content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
from typing import List from typing import Dict def prepare_answer_extraction_samples(context: str, answer_list: List[Dict] = None): """ Args: context: str (assumed to be normalized via normalize_text) answer_list: [ {'text': str, 'answer_start': int}, {'text': str, 'answer_start': int}, ... ] """ prepare_target = True if answer_list else False # split into sentences sentence_list = sentence_tokenize(context) num_sentences = len(sentence_list) if prepare_target: answer_list_per_sentence = get_answer_list_per_sentence(sentence_list, answer_list) # prepare sources (and targets) samples = [] for sentence_ind in range(num_sentences): source_text = "extract answers:" if prepare_target: answer_list = answer_list_per_sentence[sentence_ind] answer_list = [answer["text"] for answer in answer_list] if not answer_list: continue answer_list = list(dict.fromkeys(answer_list)) # remove duplicate answers without changing the order target_text = " <sep> ".join(answer_list) + " <sep>" else: target_text = None for sentence_ind2, sentence in enumerate(sentence_list): if sentence_ind == sentence_ind2: sentence = f"<hl> {sentence} <hl>" source_text = f"{source_text} {sentence}" source_text = source_text.strip() sample = {"source_text": source_text, "target_text": target_text, "answer_list": answer_list} if sample["target_text"] is None: sample samples.append(sample) return samples
3cb431fa2ec6472f3e060cb7f85eb0a52cfbfe6c
23,309
from typing import Optional from typing import Callable from typing import List import abc def mix_in( source: type, target: type, should_copy: Optional[Callable[[str, bool], bool]] = None, ) -> List[str]: """ Copy all defined functions from mixin into target. It could be usefull when you cannot inherit from mixin because incompatible metaclass. It does not copy abstract functions. If `source` is `ABCMeta`, will register `target` with it. Returns list of copied methods. """ mixed_in_methods = [] try: abstract_methods = source.__abstractmethods__ # type:ignore except AttributeError: abstract_methods = set() target_members = dir(target) for n in dir(source): fn = getattr(source, n) if isfunction(fn) and n not in abstract_methods: already_exists = n not in target_members if should_copy is None or should_copy(n, already_exists): setattr(target, n, fn) mixed_in_methods.append(n) if isinstance(source, abc.ABCMeta): source.register(target) return mixed_in_methods
702552f01d4a915f11d6d3d618aaf151bf5b8af3
23,310
def get_img_num_per_cls(cifar_version, imb_factor=None): """ Get a list of image numbers for each class, given cifar version Num of imgs follows emponential distribution img max: 5000 / 500 * e^(-lambda * 0); img min: 5000 / 500 * e^(-lambda * int(cifar_version - 1)) exp(-lambda * (int(cifar_version) - 1)) = img_max / img_min args: cifar_version: str, '10', '100', '20' imb_factor: float, imbalance factor: img_min/img_max, None if geting default cifar data number output: img_num_per_cls: a list of number of images per class """ cls_num = int(cifar_version) img_max = img_num(cifar_version) if imb_factor is None: return [img_max] * cls_num img_num_per_cls = [] for cls_idx in range(cls_num): num = img_max * (imb_factor**(cls_idx / (cls_num - 1.0))) img_num_per_cls.append(int(num)) return img_num_per_cls
941be25ed96ef336e11c16bd9b81f2973c25bcf2
23,311
def xml(): """ Returns the lti.xml file for the app. """ try: return Response(render_template( 'lti.xml'), mimetype='application/xml' ) except: app.logger.error("Error with XML.") return return_error('''Error with XML. Please refresh and try again. If this error persists, please contact support.''')
c40ffb52e4931fd41e6627778331a1c7acf9558b
23,312
def log_get_level(client): """Get log level Returns: Current log level """ return client.call('log_get_level')
2a3915d8c6576187a0af738d3021d495b4efda21
23,313
def cal_pivot(n_losses,network_block_num): """ Calculate the inserted layer for additional loss """ num_segments = n_losses + 1 num_block_per_segment = (network_block_num // num_segments) + 1 pivot_set = [] for i in range(num_segments - 1): pivot_set.append(min(num_block_per_segment * (i + 1), network_block_num - 1)) return pivot_set
d23324fc39f2f1aeec807a4d65a51234a2b76cde
23,314
import asyncio async def scan_host( host: IPv4Address, semaphore: asyncio.Semaphore, timeout: int, verbose: bool, ): """ Locks the "semaphore" and tries to ping "host" with timeout "timeout" s. Prints out the result of the ping to the standard output. """ async with semaphore: try: delay = await aioping.ping( str(host), timeout, family=AddressFamily.AF_INET ) print(f"{host} responded after {delay:.4f} ms") return True except TimeoutError: if verbose: print(f"{host} has not responded") return False except OSError as error: if verbose: print( f"Ping to host {host} failed for the following reason: {error}" ) return False
66bd0165dbbb7b717fd6ded19c78cb901f89a588
23,315
