content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def build_delete(table, where): """ Build a delete request. Parameters ---------- table : str Table where query will be directed. where: iterable The list of conditions to constrain the query. Returns ------- str Built query. """ sql_q = "DELETE " sql_q += 'FROM \"' + table + '\"' sql_q += ' WHERE ' sql_q += ' AND '.join('{0} = :{0}'.format(w) for w in where) return sql_q
1f065b5905b6c7af4e19863ae48e228358278f06
32,370
def filter_resources_sets(used_resources_sets, resources_sets, expand_resources_set, reduce_resources_set): """ Filter resources_set used with resources_sets defined. It will block a resources_set from resources_sets if an used_resources_set in a subset of a resources_set""" resources_expand = [expand_resources_set(resources_set) for resources_set in resources_sets] used_resources_expand = [expand_resources_set(used_resources_set) for used_resources_set in used_resources_sets] real_used_resources_sets = [] for resources_set in resources_expand: for used_resources_set in used_resources_expand: if resources_set.intersection(used_resources_set): real_used_resources_sets.append(reduce_resources_set(resources_set)) break return list(set(resources_sets).difference(set(real_used_resources_sets)))
2ecd752a0460fff99ecc6b8c34ed28782e848923
32,371
def get_index_base(): """获取上海及深圳指数代码、名称表""" url_fmt = 'http://quotes.money.163.com/hs/service/hsindexrank.php?host=/hs/service/' url_fmt += 'hsindexrank.php&page={page}&query=IS_INDEX:true;EXCHANGE:CNSE{ex}&fields=no,SYMBOL,NAME&' url_fmt += 'sort=SYMBOL&order=asc&count={count}&type=query' one_big_int = 10000 # 设定一个比较大的整数 def get_index_from(ex): url = url_fmt.format_map({'page': 0, 'ex': ex, 'count': one_big_int}) #response = get_response(url, 'get', 'json') response = get_page_response(url, method='post') df = pd.DataFrame(response.json()['list']) return df.loc[:, ['SYMBOL', 'NAME']] # 查询代码(深圳+1,上海+0) dfs = [get_index_from('SH'), get_index_from('SZ')] df = pd.concat(dfs) df.columns = df.columns.str.lower() df.rename(columns={'symbol': 'code'}, inplace=True) df.set_index('code', inplace=True, drop=True) return df
4639e94d9412967c0a5403a5e49fc43c8033c40b
32,372
def merge_list_of_dicts(old, new, key): """ Merge a list of dictionary items based on a specific key. Dictionaries inside the list with a matching key get merged together. Assumes that a value for the given key is unique and appears only once. Example: list1 = [{"name": "one", "data": "stuff"}, {"name": "two", "data": "stuff2"}] list2 = [{"name": "one", "data": "newstuff"}] merge_list_of_dicts(list1, list2) returns: [{"name": "one", "data": "newstuff"}, {"name": "two", "data": "stuff2"}] """ for old_item in reversed(old): matching_val = old_item[key] for new_item in new: if new_item[key] == matching_val: object_merge(old_item, new_item) break else: new.append(old_item) return new
a56c0b3476ea67d6b77126a34c14005aad345cfa
32,373
from masci_tools.util.schema_dict_util import read_constants, eval_simple_xpath from masci_tools.util.schema_dict_util import evaluate_text, evaluate_attribute from masci_tools.util.xml.common_functions import clear_xml def get_kpoints_data_max4(xmltree, schema_dict, logger=None, convert_to_angstroem=True): """ Get the kpoint sets defined in the given fleur xml file. .. note:: This function is specific to file version before and including the Max4 release of fleur :param xmltree: etree representing the fleur xml file :param schema_dict: schema dictionary corresponding to the file version of the xmltree :param logger: logger object for logging warnings, errors :param convert_to_angstroem: bool if True the bravais matrix is converted to angstroem :returns: tuple containing the kpoint information The tuple contains the following entries: 1. :kpoints: list containing the coordinates of the kpoints 2. :weights: list containing the weights of the kpoints 3. :cell: numpy array, bravais matrix of the given system 4. :pbc: list of booleans, determines in which directions periodic boundary conditions are applicable """ if isinstance(xmltree, etree._ElementTree): xmltree, _ = clear_xml(xmltree) root = xmltree.getroot() else: root = xmltree constants = read_constants(root, schema_dict, logger=logger) cell, pbc = get_cell(root, schema_dict, logger=logger, convert_to_angstroem=convert_to_angstroem) kpointlist = eval_simple_xpath(root, schema_dict, 'kPointList', list_return=True, not_contains='altKPoint', logger=logger) if len(kpointlist) == 0: raise ValueError('No Kpoint lists found in the given inp.xml') kpointlist = kpointlist[0] kpoints = evaluate_text(kpointlist, schema_dict, 'kPoint', constants=constants, not_contains='altKPoint', list_return=True, logger=logger) weights = evaluate_attribute(kpointlist, schema_dict, 'weight', constants=constants, not_contains='altKPoint', list_return=True, logger=logger) return kpoints, weights, cell, pbc
23001a430e8cb1b2434fce7de67e5249f345806c
32,374
def contains_badwords(string): """ Return whether a string contains bad words """ return any([x in string for x in bad_words])
499e338599441e24845a19ba8504a77bd7838d8e
32,376
def _learn_individual_mixture_weights(n_users, alpha, multinomials, max_iter, tol, val_mat, prior_strength, num_proc): """ Learns the mixing weights for each individual user, uses multiple-processes to make it faster. :param n_users: Int, total number of users. :param alpha: prior (learned through global weights) for the pi's :param multinomials: List of components (Arrays of vectors). :param max_iter: max number of em iterations :param tol: convergence threshold :param val_mat: validation data to optimize on. U x C matrix. :param prior_strength: float, how much to increase the strength of the prior. :param num_proc: number of processes to be used. :return: 1. Matrix of mixing weights (Users x Components) 2. Event log likelihood for validation data. """ lls = np.ones(n_users) pis = np.tile(alpha, n_users).reshape(n_users, len(multinomials)) pis = normalize(pis, 'l1', axis=1) # pi's for each user. log.info('Doing individual weights with %d proc' % num_proc) mix_weights = [] alpha *= prior_strength if any(alpha < 1): alpha += 1 # multi-process. Essentially calls _mp_learn_user_mix for a set of users. batch_size = int(np.ceil(1. * n_users / num_proc)) # how many users per process args = (alpha, multinomials, val_mat, max_iter, tol) uids = range(n_users) queue = Queue() num_eof = 0 proc_pool = [] # set-up the processes for i in range(num_proc): p_uids = uids[i * batch_size:(i + 1) * batch_size] # define which users this process will handle. if len(p_uids) == 0: break proc = Process(target=_mp_learn_user_mix, args=(queue, p_uids, args)) proc_pool.append(proc) # start the processes [proc.start() for proc in proc_pool] # collect end tokens while num_eof < len(proc_pool): resp = queue.get() if type(resp) == str: num_eof += 1 else: mix_weights.append(resp) [proc.join() for proc in proc_pool] queue.close() # end multi-process for id, u_mix_weights, u_ll in mix_weights: pis[id] = np.array(u_mix_weights) lls[id] = u_ll mask = np.where(lls != 1) lls = lls[mask] * np.squeeze(np.array(val_mat.sum(axis=1)))[mask] event_ll = np.sum(lls) / np.sum(val_mat) return pis, event_ll
7ee9020685ec8fc0538ce4695fcefedc6280d55e
32,379
def banana(cls): """ A decorator for a class that adds the ability to create Permissions and Handlers from their Checks. """ cls.__checks = set() # Basically tell checks that we are the class, not a medium to pass things through cls.__banana = True cls_annotations = cls.__dict__.get("__annotations__", {}) for name in cls_annotations.keys(): check = get_check(cls, name) if check is None: continue cls.__checks.add(name) setattr(cls, name, check) for base in cls.__bases__: if base is Permission or PermissionHandler: setattr(cls, "from_checks", classmethod(from_checks(cls))) break return cls
6392d5a7e029dca556c92f4d7546fb6f76078858
32,380
def residual_v2_conv( kernel_size: int, stride: int, depth: int, is_deconv: bool, add_max_pool: bool, add_bias: bool, is_train: bool, input_op: tf.Tensor, name: str = None, ) -> tf.Tensor: """Creates a residual convolution in the style of He et al. April 2016. This is the second version of their proposed residual structure, where the order of operations is batch_norm -> activation -> convolution. We use RELU and TANH activations, and we optionally add a max pool. Args: kernel_size: The size of the kernel. stride: The stride of the convolution. depth: The depth of the reduction layer. is_deconv: Whether this is a deconvolution. add_max_pool: Whether to add a parallel max pool with the same parameters as the convolution. add_bias: Whether to add bias to the convolution. is_train: Whether we're training this graph. input_op: The input. name: An optional op name. Returns: The tensor output of residual convolution. """ with tf.variable_scope(name, 'residual_v2_conv', [input_op]) as scope: [_, num_rows, num_columns, _] = input_op.shape.as_list() if not is_deconv: assert num_rows >= kernel_size assert num_columns >= kernel_size # Make sure we can do a valid convolution. assert (num_rows - kernel_size) % stride == 0 assert (num_columns - kernel_size) % stride == 0 # In the future it may be necessary to set epsilon to a larger value # than the default here. bn_op = slim.batch_norm(input_op, is_training=is_train, scale=True) concat_op = tf.concat([tf.nn.relu(bn_op), tf.nn.tanh(bn_op)], 3) with slim.arg_scope( [slim.conv2d, slim.conv2d_transpose, slim.max_pool2d], kernel_size=kernel_size, stride=stride, padding='VALID'): if add_bias: biases_initializer = tf.zeros_initializer() else: biases_initializer = None with slim.arg_scope( [slim.conv2d, slim.conv2d_transpose], inputs=concat_op, num_outputs=depth, activation_fn=None, biases_initializer=biases_initializer): if is_deconv: conv_op = slim.conv2d_transpose() else: conv_op = slim.conv2d() if add_max_pool: assert not is_deconv assert kernel_size > 1 return tf.concat( [conv_op, slim.max_pool2d(input_op)], 3, name=scope.name) else: return tf.identity(conv_op, name=scope.name)
63d7589caed876ed9b0d3617442e6d676555c791
32,381
def dump_cups_with_first(cups: list[int]) -> str: """Dump list of cups with highlighting the first one :param cups: list of digits :return: list of cups in string format """ dump_cup = lambda i, cup: f'({cup})' if i == 0 else f' {cup} ' ret_val = ''.join([dump_cup(i, cup) for i, cup in enumerate(cups)]) return ret_val
5fe4111f09044c6afc0fbd0870c2b5d548bd3c1a
