content
stringlengths 35
762k
| sha1
stringlengths 40
40
| id
int64 0
3.66M
|
---|---|---|
def mean_IoU(Y_true, Y_pred):
"""
Calculate the mean IoU score between two lists of labeled masks.
:param Y_true: a list of labeled masks (numpy arrays) - the ground truth
:param Y_pred: a list labeled predicted masks (numpy arrays) for images with the original dimensions
:return: mean IoU score for corresponding images
"""
image_precs = []
for y_true,y_pred in zip(Y_true,Y_pred):
true_objects = len(np.unique(y_true))
pred_objects = len(np.unique(y_pred))
# Compute intersection between all objects
intersection = np.histogram2d(y_true.flatten(), y_pred.flatten(), bins=(true_objects, pred_objects))[0]
# Compute areas (needed for finding the union between all objects)
area_true = np.histogram(y_true, bins = true_objects)[0]
area_pred = np.histogram(y_pred, bins = pred_objects)[0]
area_true = np.expand_dims(area_true, -1)
area_pred = np.expand_dims(area_pred, 0)
# Compute union
union = area_true + area_pred - intersection
# Exclude background from the analysis
intersection = intersection[1:,1:]
union = union[1:,1:]
union[union == 0] = 1e-9
# Compute the intersection over union
iou = intersection / union
# Precision helper function
def precision_at(threshold, iou):
matches = iou > threshold
true_positives = np.sum(matches, axis=1) == 1 # Correct objects
false_positives = np.sum(matches, axis=0) == 0 # Missed objects
false_negatives = np.sum(matches, axis=1) == 0 # Extra objects
tp, fp, fn = np.sum(true_positives), np.sum(false_positives), np.sum(false_negatives)
return tp, fp, fn
# Loop over IoU thresholds
prec = []
for t in np.arange(0.5, 1.0, 0.05):
tp, fp, fn = precision_at(t, iou)
p = tp / (tp + fp + fn)
prec.append(p)
image_precs.append(prec)
return [np.mean(image_precs), image_precs]
|
79581b1015512653f428a93c0e61cd5d451f031e
| 32,829 |
def get_matrix_header(filename):
"""
Returns the entries, rows, and cols of a matrix market file.
"""
with open(filename) as f:
entries = 0
rows = 0
cols = 0
for line in f.readlines():
if line.startswith('%'):
continue
line = line.split()
entries = int(line[0])
rows = int(line[1])
cols = int(line[2])
return entries, rows, cols
|
66200661715cb9a67522ced7b13d4140a3905c28
| 32,830 |
def get_slot_names(slotted_instance):
"""Get all slot names in a class with slots."""
# thanks: https://stackoverflow.com/a/6720815/782170
return slotted_instance.__slots__
|
bd0f5b58964444396ceae7facb916012a4fb7c8a
| 32,831 |
def make_standard_fisher_regularizer(make_logits, scope, should_regularize,
perturbation, differentiate_probability):
"""Creates per-example logits and the per-example standard Fisher-Rao norm.
This function assumes the model of a categorical distribution generated by a
softmax function.
The standard Fisher-Rao norm uses the model distribution computed from the
logits by the softmax function to estimate the Fisher information matrix.
The empirical training distribution is used for the input values.
Args:
make_logits: Function, returns `Tensor` representing the per-example logits.
The expected shape of the tensor is such that the number of categories
is the last dimension.
scope: String, name of `VariableScope` to use for the `Variable` objects
that represent the regularized parameter.
should_regularize: Function, takes a variable name as String and returns
Boolean that decides whether the variable should be regularized.
The passed variable name includes the name of the scope.
perturbation: Float, finite difference perturbation constant.
The choice of perturbation constant represents a tradeoff between rounding
and approximation error and should depend on floating point precision and
parameter norm.
differentiate_probability: Boolean, determines whether the label probability
distribution should be differentiated.
Returns:
A tuple of `Tensor` objects representing the per-example logits and the
scalar standard Fisher-Rao norm regularization loss.
Raises:
ValueError: if the last dimension of the logits shape is not statically
inferrable.
"""
collector = VariableCollector()
with tf.variable_scope(scope, custom_getter=collector.collector_getter):
logits = make_logits()
if logits.shape[-1].value is None:
raise ValueError("The size of the last dimension of the logits vector must"
" be statically inferrable.")
with tf.variable_scope(
scope,
custom_getter=
make_perturbation_getter(should_regularize, collector, perturbation)):
perturbed_logits = make_logits()
log_probs = tf.nn.log_softmax(logits, axis=-1)
perturbed_log_probs = tf.nn.log_softmax(perturbed_logits, axis=-1)
stop_probs = tf.stop_gradient(tf.exp(log_probs))
log_prob_derivative = (tf.square((perturbed_log_probs - log_probs) /
perturbation))
if differentiate_probability:
prob_regularizer_loss = (log_prob_derivative * stop_probs +
tf.stop_gradient(log_prob_derivative) * log_probs *
stop_probs -
tf.stop_gradient(log_prob_derivative * log_probs *
stop_probs))
else:
prob_regularizer_loss = log_prob_derivative * stop_probs
regularizer = logits.shape[-1].value * tf.reduce_mean(prob_regularizer_loss)
return (logits, regularizer)
|
b8edc41ccce39511e147fdfeb919c30ad65e8a85
| 32,832 |
def objective(y_objective, sim_param, curve_param):
"""
Calculates the objective function (RMS-VIF) given the control point y-values of a given particle
:param y_objective: control point y-values of the particle
:param sim_param: Instance of sim_param
:param curve_param: Instance of curve_param
:return: RMS-VIF
"""
curve = initialize_NURBS(curve_param, sim_param, y_objective) # builds NURBS from the control point y-values
R = calculate_R_from_curve(curve, sim_param) # builds the PDE-FIND system matrix from the NURBS IC
rms_vif = calculate_rms_vif(R) # Calculate RMS-VIF from the matrix R
return rms_vif
|
8191aa0cc346ea596c88d3cdff86c3a3abc3ccca
| 32,833 |
def shortest_first_name(names):
"""Returns the shortest first name (str)"""
names = dedup_and_title_case_names(names)
name_dict = []
for i in names:
i = i.split()
name_dict.append({'name':i[0], 'surname': i[1]})
short_name_sort = sorted(name_dict, key=lambda k: len(k['name']))
return short_name_sort[0]['name']
|
868d5d977d4ef3aa4264fa1644ca5f142920bbe4
| 32,835 |
def timezone_validator(self, response):
"""Match timezone code in libraries/timezone.
Arguments
---------
response: "String containing current answer"
Raises
------
ValidationError: "Display a short description with available formats"
Returns
-------
boolean: True
"""
timezone_list = open('libraries/timezone').read()
if ('{response}\n'.format(response=response) not in timezone_list) or \
(response == ''):
raise ValidationError('', reason=self.trad(
'Invalid timezone: {response} (e.q., Europe/Paris)').format(
response=response))
return True
|
080e56256a72a254e1c5940d16a5a89b693a3ad6
| 32,836 |
def reset_clb_srv(req):
"""
Service when reset of state planner
:param req:
:return:
"""
global reset_pose, pose_msgs , goal_sub, global_offset
rospy.loginfo_once("reset pose")
resp = TriggerResponse()
resp.success = True
resp.message = "Reset pose: True"
reset_pose = pose_msgs.pose.pose.position
print "reset position:", reset_pose
global_offset.linear.x = 0.
global_offset.linear.y = 0.
global_offset.linear.z = 0.
return resp
|
14deae77fd35fa256760164978eacf7cee1421ad
| 32,837 |
import tkinter
def Calcola():
"""Calcolate point of task!"""
esci=False
while esci is False:
try:
check=False
while check is False:
DeadLine=input("inserisci la deadline in giorni ")
try:
DeadLine = int(DeadLine)
check=True
except ValueError:
root = tkinter.Tk()
root.withdraw()
mb.showerror("errore","errore non è stato inserito un numero")
root.destroy()
check=False
while check is False:
livello=input("Livello(da 1-10 secondo la gravità del problema) ")
try:
livello = int(livello)
if livello<1 or livello>10:
root = tkinter.Tk()
root.withdraw()
mb.showerror("errore","errore il valore inserito non è valido")
root.destroy()
else:
check=True
except ValueError:
root = tkinter.Tk()
root.withdraw()
mb.showerror("errore","errore non è stato inserito un numero")
root.destroy()
check=False
while check is False:
difficolta=input("inserire il livello di difficolta stimato da 1-10 ")
try:
difficolta = int(difficolta)
if difficolta<1 or difficolta>10:
root = tkinter.Tk()
root.withdraw()
mb.showerror("errore","errore il valore inserito non è valido")
root.destroy()
else:
check=True
esci=True
except ValueError:
root = tkinter.Tk()
root.withdraw()
mb.showerror("errore","errore non è stato inserito un numero")
root.destroy()
except KeyboardInterrupt:
root = tkinter.Tk()
root.withdraw()
mb.showerror("errore","non puoi uscire")
root.destroy()
punteggio=250-DeadLine-livello-difficolta
return punteggio
|
7f9d03a2c45a3dd06172368213000c38ffa6532d
| 32,838 |
import six
def disabled(name):
"""
Ensure an Apache module is disabled.
.. versionadded:: 2016.3.0
name
Name of the Apache module
"""
ret = {"name": name, "result": True, "comment": "", "changes": {}}
is_enabled = __salt__["apache.check_mod_enabled"](name)
if is_enabled:
if __opts__["test"]:
msg = "Apache module {0} is set to be disabled.".format(name)
ret["comment"] = msg
ret["changes"]["old"] = name
ret["changes"]["new"] = None
ret["result"] = None
return ret
status = __salt__["apache.a2dismod"](name)["Status"]
if isinstance(status, six.string_types) and "disabled" in status:
ret["result"] = True
ret["changes"]["old"] = name
ret["changes"]["new"] = None
else:
ret["result"] = False
ret["comment"] = "Failed to disable {0} Apache module".format(name)
if isinstance(status, six.string_types):
ret["comment"] = ret["comment"] + " ({0})".format(status)
return ret
else:
ret["comment"] = "{0} already disabled.".format(name)
return ret
|
edc69d3ad8b03c739a01e28d50aacbf00db54d9c
| 32,839 |
def get_stops_in_polygon(feed, polygon, geo_stops=None):
"""
Return the slice of ``feed.stops`` that contains all stops that lie
within the given Shapely Polygon object that is specified in
WGS84 coordinates.
Parameters
----------
feed : Feed
polygon : Shapely Polygon
Specified in WGS84 coordinates
geo_stops : Geopandas GeoDataFrame
A geographic version of ``feed.stops`` which will be computed
if not given.
Specify this parameter in batch jobs to avoid unnecessary
computation.
Returns
-------
DataFrame
Subset of ``feed.stops``
Notes
-----
- Requires GeoPandas
- Assume the following feed attributes are not ``None``:
* ``feed.stops``, if ``geo_stops`` is not given
"""
if geo_stops is not None:
f = geo_stops.copy()
else:
f = geometrize_stops(feed.stops)
cols = f.columns
f['hit'] = f['geometry'].within(polygon)
f = f[f['hit']][cols]
return ungeometrize_stops(f)
|
cf42652a1a00f9f70f51d5bc9597733ca9d89cf6
| 32,840 |
def define_stkvar(*args):
"""
define_stkvar(pfn, name, off, flags, ti, nbytes) -> bool
Define/redefine a stack variable.
