content
stringlengths 35
762k
| sha1
stringlengths 40
40
| id
int64 0
3.66M
|
---|---|---|
def scale_values(tbl, columns):
"""Scale values in a dataframe using MinMax scaling.
:param tbl: Table
:param columns: iterable with names of columns to be scaled
:returns: Table with scaled columns
"""
new_tbl = tbl.copy()
for col in columns:
name = new_tbl.labels[col]
x_scaled = minmax_scale(new_tbl[name])
new_tbl[name] = x_scaled
return new_tbl
|
c2b6ff0414ab7930020844005e3bdf4783609589
| 33,059 |
def get_params_out_of_range(
params: list, lower_params: list, upper_params: list
) -> list:
"""
Check if any parameter specified by the user is out of the range that was defined
:param params: List of parameters read from the .inp file
:param lower_params: List of lower bounds provided by the user in the .inp file
:param upper_params: List of upper bounds provided by the user in the .inp file
:return: List of parameters out of the defined range
"""
params_out = [
i
for i in range(len(lower_params))
if params[i] < lower_params[i] or params[i] > upper_params[i]
]
return params_out
|
67a8ca57a29da8b431ae26f863ff8ede58f41a34
| 33,062 |
import functools
def _filter_work_values(
works: np.ndarray,
max_value: float = 1e4,
max_n_devs: float = 100,
min_sample_size: int = 10,
) -> np.ndarray:
"""Remove pairs of works when either is determined to be an outlier.
Parameters
----------
works : ndarray
Array of records containing fields "forward" and "reverse"
max_value : float
Remove work values with magnitudes greater than this
max_n_devs : float
Remove work values farther than this number of standard
deviations from the mean
min_sample_size : int
Only apply the `max_n_devs` criterion when sample size is
larger than this
Returns
-------
out : ndarray
1-D array of filtered works.
``out.shape == (works.size, 1)``
"""
mask_work_outliers = functools.partial(
_mask_outliers,
max_value=max_value,
max_n_devs=max_n_devs,
min_sample_size=min_sample_size,
)
f_good = mask_work_outliers(works["forward"])
r_good = mask_work_outliers(works["reverse"])
both_good = f_good & r_good
return works[both_good]
|
93002df6f7bdaf0ffd639f37021a8e6844fee4bd
| 33,063 |
def pf_from_ssig(ssig, ncounts):
"""Estimate pulsed fraction for a sinusoid from a given Z or PDS power.
See `a_from_ssig` and `pf_from_a` for more details
Examples
--------
>>> round(a_from_pf(pf_from_ssig(150, 30000)), 1)
0.1
"""
a = a_from_ssig(ssig, ncounts)
return pf_from_a(a)
|
235b473f60420f38dd8c0ad19c64366f85c8ac4c
| 33,064 |
def get_aic(mse: float, n: int, p: int):
"""
Calcuate AIC score.
Parameters
----------
mse: float
Mean-squared error.
n: int
Number of observations.
p: int
Number of parameters
Returns
-------
float
AIC value.
"""
return n * log(mse) + 2 * p
|
033cb5ea7e9d06a2f630d3eb2718630904e4209f
| 33,065 |
def triangle(a, b):
""" Return triangle function:
^ .
| / \
|____/___\____
a b
"""
return partial(primitives.tri, a, b)
|
f28bbe0bacb260fb2fb30b9811b1d5d6e5b99750
| 33,066 |
import pickle
def get_max_trans_date() -> date:
"""Return the date of the last transaction in the database"""
return pickle.load(open(conf("etl_accts"), "rb"))[1]
|
61db89cfbbdc9f7e2b86930f50db75dcc213205c
| 33,067 |
def build_argparser():
"""
Parse command line arguments.
:return: command line arguments
"""
parser = ArgumentParser()
parser.add_argument("-m", "--model", required=True, type=str,
help="Path to an xml file with a trained model.")
parser.add_argument("-i", "--input", required=True, type=str,
help="Path to image or video file")
parser.add_argument("-l", "--cpu_extension", required=False, type=str,
default=None,
help="MKLDNN (CPU)-targeted custom layers."
"Absolute path to a shared library with the"
"kernels impl.")
parser.add_argument("-d", "--device", type=str, default="CPU",
help="Specify the target device to infer on: "
"CPU, GPU, FPGA or MYRIAD is acceptable. Sample "
"will look for a suitable plugin for device "
"specified (CPU by default)")
parser.add_argument("-pt", "--prob_threshold", type=float, default=0.5,
help="Probability threshold for detections filtering"
"(0.5 by default)")
return parser
|
65c6e45e30b67ff879dbcf1a64cd8321192adfcf
| 33,068 |
from pathlib import Path
def read_file(in_file: str):
"""Read input file."""
file_path = Path(in_file)
data = []
count = 0
with open(file_path) as fp:
for line in fp:
data.append(line)
count = count + 1
return ''.join(data), count
|
4fbae8f1af7800cb5f89784a0230680a1d6b139a
| 33,069 |
def limit(value, limits):
"""
:param <float> value: value to limit
:param <list>/<tuple> limits: (min, max) limits to which restrict the value
:return <float>: value from within limits, if input value readily fits into the limits its left unchanged. If value exceeds limit on either boundary its set to that boundary.
"""
if value < limits[0]:
value = limits[0]
elif value > limits[1]:
value = limits[1]
else:
pass
return value
|
55fb603edb478a26b238d7c90084e9c17c3113b8
| 33,071 |
def _cdp_no_split_worker(work_queue, counts_by_ref, seq_1, seq_2, nt):
"""
Worker process - get refseq from work queue, aligns reads from seq_1 and seq_2,
and adds as (x,y) coords to counts_by_ref if there are alignments.
:param work_queue: joinable queue with refseq header and seq tuples (JoinableQueue(header,ref_seq))
:param counts_by_ref: Manager dict for counts for each reference result (mgr.dict)
:param seq_1: seq file set 1 (SRNASeq)
:param seq_2: seq file set 2 (SRNASeq)
:param nt: read length to align (int)
:return: True
"""
try:
while not work_queue.empty():
both_aligned = _cdp_no_split_single_ref_align(work_queue.get(), seq_1, seq_2, nt)
if both_aligned is not None:
counts_by_ref[both_aligned[0]] = (both_aligned[1], both_aligned[2])
except Exception as e:
print(e)
return True
|
498e9da9c9f30adc1fa2564590cc7a99cbed9b94
| 33,072 |
def createIQSatelliteChannel(satellite_id):
"""Factory
This method creates a satellite channel object that exchanges IQ data in between both ends.
"""
return SatelliteChannel(satellite_id, stellarstation_pb2.Framing.Value('IQ'))
|
e1fc08de59692ab308716abc8d137d0ab90336bc
| 33,073 |
def scaled_herding_forward_pass(weights, scales, input_data, n_steps):
"""
Do a forward pass with scaled units.
:param weights: A length:L list of weight matrices
:param scales: A length:L+1 list of scale vectors
:param input_data: An (n_samples, n_dims) array of input data
:param n_steps: Number of steps to run for
:param rng: A random number generator or see d
:return: A (n_samples, n_steps, n_outputs) integar array representing the output spike count in each time bin
"""
assert all(w_in.shape[1]==w_out.shape[0] for w_in, w_out in zip(weights[:-1], weights[1:]))
assert len(scales) == len(weights)+1
assert all(s.ndim==1 for s in scales)
assert all(w.ndim==2 for w in weights)
assert all(len(s_in)==w.shape[0] and len(s_out)==w.shape[1] for w, s_in, s_out in zip(weights, scales[:-1], scales[1:]))
assert input_data.shape[1] == len(scales[0])
# scaled_weights = [s_in[:, None]**-1 * w * s_out[None, :] for s_in, w, s_out in zip(scales[:-1], weights, scales[1:])]
spikes = sequential_quantize(input_data*scales[0], n_steps=n_steps)
for s, w in zip(scales[1:], weights):
spikes = sequential_quantize(spikes.dot(w)*s)
# spikes = sequential_quantize(spikes.dot(w/s_pre[:, None])*s_post)
return spikes/scales[-1]
|
e5af2c099b1296bdc1f584acaa6ce8f832fb29f6
| 33,074 |
from io import StringIO
def open_remote_factory(mocker):
"""Fixture providing open_remote function for ReferenceLoader construction."""
return mocker.Mock(return_value=StringIO(REMOTE_CONTENT))
|
b3df151b021cfd3a07c5737b50d8856d3dc0a599
| 33,075 |
def get_displacement_bcs(domain, macro_strain):
"""Get the shift and fixed BCs.
The shift BC has the the right top and bottom points in x, y and z
fixed or displaced.
The fixed BC has the left top and bottom points in x, y and z
fixed.
Args:
domain: an Sfepy domain
macro_strain: the macro strain
Returns:
the Sfepy boundary conditions
"""
return Conditions(
[
get_shift_or_fixed_bcs(
domain,
lambda min_, max_: {"u.0": macro_strain * (max_[0] - min_[0])},
"shift",
lambda min_, max_: (max_[0],),
),
get_shift_or_fixed_bcs(
domain,
lambda min_, max_: merge(
{"u.0": 0.0, "u.1": 0.0}, {"u.2": 0.0} if len(min_) == 3 else dict()
),
"fix",
lambda min_, max_: (min_[0],),
),
]
)
|
02090e4d64f75b671597c4b916faf086c5bfe096
| 33,076 |
def public_rest_url(path_url: str = "",
domain: str = CONSTANTS.DEFAULT_DOMAIN,
only_hostname: bool = False,
domain_api_version: str = None,
endpoint_api_version: str = None) -> str:
"""
Creates a full URL for provided public REST endpoint
:param path_url: a public REST endpoint
:param host: the CoinFLEX host to connect to ("live" or "test"). The default value is "live"
:return: the full URL to the endpoint
"""
local_domain_api_version = domain_api_version or CONSTANTS.PUBLIC_API_VERSION
local_endpoint_api_version = endpoint_api_version or CONSTANTS.PUBLIC_API_VERSION
subdomain_prefix = f"{local_domain_api_version}stg" if domain == "test" else local_domain_api_version
endpoint = "" if not len(path_url) else f"/{path_url}"
if only_hostname:
return CONSTANTS.REST_URL.format(subdomain_prefix)
return "https://" + CONSTANTS.REST_URL.format(subdomain_prefix) + f"/{local_endpoint_api_version}{endpoint}"
|
3c99f5a388c33d5c7aa1e018d2d38c7cbe82b112
| 33,077 |
import torch
def get_dir_cos(dist_vec):
""" Calculates directional cosines from distance vectors.
