content
stringlengths 35
762k
| sha1
stringlengths 40
40
| id
int64 0
3.66M
|
---|---|---|
def templateSummary():
"""
"""
# Load Model
tablename = "survey_template"
s3db[tablename]
s3db.survey_complete
crud_strings = s3.crud_strings[tablename]
def postp(r, output):
if r.interactive:
if len(get_vars) > 0:
dummy, template_id = get_vars.viewing.split(".")
else:
template_id = r.id
form = s3db.survey_build_template_summary(template_id)
output["items"] = form
output["sortby"] = [[0, "asc"]]
output["title"] = crud_strings.title_analysis_summary
output["subtitle"] = crud_strings.subtitle_analysis_summary
return output
s3.postp = postp
# remove CRUD generated buttons in the tabs
s3db.configure(tablename,
listadd=False,
deletable=False,
)
output = s3_rest_controller("survey", "template",
method = "list",
rheader=s3.survey_template_rheader
)
s3.actions = None
return output
|
6151e040b8e1c2491b3e282d0bb90fe278bf6dd8
| 32,710 |
def get_main_image():
"""Rendering the scatter chart"""
yearly_temp = []
yearly_hum = []
for city in data:
yearly_temp.append(sum(get_city_temperature(city))/12)
yearly_hum.append(sum(get_city_humidity(city))/12)
plt.clf()
plt.scatter(yearly_hum, yearly_temp, alpha=0.5)
plt.title('Yearly Average Temperature/Humidity')
plt.xlim(70, 95)
plt.ylabel('Yearly Average Temperature')
plt.xlabel('Yearly Average Relative Humidity')
for i, txt in enumerate(CITIES):
plt.annotate(txt, (yearly_hum[i], yearly_temp[i]))
img = BytesIO()
plt.savefig(img)
img.seek(0)
return img
|
b9845a44b868353e878b53beb6faf9c17bdf07d6
| 32,712 |
def get_PhotoImage(path, scale=1.0):
"""Generate a TKinter-compatible photo image, given a path, and a scaling
factor.
Parameters
----------
path : str
Path to the image file.
scale : float, default: 1.0
Scaling factor.
Returns
-------
img : `PIL.ImageTk.PhotoImage <https://pillow.readthedocs.io/en/4.2.x/\
reference/ImageTk.html#PIL.ImageTk.PhotoImage>`_
Tkinter-compatible image. This can be incorporated into a GUI using
tk.Label(parent, image=img)
"""
image = Image.open(path).convert('RGBA')
[w, h] = image.size
new_w = int(w * scale)
new_h = int(h * scale)
image = image.resize((new_w, new_h), Image.ANTIALIAS)
return ImageTk.PhotoImage(image)
|
02402574e0641a1caced9fe0b07434db5c84dee5
| 32,713 |
import gc
def MCLA(hdf5_file_name, cluster_runs, verbose = False, N_clusters_max = None):
"""Meta-CLustering Algorithm for a consensus function.
Parameters
----------
hdf5_file_name : file handle or string
cluster_runs : array of shape (n_partitions, n_samples)
verbose : bool, optional (default = False)
N_clusters_max : int, optional (default = None)
Returns
-------
A vector specifying the cluster label to which each sample has been assigned
by the MCLA approximation algorithm for consensus clustering.
Reference
---------
A. Strehl and J. Ghosh, "Cluster Ensembles - A Knowledge Reuse Framework
for Combining Multiple Partitions".
In: Journal of Machine Learning Research, 3, pp. 583-617. 2002
"""
print('\n*****')
print('INFO: Cluster_Ensembles: MCLA: consensus clustering using MCLA.')
if N_clusters_max == None:
N_clusters_max = int(np.nanmax(cluster_runs)) + 1
N_runs = cluster_runs.shape[0]
N_samples = cluster_runs.shape[1]
print("INFO: Cluster_Ensembles: MCLA: preparing graph for meta-clustering.")
hypergraph_adjacency = load_hypergraph_adjacency(hdf5_file_name)
w = hypergraph_adjacency.sum(axis = 1)
N_rows = hypergraph_adjacency.shape[0]
print("INFO: Cluster_Ensembles: MCLA: done filling hypergraph adjacency matrix. "
"Starting computation of Jaccard similarity matrix.")
# Next, obtain a matrix of pairwise Jaccard similarity scores between the rows of the hypergraph adjacency matrix.
with tables.open_file(hdf5_file_name, 'r+') as fileh:
FILTERS = get_compression_filter(4 * (N_rows ** 2))
similarities_MCLA = fileh.create_carray(fileh.root.consensus_group,
'similarities_MCLA', tables.Float32Atom(),
(N_rows, N_rows), "Matrix of pairwise Jaccard "
"similarity scores", filters = FILTERS)
scale_factor = 100.0
print("INFO: Cluster_Ensembles: MCLA: "
"starting computation of Jaccard similarity matrix.")
squared_MCLA = hypergraph_adjacency.dot(hypergraph_adjacency.transpose())
squared_sums = hypergraph_adjacency.sum(axis = 1)
squared_sums = np.squeeze(np.asarray(squared_sums))
chunks_size = get_chunk_size(N_rows, 7)
for i in range(0, N_rows, chunks_size):
n_dim = min(chunks_size, N_rows - i)
temp = squared_MCLA[i:min(i+chunks_size, N_rows), :].todense()
temp = np.squeeze(np.asarray(temp))
x = squared_sums[i:min(i+chunks_size, N_rows)]
x = x.reshape(-1, 1)
x = np.dot(x, np.ones((1, squared_sums.size)))
y = np.dot(np.ones((n_dim, 1)), squared_sums.reshape(1, -1))
temp = np.divide(temp, x + y - temp)
temp *= scale_factor
Jaccard_matrix = np.rint(temp)
similarities_MCLA[i:min(i+chunks_size, N_rows)] = Jaccard_matrix
del Jaccard_matrix, temp, x, y
gc.collect()
# Done computing the matrix of pairwise Jaccard similarity scores.
print("INFO: Cluster_Ensembles: MCLA: done computing the matrix of "
"pairwise Jaccard similarity scores.")
cluster_labels = cmetis(hdf5_file_name, N_clusters_max, w)
cluster_labels = one_to_max(cluster_labels)
# After 'cmetis' returns, we are done with clustering hyper-edges
# We are now ready to start the procedure meant to collapse meta-clusters.
N_consensus = np.amax(cluster_labels) + 1
fileh = tables.open_file(hdf5_file_name, 'r+')
FILTERS = get_compression_filter(4 * N_consensus * N_samples)
clb_cum = fileh.create_carray(fileh.root.consensus_group, 'clb_cum',
tables.Float32Atom(), (N_consensus, N_samples),
'Matrix of mean memberships, forming meta-clusters',
filters = FILTERS)
chunks_size = get_chunk_size(N_samples, 7)
for i in range(0, N_consensus, chunks_size):
x = min(chunks_size, N_consensus - i)
matched_clusters = np.where(cluster_labels == np.reshape(np.arange(i, min(i + chunks_size, N_consensus)), newshape = (x, 1)))
M = np.zeros((x, N_samples))
for j in range(x):
coord = np.where(matched_clusters[0] == j)[0]
M[j] = np.asarray(hypergraph_adjacency[matched_clusters[1][coord], :].mean(axis = 0))
clb_cum[i:min(i+chunks_size, N_consensus)] = M
# Done with collapsing the hyper-edges into a single meta-hyper-edge,
# for each of the (N_consensus - 1) meta-clusters.
del hypergraph_adjacency
gc.collect()
# Each object will now be assigned to its most associated meta-cluster.
chunks_size = get_chunk_size(N_consensus, 4)
N_chunks, remainder = divmod(N_samples, chunks_size)
if N_chunks == 0:
null_columns = np.where(clb_cum[:].sum(axis = 0) == 0)[0]
else:
szumsz = np.zeros(0)
for i in range(N_chunks):
M = clb_cum[:, i*chunks_size:(i+1)*chunks_size]
szumsz = np.append(szumsz, M.sum(axis = 0))
if remainder != 0:
M = clb_cum[:, N_chunks*chunks_size:N_samples]
szumsz = np.append(szumsz, M.sum(axis = 0))
null_columns = np.where(szumsz == 0)[0]
if null_columns.size != 0:
print("INFO: Cluster_Ensembles: MCLA: {} objects with all zero associations "
"in 'clb_cum' matrix of meta-clusters.".format(null_columns.size))
clb_cum[:, null_columns] = np.random.rand(N_consensus, null_columns.size)
random_state = np.random.RandomState()
tmp = fileh.create_carray(fileh.root.consensus_group, 'tmp', tables.Float32Atom(),
(N_consensus, N_samples), "Temporary matrix to help with "
"collapsing to meta-hyper-edges", filters = FILTERS)
chunks_size = get_chunk_size(N_samples, 2)
N_chunks, remainder = divmod(N_consensus, chunks_size)
if N_chunks == 0:
tmp[:] = random_state.rand(N_consensus, N_samples)
else:
for i in range(N_chunks):
tmp[i*chunks_size:(i+1)*chunks_size] = random_state.rand(chunks_size, N_samples)
if remainder !=0:
tmp[N_chunks*chunks_size:N_consensus] = random_state.rand(remainder, N_samples)
expr = tables.Expr("clb_cum + (tmp / 10000)")
expr.set_output(clb_cum)
expr.eval()
expr = tables.Expr("abs(tmp)")
expr.set_output(tmp)
expr.eval()
chunks_size = get_chunk_size(N_consensus, 2)
N_chunks, remainder = divmod(N_samples, chunks_size)
if N_chunks == 0:
sum_diag = tmp[:].sum(axis = 0)
else:
sum_diag = np.empty(0)
for i in range(N_chunks):
M = tmp[:, i*chunks_size:(i+1)*chunks_size]
sum_diag = np.append(sum_diag, M.sum(axis = 0))
if remainder != 0:
M = tmp[:, N_chunks*chunks_size:N_samples]
sum_diag = np.append(sum_diag, M.sum(axis = 0))
fileh.remove_node(fileh.root.consensus_group, "tmp")
# The corresponding disk space will be freed after a call to 'fileh.close()'.
inv_sum_diag = np.reciprocal(sum_diag.astype(float))
if N_chunks == 0:
clb_cum *= inv_sum_diag
max_entries = np.amax(clb_cum, axis = 0)
else:
max_entries = np.zeros(N_samples)
for i in range(N_chunks):
clb_cum[:, i*chunks_size:(i+1)*chunks_size] *= inv_sum_diag[i*chunks_size:(i+1)*chunks_size]
max_entries[i*chunks_size:(i+1)*chunks_size] = np.amax(clb_cum[:, i*chunks_size:(i+1)*chunks_size], axis = 0)
if remainder != 0:
clb_cum[:, N_chunks*chunks_size:N_samples] *= inv_sum_diag[N_chunks*chunks_size:N_samples]
max_entries[N_chunks*chunks_size:N_samples] = np.amax(clb_cum[:, N_chunks*chunks_size:N_samples], axis = 0)
cluster_labels = np.zeros(N_samples, dtype = int)
winner_probabilities = np.zeros(N_samples)
chunks_size = get_chunk_size(N_samples, 2)
for i in reversed(range(0, N_consensus, chunks_size)):
ind = np.where(np.tile(max_entries, (min(chunks_size, N_consensus - i), 1)) == clb_cum[i:min(i+chunks_size, N_consensus)])
cluster_labels[ind[1]] = i + ind[0]
winner_probabilities[ind[1]] = clb_cum[(ind[0] + i, ind[1])]
# Done with competing for objects.
cluster_labels = one_to_max(cluster_labels)
print("INFO: Cluster_Ensembles: MCLA: delivering "
"{} clusters.".format(np.unique(cluster_labels).size))
print("INFO: Cluster_Ensembles: MCLA: average posterior "
"probability is {}".format(np.mean(winner_probabilities)))
if cluster_labels.size <= 7:
print("INFO: Cluster_Ensembles: MCLA: the winning posterior probabilities are:")
print(winner_probabilities)
print("'INFO: Cluster_Ensembles: MCLA: the full posterior probabilities are:")
print(clb_cum)
fileh.remove_node(fileh.root.consensus_group, "clb_cum")
fileh.close()
return cluster_labels
|
f7059c0afd6f346d82ec36eae90f6c3fa8459dad
| 32,714 |
from datetime import datetime
def iso_date(iso_string):
""" from iso string YYYY-MM-DD to python datetime.date
Note: if only year is supplied, we assume month=1 and day=1
This function is not longer used, dates from lists always are strings
"""
if len(iso_string) == 4:
iso_string = iso_string + '-01-01'
d = datetime.strptime(iso_string, '%Y-%m-%d')
return d.date()
|
7f29b22744d384187e293c546d4c28790c211e99
| 32,716 |
def summary_dist_xdec(res, df1, df2):
"""
res is dictionary of summary-results DataFrames.
df1 contains results variables for baseline policy.
df2 contains results variables for reform policy.
returns augmented dictionary of summary-results DataFrames.