@param pfn: pointer to function (C++: func_t *)
@param name: variable name, NULL means autogenerate a name (C++: const
char *)
@param off: offset of the stack variable in the frame. negative values
denote local variables, positive - function arguments.
(C++: sval_t)
@param flags: variable type flags ( byte_flag() for a byte variable,
for example) (C++: flags_t)
@param ti: additional type information (like offsets, structs, etc)
(C++: const opinfo_t *)
@param nbytes: number of bytes occupied by the variable (C++: asize_t)
@return: success
"""
return _ida_frame.define_stkvar(*args)
|
bbd52e35a92dcd84afe990e0519a2a5e26abe5b8
| 32,841 |
def spherical_polar_area(r, lon, lat):
"""Calculates the area bounding an array of latitude and longitude points.
Parameters
----------
r : float
Radius of sphere.
lon : 1d array
Longitude points. [Degrees]
lat : 1d array
Longitude points. [Degrees]
Returns
-------
areas: 2d array
"""
mid_dlon = (lon[2:] - lon[:-2]) / 2.0
s_dlon = lon[1] - lon[0]
e_dlon = lon[-1] - lon[-2]
dlon = np.hstack((s_dlon, mid_dlon, e_dlon))
mid_dlat = (lat[2:] - lat[:-2]) / 2.0
s_dlat = lat[1] - lat[0]
e_dlat = lat[-1] - lat[-2]
dlat = np.hstack((s_dlat, mid_dlat, e_dlat))
dlon, dlat = np.deg2rad(dlon), np.deg2rad(dlat)
gdlon, gdlat = np.meshgrid(dlon, dlat)
solid_angle = gdlon.T * gdlat.T * np.cos(np.deg2rad(lat))
return solid_angle.T * r ** 2
|
a07b73f6e04ee64b06d1e663dfff7ff971d00bf5
| 32,842 |
def row_plays(hand, row):
"""Return the set of legal plays in the specified row.
A row play is a (start, 'WORD') pair,
"""
results = set()
# for each anchor and for each legal prefix, add all legal suffixes and save any valid words in results
for (i, square) in enumerate(row[1: -1], start=1):
if isinstance(square, Anchor):
prefix, max_size = legal_prefix(i, row)
# there are already letters in the board, to the left of this anchor
if prefix:
start = i - len(prefix)
add_suffixes(hand, prefix, start, row, results, anchored=False)
# the board is empty to the left of this anchor
else:
for prefix in find_prefixes(hand):
if len(prefix) <= max_size:
start = i - len(prefix)
add_suffixes(removed(hand, prefix), prefix, start, row, results, anchored=False)
return results
|
5b98f30fb8a932f31bc9bc0b22f21480880c3302
| 32,843 |
def nearest_pillar(grid, xy, ref_k0 = 0, kp = 0):
"""Returns the (j0, i0) indices of the primary pillar with point closest in x,y plane to point xy."""
# note: currently works with unmasked data and using primary pillars only
pe_i = grid.extent_kji[2] + 1
sum_dxy2 = grid.pillar_distances_sqr(xy, ref_k0 = ref_k0, kp = kp)
ji = np.nanargmin(sum_dxy2)
j, i = divmod(ji, pe_i)
return (j, i)
|
2338698963cb6bddca8d9702e000e5be125e6e86
| 32,844 |
def read_state(file, statename):
""" read and select state from file
Args:
file (str): path to state shapefile
statename (str): name of state (i.e. California)
"""
all = gpd.read_file("../data/states.shp")
state = all[all['STATE_NAME'] == statename]
return state
|
0732d01dfb466ac00622964dfd3a9d0655367fbf
| 32,845 |
def get_random_state(seed):
"""
Get a random number from the whole range of large integer values.
"""
np.random.seed(seed)
return np.random.randint(MAX_INT)
|
abf99c5547d146bfc9e6e1d33e7970d7090ba6d2
| 32,846 |
def get_start_and_end_time(file_or_file_object):
"""
Returns the start and end time of a MiniSEED file or file-like object.
:type file_or_file_object: str or file
:param file_or_file_object: MiniSEED file name or open file-like object
containing a MiniSEED record.
:return: tuple (start time of first record, end time of last record)
This method will return the start time of the first record and the end time
of the last record. Keep in mind that it will not return the correct result
if the records in the MiniSEED file do not have a chronological ordering.
The returned end time is the time of the last data sample and not the
time that the last sample covers.
.. rubric:: Example
>>> from obspy.core.util import get_example_file
>>> filename = get_example_file(
... "BW.BGLD.__.EHE.D.2008.001.first_10_records")
>>> get_start_and_end_time(filename) # doctest: +NORMALIZE_WHITESPACE
(UTCDateTime(2007, 12, 31, 23, 59, 59, 915000),
UTCDateTime(2008, 1, 1, 0, 0, 20, 510000))
It also works with an open file pointer. The file pointer itself will not
be changed.
>>> f = open(filename, 'rb')
>>> get_start_and_end_time(f) # doctest: +NORMALIZE_WHITESPACE
(UTCDateTime(2007, 12, 31, 23, 59, 59, 915000),
UTCDateTime(2008, 1, 1, 0, 0, 20, 510000))
And also with a MiniSEED file stored in a BytesIO
>>> import io
>>> file_object = io.BytesIO(f.read())
>>> get_start_and_end_time(file_object) # doctest: +NORMALIZE_WHITESPACE
(UTCDateTime(2007, 12, 31, 23, 59, 59, 915000),
UTCDateTime(2008, 1, 1, 0, 0, 20, 510000))
>>> file_object.close()
If the file pointer does not point to the first record, the start time will
refer to the record it points to.
>>> _ = f.seek(512)
>>> get_start_and_end_time(f) # doctest: +NORMALIZE_WHITESPACE
(UTCDateTime(2008, 1, 1, 0, 0, 1, 975000),
UTCDateTime(2008, 1, 1, 0, 0, 20, 510000))
The same is valid for a file-like object.
>>> file_object = io.BytesIO(f.read())
>>> get_start_and_end_time(file_object) # doctest: +NORMALIZE_WHITESPACE
(UTCDateTime(2008, 1, 1, 0, 0, 1, 975000),
UTCDateTime(2008, 1, 1, 0, 0, 20, 510000))
>>> f.close()
"""
# Get the starttime of the first record.
info = get_record_information(file_or_file_object)
starttime = info['starttime']
# Get the end time of the last record.
info = get_record_information(
file_or_file_object,
(info['number_of_records'] - 1) * info['record_length'])
endtime = info['endtime']
return starttime, endtime
|
4c094a8fb1d9e186a0bbcbff25b7af8ac5461131
| 32,847 |
from typing import Optional
import json
import asyncio
async def send_message(msg: str) -> Optional[str]:
"""
Send a message to the websocket and return the response
Args:
msg: The message to be sent
Returns:
The response message or None if it was not defined
"""
if not (WS and WS.open):
print('Reconnecting websocket')
await connect_ws()
print(f'Sending message {msg}')
data = {
'text': msg
}
json_data = json.dumps(data)
await WS.send(json_data)
try:
resp = json.loads(await asyncio.wait_for(WS.recv(), 3))
except asyncio.TimeoutError:
return
new_message = resp['text']
return new_message
|
d6395c3f74baf1900d99f605a08b77990637be8e
| 32,848 |
def _getname(storefile):
"""returns the filename"""
if storefile is None:
raise ValueError("This method cannot magically produce a filename when given None as input.")
if not isinstance(storefile, basestring):
if not hasattr(storefile, "name"):
storefilename = _getdummyname(storefile)
else:
storefilename = storefile.name
else:
storefilename = storefile
return storefilename
|
fa423102a3ff8355af4784eaa39b2a065da80ec4
| 32,849 |
def flow_lines(sol, nlines, time_length, scale=0.5):
"""
compute the flow lines of the solution
Parameters
----------
sol : :py:class:`Simulation<pylbm.simulation.Simulation>`
the solution given by pylbm
nlines : int (number of flow lines)
time_length : double (time during which we follow the lines)
scale : double (velocity scale (default 0.5))
Returns
-------
list
lines
"""
u_x = sol.m[QX] / sol.m[RHO]
u_y = sol.m[QY] / sol.m[RHO]
# if scale is None:
# scale = max(np.linalg.norm(u_x, np.inf), np.linalg.norm(u_y, np.inf))
lines = []
xmin, xmax = sol.domain.geom.bounds[0]
ymin, ymax = sol.domain.geom.bounds[1]
dx = sol.domain.dx
nx, ny = sol.domain.shape_in
for _ in range(nlines):
# begin a new line
cont = True # boolean to continue the line
x = xmin + (xmax-xmin) * np.random.rand()
y = ymin + (ymax-ymin) * np.random.rand()
line_x, line_y = [x], [y]
t = 0
while cont:
i, j = int((x-xmin)/(xmax-xmin)*nx), int((y-ymin)/(ymax-ymin)*ny)
uxij, uyij = u_x[i, j], u_y[i, j]
if uxij == 0 and uyij == 0:
cont = False
else:
dt = dx*scale / np.sqrt(uxij**2+uyij**2)
x += uxij*dt
y += uyij*dt
t += dt
if x < xmin or x >= xmax or y < ymin or y >= ymax:
cont = False
else:
line_x.append(x)
line_y.append(y)
if t >= time_length:
cont = False
lines.append([np.array(line_x), np.array(line_y)])
return lines
|
fea6667aa8b3012918a66ae3f6e94b9b0a4439ad
| 32,850 |
def minOperations(n):
""" finds min. operations to reach and string """
if type(n) != int or n <= 1:
return 0
res = 0
i = 2
while(i <= n + 1):
if (n % i == 0):
res += i
n /= i
else:
i += 1
return res
|
c26cbd71c6e675adea79938b6e7248a4c093e63f
| 32,851 |
def matrix2dictionary(matrix):
"""
convert matrix to dictionary of comparisons
"""
pw = {}
for line in matrix:
line = line.strip().split('\t')
if line[0].startswith('#'):
names = line[1:]
continue
a = line[0]
for i, pident in enumerate(line[1:]):
b = names[i]
if a not in pw:
pw[a] = {}
if b not in pw:
pw[b] = {}
if pident != '-':
pident = float(pident)
pw[a][b] = pident
pw[b][a] = pident
return pw
|
fd53dc4f80ff45d4eb41939af54be1d712ee2fa4
| 32,852 |
def combine_fastq_output_files(files_to_combine, out_prefix, remove_temp_output):
""" Combines fastq output created by BMTagger/bowtie2 on multiple databases and
returns a list of output files. Also updates the log file with read counts for the
input and output files.
