content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
import html def update_table1(is_open, signup, user_edit, user_remove): """update_table """ df = lookup_data() # Add icons df[_('Active')] = df[_('Active')].apply(lambda x: html.I(className="fa fa-check") if x else None ) df[_('Edit')] = df[_('UID')].apply(lambda x: dbc.Button( html.I(className="fa fa-user-edit"), color='light', size='sm', className='bg-transparent', id={'type':'update-user', 'index':x}, ) ) df[_('Remove')] = df[_('UID')].apply(lambda x: dbc.Button( html.I(className="fa fa-trash-alt"), color='light', size='sm', id={'type':'remove-user', 'index':x}, ) ) # Return table return dbc.Table.from_dataframe(df, striped=True, bordered=True, hover=True, responsive=True, size='sm', style={'textAlign':'center'} )
c93ce73bfb1d4d74cf2d05e98e2689db908d3b2d
32,598
def create_app(*args, **kwargs): """ Create flask app with predefined values. :return: Flask application """ """Create flask app with all configuration set""" app = flask.Flask(__name__) app.register_blueprint(pps_blueprint) app.jinja_env.auto_reload = True app.config['TEMPLATES_AUTO_RELOAD'] = True app.server = Server() app.secret_key = 'No_good_key' return app
84e283f7e7d5299e0a6f4f77c590e53eb5890df1
32,600
from typing import Optional def _rebase_node(curr: Optional[SQLNode], pre: SQLNode) -> SQLNode: """shorthand for a common pattern""" return pre if curr is None else curr.rebase(pre)
84e7fbb901009619d8183dc779a94f08404833d1
32,601
def proposal_list(request): """Retrieve and return a list of proposals, optionally filtered by the given acceptance status. Requires API Key. URL: /<YEAR>/pycon_api/proposals/ To filter by proposal type, add a GET query param "type" with a value of "talk", "tutorial", "lightning", or "poster", e.g.:: GET /<YEAR>/pycon_api/proposals/?type=tutorial To filter by proposal status, add a GET query param "status" with a value of "undecided", "rejected", "accepted", or "standby". So if you wanted to filter by both type and status, you might use:: GET /<YEAR>/pycon_api/proposals/?type=tutorial&status=accepted The return data, in JSON, looks like:: { 'code': 200, 'data': [<item>, <item>, ..., <item>] } where each <item> looks like:: { 'id': 13, # proposal key 'speakers': [<speaker>, <speaker>, ..., <speaker>], 'status': "undecided"|"accepted"|"rejected"|"standby" 'title': "Title of talk" } and a <speaker> looks like:: { 'name': "Speaker Name", 'email': "[email protected]" } """ # What model should we be pulling from? model = ProposalBase proposal_type = request.GET.get('type', 'talk') if proposal_type in PROPOSAL_TYPES: try: model = get_proposal_model_from_section_slug(proposal_type + 's') except ValueError: return ({ 'error': 'unrecognized proposal type' }, 400) else: return ({ 'error': 'unrecognized proposal type' }, 400) # See if there is such a proposal proposals = model.objects.select_related('result').order_by('pk') proposals = proposals.filter(kind__slug=proposal_type) # Don't look at unsubmitted proposals proposals = proposals.exclude(submitted=False) # Don't look at cancelled proposals. proposals = proposals.exclude(cancelled=True) # If specific proposal status is being requested, filter on that. desired_status = request.GET.get('status', None) if desired_status == 'undecided': proposals = proposals.filter(Q(result__status=desired_status) | Q(result=None)) else: proposals = proposals.filter(result__status=desired_status) # We may be asking only for ungrouped talks; if so, limit to these. ungrouped = request.GET.get('ungrouped', '').lower() in ('true', '1') if ungrouped: proposals = proposals.filter(thunderdome_group=None) # If there's a limit parameter provided, limit to those objects. if 'limit' in request.GET: proposals = proposals[0:request.GET['limit']] # Return the proposal data objects. return [i.as_dict() for i in proposals]
dadb694c162c385dc6aba1ac8d9dfdfced117a5e
32,602
def apply_mask(image, mask, color, alpha=0.5): """Apply the given mask to the image. """ for c in range(3): image[:, :, c] = np.where(mask == 1, image[:, :, c] * (1 - alpha) + alpha * color[c] * 255, image[:, :, c]) return image
b57c6606eb125ece0f00825a41c99702affd0a9e
32,603
import re def clean_str(string): """ Tokenization/string cleaning for all datasets except for SST. Original taken from https://github.com/yoonkim/CNN_sentence/blob/master/process_data.py """ string = unidecode(string) string = re.sub(r"[^A-Za-z0-9(),!?\'\`]", " ", string) string = re.sub(r"\'s", " \'s", string) string = re.sub(r"\'ve", " \'ve", string) string = re.sub(r"n\'t", " n\'t", string) string = re.sub(r"\'re", " \'re", string) string = re.sub(r"\'d", " \'d", string) string = re.sub(r"\'ll", " \'ll", string) string = re.sub(r",", " , ", string) string = re.sub(r"!", " ! ", string) string = re.sub(r"\(", " \( ", string) string = re.sub(r"\)", " \) ", string) string = re.sub(r"\?", " \? ", string) string = re.sub(r"\s{2,}", " ", string) string = re.sub(r"\"", "", string) return ' ' +string.strip().lower()+ ' '
56c55ef100aa2c612e5a84f061b82ac225be2bd0
32,604
def dkm_ms_em_remote_check_stopping(w, wo, epsilon): """ Stopping condition is distance below some epsilon """ delta = np.sum([abs(w[i] - wo[i]) for i in range(len(w))]) # print("Delta", delta) result = delta > epsilon return result
c226ed6f6b7e3a383e6f59492ed1b30d1f8eec31
32,605
def parse_from_string(root_processor, xml_string): """ Parses the XML string using the processor starting from the root of the document. :param xml_string: XML string to parse. See also :func:`declxml.parse_from_file` """ if not _is_valid_root_processor(root_processor): raise InvalidRootProcessor('Invalid root processor') root = ET.fromstring(xml_string) _xml_namespace_strip(root) state = _ProcessorState() return root_processor.parse_at_root(root, state)
015f89cb407bef4564cd2aa4de0f807c69cd2a15
32,606
def validate(args, limit_to=None): """Validate an input dictionary for Coastal Blue Carbon. Args: args (dict): The args dictionary. limit_to=None (str or None): If a string key, only this args parameter will be validated. If ``None``, all args parameters will be validated. Returns: A list of tuples where tuple[0] is an iterable of keys that the error message applies to and tuple[1] is the string validation warning. """ validation_warnings = validation.validate( args, ARGS_SPEC['args']) sufficient_keys = validation.get_sufficient_keys(args) invalid_keys = validation.get_invalid_keys(validation_warnings) if ("landcover_snapshot_csv" not in invalid_keys and "landcover_snapshot_csv" in sufficient_keys): snapshots = _extract_snapshots_from_table( args['landcover_snapshot_csv']) for snapshot_year, snapshot_raster_path in snapshots.items(): raster_error_message = validation.check_raster( snapshot_raster_path) if raster_error_message: validation_warnings.append( (['landcover_snapshot_csv'], ( f"Raster for snapshot {snapshot_year} could not " f"be validated: {raster_error_message}"))) if ("analysis_year" not in invalid_keys and "analysis_year" in sufficient_keys): if max(set(snapshots.keys())) > int(args['analysis_year']): validation_warnings.append( (['analysis_year'], ( f"Analysis year {args['analysis_year']} must be >= " f"the latest snapshot year ({max(snapshots.keys())})" ))) return validation_warnings
57dd66464dca7d28974366e63755e84905c9c90d
32,607
def findBestK(x_train, y_train, params, R): """ Función que calcula los valores de accuracy media obtenidos con validación cruzada para los valores del parámetro K que se indican como parámetro, y visualiza dichos valores en un gráfico Args: x_train: conjunto de entrenamiento y_train: vector de etiquetas asociado al conjunto de entrenamiento params: lista de valores para el parámetro K a probar R: diámetro del conjunto de datos de entrenamiento Returns: scores: valores de accuracy en validación cruzada para cada valor de K proporcionado """ scores = [] print("Búsqueda del mejor valor para el parámetro K") for i in range(len(params)): #Aplicamos cross_validation con 3 particiones para determinar el accuracy del modelo #y el resultado se añade al vector de scores scores.append(cross_val_rbf(x_train, y_train, K_FOLDS, params[i], R=R)) print(params[i],":",scores[i]) params = np.array(params) scores = np.array(scores) plotScores(params, scores, 'lightcoral', 'Accuracy media frente a K', 'Número de clusters K', log=True) return scores
d9b07ccbca0551928a6966ab0dd6b29965668373
32,608
import base64 def pdf_to_img(pdf: str) -> [str]: """ Takes a base64 encoded string representing a PDF and turns it into a list of base64 encoded strings representing pages in the PDF :param pdf: :return: list of strings """ imgs = list() decoded = b64string_to_bytes(pdf) images = convert_from_bytes(decoded) for img in images: buffered = BytesIO() img.save(buffered, format="PNG") buffered.seek(0) data_uri = base64.b64encode(buffered.read()).decode('ascii') imgs.append(data_uri) buffered.close() img.close() return imgs
cf04b206b24786116cc5a92550333ac256db391d
32,609
def is_ready(): """Checks if IoT Inspector is ready to interface with the AR app.""" return OK_JSON
c6b860179e4a969e1069b405bfcbd76c1b95c1d4
32,610
