content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def dustSurfaceDensitySingle(R, Rin, Sig0, p): """ Calculates the dust surface density (Sigma d) from single power law. """ return Sig0 * pow(R / Rin, -p)
441466f163a7b968cf193e503d43a1b014be7c5d
32,136
def rightToPurchase( symbol="", refid="", token="", version="", filter="", **timeseries_kwargs ): """Right to purchase up-to-date and detailed information on all new announcements, as well as 12+ years of historical records. Updated at 5am, 10am, 8pm UTC daily https://iexcloud.io/docs/api/#right-to-purchase Args: symbol (str): Symbol to look up refid (str): Optional. Id that matches the refid field returned in the response object. This allows you to pull a specific event for a symbol. token (str): Access token version (str): API version filter (str): filters: https://iexcloud.io/docs/api/#filter-results Supports all kwargs from `pyEX.stocks.timeseries.timeSeries` Returns: dict or DataFrame: result """ _raiseIfNotStr(symbol) symbol = _quoteSymbols(symbol) _timeseriesWrapper(timeseries_kwargs) return timeSeries( id="advanced_right_to_purchase", key=symbol, subkey=refid, token=token, version=version, filter=filter, **timeseries_kwargs )
8897902c7b729642cdd5e89658f62b70bccf2133
32,137
def compute_edits(old, new): """Compute the in-place edits needed to convert from old to new Returns a list ``[(index_1,change_1), (index_2,change_2)...]`` where ``index_i`` is an offset into old, and ``change_1`` is the new bytes to replace. For example, calling ``compute_edits("abcdef", "qbcdzw")`` will return ``[(0, "q"), (4, "zw")]``. That is, the update should be preformed as (abusing notation): ``new[index:index+len(change)] = change`` :param str old: The old data :param str new: The new data :returns: A list of tuples (index_i, change_i) """ deltas = [] delta = None for index, (n, o) in enumerate(zip(new, old)): if n == o: if delta is not None: deltas.append(delta) delta = None else: if delta is None: delta = (index, []) delta[1].append(n) if delta is not None: deltas.append(delta) return [(i, "".join(x)) for i, x in deltas]
f729addf84207f526e27d67932bb5300ced24b54
32,138
def gpx_to_lat_lon_list(filename): """ Summary: takes a .gpx file and turns the latitude and longitudes into a list of tuples Returns: list of tuples (latitude, longitude). """ gpx_file = open(filename, "r") gpx = gpxpy.parse(gpx_file) latlonlist = [] if len(gpx.tracks) > 0: print("tracks") for track in gpx.tracks: for segment in track.segments: for point in segment.points: latlonlist.append((point.longitude, point.latitude)) elif len(gpx.routes) > 0: print("routes") for route in gpx.routes: for point in route.points: latlonlist.append((point.longitude, point.latitude)) else: print("sorry mate, didn't care enough to implement this") return latlonlist
4d413a5894a30bb176a103b8a3933685490f30fe
32,139
def pre_order(size): """List in pre order of integers ranging from 0 to size in a balanced binary tree. """ interval_list = [None] * size interval_list[0] = (0, size) tail = 1 for head in range(size): start, end = interval_list[head] mid = (start + end) // 2 if mid > start: interval_list[tail] = (start, mid) tail += 1 if mid + 1 < end: interval_list[tail] = (mid + 1, end) tail += 1 interval_list[head] = mid return interval_list
45ab688c627c19cd0b9c1200830a91b064d46bda
32,140
def LockPrefix(): """Returns the lock prefix as an operand set.""" return set([Operands(disasms=('lock',))])
d4f84027494ad176efcb8c01f14876474aaca57f
32,141
def distance(pt, pts): """Distances of one point `pt` to a set of points `pts`. """ return np.sqrt((pts[:,0] - pt[0])**2 + (pts[:,1] - pt[1])**2)
06512472ac6c0e58182ad58190c82fa619d66d40
32,142
def prepare_rw_output_stream(output): """ Prepare an output stream that supports both reading and writing. Intended to be used for writing & updating signed files: when producing a signature, we render the PDF to a byte buffer with placeholder values for the signature data, or straight to the provided output stream if possible. More precisely: this function will return the original output stream if it is writable, readable and seekable. If the ``output`` parameter is ``None``, not readable or not seekable, this function will return a :class:`.BytesIO` instance instead. If the ``output`` parameter is not ``None`` and not writable, :class:`.IOError` will be raised. :param output: A writable file-like object, or ``None``. :return: A file-like object that supports reading, writing and seeking. """ if output is None: output = BytesIO() else: if not assert_writable_and_random_access(output): output = BytesIO() return output
af1afe87e5de12cad9eb72b93da069327c1fffb5
32,143
from pathlib import Path def add_references(md, tmp_dir, args): """ Remember that this function is run for main, review, and editor. """ citations_to_do = tmp_dir / 'citations.json' biblio = Path(args.library).with_suffix('.json') _prepare_node_input(md, citations_to_do) _check_citation_keys(citations_to_do, biblio) _process_node(tmp_dir, biblio, args) md = _read_node_output(md, tmp_dir) return md
5c4319720a809c9e6543ef078598b7a3539c3492
32,144
from pandas import Timestamp def timestamp_now() -> Timestamp: """Returns a pandas timezone (UTC) aware Timestamp for the current time. Returns: pandas.Timestamp: Timestamp at current time """ return timestamp_tzaware(Timestamp.now())
545b0cb72691d3db127ccfc847295a4bc4902004
32,146
def readFlat4D(fn,interp=None): """ Load in data from 4D measurement of flat mirror. Scale to microns, remove misalignments, strip NaNs. Distortion is bump positive looking at surface from 4D. Imshow will present distortion in proper orientation as if viewing the surface. """ #Get xpix value in mm l = getline(fn,9) dx = float(l.split()[1])*1000. #Remove NaNs and rescale d = np.genfromtxt(fn,skip_header=12,delimiter=',') d = man.stripnans(d) d = d *.6328 d = d - np.nanmean(d) d = np.fliplr(d) #Interpolate over NaNs if interp is not None: d = man.nearestNaN(d,method=interp) return d,dx
8443ab4943bb571d1ead1f8f4342efec8e426139
32,147
def inner_product(D1, D2): """ Take the inner product of the frequency maps. """ result = 0. for key in D1: if key in D2: result += D1[key] * D2[key] return result
95efb9f63d6a379e1c5f7c8f6ad4bfd4061e2032
32,148
def list_launch_daemons(): """ Return an array of the files that are present in /Library/LaunchDaemons/ and /System/Library/LaunchDaemons/ """ files = list_files_in_dir("/Library/LaunchDaemons/") files += list_files_in_dir("/System/Library/LaunchDaemons/") return files
8e1f0ab1bb78a9121f5c00f032a5c8dc089f39b0
32,149
import struct def us_varchar_encode(text): """ encode with utf-16-le UShort *Varchar :param str text: :return: """ if not text: return '\x00\x00' length = len(text) return struct.pack('<H', length) + text.encode('utf-16-le')
07b232cd83e023d770fc4e7cd63250ad746aae19
32,151
from typing import List def graph_to_diagonal_h(n: int, nodes: List[int]) -> np.ndarray: """Construct diag(H).""" h = [0.0] * 2**n for node in nodes: diag = tensor_diag(n, node[0], node[1], node[2]) for idx, val in enumerate(diag): h[idx] += val return h
5c73d4b4a98465f3f03d9a423f867479b48da8fe
32,152
def condensational_heating(dQ2): """ Args: dQ2: rate of change in moisture in kg/kg/s, negative corresponds to condensation Returns: heating rate in degK/s """ return tf.math.scalar_mul(tf.constant(-LV / CPD, dtype=dQ2.dtype), dQ2)
55d5ec36bf1f4a217e239e35fb95e14060b07fb8
32,153
def collect_stats(cube, store, datasets=None): """ Collect statistics for given cube. Parameters ---------- cube: Cube Cube specification. store: simplekv.KeyValueStore KV store that preserves the cube. datasets: Union[None, Iterable[str], Dict[str, kartothek.core.dataset.DatasetMetadata]] Datasets to query, must all be part of the cube. May be either the result of :meth:`discover_datasets`, a list of Ktk_cube dataset ID or ``None`` (in which case auto-discovery will be used). Returns ------- stats: Dict[str, Dict[str, int]] Statistics per ktk_cube dataset ID. """ if callable(store): store = store() if not isinstance(datasets, dict): datasets = discover_datasets_unchecked( uuid_prefix=cube.uuid_prefix, store=store, filter_ktk_cube_dataset_ids=datasets, ) all_metapartitions = get_metapartitions_for_stats(datasets) return reduce_stats([collect_stats_block(all_metapartitions, store)])
526405128e95e13fb6f011300ddcda922ebe8582
32,154
def post_move_subject(subject_uuid: SubjectId, target_report_uuid: ReportId, database: Database): """Move the subject to another report.""" data_model = latest_datamodel(database) reports = latest_reports(database) source = SubjectData(data_model, reports, subject_uuid) target = ReportData(data_model, reports, target_report_uuid) target.report["subjects"][subject_uuid] = source.subject del source.report["subjects"][subject_uuid] delta_description = ( f"{{user}} moved the subject '{source.subject_name}' from report " f"'{source.report_name}' to report '{target.report_name}'." ) source_uuids = [source.report_uuid, subject_uuid] target_uuids = [target_report_uuid, subject_uuid] return insert_new_report(database, delta_description, (source.report, source_uuids), (target.report, target_uuids))
405be11279fe3fa2a65b75ac46518cdaabcb5e90
32,155
def open_instrument(instr_type): """open_visa_instrument implements the public api for each of the drivers for discovering and opening a connection :param instr_type: The abstract base class to implement A dictionary containing the technical specifications of the required equipment :return: A instantiated class connected to a valid dmm """ instruments = filter_connected( fixate.config.INSTRUMENTS, fixate.config.DRIVERS.get(instr_type, {}) ) try: instrument = list(instruments.values())[0] except IndexError: raise InstrumentNotConnected("No valid {} found".format(instr_type)) else: instrument_name = type(instrument).__name__ pub.sendMessage( "driver_open", instr_type=instrument_name, identity=instrument.get_identity(), ) return instrument
1741b94a527a0283efee7466ccc15be09abe1622
32,157
import jinja2 from datetime import datetime def thisyear(): """The current year.""" return jinja2.Markup(datetime.date.today().year)
3de970398e1fb55f98a968c0c83411d18e8cd423
32,158