"""
# create distribution tables grouped by xdec
res['dist1_xdec'] = \
create_distribution_table(df1, 'weighted_deciles',
'expanded_income')
df2['expanded_income_baseline'] = df1['expanded_income']
res['dist2_xdec'] = \
create_distribution_table(df2, 'weighted_deciles',
'expanded_income_baseline')
del df2['expanded_income_baseline']
# return res dictionary
return res
|
408bf1c8916d5338dbc01f41acb57dcc37e009e9
| 32,717 |
def moore_to_basu(moore, rr, lam):
"""Returns the coordinates, speeds, and accelerations in BasuMandal2007's
convention.
Parameters
----------
moore : dictionary
A dictionary containg values for the q's, u's and u dots.
rr : float
Rear wheel radius.
lam : float
Steer axis tilt.
Returns
-------
basu : dictionary
A dictionary containing the coordinates, speeds and accelerations.
"""
m = moore
basu = {}
s3 = sin(m['q3'])
c3 = cos(m['q3'])
s4 = sin(m['q4'])
c4 = cos(m['q4'])
basu['x'] = rr * s3 * s4 - m['q1']
basu['y'] = rr * c3 * s4 + m['q2']
basu['z'] = rr * c4
basu['theta'] = -m['q3']
basu['psi'] = pi / 2.0 - m['q4']
basu['phi'] = pi + lam - m['q5']
basu['betar'] = -m['q6']
basu['psif'] = -m['q7']
basu['betaf'] = -m['q8']
basu['xd'] = rr * (c3 * s4 * m['u3'] + s3 * c4 * m['u4']) - m['u1']
basu['yd'] = rr * (-s3 * s4 * m['u3'] + c3 * c4 * m['u4']) + m['u2']
basu['zd'] = -rr * m['u4'] * s4
basu['thetad'] = -m['u3']
basu['psid'] = -m['u4']
basu['phid'] = -m['u5']
basu['betard'] = -m['u6']
basu['psifd'] = -m['u7']
basu['betafd'] = -m['u8']
basu['xdd'] = (rr * (-s3 * s4 * m['u3']**2 + c3 * c4 * m['u3'] * m['u4'] +
c3 * s4 * m['u3p'] + c3 * c4 * m['u3'] * m['u4'] - s3
* s4 * m['u4']**2 + s3 * c4 * m['u4p']) - m['u1p'])
basu['ydd'] = (m['u2p'] - rr * c3 * s4 * m['u3']**2 - rr * s3 * c4 *
m['u3'] * m['u4'] - rr * s3 * s4 * m['u3p'] - rr * s3 * c4 *
m['u3'] * m['u4'] - rr * c3 * s4 * m['u4']**2 + rr * c3 * c4
* m['u4p'])
basu['zdd'] = -rr * (m['u4p'] * s4 + m['u4']**2 * c4)
basu['thetadd'] = -m['u3p']
basu['psidd'] = -m['u4p']
basu['phidd'] = -m['u5p']
basu['betardd'] = -m['u6p']
basu['psifdd'] = -m['u7p']
basu['betafdd'] = -m['u8p']
return basu
|
f599c2f5226dc4a12de73e1ddc360b6176d915ed
| 32,719 |
def get_username(sciper):
"""
return username of user
"""
attribute = 'uid'
response = LDAP_search(
pattern_search='(uniqueIdentifier=' + sciper + ')',
attribute=attribute
)
return response[0]['attributes'][attribute][0]
|
9da92bb2f1b0b733a137ed0bf62d8817c9c13ed8
| 32,720 |
def number_to_string(s, number):
"""
:param s: word user input
:param number: string of int which represent possible anagram
:return: word of alphabet
"""
word = ''
for i in number:
word += s[int(i)]
return word
|
7997b20264d0750e2b671a04aacb56c2a0559d8c
| 32,721 |
def mean(num_lst):
"""
Calculates the mean of a list of numbers
Parameters
----------
num_lst : list
List of numbers to calculate the average of
Returns
-------
The average/mean of num_lst
Examples
--------
>>> mean([1,2,3,4,5])
3.0
"""
return sum(num_lst) / len(num_lst)
|
bc6f86fc793bad165afc8f319a3094f3fae91361
| 32,722 |
import pandas
def development_create_database(df_literature, df_inorganics, df_predictions, inp):
"""
Create mass transition database.
Create mass transition database based on literature, inorganic and prediction data.
Parameters
----------
df_literature : dataframe
Dataframe with parsed literature data.
df_inorganics : dataframe
Dataframe with parsed inorganics data.
df_predictions : dataframe
Dataframe with parsed prediction data.
inp : dict
Input dictionary.
Returns
-------
df_database : dataframe
Dataframe with joined mass transitions.
"""
# Preallocate database
df_database = pandas.DataFrame()
# Append database with input
df_database = df_database.append(df_literature, sort = False)
df_database = df_database.append(df_inorganics, sort = False)
df_database = df_database.append(df_predictions, sort = False)
# Fill database with standard parameter
df_database['EP [V]'].fillna(value = 10, inplace = True)
df_database['CXP [V]'].fillna(value = 4, inplace = True)
df_database['DP [V]'].fillna(value = 0, inplace = True)
df_database = df_database.reset_index(drop = True)
# Regression for DP
inp = development_create_database_linear_declustering_potential(df_literature, inp)
DP_slope = inp['DP_slope']
DP_intercept = inp['DP_intercept']
# Cycle analytes
for index, row in df_database.iterrows():
# Set declustering potential
if row['DP [V]'] == 0:
df_database.at[index,'DP [V]'] = round(DP_slope*row['Q1 [m/z]'] + DP_intercept)
elif row['DP [V]'] >= 200:
df_database.at[index,'DP [V]'] = 200
else:
None
# Set minimal and maximal collision energy
if row['CE [V]'] < 5:
df_database.at[index,'CE [V]'] = 5
elif row['CE [V]'] > 130:
df_database.at[index,'CE [V]'] = 130
else:
None
# Set entrance potential
if row['EP [V]'] > 15:
df_database.at[index,'EP [V]'] = 15
# Set collision cell exit potential
if row['CXP [V]'] > 55:
df_database.at[index, 'CXP [V]'] = 55
# Prioritize mass transitions of inhouse and literature data before predictions
df_database = df_database.drop_duplicates(subset=['compound_id','mode','Q1 [m/z]','Q3 [m/z]'], keep = 'first')
return df_database
|
58b52d84ca98d770d3ace4a0b4dae4b369883284
| 32,723 |
import requests
from typing import IO
import hashlib
def _stream_to_file(
r: requests.Response,
file: IO[bytes],
chunk_size: int = 2**14,
progress_bar_min_bytes: int = 2**25,
) -> str:
"""Stream the response to the file, returning the checksum.
:param progress_bar_min_bytes: Minimum number of bytes to display a progress bar for. Default is 32MB
"""
# check header to get content length, in bytes
total_length = int(r.headers.get("content-length", 0))
md5 = hashlib.md5()
streamer = r.iter_content(chunk_size=chunk_size)
display_progress = total_length > progress_bar_min_bytes
if display_progress:
progress.start()
task_id = progress.add_task("Downloading", total=total_length)
for chunk in streamer: # 16k
file.write(chunk)
md5.update(chunk)
if display_progress:
progress.update(task_id, advance=len(chunk))
if display_progress:
progress.stop()
return md5.hexdigest()
|
44d0529a5fdb0a14ac4dcddbfecf23442678a75a
| 32,724 |
def get_user(key: str, user: int, type_return: str = 'dict', **kwargs):
"""Retrieve general user information."""
params = {
'k': key,
'u': user,
'm': kwargs['mode'] if 'mode' in kwargs else 0,
'type': kwargs['type_'] if 'type_' in kwargs else None,
'event_days': kwargs['event_days'] if 'event_days' in kwargs else 1}
r = req.get(urls['user'], params=params)
return from_json(r.text, type_return)
|
1b7a5c144267c012a69aff2f02f771d848e8883a
| 32,725 |
def infer_schema(example, binary_features=[]):
"""Given a tf.train.Example, infer the Spark DataFrame schema (StructFields).
Note: TensorFlow represents both strings and binary types as tf.train.BytesList, and we need to
disambiguate these types for Spark DataFrames DTypes (StringType and BinaryType), so we require a "hint"
from the caller in the ``binary_features`` argument.
Args:
:example: a tf.train.Example
:binary_features: a list of tf.train.Example features which are expected to be binary/bytearrays.
Returns:
A DataFrame StructType schema
"""
def _infer_sql_type(k, v):
# special handling for binary features
if k in binary_features:
return BinaryType()
if v.int64_list.value:
result = v.int64_list.value
sql_type = LongType()
elif v.float_list.value:
result = v.float_list.value
sql_type = DoubleType()
else:
result = v.bytes_list.value
sql_type = StringType()
if len(result) > 1: # represent multi-item tensors as Spark SQL ArrayType() of base types
return ArrayType(sql_type)
else: # represent everything else as base types (and empty tensors as StringType())
return sql_type
return StructType([StructField(k, _infer_sql_type(k, v), True) for k, v in sorted(example.features.feature.items())])
|
bd952c278fafa809342b27755e2208b72bd25964
| 32,726 |
import collections
def create_batches_of_sentence_ids(sentences, batch_equal_size, max_batch_size):
"""
Groups together sentences into batches
If max_batch_size is positive, this value determines the maximum number of sentences in each batch.
If max_batch_size has a negative value, the function dynamically creates the batches such that each batch contains abs(max_batch_size) words.
Returns a list of lists with sentences ids.
"""
batches_of_sentence_ids = []
if batch_equal_size == True:
sentence_ids_by_length = collections.OrderedDict()
sentence_length_sum = 0.0
for i in range(len(sentences)):
length = len(sentences[i])
if length not in sentence_ids_by_length:
sentence_ids_by_length[length] = []
sentence_ids_by_length[length].append(i)
for sentence_length in sentence_ids_by_length:
if max_batch_size > 0:
batch_size = max_batch_size
else:
batch_size = int((-1 * max_batch_size) / sentence_length)
for i in range(0, len(sentence_ids_by_length[sentence_length]), batch_size):
batches_of_sentence_ids.append(sentence_ids_by_length[sentence_length][i:i + batch_size])
else:
current_batch = []
max_sentence_length = 0
for i in range(len(sentences)):
current_batch.append(i)
if len(sentences[i]) > max_sentence_length:
max_sentence_length = len(sentences[i])
if (max_batch_size > 0 and len(current_batch) >= max_batch_size) \
or (max_batch_size <= 0 and len(current_batch)*max_sentence_length >= (-1 * max_batch_size)):
batches_of_sentence_ids.append(current_batch)
current_batch = []
max_sentence_length = 0
if len(current_batch) > 0:
batches_of_sentence_ids.append(current_batch)
return batches_of_sentence_ids
|
8db116e73e791d7eb72f080b408bb52d60481db7
| 32,728 |
def com_com_distances_axis(universe, mda_selection_pairs, fstart=0, fend=-1, fstep=1, axis='z'):
"""Center of mass to Center of mass distance in one dimension (along an axis).
This function computes the distance between the centers of mass between pairs of MDAnalysis atoms selections
across the the MD trajectory, but only uses the 1d coordinate of the specified axis.
Args:
universe (MDAnalysis.Universe): The MDAnalysis universe object to run the analysis on.
mda_selection_pairs (list): A list of 2 element lists or tuples containing pairs of MDAnalsysis
atom selection objects to compute the distance between.
fstart (int): Optional, the first frame to include in the analysis. Default: 0 (or the first frame)
fend (int): Optional, the last frame to include in the analysis. Default: -1 (or the last frame)
fstep (int): Optional, the interval between frames in the analysis when looping from fstart to fend.
Default: 1 (or every frame)
axis (str): Optional, the 1d axis to compute the distance in. Default: 'z' (or the z axis)
Returns:
(np.array), (list): Returns two outputs. The first is an Numpy array with the timeseries simulation times
corresponding to the frames in the analysis. The second is list of Numpy arrays with the distances; the
order in the list corresponds to the atom selection pairs in the mda_selection_pairs input.
"""
dir_ind = 2
if axis is 'x':
dir_ind = 0
elif axis is 'y':
dir_ind = 1
#indices = mda_selection.indices
fstart, fend = _adjust_frame_range_for_slicing(fstart, fend, len(universe.trajectory))
times = []
pair_dists = []
for pair in mda_selection_pairs:
pair_dists.append([])
for frame in universe.trajectory[fstart:fend:fstep]:
times.append(frame.time)
i = 0
for pair in mda_selection_pairs:
sel_1 = pair[0]
sel_2 = pair[1]
com_1 = sel_1.atoms.center_of_mass()
com_2 = sel_2.atoms.center_of_mass()
norm_val_1 = com_1[dir_ind]
norm_val_2 = com_2[dir_ind]
dist = np.abs(norm_val_2 - norm_val_1)
pair_dists[i].append(dist)
i+=1
times = np.array(times)
i=0
for vals in pair_dists:
pair_dists[i] = np.array(vals)
i+=1
return times, pair_dists
|
7005d13e1f18597865ca5c5dc14ec09efd7c63e1
| 32,729 |
def min_vertex_cover(G, sampler=None, **sampler_args):
"""Returns an approximate minimum vertex cover.
