content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def get_public_suffix (domain): """ get_public_suffix("www.example.com") -> "example.com" Calling this function with a DNS name will return the public suffix for that name. Note that if the input does not contain a valid TLD, e.g. "xxx.residential.fw" in which "fw" is not a valid TLD, the returned public suffix will be "fw", and TLD will be empty Note that for internationalized domains the list at http://publicsuffix.org uses decoded names, so it is up to the caller to decode any Punycode-encoded names. """ global Root, Domain_to_t2ld_cache try: return Domain_to_t2ld_cache [domain] except KeyError: parts = domain.lower().lstrip('.').split('.') hits = [None] * len(parts) _lookup_node (hits, 1, Root, parts) for i, what in enumerate(hits): if what is not None and what == 0: t2ld = '.'.join(parts[i:]) Domain_to_t2ld_cache [domain] = t2ld return t2ld
8982df4677f1a1853fa328973cfc00c17796e3d8
18,800
from scipy.interpolate import interp1d def interpol(data,x): """ Resamples data by given factor with interpolation """ # Resamples data by given factor by interpolation x0 = np.linspace(0, len(data)-1, len(data)) x1 = np.linspace(0, len(data)-1, len(data)*x-(x-1)) f = interp1d(x0, data) return f(x1)
85cb9c9d776abc8317edbf1df5935e78ac774c02
18,801
import torch def convert_to_torch_tensors(X_train, y_train, X_test, y_test): """ Function to quickly convert datasets to pytorch tensors """ # convert training data _X_train = torch.LongTensor(X_train) _y_train = torch.FloatTensor(y_train) # convert test data _X_test = torch.LongTensor(X_test) _y_test = torch.FloatTensor(y_test) # return the tensors return _X_train, _y_train, _X_test, _y_test
0d40fe19c977b25e3a2571adc98790d7058a77d9
18,802
def api_auth(func): """ If the user is not logged in, this decorator looks for basic HTTP auth data in the request header. """ @wraps(func) def _decorator(request, *args, **kwargs): authentication = APIAuthentication(request) if authentication.authenticate(): return func(request, *args, **kwargs) raise Http404 return _decorator
624c997dae9da9b698b1dccbd5293027d54d0fc8
18,803
def object_miou(y_true, y_pred, num_classes=cfg.num_classes): """ 衡量图中目标的iou :param y_true: 标签 :param y_pred: 预测 :param num_classes: 分类数量 :return: miou """ confusion_matrix = get_confusion_matrix(y_true, y_pred, num_classes) # Intersection = TP Union = TP + FP + FN # IoU = TP / (TP + FP + FN) # 取对角元素的值,对角线上的值可认为是TP或是交集 intersection = tf.linalg.diag_part(confusion_matrix) # axis = 1表示混淆矩阵行的值;axis = 0表示取混淆矩阵列的值,都是返回一个一维列表,需要求和 union = tf.reduce_sum(confusion_matrix, axis=1) + tf.reduce_sum(confusion_matrix, axis=0) - intersection intersection = intersection union = union iou = intersection / union # 其值为各个类别的IoU # 避免nan iou = tf.where(tf.math.is_nan(iou), tf.zeros_like(iou), iou) # 不求包含背景部分的iou miou = tf.reduce_mean(iou[1:]) return miou
1051fe488fb4b16760bb256265d11b33aa613743
18,804
import datetime def post_discussion(title: str, content: str, path: str, top: bool, private: bool = False): """ 发送讨论 参数: title:str 讨论题目 content:str 内容 path:str 路径 top:bool 是否置顶 返回 { "code":-1,//是否成功执行 "discussion_id":"成功执行时的讨论ID", "message":"错误信息" } """ if not session.get("uid"): return make_response(-1, message="请登录") user: User = User.by_id(int(session.get("uid"))) if not permission_manager.has_permission(user.id, "discussion.manage") and top: return make_response(-1, message="只有管理员才能发置顶讨论") if not can_post_at(user, path): return make_response(-1, message="你无权在这里发帖") if not title: return make_response(-1, message="标题不得为空") discussion = Discussion() discussion.content = content discussion.title = title discussion.path = path discussion.time = datetime.datetime.now() discussion.top = top discussion.uid = user.id discussion.private = private db.session.add(discussion) db.session.commit() return make_response(0, discussion_id=discussion.id)
b633da456a8ca05d592efb3e1dd16c8a7a465e23
18,805
import glob import json def logs_handler(request): """Return the log file on disk. :param request: a web requeest object. :type request: request | None """ log.info("Request for logs endpoint made.") complete_log_path = 'genconf/state/complete.log' json_files = glob.glob('genconf/state/*.json') complete_log = [] for f in json_files: log.debug('Adding {} to complete log file.'.format(f)) with open(f) as blob: complete_log.append(json.loads(blob.read())) with open(complete_log_path, 'w') as f: f.write(json.dumps(complete_log, indent=4, sort_keys=True)) return web.HTTPFound('/download/log/complete.log'.format(VERSION))
d422dbc4394a31a4b92f531cc01f377020069ddd
18,806
from operator import and_ def _get_fields_usage_data(session): """ Obtaining metrics of field usage in lingvodoc, the metrics are quantity of all/deleted dictionary perspectives using this field (also with URLs) and quantity of lexical entries in such dictionary perspectives Result: dict { (client_id, object_id): dict { 'URLs': list['url_string', ...], 'metrics': dict { 'dp': dict { 'sum': quantity of all parent dictionary perspectives, 'deleted': quantity of deleted parent dictionary perspectives }, 'le': dict { 'sum': quantity of lexical entries of all parent dictionary perspectives, 'deleted': quantity of lexical entries of deleted parent dictionary perspectives } } } } """ f_client_id = Field.client_id.label('field_client_id') f_object_id = Field.object_id.label('field_object_id') dp_client_id = DictionaryPerspective.client_id.label('dictionary_perspective_client_id') dp_object_id = DictionaryPerspective.object_id.label('dictionary_perspective_object_id') dp_marked_for_deletion = \ DictionaryPerspective.marked_for_deletion.label('dictionary_perspective_marked_for_deletion') subquery = session.query(f_client_id, f_object_id, dp_client_id, dp_object_id, dp_marked_for_deletion) subquery = subquery.select_from(Field).join(DictionaryPerspectiveToField, and_(DictionaryPerspectiveToField.field_client_id == Field.client_id, DictionaryPerspectiveToField.field_object_id == Field.object_id)) subquery = subquery.filter(DictionaryPerspective.marked_for_deletion == False, Field.marked_for_deletion == False) subquery = subquery.join(DictionaryPerspective, and_(DictionaryPerspectiveToField.parent_client_id == DictionaryPerspective.client_id, DictionaryPerspectiveToField.parent_object_id == DictionaryPerspective.object_id)) subquery = subquery.distinct(Field.client_id, Field.object_id, DictionaryPerspective.client_id, DictionaryPerspective.object_id) subquery = subquery.order_by(Field.client_id, Field.object_id, DictionaryPerspective.client_id, DictionaryPerspective.object_id) log.info(subquery) fields_usage = dict() try: for data in subquery.all(): field_id = (data.field_client_id, data.field_object_id) if not fields_usage.get(field_id, None): fields_usage[field_id] = { 'URLs': list(), 'metrics': { 'dp': { 'sum': 0, 'deleted': 0 }, 'le': { 'sum': 0, 'deleted': 0 } } } fields_usage[field_id]['URLs'].append( _dictionary_perspective_url( data.dictionary_perspective_client_id, data.dictionary_perspective_object_id ) ) except exc.SQLAlchemyError as ex: log.warning('Failed to obtain fields usage URLs at ' + __name__) log.warning(ex) raise subquery = subquery.subquery('subquery') query = session.query('subquery.field_client_id', 'subquery.field_object_id', func.count('*'), 'subquery.dictionary_perspective_marked_for_deletion') query = query.select_from(subquery).group_by('subquery.field_client_id', 'subquery.field_object_id', 'subquery.dictionary_perspective_marked_for_deletion') query = query.order_by('subquery.field_client_id', 'subquery.field_object_id') log.info(query) try: for data in query.all(): usage = fields_usage.get((data[0], data[1]), None) if usage: if data[3]: usage['metrics']['dp']['deleted'] += data[2] usage['metrics']['dp']['sum'] += data[2] except exc.SQLAlchemyError as ex: log.warning('Failed to obtain fields dictionary perspective metrics at ' + __name__) log.warning(ex) raise query = session.query('subquery.field_client_id', 'subquery.field_object_id', func.count('*'), 'subquery.dictionary_perspective_marked_for_deletion') query = query.select_from(LexicalEntry) query = query.join(subquery, and_('subquery.dictionary_perspective_client_id = lexicalentry.parent_client_id', 'subquery.dictionary_perspective_object_id = lexicalentry.parent_object_id')) query = query.filter('lexicalentry.marked_for_deletion = false') query = query.group_by('subquery.field_client_id', 'subquery.field_object_id', 'subquery.dictionary_perspective_marked_for_deletion') log.info(query) try: for data in query.all(): usage = fields_usage.get((data[0], data[1]), None) if usage: if data[3]: usage['metrics']['le']['deleted'] += data[2] usage['metrics']['le']['sum'] += data[2] except exc.SQLAlchemyError as ex: log.warning('Failed to obtain fields lexical entry metrics at ' + __name__) log.warning(ex) raise return fields_usage
d57fb6fd0c07e22ac62ba63e5ba5b72189481aed
18,807
import os import errno import fnmatch def output_is_new(output): """Check if the output file is up to date. Returns: True if the given output file exists and is newer than any of *_defconfig, MAINTAINERS and Kconfig*. False otherwise. """ try: ctime = os.path.getctime(output) except OSError as exception: if exception.errno == errno.ENOENT: # return False on 'No such file or directory' error return False else: raise for (dirpath, dirnames, filenames) in os.walk(CONFIG_DIR): for filename in fnmatch.filter(filenames, '*_defconfig'): if fnmatch.fnmatch(filename, '.*'): continue filepath = os.path.join(dirpath, filename) if ctime < os.path.getctime(filepath): return False for (dirpath, dirnames, filenames) in os.walk('.'): for filename in filenames: if (fnmatch.fnmatch(filename, '*~') or not fnmatch.fnmatch(filename, 'Kconfig*') and not filename == 'MAINTAINERS'): continue filepath = os.path.join(dirpath, filename) if ctime < os.path.getctime(filepath): return False # Detect a board that has been removed since the current board database # was generated with open(output, encoding="utf-8") as f: for line in f: if line[0] == '#' or line == '\n': continue defconfig = line.split()[6] + '_defconfig' if not os.path.exists(os.path.join(CONFIG_DIR, defconfig)): return False return True
a6d251799ee82fc89c0fdd0c231b1253215a2ae0
18,808
def test_merge_batch_grad_transforms_same_key_same_trafo(): """Test merging multiple ``BatchGradTransforms`` with same key and same trafo.""" def func(t): return t bgt1 = BatchGradTransformsHook({"x": func}) bgt2 = BatchGradTransformsHook({"x": func}) merged = Cockpit._merge_batch_grad_transform_hooks([bgt1, bgt2]) assert len(merged._transforms.keys()) == 1 assert id(merged._transforms["x"]) == id(func)
