content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
import os import logging def dataframe2naf( df_meta: pd.DataFrame, overwrite_existing_naf: bool=False, rerun_files_with_naf_errors: bool=False, engine: str=None, naf_version: str=None, dtd_validation: bool=False, params: dict={}, nlp=None, ) -> pd.DataFrame: """Batch processor for NAF Args: df_meta: the dataframe containing the meta data for the NAF files. overwrite_existing_naf: if True then existing NAF files are overwritten (default = False) rerun_files_with_naf_errors: if True then documents that produced NAF errors are run again (default = False) engine: name of the NLP processor to be used (default = None) naf_version: NAF version to be used dtd_validation: perform validation of each NAF file (default = False) params: additional parameters for NAF conversion Returns: pd.DataFrame: the dataframe with (updated) metadata """ if "naf:status" not in df_meta.columns: df_meta["naf:status"] = "" for row in df_meta.index: if "dc:language" in df_meta.columns: dc_language = df_meta.loc[row, "dc:language"].lower() else: dc_language = None df_meta.loc[ row, "naf:status"] = "ERROR, no dc:language in DataFrame" if "dc:source" in df_meta.columns: dc_source = df_meta.loc[row, "dc:source"] else: dc_source = None df_meta.loc[row, "naf:status"] = "ERROR, no dc:source in DataFrame" if "naf:source" in df_meta.columns and not pd.isna(df_meta.loc[row, "naf:source"]): output = df_meta.loc[row, "naf:source"] else: if dc_source is not None: output = os.path.splitext(dc_source)[0] + ".naf.xml" if dc_source and dc_language and output: # logging per processed file log_file: str = os.path.splitext(dc_source)[0] + ".log" logging.basicConfig(filename=log_file, level=logging.WARNING, filemode="w") if os.path.exists(output) and not overwrite_existing_naf: # the NAF file exists and we should not overwrite existing naf # files -> skip df_meta.loc[row, "naf:status"] = "OK" df_meta.loc[row, "naf:source"] = output continue elif ( "error" in df_meta.loc[row, "naf:status"].lower() and not rerun_files_with_naf_errors ): # the status is ERROR and we should not rerun files with errors # -> skip continue else: # put columns in params params = { col: df_meta.loc[row, col] for col in df_meta.columns if col not in ["naf:source", "naf:status"] } try: doc = parse2naf.generate_naf( input=dc_source, engine=engine, language=dc_language, naf_version=naf_version, dtd_validation=dtd_validation, params=params, nlp=nlp, ) if not os.path.exists(output): doc.write(output) else: if overwrite_existing_naf: doc.write(output) df_meta.loc[row, "naf:status"] = "OK" df_meta.loc[row, "naf:source"] = output except: df_meta.loc[row, "naf:status"] = "ERROR, generate_naf" return df_meta
6bc26b849a456421457868bdd83fd2362ca1e757
18,900
import json import re from datetime import datetime import random def dev_view(request, slug=""): """View for homepage or individual developer.""" if slug == "": dev_name = list(Dev.objects.all().values_list('dev_name', flat=True)) dev_img_address = list(Dev.objects.values_list('dev_image_address', flat=True)) dev_slug = list(Dev.objects.values_list('dev_slug', flat=True)) dev_order = list(Dev.objects.values_list('dev_order_pop', flat=True)) if len(list(TaskResult.objects.filter(task_name='homepage.tasks.google_fetch_query').values())) == 1: g_query_datetime_init = list(TaskResult.objects.filter( task_name='homepage.tasks.google_fetch_query' ).values_list()[0]) else: task_id_query = list(TaskResult.objects.filter( task_name='homepage.tasks.google_fetch_query' ).values())[1]['task_id'] g_query_datetime_init = list(TaskResult.objects.filter( task_id=task_id_query ).values_list()[0]) g_query_datetime = g_query_datetime_init[11] if len(list(TaskResult.objects.filter(task_name='homepage.tasks.google_fetch_dev').values())) == 1: g_dev_datetime_init = list(TaskResult.objects.filter( task_name='homepage.tasks.google_fetch_dev' ).values_list()[0]) else: task_id_dev = list(TaskResult.objects.filter( task_name='homepage.tasks.google_fetch_dev' ).values())[1]['task_id'] g_dev_datetime_init = list(TaskResult.objects.filter( task_id=task_id_dev ).values_list()[0]) g_dev_datetime = g_dev_datetime_init[11] if g_dev_datetime > g_query_datetime: g_datetime = g_dev_datetime elif g_dev_datetime < g_query_datetime: g_datetime = g_query_datetime if len(list(TaskResult.objects.filter(task_name='homepage.tasks.google_fetch_query').values())) == 1: g_query = json.loads(TaskResult.objects.filter( task_name='homepage.tasks.google_fetch_query' ).values()[0]['result']) else: task_id_query = list(TaskResult.objects.filter( task_name='homepage.tasks.google_fetch_query' ).values())[1]['task_id'] g_query = json.loads(TaskResult.objects.filter( task_id=task_id_query ).values()[0]['result']) if len(list(TaskResult.objects.filter(task_name='homepage.tasks.google_fetch_dev').values())) == 1: g_dev = json.loads(TaskResult.objects.filter( task_name='homepage.tasks.google_fetch_dev' ).values()[0]['result']) else: task_id_dev = list(TaskResult.objects.filter( task_name='homepage.tasks.google_fetch_dev' ).values())[1]['task_id'] g_dev = json.loads(TaskResult.objects.filter( task_id=task_id_dev ).values()[0]['result']) # 2-day date filter for homepage 'Latest News' def date_criteria(g_inp): dates = [re.search('[0-9]{4}-[0-9]{2}-[0-9]{2}', g_inp[i][8]).group(0) for i in range(len(g_inp))] dates_datetime = [datetime.strptime(i, '%Y-%m-%d') for i in dates] today = datetime.today() time_criteria = datetime(year=today.year, month=today.month, day=today.day - 2) return [g_inp[i] for i in range(len(g_inp)) if dates_datetime[i] >= time_criteria] entries_for_carousel_init = [date_criteria(g_dev) + date_criteria(g_query)][0] entries_for_carousel = [i for i in entries_for_carousel_init if i[9] != 'none'] entries_for_latest_news_init = entries_for_carousel entries_for_latest_news_init = sorted(entries_for_latest_news_init, key=lambda sort: sort[8], reverse=True) link_latest_news = [i[1] for i in entries_for_latest_news_init] link_count = [link_latest_news.count(link_latest_news[i]) for i in range(len(link_latest_news))] link_zip = list(zip(link_latest_news, link_count)) link_unique = [link_zip[i][0] if link_zip[i][1] == 1 else 'none' for i in range(len(link_zip))] nonunique_indices_link = [i for i, x in enumerate(link_unique) if x == "none"] nonunique_check_link = [] nonunique_entries_nonrepeat_link = [] for i in nonunique_indices_link: nonunique_check_link.append(link_latest_news[i]) count_inst = nonunique_check_link.count(link_latest_news[i]) if count_inst == 1: nonunique_entries_nonrepeat_link.append(entries_for_latest_news_init[i]) google_search_results_unique = [] for i in range(len(link_unique)): try: if link_unique[i] != 'none': google_search_results_unique.append(entries_for_latest_news_init[i]) except IndexError: pass google_search_results_combined = google_search_results_unique + nonunique_entries_nonrepeat_link page = request.GET.get('page', 1) paginator2 = Paginator(google_search_results_combined, 2000) try: entries_for_latest_news = paginator2.page(page) except PageNotAnInteger: entries_for_latest_news = paginator2.page(1) except EmptyPage: entries_for_latest_news = paginator2.page(paginator2.num_pages) random.shuffle(entries_for_carousel) if request.user.is_authenticated: if request.method == "POST": p_form = FavoriteGamesUpdateForm(data=request.POST) user_fav = list(FavoriteGames.objects.all().values_list()) user_slug_list = [user_fav[i][2] for i in range(len(user_fav)) if user_fav[i][1] == request.user.profile.id] if request.POST["dev_user_str"] not in user_slug_list: if p_form.is_valid(): form_instance = p_form.save(commit=False) form_instance.profile = Profile.objects.get(user=request.user) form_instance.dev_user_str = p_form.cleaned_data["dev_user_str"] form_instance.save() else: FavoriteGames.objects.filter( profile_id=request.user.profile.id ).filter( dev_user_str=request.POST.get('dev_user_str') ).delete() fav_game_check = list(FavoriteGames.objects.filter(profile_id=request.user.profile.id).values()) devs_in_favs = [fav_game_check[i]['dev_user_str'] for i in range(len(fav_game_check))] dev_game_check_list = [] for j, i in enumerate(dev_slug): if i in devs_in_favs: dev_game_check_list.append('yes') else: dev_game_check_list.append('no') else: dev_game_check_list = "" dev_list_name = sorted(list(zip_longest(dev_name, dev_img_address, dev_slug, dev_game_check_list, dev_order)), key=lambda lowercase: lowercase[0].lower()) dev_list_pop = sorted(list(zip_longest(dev_name, dev_img_address, dev_slug, dev_game_check_list, dev_order)), key=lambda dev_order_list: dev_order_list[4]) cache_key = "test_cache_key" if cache.get(cache_key) is not None: paginator_for_class_1 = Paginator(cache.get(cache_key), 48) else: cache.set( cache_key, dev_list_pop, 60 * 60 * 4, ) context = { 'numbers': dev_list_pop, 'entries': entries_for_carousel, 'latest_news': entries_for_latest_news, 'g_query_datetime': g_query_datetime, 'g_dev_datetime': g_dev_datetime, 'g_datetime': g_datetime, } if request.method == "POST": return redirect("/") else: return render(request, "homepage/dev_base.html", context) else: dev_query_results_init = TaskResult.objects.filter(task_name='homepage.tasks.rawg_fetch_dev') dev_query_results = json.loads(dev_query_results_init.values()[0]['result']) if len(list(TaskResult.objects.filter(task_name='homepage.tasks.google_fetch_dev').values())) == 1: g_dev_datetime_init = list(TaskResult.objects.filter( task_name='homepage.tasks.google_fetch_dev' ).values_list()[0]) else: task_id_dev = list(TaskResult.objects.filter( task_name='homepage.tasks.google_fetch_dev' ).values())[1]['task_id'] g_dev_datetime_init = list(TaskResult.objects.filter( task_id=task_id_dev ).values_list()[0]) g_dev_datetime = g_dev_datetime_init[11] slug_index1 = [dev_query_results][0][0].index(slug) dev_list = [dev_query_results[0][slug_index1]] slugs_per_dev_list = dev_query_results[1][slug_index1] names_per_dev_list = dev_query_results[2][slug_index1] ratings_per_dev_list = dev_query_results[3][slug_index1] background_img_per_dev_list = dev_query_results[4][slug_index1] released_per_dev_list = dev_query_results[5][slug_index1] full_clip_per_dev_list = dev_query_results[6][slug_index1] ratings_count_per_dev_list = dev_query_results[7][slug_index1] dev_game_data = sorted(list(zip_longest(dev_list, slugs_per_dev_list, names_per_dev_list, ratings_per_dev_list, background_img_per_dev_list, released_per_dev_list, full_clip_per_dev_list, ratings_count_per_dev_list)), key=lambda sort: sort[7], reverse=True) dev_game_data2 = [] for i in range(len(dev_game_data)): try: if dev_game_data[i][4] is not None: dev_game_data2.append(dev_game_data[i]) except IndexError: pass page = request.GET.get('page', 1) paginator2 = Paginator(dev_game_data2, 2000) try: numbers = paginator2.page(page) except PageNotAnInteger: numbers = paginator2.page(1) except EmptyPage: numbers = paginator2.page(paginator2.num_pages) if len(list(TaskResult.objects.filter(task_name='homepage.tasks.google_fetch_dev').values())) == 1: google_query_results = json.loads(TaskResult.objects.filter( task_name='homepage.tasks.google_fetch_dev' ).values()[0]['result']) else: task_id_dev = list(TaskResult.objects.filter( task_name='homepage.tasks.google_fetch_dev' ).values())[1]['task_id'] google_query_results = json.loads(TaskResult.objects.filter( task_id=task_id_dev ).values()[0]['result']) dev_name_list = list(Dev.objects.all().values_list('dev_name', flat=True)) dev_slug_list = list(Dev.objects.all().values_list('dev_slug', flat=True)) dev_img_list = list(Dev.objects.values_list('dev_image_address', flat=True)) dev_slug_index = dev_slug_list.index(slug) dev_name_for_site = dev_name_list[dev_slug_index] dev_img_for_site = dev_img_list[dev_slug_index] google_search_results = [google_query_results[i] if google_query_results[i][6] == slug else 'none' for i in range(len(google_query_results))] google_search_results2 = [] for i in range(len(google_search_results)): try: if google_search_results[i] != 'none': google_search_results2.append(google_search_results[i]) except IndexError: pass context = { 'numbers': numbers, 'google_search_results': google_search_results2, 'dev_name_for_site': dev_name_for_site, 'dev_img_for_site': dev_img_for_site, 'g_dev_datetime': g_dev_datetime, } return render(request, "homepage/dev_iter.html", context)
363819f854e26b8c62f8fe41fbfbf2e64296246f
18,901
def dpuEnableTaskProfile(task): """ Enable profiling facility of DPU Task while running to get its performance metrics task: DPU Task. This parameter should be gotten from the result of dpuCreatTask() Returns: 0 on success, or report error in case of any failure """ return pyc_libn2cube.pyc_dpuEnableTaskProfile(task)
5bb1435ca194b214695891d451f2f56a4cdf6857
18,902
def get_isotopic_distribution(z): """ For an element with number ``z``, returns two ``np.ndarray`` objects containing that element's weights and relative abundances. Args: z (int): atomic number Returns: masses (np.ndarray): list of isotope masses weights (np.ndarray): list of weights (relative to 1.00 for largest) """ z = str(z) masses = list(ISOTOPE_DICTIONARY[z].keys()) weights = list(ISOTOPE_DICTIONARY[z].values()) return np.array(masses), np.array(weights)
4b038319c37dfd13f0ef085c2b3286f6fc2749c3
18,903
def url_root(): """根路径""" return """ <p>Hello ! Welcome to Rabbit's WebServer Platform !</p> <a href="http://www.miibeian.gov.cn/" target="_blank" style="">京ICP备 18018365 号</a>&#8195;@2018Rabbit """
2e6d1d5301ac67bdec30cdeeaeed3c8638568de9
18,904
import uuid def CreateMatrix(args, context, history_id, gcs_results_root, release_track): """Creates a new iOS matrix test in Firebase Test Lab from the user's params. Args: args: an argparse namespace. All the arguments that were provided to this gcloud command invocation (i.e. group and command arguments combined). context: {str:obj} dict containing the gcloud command context, which includes the Testing API client+messages libs generated by Apitools. history_id: {str} A history ID to publish Tool Results to. gcs_results_root: the root dir for a matrix within the GCS results bucket. release_track: the release track that the command is invoked from. Returns: A TestMatrix object created from the supplied matrix configuration values. """ creator = MatrixCreator(args, context, history_id, gcs_results_root, release_track) return creator.CreateTestMatrix(uuid.uuid4().hex)
e536001e768f2574d6c5d773b70e6b4e58c6c3da
18,905
import os import requests from pathlib import Path def _download_and_extract_zip_from_github(site_info): """ from https://pelican-blog/archive/master.zip to: /path/pelican-blog """ unique_id = uuid4().hex zip_file_url = site_info["ZIP_URL"] zip_file_name = os.path.join( settings.PELICAN_PUBLISHER["WORKING_ROOT"], "{}-{}.zip".format(site_info["NAME"], unique_id), ) site_stage_path = os.path.join( settings.PELICAN_PUBLISHER["WORKING_ROOT"], "{}-{}".format(site_info["NAME"], unique_id), ) logger.debug("zip file name: {}".format(zip_file_name)) logger.debug("site stage path: {}".format(site_stage_path)) # download zip file r = requests.get(zip_file_url) if not r.ok: logger.error("download failed") return None, None open(zip_file_name, "wb").write(r.content) logger.info("download finished") # extract zip file ZipFile(zip_file_name).extractall(site_stage_path) # pelican site file check site_file_path = None for p in Path(site_stage_path).glob("*"): if p.is_dir(): site_file_path = p.as_posix() break if site_file_path is None: logger.error("pelican site file extract failed, more subdir") return None, None logger.info("extracted pelican site file to: {}".format(site_file_path)) return site_stage_path, site_file_path
2a6e90434d8cfd1cd1e2084ff3ef575d725f87e4
18,906
def map_keys(func, d): """ Returns a new dict with func applied to keys from d, while values remain unchanged. >>> D = {'a': 1, 'b': 2} >>> map_keys(lambda k: k.upper(), D) {'A': 1, 'B': 2} >>> assert map_keys(identity, D) == D >>> map_keys(identity, {}) {} """ return dict((func(k), v) for k, v in d.iteritems())
5e9798d208db5e43dad497d64a4b8e469c67eb3b
18,907