def _emit_post_update_statements( base_mapper, uowtransaction, cached_connections, mapper, table, update ): """Emit UPDATE statements corresponding to value lists collected by _collect_post_update_commands().""" needs_version_id = ( mapper.version_id_col is not None and mapper.version_id_col in mapper._cols_by_table[table] ) def update_stmt(): clauses = BooleanClauseList._construct_raw(operators.and_) for col in mapper._pks_by_table[table]: clauses.clauses.append( col == sql.bindparam(col._label, type_=col.type) ) if needs_version_id: clauses.clauses.append( mapper.version_id_col == sql.bindparam( mapper.version_id_col._label, type_=mapper.version_id_col.type, ) ) stmt = table.update().where(clauses) if mapper.version_id_col is not None: stmt = stmt.return_defaults(mapper.version_id_col) return stmt statement = base_mapper._memo(("post_update", table), update_stmt) # execute each UPDATE in the order according to the original # list of states to guarantee row access order, but # also group them into common (connection, cols) sets # to support executemany(). for key, records in groupby( update, lambda rec: (rec[3], set(rec[4])), # connection # parameter keys ): rows = 0 records = list(records) connection = key[0] assert_singlerow = ( connection.dialect.supports_sane_rowcount if mapper.version_id_col is None else connection.dialect.supports_sane_rowcount_returning ) assert_multirow = ( assert_singlerow and connection.dialect.supports_sane_multi_rowcount ) allow_multirow = not needs_version_id or assert_multirow if not allow_multirow: check_rowcount = assert_singlerow for state, state_dict, mapper_rec, connection, params in records: c = cached_connections[connection].execute(statement, params) _postfetch_post_update( mapper_rec, uowtransaction, table, state, state_dict, c, c.context.compiled_parameters[0], ) rows += c.rowcount else: multiparams = [ params for state, state_dict, mapper_rec, conn, params in records ] check_rowcount = assert_multirow or ( assert_singlerow and len(multiparams) == 1 ) c = cached_connections[connection].execute(statement, multiparams) rows += c.rowcount for state, state_dict, mapper_rec, connection, params in records: _postfetch_post_update( mapper_rec, uowtransaction, table, state, state_dict, c, c.context.compiled_parameters[0], ) if check_rowcount: if rows != len(records): raise orm_exc.StaleDataError( "UPDATE statement on table '%s' expected to " "update %d row(s); %d were matched." % (table.description, len(records), rows) ) elif needs_version_id: util.warn( "Dialect %s does not support updated rowcount " "- versioning cannot be verified." % c.dialect.dialect_description )
13444703b45030a2d0e1dc1f2371a729cd812c11
23,316
import copy def build_grid_search_config(params_dict): """ 传入一个json,按网格搜索的方式构造出符合条件的N个json, 目前网格搜索只作用在optimization范围内 :param params_dict: :return: param_config_list """ model_params_dict = params_dict.get("model") opt_params = model_params_dict.get("optimization", None) if not opt_params: raise ValueError("optimization's params can't be none") # 获取待网格搜索的dict train_data_params = params_dict.get("dataset_reader").get("train_reader").get("config", None) if not train_data_params: raise ValueError("train_reader config's params can't be none") # 在need_operate_params中加入待处理网格搜索的dict need_operate_params = [opt_params, train_data_params] all_combination_list = [] all_single_param_dict = [] dict_list_key_num = [] for one_operate_param in need_operate_params: combination_list, single_param_dict = get_list_params(one_operate_param) all_combination_list.extend(combination_list) all_single_param_dict.append(single_param_dict) dict_list_key_num.append(len(combination_list)) task_param_list = [] for params in product(*all_combination_list): one_task_param = copy.deepcopy(params_dict) # 在need_update_param中加入待更新的网格搜索的dict,注意顺序要和need_operate_params保持一致 need_update_param = [one_task_param["model"]["optimization"], one_task_param["dataset_reader"]["train_reader"]["config"]] i = 0 for index, one_single_param in enumerate(all_single_param_dict): single_param = copy.deepcopy(one_single_param) for one_grid in params[i:i + dict_list_key_num[index]]: single_param.update(one_grid) need_update_param[index].update(single_param) i += dict_list_key_num[index] task_param_list.append(one_task_param) return task_param_list
a5f2b8249f9a50cad7da855d6a49a3225715fb00
23,317
def cutoff_countmin_wscore(y, scores, score_cutoff, n_cm_buckets, n_hashes): """ Learned Count-Min (use predicted scores to identify heavy hitters) Args: y: true counts of each item (sorted, largest first), float - [num_items] scores: predicted scores of each item - [num_items] score_cutoff: threshold for heavy hitters n_cm_buckets: number of buckets of Count-Min n_hashes: number of hash functions Returns: loss_avg: estimation error space: space usage in bytes """ if len(y) == 0: return 0 # avoid division of 0 y_ccm = y[scores > score_cutoff] y_cm = y[scores <= score_cutoff] loss_cf = 0 # put y_ccm into cutoff buckets, no loss loss_cm = count_min(y_cm, n_cm_buckets, n_hashes) assert len(y_ccm) + len(y_cm) == len(y) loss_avg = (loss_cf * np.sum(y_ccm) + loss_cm * np.sum(y_cm)) / np.sum(y) print('\tloss_cf %.2f\tloss_rd %.2f\tloss_avg %.2f' % (loss_cf, loss_cm, loss_avg)) space = len(y_ccm) * 4 * 2 + n_cm_buckets * n_hashes * 4 return loss_avg, space