10aade423092d39e6a7d754c0ceecfdb53226b53
18,809
import atexit import time def main(selected_ssids, sample_interval, no_header, args=None): """ Repeatedly check internet connection status (connected or disconnected) for given WiFi SSIDs. Output is writen as .csv to stdout. """ wireless_connections = [ c for c in NetworkManager.Settings.Connections if '802-11-wireless' in c.GetSettings().keys() ] known_ssids = [ c.GetSettings()['802-11-wireless']['ssid'] for c in wireless_connections ] # confirm selected ssids are available as network manager connections for ssid in selected_ssids: assert ssid in known_ssids, f"SSID '{ssid}' not found in network manager connections. Available SSIDs: {sorted(known_ssids)}" # get the network manager connection objects for the selected ssids connections = { ssid: connection for connection in wireless_connections for ssid in selected_ssids if connection.GetSettings()['802-11-wireless']['ssid'] == ssid } # get the wireless device wireless_devs = [ d for d in NetworkManager.NetworkManager.GetDevices() if d.DeviceType == NetworkManager.NM_DEVICE_TYPE_WIFI ] assert len(wireless_devs) > 0, "No wifi device found. Aborting" wireless_dev = wireless_devs[0] # save the current active connection, to restore once this script exits initial_connection = wireless_dev.ActiveConnection.Connection if wireless_dev.ActiveConnection else None def restore_initial_connection(): if initial_connection: NetworkManager.NetworkManager.ActivateConnection( initial_connection, wireless_dev, "/") atexit.register(restore_initial_connection) # write the csv header if not no_header: print("timestamp,ssid,device_connected,ping_successful", flush=True) # begin logging loop. next_log_time = time.time() while True: # wait for the next logging iteration restore_initial_connection( ) # leave initial connection active while waiting time.sleep(max(next_log_time - time.time(), 0)) next_log_time += sample_interval * 60 for ssid in selected_ssids: # activate the connection if wireless_dev.State == NetworkManager.NM_DEVICE_STATE_ACTIVATED: wireless_dev.Disconnect() NetworkManager.NetworkManager.ActivateConnection( connections[ssid], wireless_dev, "/") connected = wait_for_connection(wireless_dev) if connected: # now test internet (by pinging google) ping_successful = ping("www.google.com") else: ping_successful = False # write out result print( f"{time.time()},{ssid},{int(connected)},{int(ping_successful)}", flush=True) return 0
f47e13bdb994e450b8bb77e26e0da3d25014032f
18,810
def getNarrowBandULAMIMOChannel(azimuths_tx, azimuths_rx, p_gainsdB, number_Tx_antennas, number_Rx_antennas, normalizedAntDistance=0.5, angleWithArrayNormal=0, pathPhases=None): """This .m file uses ULAs at both TX and RX. - assumes one beam per antenna element the first column will be the elevation angle, and the second column is the azimuth angle correspondingly. p_gain will be a matrix size of (L, 1) departure angle/arrival angle will be a matrix as size of (L, 2), where L is the number of paths t1 will be a matrix of size (nt, nr), each element of index (i,j) will be the received power with the i-th precoder and the j-th combiner in the departing and arrival codebooks respectively :param departure_angles: ((elevation angle, azimuth angle),) (L, 2) where L is the number of paths :param arrival_angles: ((elevation angle, azimuth angle),) (L, 2) where L is the number of paths :param p_gaindB: path gain (L, 1) in dB where L is the number of paths :param number_Rx_antennas, number_Tx_antennas: number of antennas at Rx and Tx, respectively :param pathPhases: in degrees, same dimension as p_gaindB :return: """ azimuths_tx = np.deg2rad(azimuths_tx) azimuths_rx = np.deg2rad(azimuths_rx) # nt = number_Rx_antennas * number_Tx_antennas #np.power(antenna_number, 2) m = np.shape(azimuths_tx)[0] # number of rays H = np.matrix(np.zeros((number_Rx_antennas, number_Tx_antennas))) gain_dB = p_gainsdB path_gain = np.power(10, gain_dB / 10) path_gain = np.sqrt(path_gain) #generate uniformly distributed random phase in radians if pathPhases is None: pathPhases = 2*np.pi * np.random.rand(len(path_gain)) else: #convert from degrees to radians pathPhases = np.deg2rad(pathPhases) #include phase information, converting gains in complex-values path_complexGains = path_gain * np.exp(-1j * pathPhases) # recall that in the narrowband case, the time-domain H is the same as the # frequency-domain H for i in range(m): # at and ar are row vectors (using Python's matrix) at = np.matrix(arrayFactorGivenAngleForULA(number_Tx_antennas, azimuths_tx[i], normalizedAntDistance, angleWithArrayNormal)) ar = np.matrix(arrayFactorGivenAngleForULA(number_Rx_antennas, azimuths_rx[i], normalizedAntDistance, angleWithArrayNormal)) H = H + path_complexGains[i] * ar.conj().T * at # outer product of ar Hermitian and at #factor = (np.linalg.norm(path_complexGains) / np.sum(path_complexGains)) * np.sqrt( # number_Rx_antennas * number_Tx_antennas) # scale channel matrix #H *= factor # normalize for compatibility with Anum's Matlab code return H
bb201abaca60e2855e86a41d9c581599b9ab0c22
18,811
def get_pybricks_reset_vector(): """Gets the boot vector of the pybricks firmware.""" # Extract reset vector from dual boot firmware. with open("_pybricks/firmware-dual-boot-base.bin", "rb") as pybricks_bin_file: pybricks_bin_file.seek(4) return pybricks_bin_file.read(4)
7d504e7e6e6ca444932fd61abb701a010a259254
18,812
def nSideCurve(sides=6, radius=1.0): """ nSideCurve( sides=6, radius=1.0 ) Create n-sided curve Parameters: sides - number of sides (type=int) radius - radius (type=float) Returns: a list with lists of x,y,z coordinates for curve points, [[x,y,z],[x,y,z],...n] (type=list) """ newpoints = [] step = 2.0 / sides i = 0 while i < sides: t = i * step x = sin(t * pi) * radius y = cos(t * pi) * radius newpoints.append([x, y, 0]) i += 1 return newpoints
d64668ae2fdbd2dc06b36fb2523e09a8cc380d6f
18,813
def _get_corr_mat(corr_transform, n_dim): """ Input check for the arguments passed to DirectionalSimulator""" if corr_transform is None: return np.eye(n_dim) if not isinstance(corr_transform, np.ndarray) or corr_transform.ndim < 2: err_msg = "corr_transform must be a 2-D numpy array" raise ValueError(err_msg) if corr_transform.shape[0] != n_dim: err_msg = "Inconsistent number of marginal distributions and " err_msg += "corr_transform shape" raise ValueError(err_msg) if corr_transform.shape[0] != corr_transform.shape[1]: err_msg = "corr_transform must be square" raise ValueError(err_msg) if not (corr_transform == corr_transform.T).all(): err_msg = "corr_transform must be symmetrical" raise ValueError(err_msg) return corr_transform
94909cc43322e8eebf14942cd39817d10bd744fa
18,814
def get_flowline_routing(NHDPlus_paths=None, PlusFlow=None, mask=None, mask_crs=None, nhdplus_crs=4269): """Read a collection of NHDPlus version 2 PlusFlow (routing) tables from one or more drainage basins and consolidate into a single pandas DataFrame, returning the `FROMCOMID` and `TOCOMID` columns. Parameters ---------- NHDPlus_paths : sequence Sequence of paths to the top level folder for each drainage basin. For example: .. code-block:: python ['NHDPlus/NHDPlusGL/NHDPlus04', 'NHDPlus/NHDPlusMS/NHDPlus07'] by default None PlusFlow : string or sequence Single path to a PlusFlow table or sequence of PlusFlow table filepaths, by default None Returns ------- flowline_routing : DataFrame [description] Raises ------ ValueError [description] """ if NHDPlus_paths is not None: flowlines_files, pfvaa_files, pf_files, elevslope_files = \ get_nhdplus_v2_filepaths(NHDPlus_paths, raise_not_exist_error=False) pf = shp2df(pf_files) if mask is not None: if isinstance(mask, tuple): extent_poly_nhd_crs = box(*mask) filter = mask elif mask is not None: extent_poly_nhd_crs = read_polygon_feature(mask, feature_crs=mask_crs, dest_crs=nhdplus_crs) # ensure that filter bbox is in same crs as flowlines # get filters from shapefiles, shapley Polygons or GeoJSON polygons filter = get_bbox(extent_poly_nhd_crs, dest_crs=nhdplus_crs) else: filter = None flowlines = shp2df(flowlines_files, filter=filter) keep_comids = pf['FROMCOMID'].isin(flowlines['COMID']) | \ pf['TOCOMID'].isin(flowlines['COMID']) pf = pf.loc[keep_comids] elif PlusFlow is not None: pf = shp2df(PlusFlow) else: raise ValueError(("get_flowline_routing: Must provide one of more" " NHDPlus_path or PlusFlow table.")) pf = pf.loc[pf['FROMCOMID'] != 0] return pf[['FROMCOMID', 'TOCOMID']]
c79d943b35f236f9d2bddbc6c9e2f470ac6ba0fc
18,815
from typing import Callable from typing import Optional from datetime import datetime import pytz def df_wxyz( time_slot_sensor: Sensor, test_source_a: BeliefSource, test_source_b: BeliefSource ) -> Callable[[int, int, int, int, Optional[datetime]], BeliefsDataFrame]: """Convenient BeliefsDataFrame to run tests on. For a single sensor, it contains w events, for each of which x beliefs by y sources each (max 2), described by z probabilistic values (max 3). Note that the event resolution of the sensor is 15 minutes. """ sources = [test_source_a, test_source_b] # expand to increase max y cps = [0.1587, 0.5, 0.8413] # expand to increase max z def f(w: int, x: int, y: int, z: int, start: Optional[datetime] = None): if start is None: start = datetime(2000, 1, 3, 9, tzinfo=pytz.utc) # Build up a BeliefsDataFrame with various events, beliefs, sources and probabilistic accuracy (for a single sensor) beliefs = [ TimedBelief( source=sources[s], sensor=time_slot_sensor, value=1000 * e + 100 * b + 10 * s + p, belief_time=datetime(2000, 1, 1, tzinfo=pytz.utc) + timedelta(hours=b), event_start=start + timedelta(hours=e), cumulative_probability=cps[p], ) for e in range(w) # w events for b in range(x) # x beliefs for s in range(y) # y sources for p in range(z) # z cumulative probabilities ] return BeliefsDataFrame(sensor=time_slot_sensor, beliefs=beliefs) return f
64928090a7fa58cc1f6a6e4928025c426c17e799
18,816
def not_posted(child, conn) -> bool: """Check if a post has been already tooted.""" child_data = child["data"] child_id = child_data["id"] last_posts = fetch_last_posts(conn) return child_id not in last_posts
5be321bf838a22cfcd742c0ddf48eb00ec1e35bf
18,817
def parse_img_name(path): """parse image by frame name :param name [str] :output img_lists """ code = path.split('\\')[-1].split('.')[0] vid_id = path.split('\\')[-2] rcp_id = path.split('\\')[-3] seg_id = int(code[:4]) frm_id = int(code[4:]) return rcp_id, vid_id, seg_id, frm_id
6e0a140934c584400365f12feb8a86cfea3bbb2b
18,818