from qiniu import Auth def generate_qiniu_token(object_name, use_type, expire_time=600): """ 用于生成七牛云上传所需要的Token :param object_name: 上传到七牛后保存的文件名 :param use_type: 操作类型 :param expire_time: token过期时间,默认为600秒,即十分钟 :return: """ bucket_name = PRIVATE_QINIU_BUCKET_NAME # 需要填写你的 Access Key 和 Secret Key access_key = PRIVATE_QINIU_ACCESS_KEY secret_key = PRIVATE_QINIU_SECRET_KEY # 构建鉴权对象 q = Auth(access_key, secret_key) # 上传策略示例 # https://developer.qiniu.com/kodo/manual/1206/put-policy policy = { # 'callbackUrl':'https://requestb.in/1c7q2d31', # 'callbackBody':'filename=$(fname)&filesize=$(fsize)' # 'persistentOps':'imageView2/1/w/200/h/200' } token = q.upload_token(bucket_name, object_name, expire_time, policy) base_url = PRIVATE_MEDIA_URL_PREFIX return (object_name, token, base_url, expire_time)
9d0b65fb08032ad557f50cb73c00b4ed0f8eae5a
18,908
def get_s3_object(bucket, key_name, local_file): """Download a S3 object to a local file in the execution environment Parameters ---------- bucket: string, required S3 bucket that holds the message key: string, required S3 key is the email object Returns ------- email_msg: email.message.Message object """ tracer.put_metadata('object', f's3://{bucket}/{key_name}') try: s3_resource.Bucket(bucket).download_file(key_name, local_file) result = 'ok' tracer.put_annotation('OBJECT_DOWNLOAD', 'SUCCESS') except Exception as e: tracer.put_annotation('OBJECT_DOWNLOAD', 'FAILURE') result = f'Error: {str(e)}' return(result)
02b10623e30eff1ee5093d4e0f1ee51b3b97d0ac
18,909
def jaxpr_eqns_input_sizes(jaxpr) -> np.ndarray: """Return a list of input sizes for each equation in the jaxpr. Args: jaxpr: Jaxpr to get input sizes for. Returns: A #eqns * #eqns numpy array of input sizes. cost[l, r] represents the input size of the l-th to (r - 1)-th equation in the jaxpr. """ length = len(jaxpr.eqns) input_sizes = np.full((length + 1, length + 1), 0, dtype=np.float32) outvars = OrderedSet() for k in range(0, length + 1): if k > 0: outvars = outvars.union(jaxpr.eqns[k - 1].outvars) invars = OrderedSet() total_size = 0 for r in range(k + 1, length + 1): for invar in jaxpr.eqns[r - 1].invars: if (isinstance(invar, Var) and invar in outvars and invar not in invars): invars.add(invar) total_size += invar.aval.size * invar.aval.dtype.itemsize input_sizes[k, r] = total_size return input_sizes
0209c0342725ae83ea8051ef47852134e6ad4502
18,910
def extract_message(raw_html): """Returns the content of the message element. This element appears typically on pages with errors. :param raw_html: Dump from any page. """ results = re_message.findall(raw_html) if results: return results[0] return None
498ee1c38c08db365b1bf91ecd32a79c2d2f5f68
18,911
from typing import Callable from typing import Tuple def _weighted_essentially_non_oscillatory_vectorized( eno_order: int, values: Array, spacing: float, boundary_condition: Callable[[Array, int], Array]) -> Tuple[Array, Array]: """Implements a more "vectorized" but ultimately slower version of `weighted_essentially_non_oscillatory`.""" if eno_order < 1: raise ValueError(f"`eno_order` must be at least 1; got {eno_order}.") values = boundary_condition(values, eno_order) diffs = (values[1:] - values[:-1]) / spacing if eno_order == 1: return (diffs[:-1], diffs[1:]) substencil_approximations = _align_substencil_values( jax.vmap(jnp.correlate, (None, 0), 0)(diffs, _diff_coefficients(eno_order)), jnp) diffs2 = diffs[1:] - diffs[:-1] chol_T = jnp.asarray(np.linalg.cholesky(_smoothness_indicator_quad_form(eno_order)).swapaxes(-1, -2)) smoothness_indicators = _align_substencil_values( jnp.sum(jnp.square(jax.vmap(jax.vmap(jnp.correlate, (None, 0), 1), (None, 0), 0)(diffs2, chol_T)), -1), jnp) unscaled_weights = 1 / jnp.square(smoothness_indicators + WENO_EPS) unnormalized_weights = (jnp.asarray(_substencil_coefficients(eno_order)[..., np.newaxis]) * jnp.stack([unscaled_weights[:, :-1], unscaled_weights[:, 1:]])) weights = unnormalized_weights / jnp.sum(unnormalized_weights, 1, keepdims=True) return tuple(jnp.sum(jnp.stack([substencil_approximations[:-1], substencil_approximations[1:]]) * weights, 1))
debd652ddf02419e191d9d0c5d21640760d3f227
18,912
def defaults(dictionary, overwriteNone=False, **kwargs): """ Set default values of a given dictionary, option to overwrite None values. Returns given dictionary with values updated by kwargs unless they already existed. :param dict dictionary: :param overwriteNone: Whether to overwrite None values. :param kwargs: """ for key, value in dictionary.items(): dictValueIsNone = value is None kwargsHasValue = key in kwargs if overwriteNone and dictValueIsNone and kwargsHasValue: continue # Overwrite kwargs with dictionary kwargs[key] = value return kwargs
6def5bb71839b3b627a5597ea6fa7fa1b48e463b
18,913
from typing import Union from typing import Optional from typing import Dict import tqdm def expected_average_shortest_distance_to_miner( crawl_graph: Union[ ProbabilisticWeightedCrawlGraph[CrawledNode], CrawlGraph[CrawledNode] ], distances: Optional[np.ndarray] = None, miner_probability: Optional[Dict[CrawledNode, float]] = None, ) -> Dict[CrawledNode, float]: """Estimates the average shortest distance to a miner for each node in the graph""" if not isinstance(crawl_graph, ProbabilisticWeightedCrawlGraph): crawl_graph = ProbabilisticWeightedCrawlGraph(crawl_graph) if miner_probability is None: miner_probability = estimate_miner_probability(crawl_graph) if distances is None: distances = crawl_graph.probabilistic_shortest_distances() elif ( distances.ndim != 2 or distances.shape[0] != len(crawl_graph) or distances.shape[1] != len(crawl_graph) ): raise ValueError( f"distances is expected to be an {len(crawl_graph)}x{len(crawl_graph)} matrix" ) return { node: sum( distances[index][i] * miner_probability[crawl_graph.nodes[i]] for i in range(len(crawl_graph)) ) for node, index in tqdm( ((n, crawl_graph.node_indexes[n]) for n in crawl_graph), desc="calculating expected distance to miners", leave=False, unit=" nodes", total=len(crawl_graph), ) }
6ea56881dce6d589eebec6422a0a5ffae41fe153
18,914
from typing import Callable def dummy_state_sb(dummy_state: State, dummy_train_dataloader: DataLoader, conv_model: MosaicClassifier, loss_fun_tuple: Callable, epoch: int, batch: int) -> State: """Dummy state with required values set for Selective Backprop """ dummy_state.train_dataloader = dummy_train_dataloader dummy_state.epoch = epoch dummy_state.step = epoch * dummy_state.steps_per_epoch + batch dummy_state.model = conv_model dummy_state.model.module.loss = loss_fun_tuple return dummy_state
4f4af7193ccf0a4fb883a7d4b42ef58da49333b3
18,915
def create_model(species={}, parameters={}, reactions={}, events={}): """Returns an SBML Level 3 model. Example: species = { 'E': 1, \ 'EM': 0, \ 'EM2': 0, \ 'F': 100, \ } parameters = {'k': (1e-06,'per_min'), \ } reactions = { 'Production_E': \ { 're': [(1,'E'),(1,'F')], \ 'pr': [(2,'E')], \ 'kin' : 'k * E * F' \ }, \ } events = {'e': \ { 'trigger': 'true', \ 'delay': '10', \ 'assignments': [('M','1'),], \ }, \ } """ # Create an empty SBMLDocument object. It's a good idea to check for # possible errors. Even when the parameter values are hardwired like # this, it is still possible for a failure to occur (e.g., if the # operating system runs out of memory). try: document = sbml.SBMLDocument(3, 1) except ValueError: raise RuntimeError("Could not create SBMLDocumention object") # Create the basic Model object inside the SBMLDocument object. model = document.createModel() check(model, "create model") check(model.setTimeUnits("second"), "set model-wide time units") check(model.setExtentUnits("item"), "set model units of extent") check( model.setSubstanceUnits("item"), "set model substance units" ) # mole, item, gram, kilogram, dimensionless # Create a unit definition we will need later. per_second = model.createUnitDefinition() check(per_second, "create unit definition") check(per_second.setId("per_min"), "set unit definition id") unit = per_second.createUnit() check(unit, "create unit") check(unit.setKind(sbml.UNIT_KIND_SECOND), "set unit kind") check(unit.setExponent(-1), "set unit exponent") check(unit.setScale(0), "set unit scale") check( unit.setMultiplier(1), "set unit multiplier" ) # Create a compartment inside this model c1 = model.createCompartment() check(c1, "create compartment") check(c1.setId("c1"), "set compartment id") check(c1.setConstant(True), 'set compartment "constant"') check(c1.setSize(1), 'set compartment "size"') check(c1.setSpatialDimensions(3), "set compartment dimensions") check( c1.setUnits("dimensionless"), "set compartment size units" ) # Create species inside this model, set the required attributes # for each species in SBML Level 3 (which are the 'id', 'compartment', # 'constant', 'hasOnlySubstanceUnits', and 'boundaryCondition' # attributes), and initialize the amount of the species along with the # units of the amount. for s_str, s_val in species.items(): s = model.createSpecies() check(s, "create species") check(s.setId(s_str), "set species id") check(s.setCompartment("c1"), "set species compartment") check(s.setConstant(False), 'set "constant" attribute') check(s.setInitialAmount(float(s_val)), "set initial amount") check(s.setSubstanceUnits("item"), "set substance units") check(s.setBoundaryCondition(False), 'set "boundaryCondition"') check(s.setHasOnlySubstanceUnits(False), 'set "hasOnlySubstanceUnits"') # Create a parameter object inside this model, set the required # attributes 'id' and 'constant' for a parameter in SBML Level 3, and # initialize the parameter with a value along with its units. for k_str in parameters: k = model.createParameter() check(k, "create parameter k") check(k.setId(k_str), "set parameter id") check(k.setConstant(True), 'set parameter "constant"') check(k.setValue(parameters[k_str][0]), "set parameter value") check(k.setUnits(parameters[k_str][1]), "set parameter units") # Create a reaction inside this model, set the reactants and products, # and set the reaction rate expression (the SBML "kinetic law"). We # set the minimum required attributes for all of these objects. The # units of the reaction rate are determined from the 'timeUnits' and # 'extentUnits' attributes on the Model object. for r_str in reactions: r = model.createReaction() check(r, "create reaction") check(r.setId(r_str), "set reaction id") check(r.setReversible(False), "set reaction reversibility flag") check(r.setFast(False), 'set reaction "fast" attribute') reactants = reactions[r_str]["re"] for re_val, re_str in reactants: species_ref = r.createReactant() check(species_ref, "create reactant") check(species_ref.setSpecies(re_str), "assign reactant species") check(species_ref.setStoichiometry(re_val), "set set stoichiometry") check(species_ref.setConstant(True), 'set "constant" on species') products = reactions[r_str]["pr"] for pr_val, pr_str in products: species_ref = r.createProduct() check(species_ref, "create product") check(species_ref.setSpecies(pr_str), "assign product species") check(species_ref.setStoichiometry(pr_val), "set set stoichiometry") check(species_ref.setConstant(True), 'set "constant" on species') math_ast = sbml.parseL3Formula(reactions[r_str]["kin"]) kinetic_law = r.createKineticLaw() check(math_ast, f"create AST for rate expression") check(kinetic_law, "create kinetic law") check(kinetic_law.setMath(math_ast), "set math on kinetic law") # create events for e_str in events: e = model.createEvent() check(e, "create event") check(e.setId(e_str), "set id") check(e.setUseValuesFromTriggerTime(False), "?") t = model.createTrigger() check(t, "create trigger") check( t.setMath(sbml.parseL3Formula(events[e_str]["trigger"])), "set trigger condition", ) check(t.setPersistent(False), "default not persistent") check(t.setInitialValue(False), "default not initially true") check(e.getTrigger().getMath(), 'Problem when creating the trigger condition. The trigger will not work.') # print( '> ' + sbml.formulaToString(e.getTrigger().getMath()) ) d = model.createDelay() check(d, "create delay") check(d.setMath(sbml.parseFormula(events[e_str]["delay"])), "set math") check(e.setDelay(d), "set delay") for ass in events[e_str]["assignments"]: ea = model.createEventAssignment() check(ea, "check event assignment") check(ea.setVariable(ass[0]), "set variable") check(ea.setMath(sbml.parseL3Formula(ass[1])), "set math") return document
1950509f83b858ef7829aa6f30caaa3734ff2946
18,916
def get_network_connection_query(endpoint_ids: str, args: dict) -> str: """Create the network connection query. Args: endpoint_ids (str): The endpoint IDs to use. args (dict): The arguments to pass to the query. Returns: str: The created query. """ remote_ip_list = args.get('remote_ip', '') if not remote_ip_list: raise DemistoException('Please provide a remote_ip argument.') remote_ip_list = wrap_list_items_in_double_quotes(remote_ip_list) local_ip_filter = '' if args.get('local_ip'): local_ip_list = wrap_list_items_in_double_quotes(args.get('local_ip', '')) local_ip_filter = f'and action_local_ip in({local_ip_list})' port_list = args.get('port') port_list_filter = f'and action_remote_port in({port_list})' if port_list else '' return f'''dataset = xdr_data | filter agent_id in ({endpoint_ids}) and event_type = STORY {local_ip_filter} and action_remote_ip in({remote_ip_list}) {port_list_filter}| fields agent_hostname, agent_ip_addresses, agent_id, actor_effective_username, action_local_ip, action_remote_ip, action_remote_port, dst_action_external_hostname, action_country, actor_process_image_name, actor_process_image_path, actor_process_command_line, actor_process_image_sha256, actor_process_instance_id, actor_process_causality_id'''
6390c6ae4436632055fb90687e51cfac2ca09a05
18,917
import json def dump_into_json(filename, metrics): """Dump the metrics dictionary into a JSON file It will automatically dump the dictionary: metrics = {'duration': duration, 'voltage_extremes': voltage_extremes, 'num_beats': num_beats, 'mean_hr_bpm': mean_hr_bpm, 'beats': beats}. in to a JSON file with the file name as the data file name. :param filename: name of the file being read :param metrics: a dictionary containing duration, voltage extremes, number of beats, beats per minute, and the time where beats occur :returns: - successful_JSON - test if it has successfully create JSON """ successful_JSON = False try: output_file = open(filename + '.json', 'w') json.dump(metrics, output_file) output_file.close() successful_JSON = True except TypeError: print("Unsuccessfully output JSON file") return successful_JSON
2e6effbcefe7cb3033c4c472cbee3850c00ae06b
18,918
def _costfun(params, pose0, fixed_pt3d, n_cams, n_pts, cam_idxs, pt3d_idxs, pts2d, K, px_err_sd): """ Compute residuals. `params` contains camera parameters and 3-D coordinates. """ if isinstance(params, (tuple, list)): params = np.array(params) params = np.hstack((pose0, params)) poses, pts3d = _unpack(params, n_cams, n_pts if len(fixed_pt3d) == 0 else 0) points_3d = fixed_pt3d if len(pts3d) == 0 else pts3d points_proj = _project(points_3d[pt3d_idxs], poses[cam_idxs], K) px_err = ((pts2d - points_proj) / px_err_sd[:, None]).ravel() return px_err
3e97e7d14712fe8b89b60de958fd743c728e8cba
18,919
def dbg_get_memory_info(*args): """ dbg_get_memory_info() -> PyObject * This function returns the memory configuration of a debugged process. @return: None if no debugger is active tuple(start_ea, end_ea, name, sclass, sbase, bitness, perm) """ return _ida_idd.dbg_get_memory_info(*args)
f79234d724f33eb8311aff8b6b04ddb9325953c0
18,920
