content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def numpy_ndarray(pa_arr): """Return numpy.ndarray view of a pyarrow.Array """ if pa_arr.null_count == 0: # TODO: would memoryview.cast approach be more efficient? see xnd_xnd. return pa_arr.to_numpy() pa_nul, pa_buf = pa_arr.buffers() raise NotImplementedError('numpy.ndarray view of pyarrow.Array with nulls')
b018bc26983ff638441e1bfca3cb5633022de399
19,200
import select import json async def _async_get_states_and_events_with_filter( hass: HomeAssistant, sqlalchemy_filter: Filters, entity_ids: set[str] ) -> tuple[list[Row], list[Row]]: """Get states from the database based on a filter.""" for entity_id in entity_ids: hass.states.async_set(entity_id, STATE_ON) hass.bus.async_fire("any", {ATTR_ENTITY_ID: entity_id}) await async_wait_recording_done(hass) def _get_states_with_session(): with session_scope(hass=hass) as session: return session.execute( select(States.entity_id).filter( sqlalchemy_filter.states_entity_filter() ) ).all() filtered_states_entity_ids = { row[0] for row in await get_instance(hass).async_add_executor_job( _get_states_with_session ) } def _get_events_with_session(): with session_scope(hass=hass) as session: return session.execute( select(EventData.shared_data).filter( sqlalchemy_filter.events_entity_filter() ) ).all() filtered_events_entity_ids = set() for row in await get_instance(hass).async_add_executor_job( _get_events_with_session ): event_data = json.loads(row[0]) if ATTR_ENTITY_ID not in event_data: continue filtered_events_entity_ids.add(json.loads(row[0])[ATTR_ENTITY_ID]) return filtered_states_entity_ids, filtered_events_entity_ids
fa0131a87ac9ac517ffd63bb563600e12bed68de
19,201
def decrypt_password(private_key: PrivateKey, encrypted: str) -> str: """Return decrypt the given encrypted password using private_key and the RSA cryptosystem. Your implementation should be very similar to the one from class, except now the public key is a data class rather than a tuple. """ n = private_key.p * private_key.q return ''.join([chr(pow(ord(c), private_key.d, n)) for c in encrypted])
607b5e33cff940aa999f56b2e39f56673d94ff7f
19,202
from typing import OrderedDict def load_jed(fn): """ JEDEC file generated by 1410/84 from PALCE20V8H-15 06/28/20 22:42:11* DM AMD* DD PALCE20V8H-15* QF2706* G0* F0* L00000 0000000000000000000000000100000000000000* """ ret = {} d = OrderedDict() with open(fn) as f: li = 0 for l in f: li += 1 # remove *, newline l = l.strip()[0:-1] if not l: continue if li == 2: ret["description"] = l continue parts = l.split(" ") main_line = " ".join(parts[1:]) if parts[0] == "DM": ret["vendor"] = main_line elif parts[0] == "DD": ret["part"] = main_line elif l[0:2] == "QF": ret["len"] = int(l[2:]) elif l[0] == "L": # L00000 0000000000000000000000000100000000000000* addr, bits = l.split(" ") addr = int(addr[1:], 10) d[addr] = bits else: continue ret["data"] = d return ret
6570bcdaabb495c13e9419a532c85b15efdf957a
19,203
def plaintext(text, keeplinebreaks=True): """Extract the text elements from (X)HTML content >>> plaintext('<b>1 &lt; 2</b>') u'1 < 2' >>> plaintext(tag('1 ', tag.b('<'), ' 2')) u'1 < 2' >>> plaintext('''<b>1 ... &lt; ... 2</b>''', keeplinebreaks=False) u'1 < 2' :param text: `unicode` or `Fragment` :param keeplinebreaks: optionally keep linebreaks """ if isinstance(text, Fragment): text = text.as_text() else: text = stripentities(striptags(text)) if not keeplinebreaks: text = text.replace(u'\n', u' ') return text
c4e5e9a9b41fc7e0dc6b50995d7ec9a9bae1296f
19,204
import os def check_out_dir(out_dir, base_dir): """Creates the output folder.""" if out_dir is None: out_dir = pjoin(base_dir, default_out_dir_name) try: os.makedirs(out_dir, exist_ok=True) except: raise IOError('Unable to create the output directory as requested.') return out_dir
5de68a0e8931a6ae3183eb3a3f5d4173ff697296
19,205
def fetch_rows(product): """ Returns the product and a list of timestamp and price for the given product in the current DATE, ordered by timestamp. """ # We query the data lake by passing a SQL query to maystreet_data.query # Note that when we filter by month/day, they need to be 0-padded strings, # e.g. January is '01' and not 1. query = f""" SELECT ExchangeTimestamp AS ts, price FROM "prod_lake"."p_mst_data_lake".mt_trade WHERE y = '{DATE.year}' AND m = '{str(DATE.month).rjust(2, '0')}' AND d = '{str(DATE.day).rjust(2, '0')}' AND product = '{product}' ORDER BY ExchangeTimestamp """ return product, list(md.query(md.DataSource.DATA_LAKE, query))
8b6f3df658ca38054bd49255b0842f40f6d4bffa
19,206
def create_learner(sm_writer, model_helper): """Create the learner as specified by FLAGS.learner. Args: * sm_writer: TensorFlow's summary writer * model_helper: model helper with definitions of model & dataset Returns: * learner: the specified learner """ learner = None if FLAGS.learner == 'full-prec': learner = FullPrecLearner(sm_writer, model_helper) elif FLAGS.learner == 'weight-sparse': learner = WeightSparseLearner(sm_writer, model_helper) elif FLAGS.learner == 'channel': learner = ChannelPrunedLearner(sm_writer, model_helper) elif FLAGS.learner == 'chn-pruned-gpu': learner = ChannelPrunedGpuLearner(sm_writer, model_helper) elif FLAGS.learner == 'chn-pruned-rmt': learner = ChannelPrunedRmtLearner(sm_writer, model_helper) elif FLAGS.learner == 'dis-chn-pruned': learner = DisChnPrunedLearner(sm_writer, model_helper) elif FLAGS.learner == 'uniform': learner = UniformQuantLearner(sm_writer, model_helper) elif FLAGS.learner == 'uniform-tf': learner = UniformQuantTFLearner(sm_writer, model_helper) elif FLAGS.learner == 'non-uniform': learner = NonUniformQuantLearner(sm_writer, model_helper) else: raise ValueError('unrecognized learner\'s name: ' + FLAGS.learner) return learner
76231a6413560ccc1e1d90fb974f90a83b3bb4f4
19,207
def load_decoder(autoencoder): """ Gets the decoders associated with the inputted model """ dim = len(autoencoder.get_config()['input_layers']) mag_phase_flag = False decoders = [] if dim == 2: mag_phase_flag = True decoders.append(autoencoder.get_layer('mag_decoder')) decoders.append(autoencoder.get_layer('phase_decoder')) else: decoders.append(autoencoder.get_layer('decoder')) return decoders,mag_phase_flag
8e39470e48f5a6c147d93567c0bdb33a588c790d
19,208
def translate_boarding_cards(boarding_cards): """Translate list of BoardingCards to readable travel instructions. This function sorts list of random BoardingCard objects connecting starts with ends of every stage of the trip then returns readable instructions that include seat numbers, location names and additional data. :param boarding_cards: list of :class:`BoardingCard` objects. :return: list of human readable string that describe the whole trip. """ # Creating helper maps, one is keyed based on start locations, second one # is keyed on end locations starts_map = { boarding_card.start_key: boarding_card for boarding_card in boarding_cards } ends_map = { boarding_card.end_key: boarding_card for boarding_card in boarding_cards } # Guessing start and end of the trip trip_start_keys = [ start_key for start_key in starts_map if start_key not in ends_map ] trip_end_keys = [ end_key for end_key in ends_map if end_key not in starts_map ] # Validating our guess of start and end of the trip if len(trip_start_keys) > 1: raise ValueError(u'More than 1 starting point in the trip!') if not trip_start_keys: raise ValueError(u'No starting point in the trip!') if len(trip_end_keys) > 1: raise ValueError(u'More than 1 ending point in the trip!') if not trip_end_keys: raise ValueError(u'No ending point in the trip!') trip_start_key = trip_start_keys[0] trip_end_key = trip_end_keys[0] # Connecting boarding cards into ordered trip list trip = [starts_map[trip_start_key]] current_stop_index = 0 trip_reached_end = False while not trip_reached_end: last_stop = trip[current_stop_index] if last_stop.end_key == trip_end_key: trip_reached_end = True else: trip.append(starts_map[last_stop.end_key]) current_stop_index += 1 # building human readable messages from every stop of the trip directions = [ boarding_card.human_readable_message for boarding_card in trip ] if TRIP_FINISH_MESSAGE: directions.append(TRIP_FINISH_MESSAGE) return directions
0986ab2669fa4376aebd28804586a1566544610e
19,209
def detect_side(start: dict, point: dict, degrees): """detect to which side robot should rotate""" if start['lat'] < point['lat'] and start['lng'] < point['lng']: return f'{degrees} degrees right' elif start['lat'] < point['lat'] and start['lng'] > point['lng']: return f'{degrees} degrees left' elif start['lat'] > point['lat'] and start['lng'] < point['lng']: return f'{degrees + 90} degrees right' elif start['lat'] > point['lat'] and start['lng'] > point['lng']: return f'{degrees + 90} degrees left' elif degrees == 0: return f'{0} degress' elif degrees == 180: return f'{180} degrees right' elif start['lat'] == point['lat'] and start['lng'] < point['lng']: return f'{degrees} degress right' elif start['lat'] == point['lat'] and start['lng'] > point['lng']: return f'{degrees} degress left'
124833bbdcdf36c280cdde8e829f15ae5301e323
19,210