Defines a QUBO with ground states corresponding to a minimum
vertex cover and uses the sampler to sample from it.
A vertex cover is a set of vertices such that each edge of the graph
is incident with at least one vertex in the set. A minimum vertex cover
is the vertex cover of smallest size.
Parameters
----------
G : NetworkX graph
The graph on which to find a minimum vertex cover.
sampler
A binary quadratic model sampler. A sampler is a process that
samples from low energy states in models defined by an Ising
equation or a Quadratic Unconstrained Binary Optimization
Problem (QUBO). A sampler is expected to have a 'sample_qubo'
and 'sample_ising' method. A sampler is expected to return an
iterable of samples, in order of increasing energy. If no
sampler is provided, one must be provided using the
`set_default_sampler` function.
sampler_args
Additional keyword parameters are passed to the sampler.
Returns
-------
vertex_cover : list
List of nodes that form a minimum vertex cover, as
determined by the given sampler.
Examples
--------
This example uses a sampler from
`dimod <https://github.com/dwavesystems/dimod>`_ to find a minimum vertex
cover for a Chimera unit cell. Both the horizontal (vertices 0,1,2,3) and
vertical (vertices 4,5,6,7) tiles connect to all 16 edges, so repeated
executions can return either set.
>>> import dwave_networkx as dnx
>>> import dimod
>>> sampler = dimod.ExactSolver() # small testing sampler
>>> G = dnx.chimera_graph(1, 1, 4)
>>> G.remove_node(7) # to give a unique solution
>>> dnx.min_vertex_cover(G, sampler)
[4, 5, 6]
Notes
-----
Samplers by their nature may not return the optimal solution. This
function does not attempt to confirm the quality of the returned
sample.
References
----------
https://en.wikipedia.org/wiki/Vertex_cover
https://en.wikipedia.org/wiki/Quadratic_unconstrained_binary_optimization
.. [AL] Lucas, A. (2014). Ising formulations of many NP problems.
Frontiers in Physics, Volume 2, Article 5.
"""
return min_weighted_vertex_cover(G, None, sampler, **sampler_args)
|
b8681077d0bbb8504cdf5c96250e668bbcfe6d4e
| 32,730 |
def quantile_bin_array(data, bins=6):
"""Returns symbolified array with equal-quantile binning.
Parameters
----------
data : array
Data array of shape (time, variables).
bins : int, optional (default: 6)
Number of bins.
Returns
-------
symb_array : array
Converted data of integer type.
"""
T, N = data.shape
# get the bin quantile steps
bin_edge = int(np.ceil(T / float(bins)))
symb_array = np.zeros((T, N), dtype='int32')
# get the lower edges of the bins for every time series
edges = np.sort(data, axis=0)[::bin_edge, :].T
bins = edges.shape[1]
# This gives the symbolic time series
symb_array = (data.reshape(T, N, 1) >= edges.reshape(1, N, bins)).sum(
axis=2) - 1
return symb_array.astype('int32')
|
87d8c64a30581b700d1a4674e4527882be99444f
| 32,732 |
import _socket
def wrap_socket(sock: _socket.socket) -> AsyncSocket:
"""
Wraps a standard socket into an async socket
"""
return AsyncSocket(sock)
|
70a6829bdf9048514ffe5bd5b831952f1ecd8e89
| 32,733 |
def _calculate_outer_product_steps(signed_steps, n_steps, dim_x):
"""Calculate array of outer product of steps.
Args:
signed_steps (np.ndarray): Square array with either pos or neg steps returned
by :func:`~estimagic.differentiation.generate_steps.generate_steps` function
n_steps (int): Number of steps needed. For central methods, this is
the number of steps per direction. It is 1 if no Richardson extrapolation
is used.
dim_x (int): Dimension of input vector x.
Returns:
outer_product_steps (np.ndarray): Array with outer product of steps. Has
dimension (n_steps, 1, dim_x, dim_x).
"""
outer_product_steps = np.array(
[np.outer(signed_steps[j], signed_steps[j]) for j in range(n_steps)]
).reshape(n_steps, 1, dim_x, dim_x)
return outer_product_steps
|
18aeadc5cb7866e6b99b5da9a2b9e6bc6ebb7c44
| 32,734 |
def compute_lima_on_off_image(n_on, n_off, a_on, a_off, kernel):
"""Compute Li & Ma significance and flux images for on-off observations.
Parameters
----------
n_on : `~gammapy.maps.WcsNDMap`
Counts image
n_off : `~gammapy.maps.WcsNDMap`
Off counts image
a_on : `~gammapy.maps.WcsNDMap`
Relative background efficiency in the on region
a_off : `~gammapy.maps.WcsNDMap`
Relative background efficiency in the off region
kernel : `astropy.convolution.Kernel2D`
Convolution kernel
Returns
-------
images : dict
Dictionary containing result maps
Keys are: significance, n_on, background, excess, alpha
See also
--------
gammapy.stats.significance_on_off
"""
# Kernel is modified later make a copy here
kernel = deepcopy(kernel)
kernel.normalize("peak")
n_on_conv = n_on.convolve(kernel.array).data
a_on_conv = a_on.convolve(kernel.array).data
alpha_conv = a_on_conv / a_off.data
significance_conv = significance_on_off(
n_on_conv, n_off.data, alpha_conv, method="lima"
)
with np.errstate(invalid="ignore"):
background_conv = alpha_conv * n_off.data
excess_conv = n_on_conv - background_conv
return {
"significance": n_on.copy(data=significance_conv),
"n_on": n_on.copy(data=n_on_conv),
"background": n_on.copy(data=background_conv),
"excess": n_on.copy(data=excess_conv),
"alpha": n_on.copy(data=alpha_conv),
}
|
a9bde10722cbed4dab79f157ee478c9b5ba35d86
| 32,735 |
def data_preprocess(ex, mode='uniform', z_size=20):
"""
Convert image dtype and scale imge in range [-1,1]
:param z_size:
:param ex:
:param mode:
:return:
"""
image = ex['image']
image = tf.image.convert_image_dtype(image, tf.float32)
image = tf.reshape(image, [-1])
image = image * 2 - 1.0
if mode == 'uniform':
input_z = tf.random.uniform(
shape=(z_size,), minval=-1.0, maxval=1.0
)
elif mode == 'normal':
input_z = tf.random.normal(shape=(z_size,))
return input_z, image
|
95131b5e03afbc0a3c797570a48d49ca93f15116
| 32,736 |
def p2wpkh(pubkey: PubKey, network: str = 'mainnet') -> bytes:
"""Return the p2wpkh (bech32 native) SegWit address."""
network_index = _NETWORKS.index(network)
ec = _CURVES[network_index]
pubkey = to_pubkey_bytes(pubkey, True, ec)
h160 = hash160(pubkey)
return b32address_from_witness(0, h160, network)
|
ecb4c60871e0dc362d3576d2f02d8e07cd47614e
| 32,737 |
import re
def is_not_from_subdomain(response, site_dict):
"""
Ensures the response's url isn't from a subdomain.
:param obj response: The scrapy response
:param dict site_dict: The site object from the JSON-File
:return bool: Determines if the response's url is from a subdomain
"""
root_url = re.sub(re_url_root, '', site_dict["url"])
return get_allowed_domain(response.url) == root_url
|
d3fa99cc8a91942de5f3ec9cb8249c62c7488821
| 32,738 |
import random
def get_affiliation():
"""Return a school/organization affiliation."""
return random.choice(AFFILIATIONS)
|
41356c95447352b9ab96db5783efb5ce511e0d00
| 32,739 |
def update_item_feature(train, num_item, user_features, lambda_item, nz_users_indices, robust=False):
"""
Update item feature matrix
:param train: training data, sparse matrix of shape (num_item, num_user)
:param num_item: number of items
:param user_features: factorized user features, dense matrix of shape (num_feature, num_user)
:param lambda_item: ridge regularization parameter
:param nz_users_indices: list of arrays, contains the non-zero indices of each row (item) in train
:param robust: True to enable robustsness against singular matrices
:return: item_features: updated factorized item features, dense matrix of shape (num_feature, num_item)
"""
num_features = user_features.shape[0]
item_features = np.zeros((num_features, num_item))
for item in range(num_item):
y = train[item, nz_users_indices[item]].todense().T # non-zero elements of line n° item of train
x = user_features[:, nz_users_indices[item]] # corresponding columns of user_features
nnz = nz_users_indices[item].shape[0]
# Solution to ridge problem min(|X.T @ w - y|^2 + lambda * |w|^2)
wy = x.dot(y)
if not robust:
w = np.linalg.solve(x.dot(x.T) + lambda_item * nnz * np.identity(num_features), wy)
else:
w = np.linalg.lstsq(x.dot(x.T) + lambda_item * nnz * np.identity(num_features), wy)[0]
item_features[:, item] = w.ravel()
return item_features
|
95b56754830cdcd8ddbfcabc25adcad1698903af
| 32,740 |
def generate_mutation(model, mutation_type):
"""
Generate a model mutation.
Create the mutation class
Parameters:
model (dict): the model dictionary from settings
mutation_type (str): the mutation type (create, delete, update)
Returns:
graphene.Mutation.Field: the mutation field
"""
mutation_class_name = "{}{}".format(
model['name'].title(), mutation_type.title())
model_class = import_string(model['path'])
arguments = get_arguments(model_class, mutation_type)
mutate = get_mutate(model, mutation_type, model_class, mutation_class_name)
# create the mutation class
globals()[mutation_class_name] = type(mutation_class_name, (graphene.Mutation,), {
'__module__': __name__,
"Arguments": type("Arguments", (), arguments),
"message": graphene.String(),
"ingredient": graphene.Field(globals()["{}Type".format(model['name'].title())]),
"mutate": mutate
})
return globals()[mutation_class_name].Field()
|
1e1c39a76508c8f33179087786c08203af57c036
| 32,741 |
def _wf_to_char(string):
"""Wordfast &'XX; escapes -> Char"""
if string:
for code, char in WF_ESCAPE_MAP:
string = string.replace(code, char.encode('utf-8'))
string = string.replace("\\n", "\n").replace("\\t", "\t")
return string
|
9270f4ff5a03265956d006bd08d04e417a0c5a14
| 32,743 |
from datetime import datetime
def agg_15_min_load_profile (load_profile_df):
"""
Aggregates 1-Hz load profile by taking average demand over 15-min
increments.
"""
s_in_15min = 15 * 60
# prepare idx slices
start_idxs = np.arange(0, len(load_profile_df), s_in_15min)
end_idxs = np.arange(s_in_15min, len(load_profile_df) + s_in_15min, s_in_15min)
# generate list of avg kw over 15-min increments
avg_15min_kw = [] #init
for s_idx, e_idx in zip(start_idxs, end_idxs):
avg_15min_kw.append(load_profile_df['power_kW'][s_idx:e_idx].mean())
times = [] #init
for hour in range(24):
for minute in range(0, 60, 15):
times.append(str(datetime.time(hour, minute, 0)))
# create pd.DataFrame
agg_15min_load_profile_df = pd.DataFrame({'time': times,
'avg_power_kw': avg_15min_kw})
return agg_15min_load_profile_df
|
6a92abf10b6f976d4b48bc7e6bfb4c0e44b1f4c5
| 32,744 |
def get_gitbuilder_hash(project=None, branch=None, flavor=None,
machine_type=None, distro=None,
distro_version=None):
"""
Find the hash representing the head of the project's repository via
querying a gitbuilder repo.
Will return None in the case of a 404 or any other HTTP error.