import base64 import requests def get_headers(base_url: str, client_id: str, client_secret: str, grant_type: str, verify: bool): """ Create header with OAuth 2.0 authentication information. :type base_url: ``str`` :param base_url: Base URL of the IdentityIQ tenant. :type client_id: ``str`` :param client_id: Client Id for OAuth 2.0. :type client_secret: ``str`` :param client_secret: Client Secret for OAuth 2.0. :type grant_type: ``str`` :param grant_type: Grant Type for OAuth 2.0. Defaulted to 'client_credentials' if not provided. :return: Header with OAuth 2.0 information if client_id & client_secret are provided, else None. This will return None if the client_id & client_secret were not valid (authorized). """ if base_url is None or client_id is None or client_secret is None: return None if grant_type is None: grant_type = 'client_credentials' auth_cred = client_id + ':' + client_secret iiq_oauth_body = f'grant_type={grant_type}' iiq_oauth_headers = { 'Content-Type': 'application/x-www-form-urlencoded', 'Authorization': 'Basic %s' % base64.b64encode(auth_cred.encode()).decode() } oauth_response = requests.request("POST", url=f'{base_url}{IIQ_OAUTH_EXT}', data=iiq_oauth_body, headers=iiq_oauth_headers, verify=verify) if oauth_response is not None and 200 <= oauth_response.status_code < 300: return { 'Authorization': 'Bearer %s' % oauth_response.json().get('access_token', None), 'Content-Type': 'application/json' } else: err_msg = 'Failed to get response' if oauth_response is not None: err_msg += f' {oauth_response.status_code}' raise DemistoException(err_msg)
06ced982595d4abe99e193ec7ab43e366d575f7b
18,921
import logging from datetime import datetime def draw_pie(fracs, labels): """ This method is to plot the pie chart of labels, then save it into '/tmp/' folder """ logging.info("Drawing the pie chart..") fig = plt.figure() plt.pie(fracs, labels=labels, autopct=make_autopct(fracs), shadow=True) plt.title("Top 10 labels for newly opened issues") figname = "piechart_{}_{}.png".format(str(datetime.datetime.today().date()), str(datetime.datetime.today().time())) fig.savefig("/tmp/{}".format(figname)) pic_path = "/tmp/{}".format(figname) return pic_path
18ee8d0b6054467b9612e282c0d12fa9a10c549b
18,922
import re def eval_function_old(param, param_type): """ Eval Function (Deprecated) isOwner 0xe982E462b094850F12AF94d21D470e21bE9D0E9C :param param: :param param_type: :return: """ try: splitted_input = param.split(' ') except TypeError: pass else: try: print(splitted_input) if len(splitted_input[1][2:]) != 40: print('launch error, address must be 40 alfanumeric hash') else: re.search('0x[0-9,aA-zZ]{40}', splitted_input[1]).group(0) except IndexError: print('there is not enough data to verify current input') pass return splitted_input[1]
6c28fdad6803330bcea8b086cc2e15209125a8d6
18,923
def _multi_convert(value): """ Function try and convert numerical values to numerical types. """ try: value = int(value, 10) except ValueError: try: value = float(value) except ValueError: pass return value
abcd3656fdf5ce7ab1427ee6884a18853bdfaf59
18,924
def dbinom(n, p): """Binomial Distribution n = number of repetitions p = success probability Used when a certain experiment is repeated n times with a 0 ≤ P ≤ 1 probability to succeed once. This doesn't return a value, but rather the specified binomial function """ def b(k): """Returns the probability of k successes""" if 0 <= k <= n: q = 1 - p return rperm(n, k) * p**k * q**(n-k) else: return 0 # Allow accessing the used 'n' and 'p' values from the function b.__dict__['n'] = n b.__dict__['p'] = p b.__dict__['expected'] = n * p b.__dict__['variance'] = (n * p) * (1-p) return b
8917b3eb5ce189094f2b129c596a99d20dfcdcc5
18,925
def array_to_image(x, data_format='channels_last'): """Converts a 3D Numpy array to a PIL Image instance. Args: x: Input Numpy array. data_format: Image data format, either "channels_first" or "channels_last". Returns: A PIL Image instance. Raises: ValueError: if invalid `x` or `data_format` is passed. """ if x.ndim != 3: raise ValueError('Expected image array to have rank 3 (single image). ' 'Got array with shape: %s' % (x.shape,)) if data_format not in {'channels_first', 'channels_last'}: raise ValueError('Invalid data_format: %s' % data_format) if data_format == 'channels_first': x = x.transpose(1, 2, 0) if x.shape[2] == 4: return Image.fromarray(x.astype('uint8'), 'RGBA') elif x.shape[2] == 3: return Image.fromarray(x.astype('uint8'), 'RGB') elif x.shape[2] == 1: if np.max(x) > 255: return Image.fromarray(x[:, :, 0].astype('int32'), 'I') return Image.fromarray(x[:, :, 0].astype('uint8'), 'L') else: raise ValueError('Unsupported channel number: %s' % (x.shape[2],))
2278a317e6d820b9d1aee2d7d796261b14d719f2
18,926
import time import logging import re def worker_process_download_tvtorrent( tvTorUnit, client = None, maxtime_in_secs = 14400, num_iters = 1, kill_if_fail = False ): """ Used by, e.g., :ref:`get_tv_batch`, to download missing episodes on the Plex_ TV library. Attempts to use the Deluge_ server, specified in :numref:`Seedhost Services Setup`, to download an episode. If successful then uploads the finished episode from the remote SSH server to the Plex_ server and local directory, specified in :numref:`Local and Remote (Seedhost) SSH Setup`. :param dict tvTorUnit: a :py:class:`dict` representing a summarized magnet link searching operation on an episode. The format and meaning of this data structure is described in :py:meth:`create_tvTorUnits <howdy.tv.tv.create_tvTorUnits>`. :param DelugeRPC client: optional argument, the `DelugeRPCClient <Deluge RPC client_>`_ object that at a low level uses the Deluge_ server to download the Magnet link at the remote SSH server. If ``None``, then this client is created using :py:meth:`get_deluge_client <howdy.core.core_deluge.get_deluge_client>`. :param int maxtime_in_secs: optional argument, the maximum time to wait for a Magnet link found by the Jackett_ server to fully download through the Deluge_ server. Must be :math:`\ge 60` seconds. Default is 14400 seconds. :param int num_iters: optional argument, the maximum number of Magnet links to try and fully download before giving up. The list of Magnet links to try for each missing episode is ordered from *most* seeders + leechers to *least*. Must be :math:`\ge 1`. Default is 1. :param bool kill_if_fail: optional argument. If ``True``, then on failing operation kill the torrent download on the Deluge_ server and delete any files associated with it. If ``False``, then keep the torrent download on failure. :returns: If successful, creates a two element :py:class:`tuple`: the first element is the base name of the episode that is uploaded to the Plex_ server, and the second element is a status :py:class:`dictionary <dict>` with three keys. * the ``status`` is ``"SUCCESS"``. * the ``message`` describes the final status of the operation. * the ``time`` tells how long, in seconds, the successful operation took. If unsuccessful, returns a failing tuple: the first element is ``None``, and the the second element is a status :py:class:`dictionary <dict>` with three keys. * the ``status`` is ``"FAILURE"``. * the ``message`` describes the illuminating reason as to how this operation failed. * the ``time`` tells how long, in seconds, the failing operation took. :rtype: tuple .. seealso:: * :ref:`get_tv_batch`. * :py:meth:`get_remaining_episodes <howdy.tv.tv.get_remaining_episodes>`. * :py:meth:`create_tvTorUnits <howdy.tv.tv.create_tvTorUnits>`. * :py:meth:`download_batched_tvtorrent_shows <howdy.tv.tv.download_batched_tvtorrent_shows>`. .. _`Deluge RPC client`: https://github.com/JohnDoee/deluge-client .. _Deluge: https://en.wikipedia.org/wiki/Deluge_(software) """ time0 = time.time( ) assert( maxtime_in_secs > 0 ) # if client is None: client, status = core_deluge.get_deluge_client( ) if client is None: return None, _create_status_dict( 'FAILURE', 'cannot create or run a valid deluge RPC client.', time0 ) # ## now get list of torrents, choose "top" one def _process_jackett_items( tvTorUnit, shared_list ): t0 = time.time( ) torFileName = tvTorUnit[ 'torFname' ] totFname = tvTorUnit[ 'totFname' ] minSize = tvTorUnit[ 'minSize' ] maxSize = tvTorUnit[ 'maxSize' ] minSize_x265 = tvTorUnit[ 'minSize_x265' ] maxSize_x265 = tvTorUnit[ 'maxSize_x265' ] series_name = tvTorUnit[ 'tvshow' ] mustHaveString = torFileName.split( )[ -1 ] do_raw = tvTorUnit[ 'do_raw' ] logging.info( 'jackett start: %s, %s, %s' % ( torFileName, mustHaveString, series_name ) ) # ## try this twice if it can torFileNameAlt = re.sub('\(([0-9]+)\)', '', torFileName ).strip( ) torFileNames = [ torFileName, ] if torFileNameAlt != torFileName: torFileNames.append( torFileNameAlt ) for tfn in torFileNames: logging.info( 'processing jackett from "%s", using "%s" now, at %0.3f seconds after start.' % ( torFileName, tfn, time.time( ) - time0 ) ) data, status = get_tv_torrent_jackett( tfn, maxnum = 100, keywords = [ 'x264', 'x265', '720p' ], minsizes = [ minSize, minSize_x265 ], maxsizes = [ maxSize, maxSize_x265 ], keywords_exc = [ 'xvid' ], raw = do_raw, must_have = [ mustHaveString ] ) if status == 'SUCCESS': break if status != 'SUCCESS': shared_list.append( ( 'jackett', _create_status_dict( 'FAILURE', status, t0 ), 'FAILURE' ) ) return logging.info( 'successfully processed jackett on %s in %0.3f seconds.' % ( torFileName, time.time( ) - t0 ) ) shared_list.append( ( 'jackett', data, 'SUCCESS' ) ) # def _process_eztv_io_items( tvTorUnit, shared_list ): t0 = time.time( ) torFileName = tvTorUnit[ 'torFname' ] totFname = tvTorUnit[ 'totFname' ] minSize = tvTorUnit[ 'minSize' ] maxSize = tvTorUnit[ 'maxSize' ] minSize_x265 = tvTorUnit[ 'minSize_x265' ] maxSize_x265 = tvTorUnit[ 'maxSize_x265' ] series_name = tvTorUnit[ 'tvshow' ] mustHaveString = torFileName.split( )[ -1 ] logging.info( 'eztv.io start: %s' % torFileName ) # data, status = get_tv_torrent_eztv_io( torFileName, maxnum = 100, series_name = series_name, minsizes = [ minSize, minSize_x265], maxsizes = [ maxSize, maxSize_x265] ) if status != 'SUCCESS': shared_list.append( ( 'eztv.io', _create_status_dict( 'FAILURE', status, time0 ), 'FAILURE' ) ) return data_filt = list(filter( lambda elem: any(map(lambda tok: tok in elem['title'].lower( ), ( 'x264', 'x265', '720p' ) ) ) and 'xvid' not in elem['title'].lower( ), data ) ) if len( data_filt ) == 0: shared_list.append( ( 'eztv.io', _create_status_dict( 'FAILURE', 'ERROR, COULD NOT FIND %s IN EZTV.IO.' % torFileName, t0 ), 'FAILURE' ) ) return logging.info( 'successfully processed eztv.io on %s in %0.3f seconds.' % ( torFileName, time.time( ) - t0 ) ) shared_list.append( ( 'eztv.io', data_filt, 'SUCCESS' ) ) # def _process_zooqle_items( tvTorUnit, shared_list ): t0 = time.time( ) torFileName = tvTorUnit[ 'torFname' ] totFname = tvTorUnit[ 'totFname' ] minSize = tvTorUnit[ 'minSize' ] maxSize = tvTorUnit[ 'maxSize' ] minSize_x265 = tvTorUnit[ 'minSize_x265' ] maxSize_x265 = tvTorUnit[ 'maxSize_x265' ] series_name = tvTorUnit[ 'tvshow' ] mustHaveString = torFileName.split( )[ -1 ] logging.info( 'zooqle start: %s' % torFileName ) # data, status = get_tv_torrent_zooqle( torFileName, maxnum = 100 ) if status != 'SUCCESS': shared_list.append( ( 'zooqle', _create_status_dict( 'FAILURE', status, t0 ), 'FAILURE' ) ) return data_filt = list(filter( lambda elem: any(map(lambda tok: tok in elem['title'].lower( ), ( 'x264', 'x265', '720p' ) ) ) and 'xvid' not in elem['title'].lower( ) and elem['torrent_size'] >= minSize*1e6 and elem['torrent_size'] <= maxSize*1e6, data ) ) if len( data_filt ) == 0: shared_list.append( ( 'zooqle', _create_status_dict( 'FAILURE', 'ERROR, COULD NOT FIND %s IN ZOOQLE.' % torFileName, t0 ), 'FAILURE' ) ) logging.info( 'successfully processed zooqle on %s in %0.3f seconds.' % ( torFileName, time.time( ) - t0 ) ) shared_list.append( ( 'zooqle', data_filt, 'SUCCESS' ) ) m = Manager( ) shared_list = m.list( ) jobs = [ ] for targ in ( _process_jackett_items, _process_eztv_io_items, _process_zooqle_items ): job = Process( target = targ, args = ( tvTorUnit, shared_list ) ) job.daemon = False jobs.append( job ) job.start( ) for job in jobs: job.join( ) for job in jobs: job.close( ) #shared_list = list(map( # lambda proc: proc( tvTorUnit ), # ( _process_jackett_items, _process_eztv_io_items, _process_zooqle_items ) ) ) error_tup = list(map( lambda dat: ( dat[0], dat[1] ), filter(lambda dat: dat[-1] == 'FAILURE', shared_list ) ) ) data = list( chain.from_iterable( map(lambda dat: dat[1], filter(lambda dat: dat[-1] == 'SUCCESS', shared_list ) ) ) ) # ## status of downloaded elements torFileName = tvTorUnit[ 'torFname' ] totFname = tvTorUnit[ 'totFname' ] if len( data ) == 0: return None, dict( error_tup ) print( 'got %d candidates for %s in %0.3f seconds.' % ( len(data), torFileName, time.time( ) - time0 ) ) # ## wrapped away in another method return _worker_process_tvtorrents( client, data, torFileName, totFname, maxtime_in_secs, num_iters, kill_if_fail )
899b13f70d1673168eab4b533ce7e5219d25d365
18,927
from operator import or_ def find_fixture( gameweek, team, was_home=None, other_team=None, kickoff_time=None, season=CURRENT_SEASON, dbsession=session, ): """Get a fixture given a gameweek, team and optionally whether the team was at home or away, the kickoff time and the other team in the fixture. """ fixture = None if not isinstance(team, str): team_name = get_team_name(team, season=season, dbsession=dbsession) else: team_name = team if not team_name: raise ValueError("No team with id {} in {} season".format(team, season)) if other_team and not isinstance(other_team, str): other_team_name = get_team_name(other_team, season=season, dbsession=dbsession) else: other_team_name = other_team query = ( dbsession.query(Fixture).filter_by(gameweek=gameweek).filter_by(season=season) ) if was_home is True: query = query.filter_by(home_team=team_name) elif was_home is False: query = query.filter_by(away_team=team_name) elif was_home is None: query = query.filter( or_(Fixture.away_team == team_name, Fixture.home_team == team_name) ) else: raise ValueError("was_home must be True, False or None") if other_team_name: if was_home is True: query = query.filter_by(away_team=other_team_name) elif was_home is False: query = query.filter_by(home_team=other_team_name) elif was_home is None: query = query.filter( or_( Fixture.away_team == other_team_name, Fixture.home_team == other_team_name, ) ) fixtures = query.all() if not fixtures or len(fixtures) == 0: raise ValueError( "No fixture with season={}, gw={}, team_name={}, was_home={}, other_team_name={}".format( season, gameweek, team_name, was_home, other_team_name ) ) if len(fixtures) == 1: fixture = fixtures[0] elif kickoff_time: # team played multiple games in the gameweek, determine the # fixture of interest using the kickoff time, kickoff_date = dateparser.parse(kickoff_time) kickoff_date = kickoff_date.replace(tzinfo=timezone.utc) kickoff_date = kickoff_date.date() for f in fixtures: f_date = dateparser.parse(f.date) f_date = f_date.replace(tzinfo=timezone.utc) f_date = f_date.date() if f_date == kickoff_date: fixture = f break if not fixture: raise ValueError( "No unique fixture with season={}, gw={}, team_name={}, was_home={}, kickoff_time={}".format( season, gameweek, team_name, was_home, kickoff_time ) ) return fixture
fcf90acd4fd8dd663c5cdf2ec99bd428c8cf7a45
18,928
import errno def plat_specific_errors(*errnames): """Return error numbers for all errors in errnames on this platform. The 'errno' module contains different global constants depending on the specific platform (OS). This function will return the list of numeric values for a given list of potential names. """ errno_names = dir(errno) nums = [getattr(errno, k) for k in errnames if k in errno_names] # de-dupe the list return list(dict.fromkeys(nums).keys())
acb70b2b7d6b16fbe2cfc9f559606efd504b8e3f
18,929