32,382
def init(strKernel, iKernelPar=1, iALDth=1e-4, iMaxDict=1e3): """ Function initializes krls dictionary. |br| Args: strKernel (string): Type of the kernel iKernelPar (float): Kernel parameter [default = 1] iALDth (float): ALD threshold [default = 1e-4] iMaxDict (int): Max size of the dictionary [default = 1e3] Returns: dAldKRLS (dictionary): Python dictionary which contains all the data of the current KRLS algorithm. Fields in the output dictionary: - a. **iALDth** (*int*): ALD threshold - b. **iMaxDt** (*float*): Max size of the dictionary - c. **strKernel** (*string*): Type of the kernel - d. **iKernelPar** (*float*): Kernel parameter - e. **bInit** (*int*): Initialization flag = 1. This flag is cleared with a first call to the 'train' function. """ dAldKRLS = {} # Initialize dictionary with data for aldkrls algorithm # Store all the parameters in the dictionary dAldKRLS['iALDth'] = iALDth; # ALD threshold dAldKRLS['iMaxDt'] = iMaxDict; # Maximum size of the dictionary dAldKRLS['strKernel'] = strKernel # Type of the kernel dAldKRLS['iKernelPar'] = iKernelPar # Kernel parameter dAldKRLS['bInit'] = 0 # Clear 'Initialization done' flag return dAldKRLS
652e0c498b4341e74bcd30ca7119163345c7f2cc
32,383
def prune_scope(): """Provides a scope in which Pruned layers and models can be deserialized. For TF 2.X: this is not needed for SavedModel or TF checkpoints, which are the recommended serialization formats. For TF 1.X: if a tf.keras h5 model or layer has been pruned, it needs to be within this scope to be successfully deserialized. This is not needed for loading just keras weights. Returns: Object of type `CustomObjectScope` with pruning objects included. Example: ```python pruned_model = prune_low_magnitude(model, **self.params) keras.models.save_model(pruned_model, keras_file) with prune_scope(): loaded_model = keras.models.load_model(keras_file) ``` """ return tf.keras.utils.custom_object_scope( {'PruneLowMagnitude': pruning_wrapper.PruneLowMagnitude})
64569464611640ac5c13cbb0bf41c3f7ba16424a
32,384
import re def is_valid_br_cnpj(cnpj): """ Accept an string parameter cnpj and Check if is brazilian CNPJ valid. Return True or False """ # Extract dots, stroke, slash cnpj = re.sub('[.|\-/|/]', '', str(cnpj)) # if does not contain numerical characters if not re.match(r'^\d{14}$', cnpj) or cnpj in _INVALID_CNPJ: return False # checks if all digits are equal for i in range(10): text = str(i) * 14 if text == cnpj: return False # first checksum1 multi = 5 result = 0 for i in cnpj[:12]: result += int(i) * multi multi -= 1 if multi < 2: multi = 9 remainder = result % 11 if remainder < 2: checksum1 = 0 else: checksum1 = 11 - remainder assemble_cnpj = cnpj[:12] + str(checksum1) # secound checksum multi = 6 result = 0 for i in assemble_cnpj: result += int(i) * multi multi -= 1 if multi < 2: multi = 9 remainder = result % 11 if remainder < 2: checksum2 = 0 else: checksum2 = 11 - remainder assemble_cnpj += str(checksum2) return True if cnpj == assemble_cnpj else False
f41f9814cfef7d75e287834ac2a5514d03cd8fdb
32,386
def get_supported_locales(): """ Returns a list of Locale objects that the Web Interfaces supports """ locales = BABEL.list_translations() locales.append(Locale("en")) sorted_locales = sorted(locales, key=lambda x: x.language) return sorted_locales
3068889d0c7888b23f207d3397e0aec58418cef2
32,387
from typing import Optional from pathlib import Path import site def get_pipx_user_bin_path() -> Optional[Path]: """Returns None if pipx is not installed using `pip --user` Otherwise returns parent dir of pipx binary """ # NOTE: using this method to detect pip user-installed pipx will return # None if pipx was installed as editable using `pip install --user -e` # https://docs.python.org/3/install/index.html#inst-alt-install-user # Linux + Mac: # scripts in <userbase>/bin # Windows: # scripts in <userbase>/Python<XY>/Scripts # modules in <userbase>/Python<XY>/site-packages pipx_bin_path = None script_path = Path(__file__).resolve() userbase_path = Path(site.getuserbase()).resolve() try: _ = script_path.relative_to(userbase_path) except ValueError: pip_user_installed = False else: pip_user_installed = True if pip_user_installed: test_paths = ( userbase_path / "bin" / "pipx", Path(site.getusersitepackages()).resolve().parent / "Scripts" / "pipx.exe", ) for test_path in test_paths: if test_path.exists(): pipx_bin_path = test_path.parent break return pipx_bin_path
ccf9b886af41b73c7e2060704d45781938d8e811
32,388
def _normalize_int_key(key, length, axis_name=None): """ Normalizes an integer signal key. Leaves a nonnegative key as it is, but converts a negative key to the equivalent nonnegative one. """ axis_text = '' if axis_name is None else axis_name + ' ' if key < -length or key >= length: raise IndexError( f'Index {key} is out of bounds for signal {axis_text}axis with ' f'length {length}.') return key if key >= 0 else key + length
9b58b09e70c20c9ac5ee0be059333dd5058802ef
32,389
def create_interview_in_jobma(interview): """ Create a new interview on Jobma Args: interview (Interview): An interview object """ client = get_jobma_client() url = urljoin(settings.JOBMA_BASE_URL, "interviews") job = interview.job first_name, last_name = get_first_and_last_names(interview.applicant) response = client.post( url, json={ "interview_template_id": str(job.interview_template_id), "job_id": str(job.job_id), "job_code": job.job_code, "job_title": job.job_title, "callback_url": urljoin( settings.SITE_BASE_URL, reverse("jobma-webhook", kwargs={"pk": interview.id}), ), "candidate": { "first_name": first_name, "last_name": last_name, "phone": "", "email": interview.applicant.email, }, }, ) response.raise_for_status() result = response.json() interview_link = result.get("interview_link") if interview_link is not None: interview.interview_url = interview_link else: log.error("Interview link not found in payload - %s", result) interview_token = result.get("interview_token") if interview_token is not None: interview.interview_token = interview_token interview.save_and_log(None) return interview_link
36834c0e6557627a52a179b9d8529d5693cc92cb
32,390
def get_solutions(N, K, W_hat, x): """ Get valid indices of x that sum up to S """ # Scalar form of y = W_hat * x S = scalar(W_hat @ x) # print(f'Scalar value = {S}') solutions = [] for partition in sum_to_S(S, K): if len(set(partition)) == len(partition) and max(partition) < N: partition = sorted(partition) if partition not in solutions: solutions.append(partition) x_vectors = [] for sol in solutions: tmp = np.zeros(N) tmp[sol] = 1 x_vectors.append(tmp) return x_vectors
6de6b0f77070b40f6e0028009f9b96264f6daa64
32,391
def get_actual_order(geometry, order): """ Return the actual integration order for given geometry. Parameters ---------- geometry : str The geometry key describing the integration domain, see the keys of `quadrature_tables`. Returns ------- order : int If `order` is in quadrature tables it is this value. Otherwise it is the closest higher order. If no higher order is available, a warning is printed and the highest available order is used. """ table = quadrature_tables[geometry] if order not in table: orders = list(table.keys()) ii = nm.searchsorted(orders, order) if ii >= len(orders): omax = max(orders) output(_msg1 % (order, geometry)) output(_msg2 % omax) order = omax else: order = orders[ii] return order
876c9a70418de7d4768ab0234abb86bf676884c0
32,392
def getcwd(*args,**kw): """getcwd() -> path Return a unicode string representing the current working directory.""" return __BRYTHON__.brython_path
1d0e9491a2a35b326ec87314887fb1dede23c927
32,393
def sample_graph(B, logvars, n_samp): """ Generate data given B matrix, variances """ p = len(logvars) N = np.random.normal(0, np.sqrt(np.exp(logvars)), size=(n_samp, p)) return (np.linalg.inv(np.eye(p) - B.T)@N.T).T
2e798035bcb807e670ff9b9f4a39236ffe6b1157
32,394
def rotate_ne_rt(n, e, ba): """ Rotates horizontal components of a seismogram. The North- and East-Component of a seismogram will be rotated in Radial and Transversal Component. The angle is given as the back-azimuth, that is defined as the angle measured between the vector pointing from the station to the source and the vector pointing from the station to the North. :type n: :class:`~numpy.ndarray` :param n: Data of the North component of the seismogram. :type e: :class:`~numpy.ndarray` :param e: Data of the East component of the seismogram. :type ba: float :param ba: The back azimuth from station to source in degrees. :return: Radial and Transversal component of seismogram. """ if len(n) != len(e): raise TypeError("North and East component have different length.") if ba < 0 or ba > 360: raise ValueError("Back Azimuth should be between 0 and 360 degrees.") ba = radians(ba) r = - e * sin(ba) - n * cos(ba) t = - e * cos(ba) + n * sin(ba) return r, t
c374ad762e122b519698bd1c199e2aa773e295cb
32,395
def pwgen(pw_len=16): """ Generate a random password with the given length. Allowed chars does not have "I" or "O" or letters and digits that look similar -- just to avoid confusion. """ return get_random_string(pw_len, 'abcdefghjkmnpqrstuvwxyz' 'ABCDEFGHJKLMNPQRSTUVWXYZ' '23456789')
747bb049ad3cca47d3898f0ea6b52108938aa2b2
32,396