def get_bspline_kernel(x, channels, transpose=False, dtype=tf.float32, order=4): """Creates a 5x5x5 b-spline kernel. Args: num_channels: The number of channels of the image to filter. dtype: The type of an element in the kernel. Returns: A tensor of shape `[5, 5, 5, num_channels, num_channels]`. """ mesh = x.mesh in_dim = x.shape[-1] num_channels = channels.size if order == 8: kernel = np.array(( 1., 8., 28., 56., 70., 56., 28., 8., 1.), dtype=dtype.as_numpy_dtype()) elif order == 6: kernel = np.array(( 1., 6., 15., 20., 15., 6., 1.), dtype=dtype.as_numpy_dtype()) elif order==2: kernel = np.array(( 1., 2., 1.), dtype=dtype.as_numpy_dtype()) else: kernel = np.array(( 1., 4., 6., 4., 1.), dtype=dtype.as_numpy_dtype()) size = len(kernel) kernel = np.einsum('ij,k->ijk', np.outer(kernel, kernel), kernel) kernel /= np.sum(kernel) kernel = kernel[:, :, :, np.newaxis, np.newaxis] kernel = tf.constant(kernel, dtype=dtype) * tf.eye(num_channels, dtype=dtype) fd_dim = mtf.Dimension("fd", size) fh_dim = mtf.Dimension("fh", size) fw_dim = mtf.Dimension("fw", size) if transpose: return mtf.import_tf_tensor(mesh, kernel, shape=[fd_dim, fh_dim, fw_dim, channels, in_dim]) else: return mtf.import_tf_tensor(mesh, kernel, shape=[fd_dim, fh_dim, fw_dim, in_dim, channels])
1696e3a9077c672becda474de98750f45d1fe3d4
18,819
from .protocols import Stock_solution,MonoDispensing_type1,MonoDispensing_type2,MultiBase,SMTransfer,ReactionQC,QCSolubilise,DMATransfer,\ def gen_prot_dict(): """ :param input_list: :return: """ PostWorkupTransfer,Workup,PostWorkupQCAndTransfer,PostWorkupDMSOAddition,BaseT3PMulti, PoisedReactor input_list = [Stock_solution,MonoDispensing_type1,MonoDispensing_type2,MultiBase,SMTransfer,ReactionQC,QCSolubilise,DMATransfer,PostWorkupTransfer, Workup,PostWorkupQCAndTransfer,PostWorkupDMSOAddition,BaseT3PMulti, PoisedReactor] out_dict = {} for protocol in input_list: out_dict[str(protocol())] = protocol return out_dict
64c4c88f684297ea7e658015d225481005315527
18,820
def f(x): """ 예측해야 하는 함수입니다. """ return np.matmul(x * np.absolute(np.sin(x)), np.array([[2], [1]]))
228e8f431f7c071ad1587b76c73495296e1331f3
18,821
def create_frame_coords_list(coords_path): """ :param coords_path: [int] :type coords_path: list :return: int, [int] :rtype: tuple """ id_number = coords_path[0] fr_coordinates = [None]*int((len(coords_path) - 1) / 3) # excluding the index 0 (which is the id) the number of triples is the length of this array index = 0 for i in range(1, len(coords_path), 3): x = coords_path[i] y = coords_path[i + 1] frame_number = coords_path[i + 2] fr_coordinates[index] = FrameCoord(x, y, frame_number) index += 1 return id_number, fr_coordinates
ca835c04b67789903a74e6882434c570f33647ab
18,822
import types import sys def parse_args(): """ Parses command-line arguments and returns a run configuration """ runconfig = types.SimpleNamespace() runconfig.ssl = False runconfig.port = None runconfig.connection_string = None i = 1 try: while i < len(sys.argv): arg = sys.argv[i] if arg == '-s': if runconfig.ssl: raise ValueError runconfig.ssl = True runconfig.certificate = sys.argv[i + 1] runconfig.key = sys.argv[i + 2] runconfig.keypassword = sys.argv[i + 3] i += 4 elif arg == '-p': if runconfig.port is not None: raise ValueError runconfig.port = int(sys.argv[i + 1]) if runconfig.port <= 0 or runconfig.port > 65536: raise ValueError i += 2 elif arg == '-c': if runconfig.connection_string is not None: raise ValueError runconfig.connection_string = sys.argv[i + 1] i += 2 else: raise ValueError if runconfig.connection_string is None: raise ValueError except (IndexError, ValueError): print(USAGE) sys.exit(1) if runconfig.port is None: runconfig.port = 1995 return runconfig
cf05d2b88c4bf9c81d107dba50d399be1cee5e7a
18,823
def arcToolReport(function=None, arcToolMessageBool=False, arcProgressorBool=False): """This decorator function is designed to be used as a wrapper with other GIS functions to enable basic try and except reporting (if function fails it will report the name of the function that failed and its arguments. If a report boolean is true the function will report inputs and outputs of a function.-David Wasserman""" def arcToolReport_Decorator(function): def funcWrapper(*args, **kwargs): try: funcResult = function(*args, **kwargs) if arcToolMessageBool: arcpy.AddMessage("Function:{0}".format(str(function.__name__))) arcpy.AddMessage(" Input(s):{0}".format(str(args))) arcpy.AddMessage(" Ouput(s):{0}".format(str(funcResult))) if arcProgressorBool: arcpy.SetProgressorLabel("Function:{0}".format(str(function.__name__))) arcpy.SetProgressorLabel(" Input(s):{0}".format(str(args))) arcpy.SetProgressorLabel(" Ouput(s):{0}".format(str(funcResult))) return funcResult except Exception as e: arcpy.AddMessage( "{0} - function failed -|- Function arguments were:{1}.".format(str(function.__name__), str(args))) print( "{0} - function failed -|- Function arguments were:{1}.".format(str(function.__name__), str(args))) print(e.args[0]) return funcWrapper if not function: # User passed in a bool argument def waiting_for_function(function): return arcToolReport_Decorator(function) return waiting_for_function else: return arcToolReport_Decorator(function)
673dd42bd96a0f5aede5ca0593efaa02d630e2e5
18,824
def check_for_pattern(input_string): """ Check a string for a recurring pattern. If no pattern, return False. If pattern present, return smallest integer length of pattern. Warning: equal_divisions discards the remainder, so if it doesn't fit the pattern, you will get a false postive. The specific use is to check recurring decimal patterns, so it doesn't matter for that use. """ if len(input_string) < 2: return False length_of_division = 1 limit = len(input_string)//2 while length_of_division < limit + 1: divisions = equal_division(input_string, length_of_division) divisions = set(divisions) if len(divisions) == 1: return length_of_division else: length_of_division += 1 return False
6d6e32c7228ef3cec4107a3354fe53b90ef69e04
18,825
import logging def get_xml_namespace(file_name,pkg_type): """Get xml's namespace. Args: file_name: The path of xml file. Returns: xml_namespace: The namespace of xml. for example: xml file content: ... <config xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"> <interfaces xmlns="urn:ietf:params:xml:ns:yang:ietf-interfaces" xmlns:ni="urn:ietf:params:xml:ns:yang:ietf-network-instance"> ... </interfaces> </config> xml_namespace: 'urn:ietf:params:xml:ns:yang:ietf-interfaces' Raises: Exception: Capture execution exception. """ feature_namespaces = [] try: doc = parse(file_name) root = doc.documentElement if pkg_type in ['get','get-config']: if root.getElementsByTagNameNS("urn:ietf:params:xml:ns:netconf:base:1.0", "filter"): child_nodes = root.getElementsByTagNameNS("urn:ietf:params:xml:ns:netconf:base:1.0", "filter")[ 0].childNodes elif pkg_type == 'config': if root.getElementsByTagNameNS("urn:ietf:params:xml:ns:netconf:base:1.0", "config"): child_nodes = root.getElementsByTagNameNS("urn:ietf:params:xml:ns:netconf:base:1.0", "config")[ 0].childNodes else: child_nodes = root.childNodes logging.info("This is rpc-xml:" + file_name) for child_node in child_nodes: if child_node.nodeType == 1 and hasattr(child_node, 'namespaceURI'): feature_namespaces.append(child_node.namespaceURI) except ExpatError as expat_exception: xml_structure_except(expat_exception, file_name) except Exception as error_str: error_write(error_str) return feature_namespaces
401bf5c321b5626d7b7171e2270df04863a01d61
18,826
def build_successors_table(tokens): """Return a dictionary: keys are words; values are lists of successors. >>> text = ['We', 'came', 'to', 'investigate', ',', 'catch', 'bad', 'guys', 'and', 'to', 'eat', 'pie', '.'] >>> table = build_successors_table(text) >>> sorted(table) [',', '.', 'We', 'and', 'bad', 'came', 'catch', 'eat', 'guys', 'investigate', 'pie', 'to'] >>> table['to'] ['investigate', 'eat'] >>> table['pie'] ['.'] >>> table['.'] ['We'] """ table = {} prev = '.' for word in tokens: if prev not in table: table[str(prev)] = [str(word)] else: # if already in table then add this word to the list of successors table[str(prev)] += [str(word)] prev = word return table
92206bf3dd40518c23c6fb98e22dc818912c5bcc
18,827
import math def _rolling_nanmin_1d(a, w=None): """ Compute the rolling min for 1-D while ignoring NaNs. This essentially replaces: `np.nanmin(rolling_window(T[..., start:stop], m), axis=T.ndim)` Parameters ---------- a : numpy.ndarray The input array w : numpy.ndarray, default None The rolling window size Returns ------- output : numpy.ndarray Rolling window nanmin. """ if w is None: w = a.shape[0] half_window_size = int(math.ceil((w - 1) / 2)) return minimum_filter1d(a, size=w)[ half_window_size : half_window_size + a.shape[0] - w + 1 ]
37229440ba632d1ddadc55a811f9abca1c8e3132
18,828
def get_model_init_fn(train_logdir, tf_initial_checkpoint, initialize_last_layer, last_layers, ignore_missing_vars=False): """Gets the function initializing model variables from a checkpoint. Args: train_logdir: Log directory for training. tf_initial_checkpoint: TensorFlow checkpoint for initialization. initialize_last_layer: Initialize last layer or not. last_layers: Last layers of the model. ignore_missing_vars: Ignore missing variables in the checkpoint. Returns: Initialization function. """ if tf_initial_checkpoint is None: tf.logging.info('Not initializing the model from a checkpoint.') return None if tf.train.latest_checkpoint(train_logdir): tf.logging.info('Ignoring initialization; other checkpoint exists') return None tf.logging.info('Initializing model from path: %s', tf_initial_checkpoint) # Variables that will not be restored. exclude_list = ['global_step'] if not initialize_last_layer: exclude_list.extend(last_layers) variables_to_restore = contrib_framework.get_variables_to_restore(exclude=exclude_list) if variables_to_restore: init_op, init_feed_dict = contrib_framework.assign_from_checkpoint( tf_initial_checkpoint, variables_to_restore, ignore_missing_vars=ignore_missing_vars) global_step = tf.train.get_or_create_global_step() def restore_fn(sess): sess.run(init_op, init_feed_dict) sess.run([global_step]) return restore_fn return None
7fdd1bcff59fc01dff2f1ef49eda4bd29b162ea2
18,829
import time def tokenize_protein(text): """ Tokenizes from a proteins string into a list of strings """ aa = ['A','C','D','E','F','G','H','I','K','L', 'M','N','P','Q','R','S','T','V','W','Y'] N = len(text) n = len(aa) i=0 seq = list() timeout = time.time()+5 for i in range(N): symbol = text[i] if (symbol in aa): seq.append(symbol) else: seq.append('X') if time.time() > timeout: break return seq