"""
# Alternate method for github-hosted projects - left here for informational
# purposes
# resp = requests.get(
# 'https://api.github.com/repos/ceph/ceph/git/refs/heads/master')
# hash = .json()['object']['sha']
(arch, release, _os) = get_distro_defaults(distro, machine_type)
if distro is None:
distro = _os.name
bp = get_builder_project()(
project,
dict(
branch=branch,
flavor=flavor,
os_type=distro,
os_version=distro_version,
arch=arch,
),
)
return bp.sha1
|
980abab1d3ff8bf1acdd0aec43f6ce5d5a2b6c45
| 32,746 |
def get_b16_add_conv_config():
"""Returns the ViT-B/16 configuration."""
config = ml_collections.ConfigDict()
config.patches = ml_collections.ConfigDict({'size': (16, 16)})
config.split = 'non-overlap'
config.slide_step = 12
config.hidden_size = 768
config.transformer = ml_collections.ConfigDict()
config.transformer.mlp_dim = 3072
config.transformer.num_heads = 12
config.transformer.num_layers = 12
config.transformer.attention_dropout_rate = 0.0
config.transformer.dropout_rate = 0.1
config.classifier = 'token'
config.representation_size = None
config.in_planes = 64
config.n_conv_layers = 2
config.kernel_size = 7
config.stride = max(1, (7 // 2) - 1)
config.padding = max(1, (7 // 2))
config.activation = nn.ReLU
config.conv_bias = False
config.pooling_kernel_size = 3
config.pooling_stride = 2
config.pooling_padding = 1
config.max_pool = True
return config
|
eae5f7f33acaf5931b11c7ed2f6d1b554c8a5254
| 32,747 |
def real_proto(request) -> programl_pb2.ProgramGraph:
"""A test fixture which enumerates one of 100 "real" protos."""
return request.param
|
84f604626a1545e370aa92ab509329cc23e26aa5
| 32,748 |
def flat(arr):
"""Return arr flattened except for last axis."""
shape = arr.shape[:-1]
n_features = arr.shape[-1]
return arr.reshape(np.product(shape), n_features)
|
8b9dd1b92c4fffe087345fa74fbc535e2ee41fbf
| 32,749 |
from datetime import datetime
import time
def wait_while(f_logic, timeout, warning_timeout=None, warning_text=None, delay_between_attempts=0.5):
"""
Внутренний цик выполняется, пока вычисление `f_logic()` трактуется как `True`.
"""
warning_flag = False
start_time = datetime.now()
while True:
try:
result = f_logic()
except Exception:
pass
else:
if not result:
return True
elaps_time = (datetime.now() - start_time).total_seconds()
if warning_timeout is not None and elaps_time > warning_timeout and not warning_flag:
text_addon = '. {}'.format(warning_text) if warning_text else ''
logger.warning("Waiting time exceeded {}{}".format(warning_timeout, text_addon))
warning_flag = True
if timeout is not None and elaps_time > timeout:
return False
time.sleep(delay_between_attempts)
|
0261083b54b1572833ea146663862fce5fe690a5
| 32,751 |
def acute_lymphocytic_leukemia1():
"""Human Acute Lymphocytic Leukemia dataset (Patient 1).
This dataset was introduced in :cite:`Gawad_2014` and was used in:
* :cite:`B-SCITE` Figure 5.
* :cite:`infSCITE` Figure S16.
The size is n_cells × n_muts = 111 × 20
Returns
-------
:class:`anndata.AnnData`
An anndata in which `.X` is the input noisy.
"""
adata = scp.io.read(
scp.ul.get_file("scphylo.datasets/real/acute_lymphocytic_leukemia1.h5ad")
)
return adata
|
76f15e7a19da71fe5e4451104698dfaffdbf1799
| 32,752 |
def extract_module(start_queue, g, locality="top", max_to_crawl=100, max_depth=10):
"""
([rdflib.URI], rdflib.Graph) -> rdflib.Graph
resource (rdflib.URI): resource for which we extract module
g (rdflib.Graph): RDF graph
"""
ontomodule = Graph()
ontomodule.namespace_manager = g.namespace_manager
visited = []
to_crawl = start_queue
depth = 0
# crawl until the queue is not empty
while to_crawl:
print("size of to_crawl: {}, size of visited: {}, depth: {}".format(
len(to_crawl), len(visited), depth))
next_node = to_crawl.pop()
# control the depth
depth = depth + 1
if depth > max_depth:
break
assert not any(isinstance(x, BNode) for x in to_crawl), "Caught BNodes"
if next_node not in visited:
# mark nodes which we have already visited
visited = visited + [next_node]
successor_objs = get_successors(next_node, g, locality=locality)
for successor_obj in successor_objs:
if len(to_crawl) <= max_to_crawl:
to_crawl = to_crawl + successor_obj["uris"]
# add all triples
for triple in successor_obj["triples"]:
ontomodule.add(triple)
return ontomodule
|
78e60670a8c8ed53471062380d5a9cf0aab70848
| 32,753 |
import torch
def softmax(x):
"""Softmax activation function
Parameters
----------
x : torch.tensor
"""
return torch.exp(x) / torch.sum(torch.exp(x), dim=1).view(-1, 1)
|
739219efe04174fe7a2b21fb8aa98816679f8389
| 32,754 |
def comp_raw_bool_eqs(eq1str, eq2str):
""" Will compare two boolean equations to see if they are the same.
The equations can be written using the characters '&', '+' and '!'
for 'and', 'or' and 'not' respectively.
"""
(eqn1, eqn1vars) = OqeFuncUtils.get_vars_bool_eqn(eq1str)
(eqn2, eqn2vars) = OqeFuncUtils.get_vars_bool_eqn(eq2str)
if eqn1 == '' or eqn2 == '':
return -1
varlist = []
for i in eqn1vars:
if i not in varlist:
varlist.append(i)
for i in eqn2vars:
if i not in varlist:
varlist.append(i)
return OqeFuncUtils.comp_bool_eqs(eqn1, eqn2, varlist)
|
ce7af289add4294bf8a2a7835414cfb51358bc92
| 32,755 |
def get_integrated_scene(glm_files, start_scene=None):
"""Get an integrated scene.
Given a set of GLM files, get a scene where quantities are summed or
averaged or so.
"""
ms = satpy.MultiScene.from_files(
glm_files,
"glm_l2",
time_threshold=10,
group_keys=["start_time"])
ms.load(["flash_extent_density"])
with xarray.set_options(keep_attrs=True):
sc = ms.blend(sum, scene=start_scene)
return sc
|
71744bc23f961e630013ace0a85b1788f92924ff
| 32,756 |
def _pt_to_test_name(what, pt, view):
"""Helper used to convert Sublime point to a test/bench function name."""
fn_names = []
pat = TEST_PATTERN.format(WHAT=what, **globals())
regions = view.find_all(pat, 0, r'\1', fn_names)
if not regions:
sublime.error_message('Could not find a Rust %s function.' % what)
return None
# Assuming regions are in ascending order.
indices = [i for (i, r) in enumerate(regions) if r.a <= pt]
if not indices:
sublime.error_message('No %s functions found about the current point.' % what)
return None
return fn_names[indices[-1]]
|
580cacda4b31dff3fd05f4218733f5f0c6388ddb
| 32,757 |
def load_log_weights(log_weights_root, iw_mode):
"""Loads the log_weights from the disk. It assumes a file structure of <log_weights_root>/<iw_mode>/*.npy
of mulyiple npy files. This function loads all the weights in a single numpy array, concatenating all npy files.
Finally, it caches the result in a file stored at <log_weights_root>/<iw_mode>.npy
In the further calls, it reuses the cached file.
Args:
log_weights_root (str or pathlib.Path)
iw_mode (str)
Returns:
np.ndarray: log importance weights
"""
agg_weights_file = log_weights_root / f"{iw_mode}.npy"
agg_weights_dir = log_weights_root / iw_mode
assert agg_weights_dir.exists() or agg_weights_file.exists()
if not agg_weights_file.exists():
log_weights = np.concatenate(
[np.load(weight_file) for weight_file in agg_weights_dir.glob("*.npy")])
np.save(agg_weights_file, log_weights)
else:
log_weights = np.load(agg_weights_file)
print(f"{log_weights_root} / {iw_mode} has {len(log_weights):,} traces")
return log_weights
|
78f633d55e1d3eedc31851a315294e6a15d381a0
| 32,758 |
import requests
import logging
def pipelines_is_ready():
"""
Used to show the "pipelines is loading..." message
"""
url = f"{API_ENDPOINT}/{STATUS}"
try:
if requests.get(url).status_code < 400:
return True
except Exception as e:
logging.exception(e)
sleep(1) # To avoid spamming a non-existing endpoint at startup
return False
|
219b0935092d09311a05816cf0c4345f9abee9f6
| 32,759 |
import cmath
def gamma_from_RLGC(freq,R,L,G,C):
"""Get propagation constant gamma from RLGC transmission line parameters"""
w=2*np.pi*freq
return cmath.sqrt((R+1j*w*L)*(G+1j*w*C))
|
9e4f09dc233f87b3fa52b9c7488b7fb65791289d
| 32,761 |
from typing import Optional
from typing import List
from typing import Union
from pathlib import Path
def get_abs_paths(paths: Optional[List[Union[str, Path]]]) -> List[Union[str, Path]]:
"""Extract the absolute path from the given sources (if any).
:param paths: list of source paths, if empty this functions does nothing.
"""
if paths is None:
return []
paths_abs = []
for path in paths:
paths_abs.append(as_tcl_value(str(Path(path).absolute())))
return paths_abs
|
93a785fbf679664b96c5228a9cf008cba7793765
| 32,762 |
async def async_setup_gateway_entry(hass: core.HomeAssistant, entry: config_entries.ConfigEntry) -> bool:
"""Set up the Gateway component from a config entry."""
host = entry.data[CONF_HOST]
euid = entry.data[CONF_TOKEN]
# Connect to gateway
gateway = IT600Gateway(host=host, euid=euid)
try:
await gateway.connect()
await gateway.poll_status()
except IT600ConnectionError as ce:
_LOGGER.error("Connection error: check if you have specified gateway's HOST correctly.")
return False
except IT600AuthenticationError as ae:
_LOGGER.error("Authentication error: check if you have specified gateway's EUID correctly.")
return False
hass.data[DOMAIN][entry.entry_id] = gateway
gateway_info = gateway.get_gateway_device()
device_registry = await dr.async_get_registry(hass)
device_registry.async_get_or_create(
config_entry_id=entry.entry_id,
connections={(dr.CONNECTION_NETWORK_MAC, gateway_info.unique_id)},
identifiers={(DOMAIN, gateway_info.unique_id)},
manufacturer=gateway_info.manufacturer,
name=gateway_info.name,
model=gateway_info.model,
sw_version=gateway_info.sw_version,
)
for component in GATEWAY_PLATFORMS:
hass.async_create_task(
hass.config_entries.async_forward_entry_setup(entry, component)
)
return True
|
d70644b2c4423798007272777bb9c081e79fc778
| 32,763 |
import requests
def import_from_github(username, repo, commit_hash):
"""Import a GitHub project into the exegesis database. Returns True on
success, False on failure.
"""
url = 'https://api.github.com/repos/{}/{}/git/trees/{}?recursive=1'.format(
username, repo, commit_hash)
headers = {'Accept': 'application/vnd.github.v3+json'}
r = requests.get(url, headers=headers)
if r.status_code == 200:
response = r.json()
project = Project(name=(username + ':' + repo), source=Project.GITHUB)
project.save()
# Create the root directory.
Directory.objects.create(project=project, fullpath='', dirpath='',
name='')
for entry in response['tree']:
fullpath = entry['path']
last_slash = fullpath.rfind('/')
if last_slash != -1:
dirpath = fullpath[:last_slash+1]
name = fullpath[last_slash+1:]
else:
dirpath = ''
name = fullpath
if entry['type'] == 'tree':
Directory.objects.create(project=project, fullpath=fullpath,
dirpath=dirpath, name=name)
else:
Snippet.objects.create(project=project, fullpath=fullpath,
dirpath=dirpath, name=name,
downloaded=False, download_source=entry['url'])
return True
else:
return False
|
a685fc79ad374ab499823696102d22b5d49201ed
| 32,764 |
def substructure_matching_bonds(mol: dm.Mol, query: dm.Mol, **kwargs):
"""Perform a substructure match using `GetSubstructMatches` but instead
of returning only the atom indices also return the bond indices.
Args:
mol: A molecule.
query: A molecule used as a query to match against.
kwargs: Any other arguments to pass to `mol.GetSubstructMatches()`.
Returns:
atom_matches: A list of lists of atom indices.
bond_matches: A list of lists of bond indices.