import sys def ScanSlnFile(filename): """Scan a Visual Studio .sln and extract the project dependencies.""" try: sln = open(filename, "r") except IOError: sys.stderr.write("Unable to open " + filename + " for reading.\n") return 1 projects = {} project = None while 1: line = sln.readline().strip() if not line: break if line.startswith('Project("{'): # Project definition line looks like # Project("$TypeGuid") = "$ProjectName", "$ProjectPath", "$ProjectGuid"$ items = line.split('"') project = Project() project.name = items[3] project.path = items[5] project.guid = items[7] project.type = items[1] projects[items[7]] = project # Start of a dependency group. if line == "ProjectSection(ProjectDependencies) = postProject": line = sln.readline().strip() # End of a dependency group. while line and line != "EndProjectSection": project.deps.append(line[:len(project.guid)]) line = sln.readline().strip() # We are done parsing. sln.close() return projects
b3f1d4b54027d6eb1aa6b0a3358e9afdb3e8248b
19,211
import pathlib import sh def iterate_log_lines(file_path:pathlib.Path, n:int = 0, **kwargs): """Reads the file in line by line dev note: One of the best featuers of this functions is we can use efficient unix style operations. Because we know we are inside of a unix container there should be no problem relying on GNU tail directly. """ abs_path = file_path.absolute() def get_tail_iter(replay=0): return sh.tail("-n", replay, "-f", str(abs_path), _iter=True) tail_itr = get_tail_iter(replay=n) while True: try: for line in tail_itr: yield line.strip() except KeyboardInterrupt as err: raise err except Exception as err: log.error(err) log.warning("continuing tail of file") tail_itr = get_tail_iter(replay=0)
54684fcc7a41b623321534202ee250e7c46760d2
19,212
import torch def moving_sum(x, start_idx: int, end_idx: int): """ From MONOTONIC CHUNKWISE ATTENTION https://arxiv.org/pdf/1712.05382.pdf Equation (18) x = [x_1, x_2, ..., x_N] MovingSum(x, start_idx, end_idx)_n = Sigma_{m=n−(start_idx−1)}^{n+end_idx-1} x_m for n in {1, 2, 3, ..., N} x : src_len, batch_size start_idx : start idx end_idx : end idx Example src_len = 5 batch_size = 3 x = [[ 0, 5, 10], [ 1, 6, 11], [ 2, 7, 12], [ 3, 8, 13], [ 4, 9, 14]] MovingSum(x, 3, 1) = [[ 0, 5, 10], [ 1, 11, 21], [ 3, 18, 33], [ 6, 21, 36], [ 9, 24, 39]] MovingSum(x, 1, 3) = [[ 3, 18, 33], [ 6, 21, 36], [ 9, 24, 39], [ 7, 17, 27], [ 4, 9, 14]] """ assert start_idx > 0 and end_idx > 0 assert len(x.size()) == 2 src_len, batch_size = x.size() # batch_size, 1, src_len x = x.t().unsqueeze(1) # batch_size, 1, src_len moving_sum_weight = x.new_ones([1, 1, end_idx + start_idx - 1]) moving_sum = ( torch.nn.functional.conv1d( x, moving_sum_weight, padding=start_idx + end_idx - 1 ) .squeeze(1) .t() ) moving_sum = moving_sum[end_idx:-start_idx] assert src_len == moving_sum.size(0) assert batch_size == moving_sum.size(1) return moving_sum
fa3cb672e23fccad75965da2ca10955134167c7e
19,213
import json import time def _wait_for_event(event_name, redis_address, extra_buffer=0): """Block until an event has been broadcast. This is used to synchronize drivers for the multi-node tests. Args: event_name: The name of the event to wait for. redis_address: The address of the Redis server to use for synchronization. extra_buffer: An amount of time in seconds to wait after the event. Returns: The data that was passed into the corresponding _broadcast_event call. """ redis_host, redis_port = redis_address.split(":") redis_client = redis.StrictRedis(host=redis_host, port=int(redis_port)) while True: event_infos = redis_client.lrange(EVENT_KEY, 0, -1) events = {} for event_info in event_infos: name, data = json.loads(event_info) if name in events: raise Exception("The same event {} was broadcast twice." .format(name)) events[name] = data if event_name in events: # Potentially sleep a little longer and then return the event data. time.sleep(extra_buffer) return events[event_name] time.sleep(0.1)
0aa10f52e1682dd9d1cdc0949d245da26c26bcd4
19,214
def _stack_exists(stack_name): """ Checks if the stack exists. Returns True if it exists and False if not. """ cf = boto3.client('cloudformation') exists = False try: cf.describe_stacks(StackName=stack_name) exists = True except botocore.exceptions.ClientError as ex: if ex.response['Error']['Code'] == 'ValidationError': exists = False else: raise return exists
5ddc6c17342e3c03317d5da0bf8b4d0a338a8f21
19,215
def make_sequence_output(detections, classes): """ Create the output object for an entire sequence :param detections: A list of lists of detections. Must contain an entry for each image in the sequence :param classes: The list of classes in the order they appear in the label probabilities :return: """ return { 'detections': detections, 'classes': classes }
019d3b74699af20a9f3cbc43b575e8bae5e15946
19,216
def json_to_dataframe(json, subset=0): """Load data from path. The file needs to be a .csv Returns:\n Dataframe """ # This is to make sure it has the right format when passed to pandas if type(json) != list: json = [json] try: df = pd.DataFrame(json, [i for i in range(0, len(json))]) except KeyError as identifier: print("There was an error") # raise identifier if subset == 0: return df return df.head(subset)
151914e3e11759ff74283c303912a0b6842cd213
19,217
def dms_to_angle(dms): """ Get the angle from a tuple of numbers or strings giving its sexagesimal representation in degrees @param dms: (degrees, minutes, seconds) """ sign = 1 angle_string = dms[0] if angle_string.startswith('-'): sign = -1 angle_string = angle_string[1:] angle_deg = int(angle_string) angle_min = int(dms[1]) angle_sec = float(dms[2]) if not 0 <= angle_min < 60: raise VdtAngleError("not a valid value for minutes: " + str(angle_min)) if not 0 <= angle_sec < 60: raise VdtAngleError("not a valid value for seconds: " + str(angle_sec)) return sign * VAngle((angle_deg, angle_min, angle_sec), unit=u.deg)
c56c66093a877aae6474d583da6d1db81ccbc7cd
19,218
def fix(text): """Repairs encoding problems.""" # NOTE(Jonas): This seems to be fixed on the PHP side for now. # import ftfy # return ftfy.fix_text(text) return text
7fd97db345a604131f52b272a7dd13ab4f3f9153
19,219
def generate_labeled_regions(shape, n_regions, rand_gen=None, labels=None, affine=np.eye(4), dtype=np.int): """Generate a 3D volume with labeled regions. Parameters ---------- shape: tuple shape of returned array n_regions: int number of regions to generate. By default (if "labels" is None), add a background with value zero. labels: iterable labels to use for each zone. If provided, n_regions is unused. rand_gen: numpy.random.RandomState random generator to use for generation. affine: numpy.ndarray affine of returned image Returns ------- regions: nibabel.Nifti1Image data has shape "shape", containing region labels. """ n_voxels = shape[0] * shape[1] * shape[2] if labels is None: labels = range(0, n_regions + 1) n_regions += 1 else: n_regions = len(labels) regions = generate_regions_ts(n_voxels, n_regions, rand_gen=rand_gen) # replace weights with labels for n, row in zip(labels, regions): row[row > 0] = n data = np.zeros(shape, dtype=dtype) data[np.ones(shape, dtype=np.bool)] = regions.sum(axis=0).T return nibabel.Nifti1Image(data, affine)
501c9bab430558fdc0cf45491498c8e3bcc7d3c4
19,220
def get_source_item_ids(portal, q=None): """ Get ids of hosted feature services that have an associated scene service. Can pass in portal search function query (q). Returns ids only for valid source items. """ source_item_ids = [] scene_item_ids = get_scene_service_item_ids(portal) items = portal.search(q=q) for item in items: if item['type'] == 'Feature Service': if '/Hosted/' in item['url']: if 'Hosted Service' in item['typeKeywords']: # if the service has been published the item # will have 'Hosted Service' in typeKeywords # Check if the feature service has an associated # scene service feat_service_name = item['url'].split('/')[-2] for scene_id in scene_item_ids: scene_service_name = portal.item(scene_id)['url'].split('/')[-2] if feat_service_name == scene_service_name: if item['id'] not in source_item_ids: source_item_ids.append(item['id']) return source_item_ids
448ac2d94fda4dc3c69bd8fe9eb00587a0f0dcb2
19,221
def rasterize_poly(poly_xy, shape): """ Args: poly_xy: [(x1, y1), (x2, y2), ...] Returns a bool array containing True for pixels inside the polygon """ _poly = poly_xy[:-1] # PIL wants *EXACTLY* a list of tuple (NOT a numpy array) _poly = [tuple(p) for p in _poly] img = Image.new('L', (shape[1], shape[0]), 0) ImageDraw.Draw(img).polygon(_poly, outline=0, fill=1) return np.array(img) == 1
d1abf5cef5a1fb57286ff38d575a575a679a4002
19,222
def from_url_representation(url_rep: str) -> str: """Reconvert url representation of path to actual path""" return url_rep.replace("__", "/").replace("-_-", "_")
5cf4e1e8cb284c66449807ea275e4fa6b5a3e3ad
19,223