7dba531023aef97dcbfb37af75a9a1459a1e94d2
18,830
from typing import Callable def read_xml_string() -> Callable[[int, int, str], str]: """Read an XML file to a string. Subsection string needs to include a prepending '-'.""" def _read_xml_string(number: int, year: int, subsection: str) -> str: xmlfile = f"tests/data/xmls/session-{number:03}-{year}{subsection}.xml" with open(xmlfile, "r", encoding="utf-8") as infile: lines = infile.readlines() return " ".join([line.strip() for line in lines]) return _read_xml_string
2b4e4c3585e26138e5fecf820699e97e1011a842
18,831
def compute_mean_std_data(filelist): """ Compute mean and standard deviation of a dataset. :param filelist: list of str :return: tuple of floats """ tensor_list = [] for file in filelist: img = Image.open(file) img_np = np.array(img).ravel() tensor_list.append(img_np.ravel()) pixels = np.concatenate(tensor_list, axis=0) return np.mean(pixels), np.std(pixels)
57c8d5e9294e291e9897ac0e865a661319123965
18,832
def ConstVal(val): """ Creates a LinComb representing a constant without creating a witness or instance variable Should be used carefully. Using LinCombs instead of integers where not needed will hurt performance """ if not isinstance(val, int): raise RuntimeError("Wrong type for ConstVal") return LinComb(val, backend.one() * val)
d715564ea09224590be827d3e32043c4b66c5cfd
18,833
def filter_required_flat_tensor_spec(flat_tensor_spec): """Process a flat tensor spec structure and return only the required subset. Args: flat_tensor_spec: A flattened sequence (result of flatten_spec_structure) with the joined string paths as OrderedDict. Since we use OrderedDicts we can safely call flatten_spec_structure multiple times. Raises: ValueError: If the passed flat_tensor_spec is not a valid flat tensor_spec structure. Returns: filtered_flat_required_tensor_spec: The same flattened sequence but only the {key: tensor_spec} pairs for the non optional tensor_spec. """ if not is_flat_spec_or_tensors_structure(flat_tensor_spec): raise ValueError('Only flat tensor_spec structures are allowed.') filtered_flat_required_tensor_spec = TensorSpecStruct() for key, value in flat_tensor_spec.items(): if hasattr(value, 'is_optional') and value.is_optional: continue filtered_flat_required_tensor_spec[key] = value return filtered_flat_required_tensor_spec
aa55e790cd335030cf2c821dd006213db022b78a
18,834
def callback(photolog_id): """ twitter로부터 callback url이 요청되었을때 최종인증을 한 후 트위터로 해당 사진과 커멘트를 전송한다. """ Log.info("callback oauth_token:" + request.args['oauth_token']); Log.info("callback oauth_verifier:" + request.args['oauth_verifier']); # oauth에서 twiter로 부터 넘겨받은 인증토큰을 세션으로 부터 가져온다. OAUTH_TOKEN = session['OAUTH_TOKEN'] OAUTH_TOKEN_SECRET = session['OAUTH_TOKEN_SECRET'] oauth_verifier = request.args['oauth_verifier'] try: # 임시로 받은 인증토큰을 이용하여 twitter 객체를 만들고 인증토큰을 검증한다. twitter = Twython(current_app.config['TWIT_APP_KEY'], current_app.config['TWIT_APP_SECRET'], OAUTH_TOKEN, OAUTH_TOKEN_SECRET) final_step = twitter.get_authorized_tokens(oauth_verifier) # oauth_verifier를 통해 얻은 최종 인증토큰을 이용하여 twitter 객체를 새로 생성한다. twitter = Twython(current_app.config['TWIT_APP_KEY'], current_app.config['TWIT_APP_SECRET'], final_step['oauth_token'], final_step['oauth_token_secret']) session['TWITTER'] = twitter # 파라미터로 받은 photolog_id를 이용하여 해당 사진과 커멘트를 트위터로 전송한다. __send_twit(twitter, photolog_id) except TwythonError as e: Log.error("callback(): TwythonError , "+ str(e)) session['TWITTER_RESULT'] = str(e) return redirect(url_for('.show_all'))
3dcca97278cf20f819fa357b85e971dae9a6dac8
18,835
def calc_adjusted_pvalues(adata, method='fdr_by'): """Calculates pvalues adjusted per sample with the given method. :param data: AnnData object annotated with model fit results. :param method: Name of pvalue adjustment method (from statsmodels.stats.multitest.multipletests). :return: AnnData object with adjusted pvalues. """ assert "X_pvalue" in adata.layers.keys(), ( 'No X_pvalue found in AnnData object, calculate pvalues first.') adata.layers["X_padj"] = (np.array([multiple_testing_nan(row, method=method) for row in adata.layers["X_pvalue"]])) return adata
0097ceca4918ef4a4c4376c092b040752f408036
18,836
def create_model(model_type='mobilenet'): """ Create a model. :param model_type: Must be one of 'alexnet', 'vgg16', 'resnet50' or 'mobilenet'. :return: Model. """ if model_type is 'alexnet': net = mdl.alexnet(input_shape, num_breeds, lr=0.001) elif model_type is 'vgg16': net = mdl.vgg16(input_shape, num_breeds, lr=0.0001) elif model_type is 'resnet50': net = mdl.resnet50(input_shape, num_breeds, lr=0.0002) # 0.01 elif model_type is 'mobilenet': net = mdl.mobilenet(input_shape, num_breeds, lr=0.0001) # 0.01 else: print("Model type is not supported.") return net
44ab632eff28e40b5255094e2009b479e042b00b
18,837
def generate_voter_groups(): """Generate all possible voter groups.""" party_permutations = list(permutations(PARTIES, len(PARTIES))) voter_groups = [VoterGroup(sequence) for sequence in party_permutations] return voter_groups
16c55002600bf76178c529f1140fb28831d5065e
18,838
import logging def add_image_fuzzy_pepper_noise(im, ration=0.1, rand_seed=None): """ generate and add a continues noise to an image :param ndarray im: np.array<height, width> input float image :param float ration: number means 0 = no noise :param rand_seed: random initialization :return ndarray: np.array<height, width> float image >>> img = np.zeros((5, 9), dtype=int) >>> img[1:4, 2:7] = 1 >>> img = add_image_fuzzy_pepper_noise(img, ration=0.5, rand_seed=0) >>> np.round(img, 2) array([[ 0.1 , 0.43, 0.21, 0.09, 0.15, 0.29, 0.12, 0. , 0. ], [ 0.23, 0. , 0.94, 0.86, 1. , 1. , 1. , 0. , 0. ], [ 0. , 0. , 1. , 1. , 1.08, 1. , 1. , 0.28, 0. ], [ 0. , 0.04, 1.17, 1.47, 1. , 1.09, 0.86, 0. , 0.24], [ 0.22, 0.23, 0. , 0.36, 0.28, 0.13, 0.4 , 0. , 0.33]]) """ logging.debug('... add smooth noise to a probability image') np.random.seed(rand_seed) rnd = 2 * (np.random.random(im.shape) - 0.5) rnd[abs(rnd) > ration] = 0 im_noise = np.abs(im - rnd) # plt.subplot(1,3,1), plt.imshow(im) # plt.subplot(1,3,2), plt.imshow(rnd) # plt.subplot(1,3,3), plt.imshow(im - rnd) # plt.show() return im_noise
9bbf38b1d4fd16011dc884e98a25e8d872fef534
18,839
import random def generator(fields, instance): """ Calculates the value needed for a unique ordered representation of the fields we are paginating. """ values = [] for field in fields: neg = field.startswith("-") # If the field we have to paginate by is the pk, get the pk field name. if field == 'pk': field = instance._meta.pk.name value = instance._meta.get_field(field.lstrip("-")).value_from_object(instance) if hasattr(value, "isoformat"): value = value.isoformat() value = unicode(value) if neg: # this creates the alphabetical mirror of a string, e.g. ab => zy, but for the full # range of unicode characters, e.g. first unicode char => last unicode char, etc value = u"".join([ unichr(0xffff - ord(x)) for x in value ]) values.append(value) values.append(unicode(instance.pk) if instance.pk else unicode(random.randint(0, 1000000000))) return NULL_CHARACTER.join(values)
3d6f3837e109720ec78460dcd56b6cf1b3ddc947
18,840
from typing import Any from typing import Union def token_hash(token: Any, as_int: bool = True) -> Union[str, int]: """Hash of Token type Args: token (Token): Token to hash as_int (bool, optional): Encode hash as int Returns: Union[str, int]: Token hash """ return _hash((token.text, token.start, token.end, token.id), as_int=as_int)
3adfc8dce2b37b86376d47f8299cb6813faab839
18,841
import six import base64 from datetime import datetime def generate_totp_passcode(secret): """Generate TOTP passcode. :param bytes secret: A base32 encoded secret for TOTP authentication :returns: totp passcode as bytes """ if isinstance(secret, six.text_type): secret = secret.encode('utf-8') while len(secret) % 8 != 0: secret = secret + b'=' decoded = base64.b32decode(secret) totp = TOTP( decoded, 6, SHA1(), 30, backend=default_backend()) return totp.generate(timegm(datetime.utcnow().utctimetuple())).decode()
2f0392e86b5d84970ec43bbd4d647ca29345a373
18,842
def all_ndcubes(request): """ All the above ndcube fixtures in order. """ return request.getfixturevalue(request.param)
906412ebe9a26de5cfddcb1d1431ab014c8084c6
18,843
from pathlib import Path import warnings def read_xmu(fpath: Path, scan: str='mu', ref: bool=True, tol: float=1e-4) -> Group: """Reads a generic XAFS file in plain format. Parameters ---------- fpath Path to file. scan Requested mu(E). Accepted values are transmission ('mu'), fluorescence ('fluo'), or None. The default is 'mu'. ref Indicates if the transmission reference ('mu_ref') should also be returned. The default is True. tol Tolerance in energy units to remove duplicate values. Returns ------- : Group containing the requested arrays. Notes ----- :func:`read_xmu` assumes the following column order in the file: 1. energy. 2. transmission/fluorescence mu(E). 3. transmission reference. See also -------- read_file : Reads a XAFS file based on specified columns. Examples -------- >>> from araucaria import Group >>> from araucaria.io import read_xmu >>> from araucaria.testdata import get_testpath >>> from araucaria.utils import check_objattrs >>> fpath = get_testpath('xmu_testfile.xmu') >>> # extracting mu and mu_ref scans >>> group_mu = read_xmu(fpath, scan='mu') >>> check_objattrs(group_mu, Group, attrlist=['mu', 'mu_ref']) [True, True] >>> # extracting only fluo scan >>> group_fluo = read_xmu(fpath, scan='fluo', ref=False) >>> check_objattrs(group_fluo, Group, attrlist=['fluo']) [True] >>> # extracting only mu_ref scan >>> group_ref = read_xmu(fpath, scan=None, ref=True) >>> check_objattrs(group_ref, Group, attrlist=['mu_ref']) [True] """ # default modes and channels scandict = ['mu', 'fluo', None] coldict = {'fluo':1, 'mu':1, 'mu_ref':2} # testing that scan exists in the current dictionary if scan not in scandict: warnings.warn("scan mode %s not recognized. Retrieving transmission measurement ('mu')." %scan) scan = 'mu' if scan is None: usecols = (0, coldict['mu_ref']) else: usecols = (0, coldict[scan], coldict['mu_ref']) group = read_file(fpath, usecols, scan, ref, tol) return (group)
e5889fa309b7fb836cc5b7ea50f8987a647f00a2
18,844
def filter_order_by_oid(order, oid): """ :param order: :type order: :class:`tests.testapp.testapp.trading.models.Order` :param oid: Order ID :type oid: int """ return order.tid == oid
bf84e2e9f2fa19dc19e1d42ceef92dd3050d1e89
18,845