Calculate directional cosines with respect to the standard cartesian
axes and avoid division by zero
Args:
dist_vec: distance vector between particles
Returns: dir_cos, array of directional cosines of distances between particles
"""
norm = torch.linalg.norm(dist_vec, axis=-1)
dir_cos = dist_vec * torch.repeat_interleave(torch.unsqueeze(torch.where(
torch.linalg.norm(dist_vec, axis=-1) == 0,
torch.zeros(norm.shape, device=dist_vec.device),
1 / norm), axis=-1), 3, dim=-1)
return dir_cos
|
f325ca5535eaf9083082b147ff90f727214031ec
| 33,078 |
def lambda_handler(event, context):
"""
Entry point for the Get All Lambda function.
"""
handler_request.log_event(event)
# Get gk_user_id from requestContext
player_id = handler_request.get_player_id(event)
if player_id is None:
return handler_response.return_response(401, 'Unauthorized.')
# get bundle_name from path
bundle_name = handler_request.get_path_param(event, 'bundle_name')
if bundle_name is None:
return handler_response.return_response(400, 'Invalid bundle name')
if len(bundle_name) > user_game_play_constants.BUNDLE_NAME_MAX_LENGTH:
return handler_response.return_response(414, 'Invalid bundle name')
bundle_name = sanitizer.sanitize(bundle_name)
# get bundle_item_key from path
bundle_item_key = handler_request.get_path_param(event, 'bundle_item_key')
if bundle_item_key is None:
return handler_response.return_response(400, 'Invalid bundle item key')
if len(bundle_item_key) > user_game_play_constants.BUNDLE_NAME_MAX_LENGTH:
return handler_response.return_response(414, 'Invalid bundle item key')
bundle_item_key = sanitizer.sanitize(bundle_item_key)
# get payload from body (an items value)
item_data = handler_request.get_body_as_json(event)
if item_data is None:
return handler_response.return_response(400, 'Missing payload')
if "bundle_item_value" not in item_data:
return handler_response.return_response(400, 'Invalid payload')
item_key = sanitizer.sanitize(item_data["bundle_item_value"])
if not item_key:
return handler_response.return_response(400, 'Invalid payload')
player_id_bundle = f'{player_id}_{bundle_name}'
try:
ddb_client.update_item(**_build_bundle_item_update_request(player_id_bundle, bundle_item_key, item_key))
except ddb_client.exceptions.ConditionalCheckFailedException:
return handler_response.return_response(404, 'Bundle and/or bundle item not found.')
except botocore.exceptions.ClientError as err:
logger.error(f'Error updating bundle item, please ensure bundle item exists. Error: {err}')
raise err
# Return operation result
return handler_response.return_response(204, None)
|
2cc1aeb6a451feb41cbf7a121c67ddfbd06e686f
| 33,079 |
def reverse_complement_dna(seq):
"""
Reverse complement of a DNA sequence
Parameters
----------
seq : str
Returns str
"""
return complement_dna(seq)[::-1]
|
680cf032c0a96fc254928bfa58eb25bee56e44dc
| 33,080 |
def Wizard():
"""
Creates a wizardcharacter
:returns: fully initialised wizard
:rtype: Character
"""
character = (CharacterBuilder()
.with_hit_points(5)
.with_max_hp(5)
.with_spirit(20)
.with_max_spirit(20)
.with_speed(4)
.with_body(4)
.with_mind(8)
.with_attack(1)
.with_name('Wizard')
.build())
return character
|
23019f41ba6bf51e049ffe16831a725dd3c20aa2
| 33,081 |
def tournament_communication(comm,
comm_fn=lambda x,y: None,
comm_kw={}):
"""
This is useful for the development of parallelized O(N) duplicate check
functions. The problem with such functions is that the operation of
checking if a set of parameters/descriptor has been observed previously
requires there be a master set of observed values to compare against and
add to. This means that it is not naively parallel. In order to achieve
decent scaling for O(N) duplicate checks, this method has been implemented.
This method will combine the results from ranks in a tournament braket
style such that in the end, the master list will be on rank 0. This
achieves better scaling because in the beginning, all ranks compare their
lists to another rank adding unique values to one of the ranks. This rank
moves forward to another comparions with another rank that has completed
its comparisons as well. This continues until all results are on the master
rank.
comm_fn API: comm_fn(comm, (rank1, rank2), **kwargs)
"""
### Step 1 is to build the tournament braket
size = comm.Get_size()
rank = comm.Get_rank()
rank_list = np.arange(0,size)
tournament = []
temp_tournament = []
for idx,value in enumerate(rank_list[::2]):
value2 = value+1
temp_tournament.append((value,value2))
tournament.append(temp_tournament)
if size <= 1:
tournament = [(0,)]
prev_tournament = tournament[0]
while len(prev_tournament) != 1:
temp_tournament = []
for idx,entry in enumerate(prev_tournament[::2]):
next_idx = idx*2+1
keep_rank1 = min(entry)
if (next_idx+1) > len(prev_tournament):
temp_tournament.append((keep_rank1,))
else:
keep_rank2 = min(prev_tournament[next_idx])
temp_tournament.append((keep_rank1, keep_rank2))
tournament.append(temp_tournament)
prev_tournament = tournament[-1]
if len(tournament) > 1:
tournament.append([(0,)])
if tournament == [(0,)]:
return
idx = 0
for braket in tournament:
if rank == 0:
print("Round {} of {}".format(idx, len(tournament)), flush=True)
idx += 1
# ### Rank loop is here to emulate parallel execution
# for rank in rank_list:
found = False
for entry in braket:
if rank in entry:
found = True
break
if found:
comm_fn(comm, entry, **comm_kw)
# if found:
# print("{}: {}".format(rank, entry))
return tournament
|
03827a02f3df099aa3eead3d8214f0f2f90e60b1
| 33,082 |
def create_permutation_feature(number, rate_pert=1., name=None):
"""Create permutation for features."""
n = np.random.randint(0, 100000)
if name is None:
name = f_stringer_pert_rate(rate_pert)
lista_permuts = []
for i in range(number):
lista_permuts.append((name, PartialPermutationPerturbationGeneration,
{'seed': n+i, 'rate_pert': rate_pert},
f_pert_partialfeatures_instantiation))
return lista_permuts
|
8c6931e2e2b1dcd9313fda5d8be63bfb0c549f5f
| 33,083 |
import random
def DiceRoll():
"""A function to simulate rolling of one or more dice."""
def Roll():
return random.randint(1,6)
print("\nRoll Dice: Simulates rolling of one or more dice.")
num = 1
try: num = int(input("\nEnter the number of dice you wish to roll: "))
except: print("Input should be a number.")
if num > 0:
out = [] # list to store roll output
i = 1
while i <= num:
out.append(str(Roll()))
i+=1
print("\nRoll Result(s)")
print("============")
print(", ".join(out))
|
90e9587473fb06541ec9daa2ec223759940a5ecb
| 33,084 |
def rook_move(self, game, src):
""" Validates rook move """
x = src[0]
y = src[1]
result = []
loop_condition = (lambda i: i < 8) if self.color == 'white' else (lambda i: i >= 0)
reverse_loop_condition = (lambda i: i < 8) if self.color == 'black' else (lambda i: i >= 0)
counter_eval = +1 if self.color == 'white' else -1
reverse_counter_eval = -counter_eval
loops = [
[loop_condition, counter_eval],
[reverse_loop_condition, reverse_counter_eval]
]
for loop in loops:
i = x
while loop[0](i):
if i != x:
if game.board[i][y] is not None:
if game.board[i][y].color != self.color:
result.append([i, y])
break
result.append([i, y])
i += loop[1]
for loop in loops:
i = y
while loop[0](i):
if i != y:
if game.board[x][i] is not None:
if game.board[x][i].color != self.color:
result.append([x, i])
break
result.append([x, i])
i += loop[1]
return result
|
76a782541c565d14a84c1845841338d99f23704d
| 33,085 |
def figure_5a():
"""
This creates the plot for figure 5A in the Montague paper. Figure 5A is
a 'plot of ∂(t) over time for three trials during training (1, 30, and 50).'
"""
# Create Processing Components
sample_mechanism = pnl.TransferMechanism(default_variable=np.zeros(60),
name=pnl.SAMPLE)
action_selection = pnl.TransferMechanism(default_variable=np.zeros(60),
function=pnl.Linear(slope=1.0,
intercept=0.01),
name='Action Selection')
sample_to_action_selection = pnl.MappingProjection(sender=sample_mechanism,
receiver=action_selection,
matrix=np.zeros((60, 60)))
# Create Composition
composition_name = 'TD_Learning_Figure_5A'
comp = pnl.Composition(name=composition_name)
# Add Processing Components to the Composition
pathway = [sample_mechanism, sample_to_action_selection, action_selection]
# Add Learning Components to the Composition
learning_related_components = comp.add_td_learning_pathway(pathway, learning_rate=0.3).learning_components
# Unpack Relevant Learning Components
prediction_error_mechanism = learning_related_components[pnl.OBJECTIVE_MECHANISM]
target_mechanism = learning_related_components[pnl.TARGET_MECHANISM]
# Create Log
prediction_error_mechanism.log.set_log_conditions(pnl.VALUE)
# Create Stimulus Dictionary
no_reward_trials = {14, 29, 44, 59, 74, 89}
inputs = build_stimulus_dictionary(sample_mechanism, target_mechanism, no_reward_trials)
# Run Composition
comp.learn(inputs=inputs)
if args.enable_plot:
# Get Delta Values from Log
delta_vals = prediction_error_mechanism.log.nparray_dictionary()[composition_name][pnl.VALUE]
# Plot Delta Values form trials 1, 30, and 50
with plt.style.context('seaborn'):
plt.plot(delta_vals[0][0], "-o", label="Trial 1")
plt.plot(delta_vals[29][0], "-s", label="Trial 30")
plt.plot(delta_vals[49][0], "-o", label="Trial 50")
plt.title("Montague et. al. (1996) -- Figure 5A")
plt.xlabel("Timestep")
plt.ylabel("∂")
plt.legend()
plt.xlim(xmin=35)
plt.xticks()
plt.show(block=not pnl._called_from_pytest)
return comp
|
a8764f75cd9fc7cf0e0a9ddadc452ffdf05f099e
| 33,086 |
import json
def lambda_handler(event, context):
""" Transforms a binary payload by invoking "decode_{event.type}" function
Parameters
----------
DeviceId : str
Device Id
ApplicationId : int
LoRaWAN Application Id / Port number
PayloadData : str
Base64 encoded input payload
Returns
-------
This function returns a JSON object with the following keys:
- status: 200 or 500
- transformed_payload: result of calling "{PayloadDecoderName}.dict_from_payload" (only if status == 200)
- lns_payload: a representation of payload as received from an LNS
- error_type (only if status == 500)
- error_message (only if status == 500)
- stackTrace (only if status == 500)
"""
logger.info("Received event: %s" % json.dumps(event))
input_base64 = event.get("PayloadData")
device_id = event.get("WirelessDeviceId")
metadata = event.get("WirelessMetadata")["LoRaWAN"]
try:
# Invoke a payload conversion function
decoded_payload = rfi_power_switch.dict_from_payload(
event.get("PayloadData"))
# Define the output of AWS Lambda function in case of successful decoding
decoded_payload["status"] = 200
result = decoded_payload
logger.info(result)
return result
except Exception as exp:
logger.error(f"Exception {exp} during binary decoding")
raise exp
|
d645454656d85589652942b944e84863cb22a425
| 33,088 |
def _get_adi_snrs(psf, angle_list, fwhm, plsc, flux_dist_theta_all,
wavelengths=None, mode='median', ncomp=2):
""" Get the mean S/N (at 3 equidistant positions) for a given flux and
distance, on a median subtracted frame.