from typing import List from typing import Dict from typing import Any def get_indicators_command(client: Client, insight_category: list, insight_data_type: list, args: dict) -> List[Dict]: """Create indicators. Arguments: client {Client} -- Client derives from BaseClient. insight_category {List[String]} -- List of SafeBreach insight category - using as filter. insight_data_type {List[String]} -- List of data types - using as filter. Keyword Arguments: Returns: List[Dict] -- List of insights from SafeBreach """ limit: int = int(args.get('limit') or demisto.params().get('indicatorLimit')) indicators: List[Dict] = [] count: int = 0 # These variable be filled directly from the integration configuration or as arguments. insight_category, insight_data_type = get_category_and_data_type_filters(args, insight_category, insight_data_type) # Convert category into insight id insights_ids: Any = get_insights_ids_by_category(insight_category) raw_insights: Any = client.get_insights().json() # Filter insight by category insights: Any = list([item for item in raw_insights if int(item.get('ruleId')) in insights_ids]) for insight in insights: # Fetch remediation data for each insight processed_data: List[Dict[str, Any]] = get_remediation_data_command(client, {'insightId': insight.get('ruleId')}, False) for item in processed_data: # if the data type is not in the filter data types continue, if INDICATOR_TYPE_SB_TO_DEMISTO_MAPPER.get(item['type']) not in insight_data_type: continue if not INDICATOR_TYPE_MAPPER.get(str(item['type'])) or item["value"] == 'N/A': continue if isinstance(item['type'], int): demisto.info('Data type is int', item['type'], insight['ruleId']) is_behaveioral = item['type'] not in ['Domain', 'FQDN/IP', 'SHA256', 'URI', 'Hash'] score_behavioral_reputation = DEMISTO_INDICATOR_REPUTATION.get(demisto.params().get('behavioralReputation')) score_non_behavioral_reputation = DEMISTO_INDICATOR_REPUTATION.get( demisto.params().get('nonBehavioralReputation')) raw_json = { 'value': str(item["value"]), 'dataType': item['type'], 'insightId': insight.get('ruleId'), 'insightTime': insight.get('maxExecutionTime'), } mapping = { 'description': 'SafeBreach Insight - {0}'.format(insight['actionBasedTitle']), item['type'].lower(): item["value"], "safebreachinsightids": str(insight.get('ruleId')), "safebreachseverity": insight.get('severity'), "safebreachseverityscore": str(insight.get('severityScore')), "safebreachisbehavioral": is_behaveioral, "safebreachattackids": list(map(str, insight.get('attacks'))), 'tags': [ f"SafeBreachInsightId: {insight.get('ruleId')}", ] } mapping['tags'] = list((set(mapping['tags'])).union(set(client.tags))) indicator = { 'value': str(item["value"]), 'type': INDICATOR_TYPE_MAPPER.get(str(item['type'])), 'rawJSON': raw_json, 'fields': mapping, 'score': score_behavioral_reputation if is_behaveioral else score_non_behavioral_reputation } if is_ip(item["value"]): indicator['type'] = FeedIndicatorType.IP count += 1 if count > limit: return indicators indicators.append(indicator) return indicators
63a678da0abd76e56fceaad2a075e7d209eced00
32,611
def engineer_features(df,training=True): """ for any given day the target becomes the sum of the next days revenue for that day we engineer several features that help predict the summed revenue the 'training' flag will trim data that should not be used for training when set to false all data will be returned """ ## extract dates dates = df['date'].values.copy() dates = dates.astype('datetime64[D]') ## engineer some features eng_features = defaultdict(list) previous =[7, 14, 28, 70] #[7, 14, 21, 28, 35, 42, 49, 56, 63, 70] y = np.zeros(dates.size) for d,day in enumerate(dates): ## use windows in time back from a specific date for num in previous: current = np.datetime64(day, 'D') prev = current - np.timedelta64(num, 'D') mask = np.in1d(dates, np.arange(prev,current,dtype='datetime64[D]')) eng_features["previous_{}".format(num)].append(df[mask]['revenue'].sum()) ## get get the target revenue plus_30 = current + np.timedelta64(30,'D') mask = np.in1d(dates, np.arange(current,plus_30,dtype='datetime64[D]')) y[d] = df[mask]['revenue'].sum() ## attempt to capture monthly trend with previous years data (if present) start_date = current - np.timedelta64(365,'D') stop_date = plus_30 - np.timedelta64(365,'D') mask = np.in1d(dates, np.arange(start_date,stop_date,dtype='datetime64[D]')) eng_features['previous_year'].append(df[mask]['revenue'].sum()) ## add some non-revenue features minus_30 = current - np.timedelta64(30,'D') mask = np.in1d(dates, np.arange(minus_30,current,dtype='datetime64[D]')) eng_features['recent_invoices'].append(df[mask]['unique_invoices'].mean()) eng_features['recent_views'].append(df[mask]['total_views'].mean()) X = pd.DataFrame(eng_features) ## combine features in to df and remove rows with all zeros X.fillna(0,inplace=True) mask = X.sum(axis=1)>0 X = X[mask] y = y[mask] dates = dates[mask] X.reset_index(drop=True, inplace=True) if training == True: ## remove the last 30 days (because the target is not reliable) mask = np.arange(X.shape[0]) < np.arange(X.shape[0])[-30] X = X[mask] y = y[mask] dates = dates[mask] X.reset_index(drop=True, inplace=True) return(X,y,dates)
b10b973e5ef7cbe9aa2d7c436747673d83c0d5f6
32,613
def inconsistent_target_program(): """Returns a benchmark.Benchmark with an inconsistent target program.""" examples = [ benchmark.Example( inputs=[ [10], [20], ], output=[40], # Should be 30. ), ] constants = [0] description = 'add elementwise' target_program = 'tf.add(in1, in2)' source = 'test' return benchmark.Benchmark(examples=examples, constants=constants, description=description, target_program=target_program, source=source, name='inconsistent_target_program')
c7cc9e6fa380e2a1e111e5dabd6e9412582bb825
32,614
def _slice_slice(outer, outer_len, inner, inner_len): """ slice a slice - we take advantage of Python 3 range's support for indexing. """ assert(outer_len >= inner_len) outer_rng = range(*outer.indices(outer_len)) rng = outer_rng[inner] start, stop, step = rng.start, rng.stop, rng.step if step < 0 and stop < 0: stop = None return slice(start, stop, step)
4430ae752fbc9d7db6414418b18a0b8186f3d328
32,615
def tp(a): """Tranpose 1d vector""" return a[np.newaxis].T
86f357de5d1f080194867e826db5ff78c3926b92
32,616
def _parse_interval(value): """ Do some nasty try/except voodoo to get some sort of datetime object(s) out of the string. """ try: return sorted(aniso8601.parse_interval(value)) except ValueError: try: return aniso8601.parse_datetime(value), None except ValueError: return aniso8601.parse_date(value), None
d99151734cd6ba81919857482e56c627a4b3aa9b
32,617
def is_masquerading_as_non_audit_enrollment(user, course_key, course_masquerade=None): """ Return if the user is a staff member masquerading as a user in _any_ enrollment track _except_ audit """ group_id = _get_masquerade_group_id(ENROLLMENT_TRACK_PARTITION_ID, user, course_key, course_masquerade) audit_mode_id = settings.COURSE_ENROLLMENT_MODES.get(CourseMode.AUDIT, {}).get('id') if group_id is not None: if group_id != audit_mode_id: return True return False
cd337e3f44a9c618609d103c5c0c6617fc62d70b
32,618
def holding_value_grouped_nb(holding_value, group_lens): """Get holding value series per group.""" check_group_lens(group_lens, holding_value.shape[1]) out = np.empty((holding_value.shape[0], len(group_lens)), dtype=np.float_) from_col = 0 for group in range(len(group_lens)): to_col = from_col + group_lens[group] out[:, group] = np.sum(holding_value[:, from_col:to_col], axis=1) from_col = to_col return out
c0b0e2f538e9849671c5388c82f822d755d24b61
32,619
def read_upload(up_file, data_model=None): """ take a file that should be ready for upload using the data model, check that all required columns are full, and that all numeric data is in fact numeric. print out warnings for any validation problems return True if there were no problems, otherwise return False """ print("-I- Running validation for your upload file") ## Read file f = open(up_file) lines = f.readlines() f.close() data = split_lines(lines) data_dicts = get_dicts(data) ## initialize invalid_data = {} missing_data = {} non_numeric = {} bad_vocab = {} bad_coords = {} invalid_col_names = {} missing_file_type = False ## make sure you have the data model if not data_model: data_model = get_data_model() reqd_file_types = ['er_locations'] provided_file_types = set() if not data_model: return False, None ## Iterate through data # each dictionary is one tab delimited line in a csv file for dictionary in data_dicts: for k, v in list(dictionary.items()): if k == "file_type": # meta data provided_file_types.add(v) continue file_type = dictionary['file_type'] # need to deal with pmag_criteria type file, too item_type = file_type.split('_')[1][:-1] if item_type == 'criteria': item_name = dictionary.get('criteria_definition') elif item_type == 'result': item_name = dictionary.get('pmag_result_name', None) elif item_type in ('specimen', 'sample', 'site', 'location'): item_name = dictionary.get('er_' + item_type + '_name', None) elif item_type == 'age': # get the lowest level er_*_name column that is filled in for dtype in ('specimen', 'sample', 'site', 'location'): item_name = dictionary.get('er_' + dtype + '_name', None) if item_name: break elif item_type == 'measurement': exp_name = dictionary.get('magic_experiment_name') meas_num = dictionary.get('measurement_number') item_name = exp_name + '_' + str(meas_num) else: item_name = None if file_type not in list(data_model.keys()): continue specific_data_model = data_model[file_type] ## Function for building problems list def add_to_invalid_data(item_name, item_type, invalid_data, validation, problem_type): """ correctly create or add to the dictionary of invalid values """ if item_name: if item_type not in invalid_data: invalid_data[item_type] = {} if item_name not in invalid_data[item_type]: invalid_data[item_type][item_name] = {} if problem_type not in invalid_data[item_type][item_name]: invalid_data[item_type][item_name][problem_type] = [] invalid_data[item_type][item_name][problem_type].append(validation) ## Validate for each problem type # check if column header is in the data model invalid_col_name = validate_for_recognized_column(k, v, specific_data_model) if invalid_col_name: if item_type not in list(invalid_col_names.keys()): invalid_col_names[item_type] = set() invalid_col_names[item_type].add(invalid_col_name) # skip to next item, as additional validations won't work # (key is not in the data model) ## new style add_to_invalid_data(item_name, item_type, invalid_data, invalid_col_name, 'invalid_col') # skip to next item, as additional validations won't work # (key is not in the data model) continue # make a list of missing, required data missing_item = validate_for_presence(k, v, specific_data_model) #print 'k, v', k, v if missing_item: if item_type not in list(missing_data.keys()): missing_data[item_type] = set() missing_data[item_type].add(missing_item) if item_name: # don't double count if a site is missing its parent location if item_type == 'age' and missing_item == 'er_location_name': pass # ignore er_synthetic_name (data model is incorrect here) if missing_item == 'er_synthetic_name': pass else: add_to_invalid_data(item_name, item_type, invalid_data, missing_item, 'missing_data') # vocabulary problems vocab_problem = validate_for_controlled_vocab(k, v, specific_data_model) if vocab_problem: if item_type not in list(bad_vocab.keys()): bad_vocab[item_type] = set() bad_vocab[item_type].add(vocab_problem) add_to_invalid_data(item_name, item_type, invalid_data, vocab_problem, 