from skaldship.passwords.utils import process_password_file, insert_or_update_acct import logging def process_pwdump_loot(loot_list=[], msf=None): """ Takes an array of loot records in loot_list, downloads the pwdump file and adds the users. """ db = current.globalenv['db'] #cache = current.globalenv['cache'] data = [] for loot_id in loot_list: loot = msf.loot_download(loot_id) if loot['ltype'] not in ['host.windows.pwdump', 'windows.hashes']: log("Loot is not a pwdump, it is a %s" % loot['ltype'], logging.ERROR) continue else: # process the pwdump file pw_data = loot['data'].split('\n') accounts = process_password_file( pw_data=pw_data, file_type='PWDUMP', source='Metasploit', ) # find the info/0 service id for the host host = get_host_record(loot['host']) query = (db.t_services.f_number == '0') & (db.t_services.f_proto == 'info') & (db.t_services.f_hosts_id == host.id) svc_id = db(query).select().first() if svc_id is None: # info/0 not found.. add it! svc_id = db.t_services.insert(f_proto="info", f_number="0", f_status="info", f_hosts_id=host.id) db.commit() # insert or update the account records resp_text = insert_or_update_acct(svc_id.id, accounts) log("Added pwdump records for host: %s" % host.f_ipaddr) data.append({loot['host']: resp_text}) return data
57448b24350dd66271906ba5fcdc0e4453d898e9
18,846
def has_poor_grammar(token_strings): """ Returns whether the output has an odd number of double quotes or if it does not have balanced parentheses. """ has_open_left_parens = False quote_count = 0 for token in token_strings: if token == '(': if has_open_left_parens: return True else: has_open_left_parens = True elif token == ')': if has_open_left_parens: has_open_left_parens = False else: return True elif token == '"': quote_count += 1 return quote_count % 2 == 1 or has_open_left_parens
b35c6af0ec771ac22ff66d9ca875f5d916cb9489
18,847
def run(main, *, debug=False): """ Since we're using asyncio loop to run wait() in irder to be compatible with async calls, here we also run each wait in a different thread to allow nested calls to wait() """ thread = RunnerThread(main, debug=debug) thread.start() thread.join() if thread.exception: raise thread.exception return thread.result
47c70c887e456ac69f5c767bf0f1e56c050f8f4b
18,848
import pandas as pd def csv_dataset_reader(path): """ This function reads a csv from a specified path and returns a Pandas dataframe representation of it, and renames columns. :param path: Path to and name of the csv file to read. :return: A Pandas dataframe. """ data = pd.read_csv(path, sep=",", header=None) data.columns = ['age', 'weight', 'height'] return data
59a298c50bf060809ebbebc5d0ff3d9670e84244
18,849
def get_daily_blurb_info(): """Get daily blurb info.""" html, ss_image_1day_file, ss_image_1year_file = _scrape() return _parse(html, ss_image_1day_file, ss_image_1year_file)
ffe84accebda5780e55d34e58137288d02bc072d
18,850
import torch def generate_random_ring_element(size, ring_size=(2 ** 64), **kwargs): """Helper function to generate a random number from a signed ring""" # TODO (brianknott): Check whether this RNG contains the full range we want. rand_element = torch.randint( -(ring_size // 2), (ring_size - 1) // 2, size, dtype=torch.long, **kwargs ) if rand_element.is_cuda: return CUDALongTensor(rand_element) return rand_element
6e7ea30e5b4ccbde7dc48d1fe8fa51468344c335
18,851
def otsu_binarization(img): """ Method to perform Otsu Binarization :param img: input image :return: thresholded image """ ret2, th2 = cv2.threshold(img, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU) return th2
99953288b893d56e17a9e9654393aa284eaae4b7
18,852
def rosstack_depends_1(s): """ @param s: stack name @type s: str @return: A list of the names of the stacks which s depends on directly @rtype: list """ return rosstackexec(['depends1', s]).split()
e917c62c628498e1f100c045bf8e966ea3bfd355
18,853
def _config_file_is_to_update(): """ Ask the user if the configuration file should be updated or not. :return: Returns True if the user wants to update the configuration file and False otherwise. :rtype: bool """ if yes_or_no_input("Do you want to save the account on the configuration file?") == USER_INPUT_YES: return True return False
e14be78e150e28b87a0e8f179cc86f4a240a60d3
18,854
import subprocess def countbam(sortedbam, outdir): """calculates the raw counts from a BAM index parameters ---------- sortedbam string, the name of the sorted bam file outdir string, the path of the output directory returns ---------- counts_file = file containing the counts """ counts_file = f"{sortedbam[:-3]}count" try: cmd_count = f"samtools idxstats {sortedbam} > {counts_file}" res_count = subprocess.check_output(cmd_count, shell=True) except(subprocess.CalledProcessError): print('Unable to calculate raw counts from BAM') return (counts_file)
de60c7af2a479d00487a1891a64c926f9a2e0ae0
18,855
def funcScrapeTableWunderground(html_tree, forecast_date_str): """ """ # This will get you the Wunderground table headers for future hour conditions columns = html_tree.xpath("//table[@id='hourly-forecast-table']/thead//button[@class='tablesaw-sortable-btn']") rows = html_tree.xpath("//table[@id='hourly-forecast-table']/tbody/tr") fill_cols = np.asarray([]) for column in columns: # print etree.tostring(column) col = column.xpath("text()")[0] fill_cols = np.append(fill_cols, col) # print(col) # Make a DataFrame to fill dayDf = DataFrame(columns = fill_cols)#.set_index(fill_cols[0]) # This will go through the rows of the table and grab actual values for row in rows: values = row.xpath("td") for i, value in enumerate(values): col = columns[i].xpath("text()")[0] val = value.xpath("ng-saw-cell-parser/div//span/text()") # print(val) if col == 'Time': timeVal = val # Initializing a single row. The goal is to make it look just like what dayDf looks like hourRow = pd.DataFrame([forecast_date_str + ' ' + (''.join(timeVal))], columns = [col])#.set_index elif col == 'Conditions': hourRow[col] = val[1] else: if col == 'Pressure': val = value.xpath("ng-saw-cell-parser//span/span/text()") val = [val[0] + ' ' + val[2][0:2]] if col in ['Precip', 'Amount']: # These are hiding behind hyperlinks. Need to be smart val = value.xpath("ng-saw-cell-parser/div//span/a/text()") try: hourRow[col] = val[0] except: hourRow[col] = np.nan dayDf = dayDf.append(hourRow) dayDf['Time'] = pd.to_datetime(dayDf['Time']) # print(columns[i].xpath("text()")[0]) # print value.xpath("ng-saw-cell-parser/div//span/text()") return dayDf
aa6745565e8fa01df8b8f52f1314ee7bf1a434a8
18,856
from re import S def as_finite_diff(derivative, points=1, x0=None, wrt=None): """ Returns an approximation of a derivative of a function in the form of a finite difference formula. The expression is a weighted sum of the function at a number of discrete values of (one of) the independent variable(s). Parameters ========== derivative: a Derivative instance (needs to have an variables and expr attribute). points: sequence or coefficient, optional If sequence: discrete values (length >= order+1) of the independent variable used for generating the finite difference weights. If it is a coefficient, it will be used as the step-size for generating an equidistant sequence of length order+1 centered around x0. defult: 1 (step-size 1) x0: number or Symbol, optional the value of the independent variable (wrt) at which the derivative is to be approximated. default: same as wrt wrt: Symbol, optional "with respect to" the variable for which the (partial) derivative is to be approximated for. If not provided it is required that the Derivative is ordinary. default: None Examples ======== >>> from sympy import symbols, Function, exp, sqrt, Symbol, as_finite_diff >>> x, h = symbols('x h') >>> f = Function('f') >>> as_finite_diff(f(x).diff(x)) -f(x - 1/2) + f(x + 1/2) The default step size and number of points are 1 and ``order + 1`` respectively. We can change the step size by passing a symbol as a parameter: >>> as_finite_diff(f(x).diff(x), h) -f(-h/2 + x)/h + f(h/2 + x)/h We can also specify the discretized values to be used in a sequence: >>> as_finite_diff(f(x).diff(x), [x, x+h, x+2*h]) -3*f(x)/(2*h) + 2*f(h + x)/h - f(2*h + x)/(2*h) The algorithm is not restricted to use equidistant spacing, nor do we need to make the approximation around x0, but we can get an expression estimating the derivative at an offset: >>> e, sq2 = exp(1), sqrt(2) >>> xl = [x-h, x+h, x+e*h] >>> as_finite_diff(f(x).diff(x, 1), xl, x+h*sq2) 2*h*((h + sqrt(2)*h)/(2*h) - (-sqrt(2)*h + h)/(2*h))*f(E*h + x)/\ ((-h + E*h)*(h + E*h)) + (-(-sqrt(2)*h + h)/(2*h) - \ (-sqrt(2)*h + E*h)/(2*h))*f(-h + x)/(h + E*h) + \ (-(h + sqrt(2)*h)/(2*h) + (-sqrt(2)*h + E*h)/(2*h))*f(h + x)/(-h + E*h) Partial derivatives are also supported: >>> y = Symbol('y') >>> d2fdxdy=f(x,y).diff(x,y) >>> as_finite_diff(d2fdxdy, wrt=x) -f(x - 1/2, y) + f(x + 1/2, y) See also ======== sympy.calculus.finite_diff.apply_finite_diff sympy.calculus.finite_diff.finite_diff_weights """ if wrt is None: wrt = derivative.variables[0] # we need Derivative to be univariate to guess wrt if any(v != wrt for v in derivative.variables): raise ValueError('if the function is not univariate' + ' then `wrt` must be given') order = derivative.variables.count(wrt) if x0 is None: x0 = wrt if not iterable(points): # points is simply the step-size, let's make it a # equidistant sequence centered around x0 if order % 2 == 0: # even order => odd number of points, grid point included points = [x0 + points*i for i in range(-order//2, order//2 + 1)] else: # odd order => even number of points, half-way wrt grid point points = [x0 + points*i/S(2) for i in range(-order, order + 1, 2)] if len(points) < order+1: raise ValueError("Too few points for order %d" % order) return apply_finite_diff(order, points, [ derivative.expr.subs({wrt: x}) for x in points], x0)
4b76eae0578434a9a087b08f01eefbcd3018bc01
18,857
def is_prime(pp: int) -> bool: """ Returns True if pp is prime otherwise, returns False Note: not a very sophisticated check """ if pp == 2 or pp == 3: return True elif pp < 2 or not pp % 2: return False odd_n = range(3, int(sqrt(pp) + 1), 2) return not any(not pp % i for i in odd_n)
f8661a7f625c198dd1d0b5b477aea22f50596a39
18,858
def createChromosome( totQty, menuData ): """ Creates the chromosome with Qty assigned to Each Dish such that sum of all Qty equals to the number of dishes to be ordered totQty = Number of Dishes to be Ordered returns chromosome of dish id and corresponding quantity """ chromosome = [] qtySeq = randSeq2(len(menuData),totQty) i=0 for key in menuData: chromosome.append(Dish(key,qtySeq[i])) i+=1 return chromosome
6dae9c5a610a50df67e18f2034513a090088e524
18,859