"""
snrs = []
theta = flux_dist_theta_all[2]
flux = flux_dist_theta_all[0]
dist = flux_dist_theta_all[1]
# 3 equidistant azimuthal positions
for ang in [theta, theta + 120, theta + 240]:
cube_fc, posx, posy = create_synt_cube(GARRAY, psf, angle_list, plsc,
flux=flux, dist=dist, theta=ang,
verbose=False)
fr_temp = _compute_residual_frame(cube_fc, angle_list, dist, fwhm,
wavelengths, mode, ncomp,
svd_mode='lapack', scaling=None,
collapse='median', imlib='opencv',
interpolation='lanczos4')
res = frame_quick_report(fr_temp, fwhm, source_xy=(posx, posy),
verbose=False)
# mean S/N in circular aperture
snrs.append(np.mean(res[-1]))
# median of mean S/N at 3 equidistant positions
median_snr = np.median(snrs)
return flux, median_snr
|
3d00ccb6163962dbfdcedda7aa565dfc549e1f2b
| 33,089 |
def compute_nearest_neighbors(fit_embeddings_matrix, query_embeddings_matrix,
n_neighbors, metric='cosine'):
"""Compute nearest neighbors.
Args:
fit_embeddings_matrix: NxD matrix
"""
fit_eq_query = False
if ((fit_embeddings_matrix.shape == query_embeddings_matrix.shape)
and np.allclose(fit_embeddings_matrix, query_embeddings_matrix)):
fit_eq_query = True
if metric == 'cosine':
distances, indices, sort_indices = compute_nearest_neighbors_cosine(fit_embeddings_matrix,
query_embeddings_matrix,
n_neighbors, fit_eq_query)
else:
raise ValueError('Use cosine distance.')
return distances, indices, sort_indices
|
1020827cbaab50d591b3741d301ebe88c4ac6d93
| 33,090 |
import re
def commodify_cdli_no( cdli_no ):
"""
Given a CDLI number, fetch the text of the corresponding
artifact from the database and pass it to commodify_text
"""
# Ensure that we have a valid artifact number:
if re.match(r'P[0-9]{6}', cdli_no) is not None:
art_no = int(cdli_no[1:])
elif re.match(r'[0-9]{6}', cdli_no) is not None:
art_no = int(cdli_no)
else:
raise Exception("%s: not a well-formed artifact id"%(cdli_no))
# For the moment, only accept texts in Sumerian:
LANG_ID_SUMERIAN = 5
# Connect to DB:
conn = mariadb.connect(
user=config['db']['user'],
password=config['db']['password'],
host=config['db']['host'],
port=config['db']['port'],
database=config['db']['database']
)
cur = conn.cursor()
# DB query to get text content and language:
cur.execute("SELECT transliteration, language_id FROM inscriptions INNER JOIN artifacts_languages ON inscriptions.artifact_id = artifacts_languages.artifact_id WHERE inscriptions.artifact_id=%s", (art_no,))
text = None
for atf, lang_id in cur:
if lang_id == LANG_ID_SUMERIAN:
text = [line.strip().split(" ") for line in atf.split("\n")]
break
cur.close()
conn.close()
if text is not None:
return commodify_text( text, cdli_no )
# If no text found with specified id
# and correct language, raise exception
raise Exception("%s: artifact not found or language not supported"%(cdli_no))
|
5c194f40cbde371329671712d648019ac2e43a90
| 33,091 |
def zvalues(r, N=1):
"""
Generate random pairs for the CDF a normal distribution.
The z-values are from the cumulative distribution function of the
normal distribution.
Args:
r: radius of the CDF
N: number of pairs to generate
Returns:
pairs of random numbers
"""
y1, y2 = box_muller(0, 1, N)
z1 = (np.sqrt(1 + r) * y1 - np.sqrt(1 - r) * y2) / np.sqrt(2)
z2 = (np.sqrt(1 + r) * y1 + np.sqrt(1 - r) * y2) / np.sqrt(2)
return z1, z2
|
146d363d7fbb92a9152c6b05a8f38562d4cfc107
| 33,093 |
def exp(fdatagrid):
"""Perform a element wise exponential operation.
Args:
fdatagrid (FDataGrid): Object to whose elements the exponential
operation is going to be applied.
Returns:
FDataGrid: Object whose elements are the result of exponentiating
the elements of the original.
"""
return fdatagrid.copy(data_matrix=np.exp(fdatagrid.data_matrix))
|
aef02937bf0fac701e0ae2bac75911a5a2a8ee9e
| 33,094 |
def ksvm(param, data):
""" kernelized SVM """
certif = np.linalg.eigvalsh(data['K'])[0]
if certif < 0:
data['K'] = data['K'] - 2 * certif * np.eye(data['K'].shape[0])
optimal = {}
if len(param['kappa']) > 1 or float('inf') not in param['kappa']:
optimal.update(dist_rob_ksvm(param, data))
if float('Inf') in param['kappa']:
optimal.update(regularized_ksvm(param, data))
return optimal
|
e549411b0ac12926753e2eefa968e978414829fa
| 33,095 |
def _ordered_unique(arr):
"""
Get the unique elements of an array while preserving order.
"""
arr = np.asarray(arr)
_, idx = np.unique(arr, return_index=True)
return arr[np.sort(idx)]
|
c4e2578a41d7481b602c4251890276dc2a92dbe9
| 33,096 |
def is_byte_array(value, count):
"""Returns whether the given value is the Python equivalent of a
byte array."""
return isinstance(value, tuple) and len(value) == count and all(map(lambda x: x >= 0 and x <= 255, value))
|
16793415885ea637aecbeeefe24162d6efe9eb39
| 33,097 |
def _FilterSubstructureMatchByAtomMapNumbers(Mol, PatternMol, AtomIndices, AtomMapIndices):
"""Filter substructure match atom indices by atom map indices corresponding to
atom map numbers.
"""
if AtomMapIndices is None:
return list(AtomIndices)
return [AtomIndices[Index] for Index in AtomMapIndices]
|
3594a11452848c9ae11f770fa560fe29d68aa418
| 33,098 |
def questions_for_written_answer_tabled_in_range(start, end):
"""Returns a list of all Questions for Written Answer tabled in date range.
"""
try:
_start = start.isoformat()
except AttributeError:
return []
try:
_end = end.isoformat()
except AttributeError:
return []
q_args = {'startDate': _start, 'endDate': _end}
resp = _call_questions_service("GetQuestionsForWrittenAnswer_TabledInRange", **q_args)
return _parse_list_response(resp, "QuestionsList", "Question")
|
5702005be754bb7485fb81e49ff9aab6fbc1d549
| 33,099 |
def get_headers_token(security_scopes: SecurityScopes, encoded: str = Depends(get_reusable_oauth2())) -> Token:
"""
This FastAPI dependency *will not* result in an argument added to the OpenAPI spec.
This should generally be used for dependencies involving the access token.
"""
return get_validated_token(security_scopes.scopes, encoded)
|
f7c9794fcd4b95f1e541b98203bfbe4fb1a6ec60
| 33,100 |
def worker_mode(self):
"""
bool: Whether or not all MPI ranks are in worker mode, in which all
worker ranks are listening for calls from the controller rank. If
*True*, all workers are continuously listening for calls made with
:meth:`~_make_call` until set to *False*.
By default, this is *False*.
Setting this value to *True* allows for easier use of *PRISM* in
combination with serial/OpenMP codes (like MCMC methods).
"""
return(bool(self._worker_mode))
|
45d256e47bfeffe9e3878297c6009061801e5d8d
| 33,101 |
def _pcolor(text, color, indent=0):
""" Colorized print to standard output """
esc_dict = {
'black':30, 'red':31, 'green':32, 'yellow':33, 'blue':34, 'magenta':35,
'cyan':36, 'white':37, 'none':-1
}
if esc_dict[color] != -1:
return (
'\033[{color_code}m{indent}{text}\033[0m'.format(
color_code=esc_dict[color],
indent=' '*indent,
text=text
)
)
return '{indent}{text}'.format(indent=' '*indent, text=text)
|
b156f86b2c73c00b44b8b5fd968499549bc79389
| 33,102 |
def naninterp(X, method='linear'):
"""
---------------------------------------------------------------------
fill 'gaps' in data (marked by NaN) by interpolating
---------------------------------------------------------------------
"""
inan = np.argwhere(np.isnan(X))
if inan.size == 0:
return X, inan
elif len(inan) == 1:
if inan > 0:
X[inan] = X[inan - 1]
else:
X[inan] = X[inan + 1]
else:
try:
if method != 'pchip':
set_interp = interp1d(np.transpose(np.argwhere(~np.isnan(X)))[0],
np.transpose(X[np.argwhere(~np.isnan(X))])[0], kind=method)
X[inan] = set_interp(inan)
else:
set_interp = PchipInterpolator(np.transpose(np.argwhere(~np.isnan(X)))[0],
np.transpose(X[np.argwhere(~np.isnan(X))])[0], extrapolate=False)
X[inan] = set_interp(inan)
except:
raise ValueError('linear interpolation with NaNs')
return X, inan
|
33b95a879ead6ce93fa7cf4826c05c8086194c5f
| 33,103 |
def to_op_list(elements: list) -> OperatorList:
"""elements should be a properly written reverse polish notation expression to be made into OperatorLists"""
if len(elements) == 0:
raise InvalidExpressionError()
new_elements = []
for e in elements:
if isinstance(e, Element):
new_elements.append(e)
elif e in operations:
operand_2 = new_elements.pop()
operand_1 = new_elements.pop()
result = OperatorList(operand_1, operand_2, operation=e)
if len(result.members) == 1:
result = Element(repr(result.members[0]))
new_elements.append(result)
if len(new_elements) > 1:
raise ValueError("was not able to process expression")
if type(new_elements[0]) == OperatorList:
return new_elements[0]
return OperatorList(*new_elements, operation='+')
|
d849d840c4c391559dd85c5135909bc3381ed9cc
| 33,104 |
def future(fn):
"""Mark a test as expected to unconditionally fail.
Takes no arguments, omit parens when using as a decorator.