'vocab_problem') # illegal coordinates coord_problem = validate_for_coordinates(k, v, specific_data_model) if coord_problem: if item_type not in list(bad_coords.keys()): bad_coords[item_type] = set() bad_coords[item_type].add(coord_problem) add_to_invalid_data(item_name, item_type, invalid_data, coord_problem, 'coordinates') # make a list of data that should be numeric, but aren't number_fail = validate_for_numericality(k, v, specific_data_model) if number_fail: if item_type not in list(non_numeric.keys()): non_numeric[item_type] = set() non_numeric[item_type].add(number_fail) add_to_invalid_data(item_name, item_type, invalid_data, number_fail, 'number_fail') ## Print out all issues for file_type, invalid_names in list(invalid_col_names.items()): print("-W- In your {} file, you are using the following unrecognized columns: {}".format(file_type, ', '.join(invalid_names))) for file_type, wrong_cols in list(non_numeric.items()): print("-W- In your {} file, you must provide only valid numbers, in the following columns: {}".format(file_type, ', '.join(wrong_cols))) for file_type, empty_cols in list(missing_data.items()): print("-W- In your {} file, you are missing data in the following required columns: {}".format(file_type, ', '.join(empty_cols))) for file_type in reqd_file_types: if file_type not in provided_file_types: print("-W- You have not provided a(n) {} type file, which is required data".format(file_type)) missing_file_type = True for file_type, vocab_types in list(bad_vocab.items()): print("-W- In your {} file, you are using an unrecognized value for these controlled vocabularies: {}".format(file_type, ', '.join(vocab_types))) for file_type, coords in list(bad_coords.items()): print("-W- In your {} file, you are using an illegal value for these columns: {}. (Latitude must be between -90 and +90)".format(file_type, ', '.join(coords))) if any((invalid_col_names, non_numeric, missing_data, missing_file_type, bad_vocab, bad_coords)): return False, invalid_data else: print("-I- validation was successful") return True, None
b62339cc17aadd51f1a97cab3fe5158b5eaacf0b
32,620
import torch def predict(network, X, batch_size, device, move_network=True): """ predict batchwise """ # Build DataLoader if move_network: network = network.to(device) y = torch.Tensor(X.size()[0]) data = DataLoader(TensorDataset(X, y), batch_size, False) # Batch prediction network.eval() r, n = 0, X.size()[0] for batch_data in data: # Predict on batch X_batch = Variable(batch_data[0]).to(device) y_batch_pred = network(X_batch).detach().cpu() # Infer prediction shape if r == 0: y_pred = torch.zeros((n,) + y_batch_pred.size()[1:]) # Add to prediction tensor y_pred[r : min(n, r + batch_size)] = y_batch_pred r += batch_size return y_pred
e9f2c12e812950d73a4aec57c966f76f5c006785
32,621
def read_glossary_df(plugins): """Returns the glossary as a DataFrame, created from the schemas.yml file. NOTE: This is used by the GUI.""" global __glossary_df if __glossary_df is None: schemas = cea.schemas.schemas(plugins) glossary_df = pd.DataFrame(columns=["SCRIPT", "LOCATOR_METHOD", "WORKSHEET", "VARIABLE", "DESCRIPTION", "UNIT", "VALUES", "TYPE", "COLOR", "FILE_NAME"]) rows = [] for lm in schemas: if lm == "get_database_standard_schedules_use": # the schema for schedules is non-standard continue script = schemas[lm]["created_by"][0] if schemas[lm]["created_by"] else "-" file_path = schemas[lm]["file_path"] if schemas[lm]["file_type"] in {"xls", "xlsx"}: for ws in schemas[lm]["schema"]: # ws: worksheet for col in schemas[lm]["schema"][ws]["columns"]: cd = schemas[lm]["schema"][ws]["columns"][col] rows.append(glossary_row(script, file_path, col, lm, cd, worksheet=ws)) else: for col in schemas[lm]["schema"]["columns"]: cd = schemas[lm]["schema"]["columns"][col] # cd: column definition rows.append(glossary_row(script, file_path, col, lm, cd, worksheet="")) glossary_df = glossary_df.append(rows, ignore_index=True) glossary_df['key'] = glossary_df['FILE_NAME'] + '!!!' + glossary_df['VARIABLE'] glossary_df = glossary_df.set_index(['key']) glossary_df = glossary_df.sort_values(by=['LOCATOR_METHOD', 'FILE_NAME', 'VARIABLE']) __glossary_df = glossary_df return __glossary_df
246f27927cc70eb03be8e9b84423442ef5b884e2
32,623
from pathlib import Path def extract_all(session_path, save=False, data=False): """ Extract all behaviour data from Bpod whithin the specified folder. The timing information from FPGA is extracted in :func:`~ibllib.io.extractors.ephys_fpga` :param session_path: folder containing sessions :type session_path: str or pathlib.Path :param save: bool :param data: raw Bpod data dictionary :return: dictionary of trial related vectors (one row per trial) """ if not data: data = raw.load_data(session_path) feedbackType = get_feedbackType(session_path, save=save, data=data) contrastLeft, contrastRight = get_contrastLR( session_path, save=save, data=data) probabilityLeft = get_probabilityLeft(session_path, save=save, data=data) choice = get_choice(session_path, save=save, data=data) rewardVolume = get_rewardVolume(session_path, save=save, data=data) iti_dur = get_iti_duration(session_path, save=save, data=data) go_cue_trig_times = get_goCueTrigger_times(session_path, save=save, data=data) go_cue_times = get_goCueOnset_times(session_path, save=save, data=data) intervals = get_intervals(session_path, save=save, data=data) out = {'feedbackType': feedbackType, 'contrastLeft': contrastLeft, 'contrastRight': contrastRight, 'probabilityLeft': probabilityLeft, 'session_path': session_path, 'choice': choice, 'rewardVolume': rewardVolume, 'iti_dur': iti_dur, 'goCue_times': go_cue_times, 'goCueTrigger_times': go_cue_trig_times, 'intervals': intervals} if save: file_intervals = Path(session_path) / 'alf' / '_ibl_trials.intervals.npy' file_intervals.rename(Path(session_path) / 'alf' / '_ibl_trials.intervalsBpod.npy') return out
5ace8847251d3c4a971e5717495613179ead49c4
32,624
def tokenize(data): """ Tokenization. Tokenize and lemmatize the sentences; extract labels of tokens. Parameters ---------- data : list of dict each dict should have the following form: {"sentence": str, "sentence_id": str, "annotations": [ {"ann_id": str "text": str, "start": int, "end": int, "label": str }} Returns ------- list_tokens list_labels """ tknzr = TweetTokenizer() lemmatizer = WordNetLemmatizer() list_tokens, list_labels = [], [] for idx in range(len(data)): sample = data[idx] sent = sample["sentence"] tokens = tknzr.tokenize(sent) lem_tokens = [lemmatizer.lemmatize(t) for t in tokens] lem_tokens = ["".join([t if ord(t) < 128 else "*" for t in list(token)]) for token in lem_tokens] idx_char = 0 labels = [] for t in tokens: label = "Other" while t != sent[idx_char:idx_char+len(t)]: idx_char += 1 for ann in sample["annotations"]: if (ann["start"] <= idx_char) and (idx_char+len(t) <= ann["end"]): label = ann["label"] idx_char += len(t) labels.append(label) list_tokens.append(lem_tokens) list_labels.append(labels) return list_tokens, list_labels
91a0db8ff0054f249f08ecb02f4fddeb17af40fe
32,625
def rotate_thread(thymio: Thymio, angle: float, verbose: bool = False, function=stop, args=None, kwargs=None): """ Rotates of the desired angle by using a timer on a parallel thread. :param function: function to execute at the end of rotation, default stop :param args: array of non-keyworded arguments of function :param kwargs: set of keyworded arguments :param thymio: the class to which the robot is referred to :param angle: angle in radians by which we want to rotate, positive or negative :param verbose: printing the speed in the terminal :return: timer to check if it is still alive or not """ args_f = args if args is not None else [thymio] kwargs_f = kwargs if kwargs is not None else {} l_speed, r_speed, turn_time = rotate_time(angle) # Printing the speeds if requested if verbose: # print("\t\t Rotate speed & time : ", l_speed, r_speed, turn_time) print("\t\t Rotate of degrees : ", angle) timer = Timer(interval=turn_time, function=function, args=args_f, kwargs=kwargs_f) move(thymio, l_speed, r_speed) timer.start() return timer
d19ea0f601ff991a20e889b62481f46a0475573d
32,626
import bigflow.transform_impls.first def first(pcollection, **options): """ 取出PCollection中的第一个元素 Args: pcollection (PCollection): 输入PCollection **options: 可配置选项 Returns: PObject: 取出的单个元素,以PObject给出 >>> from bigflow import transforms >>> _p = _pipeline.parallelize([3, 7, 1, 3, 2, 8]) >>> transforms.first(_p).get() 3 """ return bigflow.transform_impls.first.first(pcollection, **options)
993c6603c182bd67ee0c22418243c0ce9933ef37
32,627
def select_values_over_last_axis(values, indices): """ Auxiliary function to select logits corresponding to chosen tokens. :param values: logits for all actions: float32[batch,tick,action] :param indices: action ids int32[batch,tick] :returns: values selected for the given actions: float[batch,tick] """ assert values.shape.ndims == 3 and indices.shape.ndims == 2 batch_size, seq_len = tf.shape(indices)[0], tf.shape(indices)[1] batch_i = tf.tile(tf.range(0, batch_size)[:, None], [1, seq_len]) time_i = tf.tile(tf.range(0, seq_len)[None, :], [batch_size, 1]) indices_nd = tf.stack([batch_i, time_i, indices], axis=-1) return tf.gather_nd(values, indices_nd)
a116e9fb009a53f3da2e177a9cefd5382ba44906
32,628
