content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def get_config_type(service_name): """ get the config tmp_type based on service_name """ if service_name == "HDFS": tmp_type = "hdfs-site" elif service_name == "HDFS": tmp_type = "core-site" elif service_name == "MAPREDUCE": tmp_type = "mapred-site" elif service_name == "HBASE": tmp_type = "hbase-site" elif service_name == "OOZIE": tmp_type = "oozie-site" elif service_name == "HIVE": tmp_type = "hive-site" elif service_name == "WEBHCAT": tmp_type = "webhcat-site" else: tmp_type = "global" return tmp_type
2fec790e67bdba757f8dffe058fae1d508b7d237
18,700
import requests from io import StringIO def batch_request(config, dataset_id, geographies, date_format, record_offset=0, max_api_calls=10): """Fetch a NOMIS dataset from the API, in batches, based on a configuration object. Args: config (dict): Configuration object, from which a get request is formed. dataset_id (str): NOMIS dataset ID geographies (list): Return object from :obj:`discovery_iter`. date_format (str): Formatting string for dates in the dataset record_offset (int): Record to start from max_api_calls (int): Number of requests allowed Returns: dfs (:obj:`list` of :obj:`pd.DataFrame`): Batch return results. """ config["geography"] = ",".join(str(row["nomis_id"]) for row in geographies) config["RecordOffset"] = record_offset date_parser = lambda x: pd.datetime.strptime(x, date_format) # Build a list of dfs in chunks from the NOMIS API dfs = [] offset = 25000 icalls = 0 done = False while (not done) and icalls < max_api_calls: #logging.debug(f"\t\t {offset}") # Build the request payload params = "&".join(f"{k}={v}" for k,v in config.items()) # Hit the API r = requests.get(NOMIS.format(f"{dataset_id}.data.csv"), params=params) # Read the data with StringIO(r.text) as sio: _df = pd.read_csv(sio, parse_dates=["DATE"], date_parser=date_parser) done = len(_df) < offset # Increment the offset config["RecordOffset"] += offset # Ignore empty fields dfs.append(_df.loc[_df.OBS_VALUE > 0]) icalls += 1 # Combine and return df = pd.concat(dfs) df.columns = [c.lower() for c in df.columns] return df, done, config["RecordOffset"]
1f615ccd60464641a554bc3bf2bc39fe917d4df4
18,701
from typing import Dict from typing import List from typing import Tuple import os import tqdm def get_val(in_root: str, wnid2idx: Dict[str, int]) -> List[Tuple[str, int]]: """Get validation split sample pairs. Args: in_root (str): Input dataset root directory. wnid2idx (dict): Mapping of WordNet ID to class ID. Returns: List of pairs of (image filename, class ID). """ pairs = [] filename = os.path.join(in_root, 'val', 'val_annotations.txt') lines = open(filename).read().strip().split('\n') for line in tqdm(lines, leave=False): basename, wnid = line.split()[:2] filename = os.path.join(in_root, 'val', 'images', basename) wnid_idx = wnid2idx[wnid] pairs.append((filename, wnid_idx)) shuffle(pairs) return pairs
4f4cf7d1ec62dea5d128ef4a89fe9ca2ac02f317
18,702
def is_music(file: File) -> bool: """See if the ext is a Music type.""" return file.ext in { "aac", "m4a", "mp3", "ogg", "wma", "mka", "opus", "alac", "ape", "flac", "wav", }
7e35a4f63c656d61d534a1a0116c84c6fc30fefd
18,703
import torch def sqeuclidean_pdist(x, y=None): """Fast and efficient implementation of ||X - Y||^2 = ||X||^2 + ||Y||^2 - 2 X^T Y Input: x is a Nxd matrix y is an optional Mxd matirx Output: dist is a NxM matrix where dist[i,j] is the square norm between x[i,:] and y[j,:] if y is not given then use 'y=x'. i.e. dist[i,j] = ||x[i,:]-y[j,:]||^2 """ x_norm = (x**2).sum(1).unsqueeze(1) if y is not None: y_t = torch.transpose(y, 0, 1) y_norm = (y**2).sum(1).unsqueeze(0) else: y_t = torch.transpose(x, 0, 1) y_norm = x_norm.squeeze().unsqueeze(0) dist = x_norm + y_norm - 2.0 * torch.mm(x, y_t) # get rid of NaNs dist[torch.isnan(dist)] = 0. # clamp negative stuff to 0 dist = torch.clamp(dist, 0., np.inf) # ensure diagonal is 0 if y is None: dist[dist == torch.diag(dist)] = 0. return dist
7b9077ed847847bd1030b6f850259717ccc586fe
18,704
import argparse def parse_options() -> argparse.Namespace: """Parse command line arguments""" parser: argparse.ArgumentParser = argparse.ArgumentParser( "Arguments for pretraining") parser.add_argument('--sample_size', type=int, default=3200, help='sample size for training') parser.add_argument('--batch_size', type=int, default=128, help='input batch size for training') parser.add_argument('--num_epochs', type=int, default=100, help='Number of epochs for training') parser.add_argument('--contrastive_train_epochs', type=int, default=10, help='Number of epochs for contrastive training') parser.add_argument('--model_id', type=int, default=0, help='Model ID for training') parser.add_argument('--mode', default='train', help='train | test | debug') opt: argparse.Namespace = parser.parse_args() return opt
e746865259d024b733ede7f1c353f37a93a3f9f2
18,705
import os import shutil def commit(dir_info): """ Moves files from the temp directory to the final directory based on the input given. Returns list of all files Keyword arguments: dir_info -- dictionary of service to dir_info hash """ def walk_file_list(base_dir, srcdir, resultdir, done_files=set()): """ Gets files that haven't been seen yet """ result = [] if not base_dir.endswith(os.sep): # For stripping the slash base_dir = base_dir + os.sep for root, dirnames, filenames in os.walk(srcdir): after_base = root[len(base_dir):] #strip absolute if after_base not in done_files: for filename in filenames: if os.path.join(after_base, filename) not in done_files: result.append(os.path.join(resultdir, filename)) return result result = defaultdict(list) for service in dir_info: # copy the directory serv_dir = dir_info[service]['dir'] base_dir = dir_info[service]['base_dir'] log.info("Deploying %s to %s", service, base_dir) files = set(os.listdir(serv_dir)) done_files = set() for dirname, atomic in dir_info[service]['atomic'].items(): srcdir = os.path.join(serv_dir, dirname) destdir = os.path.join(base_dir, dirname) # Delete existing dir if atomic: if not os.path.islink(destdir): shutil.rmtree(destdir, ignore_errors=True) stripped = destdir.rstrip(os.sep) makedirsp(os.path.dirname(stripped)) force_create_symlink(srcdir, stripped) else: # Copy copy_tree(srcdir, destdir) result[service].extend(walk_file_list(serv_dir, srcdir, dirname)) done_files.add(dirname.rstrip(os.sep)) # Do the remaining files for name in files.difference(done_files): src = os.path.join(serv_dir, name) dst = os.path.join(base_dir, name) if os.path.isdir(src): if os.path.basename(os.path.normpath(src)) == '.git': continue _smart_copytree(src, dst, ignore=ignore_copy) result[service].extend(walk_file_list(serv_dir, src, name, done_files)) else: _smart_copyfile(src, dst) result[service].append(name) return result
7d9068e5203cdf961fa8abbcb76ac22ee41e5e34
18,706
def len(file, path): """获取dataset第一维长度。 Args: file: 文件路径。 path: dataset路径。 Returns: 返回长度。 """ with h5py.File(file, mode='r') as h5_file: length = h5_file[path].len() return length
d64d4ca0076a2bf76c5cb11dbba68adec15e34fa
18,707
from re import T def loop(step_fn, n_steps, sequences=None, outputs_info=None, non_sequences=None, go_backwards=False): """ Helper function to unroll for loops. Can be used to unroll theano.scan. The parameter names are identical to theano.scan, please refer to here for more information. Note that this function does not support the truncate_gradient setting from theano.scan. Parameters ---------- step_fn : function Function that defines calculations at each step. sequences : TensorVariable or list of TensorVariables List of TensorVariable with sequence data. The function iterates over the first dimension of each TensorVariable. outputs_info : list of TensorVariables List of tensors specifying the initial values for each recurrent value. Specify output_info to None for non-arguments to the step_function non_sequences: list of TensorVariables List of theano.shared variables that are used in the step function. n_steps: int Number of steps to unroll. go_backwards: bool If true the recursion starts at sequences[-1] and iterates backwards. Returns ------- List of TensorVariables. Each element in the list gives the recurrent values at each time step. """ if not isinstance(sequences, (list, tuple)): sequences = [] if sequences is None else [sequences] # When backwards reverse the recursion direction counter = range(n_steps) if go_backwards: counter = counter[::-1] output = [] # ====== check if outputs_info is None ====== # if outputs_info is not None: prev_vals = outputs_info else: prev_vals = [] output_idx = [i for i in range(len(prev_vals)) if prev_vals[i] is not None] # ====== check if non_sequences is None ====== # if non_sequences is None: non_sequences = [] # ====== Main loop ====== # for i in counter: step_input = [s[i] for s in sequences] + \ [prev_vals[idx] for idx in output_idx] + \ non_sequences out_ = step_fn(*step_input) # The returned values from step can be either a TensorVariable, # a list, or a tuple. Below, we force it to always be a list. if isinstance(out_, T.TensorVariable): out_ = [out_] if isinstance(out_, tuple): out_ = list(out_) output.append(out_) prev_vals = output[-1] # iterate over each scan output and convert it to same format as scan: # [[output11, output12,...output1n], # [output21, output22,...output2n],...] output_scan = [] for i in range(len(output[0])): l = map(lambda x: x[i], output) output_scan.append(T.stack(*l)) return output_scan
8abd7c0ccfcabd3e44eca10c6d30a7d9a7add627
18,708
import torch def get_model(hidden_size=20, n_hidden=5, in_dim=2, out_dim=1, penultimate=False, use_cuda=True, bn=False): """ Initialize the model and send to gpu """ in_dim = in_dim out_dim = out_dim #1 model = Net(in_dim, out_dim, n_hidden=n_hidden, hidden_size=hidden_size, activation=torch.nn.ReLU(), bias=True, penultimate=penultimate, bn=bn) if use_cuda: model=model.cuda() return model
fd7169276a2a420ce59733ac9687a289e7c3b0af
18,709
def convert_sweep(sweep,sweep_loc,new_sweep_loc,AR,taper): """This converts arbitrary sweep into a desired sweep given wing geometry. Assumptions: None Source: N/A Inputs: sweep [degrees] sweep_loc [unitless] new_sweep_loc [unitless] AR [unitless] taper [unitless] Outputs: quarter chord sweep Properties Used: N/A """ sweep_LE = np.arctan(np.tan(sweep)+4*sweep_loc* (1-taper)/(AR*(1+taper))) new_sweep = np.arctan(np.tan(sweep_LE)-4*new_sweep_loc* (1-taper)/(AR*(1+taper))) return new_sweep
17b52460f8a9d32cc2e6f407ccad2851c3edb1f8
18,710
def is_circular(linked_list): """ Determine whether the Linked List is circular or not Args: linked_list(obj): Linked List to be checked Returns: bool: Return True if the linked list is circular, return False otherwise The way we'll do this is by having two pointers, called "runners", moving through the list at different rates. Typically we have a "slow" runner which moves at one node per step and a "fast" runner that moves at two nodes per step. If a loop exists in the list, the fast runner will eventually move behind the slow runner as it moves to the beginning of the loop. Eventually it will catch up to the slow runner and both runners will be pointing to the same node at the same time. If this happens then you know there is a loop in the linked list. Below is an example where we have a slow runner and a fast runner (the red arrow). """ slow = linked_list.head fast = linked_list.head #as fast runner will reach end first if there is no loop so #adding a None check on just fast should be enough while fast and fast.next: slow = slow.next #move fast runner 2 times to make it fast as compared to slow runner fast = fast.next.next if fast == slow: return True # If we get to a node where fast doesn't have a next node or doesn't exist itself, # the list has an end and isn't circular return False
5a641df602f983de78c9c74b825847412aa54c21
18,711