def fft(array, nfft=None, dim=None, dx=None, detrend=None, tapering=False, shift=True, sym=False, chunks=None): """Compute the spectrum on several dimensions of xarray.DataArray objects using the Fast Fourrier Transform parrallelized with dask. Parameters ---------- array : xarray.DataArray Array from which compute the spectrum dim : str or sequence Dimensions along which to compute the spectrum dx : float or sequence, optional Define the resolution of the dimensions. If not precised, the resolution is computed directly from the coordinates associated to the dimensions. detrend : {None, 'mean', 'linear'}, optional Remove the mean or a linear trend before the spectrum computation tapering : bool, optional If True, tapper the data with a Tukey window shift : bool, optional If True, the frequency axes are shifted to center the 0 frequency, otherwise negative frequencies follow positive frequencies as in numpy.fft.ftt sym : bool, optional If True, force the spectrum to be symmetrical even if the input data is real chunks : int, tuple or dict, optional Chunk sizes along each dimension, e.g., ``5``, ``(5, 5)`` or ``{'x': 5, 'y': 5}`` Returns ------- res : DataArray A multi-dimensional complex DataArray with the corresponding dimensions transformed in the Fourier space. Notes ----- If the input data is real, a real fft is performed over the first dimension, which is faster. Then the transform over the remaining dimensions are computed with the classic fft. """ temp_nfft, new_dim = _utils.infer_n_and_dims(array, nfft, dim) new_nfft = _utils.infer_arg(temp_nfft, dim) new_dx = _utils.infer_arg(dx, dim) if detrend is 'mean': # Tackling the issue of the dask graph by computing and loading the # mean here for di in new_dim: mean_array = array.mean(dim=di).load() preproc_array = array - mean_array elif detrend is 'linear': preproc_array = _detrend(array, new_dim) else: preproc_array = array if tapering: preproc_array = _tapper(array, new_dim) # TODO: Check if this part may work with dask using np.iscomplexobj # If the array is complex, set the symmetry parameters to True if np.any(np.iscomplex(array)): sym = True spectrum_array, spectrum_coords, spectrum_dims = \ _fft(preproc_array, new_nfft, new_dim, new_dx, shift=shift, chunks=chunks, sym=sym) spec = xr.DataArray(spectrum_array, coords=spectrum_coords, dims=spectrum_dims, name='spectrum') _compute_norm_factor(spec, new_nfft, new_dim, new_dx, tapering, sym=sym) return spec
dd672487df9f4988c53706a2886f499e56a5ff4c
18,930
from pymatgen.util.num import make_symmetric_matrix_from_upper_tri from typing import Union def make_symmetric_matrix(d: Union[list, float]) -> list: """ d (list or float): len(d) == 1: Suppose cubic system len(d) == 3: Suppose tetragonal or orthorhombic system len(d) == 6: Suppose the other system """ if isinstance(d, float): tensor = [[d, 0, 0], [0, d, 0], [0, 0, d]] elif len(d) == 9: tensor = [[d[0], d[1], d[2]], [d[3], d[4], d[5]], [d[6], d[7], d[8]]] elif len(d) == 1: tensor = [[d[0], 0, 0], [0, d[0], 0], [0, 0, d[0]]] elif len(d) == 3: tensor = [[d[0], 0, 0], [0, d[1], 0], [0, 0, d[2]]] elif len(d) == 6: """ Given a symmetric matrix in upper triangular matrix form as flat array indexes as: [A_xx, A_yy, A_zz, A_xy, A_xz, A_yz] This will generate the full matrix: [[A_xx, A_xy, A_xz], [A_xy, A_yy, A_yz], [A_xz, A_yz, A_zz] """ tensor = make_symmetric_matrix_from_upper_tri(d).tolist() else: raise ValueError("{} is not valid to make symmetric matrix".format(d)) return tensor
318caf380a8f0a0878eac54bae49c86722e532bb
18,931
def convert_lds_to_block_tridiag(As, bs, Qi_sqrts, ms, Ri_sqrts): """ Parameterize the LDS in terms of pairwise linear Gaussian dynamics and per-timestep Gaussian observations. p(x_{1:T}; theta) = [prod_{t=1}^{T-1} N(x_{t+1} | A_t x_t + b_t, Q_t)] * [prod_{t=1}^T N(x_t | m_t, R_t)] We can rewrite this as a Gaussian with a block tridiagonal precision matrix J. The blocks of this matrix are: J_{t,t} = A_t.T Q_t^{-1} A_t + Q_{t-1}^{-1} + R_t^{-1} J_{t,t+1} = -Q_t^{-1} A_t The linear term is h_t h_t = -A_t.T Q_t^{-1} b_t + Q_{t-1}^{-1} b_{t-1} + R_t^{-1} m_t We parameterize the model in terms of theta = {A_t, b_t, Q_t^{-1/2}}_{t=1}^{T-1}, {m_t, R_t^{-1/2}}_{t=1}^T """ T, D = ms.shape assert As.shape == (T-1, D, D) assert bs.shape == (T-1, D) assert Qi_sqrts.shape == (T-1, D, D) assert Ri_sqrts.shape == (T, D, D) # Construnct the inverse covariance matrices Qis = np.matmul(Qi_sqrts, np.swapaxes(Qi_sqrts, -1, -2)) Ris = np.matmul(Ri_sqrts, np.swapaxes(Ri_sqrts, -1, -2)) # Construct the joint, block-tridiagonal precision matrix J_lower_diag = -np.matmul(Qis, As) J_diag = np.concatenate([-np.matmul(np.swapaxes(As, -1, -2), J_lower_diag), np.zeros((1, D, D))]) \ + np.concatenate([np.zeros((1, D, D)), Qis]) \ + Ris # Construct the linear term h = np.concatenate([np.matmul(J_lower_diag, bs[:, :, None])[:, :, 0], np.zeros((1, D))]) \ + np.concatenate([np.zeros((1, D)), np.matmul(Qis, bs[:, :, None])[:, :, 0]]) \ + np.matmul(Ris, ms[:, :, None])[:, :, 0] return J_diag, J_lower_diag, h
d16721ffb77f06cd55ca3c70238ca56fad76970d
18,932
def extract_string_from_tensor(input_ids, mode="single", config=None, tokenizer=None): """ Args: input_ids (Tensor): input sentences with shape [batch_size, seq_len]. mode (str): ["pair", "single"] "pair" for tasks with paired inputs `<bos> A <eos> B <eos>`, such as summarization task, the dataset format `<bos> Article <eos> Summary <eos>`, reading comprehension task, the dataset format `<bos> Passage Question <eos> Answer <eos>`. "single" for tasks with single input `<bos> A <eos>`, such as Language Modeling, Lambada task. config: the configuration of GPT-2 model. tokenizer: the tokenizer of GPT-2 model. Return: prompt_list (list): list of prompt_text reference_list (list): list of reference_text, or second part of text rest_list (list): list of rest_text, or rest part of text """ batch_size = config.batch_size seq_length = config.seq_length prompt_list = [""] * batch_size reference_list = [""] * batch_size eos_text = tokenizer.eos_token len_eos_text = len(eos_text) input_ids_np = input_ids.asnumpy() input_ids_np = input_ids_np.reshape((batch_size, seq_length)) # input_ids = P.Reshape()(input_ids, (batch_size, seq_length)) if mode == "pair": for batch_idx in range(batch_size): sentence_tensor = input_ids_np[batch_idx] sentence_list = sentence_tensor.asnumpy().tolist()[1:] sentence = tokenizer.decode(sentence_list) prompt_start = 0 prompt_end = sentence.find(eos_text, 0) reference_start = prompt_end + len_eos_text reference_end = sentence[reference_start:].find( eos_text, 0) + reference_start prompt_list[batch_idx] = sentence[prompt_start:prompt_end] reference_list[batch_idx] = sentence[reference_start:reference_end] return prompt_list, reference_list # For single output datasets such as WikiText, etc. if mode == "single": for batch_idx in range(batch_size): sentence_tensor = input_ids_np[batch_idx] sentence_list = sentence_tensor.asnumpy().tolist()[1:] sentence = tokenizer.decode(sentence_list) prompt_start = 0 prompt_end = sentence.find(eos_text, 0) prompt_list[batch_idx] = sentence[prompt_start:prompt_end] else: raise NotImplementedError('mode:{} not supported.'.format(mode)) return prompt_list
27cf8905350db53ec908f3b8ef8674a7ac3a17eb
18,933
def schema_validation_matching(source_fields, target_fields): """Compare schemas between two dictionary objects""" results = [] # Go through each source and check if target exists and matches for source_field_name, source_field_type in source_fields.items(): # target field exists if source_field_name in target_fields: # target data type matches if source_field_type == target_fields[source_field_name]: results.append( [ source_field_name, source_field_name, "1", "1", consts.VALIDATION_STATUS_SUCCESS, "Source_type:{} Target_type:{}".format( source_field_type, target_fields[source_field_name] ), ] ) # target data type mismatch else: results.append( [ source_field_name, source_field_name, "1", "1", consts.VALIDATION_STATUS_FAIL, "Data type mismatch between source and target. Source_type:{} Target_type:{}".format( source_field_type, target_fields[source_field_name] ), ] ) # target field doesn't exist else: results.append( [ source_field_name, "N/A", "1", "0", consts.VALIDATION_STATUS_FAIL, "Target doesn't have a matching field name", ] ) # source field doesn't exist for target_field_name, target_field_type in target_fields.items(): if target_field_name not in source_fields: results.append( [ "N/A", target_field_name, "0", "1", consts.VALIDATION_STATUS_FAIL, "Source doesn't have a matching field name", ] ) return results
7af82c39462de09e326c6f4413a2d6be7fd6c977
18,934
import pkg_resources def find_thirdparty_marshaller_plugins(): """ Find, but don't load, all third party marshaller plugins. Third party marshaller plugins declare the entry point ``'hdf5storage.marshallers.plugins'`` with the name being the Marshaller API version and the target being a function that returns a ``tuple`` or ``list`` of all the marshallers provided by that plugin when given the hdf5storage version (``str``) as its only argument. .. versionadded:: 0.2 Returns ------- plugins : dict The marshaller obtaining entry points from third party plugins. The keys are the Marshaller API versions (``str``) and the values are ``dict`` of the entry points, with the module names as the keys (``str``) and the values being the entry points (``pkg_resources.EntryPoint``). See Also -------- supported_marshaller_api_versions """ all_plugins = tuple(pkg_resources.iter_entry_points( 'hdf5storage.marshallers.plugins')) return {ver: {p.module_name: p for p in all_plugins if p.name == ver} for ver in supported_marshaller_api_versions()}
7aad132f520b67d5b39e857175e4bc006fd3ad72
18,935
def justTransportResponse(transport): """ Helper function for creating a Response which uses the given transport. All of the other parameters to L{Response.__init__} are filled with arbitrary values. Only use this method if you don't care about any of them. """ return Response((b'HTTP', 1, 1), 200, b'OK', _boringHeaders, transport)
02a18a500cb9a623c287d4e2f3777237e3574ef6
18,936
import os def get_tools_location() -> str: """Get the path to the Alteryx Python SDK Tools directory.""" admin_path = os.path.join(os.environ["APPDATA"], "Alteryx", "Tools") user_path = os.path.join(os.environ["PROGRAMDATA"], "Alteryx", "Tools") if contains_path(__file__, admin_path): return admin_path if contains_path(__file__, user_path): return user_path raise RuntimeError("Tool is not located in Alteryx install locations.")
4ceedb06eac222939384ef5dff34f10652b37525
18,937
def object_comparator_lookup(src_obj, dst_obj): """ Compare an object with another entry by entry """ dont_match = [] no_upstream = [] for i in dst_obj: count_name = 0 count_value = 0 for j in src_obj: if list(j.keys())[0] == list(i.keys())[0]: count_name = 1 if j[list(j.keys())[0]] == i[list(i.keys())[0]]: count_value = 1 if count_name == 0: if list(i.keys())[0] != "last-modified": print(i.keys(), list(i.keys())[0]) no_upstream.append(i) else: if count_value == 0: dont_match.append(i) if no_upstream or dont_match: return 1 else: return 0
ba5767624255da915d9c07d25b62880c387f6f00
18,938
def line( data_frame=None, x=None, y=None, line_group=None, color=None, line_dash=None, hover_name=None, hover_data=None, custom_data=None, text=None, facet_row=None, facet_row_weights=None, facet_col=None, facet_col_weights=None, facet_col_wrap=0, facet_row_spacing=None, facet_col_spacing=None, error_x=None, error_x_minus=None, error_y=None, error_y_minus=None, animation_frame=None, animation_group=None, category_orders=None, labels=None, orientation=None, color_discrete_sequence=None, color_discrete_map=None, line_dash_sequence=None, line_dash_map=None, log_x=False, log_y=False, range_x=None, range_y=None, line_shape=None, render_mode="auto", title=None, template=None, width=None, height=None, ): """ In a 2D line plot, each row of `data_frame` is represented as vertex of a polyline mark in 2D space. """ return make_figure(args=locals(), constructor=go.Scatter)
bcedfe2c9297f4d3c049e500265f9ffbc0dde85a
18,939
def is_primitive(v): """ Checks if v is of primitive type. """ return isinstance(v, (int, float, bool, str))
d22607c0e2b93b82b1da6beb50de68668624dd71
18,940
def linkify_only_full_urls(attrs, new=False): """Linkify only full links, containing the scheme.""" if not new: # This is an existing <a> tag, leave it be. return attrs # If the original text doesn't contain the scheme, don't linkify. if not attrs['_text'].startswith(('http:', 'https:')): return None return attrs
89fcc7f3fc53353686260779ae8ddb4c0523c57b
18,941
import os def retrieve_model_list(opt): """ retrive the model information from form a directory. :param opt: parser :return: list of Checkpoint object. """ files = os.listdir(os.path.join(opt.dir, 'models')) files.sort() # file name format "address/$NAME_acc_XX.YY_ppl_XX.YY_eZZ.pt" valid_address = [] for address in files: name = os.path.basename(address) step = calc_us_in_name(name) - 5 if valid_model_name(name, opt, step=step): lst = name.strip().split('_') valid_address.append( Checkpoints( os.path.join( os.path.join(opt.dir, 'models'), address ), str(lst[0+step]), float(lst[2+step]), float(lst[4+step]), Checkpoints.str2epoch(lst[5+step]) ) ) try: assert len(valid_address) != 0 except AssertionError as e: print("{0}\nNo valid model found in {1} with name={2}." .format(e, opt.dir, opt.name)) raise return valid_address
0b1bcd662d0ca8ec62def67e8e3fe0fff7825de4
18,942
import os def _read_filenames_in_dir(path, extension): """Returns the name of the Yaml files in a certain directory Arguments --------- path: str Path to directory extension: str Extension of files (such as: '.yml' or '.csv') Returns ------- list The list of files in `path` with extension """ files = [] for filename in os.listdir(path): if filename.endswith(extension): files.append(os.path.splitext(filename)[0]) return files
6f16cd0f39d7df93fbbf8ede7236e373f1d905df
18,943
import argparse import os def setup_cccc_tool_plugin(use_plugin_context=True, binary=None, cccc_config=None): """Create an instance of the CCCC plugin.""" arg_parser = argparse.ArgumentParser() arg_parser.add_argument("--cccc-bin", dest="cccc_bin") arg_parser.add_argument("--cccc-config", dest="cccc_config") resources = Resources( [os.path.join(os.path.dirname(statick_tool.__file__), "plugins")] ) config = Config(resources.get_file("config.yaml")) ctp = CCCCToolPlugin() plugin_context = PluginContext(arg_parser.parse_args([]), resources, config) plugin_context.args.output_directory = os.path.dirname(__file__) if binary: plugin_context.args.cccc_bin = binary if cccc_config: plugin_context.args.cccc_config = cccc_config if use_plugin_context: ctp.set_plugin_context(plugin_context) return ctp
5b3b3e54f01967004a0ecfa938c1a7bec581ce11
18,944
def Precedence(op): """The numeric precedence of a binary operator.""" # Particularly convenient during layout of binary operators. return float(sum(i * (op in grp[1:]) for i, grp in enumerate(precedence))) / len(precedence)
0071d2972474c57376c334401c43673f1c4bde49
18,945
from typing import Dict from typing import Any def _FeastToExampleTransform( pipeline: beam.Pipeline, exec_properties: Dict[str, Any], split_pattern: str ) -> beam.pvalue.PCollection: """Read from BigQuery and transform to TF examples. Args: pipeline: beam pipeline. exec_properties: A dict of execution properties. split_pattern: Split.pattern in Input config, a BigQuery sql string. Returns: PCollection of TF examples. """ # Load custom config dictionary custom_config = _load_custom_config(exec_properties["custom_config"]) # Get Feast retrieval job retrieval_job = _get_retrieval_job( entity_query=split_pattern, custom_config=custom_config ) # Setup datasource and converter. if isinstance(retrieval_job, BigQueryRetrievalJob): query = retrieval_job.to_sql() # Internally Beam creates a temporary table and exports from the query. datasource = utils.ReadFromBigQuery(query=query) converter = converters._BigQueryConverter( query, _get_gcp_project(exec_properties) ) else: raise NotImplementedError( f"Support for {type(retrieval_job)} is not available yet. For now we only support BigQuery source." ) # Setup converter from dictionary of str -> value to bytes map_function = None out_format = exec_properties.get( "output_data_format", example_gen_pb2.FORMAT_TF_EXAMPLE ) if out_format == example_gen_pb2.FORMAT_TF_EXAMPLE: map_function = converter.RowToExampleBytes elif out_format == example_gen_pb2.FORMAT_TF_SEQUENCE_EXAMPLE: map_function = converter.RowToSequenceExampleBytes else: raise NotImplementedError( f"Format {out_format} is not currently supported. Currently we only support tfexample" ) # Setup pipeline return ( pipeline | "DataRetrieval" >> datasource | f"To{out_format.capitalize()}Bytes" >> beam.Map(map_function) )
76451a98b9e11188eda42b5141e73647b87df94b
18,946