from unicodedata import east_asian_width def display_width(str): """Return the required over-/underline length for str.""" try: # Respect &ambiwidth and &tabstop, but old vim may not support this return vim.strdisplaywidth(str) except AttributeError: # Fallback result = 0 for c in str: result += 2 if east_asian_width(c) in ('W', 'F') else 1 return result
ebeedd159de5c31ea435d44a88fe6fe16ccbcb54
32,159
def get_short_int(filename, ptr): """Jump to position 'ptr' in file and read a 16-bit integer.""" val = get_val(filename, ptr, np.int16) return int( val )
42377a73df1dfbff2593fa43e571e3d269db6449
32,160
def u32_from_dto(dto: U32DTOType) -> int: """Convert DTO to 32-bit int.""" check_overflow(0 <= dto <= U32_MAX) return dto
066ab2c2ed70d69ac8e37515ea815e1305574eea
32,161
def diagonal_basis_commutes(pauli_a, pauli_b): """ Test if `pauli_a` and `pauli_b` share a diagonal basis Example: Check if [A, B] with the constraint that A & B must share a one-qubit diagonalizing basis. If the inputs were [sZ(0), sZ(0) * sZ(1)] then this function would return True. If the inputs were [sX(5), sZ(4)] this function would return True. If the inputs were [sX(0), sY(0) * sZ(2)] this function would return False. :param pauli_a: Pauli term to check commutation against `pauli_b` :param pauli_b: Pauli term to check commutation against `pauli_a` :return: Boolean of commutation result :rtype: Bool """ overlapping_active_qubits = set(pauli_a.get_qubits()) & set(pauli_b.get_qubits()) for qubit_index in overlapping_active_qubits: if (pauli_a[qubit_index] != 'I' and pauli_b[qubit_index] != 'I' and pauli_a[qubit_index] != pauli_b[qubit_index]): return False return True
b95ac0cfe22233432df3a0e0f814c4e0e7af6d0f
32,162
def cost_using_SigmoidCrossEntropyWithLogits(logits, labels): """     Computes the cost using the sigmoid cross entropy          Arguments:     logits -- vector containing z, output of the last linear unit (before the final sigmoid activation)     labels -- vector of labels y (1 or 0) Note: What we've been calling "z" and "y" in this class are respectively called "logits" and "labels" in the TensorFlow documentation. So logits will feed into z, and labels into y.          Returns:     cost -- runs the session of the cost (formula (2)) """ # Create the placeholders for "logits" (z) and "labels" (y) lgt = tf.placeholder(tf.float32,name="lgt") lbl = tf.placeholder(tf.float32,name="lbl") # Use the loss function # sigmoid型交叉熵和逻辑 loss_func = tf.nn.sigmoid_cross_entropy_with_logits(logits=lgt,labels=lbl) # Create a session. See method 1 above. sess = tf.Session() # Run the session cost = sess.run(loss_func,feed_dict={lgt:logits,lbl:labels}) # Close the session. See method 1 above. sess.close() return cost
7990ee4cb4b4ebfc7b5f1f580be2315ee6667fa5
32,163
def clone_to_df(clone): """Convert a clone to a pandas.DataFrame.""" number_of_mutations = clone.deltas.shape[0] clone_stats = pd.DataFrame( np.stack([clone.frequencies for _ in range(number_of_mutations)]), columns=clone.frequencies.index, index=clone.deltas.index ) clone_stats['alt_cn'] = clone.deltas clone_stats['clone_id'] = clone.clone_id return clone_stats
e383241b024d5deef7022be3d04b36f4ffcee587
32,164
def reorder_kernel_weight(torch_weight): """ Reorder a torch kernel weight into a tf format """ len_shape = len(torch_weight.shape) transpose_target = list(range(len_shape)) transpose_target = transpose_target[2:] + transpose_target[:2][::-1] return torch_weight.transpose(transpose_target)
2e289d768d31d3ed875fbb3613ec0e3061b65cd9
32,166
def make_windows(x, window_size, horizon): """ Creates a window out of """ # Create a window of specific window size window_step = np.expand_dims(np.arange(window_size+horizon), axis=0) # Create a 2D array of multiple window steps window_indices = window_step + np.expand_dims(np.arange(len(x)-(window_size+horizon-1)), axis=0).T # Index on the target array (a time series) with 2D array of multiple window steps windowed_array = x[window_indices] windows, labels = create_window_labels(windowed_array, horizon) return windows, labels
4e226e2ee2c3951cd2dfe6cb4a92b9d66e9376bf
32,167
def interpolate(arr_old, arr_new, I_old, J_old): # deprecated 2013-08-26 """ input: array, i, j output: value (int(x), int(y)+1) + + (int(x)+1, int(y)+1) (x,y) + + (int(x)+1, int(y)) (int(x), int(y)) be careful - floor(x)=ceil(x)=x for integer x, so we really want floor(x) and floor(x)+1 """ I = I_old.copy() J = J_old.copy() arr_new2 = arr_new * 0 arr_new2 += (-999) height_new, width_new = arr_new.shape height_old, width_old = arr_old.shape # set all out-of-bounds to (0,0) for convenience I = (I>=0) * (I<height_old-1) * I #e.g. i>=0 and i<=4 for i=[0,1,2,3,4], width=5 J = (J>=0) * (J<width_old -1) * J # the loopings are necessary since we don't know beforehand where the (i_old, j_old) # would land for i in range(height_new): for j in range(width_new): i0 = int(I[i,j]) j0 = int(J[i,j]) i1 = i0 + 1 j1 = j0 + 1 i_frac = i % 1 j_frac = j % 1 f00 = arr_old[i0,j0] f01 = arr_old[i0,j1] f10 = arr_old[i1,j0] f11 = arr_old[i1,j1] arr_new2[i, j] = (1-i_frac)*(1-j_frac) * f00 + \ (1-i_frac)*( j_frac) * f01 + \ ( i_frac)*(1-j_frac) * f00 + \ ( i_frac)*( j_frac) * f00 return arr_new2
bcb34c33ca462c43390ff0dd8802d05dc0512dd3
32,168
def point_seg_sep(ar, br1, br2): """Return the minimum separation vector between a point and a line segment, in 3 dimensions. Parameters ---------- ar: array-like, shape (3,) Coordinates of a point. br1, br2: array-like, shape (3,) Coordinates for the points of a line segment Returns ------- sep: float array, shape (3,) Separation vector between point and line segment. """ v = br2 - br1 w = ar - br1 c1 = np.dot(w, v) if c1 <= 0.0: return ar - br1 c2 = np.sum(np.square(v)) if c2 <= c1: return ar - br2 b = c1 / c2 bc = br1 + b * v return ar - bc
a036f4ea9e9c308002e18e75111aed4408d75cf4
32,170
from typing import Callable def shd(node_1: BinaryTreeNode, node_2: BinaryTreeNode, hd: Callable[[BinaryTreeNode, BinaryTreeNode], float]) -> float: """Structural Hamming distance (SHD) :param node_1: :param node_2: :param hd: :return: """ if node_1 is None or node_2 is None: return 1 # first get arity of each node arity_1 = 0 arity_2 = 0 if node_1.has_left_child(): arity_1 += 1 if node_1.has_right_child(): arity_1 += 1 if node_2.has_left_child(): arity_2 += 1 if node_2.has_right_child(): arity_2 += 1 if arity_1 != arity_2: return 1 else: if arity_1 == 0: # both are leaves return hd(node_1, node_2) else: m = arity_1 ham_dist = hd(node_1, node_2) children_dist_sum = sum([shd(node_1.left, node_2.left, hd), shd(node_1.right, node_2.right, hd)]) return (1 / (m + 1)) * (ham_dist + children_dist_sum)
c6aef0189d41887fc4e63991d0176a27b0e1dd8a
32,172
import numpy def movmeanstd(ts, m=0): """ Calculate the mean and standard deviation within a moving window passing across a time series. Parameters ---------- ts: Time series to evaluate. m: Width of the moving window. """ if m <= 1: raise ValueError("Query length must be longer than one") mInt = int(m) zero = 0 ts = ts.astype(numpy.longdouble) # Add zero to the beginning of the cumulative sum of ts s = numpy.insert(numpy.cumsum(ts), zero, zero) # Add zero to the beginning of the cumulative sum of ts ** 2 sSq = numpy.insert(numpy.cumsum(ts ** 2), zero, zero) segSum = s[mInt:] - s[:-mInt] segSumSq = sSq[mInt:] - sSq[:-mInt] mov_mean = segSum / m mov_stdP = (segSumSq / m) - ((segSum / m) ** 2) if not numpy.all(mov_stdP == 0): mov_std = numpy.sqrt(numpy.abs(mov_stdP)) else: mov_std = mov_stdP return [mov_mean, mov_std]
8a9e56db4f26862bff972a3dbfac87f6ea5b8c35
32,173
def importing_regiondata(): """ Loads the regiondata Should convert the year column to proper year Should immediately create geopandas dataframe Returns: a dataframe """ regiondata = pd.read_stata("data/regiondata.dta") return regiondata
132e4076e941f4451b6bb52c5d81c5895dde0154
32,174
def rotationFromQuaternion(*args): """rotationFromQuaternion(float pA, float pB, float pC, float pD) -> Rotation""" return _almath.rotationFromQuaternion(*args)
e418bf864246ef209291d970e9cf33f0edc3fe8f
32,176
import re def get_username(identifier): """Checks if a string is a email adress or not.""" pattern = re.compile('.+@\w+\..+') if pattern.match(identifier): try: user = User.objects.get(email=identifier) except: raise Http404 else: return user.username else: return identifier
de5eb0db99b9580cd210f733cd2e829c84593573
32,177
def halo_particles(mock_dm_halo): """Spherical mock halo.""" def make(N_part=100, seed=None): random = np.random.RandomState(seed=seed) mass_dm, pos_dm = mock_dm_halo(N_part=N_part) vel_dm = random.random_sample(size=(N_part, 3)) return mass_dm, pos_dm, vel_dm return make
36c980c0d81c4a1edf09feec9aafcf1605968bb3
32,178
def get_sec (hdr,key='BIASSEC') : """ Returns the numpy range for a FITS section based on a FITS header entry using the standard format {key} = '[{col1}:{col2},{row1}:row2}]' where 1 <= col <= NAXIS1, 1 <= row <= NAXIS2. """ if key in hdr : s = hdr.get(key) # WITHOUT CARD COMMENT ny = hdr['NAXIS2'] sx = s[s.index('[')+1:s.index(',')].split(':') sy = s[s.index(',')+1:s.index(']')].split(':') return [ny-int(sy[1]),ny-int(sy[0])+1,int(sx[0])-1,int(sx[1])] else : return None
3927e6f5d62818079fa9475976f04dda1824e976
32,180
import numpy def _fetch_object_array(cursor, type_tree=None): """ _fetch_object_array() fetches arrays with a basetype that is not considered scalar. """ arrayShape = cursor_get_array_dim(cursor) # handle a rank-0 array by converting it to # a 1-dimensional array of size 1. if len(arrayShape) == 0: arrayShape.append(1) # now create the (empty) array of the correct type and shape array = numpy.empty(dtype=object, shape=arrayShape) # goto the first element cursor_goto_first_array_element(cursor) # loop over all elements excluding the last one flat = array.flat arraySizeMinOne = array.size - 1 for i in range(arraySizeMinOne): flat[i] = _fetch_subtree(cursor, type_tree) cursor_goto_next_array_element(cursor) # final element then back tp parent scope flat[arraySizeMinOne] = _fetch_subtree(cursor, type_tree) cursor_goto_parent(cursor) return array
b4e262ec7fc4dba943ab2f8420add12f59aed4eb
32,181