from typing import List from typing import Any def bm_cv( X_train: pd.DataFrame, y_train: pd.Series, cv: int, metrics: List[Any], metrics_proba: List[Any], metric_kwargs: dict, model_dict: dict, ): """ Perform cross validation benchmark with all models specified under model_dictionary, using the metrics defined. Args: X_train: Array of features, used to train the model y_train: Array of label, used to train the model cv: Number of cross-validation fold metrics: List of metrics that we will use to score our validation performance metrics_proba : List of metrics that we will use to score our validation performance. This is only applicable for classification problem. The metrics under `metrics_proba` uses the predicted probability instead of predicted class metrics_kwargs: Dictionary containing the extra arguments needed for specific metrics, listed in metrics and metrics_proba model_dict: Model_dictionary, containing the model_name as the key and catalyst.ml.model object as value. Returns: DataFrame, which contains all of the metrics value for each of the model specified under model_dictionary, as well as the cross-validation index. """ result_cv_df = pd.DataFrame() kf = KFold(n_splits=cv, shuffle=True, random_state=42) for cv_idx, (dev_idx, val_idx) in enumerate(kf.split(X_train)): X_dev, X_val, y_dev, y_val = cv_split(X_train, y_train, dev_idx, val_idx) df = bm( X_dev, y_dev, X_val, y_val, metrics, metrics_proba, metric_kwargs, model_dict, ) df["cv_idx"] = cv_idx result_cv_df = pd.concat([result_cv_df, df]) return result_cv_df
d1d1944fd4802f196ca7a1a78cf0f55222f6886c
18,712
def index_get(array, *argv): """ checks if a index is available in the array and returns it :param array: the data array :param argv: index integers :return: None if not available or the return value """ try: for index in argv: array = array[index] return array # there is either no info available or no popular times # TypeError: rating/rating_n/populartimes wrong of not available except (IndexError, TypeError): return None
d7fbf0011fd14da905d167735e6900b1bbaf1a8f
18,713
def _env_vars_available() -> bool: """ Returns: `True` if all required environment variables for the Postgres connection are set, `False` otherwise """ return all(env_var in environ for env_var in DBConfigProviderEnvVarBasedImpl.required_env_vars)
8fcc9c06115056bbe8b3b691d192186c0313aeef
18,714
def precisionatk_implementation(y_true, y_pred, k): """Fujnction to calculate precision at k for a given sample Arguments: y_true {list} -- list of actual classes for the given sample y_pred {list} -- list of predicted classes for the given sample k {[int]} -- top k predictions we are interested in """ # if k = 0 return 0 as we should never have k=0 # as k is always >=1 if k == 0: return 0 # as we are interested in top k predictions y_pred = y_pred[:k] # convert predictions to set pred_set = set(y_pred) # convert actual values to set true_set = set(y_true) # find comon values in both common_values = pred_set.intersection(true_set) # return length of common values over k return len(common_values) / len(y_pred[:k])
945caa95b32681939569ca675475e2527dbdee78
18,715
import pandas def add_plane_data( data_frame: pandas.DataFrame, file_path: str, target_col: str = const.DF_PLANE_COL_NAME ) -> pandas.DataFrame: """Merges DataFrame with information about the flight planes Args: data_frame (pandas.DataFrame): Source DataFrame file_path (str): Source file path target_col (str): Target column to merge Returns: pandas.DataFrame: Source DataFrame with aditional information """ planes = df_fileloader.load_agenda(file_path) data_frame[target_col] = data_frame[target_col].astype(str) planes[target_col] = planes[target_col].astype(str) data_frame = pandas.merge(data_frame, planes, how='outer', on=[target_col], indicator=True) unmatched = data_frame.query('_merge == "left_only"').groupby([target_col]).size().reset_index(name='count') if not unmatched.empty: err_msg = 'There\'s missing information about the following planes:' for index, row in unmatched.iterrows(): err_msg += '\n {} with {} ocurrences.'.format(row[target_col], row['count']) utility.eprint(err_msg) return return data_frame.query('_merge == "both"').drop(columns=['_merge'])
0dbe3987cb4ee26f0ae6670173c65a3622ca9b5d
18,716
def record(location): """Creates an empty record.""" draft = RDMDraft.create({}) record = RDMRecord.publish(draft) return record
77c8069e4fd894f2ed1d760fc983a9a2094c0f6d
18,717
def firfls(x, f_range, fs=1000, w=3, tw=.15): """ Filter signal with an FIR filter *Like firls in MATLAB x : array-like, 1d Time series to filter f_range : (low, high), Hz Cutoff frequencies of bandpass filter fs : float, Hz Sampling rate w : float Length of the filter in terms of the number of cycles of the oscillation whose frequency is the low cutoff of the bandpass filter tw : float Transition width of the filter in normalized frequency space Returns ------- x_filt : array-like, 1d Filtered time series """ if w <= 0: raise ValueError( 'Number of cycles in a filter must be a positive number.') if np.logical_or(tw < 0, tw > 1): raise ValueError('Transition width must be between 0 and 1.') nyq = fs / 2 if np.any(np.array(f_range) > nyq): raise ValueError('Filter frequencies must be below nyquist rate.') if np.any(np.array(f_range) < 0): raise ValueError('Filter frequencies must be positive.') Ntaps = np.floor(w * fs / f_range[0]) if len(x) < Ntaps: raise RuntimeError( 'Length of filter is loger than data. ' 'Provide more data or a shorter filter.') # Characterize desired filter f = [0, (1 - tw) * f_range[0] / nyq, f_range[0] / nyq, f_range[1] / nyq, (1 + tw) * f_range[1] / nyq, 1] m = [0, 0, 1, 1, 0, 0] if any(np.diff(f) < 0): raise RuntimeError( 'Invalid FIR filter parameters.' 'Please decrease the transition width parameter.') # Perform filtering taps = firwin2(Ntaps, f, m) x_filt = filtfilt(taps, [1], x) if any(np.isnan(x_filt)): raise RuntimeError( 'Filtered signal contains nans. Adjust filter parameters.') # Remove edge artifacts return _remove_edge(x_filt, Ntaps)
71c7c3fc229ce8745f5940593a6e5a2f9bf12490
18,718
def extract_and_coadd(ra, dec, pm_ra, pm_dec, match_radius=4./3600., search_radius=25./60, sigma_clip=None, query_timeout=60., upper_limits=True, return_exps=False): """ The top-level function of this module, extract_and_coadd finds sources in GALEX archive matching the target while accounting for its proper motion between observing visits, the coadds the fluxes from each visit. Parameters ---------- ra : float Right ascencion of target in decimal degrees. dec : float Declination of target in decimal degrees. pm_ra : float Right ascencion proper motion of target in mas/yr. pm_dec : float Declination proper motion of target in mas/yr. match_radius : float Radius within which to consider a GALEX source a match to the target in degrees. For reference, the 1-sigma astrometric uncertainty is 0.4 arcseconds for GALEX. search_radius : float Radius in which to query the MCAT in degrees. If upper limits are desired, this should be large enough for the MCAT to return results whenever exposures were taken near enough that the target could have been in the aperture. sigma_clip : float Exclude fluxes > this many sigma from median flux relative to their measurement error. Careful with this. Stars show real variability that is often well beyond measurement errors, so it is probably unwise to sigma clip in most cases. query_timeout : float Seconds to wait for server to respond before giving up. upper_limits : bool Estimate upper limits for exposures where there is no match for the source. return_exps : bool If True, return all the data provided by extract_source. Returns ------- nuv_coadd : tuple Coadded flux and error in counts s-1 and, optionally, exposure info returned by extract_source. Upper limits show up as -999 for the flux with a positive error. fuv_coadd : tuple As above, for fuv. """ data = extract_source(ra, dec, pm_ra, pm_dec, match_radius, search_radius, query_timeout, upper_limits) nuv_data, fuv_data = data nuv = list(coadd_fluxes(*nuv_data[:3], sigma_clip=sigma_clip)) fuv = list(coadd_fluxes(*fuv_data[:3], sigma_clip=sigma_clip)) if return_exps: nuv.append(nuv_data) fuv.append(fuv_data) nuv, fuv = map(tuple, (nuv, fuv)) return (nuv, fuv)
d28d62877ba0c8a99aba1596128dc764bc3e19b7
18,719
import aiohttp async def create_payout( session: ClientSession, data: CreatePayoutRequest ) -> CreatePayoutResponse: """ Create a payout. """ url = RAZORPAY_BASE_URL + "/payouts" async with session.post( url, json=data.__dict__, auth=aiohttp.BasicAuth(RAZORPAY_KEY_ID, RAZORPAY_KEY_SECRET), ) as resp: response = await resp.json() print(response, resp.status) return from_dict(data_class=CreatePayoutResponse, data=response)
c4b9dae09111c83efb1d5a9c5fd88050f11b5510
18,720
def eval_ocr_metric(pred_texts, gt_texts): """Evaluate the text recognition performance with metric: word accuracy and 1-N.E.D. See https://rrc.cvc.uab.es/?ch=14&com=tasks for details. Args: pred_texts (list[str]): Text strings of prediction. gt_texts (list[str]): Text strings of ground truth. Returns: eval_res (dict[str: float]): Metric dict for text recognition, include: - word_acc: Accuracy in word level. - word_acc_ignore_case: Accuracy in word level, ignore letter case. - word_acc_ignore_case_symbol: Accuracy in word level, ignore letter case and symbol. (default metric for academic evaluation) - char_recall: Recall in character level, ignore letter case and symbol. - char_precision: Precision in character level, ignore letter case and symbol. - 1-N.E.D: 1 - normalized_edit_distance. """ assert isinstance(pred_texts, list) assert isinstance(gt_texts, list) assert len(pred_texts) == len(gt_texts) match_res = count_matches(pred_texts, gt_texts) eps = 1e-8 char_recall = 1.0 * match_res['true_positive_char_num'] / ( eps + match_res['gt_char_num']) char_precision = 1.0 * match_res['true_positive_char_num'] / ( eps + match_res['pred_char_num']) word_acc = 1.0 * match_res['match_word_num'] / ( eps + match_res['gt_word_num']) word_acc_ignore_case = 1.0 * match_res['match_word_ignore_case'] / ( eps + match_res['gt_word_num']) word_acc_ignore_case_symbol = 1.0 * match_res[ 'match_word_ignore_case_symbol'] / ( eps + match_res['gt_word_num']) eval_res = {} eval_res['word_acc'] = word_acc eval_res['word_acc_ignore_case'] = word_acc_ignore_case eval_res['word_acc_ignore_case_symbol'] = word_acc_ignore_case_symbol eval_res['char_recall'] = char_recall eval_res['char_precision'] = char_precision eval_res['1-N.E.D'] = 1.0 - match_res['ned'] eval_res['BLEU'] = match_res['bleu'] for key, value in eval_res.items(): eval_res[key] = float('{:.4f}'.format(value)) return eval_res
0ec92be231d93abf9db8247369ba5ea546bd1b17
18,721
def get_all_zones(): """Return a list of all available zones.""" cf = CloudFlare.CloudFlare(raw=True) page_number = 0 total_pages = 1 all_zones = [] while page_number < total_pages: page_number += 1 raw_results = cf.zones.get(params={'per_page':100, 'page':page_number}) zones = raw_results['result'] all_zones += zones total_pages = raw_results['result_info']['total_pages'] return all_zones
0b9f6bf9b7b8fe274f7c6f856abf1d9397384c3c
18,722
def entry_id(e): """entry identifier which is not the bibtex key """ authortitle = ''.join([author_id(e),title_id(e)]) return (e.get('doi','').lower(), authortitle)
7c663d6c2bbdfcef8168c11a78e176e634cf644b
18,723
def AskNumber(text="unknown task"): """ Asks the user to interactively input a number (float or int) at any point in the script, and returns the input number. | __option__ | __description__ | --- | --- | *text | an optional string to identify for what purpose the chosen number will be used. """ def ValidateNumber(text): try: innumber = input("\n\nwrite a comma or integer number to use for "+str(text)+" (example: 15 or 15.83)\nnumber = ") except NameError: print("""\n---> unknown error""") return ValidateNumber(text) if not isinstance(innumber,(float,int)): print("""\n---> error: the number must be either a floating point comma or integer number""") return ValidateNumber(text) return innumber return ValidateNumber(text)
41949d0a2e2d87b5cdb26d2db9bff9a64fbeeb1d
18,724
def TokenEmphasis(character="_"): """ Italic (`<i>`, `<em>`) text is rendered with one asterisk or underscore """ assert character in ("_", "*") return { "type": "Characters", "data": character, "_md_type": mdTokenTypes["TokenEmphasis"], }