from unittest.mock import patch async def test_async_start_from_history_and_switch_to_watching_state_changes_multiple( hass, recorder_mock, ): """Test we startup from history and switch to watching state changes.""" hass.config.set_time_zone("UTC") utcnow = dt_util.utcnow() start_time = utcnow.replace(hour=0, minute=0, second=0, microsecond=0) # Start t0 t1 t2 Startup End # |--20min--|--20min--|--10min--|--10min--|---------30min---------|---15min--|---15min--| # |---on----|---on----|---on----|---on----|----------on-----------|---off----|----on----| def _fake_states(*args, **kwargs): return { "binary_sensor.state": [ ha.State( "binary_sensor.state", "on", last_changed=start_time, last_updated=start_time, ), ] } with patch( "homeassistant.components.recorder.history.state_changes_during_period", _fake_states, ): with freeze_time(start_time): await async_setup_component( hass, "sensor", { "sensor": [ { "platform": "history_stats", "entity_id": "binary_sensor.state", "name": "sensor1", "state": "on", "start": "{{ utcnow().replace(hour=0, minute=0, second=0) }}", "duration": {"hours": 2}, "type": "time", }, { "platform": "history_stats", "entity_id": "binary_sensor.state", "name": "sensor2", "state": "on", "start": "{{ utcnow().replace(hour=0, minute=0, second=0) }}", "duration": {"hours": 2}, "type": "time", }, { "platform": "history_stats", "entity_id": "binary_sensor.state", "name": "sensor3", "state": "on", "start": "{{ utcnow().replace(hour=0, minute=0, second=0) }}", "duration": {"hours": 2}, "type": "count", }, { "platform": "history_stats", "entity_id": "binary_sensor.state", "name": "sensor4", "state": "on", "start": "{{ utcnow().replace(hour=0, minute=0, second=0) }}", "duration": {"hours": 2}, "type": "ratio", }, ] }, ) await hass.async_block_till_done() for i in range(1, 5): await async_update_entity(hass, f"sensor.sensor{i}") await hass.async_block_till_done() assert hass.states.get("sensor.sensor1").state == "0.0" assert hass.states.get("sensor.sensor2").state == "0.0" assert hass.states.get("sensor.sensor3").state == "0" assert hass.states.get("sensor.sensor4").state == "0.0" one_hour_in = start_time + timedelta(minutes=60) with freeze_time(one_hour_in): async_fire_time_changed(hass, one_hour_in) await hass.async_block_till_done() assert hass.states.get("sensor.sensor1").state == "1.0" assert hass.states.get("sensor.sensor2").state == "1.0" assert hass.states.get("sensor.sensor3").state == "0" assert hass.states.get("sensor.sensor4").state == "50.0" turn_off_time = start_time + timedelta(minutes=90) with freeze_time(turn_off_time): hass.states.async_set("binary_sensor.state", "off") await hass.async_block_till_done() async_fire_time_changed(hass, turn_off_time) await hass.async_block_till_done() assert hass.states.get("sensor.sensor1").state == "1.5" assert hass.states.get("sensor.sensor2").state == "1.5" assert hass.states.get("sensor.sensor3").state == "0" assert hass.states.get("sensor.sensor4").state == "75.0" turn_back_on_time = start_time + timedelta(minutes=105) with freeze_time(turn_back_on_time): async_fire_time_changed(hass, turn_back_on_time) await hass.async_block_till_done() assert hass.states.get("sensor.sensor1").state == "1.5" assert hass.states.get("sensor.sensor2").state == "1.5" assert hass.states.get("sensor.sensor3").state == "0" assert hass.states.get("sensor.sensor4").state == "75.0" with freeze_time(turn_back_on_time): hass.states.async_set("binary_sensor.state", "on") await hass.async_block_till_done() assert hass.states.get("sensor.sensor1").state == "1.5" assert hass.states.get("sensor.sensor2").state == "1.5" assert hass.states.get("sensor.sensor3").state == "1" assert hass.states.get("sensor.sensor4").state == "75.0" end_time = start_time + timedelta(minutes=120) with freeze_time(end_time): async_fire_time_changed(hass, end_time) await hass.async_block_till_done() assert hass.states.get("sensor.sensor1").state == "1.75" assert hass.states.get("sensor.sensor2").state == "1.75" assert hass.states.get("sensor.sensor3").state == "1" assert hass.states.get("sensor.sensor4").state == "87.5"
6fb66dde3fad24fbccffb0f8ce74e666e3551e56
19,224
def runningmean(data, nav): """ Compute the running mean of a 1-dimenional array. Args: data: Input data of shape (N, ) nav: Number of points over which the data will be averaged Returns: Array of shape (N-(nav-1), ) """ return np.convolve(data, np.ones((nav,)) / nav, mode='valid')
8ba55de399d8789a43624582ac14f2f4804668ef
19,225
def test_space(gym_space, expected_size, expected_min, expected_max): """Test that an action or observation space is the correct size and bounds. Parameters ---------- gym_space : gym.spaces.Box gym space object to be tested expected_size : int expected size expected_min : float or array_like expected minimum value(s) expected_max : float or array_like expected maximum value(s) Returns ------- bool True if the test passed, False otherwise """ return gym_space.shape[0] == expected_size \ and all(gym_space.high == expected_max) \ and all(gym_space.low == expected_min)
e43e2e4d064bec033e6cef6f9c1c905b13541cc7
19,226
from typing import Optional from typing import List def multiindex_strategy( pandera_dtype: Optional[DataType] = None, strategy: Optional[SearchStrategy] = None, *, indexes: Optional[List] = None, size: Optional[int] = None, ): """Strategy to generate a pandas MultiIndex object. :param pandera_dtype: :class:`pandera.dtypes.DataType` instance. :param strategy: an optional hypothesis strategy. If specified, the pandas dtype strategy will be chained onto this strategy. :param indexes: a list of :class:`~pandera.schema_components.Index` objects. :param size: number of elements in the Series. :returns: ``hypothesis`` strategy. """ # pylint: disable=unnecessary-lambda if strategy: raise BaseStrategyOnlyError( "The dataframe strategy is a base strategy. You cannot specify " "the strategy argument to chain it to a parent strategy." ) indexes = [] if indexes is None else indexes index_dtypes = { index.name if index.name is not None else i: str(index.dtype) for i, index in enumerate(indexes) } nullable_index = { index.name if index.name is not None else i: index.nullable for i, index in enumerate(indexes) } strategy = pdst.data_frames( [index.strategy_component() for index in indexes], index=pdst.range_indexes( min_size=0 if size is None else size, max_size=size ), ).map(lambda x: x.astype(index_dtypes)) # this is a hack to convert np.str_ data values into native python str. for name, dtype in index_dtypes.items(): if dtype in {"object", "str"} or dtype.startswith("string"): # pylint: disable=cell-var-from-loop,undefined-loop-variable strategy = strategy.map( lambda df: df.assign(**{name: df[name].map(str)}) ) if any(nullable_index.values()): strategy = null_dataframe_masks(strategy, nullable_index) return strategy.map(pd.MultiIndex.from_frame)
580a312790d7ff5d9c5f5309f3100e4ebd490f7e
19,227
def pitch_from_centers(X, Y): """Spot pitch in X and Y direction estimated from spot centers (X, Y). """ assert X.shape == Y.shape assert X.size > 1 nspots_y, nspots_x = X.shape if nspots_x > 1 and nspots_y == 1: pitch_x = pitch_y = np.mean(np.diff(X, axis=1)) elif nspots_y > 1 and nspots_x == 1: pitch_x = pitch_y = np.mean(np.diff(Y, axis=0)) else: # both nspots_x and nspots_y are > 1 pitch_x = np.mean(np.diff(X, axis=1)) pitch_y = np.mean(np.diff(Y, axis=0)) return pitch_x, pitch_y
c9816d3bee4d658a3b00769f26f22b8c0cd0fd10
19,228
def _create_lists(config, results, current, stack, inside_cartesian=None): """ An ugly recursive method to transform config dict into a tree of AbstractNestedList. """ # Have we done it already? try: return results[current] except KeyError: pass # Check recursion depth and detect loops if current in stack: raise ConfigurationError('Rule {!r} is recursive: {!r}'.format(stack[0], stack)) if len(stack) > 99: raise ConfigurationError('Rule {!r} is too deep'.format(stack[0])) # Track recursion depth stack.append(current) try: # Check what kind of list we have listdef = config[current] list_type = listdef[_CONF.FIELD.TYPE] # 1. List of words if list_type == _CONF.TYPE.WORDS: results[current] = WordList(listdef['words']) # List of phrases elif list_type == _CONF.TYPE.PHRASES: results[current] = PhraseList(listdef['phrases']) # 2. Simple list of lists elif list_type == _CONF.TYPE.NESTED: results[current] = NestedList([_create_lists(config, results, x, stack, inside_cartesian=inside_cartesian) for x in listdef[_CONF.FIELD.LISTS]]) # 3. Cartesian list of lists elif list_type == _CONF.TYPE.CARTESIAN: if inside_cartesian is not None: raise ConfigurationError("Cartesian list {!r} contains another Cartesian list " "{!r}. Nested Cartesian lists are not allowed." .format(inside_cartesian, current)) results[current] = CartesianList([_create_lists(config, results, x, stack, inside_cartesian=current) for x in listdef[_CONF.FIELD.LISTS]]) # 4. Scalar elif list_type == _CONF.TYPE.CONST: results[current] = Scalar(listdef[_CONF.FIELD.VALUE]) # Unknown type else: raise InitializationError("Unknown list type: {!r}".format(list_type)) # Return the result return results[current] finally: stack.pop()
ef9a51023a44ae1cdbfbadbc762a0ffcd1959562
19,229
def encode(value): """ Encode strings in UTF-8. :param value: value to be encoded in UTF-8 :return: encoded value """ return str(u''.join(value).encode('utf-8'))
697f99f028d4b978b591d006273b9d5f688711f3
19,230
def get_season(months, str_='{}'): """ Creates a season string. Parameters: - months (list of int) - str_ (str, optional): Formatter string, should contain exactly one {} at the position where the season substring is included. Returns: str """ if months is None: return '' elif len(set(months).difference([1, 2, 12])) == 0: return str_.format('DJF') elif len(set(months).difference([3, 4, 5])) == 0: return str_.format('MAM') elif len(set(months).difference([6, 7, 8])) == 0: return str_.format('JJA') elif len(set(months).difference([9, 10, 11])) == 0: return str_.format('SON') elif len(set(months).difference([11, 12, 1, 2, 3])) == 0: return str_.format('NDJFM') elif len(set(months).difference([5, 6, 7, 8, 9])) == 0: return str_.format('MJJAS') else: return str_.format('-'.join(map(str, months)))
73b4e8169f08ef286a0b57779d22c3436538fc30
19,231
def data_availability(tags): """ get availability based on the validation tags Args: tags (pandas.DataFrame): errors tagged as true (see function data_validation) Returns: pandas.Series: availability """ return ~tags.any(axis=1)
240bed8f169d23610f11c214d3644f02e5435412
19,232
async def fetch_image_by_id( image_uid: str ): """ API request to return a single image by uid """ image_uid = int(image_uid) image = utils_com.get_com_image_by_uid(image_uid) return image