import pickle def load_training_batch(batch_id, batch_size): """Load the Preprocessed Training data and return them in batches of <batch_size> or less""" filename = 'data/cifar_pickle/' + 'batch_' + str(batch_id) + '.pkl' features, labels = pickle.load(open(filename, mode='rb')) return batch_features_labels(features, labels, batch_size)
4aa762a80dde638d71076a888613606a1ee11a48
32,182
import logging import json def get_record(params,record_uid): """Return the referenced record cache""" record_uid = record_uid.strip() if not record_uid: logging.warning('No record UID provided') return if not params.record_cache: logging.warning('No record cache. Sync down first.') return if not record_uid in params.record_cache: logging.warning('Record UID %s not found in cache.' % record_uid) return cached_rec = params.record_cache[record_uid] rec = Record() try: data = json.loads(cached_rec['data_unencrypted']) rec = Record(record_uid) extra = None if 'extra_unencrypted' in cached_rec: extra = json.loads(cached_rec['extra_unencrypted']) rec.load(data, revision=cached_rec['revision'], extra=extra) if not resolve_record_view_path(params, record_uid): rec.mask_password() if cached_rec.get('version') == 3: rec.record_type = RecordV3.get_record_type_name(data) rec.login = RecordV3.get_record_field_value(cached_rec.get('data_unencrypted'), 'login') rec.login_url = RecordV3.get_record_field_value(cached_rec.get('data_unencrypted'), 'url') # if 'version' in cached_rec and cached_rec['version'] in (3, 4): # if 'data_unencrypted' in cached_rec: # version = cached_rec.get('version') or 0 # data_unencrypted = json.loads(cached_rec['data_unencrypted']) # if version == 3: # rec_type = data_unencrypted.get('type') or '' # if (rec_type and rec_type.strip()): # rec.login = 'type: ' + rec_type.strip() # elif version == 4: # fname = data_unencrypted.get('name') or '' # if (fname and fname.strip()): # rec.login = 'file: ' + fname.strip() except: logging.error('**** Error decrypting record %s', record_uid) return rec
7fce71c2f90387272a9c9b0a61ad4cccabf830f5
32,185
def get_probabilities(path, seq_len, model, outfile, mode): """ Get network-assigned probabilities Parameters: filename (str): Input file to be loaded seq_len (int): Length of input DNA sequence Returns: probas (ndarray): An array of probabilities for the test set true labels (ndarray): True test-set labels """ # Inputing a range of default values here, can be changed later. data_generator = merge_generators(path=path, batchsize=1000, seqlen=seq_len, mode='nr') # Load the keras model # model = load_model(model_file) test_on_batch(data_generator, model, outfile, mode) probas = np.loadtxt(outfile) true_labels = np.loadtxt(path['labels']) return true_labels, probas
a75bc11704538d082ecf91a61765f4412ec2c75d
32,186
from azure.mgmt.sql import SqlManagementClient from azure.cli.core.commands.client_factory import get_mgmt_service_client def get_sql_management_client(_): """ Gets the SQL management client """ return get_mgmt_service_client(SqlManagementClient)
6f67408fdecbe9b1a70ffbc34a4871c796e0f9f6
32,188
def string_to_gast(node): """ handles primitive string base case example: "hello" exampleIn: Str(s='hello') exampleOut: {'type': 'str', 'value': 'hello'} """ return {"type": "str", "value": node.s}
a3dcd89e893c6edd4a9ba6095cd107bb48cc9782
32,189
def ed25519_generate_key_pair_from_secret(secret): """ Generate a new key pair. Args: secret (:class:`string`): A secret that serves as a seed Returns: A tuple of (private_key, public_key) encoded in base58. """ # if you want to do this correctly, use a key derivation function! if not isinstance(secret, bytes): secret = secret.encode() hash_bytes = sha3.keccak_256(secret).digest() sk = Ed25519SigningKeyFromHash.generate(hash_bytes=hash_bytes) # Private key private_value_base58 = sk.encode(encoding='base58') # Public key public_value_compressed_base58 = sk.get_verifying_key().encode(encoding='base58') return private_value_base58, public_value_compressed_base58
25b8c18289c4cf8f09a7ba937fc8f9645406e9f2
32,190
from typing import List import math def align_tiles_naive(request: AlignNaiveRequest, tiles: List[TileModelDB]) -> List[AlignedTiledModel]: """ performs a naive aligning of the tiles simply based on the given rows and method. does not perform any advanced stitching or pixel checking. Does not use the row and column index, instead just iterates over the tiles in the order they are received. Meant to be called in a separate thread due it being cpu bound. """ if len(tiles) == 0: return [] # assumes they are all the same size width_px = tiles[0].width_px height_px = tiles[0].height_px columns = math.ceil(len(tiles) / request.rows) row = 0 col = 0 aligned_tiles: List[AlignedTiledModel] = [] for index, tile in enumerate(tiles): if request.method == "byRow": col = index % columns else: row = index % request.rows tile = tile.dict() tile["offset_x"] = col * width_px tile["offset_y"] = row * height_px aligned_tiles.append(AlignedTiledModel.parse_obj(tile)) if request.method == "byRow": if col == columns - 1: row = row + 1 else: if row == request.rows - 1: col = col + 1 return aligned_tiles
b279273d800a6884ad95f43f0a6a6f3be1ac3243
32,191
def estimate_operating_empty_mass(mtom, fuse_length, fuse_width, wing_area, wing_span, TURBOPROP): """ The function estimates the operating empty mass (OEM) Source: Raymer, D.P. "Aircraft design: a conceptual approach" AIAA educational Series, Fourth edition (2006). Args: mtom (float): Maximum take off mass [kg] fuse_length (float): Fuselage length [m] fuse_width (float): Fuselage width [m] wing_area (float): Wing area [m^2] wing_span (float): Wing span [m] TURBOPROP (bool): True if the the engines are turboprop False otherwise. Returns: oem (float): Operating empty mass [kg] """ G = 9.81 # [m/s^2] Acceleration of gravity. KC = 1.04 # [-] Wing with variable sweep (1.0 otherwhise). if TURBOPROP: C = -0.05 # [-] General aviation twin turboprop if fuse_length < 15.00: A = 0.96 elif fuse_length < 30.00: A = 1.07 else: A = 1.0 else: C = -0.08 # [-] General aviation twin engines if fuse_length < 30.00: A = 1.45 elif fuse_length < 35.00: A = 1.63 elif fuse_length < 60.00: if wing_span > 61: A = 1.63 else: A = 1.57 else: A = 1.63 oem = round((A * KC * (mtom*G)**(C)) * mtom,3) return oem
5b9bed8cef76f3c10fed911087727f0164cffab2
32,192
def var_gaussian(r, level=5, modified=False): """ Returns the Parametric Gaussian VaR of a Series or DataFrame """ # compute the Z score assuming it was Gaussian z = norm.ppf(level/100) if modified: # modify the Z score based on observed skewness and kurtosis s = skewness(r) k = kurtosis(r) z = (z + (z**2 - 1) * s/6 + (z**3 - 3*z) * (k-3)/24 - (2*z**3 - 5*z) * (s**2)/36 ) return -(r.mean() + z*r.std(ddof=0))
18d3b1ee2228fafaaf977b216245c8217e77396b
32,193
def grid_search_serial(data, greens, misfit, grid): """ Grid search over moment tensors. For each moment tensor in grid, generates synthetics and evaluates data misfit """ results = np.zeros(grid.size) count = 0 for mt in grid: print grid.index for key in data: results[count] += misfit[key](data[key], greens[key], mt) count += 1 return results
fa0a2c19cfbfa685d59f3effea7b3f7478999f88
32,194
def getSqTransMoment(system): """//Input SYSTEM is a string with both the molecular species AND the band "system" // Electronic transition moment, Re, needed for "Line strength", S = |R_e|^2*q_v'v" or just |R_e|^2 // //Allen's Astrophysical quantities, 4.12.2 - 4.13.1 // // ROtational & vibrational constants for TiO states:, p. 87, Table 4.17""" #// Square electronic transition moment, |Re|^2, #// needed for "Line strength", S = |R_e|^2*q_v'v" or just |R_e|^2 #// // //Allen's Astrophysical quantities, 4.12.2 - 4.13.1 #// As of Feb 2017 - try the band-head value R_00^2 from last column of table: RSqu = 0.0 #//default initialization #TiO alpha system if ("TiO_C3Delta_X3Delta" == system): RSqu = 0.84 #TiO beta system if ("TiO_c1Phi_a1Delta" == system): RSqu = 4.63 #TiO gamma system if ("TiO_A3Phi_X3Delta" == system): RSqu = 5.24 #CH A^2Delta_X^2Pi system - "G band" at 4300 A if ("CH_A2Delta_X2Pi" == system): RSqu = 0.081 #mean of two values given #// return RSqu
19c5311f7d8fde4bb834d809fd2f6ed7dd2c036e
32,195
def volumes(assets, start, end, frequency='daily', symbol_reference_date=None, start_offset=0, use_amount=False): """ 获取资产期间成交量(或成交额) Parameters ---------- assets (int/str/Asset or iterable of same) Identifiers for assets to load. Integers are interpreted as sids. Strings are interpreted as symbols. start (str or pd.Timestamp) Start date of data to load. end (str or pd.Timestamp) End date of data to load. frequency ({'minute', 'daily'}, optional) Frequency at which to load data. Default is ‘daily’. symbol_reference_date (pd.Timestamp, optional) Date as of which to resolve strings as tickers. Default is the current day. start_offset (int, optional) Number of periods before start to fetch. Default is 0. This is most often useful for calculating returns. use_amount:bool 是否使用成交额字段。默认为否。 如使用成交额,则读取期间成交额数据。 Returns: volumes (pd.Series or pd.DataFrame) Pandas object containing volumes for the requested asset(s) and dates. Data is returned as a pd.Series if a single asset is passed. Data is returned as a pd.DataFrame if multiple assets are passed. """ field = 'amount' if use_amount else 'volume' return prices(assets, start, end, frequency, field, symbol_reference_date, start_offset)
e2e0a7d6bd8b659e070299d00699d8cae6ed3c9f
32,196
def qipy_action(cd_to_tmpdir): """ QiPy Action """ return QiPyAction()
7c6d828c4baf29d2f457f02b0b54e6c967d96cb3
32,198
def vectorized_range(start, end): """ Return an array of NxD, iterating from the start to the end""" N = int(np.max(end - start)) + 1 idxes = np.floor(np.arange(N) * (end - start)[:, None] / N + start[:, None]).astype('int') return idxes
cef2304639dbac3c1a1dfbd9ae928f813bd65b05
32,200
import random def stratified(W, M): """Stratified resampling. """ su = (random.rand(M) + np.arange(M)) / M return inverse_cdf(su, W)
4f1ceb6840240178df312fee266fe612abb3193f
32,201
def is_configured(): """Return if Azure account is configured.""" return False
5662656b513330e0a05fa25decc03c04b5f367fa
32,202