2012fdeb9ca4d9483b4cc403010f9900dcc1230f
18,725
import os def get_data(filename, **kwargs): """ get selected data file """ filepath = os.path.join(data.__path__[0], filename) return np.genfromtxt(filepath, **kwargs)
dcf95489b95c3900819f10cad2a503b27fc5d88c
18,726
import random def generate_plan(suite, node): """Randomly generates a plan, completely ignoring norms. This is mainly for testing the norm driven algorithm""" plan = [node] next_actions = next_actions(suite,node) # print "Next actions ", next_actions while (next_actions != []): a = random.sample(next_actions,1)[0] node = a.path[1:] plan[len(plan):] = node node = node[-1] # if we have a sequence of actions next_actions = next_actions(suite,node) return plan
30d967986d1c4237b4b312470d47d1ecce06ecbc
18,727
def update_y(pred_coords, ypart_tracker, history=1500): """ Update y-tracker and store last 1500 detection :param pred_coords: y coordinates :param ypart_tracker: choose keypoints based on input conditions :return: y-tracker """ anks_val = (pred_coords[15] + pred_coords[16]) * 0.5 shdr_val = (pred_coords[5] + pred_coords[6]) * 0.5 ypart_tracker['anks'] = np.append(ypart_tracker['anks'], [anks_val], axis=0) ypart_tracker['shdr'] = np.append(ypart_tracker['shdr'], [shdr_val], axis=0) ypart_tracker['anks-shdr'] = np.append(ypart_tracker['anks-shdr'], [anks_val - shdr_val], axis=0) ypart_tracker = {k: v[-history:] for k, v in ypart_tracker.items()} return ypart_tracker
ee1880e27b121dae4661a93286bf07117bc7bb34
18,728
def augmentData(features, labels): """ For augmentation of the data :param features: :param labels: :return: """ features = np.append(features, features[:, :, ::-1], axis=0) labels = np.append(labels, -labels, axis=0) return features, labels
ef684ae2bf9eb4fca9a0636d3b0089020805f4be
18,729
import tqdm import torch import os def train_adversary(): """ Trains an adversary on data from the data censoring process. """ def accuracy(pred, true): u = true.cpu().numpy().flatten() p = np.argmax(pred.cpu().detach().numpy(), axis=1) acc = np.sum(u == p)/len(u) return acc tmp_secret_classifier.train() adv_secret_classifier.train() for i_epoch in range(5): for i_batch, batch in tqdm.tqdm(enumerate(train_dataloader, 0)): imgs = batch['image'].cuda() utility = batch['utility'].float().cuda() secret = batch['secret'].float().cuda() secret = secret.view(secret.size(0)) utility = utility.view(utility.size(0)) batch_size = imgs.shape[0] z1 = torch.randn(batch_size, opt.latent_dim).cuda() if opt.use_filter: filter_imgs = filter(imgs, z1, secret.long()) else: filter_imgs = imgs if opt.use_real_fake: z2 = torch.randn(batch_size, opt.latent_dim).cuda() gen_secret = Variable(LongTensor(np.random.choice([0.0, 1.0], batch_size))) filter_imgs = generator(filter_imgs, z2, gen_secret) # train tmp optimizer_tmp.zero_grad() secret_pred = tmp_secret_classifier(imgs) loss = adversarial_loss(secret_pred, secret.long()) loss.backward() optimizer_tmp.step() if i_batch % 50 == 0: acc = accuracy(secret_pred, secret) print("secret_tmp_acc: ", acc) # train adversary optimizer_adv.zero_grad() secret_pred = adv_secret_classifier(filter_imgs.detach()) loss = adversarial_loss(secret_pred, secret.long()) loss.backward() optimizer_adv.step() if i_batch % 50 == 0: acc = accuracy(secret_pred, secret) print("secret_adv_acc: ", acc) utils.save_model(adv_secret_classifier, os.path.join(artifacts_path, "adv_secret_classifier.hdf5")) accs1 = [] accs2 = [] tmp_secret_classifier.eval() adv_secret_classifier.eval() for i_batch, batch in tqdm.tqdm(enumerate(valid_dataloader, 0)): imgs = batch['image'].cuda() secret = batch['secret'].float().cuda() secret = secret.view(secret.size(0)) batch_size = imgs.shape[0] z1 = torch.randn(batch_size, opt.latent_dim).cuda() if opt.use_filter: filter_imgs = filter(imgs, z1, secret.long()) else: filter_imgs = imgs if opt.use_real_fake: z2 = torch.randn(batch_size, opt.latent_dim).cuda() gen_secret = Variable(LongTensor(np.random.choice([0.0, 1.0], batch_size))) filter_imgs = generator(filter_imgs, z2, gen_secret) secret_pred = adv_secret_classifier(filter_imgs.detach()) acc = accuracy(secret_pred, secret) accs1.append(acc) secret_pred = tmp_secret_classifier(imgs) acc = accuracy(secret_pred, secret) accs2.append(acc) acc1 = np.mean(accs1) acc2 = np.mean(accs2) print("test_secret_adv_acc: ", acc1) print("test_secret_tmp_acc: ", acc2) return acc1
33236a2260aa6df11a0b99bd58b5601fcd9ef052
18,730
def sigmoid(x): """ Implement 1 / ( 1 + exp( -x ) ) in terms of tanh.""" return 0.5 * (np.tanh(x / 2.) + 1)
95d6dd0cd62db2c43df419358ef368609ede42c8
18,731
def get_unique_output_values(signals): """ Based on segment length, determine how many of the possible four uniquely identifiable digits are in the set of signals. """ unique_digit_count = 0 for signal in signals: for digit in signal["output"]: if len(digit) in (2, 3, 4, 7): unique_digit_count += 1 return unique_digit_count
84098d4d294bfdd1b983ea70d51da1453b17245a
18,732
import itertools def split_and_pad(s, sep, nsplit, pad=None): """ Splits string s on sep, up to nsplit times. Returns the results of the split, pottentially padded with additional items, up to a total of nsplit items. """ l = s.split(sep, nsplit) return itertools.chain(l, itertools.repeat(None, nsplit+1-len(l)))
6c439301df7109d9b01a06a87bd7d6adafb8ee1e
18,733
def transpose_report(report): """Transposes the report. Columns into rows""" return list(map(list, zip(*report)))
bc59f9106496b0b830fdc9ac0266f3b774a8f759
18,734
def _shape_from_resolution(resolution): """ Calculate the shape of the global Earth relief grid given a resolution. Parameters ---------- resolution : str Same as the input for load_earth_relief Returns ------- shape : (nlat, nlon) The calculated shape. Examples -------- >>> _shape_from_resolution('60m') (181, 361) >>> _shape_from_resolution('30m') (361, 721) >>> _shape_from_resolution('10m') (1081, 2161) """ minutes = int(resolution[:2]) nlat = 180*60//minutes + 1 nlon = 360*60//minutes + 1 return (nlat, nlon)
c726d599696cee2259bc450606e63480b0991451
18,735
def __virtual__(): """ Load module only if cx_Oracle installed """ if HAS_CX_ORACLE: return __virtualname__ return ( False, "The oracle execution module not loaded: python oracle library not found.", )
a64eddc8b78e5d7b3c8e0588a72a0c238b4c12d0
18,736
import pkgutil import os def find_plugins(): """ Finds all Python packages inside the port.plugins directory """ return [os.path.join(importer.path, name) for importer, name, ispkg in pkgutil.iter_modules(plugins.__path__) if ispkg]
06b1217840686a4f4ad90b1f9b7dd32e8377df05
18,737
import os def saturation(rgb_img, threshold=255, channel="any"): """Return a mask filtering out saturated pixels. Inputs: rgb_img = RGB image threshold = value for threshold, above which is considered saturated channel = how many channels must be saturated for the pixel to be masked out ("any", "all") Returns: masked_img = A binary image with the saturated regions blacked out. :param rgb_img: np.ndarray :param threshold: int :param channel: str :return masked_img: np.ndarray """ # Mask red, green, and blue saturation separately b, g, r = cv2.split(rgb_img) b_saturated = cv2.inRange(b, threshold, 255) g_saturated = cv2.inRange(g, threshold, 255) r_saturated = cv2.inRange(r, threshold, 255) # Combine channel masks if channel.lower() == "any": # Consider a pixel saturated if any channel is saturated saturated = cv2.bitwise_or(b_saturated, g_saturated) saturated = cv2.bitwise_or(saturated, r_saturated) elif channel.lower() == "all": # Consider a pixel saturated only if all channels are saturated saturated = cv2.bitwise_and(b_saturated, g_saturated) saturated = cv2.bitwise_and(saturated, r_saturated) else: fatal_error(str(channel) + " is not a valid option. Channel must be either 'any', or 'all'.") # Invert "saturated" before returning, so saturated = black bin_img = cv2.bitwise_not(saturated) _debug(visual=bin_img, filename=os.path.join(params.debug_outdir, str(params.device), '_saturation_threshold.png')) return bin_img
588bdc18f87af48b322b653170126516942594f5
18,738
def get_fuel_from(mass: int) -> int: """Gets fuel from mass. Args: mass (int): mass for the fuel Returns: int: fuel necessary for the mass """ return mass // 3 - 2
37390c8cb9ba7e84c7b5c14841528d6c38f1589e
18,739
def test_energy_density_function(): """ Compute the Zeeman energy density over the entire mesh, integrate it, and compare it to the expected result. """ mesh = df.RectangleMesh(df.Point(-50, -50), df.Point(50, 50), 10, 10) unit_length = 1e-9 H = 1e6 # Create simulation object. sim = finmag.Simulation(mesh, 1e5, unit_length=unit_length) # Set uniform magnetisation. def m_ferromagnetic(pos): return np.array([0., 0., 1.]) sim.set_m(m_ferromagnetic) # Assign zeeman object to simulation sim.add(Zeeman(H * np.array([0., 0., 1.]))) # Get energy density function edf = sim.get_interaction('Zeeman').energy_density_function() # Integrate it over the mesh and compare to expected result. total_energy = df.assemble(edf * df.dx) * unit_length expected_energy = -mu0 * H assert (total_energy + expected_energy) < 1e-6
10a4da043554a93c3d6c90f32c554741b2fe2c7b
18,740
def my_Bayes_model_mse(params): """ Function fits the Bayesian model from Tutorial 4 Args : params (list of positive floats): parameters used by the model (params[0] = posterior scaling) Returns : (scalar) negative log-likelihood :sum of log probabilities """ trial_ll = np.zeros_like(true_stim) ## Create the prior Matrix outside of trial loop alpha=params[0] prior_mean = 0 prior_sigma1 = 0.5 prior_sigma2 = 3 prior1 = my_gaussian(x, prior_mean, prior_sigma1) prior2 = my_gaussian(x, prior_mean, prior_sigma2) prior_combined = (1-alpha) * prior1 + (alpha * prior2) prior_combined = prior_combined / np.sum(prior_combined) prior_matrix = np.tile(prior_combined, hypothetical_stim.shape[0]).reshape((hypothetical_stim.shape[0],-1)) ## Create posterior matrix outside of trial loop posterior_matrix = np.zeros_like(likelihood_matrix) for i_posterior in np.arange(posterior_matrix.shape[0]): posterior_matrix[i_posterior,:] = np.multiply(prior_matrix[i_posterior,:], likelihood_matrix[i_posterior,:]) posterior_matrix[i_posterior,:] = posterior_matrix[i_posterior,:] / np.sum(posterior_matrix[i_posterior,:]) ## Create Binary decision matrix outside of trial loop binary_decision_matrix = np.zeros_like(posterior_matrix) for i_posterior in np.arange(posterior_matrix.shape[0]): mean, _, _ = moments_myfunc(x, posterior_matrix[i_posterior,:]) idx = np.argmin(np.abs(x - mean)) binary_decision_matrix[i_posterior,idx] = 1 # Loop over stimuli for i_stim in np.arange(true_stim.shape[0]): input_matrix = np.zeros_like(posterior_matrix) for i in np.arange(x.shape[0]): input_matrix[:, i] = my_gaussian(hypothetical_stim, true_stim[i_stim], 1) input_matrix[:, i] = input_matrix[:, i] / np.sum(input_matrix[:, i]) marginalization_matrix = input_matrix * binary_decision_matrix marginal = np.sum(marginalization_matrix, axis=0) marginal = marginal / np.sum(marginal) action = behaviour[i_stim] idx = np.argmin(np.abs(x - action)) trial_ll[i_stim] = np.log(marginal[idx] + np.finfo(float).eps) neg_ll = -np.sum(trial_ll) return neg_ll
b4a03e3edd0c9894b518ecd2589949aed8337479
18,741
def validate_request_tween_factory(handler, registry): """ Updates request.environ's REQUEST_METHOD to be X_REQUEST_METHOD if present. Asserts that if a POST (or similar) request is in application/json format, with exception for /metadata/* endpoints. Apache config: SetEnvIf Request_Method HEAD X_REQUEST_METHOD=HEAD """ def validate_request_tween(request): # Fix Request method changed by mod_wsgi. # See: https://github.com/GrahamDumpleton/mod_wsgi/issues/2 environ = request.environ if 'X_REQUEST_METHOD' in environ: environ['REQUEST_METHOD'] = environ['X_REQUEST_METHOD'] if request.method in ('GET', 'HEAD'): # If GET request, don't need to check `request.content_type` # Includes page text/html requests. return handler(request) elif request.content_type != 'application/json': if request.content_type == 'application/x-www-form-urlencoded' and request.path[0:10] == '/metadata/': # Special case to allow us to POST to metadata TSV requests via form submission return handler(request) detail = "Request content type %s is not 'application/json'" % request.content_type raise HTTPUnsupportedMediaType(detail) return handler(request) return validate_request_tween