import requests from bs4 import BeautifulSoup def get_property_data(sch=""): """Get property id and return dictionary with data Attributes: sch: property id """ property_url = "http://ats.jeffco.us/ats/displaygeneral.do?sch={0}".format(sch) r = requests.get(property_url) property_page = BeautifulSoup(r.text, "lxml") property_dict = {} # Get data from the single data fields data_cells = property_page.find_all("td") for i, data_cell in enumerate(data_cells): try: cell_text = data_cell.text.strip() if "PIN/Schedule" in cell_text: property_dict["PIN"] = ":".join(cell_text.split(":")[1:]).strip() elif "status:" in cell_text: property_dict["Status"] = ":".join(cell_text.split(":")[1:]).strip() elif "AIN/Parcel ID:" in cell_text: property_dict["AIN"] = ":".join(cell_text.split(":")[1:]).strip() elif "Property Type:" in cell_text: property_dict["property_type"] = ":".join(cell_text.split(":")[1:]).strip() elif "Neighborhood:" in cell_text: property_dict["neighborhood"] = " ".join(":".join(cell_text.split(":")[1:]).strip().split()) elif "Subdivision Name:" in cell_text: property_dict["subdivision_name"] = ":".join(cell_text.split(":")[1:]).strip() elif "Adjusted Year Built:" in cell_text: property_dict["adjusted_year_built"] = ":".join(cell_text.split(":")[1:]).strip() elif "Year Built:" in cell_text: property_dict["year_built"] = ":".join(cell_text.split(":")[1:]).strip() except (AttributeError, IndexError): continue # Define data from tables data_tables = property_page.find_all("table") for data_table in data_tables: try: table_header = data_table.find("tr", class_="tableheaders").text if "Owner Name(s)" in table_header: property_dict["owners"] = parse_one_column_table(data_table) elif "Assessor Parcel Maps Associated" in table_header: property_dict["Assessor Parcel Maps Associated with Schedule"] = parse_one_column_table(data_table) elif "Land Characteristics" in table_header: property_dict["land_characteristics"] = parse_one_column_table(data_table) elif ( "Block" in table_header and "Lot" in table_header and "Key" in table_header ): property_dict["property_description"] = parse_many_columns_table(data_table, name="property_description") elif ( "Item" in table_header and "Quality" in table_header ): property_dict["property_inventory_1"] = parse_many_columns_table(data_table) elif ( "Areas" in table_header and "Quality" in table_header ): property_dict["property_inventory_2"] = parse_many_columns_table(data_table) elif ( "Adjustment Code" in table_header and "Adjustment SqFt" in table_header ): property_dict["property_inventory_3"] = parse_many_columns_table(data_table) elif ( "Sale Date" in table_header and "Sale Amount" in table_header ): property_dict["sales_history"] = parse_many_columns_table(data_table) elif ( "Payable" in table_header and not data_table.table ): property_dict["tax_information"] = parse_many_columns_table(data_table, name="tax_info") elif ( "Mill Levy" in table_header and not data_table.table ): property_dict["mill_levy_information"] = parse_many_columns_table(data_table, name="mill_levy_information") except AttributeError: pass if "Property Address:" in data_table.text and not data_table.table: address_data = parse_address_table(data_table) property_dict["property_address"] = address_data[0] property_dict["mailing_address"] = address_data[1] return property_dict
d7a0f462340c75d14f00a1712923988b415258fb
32,398
def tcl_delta_remote(curef): """ Prepare remote version for delta scanning. :param curef: PRD of the phone variant to check. :type curef: str """ remotedict = networkutilstcl.remote_prd_info() fvver = remotedict.get(curef, "AAA000") if fvver == "AAA000": print("NO REMOTE VERSION FOUND!") raise SystemExit return fvver
65d1aeb25ce58c066465c3b7eb3e560a54224ba7
32,400
from typing import Iterable def prodi(items: Iterable[float]) -> float: """Imperative product >>> prodi( [1,2,3,4,5,6,7] ) 5040 """ p: float = 1 for n in items: p *= n return p
3b8e52f40a760939d5b291ae97c4d7134a5ab450
32,401
def transformer_prepare_encoder(inputs, target_space, hparams): """Prepare one shard of the model for the encoder. Args: inputs: a Tensor. target_space: a Tensor. hparams: run hyperparameters Returns: encoder_input: a Tensor, bottom of encoder stack encoder_self_attention_bias: a Tensor, containing large negative values to implement masked attention and possibly baises for diagonal alignments encoder_padding: a Tensor """ # Flatten inputs. ishape_static = inputs.shape.as_list() encoder_input = inputs encoder_padding = common_attention.embedding_to_padding(encoder_input) encoder_self_attention_bias = common_attention.attention_bias_ignore_padding( encoder_padding) # Append target_space_id embedding to inputs. emb_target_space = common_layers.embedding( target_space, 32, ishape_static[-1], name="target_space_embedding") emb_target_space = tf.reshape(emb_target_space, [1, 1, -1]) encoder_input += emb_target_space if hparams.pos == "timing": encoder_input = common_attention.add_timing_signal_1d(encoder_input) return (encoder_input, encoder_self_attention_bias, encoder_padding)
af9c5e2ab8fe3508722af822f19671461e92e62d
32,402
from typing import Tuple def get_bottom_left_coords( text_width: int, text_height: int, text_x: int, text_y: int, ) -> Tuple[TextOrg, BoxCoords]: """Get coordinates for text and background in bottom left corner. Args: text_width: Width of the text to be drawn. text_height: Height of the text to be drawn. text_x: X coordinate of the bottom-left corner of the text. text_y: Y coordinate of the bottom-left corner of the text. Returns: A tuple consisting of tuples for text point and text box coordinates. """ text_offset_x = ( text_x + config.settings.annotation_padding + config.settings.annotation_margin ) text_offset_y = ( text_y - config.settings.annotation_padding - config.settings.annotation_margin ) box_coords = ( ( text_offset_x - config.settings.annotation_padding, text_offset_y + config.settings.annotation_padding, ), ( text_offset_x + text_width + config.settings.annotation_padding, text_offset_y - text_height - config.settings.annotation_padding, ), ) text_org = (text_offset_x, text_offset_y) return AnnotationCoords(text_org, box_coords)
8cf1f88f98990bb727de86152ea5239b725c0fbc
32,403
def read_gcs_zarr(zarr_url, token='/opt/gcsfuse_tokens/impactlab-data.json', check=False): """ takes in a GCSFS zarr url, bucket token, and returns a dataset Note that you will need to have the proper bucket authentication. """ fs = gcsfs.GCSFileSystem(token=token) store_path = fs.get_mapper(zarr_url, check=check) ds = xr.open_zarr(store_path) return ds
f6ac1e149639afbc10af052a288eb6536a43a13a
32,404
import operator def bor(*args: int) -> int: """Bitwise or. Example: bor(0x01, 0x10) == 0x01 | 0x10 Returns: int: Inputs. """ return list(accumulate(args, operator.or_))[-1]
6e40612b0117fef5584857c947910fa4a0fa865f
32,405
from Scikit.ML.DocHelperMlExt import MamlHelper def mlnet_components_kinds(): """ Retrieves all kinds. """ kinds = list(MamlHelper.GetAllKinds()) kinds += ["argument", "command"] kinds = list(set(kinds)) titles = { 'anomalydetectortrainer': 'Anomaly Detection', 'binaryclassifiertrainer': 'Binary Classification', 'clusteringtrainer': 'Clustering', 'dataloader': 'Data Loader', 'datasaver': 'Data Saver', 'datascorer': 'Scoring', 'datatransform': 'Transforms (all)', 'ensembledataselector': 'Data Selection', 'evaluator': 'Evaluation', 'multiclassclassifiertrainer': 'Multiclass Classification', 'ngramextractorfactory': 'N-Grams', 'rankertrainer': 'Ranking', 'regressortrainer': 'Regression', 'tokenizetransform': 'Tokenization', 'argument': 'Arguments', 'command': 'Commands', } return {k: titles[k] for k in kinds if k in titles}
f5a365f2054a263786ca17a96d58d9f39c7061fe
32,406
def hexString(s): """ Output s' bytes in HEX s -- string return -- string with hex value """ return ":".join("{:02x}".format(ord(c)) for c in s)
22c1e94f0d54ca3d430e0342aa5b714f28a5815b
32,410
def hydrate_board_from_model(a, radius, rect_width): """ :type a: ndarray :type radius: int :return: Board """ b = Board(radius) for cellId in b.cells: thid = get_thid_from_cellId(cellId, rect_width) value = a[thid.y][thid.x] b.change_ownership(cellId, get_player_name_from_resource(value), int(abs(value))) return b
d7486e43beb2676aed32da627d03f018b4b91d65
32,411
from pathlib import Path def tree_walk(): """Walk the source folder using pathlib. Populate 3 dicts, a folder dict, a file dict, and a stats dict. - Returns: - [dict]: k: folders; v: size - [dict]: k: files; v: size - [dict]: 'file_size' 'num_dirs' 'num_files' """ try: # ~~~ # -variables- walk_dirs_dict, walk_files_dict = dd(list), dd(list) stat_dict = {'file_size': 0, 'num_dirs': 0, 'num_files': 0} # create exdir and exfile lists if args.exdir: exdir = args.exdir.split(',') if args.exfile: exfile = args.exfile.split(',') p = Path(args.source) # ~~~ # -rglob- for item in p.rglob('*'): if item.is_dir(): # add folders if no folder exclusions if not args.exdir: walk_dirs_dict[item] = item.stat().st_size stat_dict['num_dirs'] += 1 else: # add folders if the exclusion is not in the folder path for z in exdir: if z not in item: walk_dirs_dict[item] = item.stat().st_size stat_dict['num_dirs'] += 1 else: # add files if no file exclusions if not args.exfile: walk_files_dict[item] = item.stat().st_size stat_dict['num_files'] += 1 stat_dict['file_size'] += item.stat().st_size else: # add files if the exclusion is not in the folder path for z in exfile: if z not in item: walk_files_dict[item] = item.stat().st_size stat_dict['num_files'] += 1 stat_dict['file_size'] += item.stat().st_size except OSError as e: bp([f'tree walk failure: {args.source}\n{e}', Ct.RED], err=2) return walk_dirs_dict, walk_files_dict, stat_dict
e7edf9897560ee5d0ddab5344e0993e4185e6009
32,412
def handle_response(response, content_type, file_path=None): """handle response. Extract, transform and emit/write to file""" if content_type == "application/json": if file_path is None: return response.json() else: save_json(response.json(), file_path) elif content_type == "image/jpeg": if file_path is None: return response._content else: save_bytes_as_png(response._content, file_path) elif content_type == "text/csv": if file_path is None: return response.text else: save_csv(response.text, file_path)
43291fdf367f27ee3c982235518d6bf28d600691
32,413
import random def randomCaptchaText(char_set=CAPTCHA_LIST, captcha_size=CAPTCHA_LENGTH): """ 随机生成定长字符串 :param char_set: 备选字符串列表 :param captcha_size: 字符串长度 :return: 字符串 """ captcha_text = [random.choice(char_set) for _ in range(captcha_size)] return ''.join(captcha_text)
ee426c26051e720636659cd013617abce2f77a5e
32,415
def integral_total(Nstrips): """ The total integral. """ return integral_4(Nstrips) + integral_1(Nstrips)
cc2468c69a3e6c98ee139125afc2f4a571cc588b
32,416
def calculate_amplitude(dem, Template, scale, age, angle): """Calculate amplitude and SNR of features using a template Parameters ---------- dem : DEMGrid Grid object of elevation data Template : WindowedTemplate Class representing template function scale : float Scale of template function in DEM cell units age : float Age parameter for template function angle : float Orientation of template in radians Returns ------- amp : np.array 2-D array of amplitudes for each DEM pixel snr : np.array 2-D array of signal-to-noise ratios for each DEM pixel """ ny, nx = dem._griddata.shape de = dem._georef_info.dx t = Template(scale, age, angle, nx, ny, de) template = t.template() curv = dem._calculate_directional_laplacian(angle) amp, age, angle, snr = match_template(curv, template) mask = t.get_window_limits() amp[mask] = 0 snr[mask] = 0 return amp, snr
b286ed97952667052a8ecfacb152b70a7a1be2ba
32,417