def box_strings(*strings: str, width: int = 80) -> str: """Centre-align and visually box some strings. Args: *strings (str): Strings to box. Each string will be printed on its own line. You need to ensure the strings are short enough to fit in the box (width-6) or the results will not be as intended. width (int, optional): Width of the box. Defaults to 80. Returns: str: The strings, centred and surrounded by a border box. """ lines = ["+" + "-"*(width-2) + "+", "|" + " "*(width-2) + "|"] lines.extend(f'| {string.center(width-6)} |' for string in strings) lines.extend(lines[:2][::-1]) return "\n".join(lines)
b47aaf020cf121b54d2b588bdec3067a3b83fd27
32,203
import traceback def exceptions(e): """This exceptions handler manages Flask/Werkzeug exceptions. For Renku exception handlers check ``service/decorators.py`` """ # NOTE: Capture werkzeug exceptions and propagate them to sentry. capture_exception(e) # NOTE: Capture traceback for dumping it to the log. tb = traceback.format_exc() if hasattr(e, "code") and e.code == 404: service_log.error( "{} {} {} {} 404 NOT FOUND\n{}".format( request.remote_addr, request.method, request.scheme, request.full_path, tb ) ) return error_response(HTTP_SERVER_ERROR - e.code, e.name) if hasattr(e, "code") and e.code >= 500: service_log.error( "{} {} {} {} 5xx INTERNAL SERVER ERROR\n{}".format( request.remote_addr, request.method, request.scheme, request.full_path, tb ) ) return error_response(HTTP_SERVER_ERROR - e.code, e.name) # NOTE: Werkzeug exceptions should be covered above, following line is for unexpected HTTP server errors. return error_response(HTTP_SERVER_ERROR, str(e))
574c97b301f54785ae30dbfc3cc5176d5352cb82
32,204
import torch def top_k_top_p_filtering(logits, top_k, top_p, filter_value=-float("Inf")): """ top_k或top_p解码策略,仅保留top_k个或累积概率到达top_p的标记,其他标记设为filter_value,后续在选取标记的过程中会取不到值设为无穷小。 Args: logits: 预测结果,即预测成为词典中每个词的分数 top_k: 只保留概率最高的top_k个标记 top_p: 只保留概率累积达到top_p的标记 filter_value: 过滤标记值 Returns: """ # logits的维度必须为2,即size:[batch_size, vocab_size] assert logits.dim() == 2 # 获取top_k和字典大小中较小的一个,也就是说,如果top_k大于字典大小,则取字典大小个标记 top_k = min(top_k, logits[0].size(-1)) # 如果top_k不为0,则将在logits中保留top_k个标记 if top_k > 0: # 由于有batch_size个预测结果,因此对其遍历,选取每个预测结果的top_k标记 for logit in logits: indices_to_remove = logit < torch.topk(logit, top_k)[0][..., -1, None] logit[indices_to_remove] = filter_value # 如果top_p不为0,则将在logits中保留概率值累积达到top_p的标记 if top_p > 0.0: # 对logits进行递减排序 sorted_logits, sorted_indices = torch.sort(logits, descending=True, dim=-1) # 对排序后的结果使用softmax归一化,再获取累积概率序列 # 例如:原始序列[0.1, 0.2, 0.3, 0.4],则变为:[0.1, 0.3, 0.6, 1.0] cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1) # 删除累积概率高于top_p的标记 sorted_indices_to_remove = cumulative_probs > top_p # 将索引向右移动,使第一个标记也保持在top_p之上 sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone() sorted_indices_to_remove[..., 0] = 0 for index, logit in enumerate(logits): # 由于有batch_size个预测结果,因此对其遍历,选取每个预测结果的累积概率达到top_p的标记 indices_to_remove = sorted_indices[index][sorted_indices_to_remove[index]] logit[indices_to_remove] = filter_value return logits
74cf4a6cf4622ad1c9b124089cd84ddb07bdb7be
32,205
def get_alb(alb_name, aws_auth_cred): """ Find and return loadbalancers of mentioned name Args: alb_name (str): Load balancer name aws_auth (dict): Dict containing AWS credentials Returns: alb (dict): Loadbalancer details """ client = get_elbv2_client(aws_auth_cred) try: response = client.describe_load_balancers(Names=[alb_name]) albs = response['LoadBalancers'] return albs.pop() if len(albs) else None except: return None
a31ae3067d96008622b43c57ffd1b0de74eceaa0
32,206
def align_left_position(anchor, size, alignment, margin): """Find the position of a rectangle to the left of a given anchor. :param anchor: A :py:class:`~skald.geometry.Rectangle` to anchor the rectangle to. :param size: The :py:class:`~skald.geometry.Size` of the rectangle. :param alignment: The :py:class:`~skald.definitions.Alignment` of the rectangle. :param margin: The margin, in pixels, the rectangle must have from the anchor. """ x = anchor.left - size.width - margin y = vertical_align(anchor, size, alignment) return Point(x=x, y=y)
2af1c6175960313958cc51d0180ebc4f6ed9dc41
32,207
def quickdraw_to_linestring(qd_image): """Returns a Shapely MultiLineString for the provided quickdraw image. This MultiLineString can be passed to vsketch """ linestrings = [] for i in range(0, len(qd_image["image"])): line = zip(qd_image["image"][i][0], qd_image["image"][i][1]) linestrings.append(tuple(line)) return MultiLineString(linestrings)
39957b9a36a59b33a2fb5abc91f7479c946515a2
32,208
import functools def build(image_resizer_config): """Builds callable for image resizing operations. Args: image_resizer_config: image_resizer.proto object containing parameters for an image resizing operation. Returns: image_resizer_fn: Callable for image resizing. This callable always takes a rank-3 image tensor (corresponding to a single image) and returns a rank-3 image tensor, possibly with new spatial dimensions. Raises: ValueError: if `image_resizer_config` is of incorrect type. ValueError: if `image_resizer_config.image_resizer_oneof` is of expected type. ValueError: if min_dimension > max_dimension when keep_aspect_ratio_resizer is used. """ if not isinstance(image_resizer_config, image_resizer_pb2.ImageResizer): raise ValueError('image_resizer_config not of type ' 'image_resizer_pb2.ImageResizer.') if image_resizer_config.WhichOneof( 'image_resizer_oneof') == 'keep_aspect_ratio_resizer': keep_aspect_ratio_config = image_resizer_config.keep_aspect_ratio_resizer if not (keep_aspect_ratio_config.min_dimension <= keep_aspect_ratio_config.max_dimension): raise ValueError('min_dimension > max_dimension') return functools.partial( preprocessor.resize_to_range, min_dimension=keep_aspect_ratio_config.min_dimension, max_dimension=keep_aspect_ratio_config.max_dimension) if image_resizer_config.WhichOneof( 'image_resizer_oneof') == 'fixed_shape_resizer': fixed_shape_resizer_config = image_resizer_config.fixed_shape_resizer return functools.partial(preprocessor.resize_image, new_height=fixed_shape_resizer_config.height, new_width=fixed_shape_resizer_config.width) raise ValueError('Invalid image resizer option.')
75df1c37397e88322113aa8822d60053ae54981d
32,210
from typing import Optional from typing import Tuple def plotly_protein_structure_graph( G: nx.Graph, plot_title: Optional[str] = None, figsize: Tuple[int, int] = (620, 650), node_alpha: float = 0.7, node_size_min: float = 20.0, node_size_multiplier: float = 20.0, label_node_ids: bool = True, node_colour_map=plt.cm.plasma, edge_color_map=plt.cm.plasma, colour_nodes_by: str = "degree", colour_edges_by: str = "kind", ) -> go.Figure: """ Plots protein structure graph using plotly. :param G: nx.Graph Protein Structure graph to plot :type G: nx.Graph :param plot_title: Title of plot, defaults to None :type plot_title: str, optional :param figsize: Size of figure, defaults to (620, 650) :type figsize: Tuple[int, int] :param node_alpha: Controls node transparency, defaults to 0.7 :type node_alpha: float :param node_size_min: Specifies node minimum size :type node_size_min: float :param node_size_multiplier: Scales node size by a constant. Node sizes reflect degree. :type node_size_multiplier: float :param label_node_ids: bool indicating whether or not to plot node_id labels :type label_node_ids: bool :param node_colour_map: colour map to use for nodes :type node_colour_map: plt.cm :param edge_color_map: colour map to use for edges :type edge_color_map: plt.cm :param colour_nodes_by: Specifies how to colour nodes. "degree", "seq_position" or a node feature :type colour_edges_by: str :param colour_edges_by: Specifies how to colour edges. Currently only "kind" is supported :type colour_nodes_by: str :returns: Plotly Graph Objects plot :rtype: go.Figure """ # Get Node Attributes pos = nx.get_node_attributes(G, "coords") # Get node colours node_colors = colour_nodes( G, colour_map=node_colour_map, colour_by=colour_nodes_by ) edge_colors = colour_edges( G, colour_map=edge_color_map, colour_by=colour_edges_by ) # 3D network plot x_nodes = [] y_nodes = [] z_nodes = [] node_sizes = [] node_labels = [] # Loop on the pos dictionary to extract the x,y,z coordinates of each node for i, (key, value) in enumerate(pos.items()): x_nodes.append(value[0]) y_nodes.append(value[1]) z_nodes.append(value[2]) node_sizes.append(node_size_min + node_size_multiplier * G.degree[key]) if label_node_ids: node_labels.append(list(G.nodes())[i]) nodes = go.Scatter3d( x=x_nodes, y=y_nodes, z=z_nodes, mode="markers", marker={ "symbol": "circle", "color": node_colors, "size": node_sizes, "opacity": node_alpha, }, text=list(G.nodes()), hoverinfo="text+x+y+z", ) # Loop on the list of edges to get the x,y,z, coordinates of the connected nodes # Those two points are the extrema of the line to be plotted x_edges = [] y_edges = [] z_edges = [] for node_a, node_b in G.edges(data=False): x_edges.extend([pos[node_a][0], pos[node_b][0], None]) y_edges.extend([pos[node_a][1], pos[node_b][1], None]) z_edges.extend([pos[node_a][2], pos[node_b][2], None]) axis = dict( showbackground=False, showline=False, zeroline=False, showgrid=False, showticklabels=False, title="", ) edges = go.Scatter3d( x=x_edges, y=y_edges, z=z_edges, mode="lines", line={"color": edge_colors, "width": 10}, text=[ " / ".join(list(edge_type)) for edge_type in nx.get_edge_attributes(G, "kind").values() ], hoverinfo="text", ) fig = go.Figure( data=[nodes, edges], layout=go.Layout( title=plot_title, width=figsize[0], height=figsize[1], showlegend=False, scene=dict( xaxis=dict(axis), yaxis=dict(axis), zaxis=dict(axis), ), margin=dict(t=100), ), ) return fig
4aae1ce763daa06627fe43e31780fa61cd1886a4
32,211
def mag_scale_rel_to_hazardlib(mag_scale_rel, use_default=False): """ Returns the magnitude scaling relation in a format readable by openquake.hazardlib """ if isinstance(mag_scale_rel, BaseMSR): return mag_scale_rel elif isinstance(mag_scale_rel, str): if not mag_scale_rel in SCALE_RELS.keys(): raise ValueError('Magnitude scaling relation %s not supported!' % mag_scale_rel) else: return SCALE_RELS[mag_scale_rel]() else: if use_default: # Returns the Wells and Coppersmith string return WC1994() else: raise ValueError('Magnitude Scaling Relation Not Defined!')