import os def fluxional_mode(atom_indices, span=360.0): """ Writes the string for each fluxional mode """ # Format the aotm indices string atom_indices = util.format_flux_mode_indices(atom_indices) # Create dictionary to fill template flux_mode_keys = { 'atom_indices': atom_indices, 'span': span, } # Set template name and path for a monte carlo species section template_file_name = 'fluxional_mode.mako' template_file_path = os.path.join(MONTE_CARLO_PATH, template_file_name) # Build monte carlo section string flux_str = Template(filename=template_file_path).render(**flux_mode_keys) return flux_str
489f1f82e8eaf535ae446b41e2e7307ab97f7cd8
18,947
import re import logging def parse_host_info(qhost_tree, queues_tree, queues_to_ignore=[]): """ :return: dictionary key: host, value HostInfo """ dctRet = {} for host_node in qhost_tree.findall('host'): host_name = host_node.get('name') dct_hostvalues = dict([(hostvalue_node.get('name'), hostvalue_node.text) for hostvalue_node in host_node.findall('hostvalue')]) if dct_hostvalues['num_proc'] != '-': slots = int(dct_hostvalues['num_proc']) slots_used = sum([int(slots_used_node.text) for slots_used_node in host_node.findall(".//queuevalue[@name='slots_used']")]) memory = dehumanize_memory(dct_hostvalues['mem_total']) mem_used = 0 if dct_hostvalues['mem_used'] == '-' else dehumanize_memory(dct_hostvalues['mem_used']) dctRet[host_name] = HostInfo(host=host_name, slots=slots, memory=memory, state=None, slots_used=slots_used, mem_used=mem_used, queues=set()) else: dctRet[host_name] = HostInfo(host=host_name, slots=None, memory=None, state=None, slots_used=None, mem_used=None, queues=set()) for queue_info in queues_tree.findall('*/Queue-List'): state = queue_info.findtext('state') if state is None: state = '' # Ignore suspended state state = re.sub('s', '', state) # Ignore configuration ambiguous state state = re.sub('c', '', state) # If disabled, ignore other state flags, because they can vary between queues on a host if 'd' in state: state = 'd' queue = queue_info.findtext('name') queue_split = queue.split('@', 1) host = queue_split[1] queue_name = queue_split[0] if queue_name in queues_to_ignore: continue host_info = dctRet.get(host) host_info.queues.add(queue_name) if len(state) > 0: if host_info is None: logging.log_message(host + " found in qstat but not qhost") elif host_info.state is None: dctRet[host] = host_info._replace(state=state) elif not is_host_state_compatible(host_info.state, state): raise Exception("Conflicting states for %s: %s != %s" % (host, host_info.state, state)) return dctRet
a5f5154ac50d358b4a523872ffcaba3030d2f722
18,948
import click def _get_param_type_from_str( type_name: str = None, param_doc: docstring_parser.DocstringParam = None, ) -> t.Tuple[_ParamArgs, t.Union[click.ParamType, None]]: """Guess parameter type from parameter type name.""" type_name = type_name or "" desc = param_doc.description if param_doc else "" if type_name == "int": return _ParamArgs.single, int elif type_name == "float": return _ParamArgs.single, float elif type_name == "bytes": return _ParamArgs.single, bytes elif type_name == "bool": return _ParamArgs.flag, None elif type_name[:4] == "list": args, element = _get_param_type_from_str(type_name[5:-1], param_doc) assert args is _ParamArgs.single return _ParamArgs.multiple, element elif type_name[:5] == "tuple": els = (_get_param_type_from_str(n)[1] for n in type_name[6:-1].split(", ")) return _ParamArgs.single, click.Tuple(els) elif type_name == "io.FileIO": return _ParamArgs.single, _build_file_param_type(desc) elif type_name == "pathlib.Path": return _ParamArgs.single, _build_path_param_type(desc) elif type_name == "datetime.datetime": return _ParamArgs.single, click.DateTime() elif type_name == "uuid.UUID": return _ParamArgs.single, click.UUID else: logger.warning("Cannot guess parameter type from name: %s", type_name) return _ParamArgs.single, None
a13621ffbed428fbc32f6285e2fc0a2b53097cad
18,949
def solve(task: str) -> int: """How many differently colored bags can contain shiny gold?""" parents = process_data(task) seen = set() candidates = parents["shiny gold"] while candidates: candidate = candidates.pop() if candidate not in seen: seen.add(candidate) candidates.extend(parents[candidate]) return len(seen)
ea505c346a4482b9516ad22baa71d251b7e1dc41
18,950
import urllib import base64 import hashlib import requests def cityDesc(codePostal): """ code de retour : 100 : tout est normal 200 : la requete n'a pas abouti 300 : pas de cine dans la ville 400 : la ville n'existe pas """ headersUA = init_connect() YMDstr = getDate() searchField = codePostal filterField = '' countField = '500' pageField = '1' url = 'q=' + searchField + '&filter=' + filterField + '&count=' + countField + '&page=' + pageField + '&format=json&partner=' + allocine_partner + '&sed=' + YMDstr toEncrypt = allocine_secret_key + url sig = urllib.parse.quote_plus(base64.b64encode(hashlib.sha1(toEncrypt.encode('utf-8')).digest())) urlComplete = 'http://api.allocine.fr/rest/v3/search?' + url + "&sig=" + sig codeRetour = 200 listeCine = [] try: req = requests.get(urlComplete, headers=headersUA) except: return listeCine, codeRetour # print(req.json()) if req.status_code == 200: codeRetour = 100 if 'location' in req.json()['feed']: if 'theater' in req.json()['feed']: for theaterCity in req.json()['feed']['theater']: listeCine.append(theaterCity) else: codeRetour = 300 else: codeRetour = 400 return listeCine, codeRetour
06da49d9afe5420869204a423a2db31df11cc58e
18,951
async def get_reposet(request: AthenianWebRequest, id: int) -> web.Response: """List a repository set. :param id: Numeric identifier of the repository set to list. :type id: repository set ID. """ rs_cols = [ RepositorySet.name, RepositorySet.items, RepositorySet.precomputed, RepositorySet.tracking_re, ] rs, _ = await fetch_reposet(id, rs_cols, request.uid, request.sdb, request.cache) return model_response(RepositorySetWithName( name=rs.name, items=rs.items, precomputed=rs.precomputed))
a3a2cf6cb1152aadb81798cfa3e1be214635edad
18,952
from xgboost_ray.elastic import _maybe_schedule_new_actors, \ def _train(params: Dict, dtrain: RayDMatrix, model_factory: Type[LGBMModel], boost_rounds_left: int, *args, evals=(), ray_params: RayParams, cpus_per_actor: int, gpus_per_actor: int, _training_state: _TrainingState, machine_addresses: Optional[List[Tuple[str, str]]] = None, listen_port: Optional[int] = None, **kwargs) -> Tuple[LGBMModel, Dict, Dict]: """This is the local train function wrapped by :func:`train() <train>`. This function can be thought of one invocation of a multi-actor lightgbm training run. It starts the required number of actors, triggers data loading, collects the results, and handles (i.e. registers) actor failures - but it does not handle fault tolerance or general training setup. Generally, this function is called one or multiple times by the :func:`train() <train>` function. It is called exactly once if no errors occur. It is called more than once if errors occurred (e.g. an actor died) and failure handling is enabled. """ _update_scheduled_actor_states, _get_actor_alive_status # Un-schedule possible scheduled restarts _training_state.restart_training_at = None params = deepcopy(params) if "n_jobs" in params: if params["n_jobs"] > cpus_per_actor: raise ValueError( "Specified number of threads greater than number of CPUs. " "\nFIX THIS by passing a lower value for the `n_jobs` " "parameter or a higher number for `cpus_per_actor`.") else: params["n_jobs"] = cpus_per_actor _check_cpus_per_actor_at_least_2( params["n_jobs"], getattr(ray_params, "allow_less_than_two_cpus", False)) # This is a callback that handles actor failures. # We identify the rank of the failed actor, add this to a set of # failed actors (which we might want to restart later), and set its # entry in the actor list to None. def handle_actor_failure(actor_id): rank = _training_state.actors.index(actor_id) _training_state.failed_actor_ranks.add(rank) _training_state.actors[rank] = None # Here we create new actors. In the first invocation of _train(), this # will be all actors. In future invocations, this may be less than # the num_actors setting, depending on the failure mode. newly_created = 0 for i in list(_training_state.failed_actor_ranks): if _training_state.actors[i] is not None: raise RuntimeError( f"Trying to create actor with rank {i}, but it already " f"exists.") ip = None port = None if machine_addresses: ip = machine_addresses[i][0] port = machine_addresses[i][1] elif listen_port: port = listen_port actor = _create_actor( rank=i, num_actors=ray_params.num_actors, model_factory=model_factory, num_cpus_per_actor=cpus_per_actor, num_gpus_per_actor=gpus_per_actor, resources_per_actor=ray_params.resources_per_actor, placement_group=_training_state.placement_group, queue=_training_state.queue, checkpoint_frequency=ray_params.checkpoint_frequency, distributed_callbacks=ray_params.distributed_callbacks, ip=ip, port=port) # Set actor entry in our list _training_state.actors[i] = actor # Remove from this set so it is not created again _training_state.failed_actor_ranks.remove(i) newly_created += 1 alive_actors = sum(1 for a in _training_state.actors if a is not None) logger.info(f"[RayLightGBM] Created {newly_created} new actors " f"({alive_actors} total actors). Waiting until actors " f"are ready for training.") # For distributed datasets (e.g. Modin), this will initialize # (and fix) the assignment of data shards to actor ranks dtrain.assert_enough_shards_for_actors(num_actors=ray_params.num_actors) dtrain.assign_shards_to_actors(_training_state.actors) for deval, _ in evals: deval.assert_enough_shards_for_actors(num_actors=ray_params.num_actors) deval.assign_shards_to_actors(_training_state.actors) load_data = [dtrain] + [eval[0] for eval in evals] prepare_actor_tasks = [ _PrepareActorTask( actor, # Maybe we got a new Queue actor, so send it to all actors. queue=_training_state.queue, # Maybe we got a new Event actor, so send it to all actors. stop_event=_training_state.stop_event, # Trigger data loading load_data=load_data) for actor in _training_state.actors if actor is not None ] start_wait = time.time() last_status = start_wait try: # Construct list before calling any() to force evaluation ready_states = [task.is_ready() for task in prepare_actor_tasks] while not all(ready_states): if time.time() >= last_status + ENV.STATUS_FREQUENCY_S: wait_time = time.time() - start_wait logger.info(f"Waiting until actors are ready " f"({wait_time:.0f} seconds passed).") last_status = time.time() time.sleep(0.1) ready_states = [task.is_ready() for task in prepare_actor_tasks] except Exception as exc: _training_state.stop_event.set() _get_actor_alive_status(_training_state.actors, handle_actor_failure) raise RayActorError from exc logger.info("[RayLightGBM] Starting LightGBM training.") # # Start Rabit tracker for gradient sharing # rabit_process, env = _start_rabit_tracker(alive_actors) # rabit_args = [("%s=%s" % item).encode() for item in env.items()] # Load checkpoint if we have one. In that case we need to adjust the # number of training rounds. if _training_state.checkpoint.value: booster = Booster( model_str=pickle.loads(_training_state.checkpoint.value)) kwargs["init_model"] = booster if _training_state.checkpoint.iteration == -1: # -1 means training already finished. logger.error( "Trying to load continue from checkpoint, but the checkpoint" "indicates training already finished. Returning last" "checkpointed model instead.") return kwargs["init_model"], {}, _training_state.additional_results # The callback_returns dict contains actor-rank indexed lists of # results obtained through the `put_queue` function, usually # sent via callbacks. callback_returns = _training_state.additional_results.get( "callback_returns") if callback_returns is None: callback_returns = [list() for _ in range(len(_training_state.actors))] _training_state.additional_results[ "callback_returns"] = callback_returns _training_state.training_started_at = time.time() # Trigger the train function live_actors = [ actor for actor in _training_state.actors if actor is not None ] # LightGBM specific: handle actor addresses # if neither local_listening_port nor machines are set # get the ips and a random port from the actors, and then # assign them back so the lgbm params are updated. # do this in a loop to ensure that if there is a port # confilict, it can try and choose a new one. Most of the times # it will complete in one iteration machines = None for _ in range(5): addresses = ray.get( [actor.find_free_address.remote() for actor in live_actors]) if addresses: _, ports = zip(*addresses) ports = list(ports) machine_addresses_new = [f"{ip}:{port}" for ip, port in addresses] if len(machine_addresses_new) == len(set(machine_addresses_new)): machines = ",".join(machine_addresses_new) break if machine_addresses: raise ValueError( "Machine addresses contains non-unique entries.") else: logger.debug("Couldn't obtain unique addresses, trying again.") if machines: logger.debug(f"Obtained unique addresses in {i} attempts.") else: raise ValueError( f"Couldn't obtain enough unique addresses for {len(live_actors)}." " Try reducing the number of actors.") for i, actor in enumerate(live_actors): actor.set_network_params.remote(machines, ports[i], len(live_actors), params.get("time_out", 120)) training_futures = [ actor.train.remote( i == 0, # return_bst params, dtrain, evals, boost_rounds_left, *args, **kwargs) for i, actor in enumerate(live_actors) ] # Failure handling loop. Here we wait until all training tasks finished. # If a training task fails, we stop training on the remaining actors, # check which ones are still alive, and raise the error. # The train() wrapper function will then handle the error. start_wait = time.time() last_status = start_wait try: not_ready = training_futures while not_ready: if _training_state.queue: _handle_queue( queue=_training_state.queue, checkpoint=_training_state.checkpoint, callback_returns=callback_returns) if ray_params.elastic_training \ and not ELASTIC_RESTART_DISABLED: _maybe_schedule_new_actors( training_state=_training_state, num_cpus_per_actor=cpus_per_actor, num_gpus_per_actor=gpus_per_actor, resources_per_actor=ray_params.resources_per_actor, ray_params=ray_params, load_data=load_data) # This may raise RayXGBoostActorAvailable _update_scheduled_actor_states(_training_state) if time.time() >= last_status + ENV.STATUS_FREQUENCY_S: wait_time = time.time() - start_wait logger.info(f"Training in progress " f"({wait_time:.0f} seconds since last restart).") last_status = time.time() ready, not_ready = ray.wait( not_ready, num_returns=len(not_ready), timeout=1) ray.get(ready) # Get items from queue one last time if _training_state.queue: _handle_queue( queue=_training_state.queue, checkpoint=_training_state.checkpoint, callback_returns=callback_returns) # The inner loop should catch all exceptions except Exception as exc: logger.debug(f"Caught exception in training loop: {exc}") # Stop all other actors from training _training_state.stop_event.set() # Check which actors are still alive _get_actor_alive_status(_training_state.actors, handle_actor_failure) raise RayActorError from exc # Training is now complete. # # Stop Rabit tracking process # _stop_rabit_tracker(rabit_process) # Get all results from all actors. all_results: List[Dict[str, Any]] = ray.get(training_futures) # All results should be the same. But only # the first one actually returns its bst object. bst: LGBMModel = all_results[0]["bst"] evals_result = all_results[0]["evals_result"] if not listen_port: for param in _ConfigAliases.get("local_listen_port"): bst._other_params.pop(param, None) if not machine_addresses: for param in _ConfigAliases.get("machines"): bst._other_params.pop(param, None) for param in _ConfigAliases.get("num_machines", "time_out"): bst._other_params.pop(param, None) if callback_returns: _training_state.additional_results[ "callback_returns"] = callback_returns total_n = sum(res["train_n"] or 0 for res in all_results) _training_state.additional_results["total_n"] = total_n return bst, evals_result, _training_state.additional_results
f52508ffb67e4e29dde7300099e616973c7d6740
18,953