99ab1b6174d49ccf4f4517fe713f98cecd65d978
23,318
def test_lcc_like_epi(): """ Takes about 5 mins with epicyclic If burnin is too short (say 200 steps) won't actually find true solution """ TORB_FUNC = trace_epicyclic_orbit mean_now = np.array([50., -100., 25., 1.1, -7.76, 2.25]) age = 10. mean = TORB_FUNC(mean_now, times=-age) dx = 5. dv = 2. covmatrix = np.identity(6) covmatrix[:3,:3] *= dx**2 covmatrix[3:,3:] *= dv**2 true_comp = SphereComponent( attributes={'mean':mean, 'covmatrix':covmatrix, 'age':age,}, trace_orbit_func=TORB_FUNC, ) nstars = 1000 tiny_measurement_error = 1e-10 # import ipdb; ipdb.set_trace() best_comp, chain, lnprob, data_dict = run_fit_helper( true_comp=true_comp, starcounts=nstars, measurement_error=tiny_measurement_error, trace_orbit_func=TORB_FUNC, run_name='lcc_like', ) assert np.allclose(true_comp.get_mean(), best_comp.get_mean(), atol=3.0) assert np.allclose(true_comp.get_age(), best_comp.get_age(), atol=1.0) assert np.allclose(true_comp.get_covmatrix(), best_comp.get_covmatrix(), atol=5.0) comp_filename = 'temp_data/{}_compfitter_lcc_like_true_and_best_comp.npy'.format( PY_VERS ) SphereComponent.store_raw_components(comp_filename, [true_comp, best_comp]) return true_comp, best_comp, lnprob
43583e06741632aba41400ee1a6562cd6fc226be
23,319
import numpy as np def uniquePandasIndexMapping(inputColumn): """quickly mapps the unique name entries back to input entries Keyword arguments: inputDataToAssess -- a SINGLE column from a pandas dataframe, presumably with duplications. Will create a frequency table and a mapping back to the source entries. """ inputColumn.sort_values(by=['company'], inplace=True) sortedInputColumn=inputColumn.reset_index() sortedInputColumn.rename(columns={"index":"userIndex"},inplace=True) tableUniqueFullNameCounts=inputColumn.iloc[:,0].value_counts() tableUniqueFullNameCounts=tableUniqueFullNameCounts.reset_index() tableUniqueFullNameCounts.rename(columns={"company":"count","index":"company"},inplace=True) tableUniqueFullNameCounts.sort_values(by=['company'], inplace=True) sortedTableUniqueFullNameCounts=tableUniqueFullNameCounts.reset_index() sortedTableUniqueFullNameCounts['inputIndexMapping']='' currentSum=0 for index, row in sortedTableUniqueFullNameCounts.iterrows(): currentRange=np.arange(currentSum,currentSum+sortedTableUniqueFullNameCounts['count'].iloc[index]) sortedTableUniqueFullNameCounts['inputIndexMapping'].iloc[index]=sortedInputColumn['userIndex'].iloc[currentRange].array currentSum=currentSum+sortedTableUniqueFullNameCounts['count'].iloc[index] return sortedInputColumn, sortedTableUniqueFullNameCounts;
c26fce9b8617963737c4b8dd05c0e8429c92daa3
23,320
def non_max_suppression(boxlist, thresh, max_output_size, scope=None): """Non maximum suppression. This op greedily selects a subset of detection bounding boxes, pruning away boxes that have high IOU (intersection over union) overlap (> thresh) with already selected boxes. Note that this only works for a single class --- to apply NMS to multi-class predictions, use MultiClassNonMaxSuppression. Args: boxlist: BoxList holding N boxes. Must contain a 'scores' field representing detection scores. thresh: scalar threshold max_output_size: maximum number of retained boxes scope: name scope. Returns: a BoxList holding M boxes where M <= max_output_size Raises: ValueError: if thresh is not in [0, 1] """ with tf.name_scope(scope, 'NonMaxSuppression'): if not 0 <= thresh <= 1.0: raise ValueError('thresh must be between 0 and 1') if not isinstance(boxlist, box_list.BoxList): raise ValueError('boxlist must be a BoxList') if not boxlist.has_field('scores'): raise ValueError('input boxlist must have \'scores\' field') selected_indices = tf.image.non_max_suppression( boxlist.get(), boxlist.get_field('scores'), max_output_size, iou_threshold=thresh) return gather(boxlist, selected_indices)
aa8990ea579ed5d4614561b617717c9e7b73f798
23,321
def gen_weekly_ccy_df( start,end ): """ Generate weekly ccy data table """ currency_li =[ "USD_Index", "EURUSD","GBPUSD","AUDUSD","CADUSD", "JPYUSD", "CNYUSD","HKDUSD","TWDUSD", "KRWUSD","THBUSD","SGDUSD","MYRUSD", "BRLUSD","INRUSD", "CNY_raw","JPY_raw" ] currency_df = get_histroical_ccy(start,end) temp = currency_df[["JPYUSD","CNYUSD"]] currency_df["EURUSD"] = 1/currency_df["USDEUR"] currency_df["GBPUSD"] = 1/currency_df["USDGBP"] currency_df["AUDUSD"] = 1/currency_df["USDAUD"] currency_df = currency_df/currency_df.iloc[0] currency_df["CNY_raw"] = temp["CNYUSD"] currency_df["JPY_raw"] = temp["JPYUSD"] return currency_df[currency_li],currency_li
cf856535d148378826fd99a6d8afef5e1eb77778
23,323
def demean_and_normalise(points_a: np.ndarray, points_b: np.ndarray): """ Independently centre each point cloud around 0,0,0, then normalise both to [-1,1]. :param points_a: 1st point cloud :type points_a: np.ndarray :param points_b: 2nd point cloud :type points_b: np.ndarray :return: normalised points clouds, scale factor & translations """ translate_a = np.mean(points_a, axis=0) translate_b = np.mean(points_b, axis=0) a_demean = points_a - translate_a b_demean = points_b - translate_b norm_factor = np.max([np.max(np.abs(a_demean)), np.max(np.abs(b_demean))]) a_normalised = a_demean / norm_factor b_normalised = b_demean / norm_factor scale_matrix = create_scaling_matrix(norm_factor) translate_a_matrix = create_translation_matrix(translate_a) translate_b_matrix = create_translation_matrix(translate_b) return a_normalised, b_normalised, scale_matrix, \ translate_a_matrix, translate_b_matrix