7db46083d4c05e3f53b4a5d064c923937bb5fe2a
32,213
import regex import tokenize def __get_words(text, by_spaces): """ Helper function which splits the given text string into words. If by_spaces is false, then text like '01-02-2014' will be split into 3 separate words. For backwards compatibility, this is the default for all expression functions. :param text: the text to split :param by_spaces: whether words should be split only by spaces or by punctuation like '-', '.' etc """ if by_spaces: splits = regex.split(r'\s+', text, flags=regex.MULTILINE | regex.UNICODE | regex.V0) return [split for split in splits if split] # return only non-empty else: return tokenize(text)
289d7cc58d165355a4e5a25db016dbe2e6aa74ec
32,215
from typing import Any def gera_paragrafo(data: pd.DataFrame) -> pd.DataFrame: """docstring for gera_paragrafo""" data[["div_sup", "par"]] = data.location.str.split(".", n=1, expand=True) data.dropna(inplace=True) j: Any = data.groupby(["author", "text", "file", "div_sup", "par", "genero"]).agg( {"lemma": lambda x: " ".join(x)} ) i: Any = j.reset_index() return i.loc[:, :]
04285d5df307e87b8adc389cf2f03d9ef9b44276
32,216
def _parse_boolean(xml_boolean): """Converts strings "true" and "false" from XML files to Python bool""" if xml_boolean is not None: assert xml_boolean in ["true", "false"], \ "The boolean string must be \"true\" or \"false\"" return {"true": True, "false": False}[xml_boolean]
6d9d1b617f8935d1684bd24bbea06d00ca2a5b4a
32,217
def to_heterogeneous(G, ntypes, etypes, ntype_field=NTYPE, etype_field=ETYPE, metagraph=None): """Convert a homogeneous graph to a heterogeneous graph and return. The input graph should have only one type of nodes and edges. Each node and edge stores an integer feature as its type ID (specified by :attr:`ntype_field` and :attr:`etype_field`). DGL uses it to retrieve the type names stored in the given :attr:`ntypes` and :attr:`etypes` arguments. The function will automatically distinguish edge types that have the same given type IDs but different src and dst type IDs. For example, it allows both edges A and B to have the same type ID 0, but one has (0, 1) and the other as (2, 3) as the (src, dst) type IDs. In this case, the function will "split" edge type 0 into two types: (0, ty_A, 1) and (2, ty_B, 3). In another word, these two edges share the same edge type name, but can be distinguished by an edge type triplet. The function stores the node and edge IDs in the input graph using the ``dgl.NID`` and ``dgl.EID`` names in the ``ndata`` and ``edata`` of the resulting graph. It also copies any node/edge features from :attr:`G` to the returned heterogeneous graph, except for reserved fields for storing type IDs (``dgl.NTYPE`` and ``dgl.ETYPE``) and node/edge IDs (``dgl.NID`` and ``dgl.EID``). Parameters ---------- G : DGLGraph The homogeneous graph. ntypes : list[str] The node type names. etypes : list[str] The edge type names. ntype_field : str, optional The feature field used to store node type. (Default: ``dgl.NTYPE``) etype_field : str, optional The feature field used to store edge type. (Default: ``dgl.ETYPE``) metagraph : networkx MultiDiGraph, optional Metagraph of the returned heterograph. If provided, DGL assumes that G can indeed be described with the given metagraph. If None, DGL will infer the metagraph from the given inputs, which could be costly for large graphs. Returns ------- DGLGraph A heterogeneous graph. Notes ----- The returned node and edge types may not necessarily be in the same order as ``ntypes`` and ``etypes``. Examples -------- The following example uses PyTorch backend. >>> import dgl >>> import torch >>> hg = dgl.heterograph({ ... ('user', 'develops', 'activity'): (torch.tensor([0, 1]), torch.tensor([1, 2])), ... ('developer', 'develops', 'game'): (torch.tensor([0, 1]), torch.tensor([0, 1])) ... }) >>> print(hg) Graph(num_nodes={'activity': 3, 'developer': 2, 'game': 2, 'user': 2}, num_edges={('developer', 'develops', 'game'): 2, ('user', 'develops', 'activity'): 2}, metagraph=[('developer', 'game', 'develops'), ('user', 'activity', 'develops')]) We first convert the heterogeneous graph to a homogeneous graph. >>> g = dgl.to_homogeneous(hg) >>> print(g) Graph(num_nodes=9, num_edges=4, ndata_schemes={'_TYPE': Scheme(shape=(), dtype=torch.int64), '_ID': Scheme(shape=(), dtype=torch.int64)} edata_schemes={'_TYPE': Scheme(shape=(), dtype=torch.int64), '_ID': Scheme(shape=(), dtype=torch.int64)}) >>> g.ndata {'_TYPE': tensor([0, 0, 0, 1, 1, 2, 2, 3, 3]), '_ID': tensor([0, 1, 2, 0, 1, 0, 1, 0, 1])} Nodes 0, 1, 2 for 'activity', 3, 4 for 'developer', 5, 6 for 'game', 7, 8 for 'user' >>> g.edata {'_TYPE': tensor([0, 0, 1, 1]), '_ID': tensor([0, 1, 0, 1])} Edges 0, 1 for ('developer', 'develops', 'game'), 2, 3 for ('user', 'develops', 'activity') Now convert the homogeneous graph back to a heterogeneous graph. >>> hg_2 = dgl.to_heterogeneous(g, hg.ntypes, hg.etypes) >>> print(hg_2) Graph(num_nodes={'activity': 3, 'developer': 2, 'game': 2, 'user': 2}, num_edges={('developer', 'develops', 'game'): 2, ('user', 'develops', 'activity'): 2}, metagraph=[('developer', 'game', 'develops'), ('user', 'activity', 'develops')]) Retrieve the original node/edge IDs. >>> hg_2.ndata[dgl.NID] {'activity': tensor([0, 1, 2]), 'developer': tensor([3, 4]), 'game': tensor([5, 6]), 'user': tensor([7, 8])} >>> hg_2.edata[dgl.EID] {('developer', 'develops', 'game'): tensor([0, 1]), ('user', 'develops', 'activity'): tensor([2, 3])} See Also -------- to_homogeneous """ if (hasattr(G, 'ntypes') and len(G.ntypes) > 1 or hasattr(G, 'etypes') and len(G.etypes) > 1): raise DGLError('The input graph should be homogeneous and have only one ' ' type of nodes and edges.') num_ntypes = len(ntypes) idtype = G.idtype device = G.device ntype_ids = F.asnumpy(G.ndata[ntype_field]) etype_ids = F.asnumpy(G.edata[etype_field]) # relabel nodes to per-type local IDs ntype_count = np.bincount(ntype_ids, minlength=num_ntypes) ntype_offset = np.insert(np.cumsum(ntype_count), 0, 0) ntype_ids_sortidx = np.argsort(ntype_ids) ntype_local_ids = np.zeros_like(ntype_ids) node_groups = [] for i in range(num_ntypes): node_group = ntype_ids_sortidx[ntype_offset[i]:ntype_offset[i+1]] node_groups.append(node_group) ntype_local_ids[node_group] = np.arange(ntype_count[i]) src, dst = G.all_edges(order='eid') src = F.asnumpy(src) dst = F.asnumpy(dst) src_local = ntype_local_ids[src] dst_local = ntype_local_ids[dst] # a 2D tensor of shape (E, 3). Each row represents the (stid, etid, dtid) tuple. edge_ctids = np.stack([ntype_ids[src], etype_ids, ntype_ids[dst]], 1) # infer metagraph and canonical edge types # No matter which branch it takes, the code will generate a 2D tensor of shape (E_m, 3), # E_m is the set of all possible canonical edge tuples. Each row represents the # (stid, dtid, dtid) tuple. We then compute a 2D tensor of shape (E, E_m) using the # above ``edge_ctids`` matrix. Each element i,j indicates whether the edge i is of the # canonical edge type j. We can then group the edges of the same type together. if metagraph is None: canonical_etids, _, etype_remapped = \ utils.make_invmap(list(tuple(_) for _ in edge_ctids), False) etype_mask = (etype_remapped[None, :] == np.arange(len(canonical_etids))[:, None]) else: ntypes_invmap = {nt: i for i, nt in enumerate(ntypes)} etypes_invmap = {et: i for i, et in enumerate(etypes)} canonical_etids = [] for i, (srctype, dsttype, etype) in enumerate(metagraph.edges(keys=True)): srctype_id = ntypes_invmap[srctype] etype_id = etypes_invmap[etype] dsttype_id = ntypes_invmap[dsttype] canonical_etids.append((srctype_id, etype_id, dsttype_id)) canonical_etids = np.asarray(canonical_etids) etype_mask = (edge_ctids[None, :] == canonical_etids[:, None]).all(2) edge_groups = [etype_mask[i].nonzero()[0] for i in range(len(canonical_etids))] data_dict = dict() canonical_etypes = [] for i, (stid, etid, dtid) in enumerate(canonical_etids): src_of_etype = src_local[edge_groups[i]] dst_of_etype = dst_local[edge_groups[i]] canonical_etypes.append((ntypes[stid], etypes[etid], ntypes[dtid])) data_dict[canonical_etypes[-1]] = \ (src_of_etype, dst_of_etype) hg = heterograph(data_dict, {ntype: count for ntype, count in zip(ntypes, ntype_count)}, idtype=idtype, device=device) ntype2ngrp = {ntype : node_groups[ntid] for ntid, ntype in enumerate(ntypes)} # features for key, data in G.ndata.items(): if key in [ntype_field, NID]: continue for ntid, ntype in enumerate(hg.ntypes): rows = F.copy_to(F.tensor(ntype2ngrp[ntype]), F.context(data)) hg._node_frames[ntid][key] = F.gather_row(data, rows) for key, data in G.edata.items(): if key in [etype_field, EID]: continue for etid in range(len(hg.canonical_etypes)): rows = F.copy_to(F.tensor(edge_groups[etid]), F.context(data)) hg._edge_frames[hg.get_etype_id(canonical_etypes[etid])][key] = \ F.gather_row(data, rows) # Record the original IDs of the nodes/edges for ntid, ntype in enumerate(hg.ntypes): hg._node_frames[ntid][NID] = F.copy_to(F.tensor(ntype2ngrp[ntype]), device) for etid in range(len(hg.canonical_etypes)): hg._edge_frames[hg.get_etype_id(canonical_etypes[etid])][EID] = \ F.copy_to(F.tensor(edge_groups[etid]), device) return hg
f1792d78e4b94c5f3d4f72ef6cfcbcb14c7d1158
32,218
def Solution(image): """ input: same size (256*256) rgb image output: the label of the image "l" -> left "m" -> middle "r" -> right "o" -> other(NO target) if no target detected, return "o", which is the initial value """ #initial two point for locatate the target area topLeft = [0,0] bottomRight = [0,0] pred_label = "o" #initial the recognition label #make image to gray thresh = 200 image = cv2.cvtColor(image,cv2.COLOR_BGR2GRAY) image = cv2.threshold(image, thresh, 255, cv2.THRESH_BINARY)[1] #find contours in grey image C,h= cv2.findContours(image, cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE) if len(C) > 0: for i in range(len(C)): c = C[i] area = cv2.contourArea(c) rect = cv2.minAreaRect(c) box = cv2.boxPoints(rect) # convert all coordinates floating point values to int box = np.int0(box) #limit the area we interested if area>500: topLeft = [box[1][0],box[1][1]] bottomRight = [box[3][0],box[3][1]] #cut the traffic sign with slight remnants around cut = image[topLeft[1]:bottomRight[1],topLeft[0]:bottomRight[0]] Ishape = cut.shape #limit the area we interested again if Ishape[0] <30 or Ishape[1] < 40: continue else: #use two different template to match #each return two position with is the topleft and the bottomright of the processed image #t1.jpg is the x-like character topleft_1,bottomright_1 = Matcher(cut,"./template/t2.jpg") topleft_2,bottomright_2= Matcher(cut,"./template/t1.jpg") #if not none if topleft_1 and topleft_2 and bottomright_1 and bottomright_2: pred_label = helper(topleft_1,bottomright_1,topleft_2,bottomright_2,Ishape=Ishape) return pred_label