"""
# NOTE(hadim): If more substructure functions are added here, consider moving it to
# a dedicated `substructure` module.
# Set default arguments
kwargs.setdefault("uniquify", True)
# Get the matching atom indices
atom_matches = list(mol.GetSubstructMatches(query, **kwargs))
# Get the bond to highligh from the query
query_bond_indices = [
(bond.GetBeginAtomIdx(), bond.GetEndAtomIdx()) for bond in query.GetBonds()
]
# Retrieve the atom indices
query_atom_indices = [atom.GetIdx() for i, atom in enumerate(query.GetAtoms())]
bond_matches = []
for match in atom_matches:
# Map the atom of the query to the atom of the mol matching the query
atom_map = dict(zip(query_atom_indices, match))
# For this match atoms we now, we use the map to retrieve the matching bonds
# in the mol.
mol_bond_indices = [(atom_map[a1], atom_map[a2]) for a1, a2 in query_bond_indices]
# Convert the bond atom indices to bond indices
mol_bond_indices = [mol.GetBondBetweenAtoms(a1, a2).GetIdx() for a1, a2 in mol_bond_indices]
bond_matches.append(mol_bond_indices)
return atom_matches, bond_matches
|
1b6f4f7e17defae555ea750941be5ec71047cc87
| 32,767 |
def remove_element(nums, val):
"""
:type nums: List[int]
:type val: int
:rtype: int
"""
sz = len(nums)
while sz > 0 and nums[sz - 1] == val:
sz -= 1
i = 0
while i < sz:
if nums[i] == val:
nums[i], nums[sz - 1] = nums[sz - 1], nums[i]
sz -= 1
while sz > 0 and nums[sz - 1] == val:
sz -= 1
i += 1
return sz
|
4d29e8a8d43f191fe83ab0683f5dff005db799ec
| 32,768 |
def get_fm_file(file_name):
"""Read facilitymatcher file into dataframe. If not present, generate the file
via script"""
file_meta = set_facilitymatcher_meta(file_name, category='')
df = load_preprocessed_output(file_meta, paths)
if df is None:
log.info('%s not found in %s, writing facility matches to file',
file_name, output_dir)
if file_name == 'FacilityMatchList_forStEWI':
write_fm.write_facility_matches()
elif file_name == 'FRS_NAICSforStEWI':
write_naics.write_NAICS_matches()
df = load_preprocessed_output(file_meta, paths)
col_dict = {"FRS_ID": "str",
"FacilityID": "str",
"NAICS": "str"}
for k, v in col_dict.items():
if k in df:
df[k] = df[k].astype(v)
return df
|
b83743b8f56376148b12fc13c3731471cd24b6a5
| 32,769 |
def call_dot(instr):
"""Call dot, returning stdout and stdout"""
dot = Popen('dot -T png'.split(), stdout=PIPE, stderr=PIPE, stdin=PIPE)
return dot.communicate(instr)
|
f77c9f340f3fcbebb101c5f59d57c92b56147a11
| 32,770 |
def add_bank_member_signal(
banks_table: BanksTable,
bank_id: str,
bank_member_id: str,
signal_type: t.Type[SignalType],
signal_value: str,
) -> BankMemberSignal:
"""
Add a bank member signal. Will deduplicate a signal_value + signal_type
tuple before writing to the database.
Calling this API also makes the signal (new or existing) available to
process into matching indices.
"""
return banks_table.add_bank_member_signal(
bank_id=bank_id,
bank_member_id=bank_member_id,
signal_type=signal_type,
signal_value=signal_value,
)
|
214f064f152648c78d7ee5c6b56fb81c62cb4164
| 32,771 |
from typing import List
def map_zones(full_system) -> List[Zone]:
"""Map *zones*."""
zones = []
if full_system:
for raw_zone in full_system.get("body", dict()).get("zones", list()):
zone = map_zone(raw_zone)
if zone:
zones.append(zone)
return zones
|
e5996460bc66a2882ac1cabee79fdff6e4da71cd
| 32,774 |
def betternn(x, keep_prob):
"""
Builds a network that learns to recognize digits
:param x: input tensor of shape (N_examples, 784) as standard MNIST image is 28x28=7845
:param keep_prob: probability for dropout layer
:return: y - a tensor of shape (N_examples, 10) with
values equal to probabilities of example being given digit
"""
# input image is stored as 784 pixels, reshape it to (28,28,1) as it's greyscale
# -1 is special value that indicates that this dimension should be inferred to keep
# constant size
net = Network(tf.reshape(x, [-1, 28, 28, 1]))
net.add_layer(
# take 5x5 features and create 32 feature maps
ConvLayer([5, 5, 1, 32], [32], tf.nn.relu)
).add_layer(
# reduce size by factor of 2
PoolLayer()
).add_layer(
# this time create 64 feature maps
ConvLayer([5, 5, 32, 64], [64], tf.nn.relu)
).add_layer(
# reduce size again
PoolLayer()
).reshape_output(
# reduced size twice (so image is [28,28] -> [7,7]) and created 64 feature maps
# so flatten previous output
[-1, 7 * 7 * 64]
).add_layer(
# create 1024 features
FullyConnectedLayer([7 * 7 * 64, 1024], [1024], tf.nn.relu)
).add_layer(
# reduce complexity
DropoutLayer(keep_prob)
).add_layer(
# Map 1024 features to 10 classes representing digits
FullyConnectedLayer([1024, 10], [10], tf.nn.softmax)
)
return net.output
|
83b1155daa564b257fc1379811ddbde72d18ec4f
| 32,775 |
def get_valid_scsi_ids(devices, reserved_ids):
"""
Takes a list of dicts devices, and list of ints reserved_ids.
Returns:
- list of ints valid_ids, which are the SCSI ids that are not reserved
- int recommended_id, which is the id that the Web UI should default to recommend
"""
occupied_ids = []
for d in devices:
occupied_ids.append(d["id"])
unoccupied_ids = [i for i in list(range(8)) if i not in reserved_ids + occupied_ids]
unoccupied_ids.sort()
valid_ids = [i for i in list(range(8)) if i not in reserved_ids]
valid_ids.sort(reverse=True)
if len(unoccupied_ids) > 0:
recommended_id = unoccupied_ids[-1]
else:
recommended_id = occupied_ids.pop(0)
return valid_ids, recommended_id
|
a5b4341fbee75e7d555c917587678dc5ea918b9f
| 32,776 |
def check_password_and_delete(target: dict, password) -> dict:
"""
:param target:
:param password:
:return:
"""
if "password" in target:
if md5(str(password).encode()).hexdigest() == target["password"]:
target = dell(target["password"])
Bash().delete({
"bash_id": target["bash_id"]
})
# the bash have been found with the correct password
result = {
"code": "200",
"result": "The bash have been deleted successfully",
}
else:
# incorrect password
result = {
"code": "400",
"reason": "The password for this bash is incorrect, please try again !",
}
else:
# successfully retrieve a public bash
result = {
"code": "403",
"reason": "This is a public bash, you can't delete it, even if you're the author",
}
return result
|
c06f5064d8a85065c3312d09bda9b9602b772ae1
| 32,777 |
def lingodoc_trigger_to_BIO(doc):
"""
:type doc: nlplingo.text.text_theory.Document
"""
ret = []
for sentence in doc.sentences:
token_labels = []
for token_index, token in enumerate(sentence.tokens):
token_labels.append(EventTriggerFeatureGenerator.get_event_type_of_token(token, sentence))
bio_labels = transform_sentence_labels_to_BIO(token_labels)
token_bio = []
for k, v in zip(sentence.tokens, bio_labels):
token_bio.append('{} {}'.format(k.text, v))
ret.append('\n'.join(token_bio))
return ret
|
7237650ef6e9649b3d0e14867d907c9f6aa5b71a
| 32,778 |
def build_coiled_coil_model():
"""Generates and returns a coiled-coil model."""
model_and_info = build_and_record_model(
request, model_building.HelixType.ALPHA)
return jsonify(model_and_info)
|
9eeca3d1de581559129d3a4fe529c4e13727bd71
| 32,779 |
def get_input_fn(config, is_training,
num_cpu_threads=4):
"""Creates an `input_fn` closure to be passed to TPUEstimator."""
input_files = []
for input_pattern in config.pretrain_tfrecords.split(","):
input_files.extend(tf.io.gfile.glob(input_pattern))
def input_fn(params):
"""The actual input function."""
batch_size = params["batch_size"]
name_to_features = {
"input_ori_ids": tf.io.FixedLenFeature([config.max_seq_length], tf.int64),
# "input_mask": tf.io.FixedLenFeature([config.max_seq_length], tf.int64),
"segment_ids": tf.io.FixedLenFeature([config.max_seq_length], tf.int64),
}
d = tf.data.Dataset.from_tensor_slices(tf.constant(input_files))
d = d.repeat()
d = d.shuffle(buffer_size=len(input_files))
# `cycle_length` is the number of parallel files that get read.
cycle_length = min(num_cpu_threads, len(input_files))
# `sloppy` mode means that the interleaving is not exact. This adds
# even more randomness to the training pipeline.
d = d.apply(
tf.data.experimental.parallel_interleave(
tf.data.TFRecordDataset,
sloppy=is_training,
cycle_length=cycle_length))
d = d.shuffle(buffer_size=100)
# We must `drop_remainder` on training because the TPU requires fixed
# size dimensions. For eval, we assume we are evaluating on the CPU or GPU
# and we *don"t* want to drop the remainder, otherwise we wont cover
# every sample.
d = d.apply(
tf.contrib.data.map_and_batch(
lambda record: _decode_record(record, name_to_features),
batch_size=batch_size,
num_parallel_batches=num_cpu_threads,
drop_remainder=True))
d = d.apply(tf.data.experimental.ignore_errors())
return d
return input_fn
|
23992d8d4fd1bd09f12aa4c28c695a47edca420e
| 32,780 |
def control_modes_available():
"""API to call the GetCtrlModesCountSrv service to get the list of available modes
in ctrl_pkg (autonomous/manual/calibration).
Returns:
dict: Execution status if the API call was successful, list of available modes
and error reason if call fails.
"""
webserver_node = webserver_publisher_node.get_webserver_node()
webserver_node.get_logger().info("Providing the number of available modes")
try:
get_ctrl_modes_req = GetCtrlModesSrv.Request()
get_ctrl_modes_res = call_service_sync(webserver_node.get_ctrl_modes_cli,
get_ctrl_modes_req)
control_modes_available = list()
for mode in get_ctrl_modes_res.modes:
control_modes_available.append(constants.MODE_DICT[mode])
data = {
"control_modes_available": control_modes_available,
"success": True
}
return jsonify(data)
except Exception as ex:
webserver_node.get_logger().error(f"Unable to reach get ctrl modes service: {ex}")
return jsonify(success=False, reason="Error")
|
eec46b860791d305cce14659a633b461c73143f0
| 32,781 |
def reproject_bbox(source_epsg=4326, dest_epsg=None, bbox=None):
"""
Basic function to reproject given coordinate
bounding box (in WGS84).
"""
# checks
# reproject bounding box
l, b, r, t = bbox
return transform_bounds(src_crs=source_epsg,
dst_crs=dest_epsg,
left=l, bottom=b, right=r, top=t)
|
449a1cb793cb2239ed9d46449d03f77500fab031
| 32,782 |
from bs4 import BeautifulSoup
import re
def parse_cluster_card_info(soup: BeautifulSoup):
"""
App lists from GET requests follow a redirect to the /cluster page, which
contains different HTML and selectors.
:param soup: A BeautifulSoup object of an app's card
:return: A dictionary of available basic app info
"""
icon = soup.select_one("img")
details_soup = soup.select_one("div.RZEgze")
relative_url = details_soup.select_one("div.p63iDd > a")
url = relative_url.attrs.get("href") if relative_url else None
app_id = None
if url:
app_id = extract_id_query(url)
title = details_soup.select_one("div.WsMG1c.nnK0zc")
developer_soup = details_soup.select_one("a.mnKHRc")
developer = None
developer_id = None
if developer_soup:
developer = developer_soup.select_one("div.KoLSrc")
developer_url = developer_soup.attrs.get("href") if developer else None
developer_id = extract_id_query(developer_url)
description = details_soup.select_one("div.b8cIId.f5NCO")
score_soup = details_soup.select_one("div.pf5lIe div")
score = None
if score_soup:
matches = re.search(r"([0-9]\.[0-9]) star", score_soup.text)
score = matches.groups()[0] if matches else None
price = None
price_button = details_soup.select_one("button span.VfPpfd")
if price_button:
price = price_button.text
full_price = None
full_price_button = details_soup.select_one("button span.SUZt4c")
if full_price_button:
full_price = full_price_button.text
free = price is None
if free is True:
price = "0"
full_price = "0"
return {
"app_id": app_id,
"url": url,
"icon": icon.attrs.get("data-src") if icon else None,
"title": title.text if title else None,
"developer": developer.text if developer else None,
"developer_id": developer_id,
"description": description.text if description else None,
"score": score,
"full_price": full_price,
"price": price,
"free": free,
}
|
0d4d0ba75a4e29b4d33e1f1a4e40239adcd80626
| 32,784 |
def get_joint_occurrence_df(df, row_column, col_column, top_k=10):
"""
Form a DataFrame where:
- index is composed of top_k top values in row_column.
- columns are composed of top_k top values in col_column.
- cell values are the number of times that the index and
column values occur together in the given DataFrame.
Note: Index of the DataFrame must be unique.