153d24fd35ce18ae9c94d1c7ecf797154bc32c0f
19,233
from datetime import datetime def get_spring_break(soup_lst, year): """ Purpose: * returns a list of the weekdays during spring break * only relevant for spring semesters """ spring_break_week = set() # search for the "Spring Break begins after last class." text for i in range(len(soup_lst)): if soup_lst[i] == "Spring Break begins after last class.": pre_friday = datetime.strptime( soup_lst[i - 1] + " " + year, "%B %d %Y") break next_day = pre_friday + timedelta(1) while next_day.weekday() != 4: if next_day.weekday() != 5 and next_day.weekday() != 6: spring_break_week.add(next_day) next_day += timedelta(1) spring_break_week.add(next_day) return spring_break_week
cfd80d12da8a22a26d66f4f64f6f8511ed7238a4
19,234
def GetProQ3Option(query_para):#{{{ """Return the proq3opt in list """ yes_or_no_opt = {} for item in ['isDeepLearning', 'isRepack', 'isKeepFiles']: if query_para[item]: yes_or_no_opt[item] = "yes" else: yes_or_no_opt[item] = "no" proq3opt = [ "-r", yes_or_no_opt['isRepack'], "-deep", yes_or_no_opt['isDeepLearning'], "-k", yes_or_no_opt['isKeepFiles'], "-quality", query_para['method_quality'], "-output_pdbs", "yes" #always output PDB file (with proq3 written at the B-factor column) ] if 'targetlength' in query_para: proq3opt += ["-t", str(query_para['targetlength'])] return proq3opt
e2fe6ba97aa96d01a19a191aabcc3e793a63c490
19,235
def is_empty_config(host): """ Check if any services should to be configured to run on the given host. """ return host.AS is None
c4ec3861c497ac49ed69ecd1d6da31ab8fe2829c
19,236
def total_value(metric): """Given a time series of values, sum the values""" total = 0 for i in metric: total += i return total
4454bfaeb0797bc03b14819bde48dc8f5accc4d3
19,237
import os import tqdm import json def unpackJSON(target_naming_scheme, chemdf_dict): """ most granular data for each row of the final CSV is the well information. Each well will need all associated information of chemicals, run, etc. Unpack those values first and then copy the generated array to each of the invidual wells developed enough now that it should be broken up into smaller pieces! Parameters ---------- target_naming_scheme : target folder for storing the run and associated data. chemdf_dict : dict of pandas.DataFrames assembled from all lab inventories reads in all of the chemical inventories which describe the chemical content from each lab used across the dataset construction Return ------ concat_df_raw : pd.DataFrame, all of the raw values from the processed JSON files Notes: unlike previous version, no additional calculations are performed, just parsing the files """ concat_df = pd.DataFrame() concat_df_raw = pd.DataFrame() json_list = [] for my_exp_json in sorted(os.listdir(target_naming_scheme)): if my_exp_json.endswith(".json"): json_list.append(my_exp_json) for my_exp_json in tqdm(json_list): modlog.info('(3/4) Unpacking %s' %my_exp_json) concat_df = pd.DataFrame() #appends each run to the original dataframe json_fname = (os.path.join(target_naming_scheme, my_exp_json)) experiment_dict = json.load(open(json_fname, 'r')) modlog.info('Parsing %s to 2d dataframe' %json_fname) tray_df = parser.tray_parser(experiment_dict) #generates the tray level dataframe concat_df = pd.concat([concat_df,tray_df], ignore_index=True, sort=True) #generates a well level unique ID and aligns runID_df=pd.DataFrame(data=[concat_df['_raw_jobserial'] + '_' + concat_df['_raw_vialsite']]).transpose() runID_df.columns=['runid_vial'] #combines all operations into a final dataframe for the entire tray level view with all information concat_df = pd.concat([concat_df, runID_df], sort=True, axis=1) #Combines the most recent dataframe with the final dataframe which is targeted for export concat_df_raw = pd.concat([concat_df_raw,concat_df], sort=True) return(concat_df_raw)
096f1e6619d44b9d4d19c7b96664561070ca264b
19,238
import re def validate_email_add(email_str): """Validates the email string""" email = extract_email_id(email_str) return re.match("[a-z0-9!#$%&'*+/=?^_`{|}~-]+(?:\.[a-z0-9!#$%&'*+/=?^_`{|}~-]+)*@(?:[a-z0-9](?:[a-z0-9-]*[a-z0-9])?\.)+[a-z0-9](?:[a-z0-9-]*[a-z0-9])?", email.lower())
0f77f223b208471a960e2829efb12a85f82b1381
19,239
def get_seed_nodes_json(json_node: dict, seed_nodes_control: dict or list) -> dict: """ We need to seed some json sections for extract_fields. This seeds those nodes as needed. """ seed_json_output = {} if isinstance(seed_nodes_control, dict) or isinstance(seed_nodes_control, list): for node in seed_nodes_control: for key, value in node.items(): if value in json_node: seed_json_output[key] = json_node[value] return seed_json_output
f3672ee019ff4bb72f25582daf5c83fa7c8f72d0
19,240
def load_object(import_path): """ Loads an object from an 'import_path', like in MIDDLEWARE_CLASSES and the likes. Import paths should be: "mypackage.mymodule.MyObject". It then imports the module up until the last dot and tries to get the attribute after that dot from the imported module. If the import path does not contain any dots, a TypeError is raised. If the module cannot be imported, an ImportError is raised. If the attribute does not exist in the module, a AttributeError is raised. """ if not isinstance(import_path, basestring): return import_path if '.' not in import_path: raise TypeError( "'import_path' argument to 'django_load.core.load_object' " +\ "must contain at least one dot.") module_name, object_name = import_path.rsplit('.', 1) module = import_module(module_name) return getattr(module, object_name)
5fd45ee31a440cbdd4c90e875e04f4f8f1856b3a
19,241
def _inufft(kspace, trajectory, sensitivities=None, image_shape=None, tol=1e-5, max_iter=10, return_cg_state=False, multicoil=None, combine_coils=True): """MR image reconstruction using iterative inverse NUFFT. For the parameters, see `tfmr.reconstruct`. """ kspace = tf.convert_to_tensor(kspace) trajectory = tf.convert_to_tensor(trajectory) if sensitivities is not None: sensitivities = tf.convert_to_tensor(sensitivities) # Infer rank from number of dimensions in trajectory. rank = trajectory.shape[-1] if rank > 3: raise ValueError( f"Can only reconstruct images up to rank 3, but `trajectory` implies " f"rank {rank}.") # Check inputs and set defaults. if image_shape is None: # `image_shape` is required. raise ValueError("Argument `image_shape` must be provided for NUFFT.") image_shape = tf.TensorShape(image_shape) image_shape.assert_has_rank(rank) if multicoil is None: # `multicoil` defaults to True if sensitivities were passed; False # otherwise. multicoil = sensitivities is not None batch_shape = tf.shape(kspace)[:-1] # Set up system operator and right hand side. linop_nufft = linalg_ops.LinearOperatorNUFFT(image_shape, trajectory) operator = tf.linalg.LinearOperatorComposition( [linop_nufft.H, linop_nufft], is_self_adjoint=True, is_positive_definite=True) # Compute right hand side. rhs = tf.linalg.matvec(linop_nufft.H, kspace) # Solve linear system using conjugate gradient iteration. result = linalg_ops.conjugate_gradient(operator, rhs, x=None, tol=tol, max_iter=max_iter) # Restore image shape. image = tf.reshape(result.x, tf.concat([batch_shape, image_shape], 0)) # Do coil combination. if multicoil and combine_coils: image = coil_ops.combine_coils(image, maps=sensitivities, coil_axis=-rank-1) return (image, result) if return_cg_state else image
892350c74ca0b7163b4aec9278af30dd770b5e1e
19,242
def adjust_cart(request, item_id): """Adjust the quantity of the specified product to the specified amount""" album = get_object_or_404(Album, pk=item_id) # Returns 404 if an invalid quantity is entered try: quantity = int(request.POST.get("quantity")) except Exception as e: return HttpResponse(status=404) cart = request.session.get("cart", {}) # Updates quantity of existing cart item or removes from cart if quantity < 0 if quantity > 0: cart[item_id] = quantity messages.success(request, f"Updated {album.name} quantity to {cart[item_id]}") else: cart.pop(item_id) messages.success(request, f"Removed {album.name} from your cart.") request.session["cart"] = cart return redirect(reverse("view_cart"))
ed455747341cf581725d2fae326292155a3b77a8
19,243
def calculate_delta_v(scouseobject, momone, momnine): """ Calculate the difference between the moment one and the velocity of the channel containing the peak flux Parameters ---------- scouseobject : instance of the scousepy class momone : ndarray moment one (intensity-weighted average velocity) map momnine : ndarray map containing the velocities of channels containing the peak flux at each location """ # Generate an empty array delta_v = np.empty(np.shape(momone)) delta_v.fill(np.nan) delta_v = np.abs(momone.value-momnine.value) return delta_v
a894eac64f5b88fd6230eb060583fd15552bc8d8
19,244
def _validate_image(values): """ Validates the incoming data and raises a Invalid exception if anything is out of order. :param values: Mapping of image metadata to check """ status = values.get('status', None) if not status: msg = "Image status is required." raise exception.Invalid(msg) if status not in STATUSES: msg = "Invalid image status '%s' for image." % status raise exception.Invalid(msg) return values
d0ebb8ecbde452c3128e93e917482cff13e47947
19,245
def revcmp(x, y): """Does the reverse of cmp(): Return negative if y<x, zero if y==x, positive if y>x""" return cmp(y, x)
52e5382211379d09703996b0da89821a9521de73
19,246