"""
# print out the reads for all files
utilities.log_read_count_for_files(files_to_combine,"Total reads after removing those found in reference database")
# create lists of all of the output files for pair 1 and for pair 2
files_for_pair1 = [f[0] for f in files_to_combine]
try:
files_for_pair2 = [f[1] for f in files_to_combine]
except IndexError:
files_for_pair2 = []
# select an output prefix based on if the outputs are paired or not
output_file = out_prefix + "_1" + config.fastq_file_extension
if not files_for_pair2:
output_file = out_prefix + config.fastq_file_extension
# create intersect file from all output files for pair 1
intersect_fastq(files_for_pair1, output_file, remove_temp_output)
output_files=[output_file]
# create an intersect file from all output files for pair 2
if files_for_pair2:
output_file = out_prefix + "_2" + config.fastq_file_extension
intersect_fastq(files_for_pair2, output_file, remove_temp_output)
output_files.append(output_file)
# Get the read counts for the newly merged files
utilities.log_read_count_for_files(output_files,"Total reads after merging results from multiple databases")
# remove temp files if set
if remove_temp_output:
for group in [files_for_pair1, files_for_pair2]:
for filename in group:
utilities.remove_file(filename)
return output_files
|
1421878edf7e44b46b386d7d4465090cc22acfa4
| 32,853 |
import json
def deliver_dap():
"""
Endpoint for submissions only intended for DAP. POST request requires the submission JSON to be uploaded
as "submission" and the filename passed in the query parameters.
"""
logger.info('Processing DAP submission')
filename = request.args.get("filename")
meta = MetaWrapper(filename)
files = request.files
submission_bytes = files[SUBMISSION_FILE].read()
survey_dict = json.loads(submission_bytes.decode())
data_bytes = submission_bytes
meta.set_dap(survey_dict, data_bytes)
return process(meta, data_bytes)
|
e7c2753319f512eaa1328fcb3cc808a17a5933b8
| 32,854 |
def api_run_delete(run_id):
"""Delete the given run and corresponding entities."""
data = current_app.config["data"] # type: DataStorage
RunFacade(data).delete_run(run_id)
return "DELETED run %s" % run_id
|
c2a07caa95d9177eb8fe4b6f27caf368d1a9fbdd
| 32,855 |
import numpy
def gfalternate_createdataandstatsdict(ldt_tower,data_tower,attr_tower,alternate_info):
"""
Purpose:
Creates the data_dict and stat_dict to hold data and statistics during gap filling from
alternate data sources.
Usage:
Side effects:
Called by:
Calls:
Author: PRI
Date: May 2015
"""
data_dict = {}
stat_dict = {}
label_tower = alternate_info["label_tower"]
label_composite = alternate_info["label_composite"]
data_dict["DateTime"] = {"data":ldt_tower}
data_dict[label_tower] = {"attr":attr_tower,
"output_list":[label_tower,label_composite],
"data":data_tower}
data_dict[label_composite] = {"data":numpy.ma.masked_all_like(data_tower),
"fitcorr":numpy.ma.masked_all_like(data_tower),
"attr":attr_tower}
stat_dict[label_tower] = {"startdate":alternate_info["startdate"],"enddate":alternate_info["enddate"]}
stat_dict[label_composite] = {"startdate":alternate_info["startdate"],"enddate":alternate_info["enddate"]}
return data_dict,stat_dict
|
a1690fb9e53abcd6b23e33046d82c10a2ca7abc0
| 32,856 |
import re
def doGeneMapping(model):
"""
Function that maps enzymes and genes to reactions
This function works only if the GPR associations are defined
as follows: (g1 and g2 and g6) or ((g3 or g10) and g12)
- *model* Pysces model
- *GPRdict* dictionary with (iso)enzymes mapped to reactions
- *SubUdict* dictionary with genes mapped to isoenzymes
"""
def unique_list(seq):
"""Function to remove duplicates"""
seen = set()
seen_add = seen.add
return [x for x in seq if not (x in seen or seen_add(x))]
# Get GPR associations for reactions (strings) and
# and split according to keywords 'and', 'or'
GPRdict = {}
model.createGeneAssociationsFromAnnotations()
reactions = model.getReactionIds()
SubUdict = {}
no_associations = 0
for r_ in reactions:
try:
ass = model.getReaction(r_).getAnnotations()
if 'GENE ASSOCIATION' in ass:
g_ = ass['GENE ASSOCIATION']
elif 'GENE_ASSOCIATION' in ass:
g_ = ass['GENE_ASSOCIATION']
elif 'gene_association' in ass:
g_ = ass['gene_association']
elif 'gene association' in ass:
g_ = ass['gene association']
if g_ != 'None' and g_ != '' :
# Enzymes
# g_ = g_.split(') or (')
g_ = re.split(r'\)\s+or\s+\(|\)\s+or\s+|\s+or\s+\(',g_)
S_list = []
for enzyme in g_:
enzyme = enzyme.replace(')','')
enzyme = enzyme.replace('(','')
# Isoenzymes
enzyme = enzyme.replace(' or ','_or_')
# Subunits
subunits = enzyme.split(' and ')
subunits_mod = []
for s in subunits:
# remove extra space
tmp = s.replace(' ','')
# replace possible dashes
tmp = tmp.replace('-','_')
# add gene prefix
tmp = 'GENE_' + tmp
subunits_mod.append(tmp)
S_list.append(subunits_mod)
# Dictionary for isoenzymes
for enzymes in S_list:
for gene in enzymes:
gene = gene.replace(' ','')
if 'or' in gene:
# SubUdict[gene] = gene.split('_or_')
SubUdict[gene] = unique_list(gene.split('_or_'))
# GPRdict[r_] = S_list
GPRdict[r_] = [unique_list(s) for s in S_list]
except:
no_associations+=1
print '{} of {} reactions have no GPR Associations' .format(no_associations,len(reactions))
# print GPRdict
# print SubUdict
# raw_input()
return GPRdict, SubUdict
|
d2e12f7161aca69afa28f7bb0d528d9b922b25b4
| 32,857 |
def delay_to_midnight():
"""Calculates the delay between the current time and midnight"""
current_time = get_current_time()
delay = time_conversions.hhmm_to_seconds("24:00") - time_conversions.hhmm_to_seconds(current_time)
return delay
|
14b33591e58975cd5a4f95d3602e6a1494131267
| 32,858 |
def predict(model, imgs):
"""
Predict the labels of a set of images using the VGG16 model.
Args:
imgs (ndarray) : An array of N images (size: N x width x height x channels).
Returns:
preds (np.array) : Highest confidence value of the predictions for each image.
idxs (np.ndarray): Class index of the predictions with the max confidence.
classes (list) : Class labels of the predictions with the max confidence.
"""
# predict probability of each class for each image
all_preds = model.predict(imgs)
# for each image get the index of the class with max probability
idxs = np.argmax(all_preds, axis=1)
# get the values of the highest probability for each image
preds = [all_preds[i, idxs[i]] for i in range(len(idxs))]
# get the label of the class with the highest probability for each image
classes = [model.classes[idx] for idx in idxs]
return preds, idxs, classes
|
0f992412a9067608e99a6976c6ef65b466ef7572
| 32,859 |
def _endmsg(rd) -> str:
"""
Returns an end message with elapsed time
"""
msg = ""
s = ""
if rd.hours > 0:
if rd.hours > 1:
s = "s"
msg += colors.bold(str(rd.hours)) + " hour" + s + " "
s = ""
if rd.minutes > 0:
if rd.minutes > 1:
s = "s"
msg += colors.bold(str(rd.minutes)) + " minute" + s + " "
# if rd.seconds > 0:
# msg+=str(rd.seconds)
# else:
# msg+="0."
milliseconds = int(rd.microseconds / 1000)
if milliseconds > 0:
msg += colors.bold(str(rd.seconds) + "." + str(milliseconds))
msg += " seconds"
return msg
|
635792c4ebf772926f492e5976ee4ac7caf92cca
| 32,861 |
import bz2
import zlib
import lzma
def decompress(fcn):
"""Decorator that decompresses returned data.
libmagic is used to identify the MIME type of the data and the function
will keep decompressing until no supported compression format is identified.
"""
def wrapper(cls, raw=False, *args, **kw):
data = fcn(cls)
if raw:
# return raw data without decompressing
return data
mime_type, mime_subtype = magic.from_buffer(data, mime=True).split('/')
while mime_subtype in ('x-bzip2', 'x-bzip', 'bzip', 'x-gzip', 'gzip', 'x-xz'):
if mime_subtype in ('x-bzip2', 'x-bzip', 'bzip'):
data = bz2.decompress(data)
elif mime_subtype in ('x-gzip', 'gzip'):
data = zlib.decompress(data, 16 + zlib.MAX_WBITS)
elif mime_subtype in ('x-xz'):
data = lzma.decompress(data)
mime_type, mime_subtype = magic.from_buffer(data, mime=True).split('/')
return data
return wrapper
|
ba5d1540da70c4f92604888f5fd10b879bd62371
| 32,862 |
def get_satellite_params(platform=None):
"""
Helper function to generate Landsat or Sentinel query information
for quick use during NRT cube creation or sync only.
Parameters
----------
platform: str
Name of a satellite platform, Landsat or Sentinel only.
params
"""
# check platform name
if platform is None:
raise ValueError('Must provide a platform name.')
elif platform.lower() not in ['landsat', 'sentinel']:
raise ValueError('Platform must be Landsat or Sentinel.')
# set up dict
params = {}
# get porams depending on platform
if platform.lower() == 'landsat':
# get collections
collections = [
'ga_ls5t_ard_3',
'ga_ls7e_ard_3',
'ga_ls8c_ard_3']
# get bands
bands = [
'nbart_red',
'nbart_green',
'nbart_blue',
'nbart_nir',
'nbart_swir_1',
'nbart_swir_2',
'oa_fmask']
# get resolution
resolution = 30
# build dict
params = {
'collections': collections,
'bands': bands,
'resolution': resolution}
else:
# get collections
collections = [
's2a_ard_granule',
's2b_ard_granule']
# get bands
bands = [
'nbart_red',
'nbart_green',
'nbart_blue',
'nbart_nir_1',
'nbart_swir_2',
'nbart_swir_3',
'fmask']
# get resolution
resolution = 10
# build dict
params = {
'collections': collections,
'bands': bands,
'resolution': resolution}
return params
|
2298c100eed431a48a9531bc3038c5ab8565025d
| 32,863 |
import random
def generate_random_token(length = 64):
""" Generates a random token of specified length.
"""
lrange = 16 ** length
hexval = "%0{}x".format(length)
return hexval % (random.randrange(lrange))
|
5140dc2a07cb336387fd3e71b3b1edc746cccb44
| 32,864 |
from typing import Optional
from typing import Union
from typing import Tuple
def permute_sse_metric(
name: str,
ref: np.ndarray,
est: np.ndarray,
compute_permutation: bool = False,
fs: Optional[int] = None) -> Union[float, Tuple[float, list]]:
"""
Computation of SiSNR/PESQ/STOI in permutation/non-permutation mode
Args:
name: metric name
ref: array, reference signal (N x S or S, ground truth)
est: array, enhanced/separated signal (N x S or S)
compute_permutation: return permutation order or not
fs: sample rate of the audio
"""
if name == "sisnr":
return _permute_eval(aps_sisnr,
ref,
est,
compute_permutation=compute_permutation,
fs=fs)
elif name == "pesq":
return _permute_eval(aps_pesq,
ref,
est,
compute_permutation=compute_permutation,
fs=fs)
elif name == "stoi":
return _permute_eval(aps_stoi,
ref,
est,
compute_permutation=compute_permutation,
fs=fs)
elif name == "sdr":
if ref.ndim == 1:
ref, est = ref[None, :], est[None, :]
sdr, _, _, _, ali = bss_eval_images(ref[..., None],
est[..., None],
compute_permutation=True)
if compute_permutation:
return sdr.mean(), ali[:, 0].tolist()
else:
return sdr[0, 0]
else:
raise ValueError(f"Unknown name of the metric: {name}")
|
4e6398852231fa74b8999158dc5f20833f53643b
| 32,866 |
from typing import Literal
def test_if() -> None:
"""if-elif-else."""