def dump_adcs(adcs, drvname='ina219', interface=2): """Dump xml formatted INA219 adcs for servod. Args: adcs: array of adc elements. Each array element is a tuple consisting of: slv: int representing the i2c slave address plus optional channel if ADC (INA3221 only) has multiple channels. For example, "0x40" : address 0x40 ... no channel "0x40:1" : address 0x40, channel 1 name: string name of the power rail sense: float of sense resitor size in ohms nom: float of nominal voltage of power rail. mux: string name of i2c mux leg these ADC's live on is_calib: boolean to determine if calibration is possible for this rail drvname: string name of adc driver to enumerate for controlling the adc. interface: interface index to handle low-level communication. Returns: string (large) of xml for the system config of these ADCs to eventually be parsed by servod daemon ( servo/system_config.py ) """ # Must match REG_IDX.keys() in servo/drv/ina2xx.py regs = ['cfg', 'shv', 'busv', 'pwr', 'cur', 'cal'] if drvname == 'ina231': regs.extend(['msken', 'alrt']) elif drvname == 'ina3221': regs = ['cfg', 'shv', 'busv', 'msken'] rsp = "" for (slv, name, nom, sense, mux, is_calib) in adcs: chan = '' if drvname == 'ina3221': (slv, chan_id) = slv.split(':') chan = 'channel="%s"' % chan_id rsp += ( '<control><name>%(name)s_mv</name>\n' '<doc>Bus Voltage of %(name)s rail in millivolts on i2c_mux:%(mux)s</doc>\n' '<params interface="%(interface)d" drv="%(drvname)s" slv="%(slv)s" %(chan)s' ' mux="%(mux)s" rsense="%(sense)s" type="get" subtype="millivolts"' ' nom="%(nom)s">\n</params></control>\n' '<control><name>%(name)s_shuntmv</name>\n' '<doc>Shunt Voltage of %(name)s rail in millivolts on i2c_mux:%(mux)s</doc>\n' '<params interface="%(interface)d" drv="%(drvname)s" slv="%(slv)s" %(chan)s' ' mux="%(mux)s" rsense="%(sense)s" type="get" subtype="shuntmv"' ' nom="%(nom)s">\n</params></control>\n' ) % {'name':name, 'drvname':drvname, 'interface':interface, 'slv':slv, 'mux':mux, 'sense':sense, 'nom':nom, 'chan':chan} # in some instances we may not know sense resistor size ( re-work ) or other # custom factors may not allow for calibration and those reliable readings # on the current and power registers. This boolean determines which # controls should be enumerated based on rails input specification if is_calib: rsp += ( '<control><name>%(name)s_ma</name>\n' '<doc>Current of %(name)s rail in milliamps on i2c_mux:%(mux)s</doc>\n' '<params interface="%(interface)d" drv="%(drvname)s" slv="%(slv)s" %(chan)s' 'rsense="%(sense)s" type="get" subtype="milliamps">\n' '</params></control>\n' '<control><name>%(name)s_mw</name>\n' '<doc>Power of %(name)s rail in milliwatts on i2c_mux:%(mux)s</doc>\n' '<params interface="%(interface)d" drv="%(drvname)s" slv="%(slv)s" %(chan)s' ' mux="%(mux)s" rsense="%(sense)s" type="get" subtype="milliwatts">\n' '</params></control>\n') % {'name':name, 'drvname':drvname, 'interface':interface, 'slv':slv, 'mux':mux, 'sense':sense, 'nom':nom, 'chan':chan} for reg in regs: rsp += ( '<control><name>%(name)s_%(reg)s_reg</name>\n' '<doc>Raw register value of %(reg)s on i2c_mux:%(mux)s</doc>' '<params cmd="get" interface="%(interface)d"' ' drv="%(drvname)s" slv="%(slv)s" %(chan)s' ' subtype="readreg" reg="%(reg)s" mux="%(mux)s"' ' fmt="hex">\n</params>') % {'name':name, 'drvname':drvname, 'interface':interface, 'slv':slv, 'mux':mux, 'sense':sense, 'reg':reg, 'chan':chan} if reg in ["cfg", "cal"]: map_str = "" if reg == "cal": map_str = ' map="calibrate"' rsp += ( '<params cmd="set" interface="%(interface)d"' ' drv="%(drvname)s" slv="%(slv)s" %(chan)s' ' subtype="writereg" reg="%(reg)s" mux="%(mux)s"' ' fmt="hex"%(map)s>\n</params></control>') % {'drvname':drvname, 'interface':interface, 'slv':slv, 'mux':mux, 'sense':sense, 'reg':reg, 'chan':chan, 'map':map_str} else: rsp += ('</control>') return rsp
b9c0aec3e6098a5de28a467910f4861e8860d723
32,629
def list_launch_agents(): """ Return an array of the files that are present in ~/Library/LaunchAgents, /System/Library/LaunchAgents/ and /Library/LaunchAgents/ """ files = list_system_launch_agents() files += list_library_launch_agents() files += list_homedir_launch_agents() return files
f8a890064f9140b6f67c9be489b5b4a991255ebe
32,630
def get_projection_point_dst(coords_src, M): """ Gets the coordinate equivalent in surface projection space from original view space Args: coords_src: `numpy.darray` coordinate in the original image space M: `numpy.darray` rotation matrix Returns: coords_src: `numpy.darray` projected coordinate in original view space """ coords_dst = np.matmul(M, coords_src) coords_dst = coords_dst / coords_dst[2] coords_dst = [int(coords_dst[0]), int(coords_dst[1])] return coords_dst
b93f52727d4ca378c54094a89ce346e049bdf818
32,631
import torch def torchify(a): """Converts an array or a dict of numpy arrays to CPU tensors. If you'd like CUDA tensors, follow the tensor-ification ``.cuda()`` ; the attribute delegation built into :class:`~rebar.dotdict.dotdict` s will do the rest. Floats get mapped to 32-bit PyTorch floats; ints get mapped to 32-bit PyTorch ints. This is usually what you want in machine learning work. """ if hasattr(a, 'torchify'): return a.torchify() a = np.asarray(a) if np.issubdtype(a.dtype, np.floating): dtype = torch.float elif np.issubdtype(a.dtype, np.integer): dtype = torch.int elif np.issubdtype(a.dtype, np.bool_): dtype = torch.bool else: raise ValueError(f'Can\'t handle {type(a)}') return torch.as_tensor(np.array(a), dtype=dtype)
d91577b1e4e9c1d0f2a1703995400e51623f9abe
32,632
def rel_angle(vec_set1, vec_set2): """ Calculate the relative angle between two vector sets Args: vec_set1(array[array]): an array of two vectors vec_set2(array[array]): second array of two vectors """ return vec_angle(vec_set2[0], vec_set2[1]) / vec_angle( vec_set1[0], vec_set1[1]) - 1
bc18b1e8c2225eac8fcded45c07e8d0fcaaba5bb
32,633
def equalization(data, equilibrium_points): """ Эквализация данных. Параметры: data - таблица данных, которые нужно выровнять. Тип - pandas.DataFrame. equilibrium_points - точки сдвига равновесия. Для каждого столбца нужно использовать свою точку равновесия, т.к. у каждой кривой должна быть своя линия эквализации. Тип - dict[str: float]. Возвращает таблицу выровненных данных. Тип - pandas.DataFrame. """ # Создаём таблицу для эквализованных данных equalized = pd.DataFrame(index=data.index) # Эквализуем каждый столбец for key in data.keys(): # Получим индекс столбца point = equilibrium_points[key] # Построим линию эквализации для столбца eq_line = equalization_line(data, key, point)["equalization_line"] # Сдвинем столбец на линию эквализации equalized[key] = data[key] - eq_line return equalized
c3c5dd9dafe6dd8655216ef53033968700d80e93
32,634
import json def from_config(config_file="./config.json"): """Run training from a config file :param config_file: JSON file with arguments as per "training" CLI. :return: """ with open(config_file, "r") as f: config_string = f.read() config = json.loads(config_string) return main(**config)
31eb83d0c364a31fcf515d164ca306c6756c70c9
32,635
def load_anomalies_text(input_path): """Loads the Anomalies proto stored in text format in the input path. Args: input_path: File path from which to load the Anomalies proto. Returns: An Anomalies protocol buffer. """ anomalies = anomalies_pb2.Anomalies() anomalies_text = file_io.read_file_to_string(input_path) text_format.Parse(anomalies_text, anomalies) return anomalies
c723faff2a5b622162f3d23041a3c13dd44d35bb
32,636
def is_isbn_or_key(q): """ 判断搜索关键字是isbn还是key :param q: :return: """ # isbn13 13位0-9数字;isbn10 10位0-9数字,中间含有 '-' isbn_or_key = 'key' if len(q) == 13 and q.isdigit(): isbn_or_key = 'isbn' if '-' in q: short_q = q.replace('-', '') if len(short_q) == 10 and short_q.isdigit(): isbn_or_key = 'isbn' return isbn_or_key
cf35f13e8188741bd37715a1ed91cf40667cff40
32,638
def find_scripts(entry_points=False, suffix=''): """Find IPython's scripts. if entry_points is True: return setuptools entry_point-style definitions else: return file paths of plain scripts [default] suffix is appended to script names if entry_points is True, so that the Python 3 scripts get named "ipython3" etc. """ if entry_points: console_scripts = [s % suffix for s in [ 'ipython%s = IPython.frontend.terminal.ipapp:launch_new_instance', 'pycolor%s = IPython.utils.PyColorize:main', 'ipcontroller%s = IPython.parallel.apps.ipcontrollerapp:launch_new_instance', 'ipengine%s = IPython.parallel.apps.ipengineapp:launch_new_instance', 'iplogger%s = IPython.parallel.apps.iploggerapp:launch_new_instance', 'ipcluster%s = IPython.parallel.apps.ipclusterapp:launch_new_instance', 'iptest%s = IPython.testing.iptest:main', 'irunner%s = IPython.lib.irunner:main' ]] gui_scripts = [s % suffix for s in [ 'ipython%s-qtconsole = IPython.frontend.qt.console.qtconsoleapp:main', ]] scripts = dict(console_scripts=console_scripts, gui_scripts=gui_scripts) else: parallel_scripts = pjoin('IPython','parallel','scripts') main_scripts = pjoin('IPython','scripts') scripts = [ pjoin(parallel_scripts, 'ipengine'), pjoin(parallel_scripts, 'ipcontroller'), pjoin(parallel_scripts, 'ipcluster'), pjoin(parallel_scripts, 'iplogger'), pjoin(main_scripts, 'ipython'), pjoin(main_scripts, 'pycolor'), pjoin(main_scripts, 'irunner'), pjoin(main_scripts, 'iptest') ] return scripts
3103915d245f753f04ccf0eab682cccd57629613
32,639
def get_upright_box(waymo_box): """Convert waymo box to upright box format and return the convered box.""" xmin = waymo_box.center_x - waymo_box.length / 2 # xmax = waymo_box.center_x+waymo_box.length/2 ymin = waymo_box.center_y - waymo_box.width / 2 # ymax = waymo_box.center_y+waymo_box.width/2 return [xmin, ymin, waymo_box.length, waymo_box.width]
2c301e3d60078ba416446dfe133fb9802c96f09c
32,640
def update_two_contribution_score(click_time_one, click_time_two): """ user cf user contribution score update v2 :param click_time_one: different user action time to the same item :param click_time_two: time two :return: contribution score """ delta_time = abs(click_time_two - click_time_one) norm_num = 60 * 60 * 24 delta_time = delta_time / norm_num return 1 / (1 + delta_time)
df959e4581f84be5e0dffd5c35ebe70b97a78383
32,642
def series_dropna(series, axis=0, inplace=False, how=None): """ Return a new Series with missing values removed. See the :ref:`User Guide <missing_data>` for more on which values are considered missing, and how to work with missing data. Parameters ---------- axis : {0 or 'index'}, default 0 There is only one axis to drop values from. inplace : bool, default False If True, do operation inplace and return None. how : str, optional Not in use. Kept for compatibility. Returns ------- Series Series with NA entries dropped from it. See Also -------- Series.isna: Indicate missing values. Series.notna : Indicate existing (non-missing) values. Series.fillna : Replace missing values. DataFrame.dropna : Drop rows or columns which contain NA values. Index.dropna : Drop missing indices. Examples -------- >>> import mars.dataframe as md >>> ser = md.Series([1., 2., np.nan]) >>> ser.execute() 0 1.0 1 2.0 2 NaN dtype: float64 Drop NA values from a Series. >>> ser.dropna().execute() 0 1.0 1 2.0 dtype: float64 Keep the Series with valid entries in the same variable. >>> ser.dropna(inplace=True) >>> ser.execute() 0 1.0 1 2.0 dtype: float64 Empty strings are not considered NA values. ``None`` is considered an NA value. >>> ser = md.Series([np.NaN, 2, md.NaT, '', None, 'I stay']) >>> ser.execute() 0 NaN 1 2 2 NaT 3 4 None 5 I stay dtype: object >>> ser.dropna().execute() 1 2 3 5 I stay dtype: object """ axis = validate_axis(axis, series) use_inf_as_na = options.dataframe.mode.use_inf_as_na op = DataFrameDropNA(axis=axis, how=how, output_types=[OutputType.series], use_inf_as_na=use_inf_as_na) out_series = op(series) if inplace: series.data = out_series.data else: return out_series