def is_called_at_module_level() -> bool: """ Check if the current function is being called at the module level. Raise `RuntimeError` if `is_called_at_module_level()` is not called in a function. """ if not (frame := getcallerframe().f_back): raise RuntimeError( "is_called_at_module_level() expects to be called in a function" ) # There is currently no reliable and officially-provided way to determine whether a # function is called from the module level or not. # # Therefore we use a try-best-effort heuristic approach here. # # This check could emit false positive in the case of some advanced dynamic-reflection # inspection tricks, like `func.__code__ = func.__code__.replace(co_name="<module>")`. # # However such case is so unlikely and rare that we should not be concerned. # # We are good with the current approach as it works for most cases. return frame.f_code.co_name == "<module>"
0c807205472021b20c7b7bad27c8b5f7a634dd85
18,954
def extract_dominant_keypoints2D(keypoint_2D, dominant_hand): """ Extract keypoint 2D. # Look Later with Octavio # Arguments keypoint_2D: Numpy array of shape (num_keypoints, 1). dominant_hand: List of size (2) with booleans. # Returns keypoint_visibility_2D_21: Numpy array of shape (num_keypoints, 1). """ keypoint_visibility_left = keypoint_2D[:LEFT_PINKY_TIP, :] keypoint_visibility_right = keypoint_2D[RIGHT_WRIST:RIGHT_PINKY_TIP, :] keypoint_visibility_2D_21 = np.where( dominant_hand[:, :2], keypoint_visibility_left, keypoint_visibility_right) return keypoint_visibility_2D_21
2581b4cb68d6dad2da3933259582f9160224eef9
18,955
def translation_ev(h, t, tol=1e6): """Compute the eigenvalues of the translation operator of a lead. Adapted from kwant.physics.leads.modes. Parameters ---------- h : numpy array, real or complex, shape (N, N) The unit cell Hamiltonian of the lead unit cell. t : numpy array, real or complex, shape (N, M) The hopping matrix from a lead cell to the one on which self-energy has to be calculated (and any other hopping in the same direction). tol : float Numbers and differences are considered zero when they are smaller than `tol` times the machine precision. Returns ------- ev : numpy array Eigenvalues of the translation operator in the form lambda=r*exp(i*k), for |r|=1 they are propagating modes. """ a, b = kwant.physics.leads.setup_linsys(h, t, tol, None).eigenproblem ev = kwant.physics.leads.unified_eigenproblem(a, b, tol=tol)[0] return ev
b5534b782b487ca195ab9b78438e68e81a62e74a
18,956
def bsearch(n, pred): """ Given a boolean function pred that takes index arguments in [0, n). Assume the boolean function pred returns all False and then all True for values. Return the index of the first True, or n if that does not exist. """ # invariant: last False lies in [l, r) and pred(l) is False if pred(0): return 0 l = 0 r = n while r-l > 1: m = l + (r-l)//2 result = pred(m) if result: r = m else: l = m return l+1
9274732aa9e24a0d0f73399ff50c19a544ac06a7
18,957
def test_rotating_file_handler_interval(tmpdir, logger, monkeypatch): """Test the rotating file handler when the rollover return a time smaller than the current time. """ def rollover(obj, current_time): return current_time - 0.1 monkeypatch.setattr(DayRotatingTimeHandler, 'computeRollover', rollover) handler = DayRotatingTimeHandler(str(tmpdir.join('test.log'))) handler.interval = 0.2 logger.addHandler(handler) # Probably because we gives a negative time. assert len(tmpdir.listdir()) == 1 logger.info('test') sleep(1) logger.info('test') assert len(tmpdir.listdir()) == 3
f6394f215e452fd7875b1fc624db9cb50cc19ed8
18,958
def compute_zero_crossing_wavelength(period, water_depth, gravity=GRAVITY): """Computes zero-crossing wavelength from given period. This uses the dispersion relation for linear waves. """ return wavenumber_to_wavelength( frequency_to_wavenumber(1. / period, water_depth, gravity) )
575ff3d251575fa7a232c120bde15f8f57c1dac9
18,959
def launch_transport_listener(transport, bindaddr, role, remote_addrport, pt_config, ext_or_cookie_file=None): """ Launch a listener for 'transport' in role 'role' (socks/client/server/ext_server). If 'bindaddr' is set, then listen on bindaddr. Otherwise, listen on an ephemeral port on localhost. 'remote_addrport' is the TCP/IP address of the other end of the circuit. It's not used if we are in 'socks' role. 'pt_config' contains configuration options (such as the state location) which are of interest to the pluggable transport. 'ext_or_cookie_file' is the filesystem path where the Extended ORPort Authentication cookie is stored. It's only used in 'ext_server' mode. Return a tuple (addr, port) representing where we managed to bind. Throws obfsproxy.transports.transports.TransportNotFound if the transport could not be found. Throws twisted.internet.error.CannotListenError if the listener could not be set up. """ listen_host = bindaddr[0] if bindaddr else 'localhost' listen_port = int(bindaddr[1]) if bindaddr else 0 if role == 'socks': transport_class = FTETransportClient if hasattr(socks, "OBFSSOCKSv5Factory"): # obfsproxy >= 0.2.7 provides SOCKS5. factory = socks.OBFSSOCKSv5Factory(transport_class, pt_config) pt_config.fte_client_socks_version = 5 elif hasattr(socks, "SOCKSv4Factory"): # obfsproxy < 0.2.7 provides SOCKS4. factory = socks.SOCKSv4Factory(transport_class, pt_config) pt_config.fte_client_socks_version = 4 else: # This will only happen if the obfsproxy people change the socks # code again. This really is a dependency issue, so raise an # ImportError. raise ImportError("Failed to setup an obfsproxy SOCKS server factory") elif role == 'ext_server': assert(remote_addrport and ext_or_cookie_file) transport_class = FTETransportServer factory = extended_orport.ExtORPortServerFactory( remote_addrport, ext_or_cookie_file, transport, transport_class, pt_config) elif role == 'client': assert(remote_addrport) transport_class = FTETransportClient factory = network.StaticDestinationServerFactory( remote_addrport, role, transport_class, pt_config) elif role == 'server': assert(remote_addrport) transport_class = FTETransportServer factory = network.StaticDestinationServerFactory( remote_addrport, role, transport_class, pt_config) else: raise InvalidRoleException() addrport = twisted.internet.reactor.listenTCP( listen_port, factory, interface=listen_host) return (addrport.getHost().host, addrport.getHost().port)
98ba849b3adc58b14b8983d0e61a409bc5ce3af7
18,960
import os def div(style, render=False, label=''): """Render divider.""" if len(style) == 1: if label == '': res = hfill('', style) else: res = hfill(style * 2 + ' ' + label + ' ', style) elif style[0] == style[-1]: # Windows does line wrapping weird sp_left = '\n' * (len(style) - (2 if os.name == 'nt' else 1)) sp_right = '\n' * (len(style) - 1) res = ( hfill('', style[0]) + sp_left + center(label) + sp_right + hfill('', style[0])) else: raise ValueError("""Style not recognized. Available styles: > '-', '=', or any other single character sequence > '- -', '= =', or any other repeated character with n>=0 separating spaces """) if render: return res else: print(res)
59a1801f749671e9c68613457cd934ca458c7eb6
18,961
import socket import zmq def send_array(A, flags=0, copy=True, track=False): """send a numpy array with metadata Inputs ------ A: (subplots,dim) np array to transmit subplots - the amount of subplots that are defined in the current plot dim - the amount of data that you want to plot. This is not fixed """ #If you get a float value, convert it to a numpy array if(isinstance(A,float)): A = np.array(A).reshape(1,1) #If array is one dimensional, reshape to two dimensions if(len(A.shape) ==1): A = A.reshape(-1,1) #Create dict to reconstruct array md = dict( dtype = str(A.dtype), shape = A.shape, ) #Send category socket.send_string(SENDING_DATA) #Send json description socket.send_json(md, flags|zmq.SNDMORE) #Send array return socket.send(A, flags, copy=copy, track=track)
c53a17918c12e3ccec9046aad7fc7fc2f498a8ea
18,962
import json def api_file_upload(request): """ Upload a file to the storage system """ try: fobj = request.FILES["file"] checksum, ext = fobj._name.split(".") try: request.user.check_staged_space(fobj._size, checksum) except Exception as e: return HttpResponseForbidden(str(e)) write_file_to_storage(fobj, check_valid=True) StagedFile.objects.get_or_create( checksum=checksum, file_size=fobj._size, uploaded_by=request.user ) return HttpResponse(json.dumps({ "success": True, })) except KeyError: return HttpResponseBadRequest("Invalid file upload request") except Exception as e: handle_server_error(request) return HttpResponseServerError(content=str(e), reason=str(e))
80b15b4d92b5ba2f3a247f1baf7900e73b18781f
18,963
import logging def calculateAggregateInterferenceForGwpz(gwpz_record, grants): """Calculates per-channel aggregate interference for GWPZ. Args: gwpz_record: A GWPZ record dict. grants: An iterable of CBSD grants of type |data.CbsdGrantInfo|. Returns: Aggregate interference to GWPZ in the nested dictionary format. {latitude : {longitude: [aggr_interf1(mW), ..., aggr_interfK(mW)]}} The list contains the value per protected channel. """ gwpz_region = gwpz_record['landCategory'] # Get Fine Grid Points for a GWPZ protection area protection_points = utils.GridPolygon(gwpz_record['zone']['features'][0]['geometry'], GWPZ_GRID_RES_ARCSEC) gwpz_freq_range = gwpz_record['record']['deploymentParam'][0]\ ['operationParam']['operationFrequencyRange'] gwpz_low_freq = gwpz_freq_range['lowFrequency'] gwpz_high_freq = gwpz_freq_range['highFrequency'] # Get channels over which area incumbent needs partial/full protection protection_channels = interf.getProtectedChannels(gwpz_low_freq, gwpz_high_freq) # Calculate aggregate interference from each protection constraint with a # pool of parallel processes. logging.info('Computing aggregateInterferenceForPoint for PPA (%s), channels (%s), ' 'nPoints (%d), grants (%s), region_type (%s)', gwpz_record, protection_channels, len(protection_points), grants, gwpz_region) logging.debug(' points: %s', protection_points) interfCalculator = partial(aggregateInterferenceForPoint, channels=protection_channels, grants=grants, fss_info=None, esc_antenna_info=None, protection_ent_type=data.ProtectedEntityType.GWPZ_AREA, region_type=gwpz_region) pool = mpool.Pool() interferences = pool.map(interfCalculator, protection_points) return InterferenceDict(interferences)
d2b7d1b1270e4a6da302e4d13a261a29d51b0a12
18,964
import pandas def from_pandas_ephemeral( engine: Engine, df: pandas.DataFrame, convert_objects: bool, name: str ) -> DataFrame: """ Instantiate a new DataFrame based on the content of a Pandas DataFrame. The data will be represented using a `select * from values()` query, or something similar depending on the database dialect. Warning: This method is only suited for small quantities of data. For anything over a dozen kilobytes of data it is recommended to store the data in a table in the database, e.g. by using the from_pd_store_table() function. Supported dtypes are 'int64', 'float64', 'string', 'datetime64[ns]', 'bool' :param engine: db connection :param df: Pandas DataFrame to instantiate as DataFrame :param convert_objects: If True, columns of type 'object' are converted to 'string' using the pd.convert_dtypes() method where possible. """ # todo add dtypes argument that explicitly let's you set the supported dtypes for pandas columns df_copy, index_dtypes, all_dtypes = _from_pd_shared( dialect=engine.dialect, df=df, convert_objects=convert_objects, cte=True ) column_series_type = [get_series_type_from_dtype(dtype) for dtype in all_dtypes.values()] per_row_expr = [] for row in df_copy.itertuples(): per_column_expr = [] # Access the columns in `row` by index rather than by name. Because if a name starts with an # underscore (e.g. _index_skating_order) it will not be available as attribute. # so we use `row[i]` instead of getattr(row, column_name). # start=1 is to account for the automatic index that pandas adds for i, series_type in enumerate(column_series_type, start=1): val = row[i] per_column_expr.append( series_type.value_to_expression(dialect=engine.dialect, value=val, dtype=series_type.dtype) ) row_expr = Expression.construct('({})', join_expressions(per_column_expr)) per_row_expr.append(row_expr) all_values_str = join_expressions(per_row_expr, join_str=',\n').to_sql(engine.dialect) if is_postgres(engine): # We are building sql of the form: # select * from (values # ('row 1', cast(1234 as bigint), cast(-13.37 as double precision)), # ('row 2', cast(1337 as bigint), cast(31.337 as double precision)) # ) as t("a", "b", "c") column_names_expr = join_expressions( [Expression.raw(quote_identifier(engine.dialect, column_name)) for column_name in all_dtypes.keys()] ) column_names_str = column_names_expr.to_sql(engine.dialect) sql = f'select * from (values \n{all_values_str}\n) as t({column_names_str})\n' elif is_bigquery(engine): # We are building sql of the form: # select * from UNNEST([ # STRUCT<`a` STRING, `b` INT64, `c` FLOAT64> # ('row 1', 1234, cast(-13.37 as FLOAT64)) # ('row 2', 1337, cast(31.337 as FLOAT64)) # ]) sql_column_name_types = [] for col_name, dtype in all_dtypes.items(): db_col_name = quote_identifier(dialect=engine.dialect, name=col_name) db_dtype = get_series_type_from_dtype(dtype).get_db_dtype(dialect=engine.dialect) sql_column_name_types.append(f'{db_col_name} {db_dtype}') sql_struct = f'STRUCT<{", ".join(sql_column_name_types)}>' sql = f'select * from UNNEST([{sql_struct} \n{all_values_str}\n])\n' else: raise DatabaseNotSupportedException(engine) model_builder = CustomSqlModelBuilder(sql=sql, name=name) sql_model = model_builder() index = list(index_dtypes.keys()) return DataFrame.from_model(engine=engine, model=sql_model, index=index, all_dtypes=all_dtypes)
afa06bd4e89a53aa0d420ab401137c10e3b46d89
18,965
def set_vars(api, file:str, tess_profile:dict): """ Reads the user-specific variables from the tess_profile :param api: :param file: :param tess_profile: :return: """ # Set necessary information api.SetImageFile(file) # Set Variable api.SetVariable("save_blob_choices", "T") if 'variables' in tess_profile: for var in tess_profile['variables']: api.SetVariable(var, str(tess_profile['variables'][var]['value'])) api.Recognize() return 0
a7fbe0c5bc584928623e2eadc36240ea3b0f37de
18,966
def qtrfit(numpoints, defcoords, refcoords, nrot): """Find the quaternion, q, [and left rotation matrix, u] that minimizes | qTXq - Y | ^ 2 [|uX - Y| ^ 2] This is equivalent to maximizing Re (qTXTqY) The left rotation matrix, u, is obtained from q by u = qT1q Parameters numpoints: The number of points in each list (int) defcoords: List of definition coordinates, with each set a list of form [x,y,z] (list) refcoords: List of fitted coordinates, with each set a list of form [x,y,z] (list) nrot: The maximum number of jacobi sweeps Returns quat: The best-fit quaternion lrot: The best-fit left rotation matrix """ xxyx = 0.0 xxyy = 0.0 xxyz = 0.0 xyyx = 0.0 xyyy = 0.0 xyyz = 0.0 xzyx = 0.0 xzyy = 0.0 xzyz = 0.0 quat = [] cmat = [] for i in range(numpoints): xxyx = xxyx + defcoords[i][0] * refcoords[i][0] xxyy = xxyy + defcoords[i][0] * refcoords[i][1] xxyz = xxyz + defcoords[i][0] * refcoords[i][2] xyyx = xyyx + defcoords[i][1] * refcoords[i][0] xyyy = xyyy + defcoords[i][1] * refcoords[i][1] xyyz = xyyz + defcoords[i][1] * refcoords[i][2] xzyx = xzyx + defcoords[i][2] * refcoords[i][0] xzyy = xzyy + defcoords[i][2] * refcoords[i][1] xzyz = xzyz + defcoords[i][2] * refcoords[i][2] for i in range(4): cmat.append([]) for _ in range(4): cmat[i].append(0.0) cmat[0][0] = xxyx + xyyy + xzyz cmat[0][1] = xzyy - xyyz cmat[0][2] = xxyz - xzyx cmat[0][3] = xyyx - xxyy cmat[1][1] = xxyx - xyyy - xzyz cmat[1][2] = xxyy + xyyx cmat[1][3] = xzyx + xxyz cmat[2][2] = xyyy - xzyz - xxyx cmat[2][3] = xyyz + xzyy cmat[3][3] = xzyz - xxyx - xyyy _, vmat = jacobi(cmat, nrot) # diagonalize c for i in range(4): quat.append(vmat[i][3]) lrot = q2mat(quat) return quat, lrot
fdfde9deaf0b220bd468031264b029125c071fab
18,967