909e7d67044e31c1b3c0a97774d398f7d64d40bb
18,742
async def get_rank(display_number: int, minimal_msg_number: int, display_total_number: int, group_id: int) -> str: """ 获取排行榜 """ repeat_list = recorder_obj.repeat_list(group_id) msg_number_list = recorder_obj.msg_number_list(group_id) ranking = Ranking(group_id, display_number, minimal_msg_number, display_total_number, repeat_list, msg_number_list) str_data = await ranking.ranking() if not str_data: str_data = '暂时还没有满足条件的数据~>_<~' return str_data
f1ca183890e33b15b77d7693771b37c33af9535e
18,743
def feedback(request): """FeedbackForm""" if (request.method == 'POST'): form = forms.FeedbackForm(request.POST) # pdb.set_trace() if form.is_valid(): form.save() type = form.cleaned_data['type'] type = dict(form.fields['type'].choices)[type] settings.EMAIL_HOST_USER += '[email protected]' send_mail( '[' + type + '] ' + form.cleaned_data['title'], 'A new feedback was posted on JobPort' + '\n\n' + form.cleaned_data['body'], ['[email protected]'] ) settings.EMAIL_HOST_USER += '' messages.success( request, 'Thanks for filling your precious feedback! :) ') return HttpResponseRedirect('/') else: context = {'form': form} return render(request, 'jobport/feedback.html', context) else: form = forms.FeedbackForm() context = {'form': form} return render(request, 'jobport/feedback.html', context)
188dfa77d7e72555062e25acc15518f90c252b33
18,744
def get_convolutional_args(call, include_buffers=False, remove_constants=False): """A method to extract the arguments from conv2d or depthwise_conv2d extern call.""" args = call.args conv_args = [] remove_indices = [0] if remove_constants: remove_indices += [41, 42, 44, 45] for i, arg in enumerate(args): if i in remove_indices: continue elif isinstance(arg, tvm.tir.expr.IntImm) or isinstance(arg, tvm.tir.expr.FloatImm): conv_args.append(arg.value) elif isinstance(arg, tvm.tir.expr.Load) and not include_buffers: conv_args.append(arg.index) else: conv_args.append(arg) return conv_args
01db4d4e025bb9212bcb20a8852a7d4f1250e4b2
18,745
def view_party(party_id): """View dashboard for that party.""" party = party_service.find_party(party_id) if party is None: abort(404) days = party_service.get_party_days(party) days_until_party = (party.starts_at.date() - date.today()).days orga_count = orga_team_service.count_memberships_for_party(party.id) orga_team_count = orga_team_service.count_teams_for_party(party.id) seating_area_count = seating_area_service.count_areas_for_party(party.id) seat_count = seat_service.count_seats_for_party(party.id) ticket_sale_stats = ticket_service.get_ticket_sale_stats(party.id) tickets_checked_in = ticket_service.count_tickets_checked_in_for_party( party.id ) seat_utilization = seat_service.get_seat_utilization(party.id) guest_servers = guest_server_service.get_all_servers_for_party(party.id) return { 'party': party, 'days': days, 'days_until_party': days_until_party, 'orga_count': orga_count, 'orga_team_count': orga_team_count, 'seating_area_count': seating_area_count, 'seat_count': seat_count, 'ticket_sale_stats': ticket_sale_stats, 'tickets_checked_in': tickets_checked_in, 'seat_utilization': seat_utilization, 'guest_servers': guest_servers, }
de02cf21c9afe35a1dc5ef7a896d99d40a9bd43f
18,746
import _collections def _sequence_like(instance, args): """Converts the sequence `args` to the same type as `instance`. Args: instance: an instance of `tuple`, `list`, `namedtuple`, `dict`, `collections.OrderedDict`, or `composite_tensor.Composite_Tensor` or `type_spec.TypeSpec`. args: elements to be converted to the `instance` type. Returns: `args` with the type of `instance`. """ if _is_mutable_mapping(instance): # Pack dictionaries in a deterministic order by sorting the keys. # Notice this means that we ignore the original order of `OrderedDict` # instances. This is intentional, to avoid potential bugs caused by mixing # ordered and plain dicts (e.g., flattening a dict but using a # corresponding `OrderedDict` to pack it back). result = dict(zip(_sorted(instance), args)) instance_type = type(instance) if instance_type == _collections.defaultdict: d = _collections.defaultdict(instance.default_factory) else: d = instance_type() for key in instance: d[key] = result[key] return d elif _is_mapping(instance): result = dict(zip(_sorted(instance), args)) instance_type = type(instance) tf_logging.log_first_n( tf_logging.WARN, "Mapping types may not work well with tf.nest. Prefer" " using MutableMapping for {}".format(instance_type), 1) try: return instance_type((key, result[key]) for key in instance) except TypeError as err: raise TypeError("Error creating an object of type {} like {}. Note that " "it must accept a single positional argument " "representing an iterable of key-value pairs, in " "addition to self. Cause: {}".format( type(instance), instance, err)) elif _is_mapping_view(instance): # We can't directly construct mapping views, so we create a list instead return list(args) elif _is_namedtuple(instance) or _is_attrs(instance): if isinstance(instance, _wrapt.ObjectProxy): instance_type = type(instance.__wrapped__) else: instance_type = type(instance) return instance_type(*args) elif _is_composite_tensor(instance): assert len(args) == 1 spec = instance._type_spec # pylint: disable=protected-access return spec._from_components(args[0]) # pylint: disable=protected-access elif _is_type_spec(instance): # Pack a CompositeTensor's components according to a TypeSpec. assert len(args) == 1 return instance._from_components(args[0]) # pylint: disable=protected-access elif isinstance(instance, _six.moves.range): return _sequence_like(list(instance), args) elif isinstance(instance, _wrapt.ObjectProxy): # For object proxies, first create the underlying type and then re-wrap it # in the proxy type. return type(instance)(_sequence_like(instance.__wrapped__, args)) else: # Not a namedtuple return type(instance)(args)
576e2c0ff6baeda2f0ff0a89773181ea021e725d
18,747
def subcat_add(): """ 添加小分类 """ if request.method == 'POST': cat_name = request.form['cat_name'] super_cat_id = request.form['super_cat_id'] # 检测名称是否存在 subcat = SubCat.query.filter_by(cat_name=cat_name).count() if subcat : return "<script>alert('该小分类已经存在');history.go(-1);</script>" # 组织数据 data = SubCat( super_cat_id = super_cat_id, cat_name = cat_name, ) db.session.add(data) db.session.commit() return redirect(url_for("admin.subcat_list")) supercat = SuperCat.query.all() # 获取大分类信息 return render_template("admin/subcat_add.html",supercat=supercat)
046011d15be00557b28f9300d813ffc6e23d43e0
18,748
async def async_setup_entry(hass, config_entry, async_add_devices): """Set up the Alexa sensor platform by config_entry.""" return await async_setup_platform( hass, config_entry.data, async_add_devices, discovery_info=None)
b7a4a8a4573ecc008f43a4a9c3e9dcfa21fb0d78
18,749
def parse_duration(dur: str) -> int: """Generates seconds from a human readable duration.""" if not DURATION_REGEX.match(dur): raise ValueError('Time passed does not match required format: `XX:XX` or `XX:XX:XX`') parts = dur.split(':') seconds = 0 if len(parts) == 3: seconds += int(parts[0]) * 60 * 60 seconds += int(parts[1]) * 60 seconds += int(parts[2]) else: seconds += int(parts[0]) * 60 seconds += int(parts[1]) return seconds
ec60b2362d8dc2e898e278b4e1dbf0aca764bc87
18,750
import random def shorter_uuid(length=7, starter=None, with_original=False): """ Generate an even shorter short UUID generated by the shortuuid library. :param length: Length of trimmed ID. :param starter: Whether to begin with an already-created ShortUUID. Useful when using recursively. :param with_original: Also return initially-generated ShortUUID :return: """ original_id = str(shortuuid.uuid()) if starter is None else starter n = len(original_id) dx = min(length, len(original_id)) # ID length if starter is not None and len(starter) < dx * 2: original_id = str(shortuuid.uuid()) start_point = random.randint(0, n - dx) shorter_id = original_id[start_point:(start_point + dx)] return shorter_id if not with_original else [shorter_id, original_id]
80eca9d14ff3ebeccd77a4b989dde52e4786a042
18,751
from typing import Iterable from typing import Callable from typing import Optional from typing import List from typing import Dict def group_by(s: Iterable[_ElementType], key: Callable[[_ElementType], _GroupType], gfunc: Optional[Callable[[List[_ElementType]], _ResultType]] = None) -> Dict[_GroupType, _ResultType]: """ Overview: Divide the elements into groups. :param s: Elements. :param key: Group key, should be a callable object. :param gfunc: Post-process function for groups, should be a callable object. Default is ``None`` which means \ no post-processing will be performed. :return: Grouping result. Examples:: >>> from hbutils.collection import group_by >>> >>> foods = [ ... 'apple', 'orange', 'pear', ... 'banana', 'fish', 'pork', 'milk', ... ] >>> group_by(foods, len) # group by length {5: ['apple'], 6: ['orange', 'banana'], 4: ['pear', 'fish', 'pork', 'milk']} >>> group_by(foods, len, len) # group and get length {5: 1, 6: 2, 4: 4} >>> group_by(foods, lambda x: x[0]) # group by first letter {'a': ['apple'], 'o': ['orange'], 'p': ['pear', 'pork'], 'b': ['banana'], 'f': ['fish'], 'm': ['milk']} >>> group_by(foods, lambda x: x[0], len) # group and get length {'a': 1, 'o': 1, 'p': 2, 'b': 1, 'f': 1, 'm': 1} """ gfunc = gfunc or (lambda x: x) _result_dict: Dict[_GroupType, List[_ElementType]] = {} for item in s: _item_key = key(item) if _item_key not in _result_dict: _result_dict[_item_key] = [] _result_dict[_item_key].append(item) return { key: gfunc(grps) for key, grps in _result_dict.items() }
b515e0b3a3467b47ad29552bed39b14eca2d2978
18,752
def init_templateflow_wf( bids_dir, output_dir, participant_label, mov_template, ref_template='MNI152NLin2009cAsym', use_float=True, omp_nthreads=None, mem_gb=3.0, modality='T1w', normalization_quality='precise', name='templateflow_wf', fs_subjects_dir=None, ): """ A Nipype workflow to perform image registration between two templates *R* and *M*. *R* is the *reference template*, selected by a templateflow identifier such as ``MNI152NLin2009cAsym``, and *M* is the *moving template* (e.g., ``MNI152Lin``). This workflows maps data defined on template-*M* space onto template-*R* space. 1. Run the subrogate images through ``antsBrainExtraction``. 2. Recompute :abbr:`INU (intensity non-uniformity)` correction using the mask obtained in 1). 3. Independently, run spatial normalization of every :abbr:`INU (intensity non-uniformity)` corrected image (supplied via ``in_files``) to both templates. 4. Calculate an initialization between both templates, using them directly. 