249bb8edf5ef423613748f0ce599c98e4f437960
23,324
import yaml import six def ParseCustomLevel(api_version): """Wrapper around ParseCustomLevel to accept api version.""" def VersionedParseCustomLevel(path): """Parse a YAML representation of custom level conditions. Args: path: str, path to file containing custom level expression Returns: string of CEL expression. Raises: ParseError: if the file could not be read into the proper object """ data = yaml.load_path(path) if not data: raise ParseError(path, 'File is empty') messages = util.GetMessages(version=api_version) message_class = messages.Expr try: expr = encoding.DictToMessage(data, message_class) except Exception as err: raise InvalidFormatError(path, six.text_type(err), message_class) _ValidateAllCustomFieldsRecognized(path, expr) return expr return VersionedParseCustomLevel
e5e414ea29324233d4fc8291f0ea829176805d99
23,325
def specMergeMSA(*msa, **kwargs): """Returns an :class:`.MSA` obtained from merging parts of the sequences of proteins present in multiple *msa* instances. Sequences are matched based on species section of protein identifiers found in the sequence labels. Order of sequences in the merged MSA will follow the order of sequences in the first *msa* instance. Note that protein identifiers that map to multiple sequences will be excluded.""" if len(msa) <= 1: raise ValueError('more than one msa instances are needed') lbl={} try: arrs = [m._getArray() for m in msa] sets = [] labells = [] for m in msa: aset = set([]) labell = {} count = m.countLabel for label in m.iterLabels(): lbl[label]=label.rsplit('_')[1] if count(label) == 1 and lbl[label] not in aset: aset.add(lbl[label]) labell[lbl[label]]=label sets.append(aset) labells.append(labell) except AttributeError: raise TypeError('all msa arguments must be MSA instances') sets = iter(sets) common = next(sets) for aset in sets: common = common.intersection(aset) if not common: return None lens = [m.numResidues() for m in msa] rngs = [0] rngs.extend(cumsum(lens)) rngs = [(start, end) for start, end in zip(rngs[:-1], rngs[1:])] idx_arr_rng = list(zip([m.getIndex for m in msa], arrs, rngs)) merger = zeros((len(common), sum(lens)), '|S1') index = 0 labels = [] mapping = {} for lbl in common: merger[index, 0:start]=list(str(msa[0][msa[0].getIndex(labells[0][lbl])])) merger[index, start:end]=list(str(msa[1][msa[1].getIndex(labells[1][lbl])])) label = labells[0][lbl] labels.append(label) mapping[label] = index index += 1 merger = MSA(merger, labels=labels, mapping=mapping, title=' + '.join([m.getTitle() for m in msa])) return merger
fdb605347bdc88df4c844fa8765640dc5a91b88d
23,326
def parse(filePath): """ Returns a full parsed Maya ASCII file. :type filePath: str :rtype: mason.asciiscene.AsciiScene """ return asciifileparser.AsciiFileParser(filePath).scene
2f7d50724fcda1d4ef240e362ae6ee3f18bdfacd
23,327
def d_psi(t): """Compute the derivative of the variable transform from Ogata 2005.""" t = np.array(t, dtype=float) a = np.ones_like(t) mask = t < 6 t = t[mask] a[mask] = (np.pi * t * np.cosh(t) + np.sinh(np.pi * np.sinh(t))) / ( 1.0 + np.cosh(np.pi * np.sinh(t)) ) return a
8b0fc652a60d2ba45623bc098b7e9d0fae2c7dbe
23,330
from typing import Dict from typing import Any import io def build_environ(request: HTTPRequest, errors: Errors) -> Dict[str, Any]: """ 参考 https://www.python.org/dev/peps/pep-3333/ 构建 environ """ headers = { f"HTTP_{k.upper().replace('-','_')}": v for k, v in request.header.items() } environ = { # 保持与阿里云函数计算 HTTP 触发器的一致 "fc.context": request.context, "fc.request_uri": request.path, # WSGI 标准值 "wsgi.version": (1, 0), "wsgi.url_scheme": "http", "wsgi.input": io.BytesIO(request.body), "wsgi.errors": errors, "wsgi.multithread": False, "wsgi.multiprocess": False, "wsgi.run_once": True, "SERVER_NAME": "127.0.0.1", "SERVER_PORT": "80", "SERVER_PROTOCOL": "HTTP/1.0", "REQUEST_METHOD": request.method, "SCRIPT_NAME": "", "PATH_INFO": request.path, "QUERY_STRING": "?" + "&".join([f"{k}={v}" for k, v in request.query.items()]), "CONTENT_TYPE": headers.pop("HTTP_CONTENT_TYPE", ""), "CONTENT_LENGTH": headers.pop("HTTP_CONTENT_LENGTH", ""), } environ.update(headers) return environ
b2e98d726bf256b06d1c2f82679bd75ada7181cf
23,331
def loadPage(url, filename): """ 作用:根据url发送请求,获取服务器响应文件 url: 需要爬取的url地址 filename : 处理的文件名 """ print "正在下载 " + filename headers = { "User-Agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_7_0) AppleWebKit/535.11 (KHTML, like Gecko) Chrome/17.0.963.56 Safari/535.11"} request = urllib2.Request(url, headers=headers) return urllib2.urlopen(request).read()
7250a42d03bc1af7e9f30aa22198f3d4a56605f3
23,332