"""
df_s = df[[row_column, col_column]].copy()
# Get top row and column values.
top_rows = df[row_column].value_counts().iloc[:top_k]
top_cols = df[col_column].value_counts().iloc[:top_k]
# Drop rows that don't have a genre and style in the top list.
filter_lambda = lambda x: \
x[row_column] in top_rows and x[col_column] in top_cols
df_s = df_s[df_s.apply(filter_lambda, axis=1)]
fname = 'get_joint_occurrence_df'
print("{}: looking at co-occurrence of {} and {}".format(
fname, row_column, col_column))
print(" dropped {}/{} rows that don't have both vals in top-{}.".format(
df_s.shape[0] - df_s.shape[0], df_s.shape[0], top_k))
# Construct joint occurence matrix
JM = np.zeros((top_k, top_k))
for i, row in enumerate(top_rows.index):
for j, col in enumerate(top_cols.index):
JM[i, j] = (
(df_s[row_column] == row) &
(df_s[col_column] == col)
).sum()
df_m = pd.DataFrame(JM, columns=top_cols.index, index=top_rows.index)
return df_m
|
19701a0a355733c1eb8d3aa3046fc6e00daed120
| 32,785 |
def get_total_obs_num_samples(obs_length=None,
num_blocks=None,
length_mode='obs_length',
num_antennas=1,
sample_rate=3e9,
block_size=134217728,
num_bits=8,
num_pols=2,
num_branches=1024,
num_chans=64):
"""
Calculate number of required real voltage time samples for as given `obs_length` or `num_blocks`, without directly
using a `RawVoltageBackend` object.
Parameters
----------
obs_length : float, optional
Length of observation in seconds, if in `obs_length` mode
num_blocks : int, optional
Number of data blocks to record, if in `num_blocks` mode
length_mode : str, optional
Mode for specifying length of observation, either `obs_length` in seconds or `num_blocks` in data blocks
num_antennas : int
Number of antennas
sample_rate : float
Sample rate in Hz
block_size : int
Block size used in recording GUPPI RAW files
num_bits : int
Number of bits in requantized data (for saving into file). Can be 8 or 4.
num_pols : int
Number of polarizations recorded
num_branches : int
Number of branches in polyphase filterbank
num_chans : int
Number of coarse channels written to file
Returns
-------
num_samples : int
Number of samples
"""
tbin = num_branches / sample_rate
chan_bw = 1 / tbin
bytes_per_sample = 2 * num_pols * num_bits / 8
if length_mode == 'obs_length':
if obs_length is None:
raise ValueError("Value not given for 'obs_length'.")
num_blocks = int(obs_length * chan_bw * num_antennas * num_chans * bytes_per_sample / block_size)
elif length_mode == 'num_blocks':
if num_blocks is None:
raise ValueError("Value not given for 'num_blocks'.")
pass
else:
raise ValueError("Invalid option given for 'length_mode'.")
return num_blocks * int(block_size / (num_antennas * num_chans * bytes_per_sample)) * num_branches
|
0d5c3de03723c79d31c7f77ece29226daaf4f442
| 32,786 |
def number(
x: Scalar,
c: str = 'csl',
w: int = 5,
) -> str:
"""
Return a notation of the number x in context c.
Input:
x (Scalar): number
c (str): context
w (int): width of the output string
Output:
s (str): notation of x
"""
S = 0 if x>=0 else 1 # 0 for + / 1 for -
m, e = f"{x:e}".split('e')
m, e = eval(m), int(e) # mantissa and exponent
A, B = f"{x:f}".rstrip('0').strip('-').split('.')
a, b = len(A), len(B) # number of digits before / after the comma
if isinstance(x, int) or x%1==0:
if a+S<=w or a<=3:
if c == 'stm':
return f"{S*'-'+A.zfill(w-S)}"
if c == 'ttl':
return f"$ {S*'-'+A} $"
if c == 'csl':
return format(S*'-'+A, f'>{w}')
else:
if a+S<=w-2 and np.abs(x)>0.1:
if c == 'ttl':
return f"$ {S*'-'}{A}.{B[:w-S-1]} $"
if c == 'csl':
return format(f"{S*'-'}{A}.{B[:w-S-1-a]}", f'>{w}')
u = len(str(e))
if c == 'stm':
z = 0
q = len(str(m).strip('0').strip('.'))-2-S
while z+1<=q and w>=S+1+(z+1)+1+len(str(e-(z+1))):
z += 1
return f"{m*10**z:1.0f}e{e-z}"
if c == 'ttl':
return fr"$ {format(m, f'1.{max(0, w-S-3-u)}f')} \times 10^{{ {e} }} $"
if c == 'csl':
return format(f"{format(m, f'1.{max(0, w-S-3-u)}f')}e{e}", f'>{w}')
raise ValueError(f"unknown context: {c}")
|
3a36d66f9166e82bb51e39e483f9366f83f72ff8
| 32,788 |
def remove_helm_repo(repos_array):
"""
Execute 'helm repo remove' command on input values
repos_array is an array of strings as:
['stable', 'local', 'nalkinscloud', ...]
:param repos_array: array of strings
:return: return code and value from execution command as dict
"""
status = 0
value = 'no errors found'
for repo in repos_array:
completed_process_object = run(["helm", "repo", "remove", repo], stdout=PIPE, stderr=PIPE)
# In case of a non 0 return code, update return from last iteration
if completed_process_object.returncode != 0:
status = completed_process_object.returncode
value = completed_process_object.stderr.decode('utf-8') + " *** Additional errors may occurred"
return {'status': status, 'value': value}
|
4b2a778122caaabf1b7cca971d2d9f2b57dbf84e
| 32,789 |
def evaluate_fio(baselines: dict, results: dict, test_name: str, failures: int,
tolerance: int) -> int:
"""
Evaluate the fio test results against the baseline.
Determine if the fio test results meet the expected threshold and display
the outcome with appropriate units.
Parameters
----------
baselines : dict
A ``dictionary`` of the baseline to compare results against.
results : dict
A ``dictionary`` of the parsed results.
test_name : str
A ``string`` of the name of the test being parsed.
failures : int
An ``integer`` of the number of results that have not met the
threshold.
tolerance : int
An ``int`` of the percentage below the threshold to still mark as
passing.
Returns
-------
int
Returns an ``integer`` of the number of results that have not met the
threshold.
"""
for test, value in baselines.items():
if test_name not in results.keys():
continue
if test_name == 'bandwidth':
unit = '(GB/s)'
expected = value / 1000000000
got = round(results[test_name][test] / 1000000000, 3)
elif test_name == 'iops':
unit = '(k IOPS)'
expected = value / 1000
got = round(results[test_name][test] / 1000, 3)
print(f' {TEST_MAPPING[test_name]} {test.title()} {unit}')
text = f' Expected: {expected}, Got: {got}'
result = metric_passes(expected, got, tolerance)
output, failures = result_text(result, failures)
text += f', Result: {output}'
print(text)
return failures
|
d5ad4ca319163409a526fe9d8b43be13de49680a
| 32,790 |
def f1_3D(x1, x2, x3):
"""
x1 dependant
from example 2.1 in iterative methods
"""
return -0.2*x2 - 0.2*x3 + 0.8
|
09e5a337f5fa62a4c3cddd9ae0dd701867c52b22
| 32,791 |
import typing
def encrypt(message: typing.Union[str, bytes], n: int, e: int) -> bytes:
"""
Encrypt MESSAGE with public key specified by N and E
"""
pub_key = rsa.PublicKey(n, e)
if isinstance(message, str):
message = message.encode("utf-8")
elif isinstance(message, bytes):
pass
else:
raise Exception("Please format your message to binary or string")
message = rsa.encrypt(message, pub_key)
return message
|
fb89606b0d3263c5d10479970868c5336d14679b
| 32,792 |
def _safe_div(numerator, denominator):
"""Divides two tensors element-wise, returning 0 if the denominator is <= 0.
Args:
numerator: A real `Tensor`.
denominator: A real `Tensor`, with dtype matching `numerator`.
Returns:
0 if `denominator` <= 0, else `numerator` / `denominator`
"""
t = tf.truediv(numerator, denominator)
zero = tf.zeros_like(t, dtype=denominator.dtype)
condition = tf.greater(denominator, zero)
zero = tf.cast(zero, t.dtype)
return tf.where(condition, t, zero)
|
04e9856b1283bf83cd63bb56c65f1d1e2667bcc6
| 32,793 |
def build_embedding_model():
""" Build model by stacking up a preprocessing layer
and an encoding layer.
Returns
-------
tf.keras.Model
The embedding model, taking a list of strings as input,
and outputting embeddings for each token of the input strings
"""
# Links for the pre-trained TensorFlow Hub preprocessing
# and encoding layers
tfhub_preprocessing = 'https://tfhub.dev/tensorflow/' \
'bert_en_uncased_preprocess/3'
tfhub_encoder = 'https://tfhub.dev/tensorflow/small_bert/' \
'bert_en_uncased_L-2_H-128_A-2/1'
# Define model input type and name
inputs = tf.keras.layers.Input(shape=(), dtype=tf.string, name='snippet')
# Define preprocessing layer
preprocessing_layer = hub.KerasLayer(tfhub_preprocessing,
name='preprocessing')
# Define encoding layer
encoder = hub.KerasLayer(tfhub_encoder,
trainable=True, name='BERT_encoder')
# Stack up the three layers
outputs = encoder(preprocessing_layer(inputs))
# Retrieve token embeddings i.e. the 'sequence_output' values
model_outputs = outputs['sequence_output']
# Return model
return tf.keras.Model(inputs, model_outputs)
|
ecf835f8543d9815c3c88b5b596c0c14d9524b66
| 32,794 |
def event_date_row(event_names_and_dates):
""" Returns the third row of the attendance csv. This is just a list of event dates.
:param list[(str, datetime)] event_names_and_dates:
A list of names and dates for each event that should appear on the csv
:returns:
the row to be printed
:rtype: [str]
"""
# =" " has to be added around the dates to make sure it isn't auto-formatted by Excel
event_dates = ['="' + str(dates) + '"' for _, dates in event_names_and_dates]
return ['', '', '', '', '', '', ''] + event_dates
|
5b51eaef8cde99040a1aff9a0c6abaaef5e52896
| 32,795 |
def moving_tajima_d(ac, size, start=0, stop=None, step=None, min_sites=3):
"""Calculate the value of Tajima's D in moving windows of `size` variants.
Parameters
----------
ac : array_like, int, shape (n_variants, n_alleles)
Allele counts array.
size : int
The window size (number of variants).
start : int, optional
The index at which to start.
stop : int, optional
The index at which to stop.
step : int, optional
The number of variants between start positions of windows. If not
given, defaults to the window size, i.e., non-overlapping windows.
min_sites : int, optional
Minimum number of segregating sites for which to calculate a value. If
there are fewer, np.nan is returned. Defaults to 3.
Returns
-------
d : ndarray, float, shape (n_windows,)
Tajima's D.
Examples
--------
>>> import allel
>>> g = allel.GenotypeArray([[[0, 0], [0, 0]],
... [[0, 0], [0, 1]],
... [[0, 0], [1, 1]],
... [[0, 1], [1, 1]],
... [[1, 1], [1, 1]],
... [[0, 0], [1, 2]],
... [[0, 1], [1, 2]],
... [[0, 1], [-1, -1]],
... [[-1, -1], [-1, -1]]])
>>> ac = g.count_alleles()
>>> D = allel.moving_tajima_d(ac, size=4, step=2)
>>> D
array([0.1676558 , 2.01186954, 5.70029703])
"""
d = moving_statistic(values=ac, statistic=tajima_d, size=size, start=start, stop=stop,
step=step, min_sites=min_sites)
return d
|
df5217180cf5b25ccb09ee88974d82290bff43ce
| 32,796 |
def sample_member(user, name='Attila'):
"""
Create and return a sample tag
:param user:
:param name:
:return:
"""
return Member.objects.create(user=user, name=name)
|
ac171a5da2495436596bd6e597b0b9ea498c8bcf
| 32,797 |
import uuid
def _create_feed(client, customer_id):
"""Creates a page feed with URLs
Args:
client: an initialized GoogleAdsClient instance.
customer_id: a client customer ID str.
Returns:
A FeedDetails instance with information about the newly created feed.