994b9b8a6552f49a8533744a58091daa14557641
32,643
def partial_escape(xpath): """ Copied from http://stackoverflow.com/questions/275174/how-do-i-perform-html-decoding-encoding-using-python-django but without replacing the single quote """ return mark_safe(force_unicode(xpath).replace('&', '&amp;').replace('<', '&lt;').replace('>', '&gt;').replace('"', '&quot;'))
5588b97ec57d2df2ed22ded28d9d8b98b8ed3851
32,644
def identify_regions(lat_lon, coordinates=False): """ Returns the region associated with the given lat/lon point. Args: lat_lon (:obj:`list` of :obj:`float`): latitude/longitude point to access coordinates (bool): optionally include a list of all registered coordinates for the region (requires HSDS API calls) Returns: list: list of region names (`coordinates=False`) list: list of region dicts with coordinate info (`coordinates=True`) """ _check_lat_lon(lat_lon) wtk = _load_wtk() lat, lon = lat_lon regions = [] for region in wtk: lat_range, lon_range = wtk[region]['lat_lon_range'] if lat >= lat_range[0] and lat <= lat_range[1]: if lon >= lon_range[0] and lon <= lon_range[1]: if coordinates: # grab coordinates from most recent year wtk_file = build_wtk_filepath(region, wtk[region]['year_range'][1]) with WindX(wtk_file, hsds=True) as f: regions.append({region: f.coordinates}) else: regions.append(region) if len(regions) == 0: raise ValueError('No region found for specified lat/lon point.') return regions
4a32bb0afd8d5768325769e8b89b3cd2cf593b4f
32,645
def fix_text_note(text): """Wrap CHS document text.""" if not text: return "" else: return """* CHS "Chicago Streets" Document:\n> «{}»""".format(text)
56cbcbad7e8b3eee6bb527a240ad96701c4eea2f
32,646
def GetCBSPLogFile(): """ Generate the CBSP base file name used for many things, including accessing *jason* files. """ return Config.GetCBSPInstanceName()
10d0f141e3ee7f605fce22c9f971eb9f2eabebd2
32,647
from typing import Optional def pretty_xml(document: 'Document', declaration: Optional[str] = None, encoding: Optional[str] = UTF8, indent: int = 2) -> str: """Render the given :class:`~xml.dom.minidom.Document` `document` into a prettified string.""" kwargs = { 'encoding': encoding or UTF8, 'indent': ' ' * indent, } body = document.toprettyxml(**kwargs).decode(kwargs['encoding']) # Remove blank lines automatically added by `toprettyxml()`. lines = [line for line in body.splitlines() if line.strip()] # xml.dom automatically adds the declaration, even if # it is not present in the actual body. Remove it. if len(lines) >= 1 and parse_declaration(lines[0]): lines.pop(0) if declaration: lines.insert(0, declaration) return '\n'.join(lines)
0f342831ccb69cf1b1b7a4f379364d8b8c046f41
32,648
def cluster(image, R): """Split the image points up into a number of clusters At first there are 10 clusters 1. The centre of each cluster are set to be equally spaced out in angle, at a radius of 1 2. Each point is looped through and assigned to the cluster with the closest centre 3. The centre of the clusters is set to be the mean position of all the points in the cluster. If a cluster has no points, then it's centre is set to (100,100), effectively deleting the cluster 4. Each point is then reassigned to the nearest cluster Parameters -------------- image: a list of points, all of which are inside some image of the star R: radius of the star """ no_of_clusters = 10 centres = [] clusters = [] cluster1 = [] cluster2 = [] cluster3 = [] cluster4 = [] cluster5 = [] cluster6 = [] cluster7 = [] cluster8 = [] cluster9 = [] cluster10 = [] for i in range(no_of_clusters): centres.append((np.cos(i * 2 * np.pi / no_of_clusters), np.sin(i * 2 * np.pi / no_of_clusters))) loops = 0 total = 0 while loops < 2: changed = False for point in image: shortestsqdistance = 10000000 shortestindex = 0 for j in range(len(centres)): distance = (point[0] - centres[j][0]) ** 2 + ( point[1] - centres[j][1]) ** 2 if distance < shortestsqdistance: shortestsqdistance = distance shortestindex = j if shortestindex == 0: cluster1.append(point) elif shortestindex == 1: cluster2.append(point) elif shortestindex == 2: cluster3.append(point) elif shortestindex == 3: cluster4.append(point) elif shortestindex == 4: cluster5.append(point) elif shortestindex == 5: cluster6.append(point) elif shortestindex == 6: cluster7.append(point) elif shortestindex == 7: cluster8.append(point) elif shortestindex == 8: cluster9.append(point) elif shortestindex == 9: cluster10.append(point) cluster1 = np.array(cluster1) cluster2 = np.array(cluster2) cluster3 = np.array(cluster3) cluster4 = np.array(cluster4) cluster5 = np.array(cluster5) cluster6 = np.array(cluster6) cluster7 = np.array(cluster7) cluster8 = np.array(cluster8) cluster9 = np.array(cluster9) cluster10 = np.array(cluster10) clusters = [] clusters.append(cluster1) clusters.append(cluster2) clusters.append(cluster3) clusters.append(cluster4) clusters.append(cluster5) clusters.append(cluster6) clusters.append(cluster7) clusters.append(cluster8) clusters.append(cluster9) clusters.append(cluster10) centres = [] for k in range(no_of_clusters): if len(clusters[k]) != 0: centres.append((sum(clusters[k][:, 0]) / len(clusters[k]), sum(clusters[k][:, 1]) / len(clusters[k]))) else: centres.append((100, 100)) if loops < 1: cluster1 = [] cluster2 = [] cluster3 = [] cluster4 = [] cluster5 = [] cluster6 = [] cluster7 = [] cluster8 = [] cluster9 = [] cluster10 = [] loops += 1 else: if changed == False and total < 10: """Now if the maximum distance from a point in a cluster to the centre of the cluster is either greater than 3 standard deviations, or 25 R, then it creates a new cluster centre on the further point, and goes back through the loop again. """ for k in range(no_of_clusters): maxdistance = 0 maxindex = 0 totalsqdistance = 0 std = 0 if len(clusters[k]) > 1: for i in range(len(clusters[k])): distance = (centres[k][0] - clusters[k][i][ 0]) ** 2 + (centres[k][1] - clusters[k][i][ 1]) ** 2 totalsqdistance += distance if np.sqrt(distance) > maxdistance: maxdistance = np.sqrt(distance) maxindex = i std = np.sqrt(totalsqdistance / (len(clusters[k]) - 1)) if maxdistance > 3 * std: done = False for j in range(5): if centres[j][0] == 100 and done == False: centres[j] = clusters[k][maxindex] done = True cluster1 = [] cluster2 = [] cluster3 = [] cluster4 = [] cluster5 = [] cluster6 = [] cluster7 = [] cluster8 = [] cluster9 = [] cluster10 = [] loops -= 1 changed = True if changed == False and total < 8: """Now if 2 clusters are too close together, it makes them one cluster assuming this to be 1 image, and goes through the loop again However, if an infinite loop is found where at cluster is continually broken up then merged together (c.f paper), the total < 8 here, when compared with the total < 10 on the previous step ensure that the algorithm errs on the side of splitting them up. """ for k in range(no_of_clusters): for j in range(no_of_clusters - k - 1): if np.sqrt((centres[k][0] - centres[j + k + 1][ 0]) ** 2 + (centres[k][1] - centres[j + k + 1][ 1]) ** 2) < 0.4 and ( centres[k][0] and centres[j + k + 1][ 0]) != 100: centres[k] = (100, 100) cluster1 = [] cluster2 = [] cluster3 = [] cluster4 = [] cluster5 = [] cluster6 = [] cluster7 = [] cluster8 = [] cluster9 = [] cluster10 = [] loops -= 1 changed = True loops += 1 total += 1 return (np.array(clusters), np.array(centres))
063c513e771874b78725726a84383c1dff06552c
32,649
import torch def bbox_xyxy_to_cxcywh(bbox): """Convert bbox coordinates from (x1, y1, x2, y2) to (cx, cy, w, h). Args: bbox (Tensor): Shape (n, 4) for bboxes. Returns: Tensor: Converted bboxes. """ x1, y1, x2, y2 = bbox.split((1, 1, 1, 1), dim=-1) bbox_new = [(x1 + x2) / 2, (y1 + y2) / 2, (x2 - x1), (y2 - y1)] return torch.cat(bbox_new, dim=-1)
4d8a7c4147a8c604004215d6240de33e72608abd
32,651
def get_isolated_page(request: HttpRequest) -> bool: """Accept a GET param `?nav=no` to render an isolated, navless page.""" return request.GET.get("nav") == "no"
bdfde1929308915cd797b25e2003e1b78fc2e75a
32,652
import multiprocessing def _fetch_cpu_count(): """ Returns the number of available CPUs on machine in use. Parameters: ----------- None Returns: -------- multiprocessing.cpu_count() Notes: ------ None """ return multiprocessing.cpu_count()
6c35446b706aa27b49bd678520b2378b1c7f8b90
32,655
def MakeAxesActor(): """ Make an axis actor. :return: The axis actor. """ axes = vtkAxesActor() axes.SetShaftTypeToCylinder() axes.SetXAxisLabelText('X') axes.SetYAxisLabelText('Y') axes.SetZAxisLabelText('Z') axes.SetTotalLength(1.0, 1.0, 1.0) axes.SetCylinderRadius(1.0 * axes.GetCylinderRadius()) axes.SetConeRadius(1.75 * axes.GetConeRadius()) axes.SetSphereRadius(1.0 * axes.GetSphereRadius()) axes.GetXAxisCaptionActor2D().GetTextActor().GetScaledTextProperty() axes.GetXAxisCaptionActor2D().GetTextActor().SetTextScaleModeToNone() axes.GetYAxisCaptionActor2D().GetTextActor().GetScaledTextProperty() axes.GetYAxisCaptionActor2D().GetTextActor().SetTextScaleModeToNone() axes.GetZAxisCaptionActor2D().GetTextActor().GetScaledTextProperty() axes.GetZAxisCaptionActor2D().GetTextActor().SetTextScaleModeToNone() return axes
295dfc3ed64c5b7d307ebc5e710007055954c15c
32,657