PositiveOrNegative = Literal[-1, 0, 1]
def positive_negative(number: int) -> PositiveOrNegative:
"""Return -1 for negative numbers, 1 for positive numbers, and 0 for 0."""
result: PositiveOrNegative
if number < 0:
result = -1
elif number == 0:
result = 0
else:
result = 1
return result
assert positive_negative(100) == 1
assert positive_negative(0) == 0
assert positive_negative(-99) == -1
|
771c5e5375b161d5eed0efc00db1094a7996169a
| 32,870 |
def ba2str(ba):
"""Convert Bluetooth address to string"""
string = []
for b in ba.b:
string.append('{:02X}'.format(b))
string.reverse()
return ':'.join(string).upper()
|
765fc9dbbea5afdd32c6d09c18f428e3693e20bf
| 32,871 |
import requests
def delete_user(client: Client, user_id: str) -> bool:
"""Deletes disabled user account via the `/users/{user_id}` endpoint.
:param client: Client object
:param user_id: The ID of the user account
:return: `True` if succeeded, `False` otherwise
"""
params = {'version': get_user_info(client, user_id)['version']}
response = requests.delete(
f'{client.base_url}/api/2/users/{user_id}',
headers=client.auth_header,
params=params,
)
handle_error_response(response)
return response.status_code == 204
|
f385ca6e1108f95c00e28dbd99ffa640fefed761
| 32,873 |
import requests
def get_token(corp_id: str, corp_secret: str):
"""获取access_token
https://open.work.weixin.qq.com/api/doc/90000/90135/91039
"""
req = requests.get(
f'https://qyapi.weixin.qq.com/cgi-bin/gettoken?corpid={corp_id}&corpsecret={corp_secret}'
)
return req.json().get('access_token')
|
9a9c3fcdb74312b5d2d7c62588aea3cf78796ec9
| 32,874 |
def _update_run_op(beta1, beta2, eps, global_step, lr, weight_decay, param, m, v, gradient, decay_flag, optim_filter):
"""
Update parameters.
Args:
beta1 (Tensor): The exponential decay rate for the 1st moment estimations. Should be in range (0.0, 1.0).
beta2 (Tensor): The exponential decay rate for the 2nd moment estimations. Should be in range (0.0, 1.0).
eps (Tensor): Term added to the denominator to improve numerical stability. Should be greater than 0.
lr (Tensor): Learning rate.
weight_decay (Number): Weight decay. Should be equal to or greater than 0.
global_step (Tensor): Global step.
param (Tensor): Parameters.
m (Tensor): m value of parameters.
v (Tensor): v value of parameters.
gradient (Tensor): Gradient of parameters.
decay_flag (bool): Specifies whether param update with weight decay.
optim_filter(bool): Applies parameter update or not.
Returns:
Tensor, the new value of v after updating.
"""
if optim_filter:
op_mul = P.Mul()
op_sqrt = P.Sqrt()
op_rsqrt = P.Rsqrt()
op_square = P.Square()
op_cast = P.Cast()
op_reshape = P.Reshape()
op_shape = P.Shape()
op_pow = P.Pow()
op_norm = layer.Norm()
op_select = P.Select()
op_greater = P.Greater()
op_fill = P.Fill()
op_dtype = P.DType()
param_fp32 = op_cast(param, mstype.float32)
m_fp32 = op_cast(m, mstype.float32)
v_fp32 = op_cast(v, mstype.float32)
gradient_fp32 = op_cast(gradient, mstype.float32)
next_m = op_mul(beta1, m_fp32) + op_mul(op_cast(num_one, mstype.float32) - beta1, gradient_fp32)
next_v = op_mul(beta2, v_fp32) + op_mul(op_cast(num_one, mstype.float32) - beta2, op_square(gradient_fp32))
next_mm = next_m / (op_cast(num_one, mstype.float32)
- op_pow(beta1, op_cast(global_step + num_one, mstype.float32)))
next_vv = next_v / (op_cast(num_one, mstype.float32) -
op_pow(beta2, op_cast(global_step + num_one, mstype.float32)))
w_norm = op_norm(param_fp32)
g_norm = op_norm(gradient_fp32)
g_norm_hat = op_norm(op_mul(next_mm, op_rsqrt(next_vv + eps)) + weight_decay * param_fp32)
zeros = F.zeros_like(w_norm)
ones = op_fill(op_dtype(w_norm), op_shape(w_norm), 1.0)
trust_ratio = op_select(
op_greater(w_norm, zeros),
op_select(op_greater(g_norm, zeros), w_norm / g_norm_hat, ones),
ones)
tens = op_fill(op_dtype(trust_ratio), op_shape(trust_ratio), 10.0)
trust_ratio = C.clip_by_value(trust_ratio, zeros, tens)
update = next_mm / (op_sqrt(next_vv) + eps)
if decay_flag:
update = update + op_mul(weight_decay, param_fp32)
update_with_lr = op_mul(op_mul(trust_ratio, lr), update)
next_param = param_fp32 - op_reshape(update_with_lr, op_shape(param_fp32))
next_param = F.depend(next_param, F.assign(param, op_cast(next_param, F.dtype(param))))
next_param = F.depend(next_param, F.assign(m, op_cast(next_m, F.dtype(m))))
next_param = F.depend(next_param, F.assign(v, op_cast(next_v, F.dtype(v))))
return op_cast(next_param, F.dtype(param))
return gradient
|
292f493ff83aba5e95a7b4ddce6b454ce4600e2c
| 32,875 |
def make_initial_ledger(toodir=None):
"""Set up the initial ToO ledger with one ersatz observation.
Parameters
----------
toodir : :class:`str`, optional, defaults to ``None``
The directory to treat as the Targets of Opportunity I/O directory.
If ``None`` then look up from the $TOO_DIR environment variable.
Returns
-------
:class:`~astropy.table.Table`
A Table of the initial, example values for the ToO ledger.
The initial (.ecsv) ledger is also written to toodir or $TOO_DIR.
"""
# ADM get the ToO directory (or check it exists).
tdir = get_too_dir(toodir)
# ADM retrieve the file name to which to write.
fn = get_filename(tdir)
# ADM make a single line of the ledger with some indicative values.
data = np.zeros(3, dtype=indatamodel.dtype)
data["RA"] = 359.999999, 101.000001, 201.5
data["DEC"] = -89.999999, -89.999999, -89.999999
data["PMRA"] = 13.554634, 4.364553, 12.734214
data["PMDEC"] = 10.763842, -10.763842, -10.763842
data["REF_EPOCH"] = 2015.5, 2015.5, 2015.5
data["CHECKER"] = "ADM", "AM", "ADM"
data["TOO_TYPE"] = "TILE", "FIBER", "TILE"
data["TOO_PRIO"] = "HI", "LO", "HI"
data["MJD_BEGIN"] = 40811.04166667, 41811.14166667, 42811.14
data["MJD_END"] = 40811.95833333, 41811.85833333, 42811.85
data["OCLAYER"] = "BRIGHT", "DARK", "DARK"
# ADM write out the results.
_write_too_files(fn, data, ecsv=True)
return data
|
9f377c54b65973bd26b868a3a7ca11dd96a7e1e6
| 32,876 |
def trace_sqrt_product_tf(cov1, cov2):
""" This function calculates trace(sqrt(cov1 * cov2))
This code is inspired from:
https://github.com/tensorflow/tensorflow/blob/r1.10/tensorflow/contrib/gan/python/eval/python/classifier_metrics_impl.py
:param cov1:
:param cov2:
:return:
"""
sqrt_cov1 = sqrt_sym_mat_tf(cov1)
cov_121 = tf.matmul(tf.matmul(sqrt_cov1, cov2), sqrt_cov1)
return tf.trace(sqrt_sym_mat_tf(cov_121))
|
f685080ce644a889aff633fb44cccf452746c5e9
| 32,877 |
from typing import Any
from typing import Optional
import json
def opennem_serialize(obj: Any, indent: Optional[int] = None) -> str:
"""Use custom OpenNEM serializer which supports custom types and GeoJSON"""
obj_deserialized = None
if not obj_deserialized:
obj_deserialized = json.dumps(obj, cls=OpenNEMGeoJSONEncoder, indent=indent)
return obj_deserialized
|
77bcb41130b5d8d95f5460cc45f4e78b9ef8bdf5
| 32,878 |
def min_vector(first_atom, second_atom, cell=None):
"""Helper to find mimimum image criterion distance."""
if cell is None:
cell = first_atom._parent.cell.cell
return min_vect(first_atom.pos,
first_atom.fractional,
second_atom.pos,
second_atom.fractional,
cell)
|
aa159ff5379b8087f05c8b4c88e3ee71a5d2765f
| 32,879 |
def dice_coeff_2label(pred, target):
"""This definition generalize to real valued pred and target vector.
This should be differentiable.
pred: tensor with first dimension as batch
target: tensor with first dimension as batch
"""
target = target.data.cpu()
# pred = torch.sigmoid(pred)
# pred = pred.data.cpu()
# pred[pred > 0.75] = 1
# pred[pred <= 0.75] = 0
# print target.shape
# print pred.shape
if len(pred.shape) == 3:
return dice_coefficient_numpy(pred[0, ...], target[0, ...]), dice_coefficient_numpy(pred[1, ...], target[1, ...])
else:
dice_cup = []
dice_disc = []
for i in range(pred.shape[0]):
cup, disc = dice_coefficient_numpy(pred[i, 0, ...], target[i, 0, ...]), dice_coefficient_numpy(pred[i, 1, ...], target[i, 1, ...])
dice_cup.append(cup)
dice_disc.append(disc)
return sum(dice_cup) / len(dice_cup), sum(dice_disc) / len(dice_disc)
|
553f3cdc76f4061512dea27a482f177948f87063
| 32,880 |
def cost_arrhenius(p, T, rate):
"""
Sum of absolute deviations of obs and arrhenius function.
Parameters
----------
p : iterable of floats
`p[0]` is activation energy [J]
x : float or array_like of floats
independent variable
y : float or array_like of floats
dependent variable, observations
Returns
-------
float
sum of absolute deviations
"""
return np.sum(np.abs(rate-arrhenius_p(T,p)))
|
f69a98e06e79774e2fa7eef2709f0bdd6adbe3e1
| 32,881 |
def get_ou_accounts_by_ou_name(ou_name, accounts_list=None, parent=None):
"""
Returns the account of an OU by itsname
Args:
ou_name: name of the OU
accounts_list: list of accounts from a previous call due to the recursive
next_token: the token for the call in case a recursive occurs
Returns:
list of dict() with the information of the accounts in the OU
"""
if accounts_list is None:
accounts_list = []
if parent is None:
parent = get_root()['Id']
try:
ou_info = get_ou_by_name(ou_name, parent)
parent = ou_info['Id']
except:
raise ValueError(f'Failed to retrieve the organization unit of name {ou_name}')
return get_ou_accounts(parent)
|
6a8d638b18de08937208de45665fd3586dff8c76
| 32,882 |
def split_result_of_axis_func_pandas(axis, num_splits, result, length_list=None):
"""Split the Pandas result evenly based on the provided number of splits.