11fb49c96cb7cbfdfb522d6794f148cd6354dcf9
32,219
def index_to_tag(v, index_tag): """ :param v: vector :param index_tag: :return: """ idx = np.nonzero(v) tags = [index_tag[i] for i in idx[0]] return ' '.join(tags)
ebf30632bbf8a7b399461b191c33f345f04c4cc2
32,220
def first_phrase_span(utterance, phrases): """Returns the span (start, end+1) of the first phrase from the given list that is found in the utterance. Returns (-1, -1) if no phrase is found. :param utterance: The utterance to search in :param phrases: a list of phrases to be tried (in the given order) :rtype: tuple """ for phrase in phrases: pos = phrase_pos(utterance, phrase) if pos != -1: return pos, pos + len(phrase) return -1, -1
f3be7bd976c60467bcf51edfb15d3736e00568a8
32,222
from datetime import datetime def parse_date(value): """Parse a string and return a datetime.date. Raise ValueError if the input is well formatted but not a valid date. Return None if the input isn't well formatted. """ match = date_re.match(value) if match: kw = {k: int(v) for k, v in list(match.groupdict().items())} return datetime.date(**kw)
b32cc64bab460e1384492b7cb694b8263431625f
32,223
import scipy def construct_Dfunc(delays, plot=False): """Return interpolation functions fD(t) and fdD(t). fD(t) is the delay between infection and reporting at reporting time t. fdD(t) is its derivative. Parameter: - delays: tuples (time_report, delay_days) - plot: whether to generate a plot. Return: - fD: interpolation function for D(t) with t in nanoseconds. - fdD: interpolation function for dD/dt. (taking time in ns but returning dD per day.) - delay_str: delay string e.g. '7' or '7-9' """ ts0 = [float(pd.to_datetime(x[0]).to_datetime64()) for x in delays] Ds0 = [float(x[1]) for x in delays] if len(delays) == 1: # prevent interp1d complaining. ts0 = [ts0[0], ts0[0]+1e9] Ds0 = np.concatenate([Ds0, Ds0]) # delay function as linear interpolation; # nanosecond timestamps as t value. fD0 = scipy.interpolate.interp1d( ts0, Ds0, kind='linear', bounds_error=False, fill_value=(Ds0[0], Ds0[-1]) ) # construct derivative dD/dt, smoothen out day = 1e9*86400 # one day in nanoseconds ts = np.arange(ts0[0]-3*day, ts0[-1]+3.01*day, day) dDs = (fD0(ts+3*day) - fD0(ts-3*day))/6 fdD = scipy.interpolate.interp1d( ts, dDs, 'linear', bounds_error=False, fill_value=(dDs[0], dDs[-1])) # reconstruct D(t) to be consistent with the smoothened derivative. Ds = scipy.integrate.cumtrapz(dDs, ts/day, initial=0) + Ds0[0] fD = scipy.interpolate.interp1d( ts, Ds, 'linear', bounds_error=False, fill_value=(Ds[0], Ds[-1])) Dmin, Dmax = np.min(Ds0), np.max(Ds0) if Dmin == Dmax: delay_str = f'{Dmin:.0f}' else: delay_str = f'{Dmin:.0f}-{Dmax:.0f}' if plot: fig, ax = plt.subplots(1, 1, figsize=(7, 3), tight_layout=True) tsx = np.linspace( ts[0], int(pd.to_datetime('now').to_datetime64()) ) ax.plot(pd.to_datetime(tsx.astype(int)), fD(tsx)) ax.set_ylabel('Vertraging (dagen)') tools.set_xaxis_dateformat(ax, 'Rapportagedatum') fig.canvas.set_window_title('Vertraging infectiedatum - rapportage') fig.show() return fD, fdD, delay_str
ee6acbc265d8020815ac2e9cd77fe74a6ff9d5f7
32,224
def deimmunization_rate_80(): """ Real Name: b'deimmunization rate 80' Original Eqn: b'Recovered 80/immunity time 80' Units: b'person/Day' Limits: (None, None) Type: component b'' """ return recovered_80() / immunity_time_80()
9221343889ba05d93671102e72ef70a5efd40a5a
32,225
def connect_to_lightsail(): """ Uses Paramiko to create a connection to Brendan's instance. Relies on authetication information from a JSON file. :return SFTP_Client: """ return open_sftp_from_json(JSON_PRIVATE_DIR / 'lightsail_server_info.json')
fb0f74fe58e5a99ca93737415b931018be4d67d7
32,226
def coleman_operator(c, cp): """ The approximate Coleman operator. Iteration with this operator corresponds to time iteration on the Euler equation. Computes and returns the updated consumption policy c. The array c is replaced with a function cf that implements univariate linear interpolation over the asset grid for each possible value of z. Parameters ---------- c : array_like(float) A NumPy array of dim len(cp.asset_grid) times len(cp.z_vals) cp : ConsumerProblem An instance of ConsumerProblem that stores primitives Returns ------- array_like(float) The updated policy, where updating is by the Coleman operator. """ # === simplify names, set up arrays === # R, Pi, beta, du, b = cp.R, cp.Pi, cp.beta, cp.du, cp.b asset_grid, z_vals = cp.asset_grid, cp.z_vals z_size = len(z_vals) gamma = R * beta vals = np.empty(z_size) # === linear interpolation to get consumption function === # def cf(a): """ The call cf(a) returns an array containing the values c(a, z) for each z in z_vals. For each such z, the value c(a, z) is constructed by univariate linear approximation over asset space, based on the values in the array c """ for i in range(z_size): vals[i] = np.interp(a, asset_grid, c[:, i]) return vals # === solve for root to get Kc === # Kc = np.empty(c.shape) for i_a, a in enumerate(asset_grid): for i_z, z in enumerate(z_vals): def h(t): expectation = np.dot(du(cf(R * a + z - t)), Pi[i_z, :]) return du(t) - max(gamma * expectation, du(R * a + z + b)) Kc[i_a, i_z] = brentq(h, 1e-8, R * a + z + b) return Kc
dee76b425b5a81799fd1677f2b9ca9889f4a813c
32,227
def generate_scanset_metadata( image_set_dictionary, html_base_path, session_id ): """This is passed a set of NII images, their PNG equilvalents, and an html base path, and then it generates the metadata needed """ cur_subj_info = {} """need to think through the data structure a bit more.... but can always adjust later """ cur_subj_info['session_id'] = session_id #cur_subj_info['img_id'] = counter cur_subj_info['subject_id'] = session_id.split('/')[0] global counter nii_image_dict = image_set_dictionary['nii_images'] png_image_dict = image_set_dictionary['png_image_set'] scan_metadata = {} for scan in nii_image_dict: print "propcessing ", scan nii_img = nii_image_dict[scan]['base_image'][0] print nii_img # if 'mask' not in scan: # if 'mask' not in scan: # nii_img = nii_image_dict[scan]['base_image'][0] # else: # continue # print "HI DAVE!" if not nii_img: print "did not find base image for",nii_image_dict continue png_img = html_path_root+ png_image_dict[scan] print nii_img,"is being passed" (dim_x, dim_y, dim_z, vox_size_x, vox_size_y, vox_size_z, image_orientation )= igcf.get_nii_image_info(nii_img) image_info = Image.open(png_img) width, height = image_info.size #print width,height,dim_x,dim_y,dim_z,vox_size_x,vox_size_y,vox_size_z scan_info = {} scan_info['slice_width'] = dim_x scan_info['slice_height'] = dim_y scan_info['num_slices'] = dim_z scan_info['main_image_width'] = width scan_info['main_image_height'] = height scan_info['nii_image'] = nii_img scan_info['base_url'] = png_img.replace(html_path_root,'') scan_metadata[scan] = scan_info ### There can be one or MORE masks for a given base image... so I will return a list of #dictionaries.. mask_list = nii_image_dict[scan]['masks'] mask_id = 0 mask_info_list = [] for mask in mask_list: cur_mask_info = {} ### I'll call the mask by it's basename print mask,"was passed..." mask_base = os.path.basename(mask) nii_img = nii_image_dict[scan]['masks'][mask_id] print nii_image_dict,'mask_id is',mask_id print "nii maeg found should be",nii_img if not nii_img: print "did not find a valid mask image for ",nii_image_dict continue cur_mask_info['name'] = mask_base cur_mask_info['id'] = mask_id cur_mask_info['nii_file'] = nii_img ## NEED TO ADD IN THE MASK_URL # cur_mask_info['mask_url'] = print png_image_dict png_img = html_path_root+ png_image_dict[scan] print nii_img,"is being passed" cur_mask_info['mask_url'] = png_img.replace(html_path_root,'') mask_info_list.append( cur_mask_info ) mask_id +=1 # print cur_mask_info cur_subj_info['masks'] = mask_info_list scan_metadata[scan]['masks'] = [ mask_info_list] # print mask_info_list cur_subj_info['image_data'] = scan_metadata counter += 1 return { 'session_name': session_id , 'session_metadata': cur_subj_info }
4fa326018fc64f9ef2f7974d850256fdfa30f8f6
32,228
def read_error_codes(src_root='src/mongo'): """Define callback, call parse_source_files() with callback, save matches to global codes list.""" seen = {} errors = [] dups = defaultdict(list) skips = [] malformed = [] # type: ignore # define validation callbacks def check_dups(assert_loc): """Check for duplicates.""" codes.append(assert_loc) code = assert_loc.code if not code in seen: seen[code] = assert_loc else: if not code in dups: # on first duplicate, add original to dups, errors dups[code].append(seen[code]) errors.append(seen[code]) dups[code].append(assert_loc) errors.append(assert_loc) def validate_code(assert_loc): """Check for malformed codes.""" code = int(assert_loc.code) if code > MAXIMUM_CODE: malformed.append(assert_loc) errors.append(assert_loc) def callback(assert_loc): validate_code(assert_loc) check_dups(assert_loc) parse_source_files(callback, src_root) if "0" in seen: code = "0" bad = seen[code] errors.append(bad) line, col = get_line_and_column_for_position(bad) print("ZERO_CODE:") print(" %s:%d:%d:%s" % (bad.sourceFile, line, col, bad.lines)) for loc in skips: line, col = get_line_and_column_for_position(loc) print("EXCESSIVE SKIPPING OF ERROR CODES:") print(" %s:%d:%d:%s" % (loc.sourceFile, line, col, loc.lines)) for code, locations in list(dups.items()): print("DUPLICATE IDS: %s" % code) for loc in locations: line, col = get_line_and_column_for_position(loc) print(" %s:%d:%d:%s" % (loc.sourceFile, line, col, loc.lines)) for loc in malformed: line, col = get_line_and_column_for_position(loc) print("MALFORMED ID: %s" % loc.code) print(" %s:%d:%d:%s" % (loc.sourceFile, line, col, loc.lines)) return (codes, errors, seen)
46f64798fd3e7010a96e054600557464cf99eade
32,229
def filter_check_vlan_number(value): """ Function to check for a good VLAN number in a template :param value: :return: """ error = f'{value} !!!! possible error the VLAN# should be between 1 and 4096!!!!' if not value: # pylint: disable=no-else-return J2_FILTER_LOGGER.info('filter_check_vlan_number %s', error) return error else: try: if int(value) not in range(1, 4097): # pylint: disable=no-else-return return error else: return value except ValueError as e: # pylint: disable=invalid-name J2_FILTER_LOGGER.info('filter_check_vlan_number %s, caught %s', error, e) return error
6c9e060b13f49048f056b72a6def2d1d15241a74
32,230
def _sanitize(element) -> Gst.Element: """ Passthrough function which sure element is not `None` Returns `Gst.Element` or raises Error """ if element is None: raise Exception("Element is none!") else: return element