5. Run multi-channel image registration of the images resulting from 3). Both sets of images (one registered to *R* and another to *M*) are then used as reference and moving images in the registration framework. **Parameters** in_files: list of files a list of paths pointing to the images that will be used as surrogates mov_template: str a templateflow identifier for template-*M* ref_template: str a templateflow identifier for template-*R* (default: ``MNI152NLin2009cAsym``). """ # number of participants ninputs = len(participant_label) ants_env = { 'NSLOTS': '%d' % omp_nthreads, 'ITK_GLOBAL_DEFAULT_NUMBER_OF_THREADS': '%d' % omp_nthreads, 'OMP_NUM_THREADS': '%d' % omp_nthreads, } # Get path to templates tpl_ref = str(get_template(ref_template, suffix=modality, desc=None, resolution=1)) tpl_ref_mask = str(get_template(ref_template, suffix='mask', desc='brain', resolution=1)) tpl_mov = str(get_template(mov_template, suffix=modality, desc=None, resolution=1)) tpl_mov_mask = str(get_template(mov_template, suffix='mask', desc='brain', resolution=1)) wf = pe.Workflow(name) inputnode = pe.Node(niu.IdentityInterface(fields=['participant_label']), name='inputnode') inputnode.iterables = ('participant_label', sorted(list(participant_label))) pick_file = pe.Node(niu.Function(function=_bids_pick), name='pick_file', run_without_submitting=True) pick_file.inputs.bids_root = bids_dir ref_bex = init_brain_extraction_wf( in_template=ref_template, omp_nthreads=omp_nthreads, mem_gb=mem_gb, bids_suffix=modality, name='reference_bex', ) mov_bex = init_brain_extraction_wf( in_template=mov_template, omp_nthreads=omp_nthreads, mem_gb=mem_gb, bids_suffix=modality, name='moving_bex', ) ref_norm = pe.Node( Registration( from_file=pkgr.resource_filename( 'niworkflows.data', 't1w-mni_registration_%s_000.json' % normalization_quality)), name='ref_norm', n_procs=omp_nthreads) ref_norm.inputs.fixed_image = tpl_ref ref_norm.inputs.fixed_image_masks = tpl_ref_mask ref_norm.inputs.environ = ants_env # Register the INU-corrected image to the other template mov_norm = pe.Node( Registration( from_file=pkgr.resource_filename( 'niworkflows.data', 't1w-mni_registration_%s_000.json' % normalization_quality)), name='mov_norm', n_procs=omp_nthreads) mov_norm.inputs.fixed_image = tpl_mov mov_norm.inputs.fixed_image_masks = tpl_mov_mask mov_norm.inputs.environ = ants_env # Initialize between-templates transform with antsAI init_aff = pe.Node(AI( metric=('Mattes', 32, 'Regular', 0.2), transform=('Affine', 0.1), search_factor=(20, 0.12), principal_axes=False, convergence=(10, 1e-6, 10), verbose=True, fixed_image=tpl_ref, fixed_image_mask=tpl_ref_mask, moving_image=tpl_mov, moving_image_mask=tpl_mov_mask, environ=ants_env, ), name='init_aff', n_procs=omp_nthreads) ref_buffer = pe.JoinNode(niu.IdentityInterface( fields=['fixed_image']), joinsource='inputnode', joinfield='fixed_image', name='ref_buffer') mov_buffer = pe.JoinNode(niu.IdentityInterface( fields=['moving_image']), joinsource='inputnode', joinfield='moving_image', name='mov_buffer') flow = pe.Node( Registration( from_file=pkgr.resource_filename( 'niworkflows.data', 't1w-mni_registration_%s_000.json' % normalization_quality)), name='flow_norm', n_procs=omp_nthreads, ) flow.inputs.fixed_image_masks = tpl_ref_mask flow.inputs.moving_image_masks = tpl_mov_mask flow.inputs.metric = [[v] * ninputs for v in flow.inputs.metric] flow.inputs.metric_weight = [[1 / ninputs] * ninputs for _ in flow.inputs.metric_weight] flow.inputs.radius_or_number_of_bins = [ [v] * ninputs for v in flow.inputs.radius_or_number_of_bins] flow.inputs.sampling_percentage = [ [v] * ninputs for v in flow.inputs.sampling_percentage] flow.inputs.sampling_strategy = [ [v] * ninputs for v in flow.inputs.sampling_strategy] flow.inputs.environ = ants_env # Datasinking ref_norm_ds = pe.Node( DerivativesDataSink(base_directory=str(output_dir.parent), out_path_base=output_dir.name, space=ref_template, desc='preproc', keep_dtype=True), name='ref_norm_ds', run_without_submitting=True ) mov_norm_ds = pe.Node( DerivativesDataSink(base_directory=str(output_dir.parent), out_path_base=output_dir.name, space=mov_template, desc='preproc', keep_dtype=True), name='mov_norm_ds', run_without_submitting=True ) xfm_ds = pe.Node(DerivativesDataSink( base_directory=str(output_dir.parent), out_path_base=output_dir.name, allowed_entities=['from', 'mode'], mode='image', suffix='xfm', source_file='group/tpl-{0}_T1w.nii.gz'.format(ref_template), **{'from': mov_template}), name='xfm_ds', run_without_submitting=True) wf.connect([ (inputnode, pick_file, [('participant_label', 'participant_label')]), (pick_file, ref_bex, [('out', 'inputnode.in_files')]), (pick_file, mov_bex, [('out', 'inputnode.in_files')]), (ref_bex, ref_norm, [('outputnode.bias_corrected', 'moving_image'), ('outputnode.out_mask', 'moving_image_masks'), ('norm.forward_transforms', 'initial_moving_transform')]), (ref_bex, mov_norm, [('outputnode.bias_corrected', 'moving_image')]), (mov_bex, mov_norm, [('outputnode.out_mask', 'moving_image_masks'), ('norm.forward_transforms', 'initial_moving_transform')]), (init_aff, flow, [('output_transform', 'initial_moving_transform')]), (ref_norm, ref_buffer, [('warped_image', 'fixed_image')]), (mov_norm, mov_buffer, [('warped_image', 'moving_image')]), (ref_buffer, flow, [('fixed_image', 'fixed_image')]), (mov_buffer, flow, [('moving_image', 'moving_image')]), (pick_file, ref_norm_ds, [('out', 'source_file')]), (ref_norm, ref_norm_ds, [('warped_image', 'in_file')]), (pick_file, mov_norm_ds, [('out', 'source_file')]), (mov_norm, mov_norm_ds, [('warped_image', 'in_file')]), (flow, xfm_ds, [('composite_transform', 'in_file')]), ]) if fs_subjects_dir: fssource = pe.Node( FreeSurferSource(subjects_dir=str(fs_subjects_dir)), name='fssource', run_without_submitting=True) tonative = pe.Node(fs.Label2Vol(subjects_dir=str(fs_subjects_dir)), name='tonative') tonii = pe.Node( fs.MRIConvert(out_type='niigz', resample_type='nearest'), name='tonii') ref_aparc = pe.Node( ApplyTransforms(interpolation='MultiLabel', float=True, reference_image=tpl_ref, environ=ants_env), name='ref_aparc', mem_gb=1, n_procs=omp_nthreads ) mov_aparc = pe.Node( ApplyTransforms(interpolation='MultiLabel', float=True, reference_image=tpl_mov, environ=ants_env), name='mov_aparc', mem_gb=1, n_procs=omp_nthreads ) ref_aparc_buffer = pe.JoinNode( niu.IdentityInterface(fields=['aparc']), joinsource='inputnode', joinfield='aparc', name='ref_aparc_buffer') ref_join_labels = pe.Node( AntsJointFusion( target_image=[tpl_ref], out_label_fusion='merged_aparc.nii.gz', out_intensity_fusion_name_format='merged_aparc_intensity_%d.nii.gz', out_label_post_prob_name_format='merged_aparc_posterior_%d.nii.gz', out_atlas_voting_weight_name_format='merged_aparc_weight_%d.nii.gz', environ=ants_env, ), name='ref_join_labels', n_procs=omp_nthreads) ref_join_labels_ds = pe.Node( DerivativesDataSink( base_directory=str(output_dir.parent), out_path_base=output_dir.name, suffix='dtissue', desc='aparc', keep_dtype=False, source_file='group/tpl-{0}_T1w.nii.gz'.format(ref_template)), name='ref_join_labels_ds', run_without_submitting=True) ref_join_probs_ds = pe.Node( DerivativesDataSink( base_directory=str(output_dir.parent), out_path_base=output_dir.name, suffix='probtissue', desc='aparc', keep_dtype=False, source_file='group/tpl-{0}_T1w.nii.gz'.format(ref_template)), name='ref_join_probs_ds', run_without_submitting=True) # ref_join_voting_ds = pe.Node( # DerivativesDataSink( # base_directory=str(output_dir.parent), # out_path_base=output_dir.name, space=ref_template, # suffix='probtissue', desc='aparcvoting', keep_dtype=False, # source_file='group/tpl-{0}_T1w.nii.gz'.format(ref_template)), # name='ref_join_voting_ds', run_without_submitting=True) mov_aparc_buffer = pe.JoinNode( niu.IdentityInterface(fields=['aparc']), joinsource='inputnode', joinfield='aparc', name='mov_aparc_buffer') mov_join_labels = pe.Node( AntsJointFusion( target_image=[tpl_mov], out_label_fusion='merged_aparc.nii.gz', out_intensity_fusion_name_format='merged_aparc_intensity_%d.nii.gz', out_label_post_prob_name_format='merged_aparc_posterior_%d.nii.gz', out_atlas_voting_weight_name_format='merged_aparc_weight_%d.nii.gz', environ=ants_env, ), name='mov_join_labels', n_procs=omp_nthreads) mov_join_labels_ds = pe.Node( DerivativesDataSink( base_directory=str(output_dir.parent), out_path_base=output_dir.name, suffix='dtissue', desc='aparc', keep_dtype=False, source_file='group/tpl-{0}_T1w.nii.gz'.format(mov_template)), name='mov_join_labels_ds', run_without_submitting=True) mov_join_probs_ds = pe.Node( DerivativesDataSink( base_directory=str(output_dir.parent), out_path_base=output_dir.name, suffix='probtissue', desc='aparc', keep_dtype=False, source_file='group/tpl-{0}_T1w.nii.gz'.format(mov_template)), name='mov_join_probs_ds', run_without_submitting=True) ref_aparc_ds = pe.Node( DerivativesDataSink(base_directory=str(output_dir.parent), out_path_base=output_dir.name, space=ref_template, suffix='dtissue', desc='aparc', keep_dtype=False), name='ref_aparc_ds', run_without_submitting=True ) mov_aparc_ds = pe.Node( DerivativesDataSink(base_directory=str(output_dir.parent), out_path_base=output_dir.name, space=mov_template, suffix='dtissue', desc='aparc', keep_dtype=False), name='mov_aparc_ds', run_without_submitting=True ) # Extract surfaces cifti_wf = init_gifti_surface_wf( name='cifti_surfaces', subjects_dir=str(fs_subjects_dir)) # Move surfaces to template spaces gii2csv = pe.MapNode(GiftiToCSV(itk_lps=True), iterfield=['in_file'], name='gii2csv') ref_map_surf = pe.MapNode( ApplyTransformsToPoints(dimension=3, environ=ants_env), n_procs=omp_nthreads, name='ref_map_surf', iterfield=['input_file']) ref_csv2gii = pe.MapNode( CSVToGifti(itk_lps=True), name='ref_csv2gii', iterfield=['in_file', 'gii_file']) ref_surfs_buffer = pe.JoinNode( niu.IdentityInterface(fields=['surfaces']), joinsource='inputnode', joinfield='surfaces', name='ref_surfs_buffer') ref_surfs_unzip = pe.Node(UnzipJoinedSurfaces(), name='ref_surfs_unzip', run_without_submitting=True) ref_ply = pe.MapNode(SurfacesToPointCloud(), name='ref_ply', iterfield=['in_files']) ref_recon = pe.MapNode(PoissonRecon(), name='ref_recon', iterfield=['in_file']) ref_avggii = pe.MapNode(PLYtoGifti(), name='ref_avggii', iterfield=['in_file', 'surf_key']) ref_smooth = pe.MapNode(fs.SmoothTessellation(), name='ref_smooth', iterfield=['in_file']) ref_surfs_ds = pe.Node( DerivativesDataSink( base_directory=str(output_dir.parent), out_path_base=output_dir.name, space=ref_template, keep_dtype=False, compress=False), name='ref_surfs_ds', run_without_submitting=True) ref_avg_ds = pe.Node( DerivativesDataSink( base_directory=str(output_dir.parent), out_path_base=output_dir.name, space=ref_template, keep_dtype=False, compress=False, source_file='group/tpl-{0}_T1w.nii.gz'.format(ref_template)), name='ref_avg_ds', run_without_submitting=True) mov_map_surf = pe.MapNode( ApplyTransformsToPoints(dimension=3, environ=ants_env), n_procs=omp_nthreads, name='mov_map_surf', iterfield=['input_file']) mov_csv2gii = pe.MapNode( CSVToGifti(itk_lps=True), name='mov_csv2gii', iterfield=['in_file', 'gii_file']) mov_surfs_buffer = pe.JoinNode( niu.IdentityInterface(fields=['surfaces']), joinsource='inputnode', joinfield='surfaces', name='mov_surfs_buffer') mov_surfs_unzip = pe.Node(UnzipJoinedSurfaces(), name='mov_surfs_unzip', run_without_submitting=True) mov_ply = pe.MapNode(SurfacesToPointCloud(), name='mov_ply', iterfield=['in_files']) mov_recon = pe.MapNode(PoissonRecon(), name='mov_recon', iterfield=['in_file']) mov_avggii = pe.MapNode(PLYtoGifti(), name='mov_avggii', iterfield=['in_file', 'surf_key']) mov_smooth = pe.MapNode(fs.SmoothTessellation(), name='mov_smooth', iterfield=['in_file']) mov_surfs_ds = pe.Node( DerivativesDataSink( base_directory=str(output_dir.parent), out_path_base=output_dir.name, space=mov_template, keep_dtype=False, compress=False), name='mov_surfs_ds', run_without_submitting=True) mov_avg_ds = pe.Node( DerivativesDataSink( base_directory=str(output_dir.parent), out_path_base=output_dir.name, space=mov_template, keep_dtype=False, compress=False, source_file='group/tpl-{0}_T1w.nii.gz'.format(mov_template)), name='mov_avg_ds', run_without_submitting=True) wf.connect([ (inputnode, fssource, [(('participant_label', _sub_decorate), 'subject_id')]), (inputnode, cifti_wf, [ (('participant_label', _sub_decorate), 'inputnode.subject_id')]), (pick_file, cifti_wf, [('out', 'inputnode.in_t1w')]), (pick_file, tonii, [('out', 'reslice_like')]), # Select DKT aparc (fssource, tonative, [(('aparc_aseg', _last), 'seg_file'), ('rawavg', 'template_file'), ('aseg', 'reg_header')]), (tonative, tonii, [('vol_label_file', 'in_file')]), (tonii, ref_aparc, [('out_file', 'input_image')]), (tonii, mov_aparc, [('out_file', 'input_image')]), (ref_norm, ref_aparc, [('composite_transform', 'transforms')]), (mov_norm, mov_aparc, [('composite_transform', 'transforms')]), (ref_buffer, ref_join_labels, [ ('fixed_image', 'atlas_image')]), (ref_aparc, ref_aparc_buffer, [('output_image', 'aparc')]), (ref_aparc_buffer, ref_join_labels, [ ('aparc', 'atlas_segmentation_image')]), (mov_buffer, mov_join_labels, [ ('moving_image', 'atlas_image')]), (mov_aparc, mov_aparc_buffer, [('output_image', 'aparc')]), (mov_aparc_buffer, mov_join_labels, [ ('aparc', 'atlas_segmentation_image')]), # Datasinks (ref_join_labels, ref_join_labels_ds, [('out_label_fusion', 'in_file')]), (ref_join_labels, ref_join_probs_ds, [ ('out_label_post_prob', 'in_file'), (('out_label_post_prob', _get_extra), 'extra_values')]), # (ref_join_labels, ref_join_voting_ds, [ # ('out_atlas_voting_weight_name_format', 'in_file')]), (mov_join_labels, mov_join_labels_ds, [('out_label_fusion', 'in_file')]), (mov_join_labels, mov_join_probs_ds, [ ('out_label_post_prob', 'in_file'), (('out_label_post_prob', _get_extra), 'extra_values')]), (pick_file, ref_aparc_ds, [('out', 'source_file')]), (ref_aparc, ref_aparc_ds, [('output_image', 'in_file')]), (pick_file, mov_aparc_ds, [('out', 'source_file')]), (mov_aparc, mov_aparc_ds, [('output_image', 'in_file')]), # Mapping ref surfaces (cifti_wf, gii2csv, [ (('outputnode.surf_norm', _discard_inflated), 'in_file')]), (gii2csv, ref_map_surf, [('out_file', 'input_file')]), (ref_norm, ref_map_surf, [ (('inverse_composite_transform', _ensure_list), 'transforms')]), (ref_map_surf, ref_csv2gii, [('output_file', 'in_file')]), (cifti_wf, ref_csv2gii, [ (('outputnode.surf_norm', _discard_inflated), 'gii_file')]), (pick_file, ref_surfs_ds, [('out', 'source_file')]), (ref_csv2gii, ref_surfs_ds, [ ('out_file', 'in_file'), (('out_file', _get_surf_extra), 'extra_values')]), (ref_csv2gii, ref_surfs_buffer, [('out_file', 'surfaces')]), (ref_surfs_buffer, ref_surfs_unzip, [('surfaces', 'in_files')]), (ref_surfs_unzip, ref_ply, [('out_files', 'in_files')]), (ref_ply, ref_recon, [('out_file', 'in_file')]), (ref_recon, ref_avggii, [('out_file', 'in_file')]), (ref_surfs_unzip, ref_avggii, [('surf_keys', 'surf_key')]), (ref_avggii, ref_smooth, [('out_file', 'in_file')]), (ref_smooth, ref_avg_ds, [ ('surface', 'in_file'), (('surface', _get_surf_extra), 'extra_values')]), # Mapping mov surfaces (gii2csv, mov_map_surf, [('out_file', 'input_file')]), (mov_norm, mov_map_surf, [ (('inverse_composite_transform', _ensure_list), 'transforms')]), (mov_map_surf, mov_csv2gii, [('output_file', 'in_file')]), (cifti_wf, mov_csv2gii, [ (('outputnode.surf_norm', _discard_inflated), 'gii_file')]), (pick_file, mov_surfs_ds, [('out', 'source_file')]), (mov_csv2gii, mov_surfs_ds, [ ('out_file', 'in_file'), (('out_file', _get_surf_extra), 'extra_values')]), (mov_csv2gii, mov_surfs_buffer, [('out_file', 'surfaces')]), (mov_surfs_buffer, mov_surfs_unzip, [('surfaces', 'in_files')]), (mov_surfs_unzip, mov_ply, [('out_files', 'in_files')]), (mov_ply, mov_recon, [('out_file', 'in_file')]), (mov_recon, mov_avggii, [('out_file', 'in_file')]), (mov_surfs_unzip, mov_avggii, [('surf_keys', 'surf_key')]), (mov_avggii, mov_smooth, [('out_file', 'in_file')]), (mov_smooth, mov_avg_ds, [ ('surface', 'in_file'), (('surface', _get_surf_extra), 'extra_values')]), ]) return wf
677218b13cbfc48881440523d87667eaed7ea2e8
18,753
def Qest(ICobj, r=None): """ Estimate Toomre Q at r (optional) for ICs, assuming omega=epicyclic frequency. Ignores disk self-gravity """ if not hasattr(ICobj, 'sigma'): raise ValueError, 'Could not find surface density profile (sigma)' G = SimArray(1.0, 'G') kB = SimArray(1.0, 'k') if r is None: r = ICobj.sigma.r_bins sigma = ICobj.sigma(r) T = ICobj.T(r) M = ICobj.settings.physical.M m = ICobj.settings.physical.m M = match_units(M, 'Msol')[0] m = match_units(m, 'm_p')[0] gamma = ICobj.settings.physical.gamma_cs() Q = np.sqrt(M*kB*T*gamma/(G*m*r**3))/(np.pi*sigma) Q.convert_units('1') return Q
f262c0f68683dc069dd983981b2cbd1d9a9e608a
18,754
def get_projector_csr_file(config_name: str) -> str: """Returns full path to projector server crt file""" return join(get_run_configs_dir(), config_name, f'{PROJECTOR_JKS_NAME}.csr')
159bc798d28bf23ce06d356591d8c41bcea40356
18,755
import os def test_xiaomi(): """ KITTI视差图——>深度图——>点云 """ def disp2depth(b, f, disp): """ """ disp = disp.astype(np.float32) non_zero_inds = np.where(disp) depth = np.zeros_like(disp, dtype=np.float32) depth[non_zero_inds] = b * f / disp[non_zero_inds] return depth disp_f_path = './disp_2.png' # TestDisparity2DepthAndPC img_f_path = './left_2.png' if not (os.path.isfile(disp_f_path) or os.path.isfile(img_f_path)): print('[Err]: invalid disparity/image file path.') return # # KITTI数据集参数 # f = 721 # pixel # b = 0.54 # m # xiaomi参数 # fx = 998.72290039062500 # fy = 1000.0239868164063 f = (998.72290039062500 + 1000.0239868164063) * 0.5 # 1000.0 cx = 671.15643310546875 cy = 384.32458496093750 b = 0.12 # m # 读取视差图 disp = cv2.imread(disp_f_path, cv2.IMREAD_ANYDEPTH) print('Disparity image data type: ', disp.dtype) # 读取BGR图 bgr = cv2.imread(img_f_path, cv2.IMREAD_COLOR) print('BGR image data type: ', bgr.dtype) assert (bgr.shape[:2] == disp.shape[:2]) H, W = disp.shape[:2] print('W×H: {:d}×{:d}'.format(W, H)) c, r = np.meshgrid(np.arange(W), np.arange(H)) # print(c, '\n', r) # x, y = np.arange(W), np.arange(H) cx, cy = W * 0.5, H * 0.5 # ---------- 视差图(uint16)——>深度图(float32) depth = disp2depth(b, f, disp) # --------- 深度图——>点云x, y, z points = np.zeros((H, W, 3), dtype=np.float32) colors = np.zeros((H, W, 3), dtype=np.uint8) points[r, c, 0] = (c - cx) * depth / f # x points[r, c, 1] = (r - cy) * depth / f # y points[r, c, 2] = depth # z # bgr ——> rgb colors = bgr[:, :, ::-1] # ----- 过滤掉x, y, z全为0的点 inds = np.where((points[:, :, 0] != 0.0) | (points[:, :, 1] != 0.0) | (points[:, :, 2] != 0.0)) points = points[inds] colors = colors[inds] # # # ----- 滤波 # inds = np.where( # (points[:, 1] > -1.0) # & (points[:, 1] < 1.0) # ) # points = points[inds] # colors = colors[inds] # print('{:d} 3D points left.'.format(inds[0].size)) # view_points_cloud(points) # 保存pcd点云文件 points2pcd(points, './pc_2.pcd') print('PCD poind cloud saved.') # 保存ply点云文件 points2ply(points, colors, './ply_2.ply') print('Ply poind cloud saved.') # ---------- 保存深度图 depth *= 1000.0 # m ——> mm depth = depth.astype(np.uint16) cv2.imwrite('./depth_2.png', depth) print('Depth image written.')
b95d4094e38ce17957b2cba9441f960c1022f653
18,756
import os import PIL def get_img(shape, path, dtype, should_scale=True): """Get image as input.""" resize_to = shape[1:3] path = os.path.join(os.path.dirname(os.path.abspath(__file__)), path) img = PIL.Image.open(path) img = img.resize(resize_to, PIL.Image.ANTIALIAS) img_np = np.array(img).astype(dtype) img_np = np.stack([img_np] * shape[0], axis=0).reshape(shape) if should_scale: img_np = img_np / 255 return img_np
829ebfcdab258d5a5b57694c5209fe848300420c
18,757
def make_epsilon_greedy_policy(Q: defaultdict, epsilon: float, nA: int) -> callable: """ Creates an epsilon-greedy policy based on a given Q-function and epsilon. I.e. create weight vector from which actions get sampled. :param Q: tabular state-action lookup function :param epsilon: exploration factor :param nA: size of action space to consider for this policy """ def policy_fn(observation): policy = np.ones(nA) * epsilon / nA best_action = np.random.choice(np.flatnonzero( # random choice for tie-breaking only Q[observation] == Q[observation].max() )) policy[best_action] += (1 - epsilon) return policy return policy_fn
f0fe733b18b416939db44acd830ee605bc41e18f
18,758
def write_init(proxy_parameters=None, exception=None): """Encodes and returns an MPI ('Metadata Init') response.""" return _write_init(Method.MPI, MetadataProviderError, proxy_parameters, exception)
0a73c4949796a93549e208da523e805894170193
18,759
def pfam_to_pubmed(family): """get a list of associated pubmed ids for given pfam access key. :param family: pfam accession key of family :type family: str :return: List of associated Pubmed ids :rettype:list""" url='https://pfam.xfam.org/family/'+family pattern='http://www.ncbi.nlm.nih.gov/pubmed/' return _xfam_to(url,pattern)
e3d63050d7e2e782ccd9d376fb4cd2d33c177be6
18,760
def cvConvexHull2(input, hull_storage=None, orientation=CV_CLOCKWISE, return_points=0): """CvSeq_or_CvMat cvConvexHull2(list_or_tuple_of_CvPointXYZ input, void* hull_storage=NULL, int orientation=CV_CLOCKWISE, int return_points=0) Finds convex hull of point set [ctypes-opencv] OpenCV's note: a vertex of the detected convex hull can be represented by: a point of the same type with every point in 'input', if return_points==1 an index to a point in 'input', if return_points==0 and hull_storage is a CvMat a pointer to a point in 'input', if return_points==0 and hull_storage is a CvStorage [ctypes-opencv] If input is a (subclass of) CvSeq, 'hull_storage' can be: None: detected vertices are stored in input's storage an instance of CvStorage or CvMat: detected vertices are stored here [ctypes-opencv] If input is 1d CvMat of 2D 32-bit points, 'hull_storage' can be: None: 'hull_storage' is internally created as a 1d CvMat of 2D 32-bit points. an instance of CvStorage or CvMat: detected vertices are stored here [ctypes-opencv] In any case, the function returns a sequence (CvSeq) of detected vertices if 'hull_storage' is an instance CvStorage, or 'hull_storage' itself if otherwise. """ if isinstance(input, _CvSeqStructure): # a sequence return pointee(_cvConvexHull2(input, hull_storage, orientation, return_points), input if hull_storage is None else hull_storage) if hull_storage is None: hull_storage = cvCreateMat(1, input.rows*input.cols, CV_MAT_TYPE(input) if return_points else CV_32SC1) _cvConvexHull2(input, hull_storage, orientation, return_points) return hull_storage
3def10577e29e6b9bcf2611ad194dca2f6e2feb7
18,761
from typing import Union from typing import Optional from typing import Dict def init_classifier(config: Union[str, mmcv.Config], checkpoint: Optional[str] = None, device: str = 'cuda:0', options: Optional[Dict] = None) -> nn.Module: """Prepare a few shot classifier from config file. Args: config (str or :obj:`mmcv.Config`): Config file path or the config object. checkpoint (str | None): Checkpoint path. If left as None, the model will not load any weights. Default: None. device (str): Runtime device. Default: 'cuda:0'. options (dict | None): Options to override some settings in the used config. Default: None. Returns: nn.Module: The constructed classifier. """ if isinstance(config, str): config = mmcv.Config.fromfile(config) elif not isinstance(config, mmcv.Config): raise TypeError('config must be a filename or Config object, ' f'but got {type(config)}') if options is not None: config.merge_from_dict(options) model = build_classifier(config.model) if checkpoint is not None: map_loc = 'cpu' if device == 'cpu' else None load_checkpoint(model, checkpoint, map_location=map_loc) # save the config in the model for convenience in later use model.cfg = config model.to(device) model.eval() return model
20f819892295f6bfeb9c01f4e6d558731a2f8e68
18,762
import sys def get_twitter_auth(): """Setup Twitter authentication. Return: tweepy.OAuthHandler object """ try: credentials = read_credentials() consumer_key = credentials.get('consumer_key') consumer_secret = credentials.get('consumer_secret') access_token = credentials.get('access_token') access_secret = credentials.get('access_secret') except KeyError: sys.stderr.write("TWITTER_* not found\n") sys.exit(1) auth = OAuthHandler(consumer_key, consumer_secret) auth.set_access_token(access_token, access_secret) return auth
e84d24159bf4a8aeb4667547ef1f6324de3b8351
18,763
def Newton_method(f, df, start:float=0.0, max_step:int=32, sign_dig:int=6)->float: """ Newton method. --------------------------- Args: None. Returns: None. Raises: None. """ fun = lambda x: x - f(x)/df(x) return fixed_point(fun, start, max_step, sign_dig)
d3a803a1a10b6c6d34831efeccd6fb7bae43689a
18,764
def get_all(isamAppliance, count=None, start=None, filter=None, check_mode=False, force=False): """ Retrieve a list of federations """ return isamAppliance.invoke_get("Retrieve a list of federations", "{0}/{1}".format(uri, tools.create_query_string(count=count, start=start, filter=filter)), requires_modules=requires_modules, requires_version=requires_version)