def get_exporter_class(): """Returns exporter class based on preferences and support.""" if _use_xlsx() is True: return XLSXExporter else: return CSVExporter
3d66e0e0abe8c936e2f86598427ff27180dac6b4
23,333
def get_twitter_token(): """This is used by the API to look for the auth token and secret it should use for API calls. During the authorization handshake a temporary set of token and secret is used, but afterwards this function has to return the token and secret. If you don't want to store this in the database, consider putting it into the session instead. """ return session.get('twitter_token')
218f16141473e76c4318870bec9516c77f1dfe1b
23,334
def is_text_serializer(serializer): """Checks whether a serializer generates text or binary.""" return isinstance(serializer.dumps({}), str)
f08f40662da7fd34f5984028e601d664cac943df
23,335
def plot_power(ngroups, mesh_shape, directory, mode="show"): """Plot the integrated fission rates from OpenMC and OpenMOC, as well as the relative and absolute error of OpenMOC relative to OpenMC. Parameters: ----------- ngroups: int; number of energy groups mesh_shape: str; name of the mesh shape directory: str; path to the data """ mode = _check_mode(mode) directory, shape = _check_params(directory, mesh_shape) montecarlo_power = np.zeros(shape) moc_power = np.zeros(shape) # Integrate over all energy groups for g in range(ngroups): rates_name = "fission_{:02d}-of-{}_{}".format(g+1, ngroups, mesh_shape) fname = directory + "montecarlo_" + rates_name montecarlo_group_rates = np.loadtxt(fname) montecarlo_power += montecarlo_group_rates fname = directory + "moc_" + rates_name moc_group_rates = np.loadtxt(fname) moc_power += moc_group_rates # Filter out results that are essentially zero mc_mean = np.nanmean(montecarlo_power)*0.1 indices = (montecarlo_power < mc_mean) + (moc_power < mc_mean) montecarlo_power[indices] = np.nan moc_power[indices] = np.nan # Normalize montecarlo_power /= np.nanmean(montecarlo_power) moc_power /= np.nanmean(moc_power) # Find the errors in the normalized distributions errors = np.divide(moc_power - montecarlo_power, montecarlo_power/100) pcmerr = (moc_power - montecarlo_power)*100 if mode == "return": return montecarlo_power, moc_power, errors, pcmerr # Plot OpenMC's fission rates in the upper left subplot plt.subplot(231) plt.imshow(montecarlo_power.squeeze(), interpolation='none', cmap='jet') plt.title('OpenMC Power Distribution\n{} groups'.format(ngroups)) cmin = min(np.nanmin(montecarlo_power), np.nanmin(moc_power)) cmax = max(np.nanmax(montecarlo_power), np.nanmax(moc_power)) plt.clim(cmin, cmax) plt.colorbar() # Plot OpenMOC's fission rates in the upper right subplot plt.subplot(232) plt.imshow(moc_power.squeeze(), interpolation='none', cmap='jet') plt.title('OpenMOC Power Distribution\n{} groups'.format(ngroups)) plt.clim(cmin, cmax) plt.colorbar() # Plot the relative error in the lower left subplot plt.subplot(233) pct = plt.imshow(errors.squeeze(), interpolation='none', cmap='jet') posmax = np.nanmax(errors) negmax = np.nanmin(errors) cmax = np.ceil(max(abs(posmax), abs(negmax))) plt.clim(-cmax, +cmax) plt.title('Relative error (%)') plt.colorbar(pct) # Plot the absolute error in the lower right subplot plt.subplot(234) pct = plt.imshow(pcmerr.squeeze(), interpolation='none', cmap='jet') posmax = np.nanmax(pcmerr) negmax = np.nanmin(pcmerr) cmax = np.ceil(max(abs(posmax), abs(negmax))) plt.clim(-cmax, +cmax) plt.title('Absolute error (%)') plt.colorbar(pct) if mode == "show": plt.show() elif mode == "save": # Save and/or show the plot plt.tight_layout() fname = directory + "power_{}-groups.pdf".format(ngroups) plt.savefig(fname) print("Figure saved to:", fname) return montecarlo_power, moc_power, errors, pcmerr
e9db852e840d2f3f8013f006acc191276a74e9d7
23,336
def glDeleteFramebuffersEXT( baseOperation, n, framebuffers=None ): """glDeleteFramebuffersEXT( framebuffers ) -> None """ if framebuffers is None: framebuffers = arrays.GLuintArray.asArray( n ) n = arrays.GLuintArray.arraySize( framebuffers ) return baseOperation( n, framebuffers )
514fe96d8088210bfe1251a8a9c7c93856f19504
23,337
def backtostr(dayback=1, format="%Y/%m/%d", thedate=date.today()): """Print backto datetime in string format.""" return(backto(dayback=dayback, thedate=thedate).strftime(format))
c79b10962537d9eef939e7f49697275f31e900e2
23,339
def no_conflict_require_POST(f): """ Catches resource conflicts on save and returns a 409 error. Also includes require_POST decorator """ @require_POST @wraps(f) def _no_conflict(*args, **kwargs): try: return f(*args, **kwargs) except ResourceConflict: return HttpResponse(status=409) return _no_conflict
98a28b5fbc2824eaa5d5020f8be1d55878974fc4
23,340
def Transition_rep(source_State_name, target_State_name): """Representation of a transition :param source_State_name: The sequence of "name" values of State objects referred to by attribute "source" in this Transition :type source_State_name: Array :param target_State_name: The sequence of "name" values of State objects referred to by attribute "target" in this Transition :type target_State_name: Array """ return [f' {source_name}--{target_name}' for source_name, target_name in zip(source_State_name, target_State_name)]