f07062474dcf2671cb1c3d13a7e80d9ee96b9878
32,231
import pytz def mean(dt_list): """ .. py:function:: mean(dt_list) Returns the mean datetime from an Iterable collection of datetime objects. Collection can be all naive datetime objects or all datatime objects with tz (if non-naive datetimes are provided, result will be cast to UTC). However, collection cannot be a mix of naive and non-naive datetimes. Can handle micro-second level datetime differences. Can handle Collection of datetime objects with different timezones. Works with lists or pandas.Series. :param collection.Iterable dt_list: Iterable list or Series of datetime objects :return: mean datetime :rtype: datetime.datetime :raises TypeError: if operand is not type Iterable or if operand contains naive and non-naive datetime objects or if result is not type datetime.datetime """ try: list_size = len(dt_list) except TypeError: raise TypeError(_OPER_ERR_MSG + str(dt_list)) if list_size == 1: mean_dt = dt_list[0] elif (list_size == 2) and (dt_list[0] == dt_list[1]): mean_dt = dt_list[0] else: try: if dt_list[0].tzinfo: base_dt = dt.datetime(1970, 1, 1, 0, 0, 0, tzinfo=pytz.utc) else: base_dt = dt.datetime(1970, 1, 1) delta_total = 0 for item in dt_list: delta_total += (item - base_dt).total_seconds() delta = delta_total / float(list_size) mean_dt = base_dt + dt.timedelta(seconds=delta) except TypeError: raise TypeError(_OPER_ERR_MSG + str(dt_list)) except IndexError: raise IndexError(_LEN_ERR_MSG) return validate_dt(mean_dt)
2d56eeea44d2afbf752672abb6870d7045745a0f
32,232
from typing import Optional from typing import Dict def win_get_nonblocking(name: str, src_weights: Optional[Dict[int, float]] = None, require_mutex: bool = False) -> int: """ Passively get the tensor(s) from neighbors' shared window memory into local shared memory, which cannot be accessed in python directly. The win_update function is responsible for fetching that memeory. This is a non-blocking function, which will return without waiting the win_get operation is really finished. Args: name: The unique name to associate the window object. src_weights: A dictionary that maps the source ranks to the weight. Namely, {rank: weight} means get tensor from rank neighbor multipling the weight. If not provided, src_weights will be set as all neighbor ranks defined by virtual topology with weight 1.0. Note src_weights should only contain the in-neighbors only. require_mutex: If set to be true, out-neighbor process's window mutex will be acquired. Returns: A handle to the win_get operation that can be used with `win_poll()` or `win_wait()`. """ function = "bluefog_torch_win_get" src_weights = ({rank: 1.0 for rank in in_neighbor_ranks()} if src_weights is None else src_weights) if not set(src_weights.keys()).issubset(set(in_neighbor_ranks())): raise ValueError( "The key of src_weights should only containranks that " " belong to in-neighbors.") handle = getattr(mpi_lib, function)(name, src_weights, require_mutex) _win_handle_map[handle] = name return handle
a641f963ac3434ece7ded8a642c7833fc8a2b30c
32,233
def parse(file, beautifulsoup=None, makeelement=None, **bsargs): """Parse a file into an ElemenTree using the BeautifulSoup parser. You can pass a different BeautifulSoup parser through the `beautifulsoup` keyword, and a diffent Element factory function through the `makeelement` keyword. By default, the standard ``BeautifulSoup`` class and the default factory of `lxml.html` are used. """ if not hasattr(file, 'read'): file = open(file) root = _parse(file, beautifulsoup, makeelement, **bsargs) return etree.ElementTree(root)
5ccf2bfc8f1d6ec4f83200b250755ab149fd60dd
32,234
def get_L_dashdash_b1_d(L_dashdash_b1_d_t): """ Args: L_dashdash_b1_d_t: 1時間当たりの浴槽水栓湯はり時における太陽熱補正給湯負荷 (MJ/h) Returns: 1日当たりの浴槽水栓湯はり時における太陽熱補正給湯負荷 (MJ/d) """ return np.sum(L_dashdash_b1_d_t.reshape((365, 24)), axis=1)
aa541c5f82aa94c33c65ac264f2df420020ca443
32,235
def split_df(df, index_range, columns, iloc=False): """Split a data frame by selecting from columns a particular range. Args: df (:class:`pd.DataFrame`): Data frame to split. index_range (tuple): Tuple containing lower and upper limit of the range to split the index by. If `index_range = (a, b)`, then `[a, b)` is taken. columns (list[object]): Columns to select. iloc (bool, optional): The index range is the integer location instead of the index value. Defaults to `False`. Returns: tuple[:class:`pd.DataFrame`]: Selected rows from selected columns and the remainder. """ if iloc: inds = np.arange(df.shape[0]) rows = (inds >= index_range[0]) & (inds < index_range[1]) else: rows = (df.index >= index_range[0]) & (df.index < index_range[1]) selected = pd.DataFrame([df[name][rows] for name in columns]).T remainder = pd.DataFrame( [df[name][~rows] for name in columns] + [df[name] for name in set(df.columns) - set(columns)] ).T # Fix order of columns. selected_inds = [i for i, c in enumerate(df.columns) if c in columns] selected = selected.reindex(df.columns[np.array(selected_inds)], axis=1) remainder = remainder.reindex(df.columns, axis=1) return selected, remainder
84e77e60a0f9c73ff3147c3648310875e5b58228
32,236
def basemap_to_tiles(basemap, day=yesterday, **kwargs): """Turn a basemap into a TileLayer object. Parameters ---------- basemap : class:`xyzservices.lib.TileProvider` or Dict Basemap description coming from ipyleaflet.basemaps. day: string If relevant for the chosen basemap, you can specify the day for the tiles in the "%Y-%m-%d" format. Defaults to yesterday's date. kwargs: key-word arguments Extra key-word arguments to pass to the TileLayer constructor. """ if isinstance(basemap, xyzservices.lib.TileProvider): url = basemap.build_url(time=day) elif isinstance(basemap, dict): url = basemap.get("url", "") else: raise ValueError("Invalid basemap type") return TileLayer( url=url, max_zoom=basemap.get('max_zoom', 18), min_zoom=basemap.get('min_zoom', 1), attribution=basemap.get('html_attribution', '') or basemap.get('attribution', ''), name=basemap.get('name', ''), **kwargs )
ccaf3430294216e7015167dad3ef82bee8071192
32,237
def sms_count(request): """Return count of SMSs in Inbox""" sms_count = Messaging.objects.filter(hl_status__exact='Inbox').count() sms_count = sms_count if sms_count else "" return HttpResponse(sms_count)
c445b7c5fd54f632fc6f7c3d0deaeca47c1dd382
32,239
from pathlib import Path import yaml def deserializer(file_name: Path) -> Deserializer: """Load and parse the data deserialize declaration""" with open(file_name) as f: return Deserializer(yaml.load(f, Loader=SafeLoader))
5df5de579e359e7d1658dd00cf279baacb844f1f
32,240
def p2db(a): """Returns decibel of power ratio""" return 10.0*np.log10(a)
5177d9ca5ca0ec749e64ebf3e704cf496fa365db
32,242
def buildDictionary(message): """ counts the occurrence of every symbol in the message and store it in a python dictionary parameter: message: input message string return: python dictionary, key = symbol, value = occurrence """ _dict = dict() for c in message: if c not in _dict.keys(): _dict[c] = 1 else: _dict[c] += 1 return _dict
71b196aaccfb47606ac12242585af4ea2554a983
32,243
import tensorflow as tf from tensorflow.keras.callbacks import TensorBoard, ModelCheckpoint import tensorflow.keras.backend as be def model_fit(mb_query: str, features_dict: dict, target_var: str, model_struct_fn, get_model_sample_fn, existing_models: dict, batch_size: int, epochs: int, patience: int, verbose: int, bias_query: str, model_in: str, model_out: str, out_tensorboard: str, lr: float, iter: int, model_save_dir: str, model_columns: list, target_values: list): """ Fits a Keras model. Self-contained with the idea that it is called as a new process. :param mb_query: query to get the model-build data :param features_dict: dict of features used to build the model structure :param target_var: name of the field that's the dependent variable :param model_struct_fn: function that builds the model structure :param get_model_sample_fn: function that retrieves the model-build data :param existing_models: dict of existing models to run and add to the model-build DataFrame :param batch_size: batch size for model build :param epochs: # of epochs to run :param patience: patience in waiting to see if validation metric does not improve :param verbose: verbosity of .fit (0=quiet, 1=not) :param bias_query: query to calculate initial bias of output layer :param model_in: location of the model (for a warm start) :param model_out: location to store the model :param out_tensorboard: location of tensorboard output :param lr: learning rate :param iter: iteration we're on (for saving the model) :param model_save_dir: where to put the .h5 file :param model_columns: columns of .predict output we're interested in for plotting :param target_values: values of the target feature that correspond to model_columns :return: history dict """ #from muti import tfu commented out 5/1 # model if model_in != '': mod = tf.keras.models.load_model(model_in) be.set_value(mod.optimizer.lr, lr) else: bias, p_df = dq_get_bias(bias_query) mod = model_struct_fn(features_dict, learning_rate=lr, output_bias=bias) print(mod.summary()) # callbacks model_ckpt = ModelCheckpoint(model_out, monitor='val_loss', save_best_only=True) tensorboard = TensorBoard( log_dir=out_tensorboard, histogram_freq=1, write_images=True, embeddings_freq=100 ) early_stopping = tf.keras.callbacks.EarlyStopping( monitor='val_loss', verbose=1, patience=patience, mode='auto', restore_best_weights=True) print('getting data') data_df = get_model_sample_fn(mb_query, existing_models) model_df = data_df.loc[data_df['holdout'] == 0].copy() valid_df = data_df.loc[data_df['holdout'] == 1].copy() print('modeling data set size: {0}'.format(model_df.shape[0])) print('validation data set size: {0}'.format(valid_df.shape[0])) steps_per_epoch = int(model_df.shape[0] / batch_size) model_ds = get_tf_dataset(features_dict, target_var, model_df, batch_size) valid_ds = get_tf_dataset(features_dict, target_var, valid_df, batch_size, repeats=1) print('starting fit') h = mod.fit(model_ds, epochs=epochs, steps_per_epoch=steps_per_epoch, verbose=verbose, callbacks=[tensorboard, model_ckpt, early_stopping], validation_data=valid_ds) save_file = model_save_dir + 'model' + str(iter) + '.h5' mod.save(save_file, overwrite=True, save_format='h5') model_output = mod.predict(valid_ds) valid_df['model'] = get_pred(model_output, model_columns) valid_df['actual'] = valid_df[target_var].isin(target_values).astype(int) title = 'Validation KS<br>After {0} epochs'.format((iter + 1) * epochs) genu.ks_calculate(valid_df['model'], valid_df['actual'], in_browser=True, plot=True, title=title) title = 'Validation Decile Plot<br>After {0} epochs'.format((iter + 1) * epochs) genu.decile_plot(valid_df['model'], valid_df['actual'], title=title, in_browser=True) return h.history