"""
# Retrieve a new feed operation object.
feed_operation = client.get_type("FeedOperation")
# Create a new feed.
feed = feed_operation.create
feed.name = f"DSA Feed #{uuid.uuid4()}"
feed.origin = client.enums.FeedOriginEnum.USER
feed_attribute_type_enum = client.enums.FeedAttributeTypeEnum
# Create the feed's attributes.
feed_attribute_url = client.get_type("FeedAttribute")
feed_attribute_url.type_ = feed_attribute_type_enum.URL_LIST
feed_attribute_url.name = "Page URL"
feed_attribute_label = client.get_type("FeedAttribute")
feed_attribute_label.type_ = feed_attribute_type_enum.STRING_LIST
feed_attribute_label.name = "Label"
feed.attributes.extend([feed_attribute_url, feed_attribute_label])
# Retrieve the feed service.
feed_service = client.get_service("FeedService")
# Send the feed operation and add the feed.
response = feed_service.mutate_feeds(
customer_id=customer_id, operations=[feed_operation]
)
return response.results[0].resource_name
|
738e940abd1a7ec90382c4011b26d757c8a916a4
| 32,798 |
def cal_pj_task_ind(_st_date, _ed_date):
"""
计算产品研发中心资源投入到非产品事务的指标。
:param _st_date: 起始日期
:param _ed_date: 截止日期
:return: 统计指标
"""
global extTask
_pj_info = handler.get_project_info("project_t")
# logging.log(logging.WARN, ">>> cal_pj_task_ind( %s, %s )" % (_st_date, _ed_date))
_pj_sum = 0
_npj_sum = 0
_project = {}
for _issue in extTask:
if _issue["updated"] is None:
continue
_issue_updated_date = _issue["updated"].split('T')[0]
"""判断任务是否在指定的时间段内"""
if handler.is_date_bef(_issue_updated_date, _st_date) or handler.is_date_aft(_issue_updated_date, _ed_date):
continue
_group = _issue['issue'].split('-')[0]
_month = int(_issue_updated_date.split('-')[1])
if _issue['project_alias'] is not None:
_pj_name = scan_project_name(_pj_info, _issue['project_alias'])
if _pj_name is None:
_pj_name = _issue['project_alias']
if _pj_name not in _project:
_project[_pj_name] = {_group: _issue['spent_time'],
1: 0,
2: 0,
3: 0,
4: 0,
5: 0,
6: 0,
7: 0,
8: 0,
9: 0,
10: 0,
11: 0,
12: 0,
13: 0,
"member": []
}
_project[_pj_name][_month] = _issue['spent_time']
_project[_pj_name][13] = _issue['spent_time']
else:
if _group not in _project[_pj_name]:
_project[_pj_name][_group] = _issue['spent_time']
else:
_project[_pj_name][_group] += _issue['spent_time']
_project[_pj_name][_month] += _issue['spent_time']
_project[_pj_name][13] += _issue['spent_time']
_pj_sum += _issue['spent_time']
_project[_pj_name]["member"].append(
{
"member": _issue["users"],
"date": _issue["updated"],
"summary": _issue["summary"],
"spent_time": _issue["spent_time"]
}
)
else:
"""试图从summary中寻找项目信息"""
_pj_name = scan_project_name(_pj_info, _issue['summary'])
if _pj_name is not None:
"""有项目信息"""
if _pj_name not in _project:
_project[_pj_name] = {_group: _issue['spent_time'],
1: 0,
2: 0,
3: 0,
4: 0,
5: 0,
6: 0,
7: 0,
8: 0,
9: 0,
10: 0,
11: 0,
12: 0,
13: 0,
"member": []
}
_project[_pj_name][_month] = _issue['spent_time']
_project[_pj_name][13] = _issue['spent_time']
else:
if _group not in _project[_pj_name]:
_project[_pj_name][_group] = _issue['spent_time']
else:
_project[_pj_name][_group] += _issue['spent_time']
_project[_pj_name][_month] += _issue['spent_time']
_project[_pj_name][13] += _issue['spent_time']
_pj_sum += _issue['spent_time']
_project[_pj_name]["member"].append(
{
"member": _issue["users"],
"date": _issue["updated"],
"summary": _issue["summary"],
"spent_time": _issue["spent_time"]
}
)
else:
"""无项目信息"""
print(u">>> %s" % _issue['summary'])
if u'其它' not in _project:
_project[u'其它'] = {_group: _issue['spent_time'],
1: 0,
2: 0,
3: 0,
4: 0,
5: 0,
6: 0,
7: 0,
8: 0,
9: 0,
10: 0,
11: 0,
12: 0,
13: 0,
"member": []
}
_project[u'其它'][_month] = _issue['spent_time']
_project[u'其它'][13] = _issue['spent_time']
else:
if _group not in _project[u'其它']:
_project[u'其它'][_group] = _issue['spent_time']
else:
_project[u'其它'][_group] += _issue['spent_time']
_project[u'其它'][_month] += _issue['spent_time']
_project[u'其它'][13] += _issue['spent_time']
_npj_sum += _issue['spent_time']
_project[u'其它']["member"].append(
{
"member": _issue["users"],
"date": _issue["updated"],
"summary": _issue["summary"],
"spent_time": _issue["spent_time"]
}
)
# logging.log(logging.WARN, ">>> return %s, %d, %d" % (_project, _pj_sum, _npj_sum))
return _project, _pj_sum, _npj_sum
|
7a998a01a87abbc1f80147cf067b231429124001
| 32,799 |
def get_page_index(obj, amongst_live_pages=True):
"""
Get oage's index (a number) within its siblings.
:param obj:
Wagtail page object
:param amongst_live_pages:
Get index amongst live pages if True or all pages if False.
:return:
Index of a page if found or None if page doesn't have an index.
"""
qs = obj.__class__.objects.filter(depth=obj.depth).values_list('pk', flat=True)
if amongst_live_pages:
qs = qs.live()
if obj.depth > 1:
# making sure the non-root nodes share a parent
parentpath = obj._get_basepath(obj.path, obj.depth - 1)
qs = qs.filter(
path__range=obj._get_children_path_interval(parentpath))
try:
index = list(qs).index(obj.pk)
return index
except ValueError:
return None
|
fd1950533a398019ab0d3e208a1587f86b134a13
| 32,801 |
import requests
def contact_ocsp_server(certs):
"""Sends an OCSP request to the responding server for a certificate chain"""
chain = convert_to_oscrypto(certs)
req = create_ocsp_request(chain[0], chain[1])
URI = extract_ocsp_uri(certs[0])
data = requests.post(URI, data=req, stream=True, headers={'Content-Type': 'application/ocsp-request'})
response = ocsp.OCSPResponse.load(data.raw.data)
parsed = parse_ocsp(response)
return parsed
|
15c32e72d41e6db275f5ef1d91ee7ccf05eb8cde
| 32,802 |
import warnings
def reset_index_inplace(df: pd.DataFrame, *args, **kwargs) -> pd.DataFrame:
"""
Return the dataframe with an inplace resetting of the index.
This method mutates the original DataFrame.
Compared to non-inplace resetting, this avoids data copying, thus
providing a potential speedup.
In Pandas, `reset_index()`, when used in place, does not return a
`DataFrame`, preventing this option's usage in the function-chaining
scheme. `reset_index_inplace()` provides one the ability to save
computation time and memory while still being able to use the chaining
syntax core to pyjanitor. This function, therefore, is the chaining
equivalent of:
.. code-block:: python
data = {"class": ["bird", "bird", "bird", "mammal", "mammal"],
"max_speed": [389, 389, 24, 80, 21],
"index": ["falcon", "falcon", "parrot", "Lion", "Monkey"]}
df = (
pd.DataFrame(data).set_index("index")
.drop_duplicates()
)
df.reset_index(inplace=True)
instead, being called simply as:
.. code-block:: python
df = (
pd.DataFrame(data).set_index("index")
.drop_duplicates()
.reset_index_inplace()
)
All supplied parameters are sent directly to `DataFrame.reset_index()`.
:param df: A pandas DataFrame.
:param args: Arguments supplied to `DataFrame.reset_index()`
:param kwargs: Arguments supplied to `DataFrame.reset_index()`
:returns: A pandas DataFrame with reset indexes.
"""
# Deprecation Warning
warnings.warn(
"reset_index_inplace will be deprecated in the "
"upcoming 0.18 release. Use .reset_index() instead",
DeprecationWarning,
)
kwargs.update(inplace=True)
df.reset_index(*args, **kwargs)
return df
|
6c10d67ffdaf195c0a9eea3ae473bb0e93e6e9ef
| 32,803 |
def get_current_user():
"""Get the current logged in user, or None."""
if environment.is_local_development():
return User('user@localhost')
current_request = request_cache.get_current_request()
if local_config.AuthConfig().get('enable_loas'):
loas_user = current_request.headers.get('X-AppEngine-LOAS-Peer-Username')
if loas_user:
return User(loas_user + '@google.com')
iap_email = get_iap_email(current_request)
if iap_email:
return User(iap_email)
cache_backing = request_cache.get_cache_backing()
oauth_email = getattr(cache_backing, '_oauth_email', None)
if oauth_email:
return User(oauth_email)
cached_email = getattr(cache_backing, '_cached_email', None)
if cached_email:
return User(cached_email)
session_cookie = get_session_cookie()
if not session_cookie:
return None
try:
decoded_claims = decode_claims(get_session_cookie())
except AuthError:
logs.log_warn('Invalid session cookie.')
return None
if not decoded_claims.get('email_verified'):
return None
email = decoded_claims.get('email')
if not email:
return None
# We cache the email for this request if we've validated the user to make
# subsequent get_current_user() calls fast.
setattr(cache_backing, '_cached_email', email)
return User(email)
|
3b80285c87358dc33595ca97ecee3cf38cf96034
| 32,805 |
import calendar
import time
def genericGetCreationDate(page):
"""
Go to each date position and attempt to get date
"""
randSleep()
allDates = []
signaturePositions = findSignatures(page)
for p in signaturePositions:
timestamp = getTimestampFromSERP(p, page)
# print('timestamp/locationOfSignature:', timestamp)
try:
epoch = calendar.timegm(
time.strptime(timestamp, '%b %d, %Y'))
date = time.strftime('%Y-%m-%dT%H:%M:%S',
time.gmtime(epoch))
allDates.append(date)
except Exception:
pass
return getLowest(allDates)
|
3d3f6e9a0b1ce9b49f887ba4d1d99493b75d2f9e
| 32,806 |
def depth(data):
"""
For each event, it finds the deepest layer in which the shower has
deposited some E.
"""
maxdepth = 2 * (data[2].sum(axis=(1, 2)) != 0)
maxdepth[maxdepth == 0] = 1 * (
data[1][maxdepth == 0].sum(axis=(1, 2)) != 0
)
return maxdepth
|
aa48c88c516382aebe2a8b761b21f650afea82b1
| 32,807 |
def transform_user_extensions(user_extension_json):
"""
Transforms the raw extensions JSON from the API into a list of extensions mapped to users
:param user_extension_json: The JSON text blob returned from the CRXcavator API
:return: Tuple containing unique users list, unique extension list, and extension mapping for ingestion
"""
user_extensions = user_extension_json.items()
users_set = set()
extensions = []
extensions_by_user = []
for extension in user_extensions:
for details in extension[1].items():
extension_id = extension[0]
version = details[0]
extensions.append({
'extension_id': extension_id,
'version': version,
'name': details[1]['name'],
})
for user in details[1]['users']:
if user is None:
logger.info(f'bad user for {extension_id}{version}')
continue
users_set.add(user)
extensions_by_user.append({
'id': f"{extension_id}|{version}",
'user': user,
})
if len(users_set) == 0:
raise ValueError('No users returned from CRXcavator')
if len(extensions) == 0:
raise ValueError('No extensions information returned from CRXcavator')
if len(extensions_by_user) == 0:
raise ValueError('No user->extension mapping returned from CRXcavator')
return list(users_set), extensions, extensions_by_user
|
89d91781028eb4335fff2c9bca446f50b5e91a3f
| 32,809 |
def shower_array_rot(shower_array, alt, az):
"""
Given a series of point on the Z axis, perform a rotation of alt around Y and az around Z
Parameters
----------
shower_array: numpy array of shape (N,3) giving N points coordinates
alt: altitude shower direction - float
az: azimuth shower direction - float
Returns
-------
Numpy array of shape (N,3) giving N points coordinates
"""
rotated_shower_array = geo.rotation_matrix_z(az) * geo.rotation_matrix_y(pi / 2. - alt) * shower_array.T
return np.array(rotated_shower_array.T)
|
d98a6a4589b8945e8dff1272608307915f499fd6
| 32,810 |
from typing import Optional
def get_dscp_configuration(dscp_configuration_name: Optional[str] = None,
resource_group_name: Optional[str] = None,
opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetDscpConfigurationResult:
"""
Use this data source to access information about an existing resource.
:param str dscp_configuration_name: The name of the resource.
:param str resource_group_name: The name of the resource group.
"""
__args__ = dict()
__args__['dscpConfigurationName'] = dscp_configuration_name
__args__['resourceGroupName'] = resource_group_name
if opts is None:
opts = pulumi.InvokeOptions()
if opts.version is None:
opts.version = _utilities.get_version()
__ret__ = pulumi.runtime.invoke('azure-nextgen:network/v20200601:getDscpConfiguration', __args__, opts=opts, typ=GetDscpConfigurationResult).value
return AwaitableGetDscpConfigurationResult(
associated_network_interfaces=__ret__.associated_network_interfaces,
destination_ip_ranges=__ret__.destination_ip_ranges,
destination_port_ranges=__ret__.destination_port_ranges,
etag=__ret__.etag,
location=__ret__.location,
markings=__ret__.markings,
name=__ret__.name,
protocol=__ret__.protocol,
provisioning_state=__ret__.provisioning_state,
qos_collection_id=__ret__.qos_collection_id,
resource_guid=__ret__.resource_guid,
source_ip_ranges=__ret__.source_ip_ranges,
source_port_ranges=__ret__.source_port_ranges,
tags=__ret__.tags,
type=__ret__.type)
|
80e0a388581cd7028c7a8351737808e578778611
| 32,811 |
def aggregate_returns(df_daily_rets, convert_to):
"""
Aggregates returns by week, month, or year.