Args:
axis: The axis to split across.
num_splits: The number of even splits to create.
result: The result of the computation. This should be a Pandas
DataFrame.
length_list: The list of lengths to split this DataFrame into. This is used to
return the DataFrame to its original partitioning schema.
Returns:
A list of Pandas DataFrames.
"""
if num_splits == 1:
return result
if length_list is not None:
length_list.insert(0, 0)
sums = np.cumsum(length_list)
if axis == 0:
return [result.iloc[sums[i] : sums[i + 1]] for i in range(len(sums) - 1)]
else:
return [result.iloc[:, sums[i] : sums[i + 1]] for i in range(len(sums) - 1)]
# We do this to restore block partitioning
chunksize = compute_chunksize(result, num_splits, axis=axis)
if axis == 0:
return [
result.iloc[chunksize * i : chunksize * (i + 1)] for i in range(num_splits)
]
else:
return [
result.iloc[:, chunksize * i : chunksize * (i + 1)]
for i in range(num_splits)
]
|
bd136350147db12ed165129310fd5ee22f55b40e
| 32,883 |
def is_icypaw_scalar_type_annotation(obj):
"""Return if the object is usable as an icypaw scalar type annotation."""
if isinstance(obj, type) and issubclass(obj, IcypawScalarType):
return True
return False
|
7c3095ff03183a1dce33062b18dac94ee2528170
| 32,884 |
def pair_is_inward(read, regionlength):
"""Determine if pair is pointing inward"""
return read_is_inward(read, regionlength) and mate_is_inward(read, regionlength)
|
4d67b7824093df1cd5d2e020d88894a0877d5d71
| 32,886 |
def sort_by_game(game_walker, from_locale, pack):
"""Sort a pack by the order in which strings appears in the game files.
This is one of the slowest sorting method. If the pack contains strings
that are not present in the game, they are sorted alphabetically at the
end and a message is logged."""
def get_file_path_tuple(file_dict_path_str):
return tuple(common.unserialize_dict_path(file_dict_path_str)[0])
def get_packs_by_file(pack):
"""Return a dict from file_path_tuple to a pack for that file path"""
packs_by_file = {}
for file_dict_path_str, result in pack.items():
file_path_tuple = get_file_path_tuple(file_dict_path_str)
pack = packs_by_file.setdefault(file_path_tuple, {})
pack[file_dict_path_str] = result
return packs_by_file
packs_by_file = get_packs_by_file(pack)
known_files = frozenset(packs_by_file.keys())
game_walker.set_file_path_filter(lambda f_p: tuple(f_p) in known_files)
def iterate_game_and_pick_translations(packs_by_file, game_walker):
"""Iterate with game_walker and drain packs_by_file
Return a sorted single pack with elements in the same order as
returned by game_walker with translations from packs_by_file.
This will drain packs_by_file in the process, so only stale strings
will remain there."""
output = {}
iterator = game_walker.walk(from_locale, False)
current_file = None
strings_for_file = None
def add_stale_for_current_file():
"""Add strings remaining in strings_for_file to stale translations
Called after iterating for all strings in one game file."""
if strings_for_file:
print("note: sorting", len(strings_for_file),
"stale nonexisting strings for", "/".join(current_file))
output.update(common.sort_dict(strings_for_file))
strings_for_file.clear()
for file_dict_path_str, _, _, _ in iterator:
file_path = get_file_path_tuple(file_dict_path_str)
if current_file != file_path:
add_stale_for_current_file()
current_file = file_path
strings_for_file = packs_by_file.pop(file_path, {})
result = strings_for_file.pop(file_dict_path_str, None)
if result is not None:
output[file_dict_path_str] = result
# sort remains of the last file
add_stale_for_current_file()
return output
output = iterate_game_and_pick_translations(packs_by_file, game_walker)
# sort the remaining stales file_path, and add them
for file_path, stale_pack in common.sort_dict(packs_by_file).items():
print("note: sorting", len(stale_pack), "strings for nonexisting",
"/".join(file_path))
output.update(common.sort_dict(stale_pack))
return output
|
97cebe8db744aef876c7dd0018c49593e7c22888
| 32,889 |
from ..base.util.worker_thread import stop_all_threads
from typing import Sequence
import threading
def main(args: Sequence[str]) -> int:
"""
Entry for the program.
"""
try:
user_args = parse_args(args)
bus = bootstrap_petronia(user_args)
return run_petronia(bus, user_args)
except BaseException as err: # pylint: disable=broad-except
if isinstance(err, SystemExit):
if err.code == 0:
return 0
# Otherwise, treat as a normal error.
print_exception(err.__class__, err, err.__traceback__)
stop_all_threads()
for thread in threading.enumerate():
if thread != threading.current_thread() and thread.isAlive():
print("Thread {0} still alive".format(thread.name))
print("Exiting Petronia with error.")
return 1
|
099c0ab97569028a6ca8af3bc97103c1490c54ff
| 32,890 |
def to_query_str(params):
"""Converts a dict of params to a query string.
Args:
params (dict): A dictionary of parameters, where each key is a
parameter name, and each value is either a string or
something that can be converted into a string. If `params`
is a list, it will be converted to a comma-delimited string
of values (e.g., "thing=1,2,3")
Returns:
str: A URI query string including the "?" prefix, or an empty string
if no params are given (the dict is empty).
"""
if not params:
return ''
# PERF: This is faster than a list comprehension and join, mainly
# because it allows us to inline the value transform.
query_str = '?'
for k, v in params.items():
if v is True:
v = 'true'
elif v is False:
v = 'false'
elif isinstance(v, list):
v = ','.join(map(str, v))
else:
v = str(v)
query_str += k + '=' + v + '&'
return query_str[:-1]
|
11b27e17525cf05dabf0d36e1709be749e829264
| 32,891 |
def histogram(backend, qureg):
"""
Make a measurement outcome probability histogram for the given qubits.
Args:
backend (BasicEngine): A ProjectQ backend
qureg (list of qubits and/or quregs): The qubits,
for which to make the histogram
Returns:
A tuple (fig, axes, probabilities), where:
fig: The histogram as figure
axes: The axes of the histogram
probabilities (dict): A dictionary mapping outcomes as string
to their probabilities
Note:
Don't forget to call eng.flush() before using this function.
"""
qubit_list = []
for qb in qureg:
if isinstance(qb, list):
qubit_list.extend(qb)
else:
qubit_list.append(qb)
if len(qubit_list) > 5:
print('Warning: For {0} qubits there are 2^{0} different outcomes'.format(len(qubit_list)))
print("The resulting histogram may look bad and/or take too long.")
print("Consider calling histogram() with a sublist of the qubits.")
if hasattr(backend, 'get_probabilities'):
probabilities = backend.get_probabilities(qureg)
elif isinstance(backend, Simulator):
outcome = [0] * len(qubit_list)
n_outcomes = 1 << len(qubit_list)
probabilities = {}
for i in range(n_outcomes):
for pos in range(len(qubit_list)):
if (1 << pos) & i:
outcome[pos] = 1
else:
outcome[pos] = 0
probabilities[''.join([str(bit) for bit in outcome])] = backend.get_probability(outcome, qubit_list)
else:
raise RuntimeError('Unable to retrieve probabilities from backend')
# Empirical figure size for up to 5 qubits
fig, axes = plt.subplots(figsize=(min(21.2, 2 + 0.6 * (1 << len(qubit_list))), 7))
names = list(probabilities.keys())
values = list(probabilities.values())
axes.bar(names, values)
fig.suptitle('Measurement Probabilities')
return (fig, axes, probabilities)
|
77227d1db0f90420134c18737248989481d384c1
| 32,892 |
import bisect
def crop(sequence, minimum, maximum, key=None, extend=False):
"""
Calculates crop indices for given sequence and range. Optionally the range
can be extended by adding additional adjacent points to each side. Such
extension might be useful to display zoomed lines etc. Note that this method
assumes that given sequence is sorted ascendantly.
Args:
sequence: list or tuple
Collection of items ordered by searched value.
minimum: float
Crop range minimum.
maximum: float
Crop range maximum.
key: callable or None
Function to be used to get specific value from item.
extend: bool
If set to True additional adjacent point is added to each side.
Returns:
(int, int)
Cropping indexes.
"""
# get indices
left_idx = bisect(sequence, minimum, key, 'left')
right_idx = bisect(sequence, maximum, key, 'right')
# extend range by adjacent values
if extend and left_idx > 0:
left_idx = bisect(sequence[:left_idx], sequence[left_idx-1], key, 'left')
if extend and right_idx < len(sequence):
right_idx += bisect(sequence[right_idx:], sequence[right_idx], key, 'right')
return left_idx, right_idx
|
af761dbdbcb40270a4aaf7c55921497e1872f8c1
| 32,893 |
def reverse_dict(dict_obj):
"""Reverse a dict, so each value in it maps to a sorted list of its keys.
Parameters
----------
dict_obj : dict
A key-value dict.
Returns
-------
dict
A dict where each value maps to a sorted list of all the unique keys
that mapped to it.
Example
-------
>>> dicti = {'a': 1, 'b': 3, 'c': 1}
>>> reverse_dict(dicti)
{1: ['a', 'c'], 3: ['b']}
"""
new_dict = {}
for key in dict_obj:
add_to_dict_val_set(dict_obj=new_dict, key=dict_obj[key], val=key)
for key in new_dict:
new_dict[key] = sorted(new_dict[key], reverse=False)
return new_dict
|
94ff638e67de94a37754cfae7fd9d2605835b946
| 32,894 |
def remote_error_known():
"""Return a remote "error" code."""
return {"errorType": 1}
|
bd848143531a9f8e997af8ef64f2d1ee4ad3670b
| 32,895 |
import re
def get_throttling_plan(js: str):
"""Extract the "throttling plan".
The "throttling plan" is a list of tuples used for calling functions
in the c array. The first element of the tuple is the index of the
function to call, and any remaining elements of the tuple are arguments
to pass to that function.
:param str js:
The contents of the base.js asset file.
:returns:
The full function code for computing the throttlign parameter.
"""
raw_code = get_throttling_function_code(js)
transform_start = r"try{"
plan_regex = re.compile(transform_start)
match = plan_regex.search(raw_code)
transform_plan_raw = find_object_from_startpoint(raw_code, match.span()[1] - 1)
# Steps are either c[x](c[y]) or c[x](c[y],c[z])
step_start = r"c\[(\d+)\]\(c\[(\d+)\](,c(\[(\d+)\]))?\)"
step_regex = re.compile(step_start)
matches = step_regex.findall(transform_plan_raw)
transform_steps = []
for match in matches:
if match[4] != '':
transform_steps.append((match[0],match[1],match[4]))
else:
transform_steps.append((match[0],match[1]))
return transform_steps
|
c53eba9d018a6e3308f07031c4c8f26101f853dd
| 32,896 |
def list_agg(object_list, func):
"""Aggregation function for a list of objects."""
ret = []
for elm in object_list:
ret.append(func(elm))
return ret
|
b2d8eef9c795e4700d111a3949922df940435809
| 32,897 |
from typing import Callable
def job_metadata_api(**kwargs: dict) -> Callable[[dict], str]:
"""
Job Metadata API route.