"""
fn_name = fn.__name__
def decorated(*args, **kw):
try:
fn(*args, **kw)
except Exception, ex:
print ("Future test '%s' failed as expected: %s " % (
fn_name, str(ex)))
return True
else:
raise AssertionError(
"Unexpected success for future test '%s'" % fn_name)
return _function_named(decorated, fn_name)
|
ae7b5fed9aea4546dcc07fa89a1d37dac89c0a94
| 33,105 |
def prodXTXv(v):
"""
Fast computation function for the product between a vector v, the matrix X and the transpose of the matrix X,
where X is the triangular matrix with only one below the diagonal.
:parameters:
- v : (array-like) the vector v
:return:
- res : the result of the matrix-vector product"""
return np.cumsum(np.cumsum(v)[::-1])[::-1]
|
0e7526df922518278791c6c67c7233d2f53ca6c8
| 33,106 |
def input_fn(mode, batch_size, data_dir):
"""Input_fn using the contrib.data input pipeline for CIFAR-10 dataset.
Args:
mode: Standard names for model modes (tf.estimators.ModeKeys).
batch_size: The number of samples per batch of input requested.
"""
dataset = record_dataset(filenames(mode, data_dir))
# For training repeat forever.
if mode == tf.estimator.ModeKeys.TRAIN:
dataset = dataset.repeat()
dataset = dataset.map(dataset_parser, num_threads=1,
output_buffer_size=2 * batch_size)
# For training, preprocess the image and shuffle.
if mode == tf.estimator.ModeKeys.TRAIN:
dataset = dataset.map(train_preprocess_fn, num_threads=1,
output_buffer_size=2 * batch_size)
# Ensure that the capacity is sufficiently large to provide good random
# shuffling.
buffer_size = int(NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN * 0.4) + 3 * batch_size
dataset = dataset.shuffle(buffer_size=buffer_size)
# Subtract off the mean and divide by the variance of the pixels.
dataset = dataset.map(
lambda image, label: (tf.image.per_image_standardization(image), label),
num_threads=1,
output_buffer_size=2 * batch_size)
# Batch results by up to batch_size, and then fetch the tuple from the
# iterator.
iterator = dataset.batch(batch_size).make_one_shot_iterator()
images, labels = iterator.get_next()
return {INPUT_TENSOR_NAME: images}, labels
|
4e59ed0e8a7ff1151a93a457b68cb99d3a47124b
| 33,107 |
from typing import Any
from typing import Set
import inspect
from unittest.mock import Mock
def _get_default_arguments(obj: Any) -> Set[str]:
"""Get the names of the default arguments on an object
The default arguments are determined by comparing the object to one constructed
from the object's class's initializer with Mocks for all positional arguments
Arguments:
obj: the object to find default arguments on
Returns:
the set of default arguments
"""
cls = type(obj)
obj_sig = inspect.signature(cls.__init__)
try:
mocked_obj = cls(
**{
param.name: Mock()
for param in obj_sig.parameters.values()
if param.default == param.empty
and param.kind != param.VAR_KEYWORD
and param.name != "self"
}
)
except Exception:
return set()
return {
key
for key, value in obj.__dict__.items()
if key in mocked_obj.__dict__ and mocked_obj.__dict__[key] == value
}
|
483fe82dd79aadfe1da387fb0c602beb503f344b
| 33,108 |
from typing import Union
from typing import Optional
import logging
def execute_query(
connection: mysql.connector.connection_cext.CMySQLConnection,
sql_query: str,
data: Union[dict, tuple],
commit=True,
) -> Optional[int]:
"""
Execute and commit MySQL query
Parameters
----------
connection : mysql.connector.connection_cext.CMySQLConnection
mysql connection class
sql_query : str
SQL query
data : Union[dict, tuple]
_description_
commit : bool, optional
Make database change persistent, by default True
Returns
-------
Optional[int]
Query id should be int
"""
cursor = connection.cursor()
try:
cursor.execute(sql_query, data)
if commit:
connection.commit()
logging.info("MySQL committed ...")
id = cursor.lastrowid
cursor.close()
return id
except mysql.connector.errors.Error as e:
logging.error(f"{e}")
|
7c7fbeb7880d2b4efd758387af860dc6af05bbfd
| 33,109 |
def rpn_targets(anchors, bbox_gt, config):
"""Build the targets for training the RPN
Arguments
---------
anchors: [N, 4]
All potential anchors in the image
bbox_gt: [M, 4]
Ground truth bounding boxes
config: Config
Instance of the Config class that stores the parameters
Returns
-------
rpn_match: [N, 1]
Array same length as anchors with 1=positive, 0=neutral, -1=negative
rpn_bbox: [config.TRAIN_ANCHORS_PER_IMAGE, 4]
Array that stores the bounding box shifts needed to adjust the positive anchors by
"""
# Outputs
rpn_match = np.zeros(anchors.shape[0], np.float32)
rpn_bbox = np.zeros((config.TRAIN_ANCHORS_PER_IMAGE, 4), np.float32)
# Find the iou between all anchors and all bboxes
iou_mat = iou_matrix(anchors, bbox_gt)
# Find best bbox index for each anchor
best_bboxs = np.argmax(iou_mat, axis=1)
# Find best anchor for every bbox
best_anchors = np.argmax(iou_mat, axis=0)
# Create the IOU matrix
anchor_iou = iou_mat[np.arange(0, iou_mat.shape[0]), best_bboxs]
# Set the ground truth values for RPN match
rpn_match[anchor_iou < .3] = -1
rpn_match[anchor_iou > .7] = 1
# Assign a value to all bboxes - note there will be duplicates
rpn_match[best_anchors] = 1
# There can only be 1:1 ratio of positive anchors to negative anchors at max
positive_anchors = np.where(rpn_match == 1)[0]
if len(positive_anchors) > config.TRAIN_ANCHORS_PER_IMAGE // 2:
set_to_zero = np.random.choice(positive_anchors, len(positive_anchors) - config.TRAIN_ANCHORS_PER_IMAGE // 2,
replace=False)
# Set extras to zero
rpn_match[set_to_zero] = 0
# Reset positive anchors
positive_anchors = np.where(rpn_match == 1)[0]
# Set negative anchors to the difference between allowed number of total anchors and the positive anchors
negative_anchors = np.where(rpn_match == -1)[0]
set_to_zero = np.random.choice(negative_anchors,
len(negative_anchors) - (config.TRAIN_ANCHORS_PER_IMAGE - len(positive_anchors)),
replace=False)
rpn_match[set_to_zero] = 0
# Reset negative anchors
negative_anchors = np.where(rpn_match == -1)[0]
# Create the RPN bbox targets
target_anchors = anchors[positive_anchors]
# The anchor adjustments are assigned to the top half or less of rpn_bbox, the rest are zeros.
for idx in range(target_anchors.shape[0]):
# Get the closest bbox and target corresponding anchor
bbox = bbox_gt[best_bboxs[positive_anchors[idx]]]
anchor = target_anchors[idx]
# Bbox dimensions and centroids
bbox_height = bbox[2] - bbox[0]
bbox_width = bbox[3] - bbox[1]
bbox_y = np.mean([bbox[2], bbox[0]])
bbox_x = np.mean([bbox[3], bbox[1]])
# Anchor dimensions and centroids
anchor_height = anchor[2] - anchor[0]
anchor_width = anchor[3] - anchor[1]
anchor_y = np.mean([anchor[2], anchor[0]])
anchor_x = np.mean([anchor[3], anchor[1]])
# Adjustment in normalized coordinates
adjustment = np.array([(bbox_y - anchor_y) / anchor_height,
(bbox_x - anchor_x) / anchor_width,
np.log(bbox_height / anchor_height),
np.log(bbox_width / anchor_width)])
# Normalize further by dividing by std
normalized_adjustment = adjustment / config.RPN_BBOX_STD_DEV
# Set the ground truth rpn bbox
rpn_bbox[idx] = normalized_adjustment
return rpn_match, rpn_bbox
|
3775c2c3222911377a85ddaae802a625a181a9d9
| 33,110 |
from datetime import datetime
def add_years(d, years):
"""Return a date that's `years` years after the date (or datetime).
Return the same calendar date (month and day) in the destination year,
if it exists, otherwise use the following day
(thus changing February 29 to February 28).
"""
try:
return d.replace(year=d.year + years)
except ValueError:
return d + (datetime.date(d.year + years, 3, 1) - datetime.date(d.year, 3, 1))
|
325085694b92f39e3ed8d22f690b5b520cdcbe5f
| 33,111 |
def adj_to_knn(adj, n_neighbors):
"""convert the adjacency matrix of a nearest neighbor graph to the indices
and weights for a knn graph.
Arguments
---------
adj: matrix (`.X`, dtype `float32`)
Adjacency matrix (n x n) of the nearest neighbor graph.
n_neighbors: 'int' (optional, default 15)
The number of nearest neighbors of the kNN graph.
Returns
-------
idx: :class:`~numpy.ndarray`
The matrix (n x n_neighbors) that stores the indices for each node's
n_neighbors nearest neighbors.
wgt: :class:`~numpy.ndarray`
The matrix (n x n_neighbors) that stores the weights on the edges
for each node's n_neighbors nearest neighbors.
"""
n_cells = adj.shape[0]
idx = np.zeros((n_cells, n_neighbors), dtype=int)
wgt = np.zeros((n_cells, n_neighbors), dtype=adj.dtype)
for cur_cell in range(n_cells):
# returns the coordinate tuple for non-zero items
cur_neighbors = adj[cur_cell, :].nonzero()
# set itself as the nearest neighbor
idx[cur_cell, :] = cur_cell
wgt[cur_cell, :] = 0
# there could be more or less than n_neighbors because of an approximate search
cur_n_neighbors = len(cur_neighbors[1])
if cur_n_neighbors > n_neighbors - 1:
sorted_indices = np.argsort(adj[cur_cell][:, cur_neighbors[1]].A)[0][: (n_neighbors - 1)]
idx[cur_cell, 1:] = cur_neighbors[1][sorted_indices]
wgt[cur_cell, 1:] = adj[cur_cell][0, cur_neighbors[1][sorted_indices]].A
else:
idx_ = np.arange(1, (cur_n_neighbors + 1))
idx[cur_cell, idx_] = cur_neighbors[1]
wgt[cur_cell, idx_] = adj[cur_cell][:, cur_neighbors[1]].A
return idx, wgt
|
baed2ea35131705bf99fe01f5ffd6924eb689f32
| 33,112 |
def typeck(banana_file):
"""
Type-check the provided BananaFile instance.
If it type check, it returns the associated TypeTable.
:type banana_file: ast.BananaFile
:param banana_file: The file to typecheck.