def linear_regression(data: pd.DataFrame): """ https://www.statsmodels.org/ :param data: 数据集中要包含收盘价Close :return: 拟合的y,k,b以及k转化的角度 """ y_arr = data.Close.values x_arr = np.arange(0, len(y_arr)) b_arr = sm.add_constant(x_arr) model = regression.linear_model.OLS(y_arr, b_arr).fit() b, k = model.params # y = kx + b : params[1] = k y_fit = x_arr * k + b return y_fit, k, b, np.rad2deg(k)
9b30a6d90ed1e0131e12b2f7944eb58a90676ad3
19,247
from datetime import datetime from operator import and_ def get_expiry(): """ Returns the membership IDs of memberships expiring within 'time_frame' amount of MONTHS """ time_frame = request.args.get('time_frame') try: time_frame = int(time_frame) except ValueError as e: print(e) return jsonify({ 'code': 400, 'error': 'Not valid monthly time frame, should only be int' }) expiring_members = [] session = Session() now = datetime.date.today() relativeMonths = now - relativedelta(months=time_frame) memberShooterTable = session.query(Member, Shooter) \ .join(Shooter) \ .filter(and_(Member.endDate > relativeMonths, Member.status != Status.EXPIRED)) print("Memberships expiring with " + str(time_frame) + " months") for row in memberShooterTable: print(row) print(row.Member.email) print(row.Shooter.name) returnMember = {'name': row.Shooter.name, 'mid': row.Member.mid, 'email': row.Member.email, 'endDate': row.Member.endDate} expiring_members.append(returnMember) return jsonify({ 'code': 200, 'table': 'Expiring Members', 'entries': expiring_members })
4fd13a5e2de1feb4b797c225c349031a903f2673
19,248
def get_functions(input_file): """Alias for load_data bellow.""" return load_data(input_file)
7f286809a3c27db32e0aeb3f08d41989a7b3fad2
19,249
def is_elem_ref(elem_ref): """ Returns true if the elem_ref is an element reference :param elem_ref: :return: """ return ( elem_ref and isinstance(elem_ref, tuple) and len(elem_ref) == 3 and (elem_ref[0] == ElemRefObj or elem_ref[0] == ElemRefArr) )
282a5ba04b2cafedd5a043bf83b4ccbd6196ae44
19,250
from typing import Tuple from typing import List def analyse_subcommand( analyser: Analyser, param: Subcommand ) -> Tuple[str, SubcommandResult]: """ 分析 Subcommand 部分 Args: analyser: 使用的分析器 param: 目标Subcommand """ if param.requires: if analyser.sentences != param.requires: raise ParamsUnmatched(f"{param.name}'s required is not '{' '.join(analyser.sentences)}'") analyser.sentences = [] if param.is_compact: name, _ = analyser.next_data() if name.startswith(param.name): analyser.reduce_data(name.lstrip(param.name), replace=True) else: raise ParamsUnmatched(f"{name} dose not matched with {param.name}") else: name, _ = analyser.next_data(param.separators) if name != param.name: # 先匹配选项名称 raise ParamsUnmatched(f"{name} dose not matched with {param.name}") name = param.dest res: SubcommandResult = {"value": None, "args": {}, 'options': {}} if param.sub_part_len.stop == 0: res['value'] = Ellipsis return name, res args = False subcommand = res['options'] need_args = param.nargs > 0 for _ in param.sub_part_len: sub_param = analyse_params(analyser, param.sub_params) # type: ignore if sub_param and isinstance(sub_param, List): for p in sub_param: _current_index = analyser.current_index _content_index = analyser.content_index try: subcommand.setdefault(*analyse_option(analyser, p)) break except Exception as e: exc = e analyser.current_index = _current_index analyser.content_index = _content_index continue else: raise exc # type: ignore # noqa elif not args: res['args'] = analyse_args(analyser, param.args, param.nargs) args = True if need_args and not args: raise ArgumentMissing(config.lang.subcommand_args_missing.format(name=name)) return name, res
d3be0a7709ae2ebfab414d30494fe7baeba5de8d
19,251
def fetch_pg_types(columns_info, trans_obj): """ This method is used to fetch the pg types, which is required to map the data type comes as a result of the query. Args: columns_info: """ # get the default connection as current connection attached to trans id # holds the cursor which has query result so we cannot use that connection # to execute another query otherwise we'll lose query result. manager = get_driver(PG_DEFAULT_DRIVER).connection_manager(trans_obj.sid) default_conn = manager.connection(did=trans_obj.did) # Connect to the Server if not connected. res = [] if not default_conn.connected(): status, msg = default_conn.connect() if not status: return status, msg oids = [columns_info[col]['type_code'] for col in columns_info] if oids: status, res = default_conn.execute_dict( u"""SELECT oid, format_type(oid,null) as typname FROM pg_type WHERE oid IN %s ORDER BY oid; """, [tuple(oids)]) if not status: return False, res return status, res['rows'] else: return True, []
87bdc81134ee4d83ffbce05a77abec555b55a661
19,252
def open_popup(text) -> bool: """ Opens popup when it's text is updated """ if text is not None: return True return False
8ced6b6e73531f97df8ac7fe38723438077ca6d1
19,253
def se_beta_formatter(value: str) -> str: """ SE Beta formatter. This formats SE beta values. A valid SE beta values is a positive float. @param value: @return: """ try: se_beta = float(value) if se_beta >= 0: result = str(se_beta) else: raise ValueError(f'position expected positive float "{value}"') except ValueError as value_error: raise ValueError( f'position could not be parsed as integer "{value}" details : {value_error}', ) from value_error return result
30dde489e1a8a70c0f1093caa1ce289c759b26d6
19,254
from typing import Optional def replace_missing_data( data: pd.DataFrame, target_col: str, source_col: str, dropna: Optional[bool] = False, inplace: Optional[bool] = False, ) -> Optional[pd.DataFrame]: """Replace missing data in one column by data from another column. Parameters ---------- data : :class:`~pandas.DataFrame` input data with values to replace target_col : str target column, i.e., column in which missing values should be replaced source_col : str source column, i.e., column values used to replace missing values in ``target_col`` dropna : bool, optional whether to drop rows with missing values in ``target_col`` or not. Default: ``False`` inplace : bool, optional whether to perform the operation inplace or not. Default: ``False`` Returns ------- :class:`~pandas.DataFrame` or ``None`` dataframe with replaced missing values or ``None`` if ``inplace`` is ``True`` """ _assert_is_dtype(data, pd.DataFrame) if not inplace: data = data.copy() data[target_col].fillna(data[source_col], inplace=True) if dropna: data.dropna(subset=[target_col], inplace=True) if inplace: return None return data
a94e41cb88bcf502192855276ed1f11f73b1c3a1
19,255
def jsonpath_parse(data, jsonpath, match_all=False): """Parse value in the data for the given ``jsonpath``. Retrieve the nested entry corresponding to ``data[jsonpath]``. For example, a ``jsonpath`` of ".foo.bar.baz" means that the data section should conform to: .. code-block:: yaml --- foo: bar: baz: <data_to_be_extracted_here> :param data: The `data` section of a document. :param jsonpath: A multi-part key that references a nested path in ``data``. :param match_all: Whether to return all matches or just the first one. :returns: Entry that corresponds to ``data[jsonpath]`` if present, else None. Example:: src_name = sub['src']['name'] src_path = sub['src']['path'] src_doc = db_api.document_get(schema=src_schema, name=src_name) src_secret = utils.jsonpath_parse(src_doc['data'], src_path) # Do something with the extracted secret from the source document. """ jsonpath = _normalize_jsonpath(jsonpath) p = _jsonpath_parse(jsonpath) matches = p.find(data) if matches: result = [m.value for m in matches] return result if match_all else result[0]
3b5ab89d8315e36f8412e874f393c414c76b8587
19,256
def extract_urlparam(name, urlparam): """ Attempts to extract a url parameter embedded in another URL parameter. """ if urlparam is None: return None query = name+'=' if query in urlparam: split_args = urlparam[urlparam.index(query):].replace(query, '').split('&') return split_args[0] if split_args else None else: return None
198771d40eeddc3b7dbf2924d9d49fe7a7f0a51d
19,257
def get_nlb_data(elb_data, region, load_balancer_name, ssl_hc_path): """ Render a dictionary which contains Network Load Balancer attributes """ if debug: logger.debug("Building the Network Load Balancer data structure") # this is used for building the load balancer spec nlb_data = {'VpcId': elb_data['LoadBalancerDescriptions'][0]['VPCId'], 'Region': region, 'Nlb_name': elb_data['LoadBalancerDescriptions'][0]['LoadBalancerName'], 'Subnets': elb_data['LoadBalancerDescriptions'][0]['Subnets'], 'Security_groups': elb_data['LoadBalancerDescriptions'][0]['SecurityGroups'], 'Scheme': elb_data['LoadBalancerDescriptions'][0]['Scheme'], 'Tags': elb_data['TagDescriptions'][0]['Tags'], 'listeners': [], 'Type': 'network', 'target_group_attributes': [], 'target_group_arns': []} # this is used for building the listeners specs for elb_listener in elb_data['LoadBalancerDescriptions'][0]['ListenerDescriptions']: listener = {'Protocol': elb_listener['Listener']['Protocol'], 'Port': elb_listener['Listener']['LoadBalancerPort'], 'TargetGroup_Port': elb_listener['Listener']['InstancePort'], 'TargetGroup_Protocol': elb_listener['Listener']['InstanceProtocol']} targetgroup_attribute = { 'dereg_timeout_seconds_delay': str(elb_data['LoadBalancerAttributes']['ConnectionDraining']['Timeout']), 'TargetGroup_Port': elb_listener['Listener']['InstancePort'] } nlb_data['listeners'].append(listener) nlb_data['target_group_attributes'].append(targetgroup_attribute) # this is used for building the target groups nlb_data['target_groups'] = [] target_group = {} # Get health check target hc_target = elb_data['LoadBalancerDescriptions'][ 0]['HealthCheck']['Target'] # Set health check interval if elb_data['LoadBalancerDescriptions'][0]['HealthCheck']['Interval'] < 15: print("The minimal supported health check interval is 10. Setting it to 10 seconds") target_group['HealthCheckIntervalSeconds'] = 10 else: print("The health check internal is set to 30 seconds") target_group['HealthCheckIntervalSeconds'] = 30 # Set healthy and unhealthy threshold to the same value which is the # healthy threshold of Classic Load Balancer target_group['HealthyThresholdCount'] = elb_data['LoadBalancerDescriptions'][0]['HealthCheck'][ 'HealthyThreshold'] target_group['UnhealthyThresholdCount'] = elb_data['LoadBalancerDescriptions'][0]['HealthCheck'][ 'HealthyThreshold'] # Set VPC ID target_group['VpcId'] = elb_data[ 'LoadBalancerDescriptions'][0]['VPCId'] # Set health check protocol target_group['HealthCheckProtocol'] = hc_target.split(':')[0] # If health check protocol is TCP if hc_target.split(':')[0] == "TCP": target_group['HealthCheckPort'] = hc_target.split(':')[1] # If health check protocol is HTTP or HTTPs elif hc_target.split(':')[0] == "SSL": target_group['HealthCheckProtocol'] = "HTTPS" target_group['HealthCheckPort'] = hc_target.split(':')[1] target_group['HealthCheckPath'] = ssl_hc_path else: target_group['HealthCheckPort'] = hc_target.split(':')[1].split('/')[0] target_group['HealthCheckPath'] = '/' + hc_target.split('/', 1)[1] for listener in nlb_data['listeners']: target_group['Protocol'] = listener['TargetGroup_Protocol'] target_group['Port'] = listener['TargetGroup_Port'] # target group name comes from the first 18 character of the Classic Load Balancer name, \ # "-nlb-tg-" and target group port. target_group['Name'] = load_balancer_name[: 18] + "-nlb-tg-" + \ str(listener['TargetGroup_Port']) # Only append unique Target Group if target_group not in nlb_data['target_groups']: nlb_data['target_groups'].append(target_group.copy()) # Get registered backend instances nlb_data['instanceIds'] = [] for instance in elb_data['LoadBalancerDescriptions'][0]['Instances']: nlb_data['instanceIds'].append(instance['InstanceId']) if debug: logger.debug("nlb_data:") logger.debug(nlb_data) return nlb_data
3cd162176f7e3580f749bfb8af7e8436c4c2dd18
19,258
from typing import Dict from typing import Any def _get_required_var(key: str, data: Dict[str, Any]) -> str: """Get a value from a dict coerced to str. raise RequiredVariableNotPresentException if it does not exist""" value = data.get(key) if value is None: raise RequiredVariableNotPresentException(f"Missing required var {key}") return str(value)
b94db42048779df532a55c2604c7c1b5d02a4f7f
19,259
def phones(): """Return a list of phones used in the main dict.""" cmu_phones = [] for line in phones_stream(): parts = line.decode("utf-8").strip().split() cmu_phones.append((parts[0], parts[1:])) return cmu_phones
972c4c0739cd3c823f98eb6314d25f07b9f720f6
19,260
def load_specific_forecast(city, provider, date, forecasts): """reads in the city, provider, date and forecast_path and returns the data queried from the forecast path :param city: city for which the weather forecast is for :type string :param provider: provider for which the weather forecast is for :type string :param date: date for which the weather forecast is for, e.g. '2015-06-29' :type datetime :param forecasts: dataframe containing all forecasts :type pandas dataframe :return: dataFrame containing relevant dwd data """ # get rows with the correct city, provider and date data_city = forecasts[forecasts['city']==city] data_provider = data_city[data_city['Provider']==provider] if provider != 'openweathermap': # cut the time data_provider.loc[:, 'Date'] = data_provider.loc[:, 'Date'].map(cut_time, na_action='ignore') data_provider.loc[:, 'ref_date'] = data_provider.loc[:,'ref_date'].map(cut_time, na_action='ignore') else: data_provider.loc[:, 'ref_date'] = data_provider.loc[:,'ref_date'].map(cut_time,na_action='ignore') data_provider.loc[:, 'Date'] = data_provider.loc[:,'pred_offset'].map(cut_time, na_action='ignore') data_provider.loc[:, 'pred_offset'] = (data_provider.loc[:,'Date'] - data_provider['ref_date']).\ map(lambda delta: delta/np.timedelta64(1, 'D'), na_action='ignore') return data_provider[data_provider['Date'] == date]
95f00fd07d218f1e19eb6d771898453d2495cb1d
19,261
from numpy import array, isnan from mne.channels import Montage def eeg_to_montage(eeg): """Returns an instance of montage from an eeg file""" pos = array([eeg.info['chs'][i]['loc'][:3] for i in range(eeg.info['nchan'])]) if not isnan(pos).all(): selection = [i for i in range(eeg.info['nchan'])] montage = Montage(pos, eeg.info['ch_names'], selection=selection, kind='custom') return montage else: return None
9d0823bc9633ead4081b4b068717c8f9385c3e69
19,262
def mul_inv2(x:int, k:int) -> int: """ Computes x*2^{-1} in (Z/3^kZ)*.""" return (inv2(k)*x)%(3**k)
5789b4b9837f5b3bf6093aa586fca8f133ff8c51
19,263
def Be(Subject = P.CA(), Contract=FALSE): """Synonym for Agree("be").""" return Agree("be", Subject, Contract)
e6b1f07d17c34157b9b1ca216f4c0e99c5b25c00
19,264
def line_search_armijo(f, xk, pk, gfk, old_fval, args=(), c1=1e-4, alpha0=0.99): """ Armijo linesearch function that works with matrices find an approximate minimum of f(xk+alpha*pk) that satifies the armijo conditions. Parameters ---------- f : function loss function xk : np.ndarray initial position pk : np.ndarray descent direction gfk : np.ndarray gradient of f at xk old_fval : float loss value at xk args : tuple, optional arguments given to f c1 : float, optional c1 const in armijo rule (>0) alpha0 : float, optional initial step (>0) Returns ------- alpha : float step that satisfy armijo conditions fc : int nb of function call fa : float loss value at step alpha """ xk = np.atleast_1d(xk) fc = [0] def phi(alpha1): fc[0] += 1 return f(xk + alpha1 * pk, *args) if old_fval is None: phi0 = phi(0.) else: phi0 = old_fval derphi0 = np.sum(gfk.T * pk) alpha, phi1 = scalar_search_armijo(phi, phi0, derphi0, c1=c1, alpha0=alpha0) return alpha, fc[0], phi1
aefbe34ad1b28317e4fc21b1d80beda430183660
19,265
def lprob2sigma(lprob): """ translates a log_e(probability) to units of Gaussian sigmas """ if (lprob>-36.): sigma = norm.ppf(1.-0.5*exp(1.*lprob)) else: sigma = sqrt( log(2./pi) - 2.*log(8.2) - 2.*lprob ) return float(sigma)
b224e9b50fc2a171cbb849965946ccae804648d7
19,266
def convert_from_fortran_bool(stringbool): """ Converts a string in this case ('T', 'F', or 't', 'f') to True or False :param stringbool: a string ('t', 'f', 'F', 'T') :return: boolean (either True or False) """ true_items = ['True', 't', 'T'] false_items = ['False', 'f', 'F'] if isinstance(stringbool, str): if stringbool in false_items: return False elif stringbool in true_items: return True else: raise ValueError(f"Could not convert: '{stringbool}' to boolean, " "which is not 'True', 'False', 't', 'T', 'F' or 'f'") elif isinstance(stringbool, bool): return stringbool # no conversion needed... raise TypeError(f"Could not convert: '{stringbool}' to boolean, " 'only accepts str or boolean')
b9840c41a978003e8dcc5191bd7f859fc5b0ecb7
19,267
def gaussian_device(n_subsystems): """Number of qubits or modes.""" return DummyDevice(wires=n_subsystems)
c2779958009ebe2dd7907a0a5f418535d782f4a0
19,268
def create_playlist(current_user, user_id): """ Creates a playlist. :param user_id: the ID of the user. :return: 200, playlist created successfully. """ x = user_id user = session.query(User).filter_by(id=user_id).one() data = request.get_json() new_playlist = Playlist(name=data['name'], description=data['description'], user_id=x) db.session.add(new_playlist) db.session.commit() return jsonify({ 'message' : 'playlist %s created successfully %name' })
6116949956bbc077205adb66bf51b160b7a0d812
19,269
def gram_matrix(y): """ Input shape: b,c,h,w Output shape: b,c,c """ (b, ch, h, w) = y.size() features = y.view(b, ch, w * h) features_t = features.transpose(1, 2) gram = features.bmm(features_t) / (ch * h * w) return gram
9ea7595870dccc1375626c374fb9db1436523e40
19,270
import torch def process_pair_v2(data, global_labels): """ :param path: graph pair data. :return data: Dictionary with data, also containing processed DGL graphs. """ # print('Using v2 process_pair') edges_1 = data["graph_1"] #diff from v1 edges_2 = data["graph_2"] #diff from v1 edges_1 = np.array(edges_1, dtype=np.int64); edges_2 = np.array(edges_2, dtype=np.int64); G_1 = dgl.DGLGraph((edges_1[:,0], edges_1[:,1])); G_2 = dgl.DGLGraph((edges_2[:,0], edges_2[:,1])); G_1.add_edges(G_1.nodes(), G_1.nodes()) #diff from v1 G_2.add_edges(G_2.nodes(), G_2.nodes()) #diff from v1 edges_1 = torch.from_numpy(edges_1.T).type(torch.long) edges_2 = torch.from_numpy(edges_2.T).type(torch.long) data["edge_index_1"] = edges_1 data["edge_index_2"] = edges_2 features_1, features_2 = [], [] for n in data["labels_1"]: features_1.append([1.0 if global_labels[n] == i else 0.0 for i in global_labels.values()]) for n in data["labels_2"]: features_2.append([1.0 if global_labels[n] == i else 0.0 for i in global_labels.values()]) G_1.ndata['features'] = torch.FloatTensor(np.array(features_1)); G_2.ndata['features'] = torch.FloatTensor(np.array(features_2)); G_1.ndata['type'] = np.array(data["labels_1"]); G_2.ndata['type'] = np.array(data["labels_2"]); data['G_1'] = G_1; data['G_2'] = G_2; norm_ged = data["ged"]/(0.5*(len(data["labels_1"])+len(data["labels_2"]))) data["target"] = torch.from_numpy(np.exp(-norm_ged).reshape(1, 1)).view(-1).float() return data