from typing import OrderedDict def number_limit_sub_validator(entity_config: OrderedDict) -> OrderedDict: """Validate a number entity configurations dependent on configured value type.""" value_type = entity_config[CONF_TYPE] min_config: float | None = entity_config.get(NumberSchema.CONF_MIN) max_config: float | None = entity_config.get(NumberSchema.CONF_MAX) step_config: float | None = entity_config.get(NumberSchema.CONF_STEP) dpt_class = DPTNumeric.parse_transcoder(value_type) if dpt_class is None: raise vol.Invalid(f"'type: {value_type}' is not a valid numeric sensor type.") # Inifinity is not supported by Home Assistant frontend so user defined # config is required if if xknx DPTNumeric subclass defines it as limit. if min_config is None and dpt_class.value_min == float("-inf"): raise vol.Invalid(f"'min' key required for value type '{value_type}'") if min_config is not None and min_config < dpt_class.value_min: raise vol.Invalid( f"'min: {min_config}' undercuts possible minimum" f" of value type '{value_type}': {dpt_class.value_min}" ) if max_config is None and dpt_class.value_max == float("inf"): raise vol.Invalid(f"'max' key required for value type '{value_type}'") if max_config is not None and max_config > dpt_class.value_max: raise vol.Invalid( f"'max: {max_config}' exceeds possible maximum" f" of value type '{value_type}': {dpt_class.value_max}" ) if step_config is not None and step_config < dpt_class.resolution: raise vol.Invalid( f"'step: {step_config}' undercuts possible minimum step" f" of value type '{value_type}': {dpt_class.resolution}" ) return entity_config
96c33af5e3764cc6cfe0f355de216945b0ab3920
32,419
from typing import Tuple from typing import Union def patch_2D_aggregator( patches: np.ndarray, orig_shape: Tuple[int], patch_loc: np.array, count_ndarray: Union[np.array, None] = None, ) -> np.ndarray: """ Aggregate patches to a whole 2D image. Args: patches: shape is [patch_num, Channel, patch_size, patch_size] orig_shape: the image shape after aggregating patch_loc: the starting position where each patch in the original images count_ndarray: using to divide the aggregating image to average the overlapped regions """ NUM_PATCH = 4 dim_stack = [] for dim in range(patches.shape[1]): orig = np.zeros(orig_shape) for idx in range(NUM_PATCH): orig[ patch_loc[idx][0] : patch_loc[idx][0] + PATCH_SIZE, patch_loc[idx][1] : patch_loc[idx][1] + PATCH_SIZE, ] += patches[idx, dim, :, :] dim_stack.append(orig) orig = np.stack(dim_stack) if count_ndarray is not None: orig = np.divide(orig, count_ndarray) return orig.squeeze()
3fd7d98c7b792cb3df646045ad32d0cde2c94e56
32,420
from typing import Callable def vmap_grad(forward_fn: Callable, params: PyTree, samples: Array) -> PyTree: """ compute the jacobian of forward_fn(params, samples) w.r.t params as a pytree using vmapped gradients for efficiency """ complex_output = nkjax.is_complex(jax.eval_shape(forward_fn, params, samples)) real_params = not nkjax.tree_leaf_iscomplex(params) if real_params and complex_output: return vmap_grad_rc(forward_fn, params, samples) else: return vmap_grad_rr_cc(forward_fn, params, samples)
411a3ce1a38c31fef9422ed740d1a7d0a4cf887b
32,421
def random_crop_list(images, size, pad_size=0, order="CHW", boxes=None): """ Perform random crop on a list of images. Args: images (list): list of images to perform random crop. size (int): size to crop. pad_size (int): padding size. order (string): order of the 'height', 'width' and 'channel'. boxes (list): optional. Corresponding boxes to images. Dimension is 'num boxes' x 4. Returns: cropped (ndarray): the cropped list of images with dimension of 'height' x 'width' x 'channel'. boxes (list): optional. Corresponding boxes to images. Dimension is 'num boxes' x 4. """ assert order in ["CHW", "HWC"], "order {} is not supported".format(order) # explicitly dealing processing per image order to avoid flipping images. if pad_size > 0: images = [ pad_image(pad_size=pad_size, image=image, order=order) for image in images ] # image format should be CHW. if order == "CHW": if images[0].shape[1] == size and images[0].shape[2] == size: return images, boxes height = images[0].shape[1] width = images[0].shape[2] y_offset = 0 if height > size: y_offset = int(np.random.randint(0, height - size)) x_offset = 0 if width > size: x_offset = int(np.random.randint(0, width - size)) cropped = [ image[:, y_offset: y_offset + size, x_offset: x_offset + size] for image in images ] assert cropped[0].shape[1] == size, "Image not cropped properly" assert cropped[0].shape[2] == size, "Image not cropped properly" elif order == "HWC": if images[0].shape[1] == size and images[0].shape[2] == size: return images, boxes height = images[0].shape[0] width = images[0].shape[1] y_offset = 0 if height > size: y_offset = int(np.random.randint(0, height - size)) x_offset = 0 if width > size: x_offset = int(np.random.randint(0, width - size)) cropped = [ image[y_offset: y_offset + size, x_offset: x_offset + size, :] for image in images ] assert cropped[0].shape[1] == size, "Image not cropped properly" assert cropped[0].shape[2] == size, "Image not cropped properly" else: raise NotImplementedError("Unknown order {}".format(order)) if boxes is not None: boxes = [crop_boxes(proposal, x_offset, y_offset) for proposal in boxes] return cropped, boxes
e4e7933a02c356c509bbd3d7dbc54814ec1f7bc1
32,422
from typing import List def normalize_resource_paths(resource_paths: List[str]) -> List[str]: """ Takes a list of resource relative paths and normalizes to lowercase and with the "ed-fi" namespace prefix removed. Parameters ---------- resource_paths : List[str] The list of resource relative paths Returns ------- List[str] A list of normalized resource relative paths. For example: ["studentschoolassociations", "tpdm/candidates"] """ return list( map( lambda r: r.removeprefix("/").removeprefix("ed-fi/").lower(), resource_paths, ) )
ec7e5020ae180cbbdc5b35519106c0cd0697a252
32,423
def GetDegenerateSites(seq1, seq2, degeneracy=4, position=3): """returns two new sequenes containing only degenerate sites. Only unmutated positions are counted. """ new_seq1 = [] new_seq2 = [] for x in range(0, len(seq1), 3): c1 = seq1[x:x + 3] c2 = seq2[x:x + 3] if c1 in GeneticCodeAA and c2 in GeneticCodeAA: if GeneticCodeAA[c1] == GeneticCodeAA[c2]: if Degeneracy[c1][position] == degeneracy \ and Degeneracy[c2][position] == degeneracy: new_seq1.append(c1[position - 1]) new_seq2.append(c2[position - 1]) return "".join(new_seq1), "".join(new_seq2)
de9aa02b6ef46cb04e64094b67436922e86e10bb
32,424
def ransac(a, b, model: str ='rigid', inlier_threshold: float = 1.0, ransac_it: int = 100): """Estimates parameters of given model by applying RANSAC on corresponding point sets A and B (preserves handedness). :param a: nx4 array of points :param b: nx4 array of points :param model: Specify the model for RANSAC. Can be 'translation', 'rigid' or 'affine' :param inlier_threshold: Specify the inlier threshold in RANSAC process :param ransac_it: number of ransac iterations :return: corresponding transformation matrix (None if no transformation was found) :raise: NotImplementedError for models which are not implemented yet""" max_ransac_it = ransac_it num_samples = 0 estimate_transformation = None assert a.shape == b.shape if a.shape[1] == 3: a = np.concatenate((a, np.ones((a.shape[0], 1))), axis=1) b = np.concatenate((b, np.ones((a.shape[0], 1))), axis=1) if model == 'translation': num_samples = 1 estimate_transformation = translation_transformation elif model == 'rigid': num_samples = 4 estimate_transformation = rigid_transformation elif model == 'affine': num_samples = 4 estimate_transformation = affine_transformation assert a.shape[0] >= num_samples best_inlier = 0 best_inlier_idx = [] best_t = None for _ in range(max_ransac_it): # random sample data for generating hypothetical inliers hyp_inliers_idx = np.random.choice(a.shape[0], size=num_samples, replace=False) hyp_inliers_a = np.array([a[i] for i in hyp_inliers_idx]) hyp_inliers_b = np.array([b[i] for i in hyp_inliers_idx]) # calculate transformation based on hypothetical inliers and selected model try: t = estimate_transformation(hyp_inliers_a, hyp_inliers_b) except AssertionError: t = np.eye(4) # calculate consensus set for this transformation b_ = np.matmul(t, a.T).T dists = [np.linalg.norm((x - y)[:3]) for x, y in zip(b_, b)] inlier_idx = [i for i, x in enumerate(dists) if x < inlier_threshold] # save better consensus set if len(inlier_idx) > best_inlier: best_inlier = len(inlier_idx) best_inlier_idx = inlier_idx best_t = t # recalculate transformation with best consensus set if len(best_inlier_idx) > 0: consensus_set_a = np.array([a[i] for i in best_inlier_idx]) consensus_set_b = np.array([b[i] for i in best_inlier_idx]) try: best_t = estimate_transformation(consensus_set_a, consensus_set_b) except AssertionError: pass return best_t, best_inlier_idx
bbbf3c7695437ef00f4fc4570033575808d84604
32,425
from typing import List from datetime import datetime def create_telescope_types(session: scoped_session, telescope_types: List, created: datetime): """Create a list of TelescopeType objects. :param session: the SQLAlchemy session. :param telescope_types: a list of tuples of telescope type id and names. :param created:the created datetime in UTC. :return: a list of TelescopeType objects. """ items = [] for type_id, name in telescope_types: item = TelescopeType(name=name, type_id=type_id, created=created, modified=created) items.append(item) session.add(item) session.commit() return items
011a8f3950fd0f4bdd3809085d74c45ae5756716
32,426
from functools import reduce def update(*p): """ Update dicts given in params with its precessor param dict in reverse order """ return reduce(lambda x, y: x.update(y) or x, (p[i] for i in range(len(p)-1,-1,-1)), {})
de7f5adbe5504dd9b1be2bbe52e14d11e05ae86f
32,427
def alphabet_to_use(three_letter_code, parity, direction): """Return tuple of alphabet to be used for glue in given direction on tile of given parity. Note that this refers to the alphabet used for the CANONICAL direction, which may be the opposite of direction.""" if not parity in (0,1): raise ValueError('parity must be 0 or 1, cannot be %s' % parity) if not direction in directions: raise ValueError('direction must be in %s, cannot be %s' % (directions, direction)) if not three_letter_code: return ('A','C','G','T') if (parity == 1 and is_canonical(direction)) or (parity == 0 and not is_canonical(direction)): return ('A','C','T') else: return ('A','G','T')