def add_residual(transformed_inputs, original_inputs, zero_pad=True): """Adds a skip branch to residual block to the output.""" original_shape = original_inputs.shape.as_list() transformed_shape = transformed_inputs.shape.as_list() delta = transformed_shape[3] - original_shape[3] stride = int(np.ceil(original_shape[1] / transformed_shape[1])) if stride > 1: original_inputs = tf.layers.average_pooling2d( original_inputs, pool_size=[stride] * 2, strides=stride, padding="same") if delta != 0: if zero_pad: # Pad channels with zeros at the beginning and end. if delta > 0: original_inputs = tf.pad( original_inputs, [[0, 0], [0, 0], [0, 0], [delta // 2, delta // 2]], mode="CONSTANT", constant_values=0) else: transformed_inputs = tf.pad( transformed_inputs, [ [0, 0], [0, 0], [0, 0], [-delta // 2, -delta // 2]], mode="CONSTANT", constant_values=0) else: # Convolution original_inputs = tf.layers.conv2d( original_inputs, filters=transformed_shape[3], kernel_size=(1, 1), strides=(1, 1), padding="same", activation=None, use_bias=False) net = original_inputs + transformed_inputs return net, original_inputs
e32897c6e80873b863fbc3358eaec8b6191086f0
18,860
def _find_bad_channels_in_epochs(epochs, picks, use_metrics, thresh, max_iter): """Implements the fourth step of the FASTER algorithm. This function attempts to automatically mark bad channels in each epochs by performing outlier detection. Additional Parameters --------------------- use_metrics : list of str List of metrics to use. Can be any combination of: 'amplitude', 'variance', 'deviation', 'median_gradient' Defaults to all of them. thresh : float The threshold value, in standard deviations, to apply. A channel crossing this threshold value is marked as bad. Defaults to 3. max_iter : int The maximum number of iterations performed during outlier detection (defaults to 1, as in the original FASTER paper). """ metrics = { 'amplitude': lambda x: np.ptp(x, axis=2), 'deviation': lambda x: _deviation(x), 'variance': lambda x: np.var(x, axis=2), 'median_gradient': lambda x: np.median(np.abs(np.diff(x)), axis=2), 'line_noise': lambda x: _freqs_power(x, epochs.info['sfreq'], [50, 60]), } if use_metrics is None: use_metrics = metrics.keys() info = pick_info(epochs.info, picks, copy=True) data = epochs.get_data()[:, picks] bads = dict((m, np.zeros((len(data), len(picks)), dtype=bool)) for m in metrics) for ch_type, chs in _picks_by_type(info): ch_names = [info['ch_names'][k] for k in chs] chs = np.array(chs) for metric in use_metrics: logger.info('Bad channel-in-epoch detection on %s channels:' % ch_type.upper()) s_epochs = metrics[metric](data[:, chs]) for i_epochs, epoch in enumerate(s_epochs): outliers = find_outliers(epoch, thresh, max_iter) if len(outliers) > 0: bad_segment = [ch_names[k] for k in outliers] logger.info('Epoch %d, Bad by %s:\n\t%s' % ( i_epochs, metric, bad_segment)) bads[metric][i_epochs, chs[outliers]] = True return bads
6b4a0acc1eb4e1fc4f229cc237e071bf87047b5e
18,861
def solution(A): # O(N^2) """ For a given value A, compute the number with the fewest number of squared values and return them within an array. eg. 26 can be computed with squared values [25, 1] or [16, 9, 1], but the answer is only [25, 1] as we are looking for the fewest number of squared values >>> solution(26) [25, 1] >>> solution(128) [64, 64] >>> solution(33) [25, 4, 4] >>> solution(256) [256] """ queue = deque() # O(1) ready_queue(A, queue, []) # O(N) return process_queue(queue) # O(N^2)
56f899d94cfc07a412a357a305553ad0ed8af092
18,862
import time from sys import path from pathlib import Path def gmrt_guppi_bb(rawfile, npol=2, header=None, chunk=None, samples_per_frame=4096, nchan=1): """ To read gmrt raw voltages file of GWB to convert to guppi raw :USAGE: -------- $ gmrt_raw_toguppi [-h] [-f FILENAME] [-c CHUNK] [-hdr HEADER] [-hf HEADER_FILE] [-hfo HEADER_FILE_OUTPUT] To read gmrt raw voltages file of GWB to convert to guppi raw optional arguments: -h, --help show this help message and exit -f FILENAME, --filename FILENAME Input filename for conversion to guppiraw. -c CHUNK, --chunk CHUNK Input chunk size to read the desired chunk of byte. -hdr HEADER, --header HEADER Input header to inject to the raw file. -hf HEADER_FILE, --header-file HEADER_FILE Input header from path to inject to the raw file. -hfo HEADER_FILE_OUTPUT, --header-file-output HEADER_FILE_OUTPUT output header from path to inject to the raw file. NOTE ----- imaginary data is not being read as documentation(https://baseband.readthedocs.io/en/stable/api/baseband.guppi.open.html#baseband.guppi.open): For GUPPI, complex data is only allowed when nchan > 1. """ b=time.time() if path.isfile(rawfile): rawname=Path(rawfile).stem if header is None: header = {#'CHAN_BW':-100, 'TBIN':1, #provide sample rate in astropy.units * Hz 'TELESCOP':'GMRT', 'NPOL':npol, 'NCHAN':nchan, 'OBSERVER':'Vishal Gajjar', 'STT_IMJD':58132, 'STT_SMJD':51093, 'NBITS':8} print(f'selected parameters: rawfile={rawfile}, npol={npol}, header={header}, chunk={chunk}, samples_per_frame={samples_per_frame}, nchan={nchan}') print(f'copying file:{rawfile}') if chunk is None: npcm_data=np.memmap(rawfile, dtype='<i1', mode='r' )#,shape=(4096,)) else: npcm_data=np.memmap(rawfile, dtype='<i1', mode='r', shape=(chunk,)) print(f'copied file :{time.time()-b}') #npcm_data.flush() #number_of_frames = totalsamples/samples_per_frame #shape = (samples_per_frame,number_of_frames) #npcm_data.flush() real1_d =npcm_data # 0,2,4 indexed im_d=np.zeros(np.shape(real1_d)) resd=np.array([real1_d,im_d], dtype='<i1').transpose() guppifile=rawname+'' print(f'writing file stem: {guppifile}') #fgh = guppi.open(guppifile+'_guppi.{file_nr:04d}.raw', 'ws', frames_per_file=1180013, fgh = guppi.open(guppifile+'_guppi.0000.raw', 'ws', samples_per_frame=samples_per_frame, nchan=nchan, #npol=npol, #sample_rate=2.0E+08*u.Hz, **header) print(f'data shape: {np.shape(resd)}') fgh.write(resd) # -------------- when you have [p1r1,p1i1,p2r1,p2i1...] # im_d = npcm_data[1::2] # even indexed # ## pol1, pol2 = npcm_data[::2], npcm_data[1::2] # if no imaginary is in the bytes # #pol1, pol2 = real_d[::2], real_d[1::2] # ## pol1, pol2 = npcm_data[::2][::2], npcm_data[::2][1::2] # pol1_real = real_d[::2] # pol2_real = real_d[1::2] # pol1_im=im_d[1::2] # pol2_im=im_d[::2] # if you need imaginary and real # pol1=pol1_real+pol1_im*1j # pol2=pol2_real+pol2_im*1j # #resd=np.array([pol1,pol2]).transpose() # guppifile=rawname+'' # print(f'writing file stem: {guppifile}') # #fgh = guppi.open(guppifile+'_guppi.{file_nr:04d}.raw', 'ws', frames_per_file=1180013, # fgh = guppi.open(guppifile+'_guppi.0000.raw', 'ws', # samples_per_frame=samples_per_frame, nchan=nchan, # #npol=npol, #sample_rate=2.0E+08*u.Hz, # **header) # #fgh.write(resd) # resd=np.array([[pol1,pol2],[pol1,pol2]] , dtype='complex64').transpose() # print(f'data shape: {np.shape(resd)}') # #fgh.write(np.array([npcm_data[::2][::2], npcm_data[::2][1::2]]).transpose()) # fgh.write(resd) #fgh.write(np.array(npcm_data)) print(f'file writing completed: {time.time()-b}') fgh.close() return f'file created: {guppifile}' else: return f'file does not exist : {rawfile}'
cc135ec0dfeec0fe9f946ca1eac57bc979e024ea
18,863
def get_device_path(): """Return device path.""" if is_gce(): return None devices = get_devices() device_serial = environment.get_value('ANDROID_SERIAL') for device in devices: if device_serial == device.serial: return device.path return None
5bd8bf47859c3721e47cfc45b49aaa06bed4159e
18,864
def pattern_maker(size, dynamic): """ Generate a pattern with pixel values drawn from the [0, 1] uniform distribution """ def pattern(): return np.random.rand(size) def static(): a_pattern = pattern() def fn(): return a_pattern return fn return pattern if dynamic else static()
3fd256fe3f8c7669faec8a7d1757a334a51145ba
18,865
def RMSE(a, b): """ Return Root mean squared error """ return np.sqrt(np.square(np.subtract(a, b)).mean())
7d853535fb9e4072f983f05ad192cc38f2bbea8e
18,866
def alpha_a_b(coord, N, silent=True): """Calculate alpha, a, b for a rectangle with coordinates coord and truncation at N.""" [x0, x1, y0, y1] = coord a = 0 for zero in zeros[:N]: a += exp(-zero*y0)/abs(complex(0.5, zero)) b = 0 for zero in zeros[N:]: b += exp(-zero*y0)/abs(complex(0.5, zero)) def F_north(x): return abs(F_N(complex(x, y1), N)) def F_south(x): return abs(F_N(complex(x, y0), N)) def F_east(y): return abs(F_N(complex(x1, y), N)) def F_west(y): return abs(F_N(complex(x0, y), N)) # def x_bounds(f_new, x_new, f_old, x_old): # return x0 <= x_new[0] <= x1 # def y_bounds(f_new, x_new, f_old, x_old): # return y0 <= x_new[0] <= y1 ns_kwargs = {"bounds":[(x0, x1)]} ew_kwargs = {"bounds":[(y0, y1)]} min_north = basinhopping(F_north, 0.5*(x0 + x1), stepsize=0.5*(x1-x0), minimizer_kwargs=ns_kwargs) min_south = basinhopping(F_south, 0.5*(x0 + x1), stepsize=0.5*(x1-x0), minimizer_kwargs=ns_kwargs) min_east = basinhopping(F_east, 0.5*(y0 + y1), stepsize=0.5*(y1-y0), minimizer_kwargs=ew_kwargs) min_west = basinhopping(F_west, 0.5*(y0 + y1), stepsize=0.5*(y1-y0), minimizer_kwargs=ew_kwargs) # if not silent: # print('min_north') # print(min_north) # print('min_south') # print(min_south) # print('min_east') # print(min_east) # print('min_west') # print(min_west) min_north = min_north.fun min_south = min_south.fun min_east = min_east.fun min_west = min_west.fun if not silent: print((min_north, min_south, min_east, min_west)) alpha = min(min_north, min_south, min_east, min_west) return alpha, a, b
41cc57c16a7526bf7a88503ea9315872062b8ac5
18,867
from typing import Any from typing import Optional def asdataset( dataclass: Any, reference: Optional[DataType] = None, dataoptions: Any = None, ) -> Any: """Create a Dataset object from a dataclass object. Args: dataclass: Dataclass object that defines typed Dataset. reference: DataArray or Dataset object as a reference of shape. dataoptions: Options for Dataset creation. Returns: Dataset object created from the dataclass object. """ if dataoptions is None: try: dataoptions = dataclass.__dataoptions__ except AttributeError: dataoptions = DataOptions(xr.Dataset) model = DataModel.from_dataclass(dataclass) dataset = dataoptions.factory() for entry in model.data_vars: dataset[entry.name] = entry(reference) for entry in model.coords: if entry.name in dataset.dims: dataset.coords[entry.name] = entry(dataset) for entry in model.coords: if entry.name not in dataset.dims: dataset.coords[entry.name] = entry(dataset) for entry in model.attrs: dataset.attrs[entry.name] = entry() return dataset
4baf2df39f906f2b1981cb597cb6430e95bb1ca1
18,868