61e0194f521132cfa4e96db925f566abf6b3b427
19,271
from typing import Tuple def calculate_line_changes(diff: Diff) -> Tuple[int, int]: """Return a two-tuple (additions, deletions) of a diff.""" additions = 0 deletions = 0 raw_diff = "\n".join(diff.raw_unified_diff()) for line in raw_diff.splitlines(): if line.startswith("+ "): additions += 1 elif line.startswith("- "): deletions += 1 return additions, deletions
437859735c904a3c7754091c6cb97ba528dc7e72
19,272
def get_synonyms(token): """ get synonyms of word using wordnet args: token: string returns: synonyms: list containing synonyms as strings """ synonyms = [] if len(wordnet.synsets(token)) == 0: return None for synset in wordnet.synsets(token): for lemma in synset.lemmas(): synonyms.append(lemma.name()) synonyms = _remove_repeated_elements(synonyms) synonyms.remove(token) return synonyms
ec26875e694f860c38b709979dfc8328eff17f0f
19,273
def concat_experiments_on_channel(experiments, channel_name): """Combines channel values from experiments into one dataframe. This function helps to compare channel values from a list of experiments by combining them in a dataframe. E.g: Say we want to extract the `log_loss` channel values for a list of experiments. The resulting dataframe will have ['id','x_log_loss','y_log_loss'] columns. Args: experiments(list): list of `neptune.experiments.Experiment` objects. channel_name(str): name of the channel for which we want to extract values. Returns: `pandas.DataFrame`: Dataframe of ['id','x_CHANNEL_NAME','y_CHANNEL_NAME'] values concatenated from a list of experiments. Examples: Instantiate a session:: from neptune.sessions import Session session = Session() Fetch a project and a list of experiments:: project = session.get_projects('neptune-ai')['neptune-ai/Salt-Detection'] experiments = project.get_experiments(state=['aborted'], owner=['neyo'], min_running_time=100000) Construct a channel value dataframe:: from neptunecontrib.api.utils import concat_experiments_on_channel compare_df = concat_experiments_on_channel(experiments,'unet_0 epoch_val iout loss') Note: If an experiment in the list of experiments does not contain the channel with a specified channel_name it will be omitted. """ combined_df = [] for experiment in experiments: if channel_name in experiment.get_channels().keys(): channel_df = experiment.get_numeric_channels_values(channel_name) channel_df['id'] = experiment.id combined_df.append(channel_df) combined_df = pd.concat(combined_df, axis=0) return combined_df
04c8004ccb1a2b5ec2906bb1183e685b8c8ff763
19,274
def sghmc_naive_mh_noresample_uni(u_hat_func, du_hat_func, epsilon, nt, m, M, V, theta_init, r_init, formula): """ This is a function to realize Naive Stochastic Gradient Hamiltonian Monte Carlo with Metropolis-Hastings correction in unidimensional cases without resampling procedure. """ B = 1/2*epsilon*V theta = [theta_init] r = [r_init] for t in range(nt-1): epsilon0 = max(epsilon, formula(t)) theta0, r0 = theta[-1], r[-1] for i in range(m): theta0 = theta0 + epsilon0*1/M*r0 r0 = r0 - epsilon0*du_hat_func(theta0) + np.random.normal(0, np.sqrt(2*B*epsilon0)) # Metropolis-Hastings correction u = np.random.uniform() H1 = u_hat_func(theta0) + 1/2*r0**2*1/M H2 = u_hat_func(theta[-1]) + 1/2*r[-1]**2*1/M p = np.exp(H2 - H1) if u < min(1,p): theta.append(theta0) r.append(r0) return [theta, r]
4f330bf3025506bc2bafca0891025ac8b9a4f280
19,275
def detect_voices(aud, sr=44100): """ Detect the presence and absence of voices in an array of audio Args: Returns: """ pcm_16 = np.round( (np.iinfo(np.int16).max * aud)).astype(np.int16).tobytes() voices = [ VAD.is_speech(pcm_16[2 * ix:2 * (ix + SMOOTHING_WSIZE)], sample_rate=SAMPLING_RATE) for ix in range(0, len(aud), SMOOTHING_WSIZE) ] return voices
ec987cf5e3384cb20d52d07684f7afb5f38f0e98
19,276
def process_to_binary_otsu_image(img_path, inverse=False, max_threshold=255): """ Purpose: Process an image to binary colours using binary otsu thresholding. Args: img_path - path to the image to process inverse - if true an inverted binary thresholding will be applied (optional). max_threshold - the max value to be given if a pixels value is more than the threshold value (optional). Returns: binary_image_tuple[0] - optimal threshold value found by otsu threshold. binary_image_tuple[1] - binary image. """ img = cv2.imread(img_path) gray_img = convert_bgr_to_gray(img) if inverse: binary_image_tuple = threshold_binary_inv_otsu(gray_img, max_threshold) else: binary_image_tuple = threshold_binary_otsu(gray_img, max_threshold) return binary_image_tuple
f450d29540679f2fa7736e7cd0257a56b58c8a8d
19,277
import hashlib import random def _fold_in_str(rng, data): """Folds a string into a jax.random.PRNGKey using its SHA-1 hash.""" m = hashlib.sha1() m.update(data.encode('utf-8')) d = m.digest() hash_int = int.from_bytes(d[:4], byteorder='big', signed=True) return random.fold_in(rng, hash_int)
e0b3d135a9573892cf7f4cfdcea1bc29bbc3e8c0
19,278
def create_task_dialog(request): """called when creating tasks """ return data_dialog(request, mode='create', entity_type='Task')
6712048914a8417792b0dc8a1ab60c081886d4fa
19,279
def raw_rearrange(da, pattern, **kwargs): """Crudely wrap `einops.rearrange <https://einops.rocks/api/rearrange/>`_. Wrapper around einops.rearrange with a very similar syntax. Spaces, parenthesis ``()`` and `->` are not allowed in dimension names. Parameters ---------- da : xarray.DataArray Input array pattern : string Pattern string. Same syntax as patterns in einops with two caveats: * Unless splitting or stacking, you must use the actual dimension names. * When splitting or stacking you can use `(dim1 dim2)=dim`. This is `necessary` for the left hand side as it identifies the dimension to split, and optional on the right hand side, if omitted the stacked dimension will be given a default name. kwargs : dict, optional Passed to :func:`xarray_einstats.einops.rearrange` Returns ------- xarray.DataArray See Also -------- xarray_einstats.einops.rearrange: More flexible and powerful wrapper over einops.rearrange. It is also more verbose. """ if "->" in pattern: in_pattern, out_pattern = pattern.split("->") in_dims = translate_pattern(in_pattern) else: out_pattern = pattern in_dims = None out_dims = translate_pattern(out_pattern) return rearrange(da, out_dims=out_dims, in_dims=in_dims, **kwargs)
a16c8e439882acba930fa143e9d2428d38d1ca70
19,280
from typing import Tuple def get_users() -> Tuple[int, ...]: """Count user ids in db.""" db = get_database_connection() user_searches = db.keys(pattern=f'{DB_SEARCH_PREFIX}*') user_ids = [ int(user_search.decode('utf-8').lstrip(DB_SEARCH_PREFIX)) for user_search in user_searches ] return tuple(user_ids)
2eaded42444fe4ad5395387ddd45022a9e8736ce
19,281
from typing import Optional async def login( email: str, password: str, session: Optional[ClientSession] = None, *, conf_update_interval: Optional[timedelta] = None, device_set_debounce: Optional[timedelta] = None, ): """Login using email and password.""" if session: response = await _do_login(session, email, password, headers=_headers("")) else: async with ClientSession() as _session: response = await _do_login(_session, email, password) return Client( response.get("userunits", '0'), session, conf_update_interval=conf_update_interval, device_set_debounce=device_set_debounce, )
274f0785eb0e2fb3b73cfc4c2810df03df52d7b1
19,282
def rcomp_prediction(system, rcomp, predargs, init_cond): """ Make a prediction with the given system Parameters: system (str): Name of the system to predict rcomp (ResComp): Trained reservoir computer predargs (variable length arguments): Passed directly into rcomp.predict init_cond (dict): Keyword args passed rcomp.predict Returns: pre (ndarray): Reservoir computer prediction """ if system == "softrobot": pre = rcomp.predict(*predargs, **init_cond) else: pre = rcomp.predict(predargs, **init_cond) return pre
fb4eb3e710335788333a12abcd494015f4784a78
19,283
def get_best_model(X ,y): """Select best model from RandomForestClassifier and AdaBoostClassifier""" ensembles = [ (RandomForestClassifier, SelectParam({ 'estimator': RandomForestClassifier(warm_start=True, random_state=7), 'param_grid': { 'n_estimators': [10, 15, 20], 'criterion': ['gini', 'entropy'], 'max_features': [FEATURE_NUM+n for n in [-4, -2, 0]], 'max_depth': [10, 15], 'bootstrap': [True], 'warm_start': [True], }, 'n_jobs':1 })), (AdaBoostClassifier, SelectParam({ 'estimator': AdaBoostClassifier(random_state=7), 'param_grid': { 'algorithm': ['SAMME', 'SAMME.R'], 'n_estimators': [10, 15, 20], 'learning_rate': [1e-3, 1e-2, 1e-1] }, 'n_jobs': 1 })) ] best_score = 0 best_model = None for ensemble, select in ensembles: param = select.get_param(X, y) model = ensemble(**param) score = cross_val_score(model, X, y).mean() if best_score < score: best_score = score best_model = model return best_model
c1ac787d89a0086c263490b12081e0bfe98c6c57
19,284
def compareDates(dateA: list, dateB: list) -> int: """ Compares dateA and dateB\n returns: 1 if dateA > dateB,\n -1 if dateA <dateB, 0 if dateA == dateB \n raise Exception if dates are invalid """ if not checkDateValidity(dateA, dateB): raise invalidDateException('Invalid Dates') i = 2 while i >= 0: if dateA[i] < dateB[i]: return -1 elif dateA[i] > dateB[i]: return 1 else: if i == 0: return 0 i -= 1
927af2e0164706e8013badd90638b2561ab74241
19,285