import struct def _embedded_bundles_partial_impl( ctx, bundle_embedded_bundles, embeddable_targets, frameworks, plugins, watch_bundles): """Implementation for the embedded bundles processing partial.""" _ignore = [ctx] embeddable_providers = [ x[_AppleEmbeddableInfo] for x in embeddable_targets if _AppleEmbeddableInfo in x ] transitive_frameworks = [] transitive_plugins = [] transitive_watch_bundles = [] for provider in embeddable_providers: transitive_frameworks.append(provider.frameworks) transitive_plugins.append(provider.plugins) transitive_watch_bundles.append(provider.watch_bundles) bundle_zips = [] if bundle_embedded_bundles: bundle_zips.extend([ (processor.location.framework, None, depset(transitive = transitive_frameworks)), (processor.location.plugin, None, depset(transitive = transitive_plugins)), (processor.location.watch, None, depset(transitive = transitive_watch_bundles)), ]) # Clear the transitive lists to avoid propagating them, since they will be packaged in the # bundle processing this partial and do not need to be propagated. transitive_frameworks = [] transitive_plugins = [] transitive_watch_bundles = [] return struct( bundle_zips = bundle_zips, providers = [ _AppleEmbeddableInfo( frameworks = depset(frameworks, transitive = transitive_frameworks), plugins = depset(plugins, transitive = transitive_plugins), watch_bundles = depset(watch_bundles, transitive = transitive_watch_bundles), ), ], )
fe057887528a922ae89fe4c6d8066590d006e415
18,968
import yaml def load_instrument(yml): """ Instantiate an instrument from YAML spec. Parameters ---------- yml : str filename for the instrument configuration in YAML format. Returns ------- hexrd.instrument.HEDMInstrument Instrument instance. """ with open(yml, 'r') as f: icfg = yaml.safe_load(f) return instrument.HEDMInstrument(instrument_config=icfg)
a882b3b36def975b40124078c907a0f050b67a6f
18,969
from typing import List def serialize_model(self: models.Model, excludes: List[str] = None) -> dict: """ 模型序列化,会根据 select_related 和 prefetch_related 关联查询的结果进行序列化,可以在查询时使用 only、defer 来筛选序列化的字段。 它不会自做主张的去查询数据库,只用你查询出来的结果,成功避免了 N+1 查询问题。 # See: https://aber.sh/articles/A-new-idea-of-serializing-Django-model/ """ excludes = excludes or [] serialized = set() if getattr(settings, "DSA_SERIALIZE_TO_CAMELCASE", False): to_camel_case_func = string_convert else: to_camel_case_func = do_nothing def _serialize_model(model) -> dict: # 当 model 存在一对一字段时,会陷入循环,使用闭包的自由变量存储已序列化的 model, # 在第二次循环到该 model 时直接返回 model.pk,不再循环。 nonlocal serialized if model in serialized: return model.pk else: serialized.add(model) # 当 model 存在一对一或一对多字段,且该字段的值为 None 时,直接返回空{},否则会报错。 if model is None: return {} result = { to_camel_case_func(name): _serialize_model(foreign_key) for name, foreign_key in model.__dict__["_state"] .__dict__.get("fields_cache", {}) .items() } buried_fields = getattr(model, "buried_fields", []) for name, value in model.__dict__.items(): # 敏感字段不需要序列化 if name in buried_fields: continue # 私有属性不需要序列化 if name.startswith("_"): continue result[to_camel_case_func(name)] = value for name, queryset in model.__dict__.get( "_prefetched_objects_cache", {} ).items(): result[to_camel_case_func(name)] = [_serialize_model(model) for model in queryset] # type: ignore return result results = _serialize_model(self) # 剔除排斥的字段 for field_name in excludes: del results[to_camel_case_func(field_name)] return results
2c9a95b4d0e671492eefc73800d43196b6daa604
18,970
def isint(x): """ For an ``mpf`` *x*, or any type that can be converted to ``mpf``, determines whether *x* is exactly integer-valued:: >>> from sympy.mpmath import * >>> isint(3), isint(mpf(3)), isint(3.2) (True, True, False) """ if isinstance(x, int_types): return True try: x = mpmathify(x) except: return False if isinstance(x, mpf): if isnan(x) or isinf(x): return False return x == int(x) return False
ec4516fa450cfc0e58c9a69d95f0f9b8aff2443c
18,971
def update_header(file): """ Create a standard WCS header from the HDF5 header. To do this we clean up the header data (which is initially stored in individual arrays). We then create a new header dictionary with the old cleaned header info. Finally, we use astropy.wcs.WCS to create an updated WCS header for the 2 spatial dimensions. This is then saved to self.header while the header dictionary is saved as self.hdr_dict. Args: file: hdf5 File object containing HDF5 file """ hdr_dict = {} header_cols = [str(val[0]).replace("'b", '').replace("'", "").replace("b", '') for val in list(file['header'][()])] header_vals = [str(val[1]).replace("'b", '').replace("'", "").replace("b", '') for val in list(file['header'][()])] header_types = [val[3] for val in list(file['header'][()])] for header_col, header_val, header_type in zip(header_cols, header_vals, header_types): if 'bool' in str(header_type): hdr_dict[header_col] = bool(header_val) if 'float' in str(header_type): hdr_dict[header_col] = float(header_val) if 'int' in str(header_type): hdr_dict[header_col] = int(header_val) else: try: hdr_dict[header_col] = float(header_val) except: hdr_dict[header_col] = str(header_val) hdr_dict['CTYPE3'] = 'WAVE-SIP' hdr_dict['CUNIT3'] = 'm' # hdr_dict['NAXIS1'] = 2064 # hdr_dict['NAXIS2'] = 2048 # Make WCS wcs_data = WCS(hdr_dict, naxis=2) header = wcs_data.to_header() header.insert('WCSAXES', ('SIMPLE', 'T')) header.insert('SIMPLE', ('NAXIS', 2), after=True) # self.header.insert('NAXIS', ('NAXIS1', 2064), after=True) # self.header.insert('NAXIS1', ('NAXIS2', 2048), after=True) hdr_dict = hdr_dict return header, hdr_dict
1c46139a747acdf69ea6602ea123d20f540de30b
18,972
def get_MD_psat(): """ MD data for saturation densities: Thermodynamic properties of the 3D Lennard-Jones/spline model Bjørn Hafskjold and Karl Patrick Travis and Amanda Bailey Hass and Morten Hammer and Ailo Aasen and Øivind Wilhelmsen doi: 10.1080/00268976.2019.1664780 """ T = np.array([0.5501, 0.5499, 0.5496, 0.5997, 0.6500, 0.7000, 0.7504, 0.8000, 0.8202, 0.8407, 0.8596, 0.8688, 0.8771, 0.8775, 0.6898, 0.7723, 0.8070, 0.8407, 0.8437, 0.8570, 0.8687, 0.8723, 0.8762, 0.8770]) p = np.array([0.002158, 0.002084, 0.002123, 0.004656, 0.008804, 0.015332, 0.025052, 0.038927, 0.045588, 0.054326, 0.063949, 0.069529, 0.075501, 0.075752, 0.014112, 0.031532, 0.042154, 0.055300, 0.056660, 0.062675, 0.070558, 0.070944, 0.072616, 0.073748]) data = {} data["T"] = T data["P"] = P return data
363107962628ca9796397977f4f41e5b30bcfbc0
18,973
import logging def get_reddit_client(): """Utility to get a Reddit Client""" reddit_username = redditUsername reddit_password = redditPassword reddit_user_agent = redditUserAgent reddit_client_secret = redditClientSecret reddit_client_id = redditClientID logging.info("Logged in as user (%s).." % reddit_username) reddit_client = praw.Reddit(client_id=reddit_client_id, client_secret=reddit_client_secret, password=reddit_password, user_agent=reddit_user_agent, username=reddit_username) return reddit_client
fe3a783a3ceb27954c658bf9dc036a067ab103a8
18,974
import six def get_member_id(): """ Retrieve member if for the current process. :rtype: ``bytes`` """ proc_info = system_info.get_process_info() member_id = six.b('%s_%d' % (proc_info['hostname'], proc_info['pid'])) return member_id
1d1cc24ffa62cc8982a23ea986bdf3cbecca53ac
18,975
def get_table_arn(): """A method to get the DynamoDB table ARN string. Returns ------- dict A dictionary with AWS ARN string for the table ARN. """ resp = dynamodb_client.describe_table( TableName=table_name ) return { "table_arn": resp['Table']['TableArn'] }
ee6648048b1cabdbc04e6c3507cc4e1992f059b2
18,976
def replace_characters(request): """Function to process execute replace_characters function.""" keys = ['text', 'characters', 'replacement'] values = get_data(request, keys) if not values[0]: abort(400, 'missing text parameter') if not values[2]: values[2] = '' return _call('replace_characters', keys, values)
4765d7c3ace0a0069cac34adb04381efc7043355
18,977
def serialize_to_jsonable(obj): """ Serialize any object to a JSONable form """ return repr(obj)
c8632b8b475d49b56d47b29afa8b44676b7882a5
18,978
def compare(optimizers, problems, runs=20, all_kwargs={}): """Compare a set of optimizers. Args: optimizers: list/Optimizer; Either a list of optimizers to compare, or a single optimizer to test on each problem. problems: list/Problem; Either a problem instance or a list of problem instances, one for each optimizer. all_kwargs: dict/list<dict>; Either the Optimizer.optimize keyword arguments for all optimizers, or a list of keyword arguments, one for each optimizer. runs: int; How many times to run each optimizer (smoothness) Returns: dict; mapping optimizer identifier to stats. """ if not (isinstance(optimizers, collections.Iterable) or isinstance(problems, collections.Iterable)): raise TypeError('optimizers or problems must be iterable') # If optimizers is not a list, repeat into list for each problem if not isinstance(optimizers, collections.Iterable): optimizers = [copy.deepcopy(optimizers) for _ in range(len(problems))] # If problems is not a list, repeat into list for each optimizer if not isinstance(problems, collections.Iterable): problems = [copy.deepcopy(problems) for _ in range(len(optimizers))] # If all_kwargs is not a list, repeat it into a list if isinstance(all_kwargs, dict): all_kwargs = [all_kwargs] * len(optimizers) elif not isinstance(all_kwargs, collections.Iterable): raise TypeError('all_kwargs must be dict or list of dict') stats = {} key_counts = {} for optimizer, problem, kwargs in zip(optimizers, problems, all_kwargs): # For nice human readable dictionaries, extract useful names from # optimizer class_name = optimizer.__class__.__name__ fitness_func_name = problem._fitness_function.__name__ key_name = '{} {}'.format(class_name, fitness_func_name) # Keep track of how many optimizers of each class / fitness func # for better keys in stats dict try: key_counts[key_name] += 1 except KeyError: key_counts[key_name] = 1 # Foo 1, Foo 2, Bar 1, etc. key = '{} {}'.format(key_name, key_counts[key_name]) print key + ': ', # Finally, get the actual stats stats[key] = benchmark(optimizer, problem, runs=runs, **kwargs) print return stats
c0f2ed52fe5de8b32e54ca6e3dc05be18145b1e8
18,979
def az_el2norm(az: float, el: float): """Return solar angle as normalized vector.""" theta = np.pi/2-el*np.pi/180 phi = az*np.pi/180 norm = np.asarray( [ np.sin(theta)*np.cos(phi), np.sin(theta)*np.sin(phi), np.cos(theta) ]) return norm
5d6e53b778846281a6d2944a52acc64c4386ade4
18,980
async def api_get_user(user_id: int, db: Session = Depends(get_db)): """ Gets user entity - **user_id**: the user id - **db**: current database session object """ try: user = await User.get_by_id(id=user_id, db=db) return user except UserNotFoundException as e: raise HTTPException(status_code=status.HTTP_404_NOT_FOUND, detail=e.detail)
2d89fed33e4fbc81e3461b4791f93772a4814ffe
18,981
import re def remove_comments(json_like): """ Removes C-style comments from *json_like* and returns the result. Example:: >>> test_json = '''\ { "foo": "bar", // This is a single-line comment "baz": "blah" /* Multi-line Comment */ }''' >>> remove_comments('{"foo":"bar","baz":"blah",}') '{\n "foo":"bar",\n "baz":"blah"\n}' From: https://gist.github.com/liftoff/ee7b81659673eca23cd9fc0d8b8e68b7 """ comments_re = re.compile( r'//.*?$|/\*.*?\*/|\'(?:\\.|[^\\\'])*\'|"(?:\\.|[^\\"])*"', re.DOTALL | re.MULTILINE, ) def replacer(match): s = match.group(0) if s[0] == "/": return "" return s return comments_re.sub(replacer, json_like)
32ddf8dd19a8d1029b0d5f221aed05c3883d8ee5
18,982
def install_editable(projectroot, **kwargs): """Install the given project as an "editable" install.""" return run_pip('install', '-e', projectroot, **kwargs)
70b4f5dc1da26beaae31bb1aeaed4457a0d055a3
18,983
import time def retry_get(tap_stream_id, url, config, params=None): """Wrap certain streams in a retry wrapper for frequent 500s""" retries = 20 delay = 120 backoff = 1.5 attempt = 1 while retries >= attempt: r = authed_get(tap_stream_id, url, config, params) if r.status_code != 200: logger.info(f'Got a status code of {r.status_code}, attempt ' f'{attempt} of {retries}. Backing off for {delay} ' f'seconds') time.sleep(delay) delay *= backoff attempt += 1 else: return r logger.error(f'Status code of latest attempt: {r.status_code}') logger.error(f'Latest attempt response {r.content}') raise ValueError(f'Failed {retries} times trying to hit endpoint {url}')
af9a0dd8d5c7022467562b7c339f8340b6d87d73
18,984
from typing import Mapping from datetime import datetime from typing import Tuple def build_trie_from_to(template_dictionary: Mapping, from_timestamp: datetime.datetime, to_timestamp: datetime.datetime) -> Tuple[ahocorasick.Automaton, Mapping]: """Function which builds the trie from the first timestamp tot the last one given""" trie = ahocorasick.Automaton() words_mapping = dict() # words mapping word_templates = dict() # words template # collect the words and the template associated (a list of them if multiple template is associated) for template in template_dictionary: # index first template to consider index_first_timestamp = find_previous_timestamp(template_dictionary[template], from_timestamp) or 0 # for all the revisions of that template starting from the first date possible for index in range(index_first_timestamp, len(template_dictionary[template])): words_list, t_stamp = template_dictionary[template][index] # stop the iteration because we overcome the to_timestamp limit if t_stamp > to_timestamp: break if not template in words_mapping: words_mapping[template] = list() words_mapping[template].append(template_dictionary[template][index]) # word lists for that template for word in words_list: if not word in word_templates: word_templates[word] = list() word_templates[word].append(template) for word in word_templates: trie.add_word(word, (word_templates[word], word)) # key is the word to search, value is the template trie.make_automaton() if not word_templates: return None, None return trie, words_mapping
ddd655235a78834260ce1a46c19d0e251f62aede
18,985
def check_monotonicity_at_split( tree_df, tree_no, trend, variable, node, child_nodes_left, child_nodes_right ): """Function to check monotonic trend is in place at a given split in a single tree.""" if not isinstance(tree_df, pd.DataFrame): raise TypeError("tree_df should be a pd.DataFrame") if not isinstance(tree_no, int): raise TypeError("tree_no should be an int") if not isinstance(trend, int): raise TypeError("trend should be an int") if not isinstance(node, int): raise TypeError("node should be an int") if not isinstance(child_nodes_left, list): raise TypeError("child_nodes_left should be an list") if not isinstance(child_nodes_right, list): raise TypeError("child_nodes_right should be an list") all_child_nodes = child_nodes_left + child_nodes_right tree_nodes = tree_df["nodeid"].tolist() child_nodes_not_in_tree = list(set(all_child_nodes) - set(tree_nodes)) if len(child_nodes_not_in_tree) > 0: raise ValueError( "the following child nodes do not appear in tree; " + str(child_nodes_not_in_tree) ) left_nodes_max_pred = tree_df.loc[ tree_df["nodeid"].isin(child_nodes_left), "weight" ].max() right_nodes_min_pred = tree_df.loc[ tree_df["nodeid"].isin(child_nodes_right), "weight" ].min() if trend == 1: if left_nodes_max_pred <= right_nodes_min_pred: monotonic = True else: monotonic = False elif trend == -1: if left_nodes_max_pred >= right_nodes_min_pred: monotonic = True else: monotonic = False else: raise ValueError( "unexpected value for trend; " + str(trend) + " variable; " + str(variable) + " node:" + str(node) ) results = { "variable": variable, "tree": tree_no, "nodeid": node, "monotonic_trend": trend, "monotonic": monotonic, "child_nodes_left_max_prediction": left_nodes_max_pred, "child_nodes_right_min_prediction": right_nodes_min_pred, "child_nodes_left": str(child_nodes_left), "child_nodes_right": str(child_nodes_right), } results_df = pd.DataFrame(results, index=[node]) return results_df
97ed2422c6f85112e364e9c63ff0a54d18b6377d
18,986