def get_edge_size(reader: ChkDirReader, chunks: list[ChunkRange], tilesize: int) -> int: """Gets the size of an edge tile from an unknown chunk""" for chunk in chunks: data: bytes = deflate_range(reader, chunk.start, chunk.end, True) if data is None: continue try: decompressed: bytes = lzo.decompress(data, False, MAX_BUFFER_LEN) pixel_count: float = len(decompressed) / 4 # RGBA per-pixel edge_length = pixel_count / tilesize # rect edge length return int(edge_length) except: # pylint: disable=bare-except continue return -1
54da5c4adafbcccae4cee9112e35470a97172b00
18,869
import time import torch def multi_gpu_test(model, data_loader, tmpdir=None, gpu_collect=False): """Test model with multiple gpus. This method tests model with multiple gpus and collects the results under two different modes: gpu and cpu modes. By setting 'gpu_collect=True' it encodes results to gpu tensors and use gpu communication for results collection. On cpu mode it saves the results on different gpus to 'tmpdir' and collects them by the rank 0 worker. Args: model (nn.Module): Model to be tested. data_loader (nn.Dataloader): Pytorch data loader. tmpdir (str): Path of directory to save the temporary results from different gpus under cpu mode. gpu_collect (bool): Option to use either gpu or cpu to collect results. Returns: list: The prediction results. """ model.eval() results = [] dataset = data_loader.dataset rank, world_size = get_dist_info() if rank == 0: prog_bar = mmcv.ProgressBar(len(dataset)) time.sleep(2) # This line can prevent deadlock problem in some cases. for i, data in enumerate(data_loader): with torch.no_grad(): result = model(return_loss=False, rescale=True, **data) # encode mask results if isinstance(result[0], tuple): result = [(bbox_results, encode_mask_results(mask_results)) for bbox_results, mask_results in result] results.extend(result) if rank == 0: batch_size = len(result) for _ in range(batch_size * world_size): prog_bar.update() # collect results from all ranks gpu_collect = True if gpu_collect: results = collect_results_gpu(results, len(dataset)) else: results = collect_results_cpu(results, len(dataset), tmpdir) return results
8ec9bf7efcd126485a8066c7d5932b0c84c44b63
18,870
def toRegexp(exp,terminate=False,lower=False): """ Case sensitive version of the previous one, for backwards compatibility """ return toCl(exp,terminate,wildcards=('*',),lower=lower)
d550164d7d2a628a0b0bcf37f5ee95de958fc2e5
18,871
def marker_used_in_game(marker_id: int) -> bool: """ Determine whether the marker ID is used in the game. :param marker_id: An official marker number, mapped to the competitor range. :returns: True if the market is used in the game. """ return any([marker_id in marker_range for marker_range in MARKER_SIZES])
437d5b8c3ff80683e3f19d5cb3786243c6e430b3
18,872
def iround(x): """ Round an array to the nearest integer. Parameters ---------- x : array_like Input data. Returns ------- y : {numpy.ndarray, scalar} The rounded elements in `x`, with `int` dtype. """ return np.round(x).astype(int)
64837773f12eb096ede5d8963360ab28427b015d
18,873
def multiLineManager(pentadList = [], debugMode = False): """ Takes the complete list of pentads and returns this list once every multilines being put on a single line. That's ALL. """ output = [] currentStatement = "" presentChar = 'a' startingLine = 0 i = 0 state = "Nothing" for i in range (len(pentadList)): ########### Variables ############# for j in range (len(pentadList[i].text)): presentChar = str(pentadList[i].text[j]) if(debugMode) : print("MultiLM printing --> ", "j = ", j, " len = ", len(pentadList[i].text), "presentChar = ", presentChar) ########################################## if(currentStatement == ""): if(debugMode) : print("MultiLM printing --> ", "No char yet in the buffer") startingLine = i if(j == len(pentadList[i].text)-1): if(debugMode) : print("MultiLM printing --> ", "\'\\n\' detected.") state = "Store and Restart" if(presentChar != '\n' and presentChar != '\\' ): currentStatement += presentChar if(debugMode) : print("MultiLM printing --> ", "char \'", presentChar, "\' added to", currentStatement) if(presentChar == '\\'): if(currentStatement != ""): currentStatement += " " if(debugMode) : print("MultiLM printing --> ", "char ", presentChar, "\' detected and replaced by space.") #to avoid the case "unsigned\int" becoming "unsignedint" for eg. if(state == "Store and Restart"): state = "Nothing" newPentad = pentadStruct([pentadList[startingLine].lines[0], pentadList[i].lines[1]], currentStatement) for roleOfPreviousLine in pentadList[i].roles: newPentad.addRole(roleOfPreviousLine.type, roleOfPreviousLine.mainVar, roleOfPreviousLine.otherVars) output.append(newPentad) currentStatement = "" if(currentStatement != ""): output.append(pentadStruct([startingLine, i], currentStatement)) return spaceNormalizer(output, debugMode)
d1a5853ddbb94c94a2440b99148023ecd3f8abde
18,874
def get_ec2_conn(): """ Requried: env.aws_region, env.aws_access_key, env.aws_secret_access_key return conneciton to aws ec2 """ conn = boto.ec2.connect_to_region( env.aws_region, aws_access_key_id=env.aws_access_key, aws_secret_access_key=env.aws_secret_access_key ) if conn is None: print(red("Can't connect to ec2 region")) return conn
5c2014f7d1a3ba465ec7f205ac34a5c1feeb2aac
18,875
import tqdm import sys def eval_nominal_domain(pool: SamplerPool, env: SimEnv, policy: Policy, init_states: list) -> list: """ Evaluate a policy using the nominal (set in the given environment) domain parameters. :param pool: parallel sampler :param env: environment to evaluate in :param policy: policy to evaluate :param init_states: initial states of the environment which will be fixed if not set to None :return: list of rollouts """ # Strip all domain randomization wrappers from the environment env = remove_all_dr_wrappers(env, verbose=True) pool.invoke_all(_setup_env_policy, env, policy) # Run with progress bar with tqdm(leave=False, file=sys.stdout, unit='rollouts', desc='Sampling') as pb: return pool.run_map(_run_rollout_nom, init_states, pb)
0376438fc48b9442532edc8c57572a6fe87ccbc9
18,876
def create_final_comment_objects(): """Goes through the final comments and returns an array of objects.""" arr = [] # Stores objects for line in final_file: row = line.split(",") # Set object variables for each object before adding it to the array comment_number, comment_author, account_karma, comment_score, \ comment_num_replies, comment_permalink, comment_id, \ comment_length = [i.strip('\n') for i in row] # Add the comment object to the array arr.append(Final_Comment(comment_number, comment_author, account_karma, \ comment_score, comment_num_replies, \ comment_permalink, comment_id, comment_length)) return arr
02107ba5ebc23e5a8db1c30fa8709793e1fcbe7e
18,877
import re def normalise_target_name(name, used=[], max_length=None): """ Check that name[:max_length] is not in used and append a integer suffix if it is. """ def generate_name(name, i, ml): # Create suffix string i_name = '' if i == 0 else '_' + str(i) # Return concatenated string if ml is not set if ml is None: ml = len(name) + len(i_name) t_name = name else: # Work out amount of name to drop length = len(name) + len(i_name) - ml t_name = name if length <= 0 else name[:-length] # If the length of i_name is greater than ml # just warn and revert to straight append if len(i_name) >= ml: log.warn('Too many repetitions of name %s.', name) t_name = name o_name = ''.join(filter(None, [t_name, i_name])) return '{:{ml}.{ml}}'.format(o_name, ml=ml) name = re.sub(r'[^-A-Za-z0-9_]', '_', name) i = 0 test_name = generate_name(name, i, max_length) while test_name in used: i += 1 test_name = generate_name(name, i, max_length) return test_name
bffc78525d766cbb941382b6f7dd9371cffee492
18,878
def construct_pairwise_df(sr: pd.Series, np_fun): """Constructs an upper diagonal df from all pairwise comparisons of a sr""" sr = sr.sort_index() _mat = np.triu(np_fun(sr.to_numpy() - sr.to_numpy()[:, None]), k=1) _mat[np.tril_indices(_mat.shape[0])] = None return pd.DataFrame(_mat, index=sr.index.get_level_values('qid'), columns=sr.index.get_level_values('qid')).rename_axis(index='qid_1', columns='qid_2')
bfef4a9c64e619e2d70efb3dea1fde9da5894634
18,879
def privacy(request): """This returns the privacy policy page""" return render(request=request, template_name="registration/privacy.html")
c3467b0f670facb152c1f2cd793e6dd46301bc25
18,880
def seq_search(items, key): """顺序查找""" for index, item in enumerate(items): if item == key: return index return -1
1271555aea5f7291ebb3679a219d4b3eb81d87a7
18,881
import os def _check_moog_files (fp,mode='r',clobber=True,max_filename_length=None): """ Takes a moog keyword and extracts from the moogpars """ # - - - - - - - - - - - - filepath if fp is None: return # - - - - - - - - - - - - check file mode if mode not in ('r','w'): raise ValueError("mode must be 'r' or 'w'") # - - - - - - - - - - - - check the maximum filelength if max_filename_length is None: max_filename_length = opts['moog.moog_max_pathlength'] if len(fp) > max_filename_length: warn("Filepath '{}' is too long for MOOG (max {}) omitting".format(fp,max_filename_length)) return # - - - - - - - - - - - - check file exists = os.path.isfile(fp) if not exists and mode == 'r': raise IOError("File does not exist '{}'".format(fp)) elif exists and mode == 'w' and not clobber: raise IOError("File exist, not clobbering '{}'".format(fp)) return fp
20698622c1718a8765cd30f687f3550044adc358
18,882
def parse_prediction_key(key): """The "name" or "key" of a predictor is assumed to be like: `ProHotspotCtsProvider(Weight=Classic(sb=400, tb=8), DistanceUnit=150)` Parse this into a :class:`PredictionKey` instance, where - `name` == "ProHotspotCtsProvider" - `details` will be the dict: {"Weight" : "Classic(sb=400, tb=8)", "DistanceUnit" : 150} (Attempts to parse to ints or floats if possible). """ if "(" not in key: return PredictionKey(key, {}) i = key.index("(") name = key[:i].strip() dets = key[i+1:-1] dets = [x.strip() for x in _split_by_comma_not_in_brackets(dets)] details = {} for x in dets: if "=" not in x: key, value = x, None else: i = x.index("=") key = x[:i].strip() value = x[i+1:].strip() try: value = int(value) except ValueError: pass if isinstance(value, str): try: value = float(value) except ValueError: pass details[key] = value return PredictionKey(name, details)
4d971da8097a237f6df8d96bb407c9706c6ed8f6
18,883
def tick2dayfrac(tick, nbTicks): """Conversion tick -> day fraction.""" return tick / nbTicks
50d01778f62203d37e733a6b328455d3ea10e239
18,884