d65529bfc953976247fd44cb50051d5efddf10ea
18,765
def roty(theta): """ Rotation about Y-axis @type theta: number @param theta: the rotation angle @rtype: 3x3 orthonormal matrix @return: rotation about Y-axis @see: L{rotx}, L{rotz}, L{rotvec} """ ct = cos(theta) st = sin(theta) return mat([[ct, 0, st], [0, 1, 0], [-st, 0, ct]])
702051efbd9f0999e04d5d7faca207c53520d712
18,766
def flush(name, family="ipv4", ignore_absence=False, **kwargs): """ .. versionadded:: 2014.7.0 .. versionchanged:: Magnesium Flush current nftables state family Networking family, either ipv4 or ipv6 ignore_absence If set to True, attempts to flush a non-existent table will not result in a failed state. .. versionadded:: Magnesium """ ret = {"name": name, "changes": {}, "result": None, "comment": ""} if __opts__["test"]: ret["comment"] = "nftables flush not performed in test mode." return ret for ignore in _STATE_INTERNAL_KEYWORDS: if ignore in kwargs: del kwargs[ignore] if "table" not in kwargs: kwargs["table"] = "filter" check_table = __salt__["nftables.check_table"](kwargs["table"], family=family) if not ignore_absence and not check_table["result"]: ret["result"] = False ret[ "comment" ] = "Failed to flush table {} in family {}, table does not exist.".format( kwargs["table"], family ) return ret if "chain" not in kwargs: kwargs["chain"] = "" else: check_chain = __salt__["nftables.check_chain"]( kwargs["table"], kwargs["chain"], family=family ) if not ignore_absence and not check_chain["result"]: ret["result"] = False ret[ "comment" ] = "Failed to flush chain {} in table {} in family {}, chain does not exist.".format( kwargs["chain"], kwargs["table"], family ) return ret res = __salt__["nftables.flush"](kwargs["table"], kwargs["chain"], family) if res["result"] or ( ignore_absence and (not check_table["result"] or not check_chain["result"]) ): ret["changes"] = {"locale": name} ret["result"] = True ret["comment"] = "Flush nftables rules in {} table {} chain {} family".format( kwargs["table"], kwargs["chain"], family ) return ret else: ret["result"] = False ret["comment"] = "Failed to flush nftables rules" return ret
67ab6d2f7e337ff5a68704be14d605298a1447aa
18,767
def solution(s): """ Check if a string has properly matching brackets :param s: String to verify if it is well-formed :return: 1 if the brackets are properly matching, 0 otherwise """ return check_matching_brackets(s, opening="(", closing=")")
4ba1bb92e0a1db05557980420f2fac3a88b93086
18,768
def process_to_annotation_data(df, class_names, video_fps, min_len): """ This function cleans the output data, so that there are no jumping frames. """ j = 1 # Helper # Minimum qty of frames of the same task in order to # consider it a whole task min_frames = int(float(min_len) * float(video_fps) * float(0.6)) # Initialize variables df["subgroup"] = (df.iloc[:, -1] != df.iloc[:, -1].shift(1)).cumsum() added = ( df["subgroup"] .value_counts()[df["subgroup"].value_counts() < (j + 1)] .index.tolist() ) # Modify jumping frames by considering the sourrounding frames # check for frames that jump (the total group of those frames are of a max of 7) for jj in range(min_frames): j = jj + 1 df["subgroup"] = (df.iloc[:, -2] != df.iloc[:, -2].shift(1)).cumsum() added = ( df["subgroup"] .value_counts()[df["subgroup"].value_counts() < (j + 1)] .index.tolist() ) cnt = 0 i_prev = 0 i_prev_cnt = 0 while len(added) > 0: added.sort() i = added[0] k = 1 # Helper prev = [] after = [] prev_yes = 0 after_yes = 0 if (i - k) > 0: prev = [df[df["subgroup"] == (i - k)].iloc[0, -2]] * len( df[df["subgroup"] == (i - k)] ) prev_yes = 1 if (i + k) < max(df["subgroup"]) + 1: after = [df[df["subgroup"] == (i + k)].iloc[0, -2]] * len( df[df["subgroup"] == (i + k)] ) after_yes = 1 check_loop = True if (prev_yes + after_yes) == 2: if mode(prev).mode[0] == mode(after).mode[0]: check_loop = False if check_loop: k = 1 # Helper while len(prev) < j + 2 - i_prev_cnt: k += 1 if (i - k) > 0: prev_i = [df[df["subgroup"] == (i - k)].iloc[0, -2]] * len( df[df["subgroup"] == (i - k)] ) prev.extend(prev_i) else: break k = 1 # Helper while len(after) < j + 2 - i_prev_cnt: k += 1 if (i + k) < max(df["subgroup"]) + 1: prev_i = [df[df["subgroup"] == (i + k)].iloc[0, -2]] * len( df[df["subgroup"] == (i + k)] ) after.extend(prev_i) else: break changeTo = prev changeTo.extend(after) changeTo = mode(changeTo).mode[0] else: changeTo = mode(prev).mode[0] change_idx = df.index[df["subgroup"] == i].tolist() df.iloc[change_idx, -2] = changeTo df["subgroup"] = (df.iloc[:, -2] != df.iloc[:, -2].shift(1)).cumsum() added = ( df["subgroup"] .value_counts()[df["subgroup"].value_counts() < (j + 1)] .index.tolist() ) added.sort() if i == i_prev: i_prev_cnt += 1 else: i_prev_cnt = 0 i_prev = i cnt += 1 if cnt > max(df["subgroup"]) * (j + 2): break # Modify the output shape so that for each task we have start frame and end frame output_df = pd.DataFrame(columns=["task", "startTime", "endTime"]) for i in range(max(df["subgroup"])): df_i = df[df["subgroup"] == (i + 1)] task_str = str(class_names[int(df_i.iloc[0]["task_label"])]) start_frame = int(min(df_i["frame"])) start_frame = frame_to_time(start_frame, video_fps) end_frame = int(max(df_i["frame"])) end_frame = frame_to_time(end_frame, video_fps) output_df = output_df.append( pd.DataFrame( [[task_str] + [start_frame] + [end_frame]], columns=["task", "startTime", "endTime"], ) ) return output_df
eaa0537b217030664562489a2ceeec63cf7b32c0
18,769
def reduce_memmap(a): """Pickle the descriptors of a memmap instance to reopen on same file.""" m = _get_backing_memmap(a) if m is not None: # m is a real mmap backed memmap instance, reduce a preserving striding # information return _reduce_memmap_backed(a, m) else: # This memmap instance is actually backed by a regular in-memory # buffer: this can happen when using binary operators on numpy.memmap # instances return (loads, (dumps(np.asarray(a), protocol=HIGHEST_PROTOCOL),))
4e4caf6bb5f1be1f62537c45671010232665ec0c
18,770
def load_sparse_csr(filename): """Load a saved sparse matrix in csr format. Stolen from above source.""" loader = np.load(filename) return sparse.csr_matrix((loader['data'], loader['indices'], loader['indptr']), shape=loader['shape'])
9654e8baedf5ada8b626d86860aef2335a04b565
18,771
from typing import Optional def blank(name: Optional[str]) -> Output: """Generate a blank `Output` instance.""" return Output(file_suffix=name or _DEFAULT_SUFFIX, variables=dict())
0811dd8875983b89a8ae82a204243419effddcb4
18,772
def estatistica_regras(regras_pt, regras_lgp): """ Contagem das regras morfossintáticas no corpus. :param regras_pt: Lado português das regras (lista) :param regras_lgp: Lado LGP das regras (lista) :return: Dicionário com a frequência de cada regra. Ex: {"(0, 'INT')": 1, "(1, 'CAN')": 1, "(2, 'INT')": 1} """ estatistica = {} repetido = set() for i in range(len(regras_pt)): tipo = regras_pt[i][1] if i in repetido: continue if tipo == "": tipo = "CAN" if str((i,tipo)) not in estatistica.keys(): estatistica[str((i, tipo))]= 1 for j in range(len(regras_pt)): a = regras_pt[i] b = regras_lgp[i] c = regras_pt[j] d = regras_lgp[j] if i >= j: continue if j in repetido: continue if compara_regra(a,b,c,d): repetido.add(j) tipo = regras_pt[j][1] if tipo == "": tipo = "CAN" estatistica[str((i,tipo))] +=1 if str((j, tipo)) in estatistica.keys(): del estatistica[str((j,tipo))] else: tipo = regras_pt[j][1] if tipo == "": tipo = "CAN" if str((j, tipo)) not in estatistica.keys(): estatistica.setdefault(str((j,tipo)),0) estatistica[str((j, tipo))] += 1 return estatistica
67e1edae2d0418e1a36eefbb16ea4795b04728d6
18,773
import json import sys def read_config(): """ Reads the configuration info into the cfg dictionary. :return: A dictionary with the SSH-IPS configuration variables. """ CONFIG_FILE = '/etc/ssh-ips/config.json' try: with open(CONFIG_FILE, "r") as f: cfg = json.load(f) except ValueError as e: print(str(e)) sys.exit() return cfg
325e2e63fdf47c892ab432930de3e835faf1831d
18,774
def bq_create_dataset(bq_client): """Creates the BigQuery dataset. If the dataset already exists, the existing dataset will be returned. Dataset will be create in the location specified by DATASET_LOCATION. Args: bq_client: BigQuery client Returns: BigQuery dataset that will be used to store data. """ dataset_id = "{}.{}".format(bq_client.project, DATASET_NAME) dataset = bigquery.Dataset(dataset_id) dataset.location = DATASET_LOCATION dataset = bq_client.create_dataset(dataset, exists_ok=True) return dataset
ff2c0072210541261aff58ef8c590e94260e046d
18,775
def root_node(): """ Returns DCC scene root node :return: str """ return scene.get_root_node()
3a632bc0887a5c3a5696ec10f4387c917d12bfe5
18,776
def firsts(things): """ FIRSTS list outputs a list containing the FIRST of each member of the input list. It is an error if any member of the input list is empty. (The input itself may be empty, in which case the output is also empty.) This could be written as:: to firsts :list output map \"first :list end but is provided as a primitive in order to speed up the iteration tools MAP, MAP.SE, and FOREACH:: to transpose :matrix if emptyp first :matrix [op []] op fput firsts :matrix transpose bfs :matrix end """ return [first(thing) for thing in things]
72141a7409cb17ac6785eabde91b45d5e9e0869f
18,777
def inf_set_mark_code(*args): """ inf_set_mark_code(_v=True) -> bool """ return _ida_ida.inf_set_mark_code(*args)
0395ab40bac5f036210802fdf548534c83c78951
18,778
def get_letter(xml): """ :param xml: :return: everything between <bank> tag """ try: left, right = xml.index('<bank '), xml.index('</bank>') + _BANK_OFFSET return xml[left:right] except ValueError: return None
3c7a601b2a25969902d530e3e17a48ddcf0819c1
18,779
def stim_align_all_cells(traces, time, new_start): """ Make stim-aligned PSTHs from trialwise data (eg. trial x cell x time array). The advantage of doing it this way (trialwise) is the trace for each cell gets rolled around to the other side of the array, thus eliminating the need for nan padding. Args: trialwise_traces (array-like): trial x cell x time array of traces data, typicall from make_trialwise times (array-like): list of stim times for each cell, must match exactly, not sure how it handles nans yet... new_start (int): frame number where the psths will be aligned to """ # FIXME: URGERNT see above, list or single stim time??? depends on how this is working... for a # single trial an int is fine, but for multiple trials you'd want to give a list psth = np.zeros_like(traces) for i in range(traces.shape[0]): psth[i,:,:] = np.roll(traces[i,:,:], -int(time[i])+new_start, axis=1) return psth
18861b67b68f37c0c76caad40bd5d583868b1e70
18,780
def PowercycleNode(opts, args): """Remove a node from the cluster. @param opts: the command line options selected by the user @type args: list @param args: should contain only one element, the name of the node to be removed @rtype: int @return: the desired exit code """ node = args[0] if (not opts.confirm and not AskUser("Are you sure you want to hard powercycle node %s?" % node)): return 2 op = opcodes.OpNodePowercycle(node_name=node, force=opts.force) result = SubmitOrSend(op, opts) if result: ToStderr(result) return 0
557b48309bb897da29cc1c1f6f724cd6d3959e23
18,781
def collect_data(bids_dir, participant_label, queries, filters=None, bids_validate=True): """ Uses pybids to retrieve the input data for a given participant """ if isinstance(bids_dir, BIDSLayout): layout = bids_dir else: layout = BIDSLayout(str(bids_dir), validate=bids_validate) bids_filters = filters or {} for acq, entities in bids_filters.items(): queries[acq].update(entities) subj_data = { dtype: sorted( layout.get( return_type="file", subject=participant_label, extension=["nii", "nii.gz"], **query ) ) for dtype, query in queries.items() } return subj_data, layout
eaa15a3b3dacbae7c16b03f0c6347d71d939b57d
18,782
def minimaldescriptives(inlist): """this function takes a clean list of data and returns the N, sum, mean and sum of squares. """ N = 0 sum = 0.0 SS = 0.0 for i in range(len(inlist)): N = N + 1 sum = sum + inlist[i] SS = SS + (inlist[i] ** 2) mean = sum / float(N) return N, sum, mean, SS