b7bb02d5a5b9d5144ab8a6026600bd16096680aa
32,428
def get_tipranks_sentiment(collection): """ :param collection: "100-most-popular", "upcoming-earnings", "new-on-robinhood", "technology", "oil-and-gas", "finance", "software-service", "energy", "manufacturing", "consumer-products", "etf", "video-games", "social-media", "health", "entertainment" :return: pandas dataframe of collection stocks """ url = f'https://robinhood.com/collections/{collection}' [df] = pd.read_html(url) symbols = list(df.Symbol.values) for i, s in enumerate(symbols): # print("Processing {}".format(s)) url = "https://www.tipranks.com/api/stocks/getNewsSentiments/?ticker={}".format(s) s2 = pd.read_json(url, orient="index", typ="series") df2 = pd.DataFrame(s2).T # print("Processing {}: cols={}".format(s, df2.columns)) if df2.shape[1] > 0: if len(df2.buzz) > 0: df.loc[i, 'buzz'] = df2.buzz.iloc[0]['buzz'] if (df2.sentiment.any()): df.loc[i, 'bullish_pct'] = df2.sentiment.iloc[0]['bullishPercent'] df.loc[i, 'sector_avg_bullish_pct'] = df2.sectorAverageBullishPercent.iloc[0] df.loc[i, 'score'] = df2.score.iloc[0] df.loc[i, 'sector_avg_news_score'] = df2.sectorAverageNewsScore.iloc[0] return df
a6a6527314d2610f20de640aa8e17ad9234d5664
32,429
def lBoundedForward(x, lower): """ Transform from transformed (unconstrained) parameters to physical ones with upper limit Args: x (float): vector of transformed parameters lower (float): vector with lower limits Returns: Float: transformed variables and log Jacobian """ return np.exp(x) + lower, x
af3b7613f4b08917c835c51c38b6e506f619ab6a
32,430
from datetime import datetime def date_range(begin_date, end_date): """ :param begin_date: 起始日期,string :param end_date: 结束日期,string :return: dates: 指定日期范围内日期列表,元素类型string """ dates = [] dt = datetime.datetime.strptime(begin_date, "%Y-%m-%d") date = begin_date[:] while date <= end_date: dates.append(date) dt = dt + datetime.timedelta(days=1) date = dt.strftime("%Y-%m-%d") return dates
e168f291226fa00806992f85b3ac2c89f96b8426
32,431
import collections def createNeighDict(rP, lP, b, c): """Finds the neighbours nearest to a lost packet in a particular tensor plane # Arguments rP: packets received in that tensor plane lp: packets lost in that tensor plane b,c : batch and channel number denoting the tensor plane # Returns Dictionary containing the neighbours nearest to the lost packets """ insertPos = np.searchsorted(rP, lP) neighDict = collections.OrderedDict() if len(rP)==0: return neighDict for i in range(len(lP)): ind = insertPos[i] #position at which lP is to be inserted in rP if ind==0: #check if insert position is at beginning i.e no top neighbour k = ((b, -1, c), (b, rP[ind], c)) # k = (tuple((b, -1, c)), tuple((b, rP[ind], c))) v = np.array([b, lP[i], c]) if k not in neighDict: neighDict[k] = v else: neighDict[k] = np.vstack((neighDict[k], v)) continue if ind==len(rP): #check if insert position is at the end i.e no bottom neighbour k = ((b, rP[-1], c), (b, 0, c)) # k = (tuple((b, rP[-1], c)), tuple((b, 0, c))) v = np.array([b, lP[i], c]) if k not in neighDict: neighDict[k] = v else: neighDict[k] = np.vstack((neighDict[k], v)) continue k = ((b, rP[ind-1], c), (b, rP[ind], c)) # k = (tuple((b, rP[ind-1], c)), tuple((b, rP[ind], c))) v = np.array([b, lP[i], c]) if tuple(k) not in neighDict: neighDict[k] = v else: neighDict[k] = np.vstack((neighDict[k], v)) return neighDict
0b67024dac04678b8cb084eb18312ed8df468d93
32,433
def get_norm_3d(norm: str, out_channels: int, bn_momentum: float = 0.1) -> nn.Module: """Get the specified normalization layer for a 3D model. Args: norm (str): one of ``'bn'``, ``'sync_bn'`` ``'in'``, ``'gn'`` or ``'none'``. out_channels (int): channel number. bn_momentum (float): the momentum of normalization layers. Returns: nn.Module: the normalization layer """ assert norm in ["bn", "sync_bn", "gn", "in", "none"], \ "Get unknown normalization layer key {}".format(norm) if norm == "gn": assert out_channels%8 == 0, "GN requires channels to separable into 8 groups" norm = { "bn": nn.BatchNorm3d, "sync_bn": nn.SyncBatchNorm, "in": nn.InstanceNorm3d, "gn": lambda channels: nn.GroupNorm(8, channels), "none": nn.Identity, }[norm] if norm in ["bn", "sync_bn", "in"]: return norm(out_channels, momentum=bn_momentum) else: return norm(out_channels)
2def355c8b775512fec9d58a4fa43a0b54734f96
32,434
import json def cancel_cheque(): """取消支票""" user_id = '96355632' sn = request.values['sn'] result = pay_client.app_cancel_cheque(user_id, sn, ret_result=True) return render_template('sample/info.html', title='取消支票结果', msg=json.dumps({'status_code': result.status_code, 'data': result.data}))
6734aa86a1300f678a22b45407a8597255ad0a33
32,435
def to_relative_engagement(lookup_table, duration, wp_score, lookup_keys=None): """ Convert watch percentage to relative engagement. :param lookup_table: duration ~ watch percentage table, in format of dur: [1st percentile, ..., 1000th percentile] :param duration: target input duration :param wp_score: target input watch percentage score :param lookup_keys: pre-computed duration split points, for faster computation """ if lookup_keys is None: lookup_keys = lookup_table['duration'] lookup_keys = np.array(lookup_keys) if isinstance(wp_score, list): re_list = [] if isinstance(duration, list): for d, s in zip(duration, wp_score): re_list.append(to_relative_engagement(lookup_table, d, s, lookup_keys=lookup_keys)) elif isinstance(duration, int): for s in wp_score: re_list.append(to_relative_engagement(lookup_table, duration, s, lookup_keys=lookup_keys)) return re_list else: bin_idx = np.sum(lookup_keys < duration) duration_bin = np.array(lookup_table[bin_idx]) re = np.sum(duration_bin <= wp_score) / 1000 # re = (np.sum(duration_bin < wp_score) + np.sum(duration_bin <= wp_score)) / 2000 return re
cfecebe5830a7681417d6fbd14485adc6908cb5d
32,436
import dmsky.factory def factory(ptype, **kwargs): """Factory method to build `DenityProfile` objects Keyword arguments are passed to class c'tor Parameters ---------- ptype : str Density profile type Returns ------- profile : `DensityProfile` Newly created object """ prof_copy = kwargs.copy() units = prof_copy.pop('units', None) if units: density, distance = units.rsplit('_', 1) scale_density = getattr(Units, density) scale_distance = getattr(Units, distance) scale_dict_param(prof_copy, 'rhos', scale_density, DensityProfile._params['rhos'].default) scale_dict_param(prof_copy, 'rs', scale_distance, DensityProfile._params['rs'].default) scale_dict_param(prof_copy, 'rmin', scale_distance, DensityProfile._params['rmin'].default) scale_dict_param(prof_copy, 'rmax', scale_distance, DensityProfile._params['rmax'].default) scale_dict_param(prof_copy, 'rhomax', scale_density, DensityProfile._params['rhomax'].default) return dmsky.factory.factory(ptype, module=__name__, **prof_copy)
9acb4b93fc3e82e22ec0360a38def9058cea5640
32,437
def r2_score(y, y_predicted): """Calculate the R2 score. Parameters ---------- y : array-like of shape = number_of_outputs Represent the target values. y_predicted : array-like of shape = number_of_outputs Target values predicted by the model. Returns ------- loss : float R2 output can be non-negative values or negative value. Becoming 1.0 means your model outputs are exactly matched by true target values. Lower values means worse results. Notes ----- This is not a symmetric function. References ---------- [1] `Wikipedia entry on the Coefficient of determination <https://en.wikipedia.org/wiki/Coefficient_of_determination>`_ Examples -------- >>> y = [3, -0.5, 2, 7] >>> y_predicted = [2.5, 0.0, 2, 8] >>> explained_variance_score(y, y_predicted) 0.948 """ numerator = ((y - y_predicted) ** 2).sum(axis=0, dtype=np.float64) denominator = ((y - np.average(y, axis=0)) ** 2).sum(axis=0, dtype=np.float64) nonzero_denominator = denominator != 0 nonzero_numerator = numerator != 0 valid_score = nonzero_denominator & nonzero_numerator output_scores = np.ones([y.shape[0]]) output_scores[valid_score] = (1 - (numerator[valid_score] / denominator[valid_score])) # arbitrary set to zero to avoid -inf scores, having a constant # y_true is not interesting for scoring a regression anyway output_scores[nonzero_numerator & ~nonzero_denominator] = 0. return np.average(output_scores)
00e8004f076e8147f70896bd5304cd73c389522e
32,439
def vcg_solve(goal): """Compute the verification conditions for a hoare triple, then solves the verification conditions using SMT. """ assert goal.is_comb("Valid", 3), "vcg_solve" P, c, Q = goal.args T = Q.get_type().domain_type() pt = vcg_norm(T, goal) vc_pt = [ProofTerm("z3", vc, []) for vc in pt.assums] return ProofTerm("vcg", goal, vc_pt)
9f496edd1a3725640582f4016a086fd5dfe70d72
32,440
def ism_extinction(av_mag: float, rv_red: float, wavelengths: np.ndarray) -> np.ndarray: """ Function for calculating the optical and IR extinction with the empirical relation from Cardelli et al. (1989). Parameters ---------- av_mag : float Extinction (mag) in the V band. rv_red : float Reddening in the V band, ``R_V = A_V / E(B-V)``. wavelengths : np.ndarray Array with the wavelengths (um) for which the extinction is calculated. Returns ------- np.ndarray Extinction (mag) at ``wavelengths``. """ x_wavel = 1./wavelengths y_wavel = x_wavel - 1.82 a_coeff = np.zeros(x_wavel.size) b_coeff = np.zeros(x_wavel.size) indices = np.where(x_wavel < 1.1)[0] if len(indices) > 0: a_coeff[indices] = 0.574*x_wavel[indices]**1.61 b_coeff[indices] = -0.527*x_wavel[indices]**1.61 indices = np.where(x_wavel >= 1.1)[0] if len(indices) > 0: a_coeff[indices] = 1. + 0.17699*y_wavel[indices] - 0.50447*y_wavel[indices]**2 - \ 0.02427*y_wavel[indices]**3 + 0.72085*y_wavel[indices]**4 + \ 0.01979*y_wavel[indices]**5 - 0.77530*y_wavel[indices]**6 + 0.32999*y_wavel[indices]**7 b_coeff[indices] = 1.41338*y_wavel[indices] + 2.28305*y_wavel[indices]**2 + \ 1.07233*y_wavel[indices]**3 - 5.38434*y_wavel[indices]**4 - \ 0.62251*y_wavel[indices]**5 + 5.30260*y_wavel[indices]**6 - 2.09002*y_wavel[indices]**7 return av_mag * (a_coeff + b_coeff/rv_red)
cb2bba0cbb396fbac900492fe9b49d70646a4255
32,441
def rangify(values): """ Given a list of integers, returns a list of tuples of ranges (interger pairs). :param values: :return: """ previous = None start = None ranges = [] for r in values: if previous is None: previous = r start = r elif r == previous + 1: pass else: # r != previous + 1 ranges.append((start, previous)) start = r previous = r ranges.append((start, previous)) return ranges