2e5f7048722997e0931fd6ec3a2d9e880a160359
23,342
from typing import List from typing import Any def search_model(trial: optuna.trial.Trial) -> List[Any]: """Search model structure from user-specified search space.""" model = [] n_stride = 0 MAX_NUM_STRIDE = 5 UPPER_STRIDE = 2 # 5(224 example): 224, 112, 56, 28, 14, 7 n_layers = trial.suggest_int("n_layers", 8, 12) stride = 1 input_max = 64 imput_min = 32 module_info = {} ### 몇개의 레이어를 쌓을지도 search하게 했습니다. for i in range(n_layers): out_channel = trial.suggest_int(f"{i+1}units", imput_min, input_max) block = trial.suggest_categorical( f"m{i+1}", ["Conv", "DWConv", "InvertedResidualv2", "InvertedResidualv3"] ) repeat = trial.suggest_int(f"m{i+1}/repeat", 1, 5) m_stride = trial.suggest_int(f"m{i+1}/stride", low=1, high=UPPER_STRIDE) if m_stride == 2: stride += 1 if n_stride == 0: m_stride = 2 if block == "Conv": activation = trial.suggest_categorical( f"m{i+1}/activation", ["ReLU", "Hardswish"] ) # Conv args: [out_channel, kernel_size, stride, padding, groups, activation] model_args = [out_channel, 3, m_stride, None, 1, activation] elif block == "DWConv": activation = trial.suggest_categorical( f"m{i+1}/activation", ["ReLU", "Hardswish"] ) # DWConv args: [out_channel, kernel_size, stride, padding_size, activation] model_args = [out_channel, 3, 1, None, activation] elif block == "InvertedResidualv2": c = trial.suggest_int( f"m{i+1}/v2_c", low=imput_min, high=input_max, step=16 ) t = trial.suggest_int(f"m{i+1}/v2_t", low=1, high=4) model_args = [c, t, m_stride] elif block == "InvertedResidualv3": kernel = trial.suggest_int(f"m{i+1}/kernel_size", low=3, high=5, step=2) t = round( trial.suggest_float(f"m{i+1}/v3_t", low=1.0, high=6.0, step=0.1), 1 ) c = trial.suggest_int(f"m{i+1}/v3_c", low=imput_min, high=input_max, step=8) se = trial.suggest_categorical(f"m{i+1}/v3_se", [0, 1]) hs = trial.suggest_categorical(f"m{i+1}/v3_hs", [0, 1]) # k t c SE HS s model_args = [kernel, t, c, se, hs, m_stride] in_features = out_channel model.append([repeat, block, model_args]) if i % 2: input_max *= 2 input_max = min(input_max, 160) module_info[f"block{i+1}"] = {"type": block, "repeat": repeat, "stride": stride} # last layer last_dim = trial.suggest_int("last_dim", low=128, high=1024, step=128) # We can setup fixed structure as well model.append([1, "Conv", [last_dim, 1, 1]]) model.append([1, "GlobalAvgPool", []]) model.append([1, "FixedConv", [6, 1, 1, None, 1, None]]) return model, module_info
228180bc1f02c793273a763db271889f4dcd4f26
23,344
def create_search_forms(name, language_code, script_code): """Return a list of names suitable for searching. Arguments: name -- string name language_code -- string code of language script_code -- string code of script """ # QAZ: It would be useful if something could be done here (or # wherever is most appropriate) to handle the case where names are # assembled without spaces between the parts (eg, Chinese), since # this means that whatever part(s) come after the first will not # be found in a search. name = str(name) search_forms = [name] if script_code == 'Latn': ascii_form = asciify_name(name) if ascii_form and ascii_form != name: search_forms.append(ascii_form) macron_as_double_form = demacronise_name(name) if macron_as_double_form != name: search_forms.append(macron_as_double_form) abbreviated_form = abbreviate_name(name, language_code, script_code) if abbreviated_form != name: search_forms.append(abbreviated_form) unpunctuated_form = unpunctuate_name(name) if unpunctuated_form != name: search_forms.append(unpunctuated_form) return search_forms
a417fe9ab37e544c094341fcb7f1249feaed43c6
23,345
def iv_params(*, N_s, T_degC, I_ph_A, I_rs_1_A, n_1, I_rs_2_A, n_2, R_s_Ohm, G_p_S, minimize_scalar_bounded_options=minimize_scalar_bounded_options_default, newton_options=newton_options_default): """ Compute I-V curve parameters. Inputs (any broadcast-compatible combination of python/numpy scalars and numpy arrays): Same as P_mp(). Outputs (device-level, at each combination of broadcast inputs, return type is numpy.float64 for all scalar inputs): dict containing the outputs of FF() with the addition of: R_oc_Ohm resistance at open circuit R_sc_Ohm resistance at short circuit """ result = FF(N_s=N_s, T_degC=T_degC, I_ph_A=I_ph_A, I_rs_1_A=I_rs_1_A, n_1=n_1, I_rs_2_A=I_rs_2_A, n_2=n_2, R_s_Ohm=R_s_Ohm, G_p_S=G_p_S, minimize_scalar_bounded_options=minimize_scalar_bounded_options, newton_options=newton_options) R_oc_Ohm = R_oc(N_s=N_s, T_degC=T_degC, I_ph_A=I_ph_A, I_rs_1_A=I_rs_1_A, n_1=n_1, I_rs_2_A=I_rs_2_A, n_2=n_2, R_s_Ohm=R_s_Ohm, G_p_S=G_p_S, newton_options=newton_options)['R_oc_Ohm'] R_sc_Ohm = R_sc(N_s=N_s, T_degC=T_degC, I_ph_A=I_ph_A, I_rs_1_A=I_rs_1_A, n_1=n_1, I_rs_2_A=I_rs_2_A, n_2=n_2, R_s_Ohm=R_s_Ohm, G_p_S=G_p_S, newton_options=newton_options)['R_sc_Ohm'] result.update({'R_oc_Ohm': R_oc_Ohm, 'R_sc_Ohm': R_sc_Ohm}) return result
7998b52f02482d79bae6c0732e99ed5e151326fa
23,346