def renderPage(res, topLevelContext=context.WebContext, reqFactory=FakeRequest): """ Render the given resource. Return a Deferred which fires when it has rendered. """ req = reqFactory() ctx = topLevelContext(tag=res) ctx.remember(req, inevow.IRequest) render = appserver.NevowRequest(None, True).gotPageContext result = render(ctx) result.addCallback(lambda x: req.accumulator) return result
136a06274c9cbb34951a7d2b8544328b4a1f4b60
19,286
def get_header_value(headers, name, default=None): """ Return header value, doing case-insensitive match """ if not headers: return default if isinstance(headers, dict): headers = headers.items() name = to_bytes(name.lower()) for k, v in headers: if name == to_bytes(k.lower()): return v return default
9ddb9754061554bd59b429b78e472bd514e4c14d
19,287
def parse_gt_from_anno(img_anno, classes): """parse_gt_from_anno""" print('parse ground truth files...') ground_truth = {} for img_name, annos in img_anno.items(): objs = [] for anno in annos: if anno[1] == 0. and anno[2] == 0. and anno[3] == 0. and anno[4] == 0.: continue if int(anno[0]) == -1: continue xmin = anno[1] ymin = anno[2] xmax = xmin + anno[3] - 1 ymax = ymin + anno[4] - 1 xmin = int(xmin) ymin = int(ymin) xmax = int(xmax) ymax = int(ymax) cls = classes[int(anno[0])] gt_box = {'class': cls, 'box': [xmin, ymin, xmax, ymax]} objs.append(gt_box) ground_truth[img_name] = objs return ground_truth
63ba02bb0511cdc02245528041257639e764605f
19,288
def pt_to_tup(pt): """ Convenience method to generate a pair of two ints from a tuple or list. Parameters ---------- pt : list OR tuple Can be a list or a tuple of >=2 elements as floats or ints. Returns ------- pt : tuple of int A pair of two ints. """ return (int(pt[0]),int(pt[1]));
7013b2477959f528b98d364e4cc44ac8700fb366
19,289
def _operation(m1, m2, op, k): """Generalized function for basic""" """matrix operations""" n = len(m1) res = [n*[0] for i in range(n)] if n == len(m2): for i in range(n): for j in range(n): tab = { "+" : m1[i][j]+m2[i][j], "-" : m1[i][j]-m2[i][j], "*s": m1[i][j]*k, } res[i][j] = tab[op] return res
5e00ad1a9fbadb9712631450b106b81e5a3413ed
19,290
def jacobi_d1(x, n, alpha, beta): """Evaluate the first derivative of Jacobi polynomial at x using eq. A.1.8 Args: x: the location where the value will be evaluated n: the order of Jacobi polynomial alpha: the alpha parameter of Jacobi polynomial beta: the beta parameter of Jacobi polynomial Returns: the first derivative of Jacobi polynomial at x Raises: None """ jacobi_check(n, alpha, beta) if n == 0: return 0. else: return 0.5 * (alpha + beta + n + 1) * \ jacobi_r(x, n - 1, alpha + 1, beta + 1)
4a982827916466fad0ed812d2ec3792ca1605f0a
19,291
def gate_expand_1toN(U, N, target): """ Create a Qobj representing a one-qubit gate that act on a system with N qubits. Parameters ---------- U : Qobj The one-qubit gate N : integer The number of qubits in the target space. target : integer The index of the target qubit. Returns ------- gate : qobj Quantum object representation of N-qubit gate. """ if N < 1: raise ValueError("integer N must be larger or equal to 1") if target >= N: raise ValueError("target must be integer < integer N") return tensor([identity(2)] * (target) + [U] + [identity(2)] * (N - target - 1))
efb3d4da51e2f6dc90ba7bcf5e085cb651a4fed0
19,292
from typing import Dict from typing import Any from typing import List def build_component_dependency_graph( pipeline_definition: Dict[str, Any], component_definitions: Dict[str, Any] ) -> DiGraph: """ Builds a dependency graph between components. Dependencies are: - referenced components during component build time (e.g. init params) - predecessor components in the pipeline that produce the needed input This enables sorting the components in a working and meaningful order for instantiation using topological sorting. :param pipeline_definition: the definition of the pipeline (e.g. use get_pipeline_definition() to obtain it) :param component_definitions: the definition of the pipeline components (e.g. use get_component_definitions() to obtain it) """ graph = DiGraph() for component_name, component_definition in component_definitions.items(): params = component_definition.get("params", {}) referenced_components: List[str] = list() for param_value in params.values(): # Currently we don't do any additional type validation here. # See https://github.com/deepset-ai/haystack/pull/2253#discussion_r815951591. if param_value in component_definitions: referenced_components.append(param_value) for referenced_component in referenced_components: graph.add_edge(referenced_component, component_name) for node in pipeline_definition["nodes"]: node_name = node["name"] graph.add_node(node_name) for input in node["inputs"]: if input in component_definitions: # Special case for (actually permitted) cyclic dependencies between two components: # e.g. DensePassageRetriever depends on ElasticsearchDocumentStore. # In indexing pipelines ElasticsearchDocumentStore depends on DensePassageRetriever's output. # But this second dependency is looser, so we neglect it. if not graph.has_edge(node_name, input): graph.add_edge(input, node_name) return graph
c70655e4d2b2405d991af43d4a1ad67eb1d8c9d3
19,293
def count_distribution_artefacts(distribution_artefacts): """ Count distribution artefacts in nested list. :param distribution_artefacts: Nested list containing distribution artefacts mapped to media packages and tenants :type distribution_artefacts: dict :return: Amount of distribution artefacts :rtype: int """ return sum([sum([len(distribution_artefacts[tenant][media_package]) for media_package in distribution_artefacts[tenant].keys()]) for tenant in distribution_artefacts.keys()])
b9bc159523e8cbb4745d8b7e8897360f6f9c1960
19,294
def nelson_siegel_yield(tau, theta): """For details, see here. Parameters ---------- tau : array, shape (n_,) theta : array, shape (4,) Returns ------- y : array, shape (n_,) """ y = theta[0] - theta[1] * \ ((1 - np.exp(-theta[3] * tau)) / (theta[3] * tau)) + theta[2] * \ ((1 - np.exp(-theta[3] * tau)) / (theta[3] * tau) - np.exp(-theta[3] * tau)) return np.squeeze(y)
ba328c7698f088c3e371462b6a92c62517054af5
19,295
import argparse def parsing(lst=None): """ Function for parsing command line >>> parsing(["2020", "80", "90", "dataset"]) (2020, 80.0, 90.0, 'dataset') """ parser = argparse.ArgumentParser(description="""Module, which reads data from a file\ with a films list, determines films, \ made in the given year, and geolocation of their production places. Then finds 10 or fewer such nearest to the given point places, makes markers \ for them, and creates a map with a layer of that markers. Also, there is another layer, which contains markers\ of film shooting places in Ukraine. You should enter the year of the films' production, the coordinates of the needed point,\ in comparison to which\ nearest films will be displayed (lat, lon), and the path to the dataset with your films.""") parser.add_argument("year", metavar="Year", type=int, help="Year of films, which\ will be displayed.") parser.add_argument("latitude", metavar="Latitude", type=float, \ help="Latitude of your point.") parser.add_argument("longitude", metavar="Longitude", type=float,\ help="Longitude of your point.") parser.add_argument("path", metavar="Path", help="Path to your dataset.") if lst: results = parser.parse_args(lst) else: results = parser.parse_args() universal_message = ", please check your coordinates" if not -90 <= results.latitude <= 90: message = "%r not in range [-90, 90]" % (results.latitude,) raise argparse.ArgumentTypeError(message + universal_message) if not -90 <= results.longitude <= 90: message = "%r not in range [-90, 90]" % (results.longitude,) raise argparse.ArgumentTypeError(message + universal_message) return results.year, results.latitude, results.longitude, results.path
f625f09b31b60b80d91474560ca01b5df92d567c
19,296
def fix_filename(filename): """Replace illegal or problematic characters from a filename.""" return filename.translate(_filename_trans)
dc8c8e1f85a7372db97273ae595ff69520824574
19,297
def QDenseModel(weights_f, load_weights=False): """Construct QDenseModel.""" x = x_in = Input((RESHAPED,), name="input") x = QActivation("quantized_relu(4)", name="act_i")(x) x = QDense(N_HIDDEN, kernel_quantizer=ternary(), bias_quantizer=quantized_bits(4, 0, 1), name="dense0")(x) x = QActivation("quantized_relu(2)", name="act0")(x) x = QDense( NB_CLASSES, kernel_quantizer=quantized_bits(4, 0, 1), bias_quantizer=quantized_bits(4, 0, 1), name="dense2")( x) x = Activation("softmax", name="softmax")(x) model = Model(inputs=[x_in], outputs=[x]) model.summary() model.compile(loss="categorical_crossentropy", optimizer=OPTIMIZER, metrics=["accuracy"]) if load_weights and weights_f: model.load_weights(weights_f) print_qstats(model) return model
c84f591866708ea086e8c22ff333d60381e1f865
19,298
import os import json def _load_config(): """Load the StreamAlert Athena configuration files Returns: dict: Configuration settings by file, includes two keys: lambda, All lambda function settings global, StreamAlert global settings Raises: ConfigError: For invalid or missing configuration files. """ config_files = ('lambda', 'global') config = {} for config_file in config_files: config_file_path = 'conf/{}.json'.format(config_file) if not os.path.exists(config_file_path): raise ConfigError('The \'{}\' config file was not found'.format( config_file_path)) with open(config_file_path) as config_fh: try: config[config_file] = json.load(config_fh) except ValueError: raise ConfigError('The \'{}\' config file is not valid JSON'.format( config_file)) return config
beef540e97e3322071561009a726c4c7c529f6f6
19,299