Parameters
----------
df_daily_rets : pd.Series
Daily returns of the strategy, noncumulative.
- See full explanation in tears.create_full_tear_sheet (returns).
convert_to : str
Can be 'weekly', 'monthly', or 'yearly'.
Returns
-------
pd.Series
Aggregated returns.
"""
def cumulate_returns(x):
return cum_returns(x)[-1]
if convert_to == WEEKLY:
return df_daily_rets.groupby(
[lambda x: x.year,
lambda x: x.isocalendar()[1]]).apply(cumulate_returns)
elif convert_to == MONTHLY:
return df_daily_rets.groupby(
[lambda x: x.year, lambda x: x.month]).apply(cumulate_returns)
elif convert_to == YEARLY:
return df_daily_rets.groupby(
[lambda x: x.year]).apply(cumulate_returns)
else:
ValueError(
'convert_to must be {}, {} or {}'.format(WEEKLY, MONTHLY, YEARLY)
)
|
7ccf2763420df055a59f15b679ba2c8265744a41
| 32,812 |
import random
def impute(x,nu):
"""
Impute to missing values: for each row of x this function find the nearest row in eucledian distance
in a sample of nu rows of x and replace the missing value of the former row
with the corrisponding values of the latter row
"""
remember=x[:,22]
N,D = x.shape
idx = get_jet_masks(x)
x, x = missing_values(x, x)
x,_,_ = standardize (x)
cols = set(range(D))
# class 1
col1 = set([4,5,6,12,26,27,28])
col1n = cols-col1
idx23 = np.array(idx[2])+np.array(idx[3])
x1 = x[idx[1],:]
x23 = x[idx23,:]
for j in col1:
for i in range(x[idx[1]].shape[0]):
key = random.sample(range(x23.shape[0]), nu)
k = np.argmin(abs((x23[key,:][:,list(col1n)]-x[i,list(col1n)])).sum(axis=1))
x1[i,j]= x23[key,:][k,j]
x[idx[1],:] = x1
# class 0
col0= set([23,24,25,29]).union(col1)
col0n = cols-col0
idx123 = np.array(idx[1])+np.array(idx[2])+np.array(idx[3])
x0=x[idx[0],:]
x123=x[idx123,:]
for j in col0:
for i in range(x[idx[1]].shape[0]):
key = random.sample(range(x123.shape[0]), nu)
k = np.argmin(abs((x123[key,:][:,list(col0n)]-x[i,list(col0n)])).sum(axis=1))
x0[i,j]= x123[key,:][k,j]
x[idx[0],:] = x0
x[:,22]=remember
return x
|
e13562e28eaafcfaa7848eae9cca7ac9d435d1f4
| 32,814 |
def get_data_splits(comment_type_str=None, ignore_ast=False):
"""Retrieves train/validation/test sets for the given comment_type_str.
comment_type_str -- Return, Param, Summary, or None (if None, uses all comment types)
ignore_ast -- Skip loading ASTs (they take a long time)"""
dataset, high_level_details = load_processed_data(comment_type_str, ignore_ast)
train_examples = dataset['train']
valid_examples = dataset['valid']
test_examples = dataset['test']
return train_examples, valid_examples, test_examples, high_level_details
|
b9451c5539c7ce235b7bb7f3251e3caa8e4b77c7
| 32,815 |
from typing import Tuple
def get_slide_roi_masks(slide_path, halo_roi_path, annotation_name, slide_id:str=None,
output_dir:str=None) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:
"""get roi masks from slides
Given a slide, halo annotation xml file, generate labels from xml polygons,
then crop both the image and mask to ROI (rectangle) region
Optionally: save the RGB image, downsampled image sample, and interger label mask as a tiff
Args:
slide_path (str): path to input slide
halo_roi_path (str): path to halo annotation file
annotation_name (str): name of annotation
slide_id (Optional, str): slide id
output_dir (Optional, str): destination to save RGB image, thumbnail and mask
Returns:
Tuple[np.ndarray, np.ndarray, np.ndarray]: the cropped image as RGB numpy array, a
downsampled array (as sample for stains), and mask array as single channel
"""
slide = openslide.OpenSlide(slide_path)
wsi_shape = slide.dimensions[1], slide.dimensions[0] # Annotation file has flipped dimensions w.r.t openslide conventions
annotation_mask = convert_xml_to_mask(halo_roi_path, wsi_shape, annotation_name)
x_roi, y_roi = convert_halo_xml_to_roi(halo_roi_path)
print (x_roi, y_roi)
# print ((min(x_roi), min(y_roi)), 0, (abs(x_roi[1] - x_roi[0]), abs(y_roi[1] - y_roi[1])))
slide_image_cropped = slide.read_region((min(x_roi), min(y_roi)), 0, (abs(x_roi[1] - x_roi[0]), abs(y_roi[1] - y_roi[0]))).convert('RGB')
print (slide_image_cropped)
slide_array = np.array(slide_image_cropped, dtype=np.uint8)
sample_array = np.array(slide_image_cropped.resize( (slide_image_cropped.size[0] // 80, slide_image_cropped.size[1] // 80) ), dtype=np.uint8)
mask_array = annotation_mask[ min(y_roi):max(y_roi), min(x_roi):max(x_roi)].astype(np.uint8)
if slide_id is not None and output_dir is not None:
with tifffile.TiffWriter(f'{output_dir}/{slide_id}/{slide_id}_slideImage_roi_inRGB.tiff', bigtiff=True) as tiff:
tiff.save(slide_array)
with tifffile.TiffWriter(f'{output_dir}/{slide_id}/{slide_id}_slideSample_roi_inRGB.tiff', bigtiff=True) as tiff:
tiff.save(sample_array)
with tifffile.TiffWriter(f'{output_dir}/{slide_id}/{slide_id}_annotMask_roi_uint8.tiff', bigtiff=True) as tiff:
tiff.save(mask_array)
return slide_array, sample_array, mask_array
|
b79e9b8d93416c404110b56582b4ae1e9030bd7c
| 32,816 |
def generate_stop_enex_nb(entries: tp.Array2d,
ts: tp.Array,
stop: tp.MaybeArray[float],
trailing: tp.MaybeArray[bool],
entry_wait: int,
exit_wait: int,
pick_first: bool,
flex_2d: bool) -> tp.Tuple[tp.Array2d, tp.Array2d]:
"""Generate one after another using `generate_enex_nb` and `stop_choice_nb`.
Returns two arrays: new entries and exits.
!!! note
Has the same logic as calling `generate_stop_ex_nb` with `skip_until_exit=True`, but
removes all entries that come before the next exit."""
temp_idx_arr = np.empty((entries.shape[0],), dtype=np.int_)
return generate_enex_nb(
entries.shape,
entry_wait,
exit_wait,
True,
pick_first,
first_choice_nb, (entries,),
stop_choice_nb, (ts, stop, trailing, exit_wait, pick_first, temp_idx_arr, flex_2d)
)
|
a34108bd324498e70155f5dcc8c8c4364982c43f
| 32,817 |
def mangle_type(typ):
"""
Mangle Numba type
"""
if typ in N2C:
typename = N2C[typ]
else:
typename = str(typ)
return mangle_type_c(typename)
|
944952e184d1d33f9424c9e1118920f69f757e86
| 32,818 |
def lorentz(sample_len=1000, sigma=10, rho=28, beta=8 / 3, step=0.01):
"""This function generates a Lorentz time series of length sample_len,
with standard parameters sigma, rho and beta.
"""
x = np.zeros([sample_len])
y = np.zeros([sample_len])
z = np.zeros([sample_len])
# Initial conditions taken from 'Chaos and Time Series Analysis', J. Sprott
x[0] = 0
y[0] = -0.01
z[0] = 9
for t in range(sample_len - 1):
x[t + 1] = x[t] + sigma * (y[t] - x[t]) * step
y[t + 1] = y[t] + (x[t] * (rho - z[t]) - y[t]) * step
z[t + 1] = z[t] + (x[t] * y[t] - beta * z[t]) * step
x.shape += (1,)
y.shape += (1,)
z.shape += (1,)
return np.concatenate((x, y, z), axis=1)
|
c8dc9de84dde15453fe99ed8fb55eddcdd628648
| 32,819 |
def draw_lane_lines_on_all_images(images, cols=2, rows=3, figsize=(15, 13)):
"""
This method calls draw_windows_and_fitted_lines Fn for each image and then show the grid of output images.
"""
no_of_images = len(images)
fig, axes = plt.subplots(rows, cols, figsize=figsize)
indexes = range(cols * rows)
image_path_with_fitted_parameters = []
for ax, index in zip(axes.flat, indexes):
if index < no_of_images:
image_path, image = images[index]
left_fit, right_fit, left_fit_m, right_fit_m = draw_windows_and_fitted_lines(image, ax)
ax.set_title(image_path)
ax.axis('off')
image_path_with_fitted_parameters.append((image_path, left_fit, right_fit, left_fit_m, right_fit_m))
fig.show()
return image_path_with_fitted_parameters
|
27975a95836b784fece0547375b4d79868bbd3b6
| 32,820 |
import re
def get_field_order(address, latin=False):
"""
Returns expected order of address form fields as a list of lists.
Example for PL:
>>> get_field_order({'country_code': 'PL'})
[[u'name'], [u'company_name'], [u'street_address'], [u'postal_code', u'city']]
"""
rules = get_validation_rules(address)
address_format = (
rules.address_latin_format if latin else rules.address_format)
address_lines = address_format.split('%n')
replacements = {'%%%s' % code: field_name
for code, field_name in FIELD_MAPPING.items()}
all_lines = []
for line in address_lines:
fields = re.split('(%.)', line)
single_line = [replacements.get(field) for field in fields]
single_line = list(filter(None, single_line))
all_lines.append(single_line)
return all_lines
|
d86c36ab1026fdad6e0b66288708786d8d2cb906
| 32,821 |
def env_start():
""" returns numpy array """
global maze, current_position
current_position = 500
return current_position
|
ed377adedc48159607a4bb08ea6e3624575ec723
| 32,822 |
def bootstrap_acceleration(d):
""" Bootstrap (BCA) acceleration term.
Args:
d : Jackknife differences
Returns:
a : Acceleration
"""
return np.sum(d**3) / np.sum(d**2)**(3.0/2.0) / 6.0
|
fbd9a05934d4c822863df0ba0b138db840f34955
| 32,823 |
def normalize_map(x):
"""
normalize map input
:param x: map input (H, W, ch)
:return np.ndarray: normalized map (H, W, ch)
"""
# rescale to [0, 2], later zero padding will produce equivalent obstacle
return x * (2.0/255.0)
|
f750df26c8e6f39553ada82e247e21b2e3d6aabd
| 32,824 |
def today():
"""Get the today of int date
:return: int date of today
"""
the_day = date.today()
return to_int_date(the_day)
|
81c497cdf33050b6e8de31b0098d10acfb555444
| 32,825 |
from datetime import datetime
def contact(request):
"""Renders the contact page."""
assert isinstance(request, HttpRequest)
return render(
request,
'app/contact.html',
{
'title':'联系我们',
'message':'你可以通过以下方式和我们取得联系',
'year':datetime.now().year,
}
)
|
65056534556a8503d897b38468b43da968d4223d
| 32,826 |
import math
def plagdet_score(rec, prec, gran):
"""Combines recall, precision, and granularity to a allow for ranking."""
if (rec == 0 and prec == 0) or prec < 0 or rec < 0 or gran < 1:
return 0
return ((2 * rec * prec) / (rec + prec)) / math.log(1 + gran, 2)
|
f8debf876d55296c3945d0d41c7701588a1869b6
| 32,827 |
def continuum(spec,bin=50,perc=60,norder=4):
""" Derive the continuum of a spectrum."""
nx = len(spec)
x = np.arange(nx)
# Loop over bins and find the maximum
nbins = nx//bin
xbin1 = np.zeros(nbins,float)
ybin1 = np.zeros(nbins,float)
for i in range(nbins):
xbin1[i] = np.mean(x[i*bin:i*bin+bin])
ybin1[i] = np.percentile(spec[i*bin:i*bin+bin],perc)
# Fit polynomial to the binned values
coef1 = np.polyfit(xbin1,ybin1,norder)
cont1 = np.poly1d(coef1)(x)
# Now remove large negative outliers and refit
gdmask = np.zeros(nx,bool)
gdmask[(spec/cont1)>0.8] = True
xbin = np.zeros(nbins,float)
ybin = np.zeros(nbins,float)
for i in range(nbins):
xbin[i] = np.mean(x[i*bin:i*bin+bin][gdmask[i*bin:i*bin+bin]])
ybin[i] = np.percentile(spec[i*bin:i*bin+bin][gdmask[i*bin:i*bin+bin]],perc)
# Fit polynomial to the binned values
coef = np.polyfit(xbin,ybin,norder)
cont = np.poly1d(coef)(x)
return cont,coef
|
42709c9361707ef8b614030906e9db5ea38087b3
| 32,828 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.