuous values to ordinate 2. maxrange: the maximum data range. Values larger than this will be saturated. 3. levels: the number of levels at which values are ordinated """ quantizer=lambda dist,maxrange,levels: int(1.0*max(1,dist-1)*levels/maxrange)+1 if type(values)==list or type(values)==tuple or type(values)==array: ordinated=[] for v in values: if v==0: ordinated.append(v) else: ordinated.append(quantizer(v,maxrange,levels)) return ordinated else: if values==0: return values else: return quantizer(values,maxrange,levels)
4db4a26579d9208cd90ec630cf82e54a4a7ec3fe
19,098
def is_start_state(state): """ Checks if the given state is a start state. """ return (state.g_pos.value == 0) and (state.theta.value == 'N')
0f58e7a193533ba3d5db15c4e79ed98e190fa1be
19,099