Arguments:
kwargs: required keyword arguments
Returns:
JSON response
"""
return job_resource.job_metadata_api(**kwargs)
|
4641930a6c18066eac3dbaaaed99bfbd59560722
| 32,898 |
def parse_word(word: str) -> str:
"""Compile a word of uppercase letters as numeric digits. Non-uppercase letter words are returned unchanged."""
if not word.isupper():
return word
compiled_word = " + ".join([letter + "*" + str(10**index) for index, letter in enumerate(word[:: -1])])
return "(" + compiled_word + ")"
|
aa246c7d5e92035f14476327f5b2b694b383f7e1
| 32,899 |
def rayleigh(gamma, M0, TtR):
"""
Function that takes in a input (output) Mach number and a stagnation
temperature ratio and yields an output (input) Mach number, according
to the Rayleigh flow equation. The function also outputs the stagnation
pressure ratio
Inputs:
M [dimensionless]
gamma [dimensionless]
Ttr [dimensionless]
Outputs:
M1 [dimensionless]
Ptr [dimensionless]
"""
func = lambda M1: (((1.+gamma*M0*M0)**2.*M1*M1*(1.+(gamma-1.)/2.*M1*M1))/((1.+gamma*M1*M1)**2.*M0*M0*(1.+(gamma-1.)/2.*M0*M0))-TtR)
#Initializing the array
M1_guess = np.ones_like(M0)
# Separating supersonic and subsonic solutions
i_low = M0 <= 1.0
i_high = M0 > 1.0
#--Subsonic solution Guess
M1_guess[i_low]= .01
#--Supersonic solution Guess
M1_guess[i_high]= 1.1
# Find Mach number
M1 = fsolve(func,M1_guess, factor=0.1)
#Calculate stagnation pressure ratio
Ptr = ((1.+gamma*M0*M0)/(1.+gamma*M1*M1)*((1.+(gamma-1.)/2.*M1*M1)/(1.+(gamma-1.)/2.*M0*M0))**(gamma/(gamma-1.)))
return M1, Ptr
|
f1432158136bee529ec592f7ef539f2aac19e5f5
| 32,900 |
def attack(N, e, c, oracle):
"""
Recovers the plaintext from the ciphertext using the LSB oracle attack.
:param N: the modulus
:param e: the public exponent
:param c: the encrypted message
:param oracle: a function which returns the last bit of a plaintext for a given ciphertext
:return: the plaintext
"""
left = ZZ(0)
right = ZZ(N)
while right - left > 1:
c = (c * pow(2, e, N)) % N
if oracle(c) == 0:
right = (right + left) / 2
else:
left = (right + left) / 2
return int(right)
|
3fe99894909c07da0dc42fc1101bb45853e3366f
| 32,901 |
from typing import Optional
from typing import Union
from typing import Dict
from typing import Any
def setup_wandb_logging(
trainer: Engine,
optimizers: Optional[Union[Optimizer, Dict[str, Optimizer]]] = None,
evaluators: Optional[Union[Engine, Dict[str, Engine]]] = None,
log_every_iters: int = 100,
**kwargs: Any
):
"""Method to setup WandB logging on trainer and a list of evaluators. Logged metrics are:
- Training metrics, e.g. running average loss values
- Learning rate(s)
- Evaluation metrics
Args:
trainer (Engine): trainer engine
optimizers (torch.optim.Optimizer or dict of torch.optim.Optimizer, optional): single or dictionary of
torch optimizers. If a dictionary, keys are used as tags arguments for logging.
evaluators (Engine or dict of Engine, optional): single or dictionary of evaluators. If a dictionary,
keys are used as tags arguments for logging.
log_every_iters (int, optional): interval for loggers attached to iteration events. To log every iteration,
value can be set to 1 or None.
**kwargs: optional keyword args to be passed to construct the logger.
Returns:
:class:`~ignite.contrib.handlers.wandb_logger.WandBLogger`
"""
logger = WandBLogger(**kwargs)
_setup_logging(logger, trainer, optimizers, evaluators, log_every_iters)
return logger
|
caf67149d8aa8d2b85f07f96b4d55677183c594b
| 32,902 |
def _norm(X, y):
"""Scales data to [0..1] interval"""
X = X.astype(np.float32) / (X.max() - X.min())
return X, y
|
87189d4c885d77654793373416c0d5c4be498fba
| 32,903 |
async def delete_layer(location_id, layer_id):
"""
Delete layer
---
delete:
summary: Delete layer
tags:
- layers
parameters:
- name: id
in: path
required: true
description: ID of the object to be deleted
responses:
200:
description: The object which was deleted
content:
application/json:
schema: Layer
"""
location = g.active_incident.Location.find_by_id(location_id)
if location is None:
raise exceptions.NotFound(description="Location {} was not found".format(location_id))
layer = location.Layer.find_by_id(layer_id)
if layer is None:
raise exceptions.NotFound(description="Layer {} was not found".format(layer_id))
layer.delete()
return jsonify(layer), HTTPStatus.OK
|
537ea3907fef2998ca8ae960a05a2e5204b4ab7e
| 32,906 |
def fit_and_save_model(params, data, targets):
"""Fit xgb classifier pipeline with params parameters and
save it to disk"""
pipe = make_pipeline(StandardScaler(),
XGBClassifier(learning_rate=params['learning_rate'],
max_depth=int(params['max_depth'])))
pipe.fit(data, targets)
# Persist the pipeline to disk
dump(pipe, 'ADXL345_xgb_gesture.joblib')
print('Done saving')
return pipe
|
589dd94f0a258f8eabcbd47b2341a71303c5d6b7
| 32,907 |
def relu_backward(dout, cache):
"""
Backward pass for the ReLU function layer.
Arguments:
dout: numpy array of gradient of output passed from next layer with any shape
cache: tuple (x)
Output:
x: numpy array of gradient for input with same shape of dout
"""
x = cache
dx = dout * (x >= 0)
return dx
|
3384ddf789ed2a31e25a4343456340a60e5a6e11
| 32,908 |
def run_decopath(request):
"""Process file submission page."""
# Get current user
current_user = request.user
user_email = current_user.email
# Check if user submits pathway analysis results
if 'submit_results' in request.POST:
# Populate form with data from the request
results_form = UploadResultsForm(request.POST, request.FILES)
results_form_fc = UploadFoldChangesForm(request.POST, request.FILES)
# If form is not valid, return HttpResponseBadRequest
if not results_form.is_valid():
err = results_form.errors
return HttpResponseBadRequest(f'{err} {INVALID_RESULTS_FORM_MSG}')
# If form is not valid, return HttpResponseBadRequest
if not results_form_fc.is_valid():
return HttpResponseBadRequest(INVALID_FOLD_CHANGES_MSG)
# If form is valid, process file data in request.FILES and throw HTTPBadRequest if improper submission
results_file_val = process_user_results(current_user, user_email, results_form, results_form_fc)
# Check if file cannot be read and throw error
if isinstance(results_file_val, str):
return HttpResponseBadRequest(results_file_val)
# Check if user submits form to run ORA
elif 'run_ora' in request.POST:
db_form = ORADatabaseSelectionForm(request.POST, request.FILES)
parameters_form = ORAParametersForm(request.POST, request.FILES)
form = ORAOptions(request.POST, request.FILES) # dict
# Check if form is valid
if not db_form.is_valid():
return HttpResponseBadRequest(DB_SELECTION_MSG)
# Check if parameters form is valid
if not parameters_form.is_valid():
return HttpResponseBadRequest(MAX_MIN_GENES_MSG)
# Check if form is valid
if not form.is_valid():
return HttpResponseBadRequest(FORM_COMPLETION_MSG)
# If form is valid, process file data in request.FILES and throw HTTPBadRequest if improper submission
run_ora_val = process_files_run_ora(current_user, user_email, form, db_form, parameters_form)
if isinstance(run_ora_val, str):
return HttpResponseBadRequest(run_ora_val)
elif isinstance(run_ora_val, bool):
messages.error(request, DB_SELECTION_MSG)
return redirect("/")
else:
_update_job_user(request, current_user, run_ora_val[0], run_ora_val[1])
# Check if user submits form to run GSEA
else:
db_form = GSEADatabaseSelectionForm(request.POST, request.FILES)
form = UploadGSEAForm(request.POST, request.FILES)
fc_form = UploadFoldChangesFormGSEA(request.POST, request.FILES)
# Check if form is valid
if not db_form.is_valid():
err = db_form.errors
return HttpResponseBadRequest(f'{err} {DB_SELECTION_MSG}')
if not form.is_valid():
err = form.errors
return HttpResponseBadRequest(f'{err} {FORM_COMPLETION_MSG}')
if not fc_form.is_valid():
err = fc_form.errors
return HttpResponseBadRequest(f'{err} {INVALID_FOLD_CHANGES_MSG}')
# If form is valid, process file data in request.FILES and throw HTTPBadRequest if improper submission
run_gsea_val = process_files_run_gsea(current_user, user_email, db_form, form, fc_form)
if isinstance(run_gsea_val, str):
return HttpResponseBadRequest(run_gsea_val)
elif isinstance(run_gsea_val, bool):
messages.error(request, DB_SELECTION_MSG)
return redirect("/")
else:
_update_job_user(request, current_user, run_gsea_val[0], run_gsea_val[1])
return redirect("/experiments")
|
d86d21a31004f971e2f77b11040e88dcd2a26ee4
| 32,909 |
import tqdm
def load_abs_pos_sighan_plus(dataset=None, path_head=""):
"""
Temporary deprecation !
for abs pos bert
"""
print("Loading Expanded Abs_Pos Bert SigHan Dataset ...")
train_pkg, valid_pkg, test_pkg = load_raw_lattice(path_head=path_head)
tokenizer_model_name_path="hfl/chinese-roberta-wwm-ext"
tokenizer = AutoTokenizer.from_pretrained(tokenizer_model_name_path)
train_dataset, valid_dataset, test_dataset = get_lattice_and_pos_plus(train_pkg, tokenizer), get_lattice_and_pos(valid_pkg, tokenizer), get_lattice_and_pos(test_pkg, tokenizer)
def transpose(inputs):
features = []
for i in tqdm(range(len(inputs["input_ids"]))):
#ugly fix for encoder model (the same length
features.append({key:inputs[key][i] for key in inputs.keys()}) #we fix here (truncation
return features
return transpose(train_dataset), transpose(valid_dataset), transpose(test_dataset)
|
8da548c4586f42c8a7421482395895b56aa31a10
| 32,910 |
def _train_on_tpu_system(model_fn_wrapper, dequeue_fn):
"""Executes `model_fn_wrapper` multiple times on all TPU shards."""
config = model_fn_wrapper.config.tpu_config
iterations_per_loop = config.iterations_per_loop
num_shards = config.num_shards
single_tpu_train_step = model_fn_wrapper.convert_to_single_tpu_train_step(
dequeue_fn)
multi_tpu_train_steps_on_single_shard = (lambda: training_loop.repeat( # pylint: disable=g-long-lambda
iterations_per_loop, single_tpu_train_step, [_INITIAL_LOSS],
name=b'loop'))
(loss,) = tpu.shard(multi_tpu_train_steps_on_single_shard,
inputs=[],
num_shards=num_shards,
outputs_from_all_shards=False)
return loss
|
faad0d857b2741b5177f348a6f2b7a54f9470135
| 32,911 |
def get_docs_url(model):
"""
Return the documentation URL for the specified model.