import os def load_esol_semi_supervised(unlabeled_size=0.1, seed=2666): """ Parameters ---------- unlabeled_size : (Default value = 0.1) seed : (Default value = 2666) Returns ------- """ esol_labeled = pinot.data.esol() # Get labeled and unlabeled data esol_unlabeled = utils.load_unlabeled_data( os.path.dirname(utils.__file__) + "/esol_synthetic_smiles.txt", unlabeled_size, seed=seed, )() np.random.seed(seed) esol_labeled.extend(esol_unlabeled) np.random.shuffle( esol_labeled ) # Combine and mix labeled and unlabeled data return esol_labeled
e0263bb5acabc48a50bab215bd7933583a952d0d
18,885
from datetime import datetime def get_business_day_of_month(year, month, count): """ For a given month get the Nth business day by count. Count can also be negative, e.g. pass in -1 for "last" """ r = rrule(MONTHLY, byweekday=(MO, TU, WE, TH, FR), dtstart=datetime.datetime(year, month, 1), bysetpos=count) res = r[0] if (res == None or res.month != month or res.year != year): raise ValueError("No dates found in range. is there a flaw in your logic?") return res.date()
f0322df24f63ee836cf4f98099ccc0e4eff20c67
18,886
def inpolygon(wkt, longitude, latitude): """ To determine whether the longitude and latitude coordinate is within the orbit :param wkt(str): the orbit wkt info :param longitude: to determine whether the longitude within the orbit :param latitude: to determine whether the latitude within the orbit :return: logical value whether the coordinate within the orbit and multipolygon """ multipolygon = shapely.wkt.loads(wkt) point = shapely.geometry.Point(longitude, latitude) return multipolygon.contains(point), multipolygon
b844361f2fb3002a1d6df2a0301d19cc5b75470d
18,887
def matrixMultVec(matrix, vector): """ Multiplies a matrix with a vector and returns the result as a new vector. :param matrix: Matrix :param vector: vector :return: vector """ new_vector = [] x = 0 for row in matrix: for index, number in enumerate(row): x += number * vector[index] new_vector.append(x) x = 0 return new_vector
8a03b3acfec0d91fcf0d2c85b4e2bdd4f3053dd2
18,888
def get_dev_value(weight, error): """ :param weight: shape [N, 1], the importance weight for N source samples in the validation set :param error: shape [N, 1], the error value for each source sample in the validation set (typically 0 for correct classification and 1 for wrong classification) """ N, d = weight.shape _N, _d = error.shape assert N == _N and d == _d, 'dimension mismatch!' weighted_error = weight * error cov = np.cov(np.concatenate((weighted_error, weight), axis=1), rowvar=False)[0][1] var_w = np.var(weight, ddof=1) eta = - cov / var_w return np.mean(weighted_error) + eta * np.mean(weight) - eta
740dbd755cf540b0133ddf321207ea0bbd74fc83
18,889
def biLSTM(f_lstm, b_lstm, inputs, dropout_x=0.): """Feature extraction through BiLSTM Parameters ---------- f_lstm : VariationalDropoutCell Forward cell b_lstm : VariationalDropoutCell Backward cell inputs : NDArray seq_len x batch_size dropout_x : float Variational dropout on inputs Returns ------- outputs : NDArray Outputs of BiLSTM layers, seq_len x 2 hidden_dims x batch_size """ for f, b in zip(f_lstm, b_lstm): inputs = nd.Dropout(inputs, dropout_x, axes=[0]) # important for variational dropout fo, _ = f.unroll(length=inputs.shape[0], inputs=inputs, layout='TNC', merge_outputs=True) bo, _ = b.unroll(length=inputs.shape[0], inputs=inputs.flip(axis=0), layout='TNC', merge_outputs=True) f.reset() b.reset() inputs = nd.concat(fo, bo.flip(axis=0), dim=2) return inputs
dc3cdc07a20e4ae5fbe257a81d92f15fb51333d9
18,890
import torch def refer_expression(captions, n_ground=1, prefix="refer expressions:", sort=True): """ n_ground > 1 ground_indices [1, 0, 2] source_text refer expressions: <extra_id_0> red crayon <extra_id_1> Yellow banana <extra_id_2> black cow target_text <vis_extra_id_1> <vis_extra_id_0> <vis_extra_id_2> n_ground == 1 source_text refer expressions: red crayon target_text <vis_extra_id_1> """ n_boxes = len(captions) if sort: ground_indices = torch.randperm(n_boxes)[:n_ground].sort().values else: ground_indices = torch.randperm(n_boxes)[:n_ground] ground_indices = ground_indices.tolist() source_text = [prefix] target_text = [] if n_ground == 1: idx = ground_indices[0] source_text.append(f'{captions[idx]}') target_text.append(f'<vis_extra_id_{idx}>') else: for j, idx in enumerate(ground_indices): source_text.append(f'<extra_id_{j}>') source_text.append(f'{captions[idx]}') target_text.append(f'<vis_extra_id_{idx}>') # target_text.append('</s>') source_text = " ".join(source_text) target_text = " ".join(target_text) # return ground_indices, source_text, target_text return source_text, target_text
57919ee416dbb981dbb7f03163beec779785cc2f
18,891
def url_to_filename(base, url): """Return the filename to which the page is frozen. base -- path to the file url -- web app endpoint of the page """ if url.endswith('/'): url = url + 'index.html' return base / url.lstrip('/')
35084e8b5978869bf317073c76bafc356a7d9046
18,892
def _msd_anom_3d(time, D_alpha, alpha): """3d anomalous diffusion function.""" return 6.0*D_alpha*time**alpha
e5204c52368202665e4dd4acd7d86096349c0d29
18,893
import json def make_json_response(status_code, json_object, extra_headers=None): """ Helper function to serialize a JSON object and add the JSON content type header. """ headers = { "Content-Type": 'application/json' } if extra_headers is not None: headers.update(extra_headers) return status_code, json.dumps(json_object), headers
4857b806819e44b7a77e0a9a51df7b4fe6678656
18,894
import os def tmp_envfile(tmp_path, monkeypatch): """Create a temporary environment file.""" tmp_file_path = tmp_path / "setenv.txt" monkeypatch.setenv("GITHUB_ENV", os.fspath(tmp_file_path)) return tmp_file_path
04deab16ce4b0e115e9fdc9b65a023f7c63f054f
18,895
from datetime import datetime def calc_dst_temerin_li(time, btot, bx, by, bz, speed, speedx, density, version='2002n', linear_t_correction=False): """Calculates Dst from solar wind input according to Temerin and Li 2002 method. Credits to Xinlin Li LASP Colorado and Mike Temerin. Calls _jit_calc_dst_temerin_li. All constants are defined in there. Note: vx has to be used with a positive sign throughout the calculation. Parameters ========== time : np.array Array containing time variables. btot : np.array Array containing Btot. bx : np.array Array containing Bx in coordinate system ?. by : np.array Array containing By in coordinate system ?. bz : np.array Array containing Bz in coordinate system ?. speed : np.array Array containing solar wind speed. speedx : np.array Array containing solar wind speed in x-direction. density : np.array Array containing solar wind density. version : str (default='2002') String determining which model version should be used. Returns ======= dst_burton : np.array Array with calculated Dst values over timesteps time. """ # Arrays dst1=np.zeros(len(bz)) dst2=np.zeros(len(bz)) dst3=np.zeros(len(bz)) dst_tl=np.zeros(len(bz)) # Define initial values (needed for convergence, see Temerin and Li 2002 note) dst1[0:10]=-15 dst2[0:10]=-13 dst3[0:10]=-2 if version == '2002': newparams = False else: newparams = True if version in ['2002', '2002n']: # julian_days = [sunpy.time.julian_day(num2date(x)) for x in time] julian_days = [astropy.time.Time(num2date(x), format='datetime', scale='utc').jd for x in time] return _jit_calc_dst_temerin_li_2002(time, btot, bx, by, bz, speed, speedx, density, dst1, dst2, dst3, dst_tl, julian_days, newparams=newparams) elif version == '2006': dst1[0:10], dst2[0:10], dst3[0:10] = -10, -5, -10 ds1995 = time - date2num(datetime(1995,1,1)) ds2000 = time - date2num(datetime(2000,1,1)) # YEARLY DRIFT CORRECTION TERM (NOT IN PAPER) if linear_t_correction: drift_corr = -0.014435865642103548 * ds2000 + 9.57670996872173 else: drift_corr = 0. return _jit_calc_dst_temerin_li_2006(ds1995, ds2000, btot, bx, by, bz, speed, speedx, density, dst1, dst2, dst3) + drift_corr
f333217e34656c4566a254c1c383191f11e8c3d0
18,896
import os def parsestrfile(str_inpath): """Returns dictionary containing :class:`~gemmi.Structure` objects and another one with the file names. :param str_inpath: Either a directory or file path. :type str_inpath: str :raises KeyError: More than one structure file containing same identifier. :return strdict: A dictionary containing imported :class:`~gemmi.Structure` objects. :rtype strdict: dict [str, :class:`~gemmi.Structure`] :return filedict: A dictionary containing file names. :rtype filedict: dict [str, str] """ strdict={} filedict={} if os.path.isfile(str_inpath): structure=gemmi.read_structure(str_inpath) pdbid=structure.name.lower() strdict[pdbid]=structure filedict[pdbid]=os.path.basename(str_inpath) elif os.path.isdir(str_inpath): filelist=os.listdir(str_inpath) for file in filelist: if os.isfile(file): try: structure=gemmi.read_structure(file) pdbid=structure.name.lower() if pdbid in strdict: raise KeyError('Structure '+pdbid+' loaded more than once. Check files in directory and remove duplicates.') strdict[pdbid]=structure filedict[pdbid]=os.path.basename(str_inpath) except: pass return strdict, filedict
e46d7242df1c2aab7e06f29db31d15e4085ecee0
18,897
import os import json def handle_import(labfile, labjs): """랩 파일이 참고하는 외부 랩 파일 가져오기. Args: labfile (Str): 랩파일 경로 labjs (dict): 랩 데이터 """ if 'import' not in labjs: return labjs if '_imported_' not in labjs: labjs['_imported_'] = [] adir = os.path.dirname(labfile) for imp in labjs['import']: path = os.path.join(adir, f'{imp}.lab.json') if not os.path.isfile(path): raise FileNotFoundError(path) with open(path, 'rt', encoding='utf8') as f: body = f.read() data = json.loads(body) if 'import' in data: handle_import(labfile, data) labjs['_imported_'].append(AttrDict(data))
3b6f833e5e4044c3fd7fdead6ed1678bc945234b
18,898
def reconstruct(vars_to_reconstruct, scheme, order_used): """ Reconstructs all variables using the requested scheme. :param vars_to_reconstruct: The variables at the cell centers. :type vars_to_reconstruct: list of list of double :param Reconstruction.Scheme scheme: The reconstruction scheme to use. :param order_used: Filled by the function and is used to return the order of the reconstruction used. :type order_used: list of int :return: (`list of list of double`) The face reconstructed variables. Each variable is of length `2 * number_of_cells` """ reconstructed_vars = [None] * len(vars_to_reconstruct) for i in range(len(vars_to_reconstruct)): extents = np.asarray([len(vars_to_reconstruct[i])]) reconstructed_vars[i] = _recons_dispatch[scheme]( vars_to_reconstruct[i], np.asarray(extents), 1, scheme, order_used) return np.asarray(reconstructed_vars)
b1e3cd8b8ed91b6c7ccdd5d6903fbce3109a3871
18,899