ca1d821ef64b93218bdb22268bfdde737f2d731c
18,783
def gen_filelist(infiles, tmpd) : """Write all audio files to a temporary text document for ffmpeg Returns the path of that text document.""" filename = tmpd/"files.txt" with open(filename, "w") as f: for file in infiles: # This part ensures that any apostrophes are escaped file = str(file).split("'") if len(file) > 1: file = "'\\''".join(file) else: file = file[0] # Write the file line f.write("file '"+file+"'\n") return filename
c7d21c62de34fea98725a39fec735836e0cfd3d9
18,784
import os def check_envs(): """Checks environment variables. The MONGODB_PWD is a needed variable to enable mongodb connection. Returns: bool: If all needed environment variables are set. """ if not os.environ.get('MONGODB_PWD', False): return False return True
22ac892b0eee827f63f7d8258ca49f0e462452fd
18,785
def VMMemoryLower() -> tvm.ir.transform.Pass: """Perform memory lowering. Lowers the relax.builtin.alloc_tensor intrinsic to VM intrinsics. Returns ------- ret: tvm.ir.transform.Pass """ return _ffi_api.VMMemoryLower()
f636ea5f854e42413395669d1a0da3c2e439fb1e
18,786
def _is_disk_larger_than_max_size(device, node_uuid): """Check if total disk size exceeds 2TB msdos limit :param device: device path. :param node_uuid: node's uuid. Used for logging. :raises: InstanceDeployFailure, if any disk partitioning related commands fail. :returns: True if total disk size exceeds 2TB. Returns False otherwise. """ try: disksize_bytes, err = utils.execute('blockdev', '--getsize64', device, use_standard_locale=True, run_as_root=True) except (processutils.UnknownArgumentError, processutils.ProcessExecutionError, OSError) as e: msg = (_('Failed to get size of disk %(disk)s for node %(node)s. ' 'Error: %(error)s') % {'disk': device, 'node': node_uuid, 'error': e}) LOG.error(msg) raise exception.InstanceDeployFailure(msg) disksize_mb = int(disksize_bytes.strip()) // 1024 // 1024 return disksize_mb > MAX_DISK_SIZE_MB_SUPPORTED_BY_MBR
ed39e885825cec7c2fba895121741b43e3661a58
18,787
def getLines(filename): """Return list of lines from file""" with open(filename, 'r', errors='ignore') as ff: return ff.readlines()
36e515decaa3876eed3b5db8363fb81a5db89c84
18,788
import torch def bbox_next_frame_v3(F_first, F_pre, seg_pre, seg_first, F_tar, bbox_first, bbox_pre, temp, name): """ METHOD: combining tracking & direct recognition, calculate bbox in target frame using both first frame and previous frame. """ F_first, F_pre, seg_pre, seg_first, F_tar = squeeze_all(F_first, F_pre, seg_pre, seg_first, F_tar) c, h, w = F_first.size() coords_pre_tar = match_ref_tar(F_pre, F_tar, seg_pre, temp) coords_first_tar = match_ref_tar(F_first, F_tar, seg_first, temp) coords_tar = {} for cnt, coord_first in coords_first_tar.items(): coord_pre = coords_pre_tar[cnt] # fall-back schema if(coord_pre is None): coord_tar_ = coord_first else: coord_tar_ = coord_pre coords_tar[cnt] = coord_tar_ _, seg_pre_idx = torch.max(seg_pre, dim = 0) coords_tar = clean_coords(coords_tar, bbox_pre, threshold=4) bbox_tar = bbox_in_tar(coords_tar, bbox_first, h, w) # recoginition seg_pred = recoginition(F_first, F_tar, bbox_first, bbox_tar, seg_first, temp) seg_cleaned = clean_seg(seg_pred, bbox_tar, threshold=1) # move bbox w.r.t cleaned seg bbox_tar = shift_bbox(seg_cleaned, bbox_tar) seg_post = post_process_seg(seg_pred.unsqueeze(0)) return seg_pred, seg_post, bbox_tar
62d782a04b5d7c114fe0096fec50d6cd2d9db7bf
18,789
def hough_lines(img, rho=2, theta=np.pi / 180, threshold=20, min_line_len=5, max_line_gap=25, thickness=3): """Perform a Hough transform on img Args: img (numpy.ndarray): input image rho (float, optional): distance resolution in pixels of the Hough grid theta (float, optional): angular resolution in radians of the Hough grid threshold (float, optional): minimum number of votes (intersections in Hough grid cell) min_line_len (int, optional): minimum number of pixels making up a line max_line_gap (int, optional): maximum gap in pixels between connectable line segments thickness (int, optional): thickness of lines drawn on resulting image Returns: numpy.ndarray: result image """ # Hough transform lines = cv2.HoughLinesP(img, rho, theta, threshold, np.array([]), minLineLength=min_line_len, maxLineGap=max_line_gap) line_img = np.zeros((img.shape[0], img.shape[1], 3), dtype=np.uint8) # Line extrapolation extrapolated_lines = extrapolate_lines(lines, line_img.shape) # Image display draw_lines(line_img, extrapolated_lines, thickness=thickness) return line_img
f797e8b24255225d4c2beb41677da3fa6c6e42d6
18,790
import packaging def verify_package_version(ctx, config, remote): """ Ensures that the version of package installed is what was asked for in the config. For most cases this is for ceph, but we also install samba for example. """ # Do not verify the version if the ceph-deploy task is being used to # install ceph. Verifying the ceph installed by ceph-deploy should work, # but the qa suites will need reorganized first to run ceph-deploy # before the install task. # see: http://tracker.ceph.com/issues/11248 if config.get("extras"): log.info("Skipping version verification...") return True if 'repos' in config and config.get('repos'): log.info("Skipping version verification because we have custom repos...") return True builder = _get_builder_project(ctx, remote, config) version = builder.version pkg_to_check = builder.project installed_ver = packaging.get_package_version(remote, pkg_to_check) if installed_ver and version in installed_ver: msg = "The correct {pkg} version {ver} is installed.".format( ver=version, pkg=pkg_to_check ) log.info(msg) else: raise RuntimeError( "{pkg} version {ver} was not installed, found {installed}.".format( ver=version, installed=installed_ver, pkg=pkg_to_check ) )
5ab0177738ccec3879c0383a13038515b2d6b6e9
18,791
import os import glob def convert_file(): """Setup code to create a groceries cart object with 6 items in it""" local_path = os.path.join('data', '2017-07-31_072433.txt') fixture_path = os.path.join( os.path.dirname(os.path.realpath(__file__)), local_path, ) files = glob.glob(fixture_path) for file_ in files: convert_sitl(file_) converted_path = generate_output_path(fixture_path) converted_files = glob.glob(converted_path) return converted_files
1767d5ee584ef1a45f3ebfab92d2c461df6ff965
18,792
def decrypt(v1: int, v2: int): """funcao desencriptadora""" palavra_encriptada = int(v1) ^ int(v2) desencriptada = palavra_encriptada.to_bytes((palavra_encriptada.bit_length() + 7) // 8, 'big') return desencriptada.decode()
19887e070f0c6ae7e68f677d69c2c5eb24761bdb
18,793
def enforce_mixture_consistency_time_domain(mixture_waveforms, separated_waveforms, mix_weights=None, mix_weights_type=''): """Projection implementing mixture consistency in time domain. This projection makes the sum across sources of separated_waveforms equal mixture_waveforms and minimizes the unweighted mean-squared error between the sum across sources of separated_waveforms and mixture_waveforms. See https://arxiv.org/abs/1811.08521 for the derivation. Args: mixture_waveforms: Tensor of mixture waveforms in waveform format. separated_waveforms: Tensor of separated waveforms in source image format. mix_weights: None or Tensor of weights used for mixture consistency, shape should broadcast with denoised_waveforms. Overrides mix_weights_type. mix_weights_type: Type of weights used for mixture consistency. Options are: `` - No weighting. `magsq` - Mix weights are magnitude-squared of the separated signal. Returns: Projected separated_waveforms as a Tensor in source image format. """ # Modify the source estimates such that they sum up to the mixture, where # the mixture is defined as the sum across sources of the true source # targets. Uses the least-squares solution under the constraint that the # resulting source estimates add up to the mixture. num_sources = tf.shape(separated_waveforms)[1] # Add a sources axis to mixture_spectrograms. mix = tf.expand_dims(mixture_waveforms, axis=1) # mix is now of shape: # (batch_size, 1, num_mics, samples). mix_estimate = tf.reduce_sum(separated_waveforms, axis=1, keepdims=True) # mix_estimate is of shape: # (batch_size, 1, num_mics, samples). if mix_weights is None: if mix_weights_type == 'magsq': mix_weights = tf.reduce_mean(tf.square(separated_waveforms), axis=[2, 3], keepdims=True) mix_weights /= tf.reduce_sum(mix_weights, axis=1, keepdims=True) else: mix_weights = (1.0 / num_sources) mix_weights = tf.cast(mix_weights, mix.dtype) correction = mix_weights * (mix - mix_estimate) separated_waveforms = separated_waveforms + correction return separated_waveforms
294b1d927394ef388967de529ac5f24382ceec2c
18,794
def MatchNormsLoss(anchor_tensors, paired_tensors): """A norm on the difference between the norms of paired tensors. Gradients are only applied to the paired_tensor. Args: anchor_tensors: batch of embeddings deemed to have a "correct" norm. paired_tensors: batch of embeddings that will be pushed to the norm of anchor_tensors. Returns: A scalar loss """ anchor_norms = tf.stop_gradient(tf.norm(anchor_tensors, axis=1)) paired_norms = tf.norm(paired_tensors, axis=1) tf.summary.histogram('norms_difference', tf.nn.l2_loss(anchor_norms -paired_norms)) loss = tf.reduce_mean(tf.nn.l2_loss(anchor_norms-paired_norms)) return loss
02f62a90cf51547b4af6063ad13be1bb712dfe5a
18,795
def get_ei(xx_tf, yn_tf, gp): """ :param xx_tf: A tensor giving the new point to evaluate at. :param yn_tf: A tensor giving all previously observed responses. :param gp: A gp used to predict. GP should be trained on the locations yn_tf was observed. """ N, P = gp.index_points.numpy().shape k = gp.kernel kxx = tf.reshape(k.apply(xx_tf, gp.index_points), [N,1]) K = tf.squeeze(gp.covariance()) Kl = tf.squeeze(tf.linalg.cholesky(gp.covariance())) alpha = tf.linalg.solve(tf.cast(tf.transpose(Kl), tf.float64), tf.linalg.solve(tf.cast(Kl, tf.float64), yn_tf)) v = tf.linalg.solve(Kl, kxx) zpred_mean = tf.squeeze(tf.matmul(tf.transpose(kxx), alpha)) #TODO: Made a small change right here. kkxx = k.apply(xx_tf, xx_tf) zpred_vars = tf.squeeze(kkxx - tf.matmul(tf.transpose(v),v)) miny = tf.reduce_min(yn_tf) pdist = tfp.distributions.Normal(tf.squeeze(zpred_mean), tf.squeeze(tf.sqrt(zpred_vars))) #pdist = tfp.distributions.Normal(tf.squeeze(zpred_mean), tf.squeeze((zpred_vars))) ei = (miny - zpred_mean) * pdist.cdf(miny) + \ zpred_vars * pdist.prob(miny) return(ei)
af1b41e80a74d505161a5c9edc2334a6d4e691bf
18,796
def authenticate_begin(username, **_): """ Begin authentication procedure Variables: username user name of the user you want to login with Arguments: None Data Block: None Result example: <WEBAUTHN_AUTHENTICATION_DATA> """ user = STORAGE.user.get(username, as_obj=False) if not user: return make_api_response({'success': False}, err="Bad Request", status_code=400) session.pop('state', None) security_tokens = user.get('security_tokens', {}) or {} credentials = [AttestedCredentialData(websafe_decode(x)) for x in security_tokens.values()] auth_data, state = server.authenticate_begin(credentials) session['state'] = state return make_api_response(list(cbor.encode(auth_data)))
6a42bfd2aba2f17f7ee7ec892bf23ef2f0221ee0
18,797
def tempSHT31(): """Read temp and humidity from SHT31""" return sht31sensor.get_temp_humi()
1e934ad3a467d48019ec91e18ffab4e8d4c473ae
18,798
import requests def dog(argv, params): """Returns a slack attachment with a picture of a dog from thedogapi""" # Print prints logs to cloudwatch # Send response to response url dogurl = 'https://api.thedogapi.com/v1/images/search?mime_types=jpg,png' dogr = requests.get(dogurl) url = dogr.json()[0].get('url') payload = { 'statusCode': '200', "attachments": [ { "author_name": '@{} /catops dog'.format( params.get('user_name', ['CatOps'])[0]), "fallback": "Woof woof.", "title": "Woof!", "text": "Evil doggo.", "image_url": url, "color": "#764FA5" } ], 'response_type': 'in_channel', 'headers': {'Content-Type': 'application/json'} } return payload
cb80426e6cab0aa2fc58b78baa0ff225d654f04a
18,799