def update_domain( uuid, name=None, disabled=None, project_id=None, user_id=None): """Update an existing domain.""" res = get_domain(uuid=uuid) if disabled is not None: res['disabled'] = disabled if name is not None: res['name'] = name if project_id is not None: res['project_id'] = project_id if user_id is not None: res['user_id'] = user_id res.save() return res
7cdc53c96e17d79dd0998165b87dd745b8afd73e
23,348
def ja_of(tree: Tree) -> str: """tree string in the Japanese CCGBank's format Args: tree (Tree): tree object Returns: str: tree string in Japanese CCGBank's format """ def rec(node): if node.is_leaf: cat = node.cat word = normalize(node.word) token = node.token poss = [ token.get(pos, '*') for pos in ('pos', 'pos1', 'pos2', 'pos3') ] poss = [pos for pos in poss if pos != '*'] pos = '-'.join(poss) if len(poss) else '_' inflections = [ token.get(i, '*') for i in ('inflectionForm', 'inflectionType') ] inflections = [i for i in inflections if i != '*'] inflection = '-'.join(inflections) if len(inflections) else '_' return f'{{{cat} {word}/{word}/{pos}/{inflection}}}' else: children = ' '.join(rec(child) for child in node.children) return f'{{{node.op_symbol} {node.cat} {children}}}' return rec(tree)
7722e9de3b31354be4820cc32a8949ffac333e5f
23,349
def cut_flowlines_at_points(flowlines, joins, points, next_lineID): """General method for cutting flowlines at points and updating joins. Only new flowlines are returned; any that are not cut by points are omitted. Parameters ---------- flowlines : GeoDataFrame joins : DataFrame flowline joins points : ndarray of MultiPoint or Point geometries expected to match to flowlines next_lineID : int id of next flowline to be created Returns ------- (GeoDataFrame, DataFrame, ndarray) new flowlines, updated joins, remove_ids (original flowline IDs that need to be removed before merging in returned flowlines) """ flowlines = flowlines.copy() joins = joins.copy() flowlines["geometry"] = cut_lines_at_multipoints( flowlines.geometry.values.data, points ) # discard any that have only one segment; they weren't split and we don't want # to update them. Split the rest into parts. ix = pg.get_num_geometries(flowlines.geometry.values.data) > 1 flowlines = explode( flowlines.loc[ix].reset_index().rename(columns={"lineID": "origLineID"}) ).reset_index(drop=True) # recalculate length and sinuosity flowlines["length"] = pg.length(flowlines.geometry.values.data).astype("float32") flowlines["sinuosity"] = calculate_sinuosity(flowlines.geometry.values.data).astype( "float32" ) # calculate new ID flowlines["lineID"] = (flowlines.index + next_lineID).astype("uint32") ### Update flowline joins # transform new lines to create new joins at the upstream / downstream most # points of the original line l = flowlines.groupby("origLineID").lineID # the first new line per original line is the furthest upstream, so use its # ID as the new downstream ID for anything that had this origLineID as its downstream first = l.first().rename("new_downstream_id") # the last new line per original line is the furthest downstream... last = l.last().rename("new_upstream_id") # Update existing joins with the new lineIDs we created at the upstream or downstream # ends of segments we just created joins = update_joins( joins, first, last, downstream_col="downstream_id", upstream_col="upstream_id", ) ### Create new line joins for any that weren't inserted above # Transform all groups of new line IDs per original lineID # into joins structure atts = ( flowlines.groupby("origLineID")[["NHDPlusID", "loop", "HUC4"]] .first() .rename(columns={"NHDPlusID": "upstream"}) ) # function to make upstream / downstream side of join pairs = lambda a: pd.Series(zip(a[:-1], a[1:])) new_joins = ( l.apply(pairs) .apply(pd.Series) .reset_index() .rename(columns={0: "upstream_id", 1: "downstream_id"}) .join(atts, on="origLineID") ) # NHDPlusID is same for both sides new_joins["downstream"] = new_joins.upstream new_joins["type"] = "internal" new_joins["marine"] = False new_joins = new_joins[ [ "upstream", "downstream", "upstream_id", "downstream_id", "type", "loop", "marine", "HUC4", ] ] joins = ( joins.append(new_joins, ignore_index=True, sort=False) .sort_values(["downstream_id", "upstream_id"]) .reset_index(drop=True) ) remove_ids = flowlines.origLineID.unique() flowlines = flowlines.drop(columns=["origLineID"]).set_index("lineID") return flowlines, joins, remove_ids
e535f6d5e073955b74784f5ce3121a929f9bc200
23,350