:rtype: typetbl.TypeTable
:return: Returns the TypeTable for this BananaFile
"""
type_table = typetbl.TypeTable()
statement_index = 0
for stmt in banana_file.statements:
lhs, rhs = stmt
type_computed = typeck_rhs(rhs, type_table)
type_table.set_type(lhs, type_computed, statement_index)
statement_index += 1
conn.typeck_connections(banana_file.connections, type_table)
return type_table
|
71516db1fcb34666b35f2f62736e585d46766c5c
| 33,113 |
import aiohttp
import async_timeout
async def authenticate(
session: aiohttp.ClientSession, username: str, password: str
) -> str:
"""Authenticate and return a token."""
with async_timeout.timeout(10):
resp = await session.request(
"post",
BASE_URL + "authenticate",
data={"username": username, "password": password},
raise_for_status=True,
)
data = await resp.json()
return data["token"]
|
5728503c49e2173f872eda7fbd5152f67f50d6c2
| 33,115 |
async def create_individual_sensors(
hass: HomeAssistantType, sensor_config: dict
) -> list[SensorEntity]:
"""Create entities (power, energy, utility_meters) which track the appliance."""
source_entity = await create_source_entity(sensor_config[CONF_ENTITY_ID], hass)
try:
power_sensor = await create_power_sensor(hass, sensor_config, source_entity)
except PowercalcSetupError as err:
return []
entities_to_add = [power_sensor]
if sensor_config.get(CONF_CREATE_ENERGY_SENSOR):
energy_sensor = await create_energy_sensor(
hass, sensor_config, power_sensor, source_entity
)
entities_to_add.append(energy_sensor)
if sensor_config.get(CONF_CREATE_UTILITY_METERS):
meter_types = sensor_config.get(CONF_UTILITY_METER_TYPES)
for meter_type in meter_types:
entities_to_add.append(
create_utility_meter_sensor(energy_sensor, meter_type)
)
return entities_to_add
|
3112b85721fe4692ddec3f15c13ae9e5192dfb55
| 33,116 |
def collatz(number):
"""If number is even (number // 2) else (3 * number + 1)
Args:
number (int): number to collatz
Returns:
int: collatz number
"""
if (number % 2) == 0:
print(number // 2)
return number // 2
print(3 * number + 1)
return 3 * number + 1
|
221fd238bd6d0c40c9cb80be2c58746bb206c17b
| 33,117 |
def maximum_clique(adjacency):
"""Maximum clique of an adjacency matrix.
Parameters
----------
adjacency : (M, M) array
Adjacency matrix.
Returns
-------
maximum_clique : list with length = size of maximum clique
Row indices of maximum clique coordinates. Set to False if no maximum
clique is found.
"""
G = nx.Graph(adjacency)
cliques = list(nx.find_cliques(G))
if len(cliques) < 1:
print('No maximal cliques found.')
return False
clique_sizes = [len(i) for i in cliques]
maximum_clique = cliques[np.argmax(np.array(clique_sizes))]
return maximum_clique
|
a8cf5cb67b74f334ea632263f68127b35f8e7816
| 33,118 |
def get_disk_at(board, position):
"""
Return the disk at the given position on the given board.
- None is returned if there is no disk at the given position.
- The function also returns None if no disk can be obtained from the given
board at the given position. This is for instance the case if a string,
a number, ... is passed instead of a board or a position, if the given
position is outside the boundaries of the given board, ...
ASSUMPTIONS
- None (same remark as for the function dimension)
"""
if not isinstance(position, (tuple, list)) or not isinstance(board, dict):
return None
else:
return board[position]
|
4b793ce1947b2f71d666b1d1676ca894f43c3b58
| 33,119 |
def incr_key_store(key, amount=1):
"""
increments value of key in store with amount
:param key: key of the data
:param amount: amount to add
:return: new value
"""
if get_use_redis():
return rds.incr(str(key), amount)
else:
if exists_key_store(key):
value = get_key_store(key)
set_key_store(key, value + amount)
return value + amount
else:
set_key_store(key, amount)
return amount
|
b31d024952c133863f38a6504d4c39e92493f27a
| 33,120 |
def firstUniqChar(s):
"""
:type s: str
:rtype: int
"""
if len(s) == 0:
return -1
if len(s) == 1:
return 0
hash_table = {}
for i in s:
if i not in hash_table:
hash_table[i] = 1
else:
hash_table[i] += 1
for i in s:
if hash_table[i] <= 1:
return s.find(i)
return -1
|
25148de95099094991339bb0fe6815644e5b94cb
| 33,121 |
def sum_of_powers_of_transition_matrix(adj, pow):
"""Computes \sum_{r=1}^{pow) (D^{-1}A)^r.
Parameters
-----
adj: sp.csr_matrix, shape [n_nodes, n_nodes]
Adjacency matrix of the graph
pow: int
Power exponent
Returns
----
sp.csr_matrix
Sum of powers of the transition matrix of a graph.
"""
deg = adj.sum(1).A1
deg[deg == 0] = 1
transition_matrix = sp.diags(1 / deg).dot(adj)
sum_of_powers = transition_matrix
last = transition_matrix
for i in range(1, pow):
last = last.dot(transition_matrix)
sum_of_powers += last
return sum_of_powers
|
6b20b6cf8f9bba2d04672a04401f265f751cd5f0
| 33,122 |
from typing import Optional
from typing import Union
from typing import Callable
def get_current_sites(
brand_id: Optional[BrandID] = None, *, include_brands: bool = False
) -> set[Union[Site, SiteWithBrand]]:
"""Return all "current" (i.e. enabled and not archived) sites."""
query = db.session.query(DbSite)
if brand_id is not None:
query = query.filter_by(brand_id=brand_id)
if include_brands:
query = query.options(db.joinedload(DbSite.brand))
sites = query \
.filter_by(enabled=True) \
.filter_by(archived=False) \
.all()
transform: Callable[[DbSite], Union[Site, SiteWithBrand]]
if include_brands:
transform = _db_entity_to_site_with_brand
else:
transform = _db_entity_to_site
return {transform(site) for site in sites}
|
7bddf17bc2d2b3b5854f6c2bf47089bbac930d0a
| 33,123 |
def get_text_editor_for_attr(traits_ui, attr):
""" Grab the Qt QLineEdit for attr off the UI and return its text.
"""
widget = get_widget_for_attr(traits_ui, attr)
return widget.text()
|
6691fe0ddc13b379b1edcc5494e6378317df3bdc
| 33,124 |
def check_coords(lat, lng):
""" Accepts a list of lat/lng tuples.
returns the list of tuples that are within the bounding box for the US.
NB. THESE ARE NOT NECESSARILY WITHIN THE US BORDERS!
"""
if bottom <= lat <= top and left <= lng <= right:
inside_box = 1
else:
inside_box = 0
return inside_box
|
e9b1678b2d736dbae9c2524df08bc59a3fe1912f
| 33,125 |
async def confirm_email(body: ConfirmTokenModel, include_in_schema=False):
"""Mark a user's email as confirmed"""
email = verify_access_token(body.token)
if not email:
logger.info("Error getting email")
return JSONResponse(
status_code=status.HTTP_401_UNAUTHORIZED,
content={"error":"Token has expired, please sign up again."},
)
login = await Login.filter(email=email.lower()).first()
if not login:
return JSONResponse(
status_code=status.HTTP_401_UNAUTHORIZED,
content={"error":"Incorrect username or password"},
headers={"WWW-Authenticate": "Bearer"},
)
await login.set_confirmed()
return status.HTTP_200_OK
|
428ce5b9ed1e23bde91d57f16e5a18f9add3da83
| 33,126 |
def create_config_hyperparameter_search(dataset_name):
"""
Create the config file for the hyper-parameter tuning given a dataset.
"""
hidden_layer_size = [16, 32, 64]
n_hidden_layers = [2, 3, 4]
learning_rate = [0.005, 0.01, 0.02, 0.05]
lr_decay = [0.99, 0.995, 0.999, 1.0]
pytorch_init_seeds = np.arange(10).tolist()
sweep_config = {'program': 'workflow.py',
'method': 'grid',
'name': f'{dataset_name}_tuning'}
metric = {
'name': 'best_validation_loss',
'goal': 'minimize'
}
parameters_dict = {
'epochs': {'value': 3000},
'epochs_initial_training': {'value': 1000},
'hidden_layer_size': {'values': hidden_layer_size},
'n_hidden_layers': {'values': n_hidden_layers},
'learning_rate': {'values': learning_rate},
'lr_decay': {'values': lr_decay},
'dataset_name': {'value': dataset_name},
'dataset_split_seed': {'value': 10},
'pytorch_init_seed': {'values': pytorch_init_seeds},
'threads': {'value': 1},
}
if '_PR' in dataset_name:
parameters_dict['jacobian_regulariser'] = {'values': [0.001, 0.01, 0.1, 1.0]}
else:
parameters_dict['jacobian_regulariser'] = {'value': 0.0}
if '_NI' in dataset_name or '_VI' in dataset_name:
parameters_dict['resampling_region'] = {'values': ['marginal_tight', 'marginal_wide']}
else:
parameters_dict['resampling_region'] = {'value': None}
sweep_config['parameters'] = parameters_dict
sweep_config['metric'] = metric
return sweep_config
|
d8635f42bf66e782c11dd9bc310b2c1ae30deff2
| 33,127 |
def get_genome_set(gids=[], def_name=None):
"""Wrapper for Genome object creation, checks if cache (created through unique option set) exists first and returns that.
returns dict: key = genome_id, value = Genome() object
see: help(Genome)
"""
if not gids:
sys.stderr.write("No ids inputted\n")
return
cache_id = "_".join(sorted(gids))
cache_md5 = hashlib.md5(cache_id).hexdigest()
cache_obj = load_object(cache_md5)
if cache_obj is not None:
print "Loading Genome objects for selected genomes from cached object"
return cache_obj
else:
# hack to get variable name
if def_name == None:
(filename,line_number,function_name,text)=traceback.extract_stack()[-2]
def_name = text[:text.find('=')].strip()
print "Loading Genome objects for selected genomes through API. Please wait, this may take several minutes ..."
new_obj = dict([(x, Genome(genome_id=x, def_name="%s['%s']"%(def_name, x))) for x in gids])
save_object(new_obj, cache_md5)
print "Done loading through API"
return new_obj
|
ea3cc9f5094b5ac21c760c3f2dfa2f0072c3ead4
| 33,128 |
def sample_tag(user: User, name: str = "Main course") -> Tag:
"""Create and return a sample name"""
return Tag.objects.create(user=user, name=name)
|
d0181ae04479661bde1ed4d72c6e871de95a016a
| 33,129 |
def trustworthiness(X, X_embedded, n_neighbors=5, precomputed=False):
"""Expresses to what extent the local structure is retained.
The trustworthiness is within [0, 1]. It is defined as
Returns
-------
trustworthiness : float
Trustworthiness of the low-dimensional embedding.