add35320ef1d9f6474f3712f3222d9a5fdbb3185
32,245
def classify_subtrop(storm_type): """ SD purely - yes SD then SS then TS - no SD then TS - no """ if 'SD' in storm_type: if 'SD' in storm_type and True not in np.isin(storm_type,['TD','TS','HU']): return True if 'SS' in storm_type and True not in np.isin(storm_type,['TD','TS','HU']): return True else: return False
abfc8e002e798e5642e2ab4ae38fe0882259d708
32,246
def overridden_settings(settings): """Return a dict of the settings that have been overridden""" settings = Settings(settings) for name, dft_value in iter_default_settings(): value = settings[name] if value != dft_value and value is not None: settings.update(name, value) elif value is None: settings.update(name, dft_value) return settings
ec76feb90dbc97012f84f9ebc75b41131dc925fe
32,247
def ScaleImageToSize(ip, width, height): """Scale image to a specific size using Stephans scaler""" smaller = ip.scale( width, height ); return smaller
9e2ee47ab30bfca70417eafbddd84958cd582618
32,248
import types def retrieve_parent(*, schema: types.Schema, schemas: types.Schemas) -> str: """ Get or check the name of the parent. If x-inherits is True, get the name of the parent. If it is a string, check the parent. Raise InheritanceError if x-inherits is not defined or False. Args: schema: The schema to retrieve the parent for. schemas: All the schemas. Returns: The parent. """ inherits = peek_helper.inherits(schema=schema, schemas=schemas) if inherits is True: return get_parent(schema=schema, schemas=schemas) if isinstance(inherits, str): if not check_parent(schema=schema, parent_name=inherits, schemas=schemas): raise exceptions.InheritanceError( f"The x-inherits value {inherits} is not a valid parent." ) return inherits raise exceptions.InheritanceError( "Cannot retrieve the name of the parent if x-inherits is not defined or False." )
4f6fc55af7b998e02b108d1bc5fea61f2afe82f1
32,249
from .translation.vensim.vensim2py import translate_vensim def read_vensim(mdl_file, data_files=None, initialize=True, missing_values="warning", split_views=False, encoding=None, **kwargs): """ Construct a model from Vensim `.mdl` file. Parameters ---------- mdl_file : str The relative path filename for a raw Vensim `.mdl` file. initialize: bool (optional) If False, the model will not be initialize when it is loaded. Default is True. data_files: list or str or None (optional) If given the list of files where the necessary data to run the model is given. Default is None. missing_values : str ("warning", "error", "ignore", "keep") (optional) What to do with missing values. If "warning" (default) shows a warning message and interpolates the values. If "raise" raises an error. If "ignore" interpolates the values without showing anything. If "keep" it will keep the missing values, this option may cause the integration to fail, but it may be used to check the quality of the data. split_views: bool (optional) If True, the sketch is parsed to detect model elements in each model view, and then translate each view in a separate python file. Setting this argument to True is recommended for large models split in many different views. Default is False. encoding: str or None (optional) Encoding of the source model file. If None, the encoding will be read from the model, if the encoding is not defined in the model file it will be set to 'UTF-8'. Default is None. **kwargs: (optional) Additional keyword arguments for translation. subview_sep: list Characters used to separate views and subviews (e.g. [",", "."]). If provided, and split_views=True, each submodule will be placed inside the directory of the parent view. Returns ------- model: a PySD class object Elements from the python model are loaded into the PySD class and ready to run Examples -------- >>> model = read_vensim('../tests/test-models/samples/teacup/teacup.mdl') """ py_model_file = translate_vensim(mdl_file, split_views, encoding, **kwargs) model = load(py_model_file, data_files, initialize, missing_values) model.mdl_file = str(mdl_file) return model
28d062ebb234cf991dcef164d5151e1ab62e08f7
32,250
import typing def get_feature_importance( trained_pipeline: sklearn.pipeline.Pipeline, numeric_features: typing.List[str] ) -> pd.Series: """ Get feature importance measures from a trained model. Args: trained_pipeline (:obj:`sklearn.pipeline.Pipeline`): Fitted model pipeline numeric_features (list(str)): Names of numeric features Returns: :obj:`pandas.Series` containing each feature and its importance """ # Retrieve categorical features from the one-hot encoder # (numeric features need to be passed in manually) categorical_features = list(trained_pipeline["preprocessor"] .transformers_[1][1] .get_feature_names()) features = numeric_features + categorical_features # Fetch importance values (without labels) from the model itself importances = trained_pipeline["predictor"].feature_importances_ return pd.Series(data=importances, index=features)
cd303af5a0b343a18fb42a3cd562998ecec96423
32,251
from typing import Any import json def json_loads(json_text: str) -> Any: """Does the same as json.loads, but with some additional validation.""" try: json_data = json.loads(json_text) validate_all_strings(json_data) return json_data except json.decoder.JSONDecodeError: raise _jwt_error.JwtInvalidError('Failed to parse JSON string') except RecursionError: raise _jwt_error.JwtInvalidError( 'Failed to parse JSON string, too many recursions') except UnicodeEncodeError: raise _jwt_error.JwtInvalidError('invalid character')
d123054612a0a3e29f312e1506181ca3f9bed219
32,252
def weights(layer, expected_layer_name): """ Return the kernels/weights and bias from the VGG model for a given layer. """ W = vgg_layers[0][layer][0][0][2][0][0] b = vgg_layers[0][layer][0][0][2][0][1] layer_name = vgg_layers[0][layer][0][0][0][0] #to check we obtained the correct layer from the vgg model assert layer_name == expected_layer_name return W, b
5271f932bd9a870bd7857db50632cd51d91b60a9
32,253
import textwrap def alert(title: str, text: str, *, level: str = "warning", ID: str = None): """ Generate the HTML to display a banner that can be permanently hidden This is used to inform player of important changes in updates. Arguments: text: Main text of the banner title: Title of the banner type: On of "warning", "info". The aspect of the banner ID: optional string ID of this banner, if you need to check if it is open/closed somewhere. Do NOT use numbers """ if not level in ("info", "warning"): raise ValueError("Level must be among 'info', 'warning'") if alert.has_disable_been_called: raise RuntimeError( "The function alert() is called after disable_old_alert() has generated " "the javascript code to handle hidding closed alerts. This breaks the " "system completely, make sure disable_old_alerts is called last" ) if ID is None: alert_id = alert.numid alert.numid += 1 else: alert_id = str(ID) alert.strid.append(alert_id) indent = " " * 4 * 4 text = str(text).replace("\n", "\n" + indent) return textwrap.dedent( f"""\ <input type="hidden" class="alert-hidder" name="attr_alert-{alert_id}" value="0"/> <div class="alert alert-{level}"> <div> <h3> {level.title()} - {title}</h3> {text} </div> <label class="fakebutton"> <input type="checkbox" name="attr_alert-{alert_id}" value="1" /> × </label> </div>""" )
90ff85c228dc70318deee196bdd512e5be90a5ad
32,254
def get_stim_data_df(sessions, analyspar, stimpar, stim_data_df=None, comp_sess=[1, 3], datatype="rel_unexp_resp", rel_sess=1, basepar=None, idxpar=None, abs_usi=True, parallel=False): """ get_stim_data_df(sessions, analyspar, stimpar) Returns dataframe with relative ROI data for one session relative to another, for each line/plane. Required args: - sessions (list): session objects - analyspar (AnalysPar): named tuple containing analysis parameters - stimpar (StimPar): named tuple containing stimulus parameters Optional args: - stim_data_df (pd.DataFrame): dataframe with one row per line/plane, and the basic sess_df columns default: None - comp_sess (int): sessions for which to obtain absolute fractional change [x, y] => |(y - x) / x| default: [1, 3] - datatype (str): type of data to retrieve default: "rel_unexp_resp" - rel_sess (int): number of session relative to which data should be scaled, for each mouse default: 1 - basepar (BasePar): named tuple containing baseline parameters (needed if datatype is "usis") default: None - idxpar (IdxPar): named tuple containing index parameters (needed if datatype is "usis") default: None - abs_usi (bool): if True, absolute USIs are returned (applies if datatype is "usis") default: True - parallel (bool): if True, some of the analysis is run in parallel across CPU cores default: False Returns: - stim_data_df (pd.DataFrame): dataframe with one row per line/plane, and the basic sess_df columns, as well as stimulus columns for each comp_sess: - {stimpar.stimtype}_s{comp_sess[0]}: first comp_sess data for each ROI - {stimpar.stimtype}_s{comp_sess[1]}: second comp_sess data for each ROI """ data_df = collect_base_data( sessions, analyspar, stimpar, datatype=datatype, rel_sess=rel_sess, basepar=basepar, idxpar=idxpar, abs_usi=abs_usi, parallel=parallel ) stim_data_df = check_init_stim_data_df( data_df, sessions, stimpar, stim_data_df=stim_data_df, analyspar=analyspar ) # populate dataframe group_columns = ["lines", "planes"] for grp_vals, grp_df in data_df.groupby(group_columns): grp_df = grp_df.sort_values(["sess_ns", "mouse_ns"]) line, plane = grp_vals row_idxs = stim_data_df.loc[ (stim_data_df["lines"] == line) & (stim_data_df["planes"] == plane) ].index if len(row_idxs) != 1: raise ValueError("Expected exactly one row to match line/plane.") row_idx = row_idxs[0] sess_ns = sorted(grp_df["sess_ns"].unique()) for sess_n in comp_sess: if int(sess_n) not in sess_ns: raise RuntimeError(f"Session {sess_n} missing in grp_df.") # obtain comparison data comp_data = [[], []] for mouse_n in sorted(grp_df["mouse_ns"].unique()): mouse_loc = (grp_df["mouse_ns"] == mouse_n) for i in range(2): sess_loc = (grp_df["sess_ns"] == comp_sess[i]) data_row = grp_df.loc[mouse_loc & sess_loc] if len(data_row) != 1: raise RuntimeError("Expected to find exactly one row") # retrieve ROI data data = data_row.loc[data_row.index[0], datatype] comp_data[i].append(data) # add data for each session to dataframe for n, data in zip(comp_sess, comp_data): stim_data_df.loc[row_idx, f"{stimpar.stimtype}_s{n}"] = \ np.concatenate(data) return stim_data_df
5a352a66ad06ed70b04db3ca3e26073fb412cccd
32,255