def bmi_stats(merged_df, out=None, include_min=True, include_mean=True, include_max=True, include_std=True, include_mean_diff=True, include_count=True, age_range=[2, 20], include_missing=False): """ Computes summary statistics for BMI. Clean values are for BMIs computed when both the height and weight values are categorized by growthcleanr as "Include". Raw values are computed for all observations. Information is provided by age and sex. Parameters: merged_df: (DataFrame) with bmi, rounded_age and sex columns out: (ipywidgets.Output) to display the results, if provided include_min: (Boolean) Whether to include the minimum value column include_mean: (Boolean) Whether to include the mean value column include_max: (Boolean) Whether to include the maximum value column include_std: (Boolean) Whether to include the standard deviation column include_mean_diff: (Boolean) Whether to include the difference between the raw and clean mean value column include_count: (Boolean) Whether to include the count column age_range: (List) Two elements containing the minimum and maximum ages that should be included in the statistics include_missing: (Boolean) Whether to include the missing (0) heights and weights that impact raw columns Returns: If out is None, it will return a DataFrame. If out is provided, results will be displayed in the notebook. """ if include_missing: age_filtered = merged_df[(merged_df.rounded_age >= age_range[0]) & (merged_df.rounded_age <= age_range[1])] else: age_filtered = merged_df[(merged_df.rounded_age >= age_range[0]) & (merged_df.rounded_age <= age_range[1]) & (merged_df.weight > 0) & (merged_df.height > 0)] age_filtered['sex'] = age_filtered.sex.replace(0, 'M').replace(1, 'F') agg_functions = [] formatters = {} # if not include_missing: # age_filtered = age_filtered if include_min: agg_functions.append('min') formatters['min_clean'] = "{:.2f}".format formatters['min_raw'] = "{:.2f}".format if include_mean: agg_functions.append('mean') formatters['mean_clean'] = "{:.2f}".format formatters['mean_raw'] = "{:.2f}".format if include_max: agg_functions.append('max') formatters['max_clean'] = "{:.2f}".format formatters['max_raw'] = "{:.2f}".format if include_std: agg_functions.append('std') formatters['sd_clean'] = "{:.2f}".format formatters['sd_raw'] = "{:.2f}".format if include_count: agg_functions.append('count') clean_groups = age_filtered[age_filtered.include_both].groupby(['sex', 'rounded_age'])['bmi'].agg(agg_functions) raw_groups = age_filtered.groupby(['sex', 'rounded_age'])['bmi'].agg(agg_functions) merged_stats = clean_groups.merge(raw_groups, on=['sex', 'rounded_age'], suffixes=('_clean', '_raw')) if include_mean & include_count & include_mean_diff: merged_stats['count_diff'] = merged_stats['count_raw'] - merged_stats['count_clean'] if include_std: merged_stats = merged_stats.rename(columns={'std_raw': 'sd_raw', 'std_clean': 'sd_clean'}) if out == None: return merged_stats else: out.clear_output() out.append_display_data(Markdown("## Female")) out.append_display_data(merged_stats.loc['F'].style.format(formatters)) out.append_display_data(Markdown("## Male")) out.append_display_data(merged_stats.loc['M'].style.format(formatters))
2665fd7a4156451c55437a63626572cab32d9cda
32,659
async def system_health_info(hass): """Get info for the info page.""" remaining_requests = list(hass.data[DOMAIN].values())[0][ COORDINATOR ].accuweather.requests_remaining return { "can_reach_server": system_health.async_check_can_reach_url(hass, ENDPOINT), "remaining_requests": remaining_requests, }
8b63a669180af16839e2dc36af30c3c45e39dfdf
32,660
def predict_ankle_model(data): """Generate ankle model predictions for data. Args: data (dict): all data matrices/lists for a single subject. Returns: labels (dict): columns include 'probas' (from model) and 'true' (ground truth). One row for each fold. """ RESULT_DIR = '../results/imus6_subjects7/sensors01_rankle/'\ 'iteration0/' data = selectFeats(data, ['ankle_r']) test_dset = (data['X'], data['y']) subject = str(int(data['subjectID'])) model = load_model_and_weights(subject, RESULT_DIR) labels = make_predictions(model, test_dset) return labels
e2ebea56855f6717f01d7962b00d6b8ee0df16ea
32,661
def cholesky_decomp(A): """ Function: int gsl_linalg_cholesky_decomp (gsl_matrix * A) This function factorizes the positive-definite square matrix A into the Cholesky decomposition A = L L^T. On output the diagonal and lower triangular part of the input matrix A contain the matrix L. The upper triangular part of the input matrix contains L^T, the diagonal terms being identical for both L and L^T. If the matrix is not positive-definite then the decomposition will fail, returning the error code GSL_EDOM. """ An = array_typed_copy(A) _gslwrap.gsl_linalg_cholesky_decomp(An) return An
004669d55eb58df99e1724beab8453ce4140697f
32,662
def is_block_comment(line): """ Entering/exiting a block comment """ line = line.strip() if line == '"""' or (line.startswith('"""') and not line.endswith('"""')): return True if line == "'''" or (line.startswith("'''") and not line.endswith("'''")): return True return False
ea38c248964eeaec1eab928182022de6ecccad69
32,663
import tensorflow as tf import functools def generate_keras_segmentation_dual_transform(*layers): """Generates a `dual_transform` pipeline from Keras preprocessing layers. This method takes in Keras preprocessing layers and generates a transformation pipeline for the `dual_transform` argument in *semantic segmentation* loaders, which applies the transform in the same fashion to both the image and annotation. This is due to the fact that TensorFlow has its operation-level random states different than its module-level random state, so the layers need to have their seeds manually set in order to work. In essence, for each of the preprocessing layers passed, this method conducts the following operations: > def preprocessing_transform(image, annotation): > layer = functools.partial(KerasPreprocessingLayer, **kwargs) > seed = np.random.randint(BUFFER_SIZE) # up to sys.maxsize > image = layer(image, seed = seed) > annotation = layer(annotation, seed = seed) > return image, annotation It then repeats this transform for all of the preprocessing layers passed, and returns a method which has this behavior wrapped into it and can perform it when the preprocessing is actually conducted. Parameters ---------- layers : Any Either a Sequential model with preprocessing layers, or a set of instantiated preprocessing layers. Returns ------- """ if len(layers) == 1: if isinstance(layers[0], tf.keras.Sequential): layers = layers[0].layers # These methods perform the behavior indicated in the # code snippet above (for each of the layers given). def _single_preprocessing_layer_base(layer_, build_dict): def _internal(image, annotation, seed): instantiated_layer = functools.partial(layer_, **build_dict) seed_update = {} if seed is not None: seed_update['seed'] = seed image = instantiated_layer(**seed_update)(image) annotation = instantiated_layer(**seed_update)(annotation) return image, annotation return _internal preprocessing_methods, use_seeds = [], [] for layer in layers: config = layer.get_config() if 'seed' in config: config.pop('seed') use_seeds.append(True) else: use_seeds.append(False) preprocessing_methods.append( _single_preprocessing_layer_base(layer.__class__, config)) def _execute_preprocessing(layers_, use_seeds_): def _execute(image, annotation): for p_layer, seed_ in zip(layers_, use_seeds_): seed = np.random.randint(2147483647) if seed_ else None image, annotation = p_layer(image, annotation, seed = seed) return image, annotation return _execute return _execute_preprocessing(preprocessing_methods, use_seeds)
6f10b4cf1ce8fc34aa71588682db99cbe6a01537
32,664
def get_before_deploy_steps(): """Get pre-deploy steps and their associated model aliases. Get a map of configuration steps to model aliases. If there are configuration steps which are not mapped to a model alias then these are associated with the the DEFAULT_MODEL_ALIAS. eg if test.yaml contained: before_deploy: - conf.method1 - conf.method2 - model_alias1: - conf.method3 then get_before_deploy_steps() would return: { 'default_alias': ['conf.method1', 'conf.method2'], 'model_alias1': ['conf.method3']} :returns: A dict mapping config steps to model aliases :rtype: Dict[str, List[str]] """ return _concat_model_alias_maps( get_charm_config().get('before_deploy', []))
3277f8827f204f358501afeb781d6e2934727327
32,665
def pre_ml_preprocessing(df, initial_to_drop, num_cols, target_var = None, num_cols_threshold = 0.9, low_var_threshold = 0.9): """Process data for machine learning preprocessing. Low variance categorical features are high correlated numerical features are dropped from DataFrame. This process helps in dimensionality reduction. Parameters ---------- df: DataFrame DataFrame to process. initial_to_drop: list List of initial columns to drop. target_var: str Target variable to exclude from analysis. Default(value = None) num_cols_threshold: float64 Threshold correlation value for numerical features. Default(value = 0.9) low_var_threshold: str Threshold normalized unique value of max value counts. Default(value = 0.9) Returns ------- DataFrame """ # check for valid dataframe if isinstance(df, pd.DataFrame): # extract dataframe columns df_cols = df.columns.tolist() # check if all columns to drop are in df_cols membership = all(col in df_cols for col in initial_to_drop) # if membership if membership: for col in initial_to_drop: # drop col print("Dropping: {}".format(col)) df.drop(col, axis=1, inplace=True) else: not_cols = [] for col in initial_to_drop: if col not in df_cols: not_cols.append(col) raise utils.InvalidColumn(not_cols) # drop high correlated features # df = funcs.dim_redux(df, num_cols, threshold = num_cols_threshold) # drop low variance features # df = funcs.drop_low_var_cols(df, target_var = target_var, unique_val_threshold = low_var_threshold) else: raise utils.InvalidDataFrame(df) return df
20325bc6d650cf9bccd06bf2547f36bc29e5d446
32,666
import json def pool_status(): """Fetch overall pool status.""" d = make_request('getpoolstatus') return json.loads(d)
0793dd3c5bb07f670b84b905fb030e278d4a9cba
32,667
from typing import List from typing import Dict import requests def get_airtable_data(url: str, token: str) -> List[Dict[str, str]]: """ Fetch all data from airtable. Returns a list of records where record is an array like {'my-key': 'George W. Bush', 'my-value': 'Male'} """ response = requests.request("GET", url, headers={"Authorization": f"Bearer {token}"}) records = response.json()["records"] return [record["fields"] for record in records]
f91326938a663ddedd8b4a10f796c7c36981da4e
32,668
def displayname(user): """Returns the best display name for the user""" return user.first_name or user.email
aecebc897803a195b08cdfb46dbeb4c9df9ede09
32,669
def format_satoshis_plain(x, decimal_point = 8): """Display a satoshi amount scaled. Always uses a '.' as a decimal point and has no thousands separator""" scale_factor = pow(10, decimal_point) return "{:.8f}".format(Decimal(x) / scale_factor).rstrip('0').rstrip('.')