"""
return f'{settings.STATIC_URL}docs/models/{model._meta.app_label}/{model._meta.model_name}/'
|
613cb815ff01fa13c6c957f47c0b5f3f7edcff8f
| 32,912 |
import random
def _fetch_random_words(n=1000):
"""Generate a random list of words"""
# Ensure the same words each run
random.seed(42)
# Download the corpus if not present
nltk.download('words')
word_list = nltk.corpus.words.words()
random.shuffle(word_list)
random_words = word_list[:n]
return random_words
|
aaf257e3b6202555b29bdf34fd9342794a5acf6f
| 32,913 |
import json
def cache_pdf(pdf, document_number, metadata_url):
"""Update submission metadata and cache comment PDF."""
url = SignedUrl.generate()
content_disposition = generate_content_disposition(document_number,
draft=False)
s3_client.put_object(
Body=json.dumps({'pdfUrl': metadata_url.url}),
Bucket=settings.ATTACHMENT_BUCKET,
Key=metadata_url.key,
)
s3_client.put_object(
Body=pdf,
ContentType='application/pdf',
ContentDisposition=content_disposition,
Bucket=settings.ATTACHMENT_BUCKET,
Key=url.key,
)
return url
|
44ffd6841380b9454143f4ac8c71ef6ea560030a
| 32,914 |
def get_tile_list(geom,
zoom=17):
"""Generate the Tile List for The Tasking List
Parameters
----------
geom: shapely geometry of area.
zoom : int Zoom Level for Tiles
One or more zoom levels.
Yields
------
list of tiles that intersect with
"""
west, south, east, north = geom.bounds
tiles = mercantile.tiles(west, south, east, north, zooms=zoom)
tile_list = []
for tile in tiles:
tile_geom = geometry.shape(mercantile.feature(tile)['geometry'])
if tile_geom.intersects(geom):
tile_list.append(tile)
return tile_list
|
dcceb93b13ce2bbd9e95f664c12929dee10a1e63
| 32,915 |
def findTolerableError(log, file='data/psf4x.fits', oversample=4.0, psfs=10000, iterations=7, sigma=0.75):
"""
Calculate ellipticity and size for PSFs of different scaling when there is a residual
pixel-to-pixel variations.
"""
#read in PSF and renormalize it
data = pf.getdata(file)
data /= np.max(data)
#PSF scalings for the peak pixel, in electrons
scales = np.random.random_integers(1e2, 2e5, psfs)
#set the scale for shape measurement
settings = dict(sampling=1.0/oversample, itereations=iterations, sigma=sigma)
#residual from a perfect no pixel-to-pixel non-uniformity
residuals = np.logspace(-7, -1.6, 9)[::-1] #largest first
tot = residuals.size
res = {}
for i, residual in enumerate(residuals):
print'%i / %i' % (i+1, tot)
R2 = []
e1 = []
e2 = []
e = []
#loop over the PSFs
for scale in scales:
#random residual pixel-to-pixel variations
if oversample < 1.1:
residualSurface = np.random.normal(loc=1.0, scale=residual, size=data.shape)
elif oversample == 4.0:
tmp = np.random.normal(loc=1.0, scale=residual, size=(170, 170))
residualSurface = zoom(tmp, 4.013, order=0)
else:
sys.exit('ERROR when trying to generate a blocky pixel-to-pixel non-uniformity map...')
#make a copy of the PSF and scale it with the given scaling
#and then multiply with a residual pixel-to-pixel variation
tmp = data.copy() * scale * residualSurface
#measure e and R2 from the postage stamp image
sh = shape.shapeMeasurement(tmp.copy(), log, **settings)
results = sh.measureRefinedEllipticity()
#save values
e1.append(results['e1'])
e2.append(results['e2'])
e.append(results['ellipticity'])
R2.append(results['R2'])
out = dict(e1=np.asarray(e1), e2=np.asarray(e2), e=np.asarray(e), R2=np.asarray(R2))
res[residual] = out
return res
|
02b1771e4a363a74a202dd8d5b559efd68064f4d
| 32,916 |
def squeeze_labels(labels):
"""Set labels to range(0, objects+1)"""
label_ids = np.unique([r.label for r in measure.regionprops(labels)])
for new_label, label_id in zip(range(1, label_ids.size), label_ids[1:]):
labels[labels == label_id] == new_label
return labels
|
9c78f5e103fa83f891c11477d4cea6fdac6e416d
| 32,917 |
import itertools
def orient_edges_gs2(edge_dict, Mb, data, alpha):
"""
Similar algorithm as above, but slightly modified for speed?
Need to test.
"""
d_edge_dict = dict([(rv,[]) for rv in edge_dict])
for X in edge_dict.keys():
for Y in edge_dict[X]:
nxy = set(edge_dict[X]) - set(edge_dict[Y]) - {Y}
for Z in nxy:
if Y not in d_edge_dict[X]:
d_edge_dict[X].append(Y) # SET Y -> X
B = min(set(Mb[Y]) - {X} - {Z},set(Mb[Z]) - {X} - {Y})
for i in range(len(B)):
for S in itertools.combinations(B,i):
cols = (Y,Z,X) + tuple(S)
pval = mi_test(data[:,cols])
if pval < alpha and X in d_edge_dict[Y]: # Y IS independent of Z given S+X
d_edge_dict[Y].remove(X)
if X in d_edge_dict[Y]:
break
return d_edge_dict
|
272bdd74ed5503851bd4eb5519c505d8583e3141
| 32,918 |
def _divide_evenly(start, end, max_width):
""" Evenly divides the interval between ``start`` and ``end`` into
intervals that are at most ``max_width`` wide.
Arguments
---------
start : float
Start of the interval
end : float
End of the interval
max_width : float
Maximum width of the divisions
Returns
-------
divisions : ndarray
Resulting array
"""
num_partitions = int(ceil((end - start)/max_width))
return linspace(start, end, num_partitions+1)
|
08647cc55eca35447a08fd4ad3959db56dffc565
| 32,919 |
def uncompress_pubkey(pubkey):
""" Convert compressed public key to uncompressed public key.
Args:
pubkey (str): Hex encoded 33Byte compressed public key
Return:
str: Hex encoded uncompressed 65byte public key (4 + x + y).
"""
public_pair = encoding.sec_to_public_pair(h2b(pubkey))
return b2h(encoding.public_pair_to_sec(public_pair, compressed=False))
|
672f89482e5338f1e23cbe21823b9ee6625c792f
| 32,920 |
def make_celery(main_flask_app):
"""Generates the celery object and ties it to the main Flask app object"""
celery = Celery(main_flask_app.import_name, include=["feed.celery_periodic.tasks"])
celery.config_from_object(envs.get(main_flask_app.config.get("ENV"), "config.DevConfig"))
task_base = celery.Task
class ContextTask(task_base):
abstract = True
def __call__(self, *args, **kwargs):
with main_flask_app.app_context():
return task_base.__call__(self, *args, **kwargs)
celery.Task = ContextTask
return celery
|
57fc0d7917b409cb36b4f50442dd357d384b3852
| 32,921 |
def adjustForWeekdays(dateIn):
""" Returns a date based on whether or not the input date
is on a weekend. If the input date falls on a Saturday or
Sunday, the return is the date on the following Monday. If
not, it returns the original date. """
#If Saturday, return the following Monday.
if dateIn.weekday() == 5:
print "Projected End Date falls on a Saturday, correcting "\
+ "to fall on a Monday."
return dateIn + timedelta(days = 2)
#If Sunday, return the following Monday
elif dateIn.weekday() == 6:
print "Projected End Date falls on a Sunday, correcting "\
+ "to fall on a Monday."
return dateIn + timedelta(days = 1)
#On any other weekday, return the date
else:
return dateIn
|
9db5c3fadbcb8aeb77bfc1498333d6b0f44fd716
| 32,922 |
from datetime import datetime
def get_user_or_add_user(spotify_id, display_name, display_image=None, token=None):
"""Fetch an existing user or create a user"""
user = User.query.filter(User.spotify_id == spotify_id).first()
if user is None:
spotify_id = spotify_id
spotify_display_name = display_name
spotify_image_url = display_image
created_at = datetime.now()
access_token = None
refresh_token = token.refresh_token if token else None
user = create_user(
spotify_id, spotify_display_name, spotify_image_url, created_at, access_token, refresh_token)
elif token:
user.refresh_token = token.refresh_token
user.spotify_image_url = display_image
db.session.commit()
return user
|
27f0fffcaf10e4060860c39f1df54afe21814250
| 32,925 |
from bs4 import BeautifulSoup
def get_daily_data(y, m, d, icao):
"""
grab daily weather data for an airport from wunderground.com
parameter
---------
y: year
m: month
d: day
ICAO: ICAO identification number for an airport
return
------
a dictionary containing
"Min Temperature": daily minimum temperature
"Max Temperature": daily maximum temperature
"Precipitation": daily precipitation
"Max Humidity": daily maximum humidity
"Min Humidify": daily minimum humidify
"""
# construct url from (y, m, d)
url = "http://www.wunderground.com/history/airport/" + icao + '/'+\
str(y) + "/" + str(m) + "/" + str(d) + "/DailyHistory.html"
page = urlopen(url)
# parse html
soup = BeautifulSoup(page, 'html5lib')
# return dictionary
daily_data = {'Min Temperature':'nan', 'Max Temperature':'nan',
'Precipitation':'nan', 'Maximum Humidity':'nan', 'Minimum Humidity':'nan'}
# find rows in the main table
all_rows = soup.find(id="historyTable").find_all('tr')
for row in all_rows:
# attempt to find item name
try:
item_name = row.findAll('td', class_='indent')[0].get_text()
except Exception as e:
# if run into error, skip this row
continue
# temperature and precipitation
if item_name in ('Min Temperature','Max Temperature', 'Precipitation'):
try:
val = row.find_all('span', class_='wx-value')[0].get_text()
except Exception as e:
continue
if is_number(val):
daily_data[item_name] = val
if item_name in ('Maximum Humidity', 'Minimum Humidity'):
try:
val = row.find_all('td')[1].get_text()
except Exception as e:
continue
if is_number(val):
daily_data[item_name] = val
return daily_data
|
35abfda3ed6f80c213099149d5a3009c03be1d48
| 32,926 |
def image_tag_create(context, image_id, value, session=None):
"""Create an image tag."""
session = session or get_session()
tag_ref = models.ImageTag(image_id=image_id, value=value)
tag_ref.save(session=session)
return tag_ref['value']
|
5aaa684912ae18fe98beb1d62d1c219239c013c6
| 32,928 |
def test_branch_same_shape():
"""
Feature: control flow function.
Description: Two branch must return the same shape.
Expectation: Null.