def allocate_usda_ers_mlu_land_in_urban_areas(df, attr, fbs_list): """ This function is used to allocate the USDA_ERS_MLU activity 'land in urban areas' to NAICS 2012 sectors. Allocation is dependent on assumptions defined in 'literature_values.py' as well as results from allocating 'EIA_CBECS_Land' and 'EIA_MECS_Land' to land based sectors. Methodology is based on the manuscript: Lin Zeng and Anu Ramaswami Impact of Locational Choices and Consumer Behaviors on Personal Land Footprints: An Exploration Across the Urban–Rural Continuum in the United States Environmental Science & Technology 2020 54 (6), 3091-3102 DOI: 10.1021/acs.est.9b06024 :param df: df, USDA ERA MLU Land :param attr: dictionary, attribute data from method yaml for activity set :param fbs_list: list, FBS dfs for activities created prior to the activity set that calls on this fxn :return: df, allocated USDS ERS MLU Land, FBS format """ # define sector column to base calculations sector_col = 'SectorConsumedBy' vLogDetailed.info('Assuming total land use from MECS and CBECS included ' 'in urban land area, so subtracting out calculated ' 'MECS and CBECS land from MLU urban land area') # read in the cbecs and mecs df from df_list for df_i in fbs_list: if (df_i['MetaSources'] == 'EIA_CBECS_Land').all(): cbecs = df_i elif (df_i['MetaSources'] == 'EIA_MECS_Land').all(): mecs = df_i # load the federal highway administration fees dictionary fha_dict = get_transportation_sectors_based_on_FHA_fees() df_fha = pd.DataFrame.from_dict( fha_dict, orient='index').rename( columns={'NAICS_2012_Code': sector_col}) # calculate total residential area from the American Housing Survey residential_land_area = get_area_of_urban_land_occupied_by_houses_2013() df_residential = df[df[sector_col] == 'F01000'] df_residential = df_residential.assign(FlowAmount=residential_land_area) # make an assumption about the percent of urban area that is open space openspace_multiplier = get_open_space_fraction_of_urban_area() df_openspace = df[df[sector_col] == '712190'] df_openspace = df_openspace.assign( FlowAmount=df_openspace['FlowAmount'] * openspace_multiplier) # sum all uses of urban area that are NOT transportation # first concat dfs for residential, openspace, commercial, # and manufacturing land use df_non_urban_transport_area = pd.concat( [df_residential, df_openspace, cbecs, mecs], sort=False, ignore_index=True) df_non_urban_transport_area = \ df_non_urban_transport_area[['Location', 'Unit', 'FlowAmount']] non_urban_transport_area_sum = df_non_urban_transport_area.groupby( ['Location', 'Unit'], as_index=False).agg( {'FlowAmount': sum}).rename(columns={'FlowAmount': 'NonTransport'}) # compare units compare_df_units(df, df_non_urban_transport_area) # calculate total urban transportation by subtracting # calculated areas from total urban land df_transport = df.merge(non_urban_transport_area_sum, how='left') df_transport = df_transport.assign( FlowAmount=df_transport['FlowAmount'] - df_transport['NonTransport']) df_transport.drop(columns=['NonTransport'], inplace=True) # make an assumption about the percent of urban transport # area used by airports airport_multiplier = get_urban_land_use_for_airports() df_airport = df_transport[df_transport[sector_col] == '488119'] df_airport = df_airport.assign( FlowAmount=df_airport['FlowAmount'] * airport_multiplier) # make an assumption about the percent of urban transport # area used by railroads railroad_multiplier = get_urban_land_use_for_railroads() df_railroad = df_transport[df_transport[sector_col] == '482112'] df_railroad = df_railroad.assign( FlowAmount=df_railroad['FlowAmount'] * railroad_multiplier) # further allocate the remaining urban transportation area using # Federal Highway Administration fees # first subtract area for airports and railroads air_rail_area = pd.concat([df_airport, df_railroad], sort=False) air_rail_area = air_rail_area[['Location', 'Unit', 'FlowAmount']] air_rail_area_sum = air_rail_area.groupby( ['Location', 'Unit'], as_index=False).agg( {'FlowAmount': sum}).rename(columns={'FlowAmount': 'AirRail'}) df_highway = df_transport.merge(air_rail_area_sum, how='left') df_highway = df_highway.assign( FlowAmount=df_highway['FlowAmount'] - df_highway['AirRail']) df_highway.drop(columns=['AirRail'], inplace=True) # add fed highway administration fees df_highway2 = df_highway.merge(df_fha, how='left') df_highway2 = df_highway2[df_highway2['ShareOfFees'].notna()] df_highway2 = df_highway2.assign( FlowAmount=df_highway2['FlowAmount'] * df_highway2['ShareOfFees']) df_highway2.drop(columns=['ShareOfFees'], inplace=True) # concat all df subsets allocated_urban_areas_df = pd.concat( [df_residential, df_openspace, df_airport, df_railroad, df_highway2], ignore_index=True, sort=False).reset_index(drop=True) # aggregate because multiple rows to household data due to residential # land area and highway fee shares groupcols = list(df.select_dtypes(include=['object', 'int']).columns) allocated_urban_areas_df_2 = aggregator(allocated_urban_areas_df, groupcols) return allocated_urban_areas_df_2
5fcb797b48b912595d722cde3ac0d499526ea899
18,987
def get_distances_between_points(ray_points3d, last_bin_width=1e10): """Estimates the distance between points in a ray. Args: ray_points3d: A tensor of shape `[A1, ..., An, M, 3]`, where M is the number of points in a ray. last_bin_width: A scalar indicating the witdth of the last bin. Returns: A tensor of shape `[A1, ..., An, M]` containing the distances between the M points, with the distance of the last element set to a high value. """ shape.check_static( tensor=ray_points3d, tensor_name="ray_points3d", has_dim_equals=(-1, 3)) shape.check_static( tensor=ray_points3d, tensor_name="ray_points3d", has_rank_greater_than=1) dists = tf.norm(ray_points3d[..., 1:, :] - ray_points3d[..., :-1, :], axis=-1) if last_bin_width > 0.0: dists = tf.concat([dists, tf.broadcast_to([last_bin_width], dists[..., :1].shape)], axis=-1) return dists
34752bd64bcf4582945006c4bd3489397aa7350d
18,988
def reclassification_heavy_duty_trucks_to_light_commercial_vehicles(register_df: pd.DataFrame) -> pd.DataFrame: """ Replace Category to Light Commercial Vehicles for Heavy Duty Trucks of weight below 3500kg Es Tracta de vehicles registrats TIPUS CAMIONS i per tant classificats en la categoria Heavy Duty Trucks quan no hi pertoquen degut a pes inferior a 3500kg. """ anti = register_df[(register_df['TIPUS'] == 'CAMIONS') & (register_df['PES_BUIT'] < 3500) & (register_df['Category'] == 'Heavy Duty Trucks')] info_logger.info(f'Total number of Heavy Duty Trucks converted to Light Commercial Vehicles loaded: {anti.shape[0]}') result = anti_join_all_cols(register_df, anti) recategorized_rows = anti.assign(Category='Light Commercial Vehicles') return result.append(recategorized_rows)
638e3281c323c1dac4ddcde5e58e2eeac4131c04
18,989
def SpComp(rho, U, mesh, fea, penal): """Alias SpCompFunction class with the apply method""" return SpCompFunction.apply(rho, U, mesh, fea, penal)
4c0997fa5213e291376feb415f74e48e273ea071
18,990
import json def remove_event_class(request): """ Remove the given event class, and update the order of the rest classes """ if request.user.is_authenticated: class_id = request.POST.get("classId", None) event_class = EventClass.get_classes_by_user(request.user.id).get(id=class_id) event_class.delete() return HttpResponse(json.dumps({}), content_type="application/json") return render_to_response( "todo_login.html", {"error_info": constants.SESSION_EXPIRED_MSG,}, RequestContext(request), )
aa4ac93cb8568e5bdc26c4d5913c9438d418b27e
18,991
def get_landmark_position_from_state(x, ind): """ Extract landmark position from state vector """ lm = x[STATE_SIZE + LM_SIZE * ind: STATE_SIZE + LM_SIZE * (ind + 1), :] return lm
048d31bbd6810663d51e9db34b5c87ebec9b6f27
18,992
def get_rectangle(roi): """ Get the rectangle that has changing colors in the roi. Returns boolean success value and the four rectangle points in the image """ gaussian = cv2.GaussianBlur(roi, (9, 9), 10.0) roi = cv2.addWeighted(roi, 1.5, gaussian, -0.5, 0, roi) nh, nw, r = roi.shape # cluster Z = roi.reshape((-1, 3)) Z = np.float32(Z) criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 10, 1.0) K = 7 ret, label, centers = cv2.kmeans(Z, K, criteria, 10, 0) centers = np.uint8(centers) image_as_centers = centers[label.flatten()] image_as_centers = image_as_centers.reshape((roi.shape)) labels = label.reshape((roi.shape[:2])) possible_clusters = list(np.arange(K)) whiteness = map(lambda x: npl.norm(x - np.array([255, 255, 255])), centers) whitest = np.argmin(whiteness) possible_clusters.remove(whitest) energys = [] correct_masks = [] for num, p in enumerate(possible_clusters): mask_clusters = ma.masked_equal(labels, p) draw_mask = mask_clusters.mask.astype(np.uint8) draw_mask *= 255 labeled_array, num_features = mes.label(draw_mask) count = np.bincount(labeled_array.flatten()) count = count[1:] val = np.argmax(count) mask_obj = ma.masked_equal(labeled_array, val + 1) draw_mask = mask_obj.mask.astype(np.uint8) draw_mask *= 255 # cv2.imshow(str(num), draw_mask) # cv2.waitKey(0) top = np.count_nonzero(draw_mask) valz = np.fliplr(np.transpose(draw_mask.nonzero())) rect = cv2.minAreaRect(valz) box = cv2.cv.BoxPoints(rect) box = np.int0(box) rect_mask = np.zeros((nh, nw)) cv2.drawContours(rect_mask, [box], 0, 255, -1) bottom = np.count_nonzero(rect_mask) l, w, vcost = _get_lw(box) if w < .001: print 'WIDTH TOO SMALL' continue valz = np.fliplr(np.transpose(draw_mask.nonzero())) area = cv2.contourArea(box) area /= (nh * nw) if vcost > .5: print "VCOST TOO HIGH" continue if area < .03: print area print "TOOOO SMALL" continue if top / bottom < .7: print "TOO SPARSE", top / bottom continue energy = area + 1.5 * top / bottom - abs(2.5 - l / w) - .2 * vcost if energy < 0: "LOW ENERGY!" continue print num, "area: ", area, "filled:", top, "total:", bottom, 'rat', top / bottom, "l/w", abs(2.5 - l / w), "vcost", vcost, "energy", energy energys.append(energy) correct_masks.append(mask_obj) if len(energys) == 0: print "EVERY ENERGY WRONG" return False, None correct_masks = [x for y, x in sorted(zip(energys, correct_masks), reverse=True)] energys = sorted(energys, reverse=True) if len(energys) > 1 and abs(energys[0] - energys[1]) < .2: print "TOO CLOSE TO CALLS" return False, None correct_mask = correct_masks[0] colors = roi[correct_mask.mask] draw_mask = correct_mask.mask.astype(np.uint8) draw_mask *= 255 return True, colors
da3e6311f6a598cf57cffd2c0bb06f0ca53fa108
18,993
async def challenge_process_fixture() -> Challenge: """ Populate challenge with: - Default user - Is open - Challenge in process """ return await populate_challenge()
cf553c0697c824df4273838c7d87ffe6e8ab6ae7
18,994
import pkgutil def _read_pdg_masswidth(filename): """Read the PDG mass and width table and return a dictionary. Parameters ---------- filname : string Path to the PDG data file, e.g. 'data/pdg/mass_width_2015.mcd' Returns ------- particles : dict A dictionary where the keys are the particle names with the charge appended in case of a multiplet with different masses, e.g. 't' for the top quark, 'K+' and 'K0' for kaons. The value of the dictionary is again a dictionary with the following keys: - 'id': PDG particle ID - 'mass': list with the mass, postitive and negative error in GeV - 'width': list with the width, postitive and negative error in GeV - 'name': same as the key """ data = pkgutil.get_data('flavio.physics', filename) lines = data.decode('utf-8').splitlines() particles_by_name = {} for line in lines: if line.strip()[0] == '*': continue mass = ((line[33:51]), (line[52:60]), (line[61:69])) if mass[0].replace(' ', '') == '': # if mass is empty, go to next line # (necessasry for 2019 neutrino entries) continue mass = [float(m) for m in mass] width = ((line[70:88]), (line[89:97]), (line[98:106])) if width[0].strip() == '': width = (0,0,0) else: width = [float(w) for w in width] ids = line[0:32].split() charges = line[107:128].split()[1].split(',') if len(ids) != len(charges): raise ValueError() for i, id_ in enumerate(ids): particle = {} particle_charge = charges[i].strip() particle[particle_charge] = {} particle[particle_charge]['id'] = id_.strip() particle[particle_charge]['mass'] = mass particle[particle_charge]['charge'] = particle_charge particle[particle_charge]['width'] = width particle_name = line[107:128].split()[0] particle[particle_charge]['name'] = particle_name if particle_name in particles_by_name.keys(): particles_by_name[particle_name].update(particle) else: particles_by_name[particle_name] = particle result = { k + kk: vv for k, v in particles_by_name.items() for kk, vv in v.items() if len(v) > 1} result.update({ k: list(v.values())[0] for k, v in particles_by_name.items() if len(v) == 1}) return result
c61202aeb4ad36e22786457306de1ac5773b56d2
18,995
import torch def fps_and_pred(model, batch, **kwargs): """ Get fingeprints and predictions from the model. Args: model (nff.nn.models): original NFF model loaded batch (dict): batch of data Returns: results (dict): model predictions and its predicted fingerprints, conformer weights, etc. """ model.eval() # make the fingerprints outputs, xyz = model.make_embeddings(batch, xyz=None, **kwargs) # pool to get the learned weights and pooled fingerprints pooled_fp, learned_weights = model.pool(outputs) # get the final results results = model.readout(pooled_fp) # add sigmoid if it's a classifier and not in training mode if model.classifier: keys = list(model.readout.readout.keys()) for key in keys: results[key] = torch.sigmoid(results[key]) # add any required gradients results = model.add_grad(batch=batch, results=results, xyz=xyz) # put into a dictionary conf_fps = [i.cpu().detach() for i in outputs["conf_fps_by_smiles"]] energy = batch.get("energy") boltz_weights = batch.get("weights") # with operations to de-batch n_confs = [(n // m).item() for n, m in zip(batch['num_atoms'], batch['mol_size'])] for key, val in results.items(): results[key] = [i for i in val] results.update({"fp": [i for i in pooled_fp], "conf_fps": conf_fps, "learned_weights": learned_weights, "boltz_weights": (list(torch.split (boltz_weights, n_confs)))}) if energy is not None: results.update({"energy": list(torch.split(energy, n_confs))}) return results
1a8cca3ffe0d386e506ab42f6e77e00b1a5975d1
18,996
import re def preprocess_text(text): """ Should return a list of words """ text = contract_words(text) text = text.lower() # text = text.replace('"', "").replace(",", "").replace("'", "") text = text.replace('"', "").replace(",", "").replace("'", "").replace(".", " .") ## added by PAVAN ## To capture multiple # feature -- added by PAVAN if re.search(r'[a-z]+\#', text): tmp_ls = text.split() text = ' '.join( [re.sub(pattern=r'\#', repl=' #', string=str(i)) if re.search(r'[a-z]+\#', str(i)) else i for i in tmp_ls]) ## To capture # feature -- added by PAVAN if re.search(r'\#[a-z]+', text): tmp_ls = text.split() text = ' '.join( [re.sub(pattern=r'\#', repl='hashtagfea ', string=str(i)) if re.search(r'\#[a-z]+', str(i)) else i for i in tmp_ls]) return text.split()
0b42b57629e68c2f0bf3831dc226a2ba823cfdb3
18,997
import unicodedata def unicodeToAscii(s): """unicodeToAscii Turn a Unicode string to plain ASCII, thanks to https://stackoverflow.com/a/518232/2809427 For example, 'Ślusàrski' -> 'Slusarski' """ return ''.join( c for c in unicodedata.normalize('NFD', s) if unicodedata.category(c) != 'Mn' and c in all_letters )
7791ae244499b2448ac4bc5de0fde35057d1f5d5
18,998
def update_ip_table(nclicks, value): """ Function that updates the IP table in the Elasticsearch Database that contains the frequency as well as the IP address of the machine querying that particular domain. Args: nclicks: Contains the number of clicks registered by the submit button. value: Contains the domain name corresponding to which the IP table has to be returned. Returns: The IP address data regarding the number of times a particular domain was queried by a particular machine. """ if value is None or value == '': return [] else: try: count = es.get(index=value, id=1)['_source']['count'] domain_names = [key for (key, value) in sorted(count.items(), key=lambda x: x[1], reverse=True)] data = [dict({'sl_no': j + 1, 'ip': i, 'count': count[i]}) for i, j in zip(domain_names, range(len(count)))] except: data = [] return data
ef0df6f1fb79d86a707990d0790dadabecbd22c1
18,999