2afa53e820d080bef762ab78fd02f09b60fe355f
32,670
def get_aps(dispatcher, apic, tenant): """Display Application Profiles configured in Cisco ACI.""" if not apic: dispatcher.prompt_from_menu("aci get-aps", "Select APIC Cluster", apic_choices) return False try: aci_obj = NautobotPluginChatopsAci(**aci_creds[apic]) except KeyError: dispatcher.send_markdown( f"Sorry, there is no cluster configured with name {dispatcher.bold(apic)}", ephemeral=True ) return False if not tenant: logger.info(f"Getting list of tenants from APIC {aci_creds[apic]['base_uri']} in tenant {tenant}") try: tenant_list = aci_obj.get_tenants() except (RequestConnectError, RequestHTTPError) as e: dispatcher.send_error(e) logger.error(e) return CommandStatusChoices.STATUS_FAILED tenant_choices = [(tenant, tenant) for tenant in tenant_list] tenant_choices.append(("all", "all")) dispatcher.prompt_from_menu(f"aci get-aps {apic}", "Select Tenant", tenant_choices) return False send_wait_msg(dispatcher) logger.info(f"Getting list of Application Profiles from APIC {aci_creds[apic]['base_uri']} in tenant {tenant}") try: ap_list = aci_obj.get_aps(tenant) except (RequestConnectError, RequestHTTPError) as e: dispatcher.send_error(e) logger.error(e) return CommandStatusChoices.STATUS_FAILED table_fields = ["Tenant", "Application Profile"] table_rows = [[ap["tenant"], ap["ap"]] for ap in ap_list] send_logo( dispatcher, "get-aps", f"get-aps {apic} {tenant}", args=[("APIC", aci_creds[apic]["base_uri"]), ("Tenant", tenant)], ) # TO-DO: add title argument dispatcher.send_large_table(table_fields, table_rows, title="get-aps") return CommandStatusChoices.STATUS_SUCCEEDED
de7ab1a4680edb735c7cf2e46098b52d88ecb865
32,671
def delete_dnt(id): """ Function deleting specific department by its id :param id: id of the specific department an admin wants to delete :return: redirects user to the departments page """ if session.get('user') and session.get('user')[0] == ADMIN: data = f'?login={session["user"][0]}&password={session["user"][1]}&id={id}&page=True' return redirect('/api/departments/del' + data)
12f87af2a657eb631aabfac7acb88ce2e5abf07d
32,672
def price(listing): """Score based on number of bedrooms.""" if listing.price is None: return -4000 score = 0.0 bedrooms = 1.0 if listing.bedrooms is None else listing.bedrooms if (bedrooms * 1000.0) > listing.price: score += -1000 - ((bedrooms * 750.0) / listing.price - 1.0) * 1000 return -1.0 * listing.price + score
7087da4e4f9dedf03fdaed5661029f1be0703f0e
32,673
def entropy_to_mnemonic(entropy: bytes) -> str: """Convert entropy bytes to a BIP39 english mnemonic Entropy can be 16, 20, 24, 28, 32, 36 or 40 bytes""" try: return wally.bip39_mnemonic_from_bytes(None, entropy) except ValueError: raise InvalidEntropy
1e4de2dfdde71a8ab241fae05385a6ce8c8a10f5
32,675
async def read_run(catalog_name: str, run_uid: str): """Summarize the run for the given uid.""" summary = databroker.run_summary(catalog_name, run_uid) if summary is None: raise HTTPException(status_code=404, detail="Not found") return summary
cf36b8bffa034392c8943ea179e67f28d12102e3
32,676
import shlex def shell_quote(*args: str) -> str: """ Takes command line arguments as positional args, and properly quotes each argument to make it safe to pass on the command line. Outputs a string containing all passed arguments properly quoted. Uses :func:`shlex.join` on Python 3.8+, and a for loop of :func:`shlex.quote` on older versions. Example:: >>> print(shell_quote('echo', '"orange"')) echo '"orange"' """ return shlex.join(args) if hasattr(shlex, 'join') else " ".join([shlex.quote(a) for a in args]).strip()
b2d0ecde5a2569e46676fed81ed3ae034fb8d36c
32,677
def is_resources_sufficient(order): """Returns True when order can be made, False if ingredients are insufficient.""" check = [ True if MENU[order][key] <= resources[key] else False for key, value in MENU[order].items() ] return not False in check[:-1]
5454fca8ac7574e74c795d205a9355839f5320f2
32,678
def mode(arr): """Return the mode, i.e. most common value, of NumPy array <arr>""" uniques, counts = np.unique(arr, return_counts=True) return uniques[np.argmax(counts)]
abb8a79ff8ac4f28fe5e6e4491146c90ee680cd4
32,679
import torch def normalized_state_to_tensor(state, building): """ Transforms a state dict to a pytorch tensor. The function ensures the correct ordering of the elements according to the list building.global_state_variables. It expects a **normalized** state as input. """ ten = [[ state[sval] for sval in building.global_state_variables ]] return torch.tensor(ten)
4aea246f388f941290d2e4aeb6da16f91e210caa
32,680
def get_num_of_lines_in_file(filename): """Open the file and get the number of lines to use with tqdm as a progress bar.""" file_to_read = open(filename, "rb") buffer_generator = takewhile( lambda x: x, (file_to_read.raw.read(1024 * 1024) for _ in repeat(None)) ) return sum(buf.count(b"\n") for buf in buffer_generator if buf)
00d4a042a904140645d7f1e9fe6d85b86031fc3b
32,681
def translate_lat_to_geos5_native(latitude): """ The source for this formula is in the MERRA2 Variable Details - File specifications for GEOS pdf file. The Grid in the documentation has points from 1 to 361 and 1 to 576. The MERRA-2 Portal uses 0 to 360 and 0 to 575. latitude: float Needs +/- instead of N/S """ return ((latitude + 90) / 0.5)
b1fb1824bfefce3fd58ca7a26f9603b910779a61
32,682
def disabled_payments_notice(context, addon=None): """ If payments are disabled, we show a friendly message urging the developer to make his/her app free. """ addon = context.get('addon', addon) return {'request': context.get('request'), 'addon': addon}
b77dc41cf8ac656b2891f82328a04c1fe7aae49c
32,683
import time def upload_fastq_collection_single(gi,history_id,fastq_single): """ Uploads given fastq files to the Galaxy history and builds a dataset collection. :param gi: Galaxy instance. :param history_Id: History id to upload into. :param fastq_single: Single-end files to upload. :return: The dataset collection id for the constructed dataset. """ single_elements=[] if (upload_fastqs_as_links): created_library=gi.libraries.create_library("SNVPhyl Library Dataset-"+str(time.time())) single_elements=upload_fastqs_library_single(gi,history_id,created_library['id'],fastq_single) else: single_elements=upload_fastqs_single(gi,history_id,fastq_single) # construct single collection single_collection_name="single_datasets" print("Building dataset collection named "+single_collection_name) collection_response_single = gi.histories.create_dataset_collection( history_id=history_id, collection_description=dataset_collections.CollectionDescription( name=single_collection_name, type="list", elements=single_elements ) ) return collection_response_single['id']
ecf3c3be06e0f012609214dc810ebefe67968ab1
32,684
import torch def get_world_size() -> int: """ Simple wrapper for correctly getting worldsize in both distributed / non-distributed settings """ return ( torch.distributed.get_world_size() if torch.distributed.is_available() and torch.distributed.is_initialized() else 1 )
0017278b422aa39ea0a8074c70a7df84885c7929
32,685
def filtraColunas(df: pd.DataFrame, colunas_interesse: list) -> pd.DataFrame: """ Seleciona apenas as colunas de interesse de uma DataFrame Parameters ---------- DataFrame : pd.DataFrame DataFrame para filtragem colunas_interesse : list lista com os cabeçalhos das colunas de interesse Returns ------- DataFrame : pd.DataFrame DataFrame com as colunas filtradas """ df = df[colunas_interesse] return df
bb2c2a0e5718e663750a420a6b70a7b9af182e4b
32,686
def PatSub(s, op, pat, replace_str): """Helper for ${x/pat/replace}.""" #log('PAT %r REPLACE %r', pat, replace_str) regex, err = glob_.GlobToExtendedRegex(pat) if err: e_die("Can't convert glob to regex: %r", pat) if regex is None: # Simple/fast path for fixed strings if op.do_all: return s.replace(pat, replace_str) elif op.do_prefix: if s.startswith(pat): n = len(pat) return replace_str + s[n:] else: return s elif op.do_suffix: if s.endswith(pat): n = len(pat) return s[:-n] + replace_str else: return s else: return s.replace(pat, replace_str, 1) # just the first one else: regex = '(%s)' % regex # make it a group if op.do_all: return _PatSubAll(s, regex, replace_str) # loop over matches if op.do_prefix: regex = '^' + regex elif op.do_suffix: regex = regex + '$' m = libc.regex_first_group_match(regex, s, 0) log('regex = %r, s = %r, match = %r', regex, s, m) if m is None: return s start, end = m return s[:start] + replace_str + s[end:]
d5272d9b16517ce4244573bad992031f78e40556
32,687
async def check_for_role(self, name): """ A function to check for the existence of a role. """ name = name.lower() role = ( await GuildRoles .query .where(database.func.lower(GuildRoles.name) == name) .gino .scalar() ) return role
c78b66660bcacf930a2945ccf90860b89799dfcc
32,688
def construct_futures_symbols( symbol, start_year=2010, end_year=2014 ): """ Constructs a list of futures contract codes for a particular symbol and timeframe. """ futures = [] # March, June, September and # December delivery codes months = 'HMUZ' for y in range(start_year, end_year+1): for m in months: futures.append("%s%s%s" % (symbol, m, y)) return futures
2917a9eb008f5ab141576243bddf4769decfd1f3
32,689
def UpdateDescription(unused_ref, args, request): """Update description. Args: unused_ref: unused. args: The argparse namespace. request: The request to modify. Returns: The updated request. """ if args.IsSpecified('clear_description'): request.group.description = '' elif args.IsSpecified('description'): request.group.description = args.description return request
2c70200915cef809f91d2f0f303b622b41301cfa
32,690
def getAllChannels(): """ a func to see all valid channels :return: a list channels """ return ["Hoechst", 'ERSyto', 'ERSytoBleed', 'Ph_golgi', 'Mito']
d4fee111bad73f8476877a96645490aef37c07c9
32,691
def get_virtual_func_address(name, tinfo=None, offset=None): """ :param name: method name :param tinfo: class tinfo :param offset: virtual table offset :return: address of the method """ address = idc.LocByName(name) if address != idaapi.BADADDR: return address address = Cache.demangled_names.get(name, idaapi.BADADDR) if address != idaapi.BADADDR: return address + idaapi.get_imagebase() if tinfo is None or offset is None: return offset *= 8 udt_member = idaapi.udt_member_t() while tinfo.is_struct(): address = Cache.demangled_names.get(tinfo.dstr() + '::' + name, idaapi.BADADDR) if address != idaapi.BADADDR: return address + idaapi.get_imagebase() udt_member.offset = offset tinfo.find_udt_member(idaapi.STRMEM_OFFSET, udt_member) tinfo = udt_member.type offset = offset - udt_member.offset
b7466609b0119d1a110a72fdb2d012f3f40a43dc
32,692
from typing import Callable from typing import Tuple from typing import List from typing import Dict def coupler_netlist( wg_width: float = 0.5, gap: float = 0.236, length: float = 20.007, coupler_symmetric_factory: Callable = coupler_symmetric, coupler_straight: Callable = coupler_straight, layer: Tuple[int, int] = LAYER.WG, layers_cladding: List[Tuple[int, int]] = [LAYER.WGCLAD], cladding_offset: int = 3, ) -> Tuple[ Dict[str, Tuple[Component, str]], List[Tuple[str, str, str, str]], Dict[str, Tuple[str, str]], ]: """ SBEND_L-CS-SBEND_R """ assert_on_1nm_grid(length) assert_on_2nm_grid(gap) _sbend = coupler_symmetric_factory( gap=gap, wg_width=wg_width, layer=layer, layers_cladding=layers_cladding, cladding_offset=cladding_offset, ) _cpl_straight = coupler_straight( length=length, gap=gap, width=wg_width, layer=layer, layers_cladding=layers_cladding, cladding_offset=cladding_offset, ) components = { "SBEND_L": (_sbend, "mirror_y"), "SBEND_R": (_sbend, "None"), "CS": (_cpl_straight, "None"), } connections = [("SBEND_L", "W0", "CS", "W0"), ("CS", "E0", "SBEND_R", "W0")] ports_map = { "W0": ("SBEND_L", "E0"), "W1": ("SBEND_L", "E1"), "E0": ("SBEND_R", "E0"), "E1": ("SBEND_R", "E1"), } return components, connections, ports_map