672b30d4a4ce98d2203b84db65ccebd53d1f73f5
32,442
def load_balancers_with_instance(ec2_id): """ @param ec2_id: ec2 instance id @return: list of elb names with the ec2 instance attached """ elbs = [] client = boto3.client('elb') paginator = client.get_paginator('describe_load_balancers') for resp in paginator.paginate(): for elb in resp['LoadBalancerDescriptions']: # filter for ec2_instance ec2_ids = [i['InstanceId'] for i in elb['Instances']] if ec2_id in ec2_ids: elbs.append(elb['LoadBalancerName']) return elbs
b9ad53b7cafdbc44f88044e976a700a187605b2d
32,443
def parse_json_frequency_high(df, column, key): """ Takes a JETS dataframe and column containing JSON strings and finds the highest 'Mode' or 'Config' frequency. Excludes intermediate frequencies Parameters ---------- df : pandas dataframe JETS dataframe column : str The column where the frequencies are located key : str A substring of the key you are looking for in the json record(ex. 'FREQ' or 'MIN_FREQ') Returns ------- float """ parsed_json = json_extract_with_key(df['{}'.format(column)], key) arr = [] for i in range(len(parsed_json)): if search("MODE", parsed_json[i][0]): arr.append(parsed_json[i][1]) elif search("CONFIG", parsed_json[i][0]): arr.append(parsed_json[i][1]) try: return max(arr) except: return ''
e8489ed7bca2357d4be3421932898696daf27bac
32,444
def adapter_checker(read, args): """ Retrieves the end sequences and sorts adapter information for each end. """ cigar = read.cigartuples seq = read.query_sequence leftend, check_in_softl, left_match = get_left_end(seq, cigar, args) rightend, check_in_softr, right_match = get_right_end(seq, cigar, args) left_cigar_info = cigar right_cigar_info = list(cigar)[::-1] if leftend != "no softclip": three_left = get_adapter_info(Seq(leftend).complement(), args.three_adapter, args.three_score, left_cigar_info, args, check_in_softl, Seq(left_match).complement()) five_left = get_adapter_info(leftend, args.five_adapter, args.five_score, left_cigar_info, args, check_in_softl, left_match) else: three_left = (0, 0, 0, "no softclip") five_left = (0, 0, 0, "no softclip") if rightend != "no softclip": three_right = get_adapter_info(rightend[::-1], args.three_adapter, args.three_score, right_cigar_info, args, check_in_softr, right_match[::-1]) five_right = get_adapter_info(Seq(rightend).reverse_complement(), args.five_adapter, args.five_score, right_cigar_info, args, check_in_softr, Seq(right_match).reverse_complement()) else: three_right = (0, 0, 0, "no softclip") five_right = (0, 0, 0, "no softclip") return {"l3": three_left, "r3": three_right, "l5": five_left, "r5": five_right}
096fff89eafe7ce7915daac55e95a2ea51e7f302
32,445
def create_pane(widgets, horizontal, parent_widget=None, compact=False, compact_spacing=2): """Create a widget containing an aligned set of widgets. Args: widgets (list of `QWidget`). horizontal (bool). align (str): One of: - 'left', 'right' (horizontal); - 'top', 'bottom' (vertical) parent_widget (`QWidget`): Owner widget, QWidget is created if this is not provided. Returns: `QWidget` """ pane = parent_widget or QtWidgets.QWidget() type_ = QtWidgets.QHBoxLayout if horizontal else QtWidgets.QVBoxLayout layout = type_() if compact: layout.setSpacing(compact_spacing) layout.setContentsMargins(compact_spacing, compact_spacing, compact_spacing, compact_spacing) for widget in widgets: stretch = 0 if isinstance(widget, tuple): widget, stretch = widget if isinstance(widget, int): layout.addSpacing(widget) elif widget: layout.addWidget(widget, stretch) else: layout.addStretch() pane.setLayout(layout) return pane
f291b6482c8d5bb8ecb312b5f5747cf6c4e36e53
32,446
def image_TOKEN_search_by_word_query_TOKEN(query_snd_ix, multi_distances, snd_fnames, img_fnames, id2pic): """map a word token query into the embedding space and find images in the same space return rank of first neighbor whose TOKEN is in the picture list of the id""" n_images, n_sounds = multi_distances.shape query_id = snd_fnames[query_snd_ix] img_neighbors = np.argsort(multi_distances[:, query_snd_ix]) pictures_for_query = id2pic[query_id] rank = img_neighbors.shape[0] for i in xrange(img_neighbors.shape[0]): if img_fnames[img_neighbors[i]] in pictures_for_query: rank = i + 1 break return rank
81fcd8ef466e4712cbab396ed55626e61f297fac
32,448
from packaging import version def _evolve_angles_forwards( mass_1, mass_2, a_1, a_2, tilt_1, tilt_2, phi_12, f_start, final_velocity, tolerance, dt, evolution_approximant ): """Wrapper function for the SimInspiralSpinTaylorPNEvolveOrbit function Parameters ---------- mass_1: float primary mass of the binary mass_2: float secondary mass of the binary a_1: float primary spin magnitude a_2: float secondary spin magnitude tilt_1: float primary spin tilt angle from the orbital angular momentum tilt_2: float secondary spin tilt angle from the orbital angular momentum phi_12: float the angle between the in-plane spin components f_start: float frequency to start the evolution from final_velocity: float Final velocity to evolve the spins up to tolerance: float Only evolve spins if at least one spins magnitude is greater than tolerance dt: float steps in time for the integration, in terms of the mass of the binary evolution_approximant: str name of the approximant you wish to use to evolve the spins. """ if np.logical_or(a_1 > tolerance, a_2 > tolerance): # Total mass in seconds total_mass = (mass_1 + mass_2) * MTSUN_SI f_final = final_velocity ** 3 / (total_mass * np.pi) _approx = getattr(lalsimulation, evolution_approximant) if version.parse(lalsimulation.__version__) >= version.parse("2.5.2"): spinO = 6 else: spinO = 7 data = SimInspiralSpinTaylorPNEvolveOrbit( deltaT=dt * total_mass, m1=mass_1 * MSUN_SI, m2=mass_2 * MSUN_SI, fStart=f_start, fEnd=f_final, s1x=a_1 * np.sin(tilt_1), s1y=0., s1z=a_1 * np.cos(tilt_1), s2x=a_2 * np.sin(tilt_2) * np.cos(phi_12), s2y=a_2 * np.sin(tilt_2) * np.sin(phi_12), s2z=a_2 * np.cos(tilt_2), lnhatx=0., lnhaty=0., lnhatz=1., e1x=1., e1y=0., e1z=0., lambda1=0., lambda2=0., quadparam1=1., quadparam2=1., spinO=spinO, tideO=0, phaseO=7, lscorr=0, approx=_approx ) # Set index to take from array output by SimInspiralSpinTaylorPNEvolveOrbit: # -1 for evolving forward in time and 0 for evolving backward in time if f_start <= f_final: idx_use = -1 else: idx_use = 0 a_1_evolve = np.array( [ data[2].data.data[idx_use], data[3].data.data[idx_use], data[4].data.data[idx_use] ] ) a_2_evolve = np.array( [ data[5].data.data[idx_use], data[6].data.data[idx_use], data[7].data.data[idx_use] ] ) Ln_evolve = np.array( [ data[8].data.data[idx_use], data[9].data.data[idx_use], data[10].data.data[idx_use] ] ) tilt_1_evol, tilt_2_evol, phi_12_evol = \ tilt_angles_and_phi_12_from_spin_vectors_and_L( a_1_evolve, a_2_evolve, Ln_evolve ) else: tilt_1_evol, tilt_2_evol, phi_12_evol = tilt_1, tilt_2, phi_12 return tilt_1_evol, tilt_2_evol, phi_12_evol
b4a000db741aab65076ca2257230aaac45634465
32,451
import logging def get_execution(execution): """Get an execution""" logging.info('[ROUTER]: Getting execution: '+execution) include = request.args.get('include') include = include.split(',') if include else [] exclude = request.args.get('exclude') exclude = exclude.split(',') if exclude else [] try: execution = ExecutionService.get_execution(execution, current_identity) except ExecutionNotFound as e: logging.error('[ROUTER]: '+e.message) return error(status=404, detail=e.message) except Exception as e: logging.error('[ROUTER]: '+str(e)) return error(status=500, detail='Generic Error') return jsonify(data=execution.serialize(include, exclude)), 200
dfaba70a41e74423f86eca2c645f71dd2c4117ac
32,452
def fz_Kd_singlesite(K: float, p: np.ndarray, x: np.ndarray) -> np.ndarray: """Fit function for Cl titration.""" return (p[0] + p[1] * x / K) / (1 + x / K)
8054447e87c70adb4d6f505c45336ccd839a69c9
32,453
def show_exam_result(request, course_id, submission_id): """ Returns exam result template """ course_obj = get_object_or_404(Course, pk=course_id) submission_obj = get_object_or_404(Submission, pk=submission_id) submission_choices = submission_obj.choices.all() choice_ids = [choice_obj.id for choice_obj in submission_choices] max_score, question_score = 0, 0 course_questions = course_obj.question_set.all() for question in course_questions: max_score += question.grade if question.is_get_score(choice_ids): question_score += question.grade context = { "course": course_obj, "choices": submission_choices, "grade": int(question_score / max_score * 100), } print(question_score, max_score) return render(request, 'onlinecourse/exam_result_bootstrap.html', context)
e61ffc8748e3a9aa2cb62e4ed277a08f0be05c07
32,454
def createInvoiceObject(account_data: dict, invoice_data: dict) -> dict: """ example: https://wiki.wayforpay.com/view/852498 param: account_data: dict merchant_account: str merchant_password: str param: invoice_data reqularMode -> one of [ 'once', 'daily', 'weekly', 'quartenly', 'monthly', 'halfyearly', 'yearly' ] merchantPassword : str amount : str currency : str dateNext -> dd.mm.yyyy : str dateEnd -> dd.mm.yyyy : str orderReference -> timestamp : str email -> client email to notify return: object for invoice creation """ return { "requestType": "CREATE", "merchantAccount": account_data['merchant_account'], "merchantPassword": account_data['merchant_password'], "regularMode": invoice_data['regularMode'], "amount": str(invoice_data['currency']), "currency": invoice_data['currency'], "dateBegin": invoice_data['dateBegin'], "dateEnd": invoice_data['dateEnd'], "orderReference": str(invoice_data['orderReference']), "email": invoice_data['email'] }
0ea61d68916c5b6f43e568cb1978bcb05b8eba04
32,455
from sklearn.cluster import KMeans def _kmeans_seed_points(points, D, d, C, K, trial=0): """A seed point generation function that puts the seed points at customer node point cluster centers using k-Means clustering.""" kmeans = KMeans(n_clusters=K, random_state=trial).fit(points[1:]) return kmeans.cluster_centers_.tolist()
7131b53b9cf0c8719daa577f7a03c41f068df90d
32,456
def site_geolocation(site): """ Obtain lat-lng coordinate of active trials in the Cancer NCI API""" try: latitude = site['org_coordinates']['lat'] longitude = site['org_coordinates']['lon'] lat_lng = tuple((latitude, longitude)) return lat_lng except KeyError: # key ['org_coordinates'] is missing return None
9fefcd3f49d82233005c88e645efd1c00e1db564
32,457