"""
if precomputed:
dist_X = X
else:
dist_X = cdist(X, X, p=2.)
dist_X_embedded = cdist(X_embedded, X_embedded, p=2.)
ind_X = np.argsort(dist_X , axis=1)
ind_X_embedded = np.argsort(dist_X_embedded, axis=1)[:, 1:n_neighbors + 1]
n_samples = X.shape[0]
t = 0.0
ranks = np.zeros(n_neighbors)
for i in range(n_samples):
for j in range(n_neighbors):
ranks[j] = np.where(ind_X[i] == ind_X_embedded[i, j])[0][0]
ranks -= n_neighbors
t += np.sum(ranks[ranks > 0])
t = 1.0 - t * (2.0 / (n_samples * n_neighbors * (2.0 * n_samples - 3.0 * n_neighbors - 1.0)))
return t
|
d5db0a3c8b3ecbdb3375171a9601320bd6628020
| 33,131 |
def compute_logomaker_df(adata, indices, fixed_length: int = None):
"""
The sample names (adata.obs_names) must be strings made of amino acid characters.
The list of allowed characters is stored in the variable aminoacids.
"""
if fixed_length is None:
pos_list = np.arange(max([len(adata.obs_names[idx]) for idx in indices]))
total_size = len(indices)
else:
pos_list = np.arange(fixed_length)
total_size = 0
for idx in indices:
if len(adata.obs_names[idx]) == fixed_length:
total_size += 1
if total_size == 0:
raise ValueError("Cannot compute logo on an empty set.")
probability_matrix = np.zeros((len(pos_list), len(aminoacids)))
for position in pos_list:
counts = {}
for aa in aminoacids:
counts[aa] = 0
for idx in indices:
if fixed_length is None:
if position < len(adata.obs_names[idx]):
counts[adata.obs_names[idx][position]] += 1
else:
if len(adata.obs_names[idx]) == fixed_length:
counts[adata.obs_names[idx][position]] += 1
for k in range(len(aminoacids)):
probability_matrix[position, k] = counts[aminoacids[k]] / total_size
# from probabilities to bits:
max_entropy = -np.log2(1 / len(aminoacids))
for position in pos_list:
pos_entropy = max_entropy - entropy(
1e-10 + probability_matrix[position, :], base=2
)
probability_matrix[position, :] *= pos_entropy
dico = {"pos": pos_list}
for k in range(len(aminoacids)):
dico[aminoacids[k]] = probability_matrix[:, k]
df_ = DataFrame(dico)
df_ = df_.set_index("pos")
return df_
|
760715143605bb9cc1b632978a10d8bd2d56bd66
| 33,132 |
from typing import Optional
from typing import Tuple
import re
def parse_test_stats_from_output(output: str, fail_type: Optional[str]) -> Tuple[int, int]:
"""Parse tasks output and determine test counts.
Return tuple (number of tests, number of test failures). Default
to the entire task representing a single test as a fallback.
"""
# pytest
m = re.search('^=+ (.*) in [0-9.]+ seconds =+\n\Z', output, re.MULTILINE)
if m:
counts = {}
for part in m.group(1).split(', '): # e.g., '3 failed, 32 passed, 345 deselected'
count, key = part.split()
counts[key] = int(count)
return (sum(c for k, c in counts.items() if k != 'deselected'),
counts.get('failed', 0))
# myunit
m = re.search('^([0-9]+)/([0-9]+) test cases failed(, ([0-9]+) skipped)?.$', output,
re.MULTILINE)
if m:
return int(m.group(2)), int(m.group(1))
m = re.search('^([0-9]+) test cases run(, ([0-9]+) skipped)?, all passed.$', output,
re.MULTILINE)
if m:
return int(m.group(1)), 0
# Couldn't find test counts, so fall back to single test per tasks.
if fail_type is not None:
return 1, 1
else:
return 1, 0
|
8ec67d226c2280eb08de3589cba7b6aa0a09024c
| 33,133 |
from typing import List
from typing import Tuple
from typing import Dict
def _constraint_items_missing_from_collection(
constraints: List[Tuple], collection: Dict[str, int]
) -> List[str]:
"""
Determine the constrained items that are not specified
in the collection.
"""
constrained_items = set()
for constraint in constraints:
if len(constraint) > 1:
constrained_items.add(constraint[1])
return sorted(constrained_items - collection.keys())
|
918667f1e8b001637c9adf00ef5323b2e8587775
| 33,134 |
import scipy
def coldpool_edge_shear_direction_split(
tv0100,
ds_profile,
l_smoothing=L_SMOOTHING_DEFUALT,
l_edge=L_EDGE_DEFAULT,
d_theta_v=COLDPOOL_THRESHOLD_DEFAULT,
shear_calc_z_max=SHEAR_DIRECTION_Z_MAX_DEFAULT,
profile_time_tolerance=60.0,
):
"""
Computes a mask for the edge of coldpools in the upshear direction by
comparing the direction of the coldpool edge to the mean shear (up to
`shear_calc_z_max`)
"""
ds_edge = coldpool_edge(
tv0100=tv0100, l_smoothing=l_smoothing, l_edge=l_edge, d_theta_v=d_theta_v
)
ds = xr.Dataset(coords=ds_edge.coldpool.coords)
ds["shear_calc_time_tolerance"] = ((), profile_time_tolerance, dict(units="s"))
ds["shear_calc_z_max"] = ((), shear_calc_z_max, dict(units="m"))
ds["l_edge"] = ((), l_edge, dict(units="m"))
# make a stencil which will pick out only neighbouring cells
dx = np.max(np.gradient(ds.xt))
nx_disk = int(0.5 * l_edge / dx)
m_neigh = skimage.morphology.disk(nx_disk)
m_neigh[nx_disk, nx_disk] = 0
# convolve with stencil to count how many coldpool cells are near a
# particular edge cell
n_coldpool = np.where(
ds_edge.coldpool_edge,
scipy.ndimage.convolve(
# cast to int here so we have range that bool doesn't supply
ds_edge.coldpool.astype(int),
m_neigh,
mode="wrap",
),
np.nan,
)
ds["n_coldpool"] = (ds_edge.coldpool.dims, n_coldpool)
def _find_mean_dir(ds, x_):
l_ = np.where(
# only compute for cells which actually are "near" coldpool,
# will depend on m_neigh size, should make sure n_neigh is big enough
ds.n_coldpool > 0,
# use positions for cells inside inner-most region of coldpool,
# at the edge we ignore the points outside the domain
# (working out wrapping with the positions is too hard for now...)
scipy.ndimage.convolve(
np.where(ds_edge.m_inner, x_, 0), m_neigh, mode="constant", cval=0.0
),
np.nan,
)
# from sum of mean of all neighbouring directions we subtract the
# central position
return l_ / ds.n_coldpool - np.where(ds.n_coldpool > 0, x_, np.nan)
x, y = np.meshgrid(ds.xt, ds.yt)
print("Finding x-component of direction for edge")
lx = _find_mean_dir(ds=ds, x_=x)
print("Finding y-component of direction for edge")
ly = _find_mean_dir(ds=ds, x_=y)
print("Defining edge direction vector for each point")
dims = tuple(["component"] + list(ds_edge.coldpool.dims))
# use raw values for significant speedup
ds["edge_direction"] = (dims, [lx.values, ly.values])
ds.edge_direction.values /= np.linalg.norm(ds.edge_direction.values, axis=0)
print("Identifying mean shear direction")
time = ds.time.values
p_sel = ds_profile.sel(
time=time, method="nearest", tolerance=profile_time_tolerance
)
u_wind, v_wind = p_sel.u.squeeze(), p_sel.v.squeeze()
# have to select on u and v separately here because UCLALES (incorrectly)
# labels v-wind as existing at the cell interface
z_max = shear_calc_z_max
dudz_mean = np.gradient(u_wind.sel(zt=slice(0, z_max))).mean()
dvdz_mean = np.gradient(v_wind.sel(zm=slice(0, z_max))).mean()
shear_dir = np.array([dudz_mean, dvdz_mean])
shear_dir /= np.linalg.norm(shear_dir)
# note that y-direction should be first argument to arctan
# https://docs.scipy.org/doc/numpy-1.12.0/reference/generated/numpy.arctan2.html
ds["mean_shear_direction"] = np.arctan2(shear_dir[1], shear_dir[0]) * 180.0 / pi
ds.mean_shear_direction.attrs["units"] = "deg"
# compute similarity in direction between shear and coldpool edge
nx, ny = ds_edge.coldpool.shape
co_dir = np.dot(shear_dir, ds.edge_direction.values.reshape((2, nx * ny))).reshape(
(nx, ny)
)
co_dir = np.where(ds_edge.coldpool_edge > 0, co_dir, np.nan)
ds["coldpool_edge_upshear"] = (
ds_edge.coldpool.dims,
co_dir < 0.0,
dict(longname="coldpool edge in upshear direction"),
)
ds["coldpool_edge_downshear"] = (
ds_edge.coldpool.dims,
co_dir > 0.0,
dict(longname="coldpool edge in downshear direction"),
)
return ds
|
9a8f97005c1ed638828a9a9ae00ffbbf516606c3
| 33,135 |
import json
def store_audio_tracks():
"""
Store the audio tracks of an event identified after probing the first HLS video segment.
Body:
.. code-block:: python
{
"Name": string,
"Program": string,
"AudioTracks": list
}
Returns:
None
Raises:
500 - ChaliceViewError
"""
try:
event = json.loads(app.current_request.raw_body.decode())
name = event["Name"]
program = event["Program"]
audio_tracks = event["AudioTracks"]
print(
f"Storing the audio tracks '{audio_tracks}' of event '{name}' in program '{program}' in the DynamoDB table '{EVENT_TABLE_NAME}'")
event_table = ddb_resource.Table(EVENT_TABLE_NAME)
event_table.update_item(
Key={
"Name": name,
"Program": program
},
UpdateExpression="SET #AudioTracks = :AudioTracks",
ExpressionAttributeNames={
"#AudioTracks": "AudioTracks"
},
ExpressionAttributeValues={
":AudioTracks": audio_tracks
}
)
except Exception as e:
print(f"Unable to store the audio tracks '{audio_tracks}' of event '{name}' in program '{program}': {str(e)}")
raise ChaliceViewError(
f"Unable to store the audio tracks '{audio_tracks}' of event '{name}' in program '{program}': {str(e)}")
else:
print(f"Successfully stored the audio tracks '{audio_tracks}' of event '{name}' in program '{program}'")
return {}
|
4310bd8bfa7e65b4be113bfac93db74957b4e822
| 33,136 |
import operator
def isqrt(n):
"""
Return the integer part of the square root of the input.