"""
class Net(Cell):
def __init__(self):
super().__init__()
self.a = 1
def construct(self, x, y):
for k in range(1):
if x != 1:
for _ in range(1):
y = k * x
y = self.a + y
if x > 5:
break
if x == 5:
for _ in range(1):
y = self.a - y
if x == y:
continue
return x + y
x = np.array([-1], np.float32)
y = np.array([2], np.float32)
net = Net()
grad_net = F.grad(net, grad_position=(1, 1))
context.set_context(mode=context.GRAPH_MODE)
fgrad = grad_net(Tensor(x), Tensor(y))
print(fgrad)
|
57326097cb0da2c3982aea2cfeee5be19923b4cf
| 32,929 |
def potential(__func__=None, **kwds):
"""
Decorator function instantiating potentials. Usage:
@potential
def B(parent_name = ., ...)
return baz(parent_name, ...)
where baz returns the deterministic B's value conditional
on its parents.
:SeeAlso:
Deterministic, deterministic, Stochastic, Potential, stochastic, data, Model
"""
def instantiate_pot(__func__):
junk, parents = _extract(
__func__, kwds, keys, 'Potential', probe=False)
return Potential(parents=parents, **kwds)
keys = ['logp']
instantiate_pot.kwds = kwds
if __func__:
return instantiate_pot(__func__)
return instantiate_pot
|
5023755aee2d887eb0077cb202c01013dda456e8
| 32,930 |
def numBytes(qimage):
"""Compatibility function btw. PyQt4 and PyQt5"""
try:
return qimage.numBytes()
except AttributeError:
return qimage.byteCount()
|
a2e5bfb28ef679858f0cdb2fb8065ad09b87c037
| 32,931 |
def _dt_to_decimal_time(datetime):
"""Convert a datetime.datetime object into a fraction of a day float.
Take the decimal part of the date converted to number of days from 01/01/0001
and return it. It gives fraction of way through day: the time."""
datetime_decimal = date2num(datetime)
time_decimal = datetime_decimal - int(datetime_decimal)
return time_decimal
|
febcaa0779cbd24340cc1da297e338f1c4d63385
| 32,932 |
def poll_create(event, context):
"""
Return true if the resource has been created and false otherwise so
CloudFormation polls again.
"""
endpoint_name = get_endpoint_name(event)
logger.info("Polling for update of endpoint: %s", endpoint_name)
return is_endpoint_ready(endpoint_name)
|
3ac7dd8a4142912035c48ff41c343e5d56caeba3
| 32,933 |
def outsatstats_all(percent, Reads_per_CB, counts, inputbcs):
"""Take input from downsampled bam stats and returns df of genes, UMIs and reads for each bc.
Args:
percent (int): The percent the bamfile was downsampled.
Reads_per_CB (file path): Space delimited file of the barcodes and # of reads.
counts (file path): tab delimited count matrix made from downsampled bam
inputbcs (file path): File containing the list of barcodes used
Returns:
reads (df): A pandas df with columns reads, genes, and UMIs for each bc
"""
UMIs = pd.read_csv(
counts,
delimiter='\t',
index_col='gene',
compression='gzip')
# fill in an empty column for any barcodes that
# have no UMIs at this read depth
for i in inputbcs['Barcode'].tolist():
if i not in UMIs.columns:
UMIs[i] = UMIs.shape[0] * [0]
# remove barcodes not in the list
UMIs = UMIs[inputbcs['Barcode']]
# make reads df
reads = pd.read_csv(Reads_per_CB, delimiter= '\s', header=None)
reads[1] = reads[1].str.split(':', expand=True)[2]
reads.columns = ["Reads", "Barcodes"]
reads.index = reads['Barcodes']
reads = reads[['Reads']]
reads = reads[reads.index.isin(inputbcs['Barcode'])]
for i in inputbcs['Barcode'].tolist():
if i not in reads.index:
reads.loc[i] = 0
reads = reads.reindex(inputbcs['Barcode'], copy=False)
# count number of genes for each barcode and UMIs per barcode
reads['Genes'] = np.count_nonzero(UMIs, axis=0)
reads['UMI'] = UMIs.sum(axis=0)
return(reads)
|
f6d320e10c3171c543afdc6bdf70d83f5bcfb030
| 32,934 |
from typing import Optional
from typing import List
import random
import itertools
def generate_sums(
n: int, min_terms: int, max_terms: int, *, seed=12345, fold=False, choose_from=None
) -> Optional[List[ExprWithEnv]]:
""" Generate the specified number of example expressions (with no duplicates).
The constants used in the expressions will normally have a maximum value of 2,
but this is increased if the number of examples requested is very large.
If choose_from is not None then the expressions will be randomly sampled from a
larger set of expressions, where the larger set consists of the expressions that
would be generated for n=choose_from.
"""
assert min_terms <= max_terms
if choose_from is None:
choose_from = n
else:
assert choose_from >= n
rng = random.Random(seed)
approx_different_sums = sum(
i * i * i for i in range(min_terms, max_terms + 1)
) # Crude approximation of the total number of examples that it is possible to generate with constants at most 2.
sums = set()
sums_list = []
for num_attempts in itertools.count():
num_terms = num_attempts % (max_terms - min_terms + 1) + min_terms
max_constant_term = num_attempts // approx_different_sums + 2
new_sum = generate_sum(num_terms, rng, max_constant_term, fold=fold)
if new_sum not in sums:
sums.add(new_sum)
sums_list.append(new_sum)
if len(sums_list) >= choose_from:
return sums_list if choose_from == n else rng.sample(sums_list, n)
return None
|
26dbd81ec62fe15ff6279356bb5f41f894d033d2
| 32,937 |
def arr2pil(frame: npt.NDArray[np.uint8]) -> Image.Image:
"""Convert from ``frame`` (BGR ``npt.NDArray``) to ``image`` (RGB ``Image.Image``)
Args:
frame (npt.NDArray[np.uint8]) : A BGR ``npt.NDArray``.
Returns:
Image.Image: A RGB ``Image.Image``
"""
return Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
|
5878d983055d75653a54d2912473eacac3b7501d
| 32,939 |
def sophos_firewall_app_category_update_command(client: Client, params: dict) -> CommandResults:
"""Update an existing object
Args:
client (Client): Sophos XG Firewall Client
params (dict): params to update the object with
Returns:
CommandResults: Command results object
"""
return generic_save_and_get(client, APP_CATEGORY['endpoint_tag'], params, app_category_builder,
APP_CATEGORY['table_headers'])
|
1ba77c9b2ad172e2d9c508c833a7d4b08fb5b876
| 32,940 |
import collections
def find_identities(l):
"""
Takes in a list and returns a dictionary with seqs as keys and positions of identical elements in list as values.
argvs: l = list, e.g. mat[:,x]
"""
# the number of items in the list will be the number of unique types
uniq = [item for item, count in collections.Counter(l).items()]
# Initialise a dictionary that will hold the results
identDict = {}
for item in uniq:
identDict[item] = [ x for x in range(len(l)) if l[x] == item ]
return identDict
|
db7b64cc430ab149de7d14e4f4a88abafbadbe34
| 32,941 |
def decode_event_to_internal2(event):
""" Enforce the binary encoding of address for internal usage. """
data = event.event_data
# Note: All addresses inside the event_data must be decoded.
if data['event'] == EVENT_TOKEN_ADDED2:
data['token_network_address'] = to_canonical_address(data['args']['token_network_address'])
data['token_address'] = to_canonical_address(data['args']['token_address'])
elif data['event'] == EVENT_CHANNEL_NEW2:
data['participant1'] = to_canonical_address(data['args']['participant1'])
data['participant2'] = to_canonical_address(data['args']['participant2'])
elif data['event'] == EVENT_CHANNEL_NEW_BALANCE2:
data['participant'] = to_canonical_address(data['args']['participant'])
elif data['event'] == EVENT_CHANNEL_WITHDRAW:
data['participant'] = to_canonical_address(data['args']['participant'])
elif data['event'] == EVENT_CHANNEL_UNLOCK:
data['participant'] = to_canonical_address(data['args']['participant'])
elif data['event'] == EVENT_BALANCE_PROOF_UPDATED:
data['closing_participant'] = to_canonical_address(data['args']['closing_participant'])
elif data['event'] == EVENT_CHANNEL_CLOSED:
data['closing_participant'] = to_canonical_address(data['args']['closing_participant'])
elif data['event'] == EVENT_SECRET_REVEALED:
data['secrethash'] = data['args']['secrethash']
data['secret'] = data['args']['secret']
return event
|
fdacba3f496f5aa3715b8f9c4f26c54a21ca3472
| 32,942 |
def _repeated_features(n, n_informative, X):
"""Randomly select and copy n features from X, from the col
range [0 ... n_informative].
"""
Xrep = np.zeros((X.shape[0], n))
for jj in range(n):
rand_info_col = np.random.random_integers(0, n_informative - 1)
Xrep[:, jj] = X[:, rand_info_col]
return Xrep
|
f15811a34bcc94fff77812a57a2f68178f7a8802
| 32,943 |
def create_auto_edge_set(graph, transport_guid):
"""Set up an automatic MultiEdgeSet for the intersite graph
From within MS-ADTS 6.2.2.3.4.4
:param graph: the intersite graph object
:param transport_guid: a transport type GUID
:return: a MultiEdgeSet
"""
e_set = MultiEdgeSet()
# use a NULL guid, not associated with a SiteLinkBridge object
e_set.guid = misc.GUID()
for site_link in graph.edges:
if site_link.con_type == transport_guid:
e_set.edges.append(site_link)
return e_set
|
5f6832506d0f31795dd82f92416bb532cc7237fe
| 32,944 |
def jaccard(box_a, box_b):
"""Compute the jaccard overlap of two sets of boxes. The jaccard overlap
is simply the intersection over union of two boxes. Here we operate on
ground truth boxes and default boxes.
E.g.:
A ∩ B / A ∪ B = A ∩ B / (area(A) + area(B) - A ∩ B)
Args:
box_a: (tensor) Ground truth bounding boxes, Shape: [num_objects,4]
box_b: (tensor) Prior boxes from priorbox layers, Shape: [num_priors,4]
Return:
jaccard overlap: (tensor) Shape: [box_a.size(0), box_b.size(0)]
"""
inter = intersect(box_a, box_b)
area_a = ((box_a[:, 2]-box_a[:, 0]) *
(box_a[:, 3]-box_a[:, 1])).unsqueeze(1).expand_as(inter) # [A,B]
area_b = ((box_b[:, 2]-box_b[:, 0]) *
(box_b[:, 3]-box_b[:, 1])).unsqueeze(0).expand_as(inter) # [A,B]
union = area_a + area_b - inter
return inter / union
|
fc72ebcaa47b7f0f1f27a0618cbe7592ada5ad70
| 32,945 |
def concat(input, axis, main_program=None, startup_program=None):
"""
This function concats the input along the axis mentioned
and returns that as the output.
"""
helper = LayerHelper('concat', **locals())
out = helper.create_tmp_variable(dtype=helper.input_dtype())
helper.append_op(
type='concat',
inputs={'X': input},
outputs={'Out': [out]},
attrs={'axis': axis})
return out
|
55a6e8704141a45a135402dac10d6793f2ae6a28
| 32,946 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.