def get_scaling_desired_nodes(sg): """ Returns the numb of desired nodes the scaling group will have in the future """ return sg.get_state()["desired_capacity"]
5a417f34d89c357e12d760b28243714a50a96f02
32,458
def _BitmapFromBufferRGBA(*args, **kwargs): """_BitmapFromBufferRGBA(int width, int height, buffer data) -> Bitmap""" return _gdi_._BitmapFromBufferRGBA(*args, **kwargs)
91fc08c42726ad101e1d060bf4e60d498d1f0b0f
32,459
def get_user_analysis_choice(): """ Function gets the user input to determine what kind of data quality metrics s/he wants to investigate. :return: analytics_type (str): the data quality metric the user wants to investigate percent_bool (bool): determines whether the data will be seen as 'percentage complete' or individual instances of a particular error target_low (bool): determines whether the number displayed should be considered a desirable or undesirable characteristic """ analysis_type_prompt = \ "\nWhat kind of analysis over time report would you like " \ "to generate for each site?\n\n" \ "A. Duplicates\n" \ "B. Amount of data following death dates\n" \ "C. Amount of data with end dates preceding start dates\n" \ "D. Success rate for concept_id field\n" \ "E. Population of the 'unit' field in the measurement table (" \ "only for specified measurements)\n" \ "F. Population of the 'route' field in the drug exposure table\n" \ "G. Percentage of expected drug ingredients observed\n" \ "H. Percentage of expected measurements observed\n" \ "I. Date consistency across tables \n\n" \ "Please specify your choice by typing the corresponding letter." user_command = input(analysis_type_prompt).lower() choice_dict = { 'a': 'duplicates', 'b': 'data_after_death', 'c': 'end_before_begin', 'd': 'concept', 'e': 'measurement_units', 'f': 'drug_routes', 'g': 'drug_success', 'h': 'sites_measurement', 'i': 'visit_date_disparity'} while user_command not in choice_dict.keys(): print("\nInvalid choice. Please specify a letter that corresponds " "to an appropriate analysis report.\n") user_command = input(analysis_type_prompt).lower() # NOTE: This dictionary needs to be expanded in the future percentage_dict = { 'duplicates': False, 'data_after_death': True, 'end_before_begin': True, 'concept': True, 'measurement_units': True, 'drug_routes': True, 'drug_success': True, 'sites_measurement': True, 'visit_date_disparity': True } # dictionary indicates if the target is to minimize or maximize number target_low = { 'duplicates': True, 'data_after_death': True, 'end_before_begin': True, 'concept': False, 'measurement_units': False, 'drug_routes': False, 'drug_success': False, 'sites_measurement': False, 'visit_date_disparity': False } analytics_type = choice_dict[user_command] percent_bool = percentage_dict[analytics_type] target_low = target_low[analytics_type] return analytics_type, percent_bool, target_low
58ebda03cd4eb12c92951649fc946b00eb1a8075
32,460
def points_to_segments(points): """Convert a list of points, given in clockwise order compared to the inside of the system to a list of segments. The last point being linked to the first one. Args: points (list): list of lists of size 2 Returns: [np.ndarray]: 2D-array of segments - each row is [x1,y1,x2,y2]. """ nb_of_points = len(points) points = np.array(points) first, last = points[0], points[-1] segments = np.concatenate((points[:nb_of_points-1],points[1:]), axis = 1) segments = np.concatenate((segments, np.expand_dims(np.concatenate((last,first)), axis = 0)), axis = 0) return segments # --------------------- Utils functions -------------------- #
1e560d8e752d34250f73c6e2305c7741a14afe04
32,461
def resnet_v1_34(inputs, num_classes=None, is_training=True, global_pool=True, output_stride=None, spatial_squeeze=True, reuse=None, scope='resnet_v1_34', **kwargs): """ResNet-34 model of [1]. See resnet_v1() for arg and return description.""" blocks = [ resnet_v1_simple_block('block1', out_depth=64, num_units=3, stride=1), resnet_v1_simple_block('block2', out_depth=128, num_units=4, stride=2), resnet_v1_simple_block('block3', out_depth=256, num_units=6, stride=2), resnet_v1_simple_block('block4', out_depth=512, num_units=3, stride=2), ] return resnet_v1(inputs, blocks, num_classes, is_training, global_pool=global_pool, output_stride=output_stride, include_root_block=True, spatial_squeeze=spatial_squeeze, reuse=reuse, scope=scope, **kwargs)
26e7d866a14d6a17acf92c10e4c5d48883c6b5c7
32,462
from typing import Union def from_dlpack(x: Union[ivy.Array, ivy.NativeArray]) -> ivy.Array: """Returns a new array containing the data from another (array) object with a ``__dlpack__`` method. Parameters ---------- x object input (array) object. Returns ------- ret an array containing the data in `x`. .. admonition:: Note :class: note The returned array may be either a copy or a view. See :ref:`data-interchange` for details. """ return _cur_backend(x).from_dlpack(x)
c3213a607eb150791e74ffb8a5781e789dcd989f
32,463
def render_webpage_string(vegalite_spec: str) -> str: """ Renders the given Vega-lite specification into a string of an HTML webpage that displays the specified plots. :param vegalite_spec str: The Vega-lite plot specification to create a webpage for. :returns: A string of a webpage with the specified plots. :rtype: str """ with open(PLOTS_TEMPLATE_FILE, "r") as template_file: return chevron.render(template_file, {SPEC_TAG: vegalite_spec})
6b9c410046d6aba3b3de04bcb2cce4779f55b3d1
32,464
def _parse_blog(element): """ Parse and return genral blog data (title, tagline etc). """ title = element.find("./title").text tagline = element.find("./description").text language = element.find("./language").text site_url = element.find("./{%s}base_site_url" % WP_NAMESPACE).text blog_url = element.find("./{%s}base_blog_url" % WP_NAMESPACE).text return { "title": title, "tagline": tagline, "language": language, "site_url": site_url, "blog_url": blog_url, }
a2678c0e55a8db5aee042744f1f343c96c7fe6f1
32,465
def summarize_block(block): """ Return the sentence that best summarizes block. """ sents = nltk.sent_tokenize(block) word_sents = map(nltk.word_tokenize, sents) d = dict((compute_score(word_sent, word_sents), sent) for sent, word_sent in zip(sents, word_sents)) return d[max(d.keys())]
991d389366f0587f7dc7fe2eaf6966d0b531012f
32,466
def get_club_result() -> list: """ Returns the club's page. """ d = api_call("ion", "activities") while "next" in d and d["next"] is not None: for result in d["results"]: if "cube" in result["name"].lower(): return result d = api_call("ion", d["next"], False)
3f335aeb2c476dc29e0d335b00722e5b56eb6716
32,468
def DiffuserConst_get_decorator_type_name(): """DiffuserConst_get_decorator_type_name() -> std::string""" return _RMF.DiffuserConst_get_decorator_type_name()
97c9a68d35b079a1ecbf71a742c6799c4b6411bb
32,469
import tqdm def lemmatizer(): """ Substitutes words by their lemma """ lemmatizer = WordNetLemmatizer() preprocessor = lambda text: [lemmatizer.lemmatize(w) for w in \ text.split(" ")] def preprocess(name, dataset): description = " Running NLTK Lemmatizer - preprocessing dataset " description += "{}...".format(name) data = [preprocessor(x) for x in tqdm(dataset, desc=description)] return data return preprocess
627ce460abb71969ac3f19832f2854a1a00db7c3
32,470
import io def convert_numpy_array(numpy_array: np.ndarray): """ Converts a numpy array into compressed bytes :param numpy_array: An array that is going to be converted into bytes :return: A BytesIO object that contains compressed bytes """ compressed_array = io.BytesIO() # np.savez_compressed() requires a file-like object to write to np.save(compressed_array, numpy_array, allow_pickle=True, fix_imports=False) return compressed_array
1fe24003d00736b86361cf5eef03da304edc6bf6
32,471
def notas(* valores, sit=False): """ -> Função para analisar notas e situações de vários alunos. :param valores: uma ou mais notas dos alunos (aceita várias) :param sit: valor opcional, indicando se deve ou não adicionar a situação :return: dicionário com várias informações sobre a situação da turma. """ dicionario = dict() dicionario["Quantidade de notas"] = len(valores) dicionario["Maior nota"] = max(valores) dicionario["Menor nota"] = min(valores) dicionario["Média da turma"] = sum(valores)/len(valores) if sit == True: if dicionario["Média da turma"] >= 7.0: dicionario["A situação"] = 'BOA' elif 5.0 <= dicionario["Média da turma"] < 7.0: dicionario["A situação"] = 'RAZOÁVEL' else: dicionario["A situação"] = 'RUIM' return dicionario
a6915e9b7b1feef0db2be6fdf97b6f236d73f282
32,472
def append_OrbitSection(df): """Use OrbitDirection flags to identify 4 sections in each orbit.""" df["OrbitSection"] = 0 ascending = (df["OrbitDirection"] == 1) & (df["QDOrbitDirection"] == 1) descending = (df["OrbitDirection"] == -1) & (df["QDOrbitDirection"] == -1) df["OrbitSection"].mask( (df["QDLat"] > 50) & ascending, 1, inplace=True ) df["OrbitSection"].mask( (df["QDLat"] > 50) & descending, 2, inplace=True ) df["OrbitSection"].mask( (df["QDLat"] < -50) & descending, 3, inplace=True ) df["OrbitSection"].mask( (df["QDLat"] < -50) & ascending, 4, inplace=True ) return df
4f2cad6cb2facf6a7a8c7a89ed7b3df0a56a54c2
32,473
def _get_old_time(request): """ Get's the alarm time the user wants to change Args: request (Request): contains info about the conversation up to this point (e.g. domain, intent, entities, etc) Returns: string: resolved 24-hour time in XX:XX:XX format """ old_time_entity = next( (e for e in request.entities if e['role'] == 'old_time'), None) if old_time_entity: duckling_result = parse_numerics(old_time_entity['text'].lower(), dimensions=['time']) for candidate in duckling_result[0]: if candidate['body'] == old_time_entity['text'].lower(): return candidate['value']['value'][TIME_START_INDEX:TIME_END_INDEX] else: return None
6a2929ccffb4b397bd9f1dd044e70c871e302e33
32,474
def sxxxxx(p, nss): """ Defines a scalar wavefunction. Input momenta have shape (num events, 4). Parameters ---------- p: tf.Tensor, scalar boson four-momenta of shape=(None,4) nss: tf.Tensor, final|initial state of shape=(), values=(+1|-1) Returns ------- phi: tf.Tensor, scalar wavefunction of shape=(3,None) """ v0 = tf.expand_dims(complex_tf(p[:, 0] * nss, p[:, 3] * nss), 1) v1 = tf.expand_dims(complex_tf(p[:, 1] * nss, p[:, 2] * nss), 1) v = tf.expand_dims(complex_tf(1.0, 0.0), 1) phi = tf.concat([v0, v1, v], axis=1) return tf.transpose(phi)
429fe82c9781ec8918fe57a68e899f899df8f32f
32,475