(math.isqrt from Python 3.8)
"""
n = operator.index(n)
if n < 0:
raise ValueError("isqrt() argument must be nonnegative")
if n == 0:
return 0
c = (n.bit_length() - 1) // 2
a = 1
d = 0
for s in reversed(range(c.bit_length())):
# Loop invariant: (a-1)**2 < (n >> 2*(c - d)) < (a+1)**2
e = d
d = c >> s
a = (a << d - e - 1) + (n >> 2*c - e - d + 1) // a
return a - (a*a > n)
|
b841bc3907c15677ddc97a5c5366b1a0312d12b6
| 33,137 |
import csv
def main(file_in, file_out):
"""
Read in lines, flatten list of lines to list of words,
sort and tally words, write out tallies.
"""
with open(file_in, 'r') as f_in:
word_lists = [line.split() for line in f_in]
# Flatten the list
# http://stackoverflow.com/questions/952914/\
# making-a-flat-list-out-of-list-of-lists-in-python
words = [word for word_list in word_lists for word in word_list]
counts = map(words.count, words)
tallies = sorted(set(zip(words, counts)))
with open(file_out, 'w') as f_out:
writer = csv.writer(f_out, quoting=csv.QUOTE_NONNUMERIC)
for (word, count) in tallies:
writer.writerow([word, count])
return None
|
225dd5d5b4c2bcb158ee61aa859f78e1e608a5fe
| 33,138 |
def check_api_key(current_request):
"""
Check if an API Key for GitHub was provided and
return a 403 if no x-api-key header was sent by the client.
"""
x_api_key = current_request.headers.get('x-api-key', False)
if not x_api_key:
return Response(
body='Missing x-api-key header',
status_code=403,
)
|
cb0b76e8b76135fe4498fdc66f34b1f5184441d1
| 33,139 |
def read_mm_stamp(fh, byteorder, dtype, count):
"""Read MM_STAMP tag from file and return as numpy.array."""
return numpy_fromfile(fh, byteorder+'8f8', 1)[0]
|
f575243ecfa67160bdbd90a476fd9fd3c6b0bed8
| 33,140 |
def Qfromq(q):
""" converts five-element set q of unique Q-tensor elements to the full 3x3 Q-tensor matrix """
return np.array( [ [ q[0], q[1], q[2] ],
[ q[1], q[3], q[4] ],
[ q[2], q[4], -q[0] - q[3] ] ] )
|
cebc58a8023588fffd0a504e8894cd2c075cde3a
| 33,141 |
def load_atomic(val):
"""
Load a std::atomic<T>'s value.
"""
valty = val.type.template_argument(0)
# XXX This assumes std::atomic<T> has the same layout as a raw T.
return val.address.reinterpret_cast(valty.pointer()).dereference()
|
307bcc9d3eae2eede6a8e2275104280a1e7b4b94
| 33,142 |
def sample_trunc_beta(a, b, lower, upper):
"""
Samples from a truncated beta distribution in log space
Parameters
----------
a, b: float
Canonical parameters of the beta distribution
lower, upper: float
Lower and upper truncations of the beta distribution
Returns
-------
s: float
Sampled value from the truncated beta distribution in log space
"""
# Check boundaries are correct
if upper < lower:
return
# If a=1 and b=1, then we're sampling truncated uniform distribution
# (i.e. peak formula below is not valid, but also not needed)
if a == 1 and b == 1:
s = np.random.uniform(low=lower, high=upper)
return s
# Get location of peak of distribution to determine type of sampling
peak = (a-1) / (a+b-2)
# If peak of beta dist is outside truncation, use uniform rejection sampling
if peak < lower or peak > upper:
# Sample a proposal
s = np.random.uniform(low=lower, high=upper)
# Get components of rejection sampling
log_f_s = beta.logpdf(s, a, b)
log_g_s = -1*np.log(upper-lower)
log_M = max(beta.logpdf(lower,a,b), beta.logpdf(upper,a,b))\
+ np.log(upper-lower)
# Keep sampling until proposal is accepted
while np.log(np.random.random()) > log_f_s - (log_M + log_g_s):
s = np.random.uniform(low=lower, high=upper)
log_f_s = beta.logpdf(s, a, b)
# If peak of beta is inside truncation, sample from beta directly
else:
s = beta.rvs(a, b)
# Keep sampling until proposal falls inside truncation boundaries
while s < lower or s > upper:
s = beta.rvs(a,b)
return s
|
40380436b82c4f5f169e21443aabbe2d30ccf84a
| 33,143 |
import torch
def reduce_dict(input_dict, average=True):
# ref: https://github.com/pytorch/vision/blob/3711754a508e429d0049df3c4a410c4cde08e4e6/references/detection/utils.py#L118
"""
Args:
input_dict (dict): all the values will be reduced
average (bool): whether to do average or sum
Reduce the values in the dictionary from all processes so that all processes
have the averaged results. Returns a dict with the same fields as
input_dict, after reduction.
"""
world_size = get_world_size()
if world_size < 2:
return input_dict
with torch.no_grad():
names = []
values = []
# sort the keys so that they are consistent across processes
for k in sorted(input_dict.keys()):
names.append(k)
values.append(input_dict[k])
values = torch.stack(values, dim=0)
dist.all_reduce(values)
if average:
values /= world_size
reduced_dict = {k: v for k, v in zip(names, values)}
return reduced_dict
|
877919878977df23fae0cecddb9042762394d083
| 33,144 |
def dataId_to_dict(dataId):
""" Parse an LSST dataId to a dictionary.
Args:
dataId (dataId): The LSST dataId object.
Returns:
dict: The dictionary version of the dataId.
"""
return dataId.to_simple().dict()["dataId"]
|
77b7566492b80a8c6e2becacafff36737c8a7256
| 33,145 |
def norm_max(tab):
"""
Short Summary
-------------
Normalize an array or a list by the maximum.
Parameters
----------
`tab` : {numpy.array}, {list}
input array or list.
Returns
-------
`tab_norm` : {numpy.array}, {list}
Normalized array.
"""
tab_norm = tab/np.max(tab)
return tab_norm
|
657f6ed358e81c6635e967d5b995663c05145c57
| 33,146 |
def getHoliday(holidayName):
"""Returns a specific holiday.
Args:
holidayName (str): The name of the holiday to return.
Case-sensitive.
Returns:
HolidayModel: The holiday, as a HolidayModel object, or None if
not found.
"""
print(holidayName)
return None
|
15b67fd6ac607d1ff12a216cc3c4baab61305be6
| 33,147 |
def draw_object(obj, bb: "BBLike" = None, ax=None):
"""
Draw easymunk object using matplotlib.
"""
options = DrawOptions(ax or plt.gca(), bb=bb)
options.draw_object(obj)
return ax
|
3b7322d12290d22be6eb47ac74d30494a1c091de
| 33,148 |
import six
import hashlib
def hash_mod(text, divisor):
"""
returns the module of dividing text md5 hash over given divisor
"""
if isinstance(text, six.text_type):
text = text.encode('utf8')
md5 = hashlib.md5()
md5.update(text)
digest = md5.hexdigest()
return int(digest, 16) % divisor
|
3f127837bb072df5ee609b3afa80dd04e4f7b794
| 33,149 |
import re
def normalize_mac_address_table(input_string):
"""
:param input_string: cli string has been get from network device by command like "show mac-address table"
:return: {(mac_address', 'vlan'): 'l2_interface'}
"""
res = {}
same_local_mac_address_count: int = 0
mac_address_number: int = 0
# if where is no mac address number line
mac_address_line_count: int = 0
vlan_reg = re.compile(
'\s([0-9]{1,4}?)\/?-?\s|' \
'^([0-9]{1,4}?)\/?-?\s|' \
'All'
)
mac_reg = re.compile(
'(?:[0-9a-fA-F]{2}(?:[:-][0-9a-fA-F]{2}){5})|' \
'(?:[0-9a-fA-F]{4}(?:\.[0-9a-fA-F]{4}){2})|' \
'(?:[0-9a-fA-F]{4}(?:-[0-9a-fA-F]{4}){2})|' \
'(?:[0-9a-fA-F]{6}(?:-[0-9a-fA-F]{6}))'
)
interface_reg = re.compile('Vlan\S+|' \
'Eth\S+|' \
'Fa\w+[0-9]{0,1}\/?[0-9]{0,2}\/?[0-9]{0,2}\/?[0-9]{0,2}|' \
'10GE\w+[0-9]{0,1}\/?[0-9]{1,2}\/?[0-9]{0,2}\/?[0-9]{0,2}|' \
'G\w+[0-9]{0,1}\/?[0-9]{1,2}\/?[0-9]{0,2}\/?[0-9]{0,2}|' \
'XGE\w+[0-9]{0,1}\/?[0-9]{1,2}\/?[0-9]{0,2}\/?[0-9]{0,2}|' \
'Ten-GigabitEthernet\w+[0-9]{0,1}\/?[0-9]{1,2}\/?[0-9]{0,2}\/?[0-9]{0,2}|' \
'Bridge-Aggregation[0-9]{0,1}\/?[0-9]{1,2}\/?[0-9]{0,2}\/?[0-9]{0,2}|' \
'BAGG[0-9]{0,1}\/?[0-9]{1,2}\/?[0-9]{0,2}\/?[0-9]{0,2}|' \
'Po\S+|'\
'CPU|'\
'Self|'\
'ether\d|'\
'sfp\d|'\
'bridge\d'
)
procurve_mac_address_line_reg = re.compile('(?:[0-9a-fA-F]{6}(?:-[0-9a-fA-F]{6}))\s+?[0-9]{1,4} *([0-9]{1,4})?')
mikrotik_mac_address_line_reg = re.compile('(?:[0-9A-F]{2}(?::[0-9A-F]{2}){5})')
for line in re.split('\r\n|\n', input_string):
# find line with total mac addresses number
if 'Total Mac' in line or \
'Total items: ' in line or \
'mac address(es) found' in line or\
'Total items displayed =' in line:
mac_address_number_line = re.search(r'\d+', line)
if mac_address_number_line:
mac_address_number = int(mac_address_number_line.group())
mac_address_line = mac_reg.search(line)
if not mac_address_line:
continue
mac_address_line_count += 1
l2_interface = ''
vlan = '' # default vlan
procurve_mac_address_line = procurve_mac_address_line_reg.search(line)
mikrotik_mac_address_line = mikrotik_mac_address_line_reg.search(line)
l2_interface_line = interface_reg.search(line)
vlan_line = vlan_reg.search(line)
# for procurve mac address format
if procurve_mac_address_line:
procurve_line = procurve_mac_address_line.group()
if len(procurve_line.split()) == 3:
mac_address, l2_interface, vlan = procurve_line.split()
else:
mac_address, l2_interface = procurve_line.split()
mac_address = normalize_mac_address(mac_address)
# for mikrotik format
if mikrotik_mac_address_line:
mac_address_number, mac_address_type, mac_address, vlan, l2_interface = re.split('\s+', line.strip())[:5]
mac_address_number = int(mac_address_number) + 1
mac_address = normalize_mac_address(mac_address)
if not vlan.isdigit():
l2_interface = vlan
vlan = ''
if 'L' in mac_address_type:
l2_interface = 'local'
else:
mac_address = normalize_mac_address(mac_address_line.group())
if l2_interface_line:
l2_interface = l2_interface_line.group()
if vlan_line:
vlan = vlan_line.group().split('/')[0]
# to compare found mac address number with shown by cli
if (mac_address, vlan) in res:
if res[(mac_address, vlan)] == 'local':
same_local_mac_address_count += 1
else:
raise L2LoopDetection(f'{normalize_interface_name(l2_interface)}, {vlan} : {mac_address} <--> '
f'{res[(mac_address, vlan)]}, {vlan}: {mac_address}')
res[(mac_address, vlan)] = normalize_interface_name(l2_interface)
if not mac_address_number:
mac_address_number = mac_address_line_count
if not int(len(res)) == (mac_address_number - same_local_mac_address_count):
raise NotFullMacAddressTableFound(f'normalized table {len(res)} != '
f'{mac_address_number - same_local_mac_address_count} in cli table')
return res
|
f4c010d440e6e3ea89dd35c967019096fb2269ef
| 33,150 |
def _get_exploration_memcache_key(exploration_id):
"""Returns a memcache key for an exploration."""