d855b0ccfe435470f109b3c212083313ebe06ce1
32,693
def accuracy(output, target, mask, inc_fix=False): """ Calculate accuracy from output, target, and mask for the networks """ output = output.astype(cp.float32) target = target.astype(cp.float32) mask = mask.astype(cp.float32) arg_output = cp.argmax(output, -1) arg_target = cp.argmax(target, -1) mask = mask if inc_fix else mask * (arg_target != 0) acc = cp.sum(mask * (arg_output == arg_target), axis=(0,2))/cp.sum(mask, axis=(0,2)) return acc.astype(cp.float32)
c78be00f4c229f440987b1004878d6e944626dfd
32,694
def get_filterset_class(filterset_class, **meta): """Get the class to be used as the FilterSet""" if filterset_class: # If were given a FilterSet class, then set it up and # return it return setup_filterset(filterset_class) return custom_filterset_factory(**meta)
5b6f87fd6b299e89272fcc3f15499369cc2e3f0e
32,695
def first_lower(string): """ Return a string with the first character uncapitalized. Empty strings are supported. The original string is not changed. """ return string[:1].lower() + string[1:]
f3503902d18ffd5b5689c3738eb8c40e749d3e3e
32,696
def read_db() -> list: """Читает все данные из базы""" conn = psycopg2.connect(dbname=DB_NAME, user=DB_USERNAME, password=DB_PASS, host=DB_HOST) cursor = conn.cursor(cursor_factory=DictCursor) cursor.execute('SELECT * FROM posts') res = cursor.fetchall() conn.close() return res
481fadc0ba86cdb36d007a924424ff073e0c844c
32,697
def logit(p): """Logit function""" p = np.atleast_1d(np.asfarray(p)) logit_p = np.zeros_like(p) valid = (p > 0) & (p < 1) if np.any(valid): logit_p[valid] = np.log(p[valid] / (1 - p[valid])) logit_p[p==0] = np.NINF logit_p[p==1] = np.PINF return logit_p
a8d4ee374284721eeb04d2fd4409e28036a75f12
32,698
async def logout(request): """ Finish the session with auth, clear the cookie and stop the session being used again. """ session_id = request['session'].session_id await finish_session(request, session_id, 'logout') session = await get_session(request) session.pop(str(session_id)) await request.app['redis'].setex( dead_session_key(session_id), request.app['settings'].micro_session_duration + 60, b'1' ) return json_response(status='ok')
0ff00ddeb34c39ef7611d8896298aeca7070df5d
32,699
def create_multiple_new_predictions(monkeypatch): """ Mock prediction model method to ensure no duplicate prediction in predictions table. """ @classmethod async def mockfunc_get_one_by_username(cls, username): """Return a user record from the users table.""" hashed_pwd = bcrypt.hash(API_USER_PASSWORD) d = {"id": 1, "username": API_USER_NAME, "password_hash": hashed_pwd} return d @classmethod async def mock_get_one_by_url(cls, url): """ Return None to indicate no pre-existing prediction with specified url in the predictions table. """ return None @classmethod async def mock_create_new_record(cls, notes): """ Do nothing, to allow new prediction to be added to predictions table. """ pass monkeypatch.setattr( DBUser, "get_one_by_username", mockfunc_get_one_by_username ) monkeypatch.setattr(DBPrediction, "get_one_by_url", mock_get_one_by_url) monkeypatch.setattr(DBPrediction, "create", mock_create_new_record)
27608239ba1d1d5da0cf464d9ab1f752ec7057b6
32,700
def tidy_split(df, column, sep, keep=False): """ Split the values of a column and expand so the new DataFrame has one split value per row. Filters rows where the column is missing. Params ------ df : pandas.DataFrame dataframe with the column to split and expand column : str the column to split and expand sep : str the string used to split the column's values keep : bool whether to retain the presplit value as it's own row Returns ------- pandas.DataFrame Returns a dataframe with the same columns as `df`. """ indexes = list() new_values = list() df = df.dropna(subset=[column]) for i, presplit in enumerate(df[column].astype(str)): values = presplit.split(sep) if keep and len(values) > 1: indexes.append(i) new_values.append(presplit) for value in values: indexes.append(i) new_values.append(value) new_df = df.iloc[indexes, :].copy() new_df[column] = new_values return new_df
4e4138cf4f5fab924d4e9e792db5e1c954ee8032
32,701
def greedyClustering(v_space, initial_pt_index, k, style): """ Generate `k` centers, starting with the `initial_pt_index`. Parameters: ---------- v_space: 2D array. The coordinate matrix of the initial geometry. The column number is the vertex's index. initial_pt_index: Int. The index of the initial point. k: Int. The number of centers aiming to generate. style: String. Indicate "last" or "mean" to choose the style of evaluation function. "last": Calculate the farthest point by tracking the last generated center point. Minimum distance threshold applied. "mean": Calculate a point with the maximum average distance to all generated centers; Calculate a point with the minimum distance variance of all generated centers; Minimum distance threshold applied. Returns: ---------- center_indices_list: List of int. Containing the indices of all k centers. """ if style == "last": center_indices_list = [] center_indices_list.append(initial_pt_index) min_dist_thrshld = 0.01 # Unit: m. The radius of FM ball. for j in range(k): center_coord_temp = v_space[center_indices_list[j],:] max_dist_temp = 0.0 new_center_index_temp = 0 for i in range(v_space.shape[0]): if i in center_indices_list: continue coord_temp = v_space[i,:] dist_temp = np.linalg.norm(center_coord_temp.reshape(-1,3) - coord_temp.reshape(-1,3)) dist_list = [] for index in center_indices_list: dist_temp_eachCenter = np.linalg.norm(coord_temp.reshape(-1,3) - v_space[index,:].reshape(-1,3)) dist_list.append(dist_temp_eachCenter) min_dist_temp = np.min(dist_list) if dist_temp > max_dist_temp and min_dist_temp >= min_dist_thrshld: max_dist_temp = dist_temp new_center_index_temp = i if new_center_index_temp not in center_indices_list: center_indices_list.append(new_center_index_temp) return center_indices_list elif style == "mean": center_indices_list = [] center_indices_list.append(initial_pt_index) min_dist_thrshld = 0.01 # Unit: m. The radius of FM ball. while(True): max_dist_thrshld = 0.0 new_center_index_temp = 0 for i in range(v_space.shape[0]): if i in center_indices_list: continue coord_temp = v_space[i,:] dist_list = [] for index in center_indices_list: dist_temp = np.linalg.norm(coord_temp.reshape(-1,3) - v_space[index,:].reshape(-1,3)) dist_list.append(dist_temp) avg_dist_temp = np.mean(dist_list) min_dist_temp = np.min(dist_list) if avg_dist_temp > max_dist_thrshld and min_dist_temp >= min_dist_thrshld: max_dist_thrshld = avg_dist_temp new_center_index_temp = i if new_center_index_temp not in center_indices_list: center_indices_list.append(new_center_index_temp) if len(center_indices_list) >= k: break var_thrshld = 1e5 new_center_index_temp = 0 # ================= Picking only several points to calculate the distance variance (abandoned) ================= # # picked_num_temp = int(np.ceil(len(center_indices_list)*0.3)) # Pick several center points to compute the distance variance. # picked_indices_temp = generateFMIndices(picked_num_temp, len(center_indices_list)) # picked_indices_temp = [center_indices_list[i] for i in copy.deepcopy(picked_indices_temp)] # ============================================================================================================== # for i in range(v_space.shape[0]): if i in center_indices_list: continue coord_temp = v_space[i,:] dist_list = [] # for index in picked_indices_temp: # Picking only several points to calculate the distance variance (abandoned). for index in center_indices_list: dist_temp = np.linalg.norm(coord_temp.reshape(-1,3) - v_space[index,:].reshape(-1,3)) dist_list.append(dist_temp) var_dist_temp = np.var(dist_list) min_dist_temp = np.min(dist_list) if var_dist_temp < var_thrshld and min_dist_temp >= min_dist_thrshld: var_thrshld = var_dist_temp new_center_index_temp = i if new_center_index_temp not in center_indices_list: center_indices_list.append(new_center_index_temp) if len(center_indices_list) >= k: break return center_indices_list else: print("Wrong input of the style indicator. Will start training based on the optimal FM indices. ") return []
ac90d1d6c461a969a2bcb71f3df3a822496b3a65
32,702
def s2_matrix(beta, gamma, device=None): """ Returns a new tensor corresponding to matrix formulation of the given input tensors representing SO(3) group elements. Args: beta (`torch.FloatTensor`): beta attributes of group elements. gamma (`torch.FloatTensor`): gamma attributes of group elements. device (Device, optional): computation device. Defaults to None. Returns: (`torch.FloatTensor`): matrix representation of the group elements. """ R_beta_y = rotation_matrix(beta, "y", device) R_gamma_z = rotation_matrix(gamma, "z", device) return R_gamma_z @ R_beta_y
20d08d1b75f22bddfaf5295751f05d43ea7fe6bb
32,703
import threading def cache(func): """Thread-safe caching.""" lock = threading.Lock() results = {} def wrapper(*args, **kwargs): identifier = checksum(args, kwargs) if identifier in results: return results[identifier] with lock: if identifier in results: return results[identifier] result = func(*args, **kwargs) results[identifier] = result return result return wrapper
c17a6550ec91edcfcad6d898a1f81fa4b878757a
32,704
import platform def hide_console(): """Startup-info for subprocess.Popen which hides the console on Windows. """ if platform.system() != 'Windows': return None si = sp.STARTUPINFO() si.dwFlags |= sp.STARTF_USESHOWWINDOW si.wShowWindow = sp.SW_HIDE return si
faf25cdf48ffddd2ae7185c457d1abe60a0ec181
32,706
from typing import Dict from typing import Any def merge_dicts(dict1: Dict[str, Any], dict2: Dict[str, Any], *dicts: Dict[str, Any]) -> Dict[str, Any]: """ Merge multiple dictionaries, producing a merged result without modifying the arguments. :param dict1: the first dictionary :param dict2: the second dictionary :param dicts: additional dictionaries :return: The merged dictionary. Keys in dict2 overwrite duplicate keys in dict1 """ res = dict1.copy() res.update(dict2) for d in dicts: res.update(d) return res
869399774cc07801e5fa95d9903e6a9f2dadfc25
32,707
def decode(model, inputs): """Decode inputs.""" decoder_inputs = encode_onehot(np.array(['='])).squeeze() decoder_inputs = jnp.tile(decoder_inputs, (inputs.shape[0], 1)) return model( inputs, decoder_inputs, train=False, max_output_len=get_max_output_len())
632b57ab86b9dd670d3e7203197575130ded7057
32,708
from typing import Sequence from typing import List def combinations_all(data: Sequence) -> List: """ Return all combinations of all length for given sequence Args: data: sequence to get combinations of Returns: List: all combinations """ comb = [] for r in range(1, len(data) + 1): comb.extend(combinations(data, r=r)) return comb
7e0b31189a5afe3ac027a4c947aca08b3a2075ff
32,709