def target_risk_contributions(target_risk, cov): """ Returns the weights of the portfolio that gives you the weights such that the contributions to portfolio risk are as close as possible to the target_risk, given the covariance matrix """ n = cov.shape[0] init_guess = np.repeat(1 / n, n) bounds = ((0.0, 1.0),) * n # an N-tuple of 2-tuples! # construct the constraints weights_sum_to_1 = {'type': 'eq', 'fun': lambda weights: np.sum(weights) - 1 } def msd_risk(weights, target_risk, cov): """ Returns the Mean Squared Difference in risk contributions between weights and target_risk """ w_contribs = risk_contribution(weights, cov) return ((w_contribs - target_risk) ** 2).sum() weights = minimize(msd_risk, init_guess, args=(target_risk, cov), method='SLSQP', options={'disp': False}, constraints=(weights_sum_to_1,), bounds=bounds) return weights.x
82d338f2bc8c6b712e7489b70a3122eee21d0aab
32,477
import urllib, datetime import xarray as xr import numpy as np def read_monthly_indices_from_CLIMEXP(name_of_index): """ Try reading various monthly indices from KNMI's Climate Explorer """ name_to_url = { 'M1i': 'http://climexp.knmi.nl/data/iM1.dat', # 1910 -> 'M2i': 'http://climexp.knmi.nl/data/iM2.dat', # 1910 -> 'M3i': 'http://climexp.knmi.nl/data/iM3.dat', 'M4i': 'http://climexp.knmi.nl/data/iM4.dat', # 1910 -> 'M5i': 'http://climexp.knmi.nl/data/iM5.dat', 'M6i': 'http://climexp.knmi.nl/data/iM6.dat', # 1910 -> 'NAO': 'http://climexp.knmi.nl/data/inao.dat', # 1821 -> 'NINO12': 'http://climexp.knmi.nl/data/inino2.dat', 'NINO3': 'http://climexp.knmi.nl/data/inino3.dat', 'NINO34': 'http://climexp.knmi.nl/data/inino5.dat', 'NINO4': 'http://climexp.knmi.nl/data/inino4.dat', 'AMO1': 'http://climexp.knmi.nl/data/iamo_hadsst.dat', 'AMO2': 'http://climexp.knmi.nl/data/iamo_hadsst_ts.dat', 'PDO1': 'http://climexp.knmi.nl/data/ipdo.dat', 'PDO2': 'http://climexp.knmi.nl/data/ipdo_hadsst3.dat', 'SOI': 'http://climexp.knmi.nl/data/isoi.dat', } url_string = name_to_url[name_of_index] try: fp2 = urllib.request.urlopen(url_string) data_extracted = fp2.readlines() except: pass data_asarray = [] for row in range(len(data_extracted)): try: dline = np.array(data_extracted[row].split()).astype(float) except: dline = [] if (len(dline) > 0): data_asarray.append(np.array(data_extracted[row].split()).astype(float)) data = np.array(data_asarray); dates = np.array([]) data_years = data[:, 0].astype(int); if (data.shape[1] > 3): data_tser = data[:, 1:13].ravel() for y in data_years: for m in range(1, 13): dates = np.append(dates, datetime.date(y, m, 1)) if (data.shape[1] <= 3): data_tser = data[:, 2] for row in data: dates = np.append(dates, datetime.date(int(row[0]), int(row[1]), 1)) data_tser[data_tser < -990] = np.nan if (name_of_index == 'Volc'): data_tser[data_tser == 0] = np.nan data_tser = np.sqrt(data_tser) data_tser[np.isinf(data_tser)] = np.nan data_tser = inpaint_nans(data_tser) date_range = [1800, 2150]; idxs = np.zeros(dates.shape, bool) for i, date in enumerate(dates): if ((date.year >= date_range[0]) & (date.year <= date_range[1])): idxs[i] = True ds = xr.Dataset(data_vars={name_of_index: ('time', data_tser[idxs])}, coords={'time': dates[idxs].astype(np.datetime64)}) return ds.resample(time='1M').mean()
8ea42dbca11e587267ef8e2c13ee1787be9db430
32,478
def generate_xdataEMX(parm): """ Generate the x data from the parameters dictionary Parameters: parm: [dict] parameters Returns: xdata = nd.array[XNbPoints] """ # Extracts the x axis data from the parameter file try: xpoints = parm['SSX'] except KeyError: xpoints = parm['ANZ'] try: xwid = parm['GSI'] xstart = parm['GST'] except KeyError: xwid = parm['XXWI'] xstart = parm['XXLB'] xdata = np.linspace(xstart, xstart+xwid, int(xpoints)) return xdata
a65b48e51f5013fe82d0b9baafe70330b15f0477
32,479
import csv def csv_2d_cartesian(filename, polar=False, scan=False): """extract 2d cartesian coordinates from a file""" x_values = [] y_values = [] with open(filename) as data_file: odom_data = csv.reader(data_file) for row in odom_data: # if scan: # row[1] = pi/2 + float(row[1]) if polar: x = float(row[0]) * cos(float(row[1])) y = float(row[0]) * sin(float(row[1])) else: x = float(row[0]) y = float(row[1]) x_values.append(x) y_values.append(y) return x_values, y_values
648a8f9bbee8b0b61284bf5a8b93c729bb085c9d
32,480
def get_edge_similarity(node_pos,neighbor_positions): """ useful for finding approximate colinear neighbors. """ displacements = get_displacement_to_neighbors(node_pos,neighbor_positions) n_neighbors = neighbor_positions.shape[0] # Quick and dirty, can reduce computation by factor 2. similarity = [] for d1 in displacements: for d2 in displacements: similarity+=[np.sum(d1*d2)/(np.linalg.norm(d1)*np.linalg.norm(d2))] similarity = np.array(similarity).reshape(n_neighbors,n_neighbors) return similarity
b1b64384d84ffbdd6a042b1e2c3a8a9a2212e61e
32,481
def high_pass_filter(x_vals, y_vals, cutoff, inspectPlots=True): """ Replicate origin directy http://www.originlab.com/doc/Origin-Help/Smooth-Algorithm "rotate" the data set so it ends at 0, enforcing a periodicity in the data. Otherwise oscillatory artifacts result at the ends This uses a 50th order Butterworth filter. """ x_vals, y_vals = fourier_prep(x_vals, y_vals) if inspectPlots: plt.figure("Real Space") plt.plot(x_vals, y_vals, label="Non-nan Data") zeroPadding = len(x_vals) # This needs to be this way because truncation is bad and actually # zero padding print("zero padding", zeroPadding) N = len(x_vals) onePerc = int(0.01 * N) x1 = np.mean(x_vals[:onePerc]) x2 = np.mean(x_vals[-onePerc:]) y1 = np.mean(y_vals[:onePerc]) y2 = np.mean(y_vals[-onePerc:]) m = (y1 - y2) / (x1 - x2) b = y1 - m * x1 flattenLine = m * x_vals + b y_vals -= flattenLine if inspectPlots: plt.figure("Real Space") plt.plot(x_vals, y_vals, label="Rotated Data") # even_data = np.column_stack((x_vals, y_vals)) # Perform the FFT and find the appropriate frequency spacing x_fourier = fft.fftfreq(zeroPadding, x_vals[1] - x_vals[0]) y_fourier = fft.fft(y_vals) # , n=zeroPadding) if inspectPlots: plt.figure("Frequency Space") plt.semilogy(x_fourier, np.abs(y_fourier), label="Raw FFT") # Define where to remove the data band_start = cutoff band_end = int(max(abs(x_fourier))) + 1 print(abs(y_fourier[-10:])) butterworth = 1 - np.sqrt(1 / (1 + (x_fourier / cutoff) ** 50)) y_fourier *= butterworth if inspectPlots: plt.plot(x_fourier, np.abs(y_fourier), label="FFT with removed parts") a = plt.legend() a.draggable(True) print("y_fourier", len(y_fourier)) # invert the FFT y_vals = fft.ifft(y_fourier, n=zeroPadding) # using fft, not rfft, so data may have some # complex parts. But we can assume they'll be negligible and # remove them # ( Safer to use np.real, not np.abs? ) # Need the [:len] to remove zero-padded stuff y_vals = y_vals[:len(x_vals)] # unshift the data y_vals += flattenLine y_vals = np.abs(y_vals) if inspectPlots: plt.figure("Real Space") print(x_vals.size, y_vals.size) plt.plot(x_vals, y_vals, label="Smoothed Data") a = plt.legend() a.draggable(True) return np.column_stack((x_vals, y_vals))
8a114e1868c28f1de8ee4ac445bd620cb45482ff
32,482
def hyetograph(dataframe, col="precipitation", freq="hourly", ax=None, downward=True): """Plot showing rainfall depth over time. Parameters ---------- dataframe : pandas.DataFrame Must have a datetime index. col : string, optional (default = 'precip') The name of the column in *dataframe* that contains the rainall series. freq : str, optional (default = 'hourly') The frequency to which the rainfall depth should be accumulated. ax : matplotlib.Axes object, optional The Axes on which the plot will be placed. If not provided, a new Figure and Axes will be created. downward : bool, optional (default = True) Inverts the y-axis to show the rainfall depths "falling" from the top. Returns ------- fig : matplotlib.Figure """ ylabel = "%s Rainfall Depth (in)" % freq.title() fig = _plotter( dataframe, col, ylabel, freq=freq, fillna=0, how="sum", ax=ax, downward=downward ) return fig
17deb837058ddd8ad8db9ed47c960cacfde957db
32,483
def objective(z, x): """ Objective. """ return park2_3_mf(z, x)
fb65c09f084b0af8848e78582703a1bb4e11e735
32,484
import json import re def validate_config(crawler_path): """ Validates config """ with open(crawler_path) as file: config = json.load(file) if 'total_articles_to_find_and_parse' not in config: raise IncorrectNumberOfArticlesError if 'seed_urls' not in config: raise IncorrectURLError urls = config["seed_urls"] articles = config["total_articles_to_find_and_parse"] if not urls: raise IncorrectURLError if not isinstance(articles, int) or articles <= 0: raise IncorrectNumberOfArticlesError if articles > 100: raise NumberOfArticlesOutOfRangeError for url in urls: check = re.search(DOMAIN, url) if not check: raise IncorrectURLError return urls, articles
ba46667fcc0d75be6b28d19c0f5fa2d41f9123dd
32,485
def parse_FORCE_SETS(natom=None, filename="FORCE_SETS", to_type2=False): """Parse FORCE_SETS from file. to_type2 : bool dataset of type2 is returned when True. Returns ------- dataset : dict Displacement dataset. See Phonopy.dataset. """ with open(filename, "r") as f: return _get_dataset( f, natom=natom, to_type2=to_type2, )
54b39f8b111292f53c6231facafb177109972965
32,486
import time def DeserializeFileAttributesFromObjectMetadata(obj_metadata, url_str): """Parses the POSIX attributes from the supplied metadata. Args: obj_metadata: The metadata for an object. url_str: File/object path that provides context if a warning is thrown. Returns: A POSIXAttribute object with the retrieved values or a default value for any attribute that could not be found. """ posix_attrs = POSIXAttributes() # Parse atime. found, atime = GetValueFromObjectCustomMetadata(obj_metadata, ATIME_ATTR, NA_TIME) try: atime = long(atime) if found and atime <= NA_TIME: WarnNegativeAttribute('atime', url_str) atime = NA_TIME elif atime > long(time.time()) + SECONDS_PER_DAY: WarnFutureTimestamp('atime', url_str) atime = NA_TIME except ValueError: WarnInvalidValue('atime', url_str) atime = NA_TIME posix_attrs.atime = atime # Parse gid. DeserializeIDAttribute(obj_metadata, GID_ATTR, url_str, posix_attrs) # Parse uid. DeserializeIDAttribute(obj_metadata, UID_ATTR, url_str, posix_attrs) found, mode = GetValueFromObjectCustomMetadata(obj_metadata, MODE_ATTR, NA_MODE) if found and MODE_REGEX.match(mode): try: # Parse mode into a 3-digit base-8 number. posix_attrs.mode = POSIXMode(int(mode)) except ValueError: WarnInvalidValue('mode', url_str) return posix_attrs
3fb3d3f4e45a622cc12ce1d65b6f02d59efd3f58
32,487