return 'exploration:%s' % exploration_id
|
1400607cc86f84c242201c9c9fe36a7a06cd2357
| 33,151 |
from typing import Optional
from typing import Tuple
def corr_filter(
corrs: np.ndarray,
value_range: Optional[Tuple[float, float]] = None,
k: Optional[int] = None,
) -> Tuple[np.ndarray, np.ndarray]:
"""
Filter correlation values by k and value_range
"""
assert (value_range is None) or (
k is None
), "value_range and k cannot be present in both"
if k is not None:
sorted_idx = np.argsort(corrs)
sorted_corrs = corrs[sorted_idx]
# pylint: disable=invalid-unary-operand-type
return (sorted_idx[-k:], corrs[sorted_idx[-k:]])
# pylint: enable=invalid-unary-operand-type
sorted_idx = np.argsort(corrs)
sorted_corrs = corrs[sorted_idx]
if value_range is not None:
start, end = value_range
istart = np.searchsorted(sorted_corrs, start)
iend = np.searchsorted(sorted_corrs, end, side="right")
return sorted_idx[istart:iend], sorted_corrs[istart:iend]
return sorted_idx, sorted_corrs
|
bbf84b19edb39ac2b787517ad1e9817bf2a042f5
| 33,152 |
import re
def isValid(text):
"""
Returns True if the input is related to jokes/humor.
Arguments:
text -- user-input, typically transcribed speech
"""
return bool(re.search(r'WATCH|OUT', text, re.IGNORECASE))
|
7d94e30bf9e0da267bd4ccab1ce823aaa315eba2
| 33,153 |
def pairs_from_array(a):
"""
Given an array of strings, create a list of pairs of elements from the array
Creates all possible combinations without symmetry (given pair [a,b], it does not create [b,a])
nor repetition (e.g. [a,a])
:param a: Array of strings
:return: list of pairs of strings
"""
pairs = list()
for i in range(len(a)):
for j in range(len(a[i + 1 :])):
pairs.append([a[i], a[i + 1 + j]])
return pairs
|
50c489d660a7e82c18baf4800e599b8a3cd083f0
| 33,155 |
def cleanse_comments(line):
"""Removes //-comments and single-line C-style /* */ comments.
Args:
line: A line of C++ source.
Returns:
The line with single-line comments removed.
"""
comment_position = line.find('//')
if comment_position != -1 and not is_cpp_string(line[:comment_position]):
line = line[:comment_position]
# get rid of /* ... */
return _RE_PATTERN_CLEANSE_LINE_C_COMMENTS.sub('', line)
|
d209b93070ab33d3f85f5a1d5c44ed47cde2fe91
| 33,156 |
def get_next_document_id(request, document_id):
"""Gets the id of the next document, by the current document's id
Gets the id of the next document, by the current document's id
The function is accessible for users with 'read_project' permission of the project and the owner of the project.
Args:
document_id:
The id of the document.
Returns:
If there is no next document, returns the current document id, else returns the next id.
The return value is converted to string.
Or forbidden or not found.
example:
{"id": "1"}
"""
doc = fetch_doc_check_perm(document_id, request.user, "stave_backend.read_project")
docs = doc.project.documents
next_doc = docs.filter(id__gt=document_id).first()
if next_doc:
next_id = next_doc.id
else:
next_id = document_id
return JsonResponse({'id': str(next_id)}, safe=False)
|
c9a098077a4672e27f438dc58ce0fb3c93d528d2
| 33,157 |
def is_merged(request):
"""Makes tests try both merged and closed pull requests."""
return request.param
|
d621f44b2ac3fe4a8639fd71d11e146fde9ca725
| 33,158 |
from typing import Dict
from typing import cast
def is_table(base_url: str, token: str) -> bool:
"""check if service layer is a table"""
params: Dict[str, str] = init_params(token)
type_layer = cast(Dict[str, str], request(base_url.rstrip('/'), params))['type']
return type_layer.lower() == 'table'
|
23c67be574335689ac5e906c748e465d3d6ed0a0
| 33,159 |
def shared_options(option_list):
"""Define decorator for common options."""
def _shared_options(func):
for option in reversed(option_list):
func = option(func)
return func
return _shared_options
|
7ef551ea9879b708e6b449ce1155d47b662efd3d
| 33,160 |
from typing import Any
def complex_key(c: complex) -> Any:
"""Defines a sorting order for complex numbers."""
return c.real != int(c.real), c.real, c.imag
|
55c17b0d4adf8bcfb39b50c66d5bd8133f5bb814
| 33,161 |
def make_raw_query_nlist_test_set(box, points, query_points, mode, r_max,
num_neighbors, exclude_ii):
"""Helper function to test multiple neighbor-finding data structures.
Args:
box (:class:`freud.box.Box`):
Simulation box.
points ((:math:`N_{points}`, 3) :class:`numpy.ndarray`):
Reference points used to calculate the correlation function.
query_points ((:math:`N_{query_points}`, 3) :class:`numpy.ndarray`, optional):
query_points used to calculate the correlation function.
Uses :code:`points` if not provided or :code:`None`.
(Default value = :code:`None`).
mode (str):
String indicating query mode.
r_max (float):
Maximum cutoff distance.
num_neighbors (int):
Number of nearest neighbors to include.
exclude_ii (bool):
Whether to exclude self-neighbors.
Returns:
tuple:
Contains points or :class:`freud.locality.NeighborQuery`,
:class:`freud.locality.NeighborList` or :code:`None`,
query_args :class:`dict` or :code:`None`.
""" # noqa: E501
test_set = []
query_args = {'mode': mode, 'exclude_ii': exclude_ii}
if mode == "ball":
query_args['r_max'] = r_max
if mode == 'nearest':
query_args['num_neighbors'] = num_neighbors
query_args['r_guess'] = r_max
test_set.append(((box, points), query_args))
test_set.append((freud.locality._RawPoints(box, points), query_args))
test_set.append((freud.locality.AABBQuery(box, points), query_args))
test_set.append(
(freud.locality.LinkCell(box, points, r_max), query_args))
aq = freud.locality.AABBQuery(box, points)
if mode == "ball":
nlist = aq.query(query_points,
dict(r_max=r_max, exclude_ii=exclude_ii)
).toNeighborList()
if mode == "nearest":
nlist = aq.query(query_points,
dict(num_neighbors=num_neighbors,
exclude_ii=exclude_ii, r_guess=r_max)
).toNeighborList()
test_set.append(((box, points), nlist))
return test_set
|
2f9b6bd9436f6f416d62e3056b9baf663ed3b209
| 33,162 |
def runs_new_in_exp(exp='xpptut15', procname='pixel_status', verb=0) :
"""Returns list of (4-char str) runs which are found in xtc directory and not yet listed in the log file,
e.g. ['0059', '0060',...]
"""
runs_log = runs_in_log_file(exp, procname)
runs_xtc = runs_in_xtc_dir(exp)
runs_new = [s for s in runs_xtc if not(s in runs_log)]
if verb & 2:
for srun in runs_xtc :
if srun in runs_new : print('%s - new' % srun)
else : print('%s - processed %s' % (srun, dsname(exp, srun)))
if verb :
print('\nScan summary for exp=%s process="%s"' % (exp, procname))
print('%4d runs in xtc dir : %s' % (len(runs_xtc), xtc_dir(exp)),\
'\n%4d runs in log file : %s' % (len(runs_log), log_file(exp, procname)),\
'\n%4d runs NEW in xtc directory' % len(runs_new))
return runs_new
|
42faf8c27bdea9e979a8b2390a89fd6c3cad72f4
| 33,163 |
def get_targets(
initial_positions,
trajectory_target_positions):
"""Returns the averaged particle mobilities from the sampled trajectories.
Args:
initial_positions: the initial positions of the particles with shape
[n_particles, 3].
trajectory_target_positions: the absolute positions of the particles at the
target time for all sampled trajectories, each with shape
[n_particles, 3].
"""
targets = np.mean([np.linalg.norm(t - initial_positions, axis=-1)
for t in trajectory_target_positions], axis=0)
return targets.astype(np.float32)
|
e9f5bde1f791fe2f0546ba7d5323745b90f1029b
| 33,165 |
def get_campaign_goal(campaign, goal_identifier):
"""Returns goal from given campaign and Goal_identifier.
Args:
campaign (dict): The running campaign
goal_identifier (string): Goal identifier
Returns:
dict: Goal corresponding to goal_identifer in respective campaign
"""
if not campaign or not goal_identifier:
return None
for goal in campaign.get("goals"):
if goal.get("identifier") == goal_identifier:
return goal
return None
|
1a8738416ee8187ad2a6a977b36b68f66052bfe8
| 33,166 |
def vox2mm(ijk, affine):
"""
Convert matrix subscripts to coordinates.
.. versionchanged:: 0.0.8
* [ENH] This function was part of `nimare.transforms` in previous versions (0.0.3-0.0.7)
Parameters
----------
ijk : (X, 3) :obj:`numpy.ndarray`
Matrix subscripts for coordinates being transformed.
One row for each coordinate, with three columns: i, j, and k.
affine : (4, 4) :obj:`numpy.ndarray`
Affine matrix from image.
Returns
-------
xyz : (X, 3) :obj:`numpy.ndarray`
Coordinates in image-space.
Notes
-----
From here:
http://blog.chrisgorgolewski.org/2014/12/how-to-convert-between-voxel-and-mm.html
"""
xyz = nib.affines.apply_affine(affine, ijk)
return xyz
|
9800c53a447e2f7eab85e62ea802c91aaa23aea7
| 33,167 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.