def export(gen, directory, file_prefix='{uid}-', **kwargs): """ Export a stream of documents to nxstxm_baseline. .. note:: This can alternatively be used to write data to generic buffers rather than creating files on disk. See the documentation for the ``directory`` parameter below. Parameters ---------- gen : generator expected to yield ``(name, document)`` pairs directory : string, Path or Manager. For basic uses, this should be the path to the output directory given as a string or Path object. Use an empty string ``''`` to place files in the current working directory. In advanced applications, this may direct the serialized output to a memory buffer, network socket, or other writable buffer. It should be an instance of ``suitcase.utils.MemoryBufferManager`` and ``suitcase.utils.MultiFileManager`` or any object implementing that inferface. See the suitcase documentation at https://nsls-ii.github.io/suitcase for details. file_prefix : str, optional The first part of the filename of the generated output files. This string may include templates as in ``{proposal_id}-{sample_name}-``, which are populated from the RunStart document. The default value is ``{uid}-`` which is guaranteed to be present and unique. A more descriptive value depends on the application and is therefore left to the user. **kwargs : kwargs Keyword arugments to be passed through to the underlying I/O library. Returns ------- artifacts : dict dict mapping the 'labels' to lists of file names (or, in general, whatever resources are produced by the Manager) Examples -------- Generate files with unique-identifer names in the current directory. >>> export(gen, '') Generate files with more readable metadata in the file names. >>> export(gen, '', '{plan_name}-{motors}-') Include the experiment's start time formatted as YY-MM-DD_HH-MM. >>> export(gen, '', '{time:%%Y-%%m-%%d_%%H:%%M}-') Place the files in a different directory, such as on a mounted USB stick. >>> export(gen, '/path/to/my_usb_stick') """ with Serializer(directory, file_prefix, **kwargs) as serializer: for item in gen: #print('ITEM:', item) serializer(*item) return serializer.artifacts
ec1b1237f63fc29c8e8d1b14283b392523e86426
23,351
def services(): """ Returns the grader-notebook list used as services in jhub Response: json example: ``` { services: [{"name":"<course-id", "url": "http://grader-<course-id>:8888"...}], groups: {"formgrade-<course-id>": ["grader-<course-id>"] } } ``` """ services = GraderService.query.all() # format a json services_resp = [] groups_resp = {} for s in services: services_resp.append({ 'name': s.name, 'url': s.url, 'oauth_no_confirm': s.oauth_no_confirm, 'admin': s.admin, 'api_token': s.api_token }) # add the jhub user group groups_resp.update({f'formgrade-{s.course_id}': [f'grader-{s.course_id}']}) return jsonify(services=services_resp, groups=groups_resp)
b1fbc2c90b344f75027538037c5d6786bda810c8
23,353
def chunks(l, k): """ Take a list, l, and create k sublists. """ n = len(l) return [l[i * (n // k) + min(i, n % k):(i+1) * (n // k) + min(i+1, n % k)] for i in range(k)]
7cf0c39941ed8f358c576046154af6b3ee54b70a
23,354
def bfs(adj, src, dst, cache=None): """BFS search from source to destination. Check whether a path exists, does not return the actual path. Work on directed acyclic graphs where we assume that there is no path to the node itself. Args: adj: Adjacency matrix. src: Source node index, 0-based. dst: Destination node index, 0-based. cache: 2D matrix, cache[i, j] = 1 indicates path exists between two node i and j. cache[i, j] = -1 indicates path does not exists between two node i and j. chace[i, j] = 0 indicates unknown. Returns: found: A path is found between source and destination. """ if src == dst: return False num_nodes = adj.shape[0] if num_nodes == 0: return False if src >= num_nodes or dst >= num_nodes: raise Exception("Index must be smaller than the number of nodes.") if num_nodes == 1: return False # Whether a node has been visited, if not negative, the parent. parent = np.zeros([num_nodes], dtype=np.int64) - 1 nodes_to_visit = [src] found = False # BFS loop. while len(nodes_to_visit) > 0: cur = nodes_to_visit.pop(0) if cur == dst: found = True break if cache is not None: if cache[cur, dst] == 1: found = True break elif cache[cur, dst] == -1: continue for jj in range(num_nodes): if adj[cur, jj] == 1: if parent[jj] == -1: nodes_to_visit.append(jj) parent[jj] = cur if not found: # Add the source node to the cache. if cache is not None: #log.info(("Setting -1", src, dst), verbose=2) for ii in range(num_nodes): if parent[ii] >= 0: cache[ii, dst] = -1 cache[src, dst] = -1 return False else: # Add all the nodes to the cache. if cache is not None: # Backtrack. while cur != src: cur = parent[cur] cache[cur, dst] = 1 #log.info(("Setting 1", cur, dst), verbose=2) cache[src, dst] = 1 #log.info(("Setting 1", src, dst), verbose=2) return True
5e224ffa575dd0bd471142023e828a8e36d1782e
23,355
import _ast import ast def get_source_ast(name: str) -> _ast.Module: """ Return ast of source code """ with open(name, "r") as f: data = f.read() return ast.parse(data)
8e0826175df538bdd894f05b0c6cf143b0b0f69b
23,356
import math def floor(base): """Get the floor of a number""" return math.floor(float(base))
8b00ffccf30765f55ff024b35de364c617b4b20c
23,358
def TranslateSecureTagsForFirewallPolicy(client, secure_tags): """Returns a list of firewall policy rule secure tags, translating namespaced tags if needed. Args: client: compute client secure_tags: array of secure tag values Returns: List of firewall policy rule secure tags """ ret_secure_tags = [] for tag in secure_tags: if tag.startswith('tagValues/'): ret_secure_tags.append( client.messages.FirewallPolicyRuleSecureTag(name=tag)) else: ret_secure_tags.append( client.messages.FirewallPolicyRuleSecureTag( name=tag_utils.GetTagValueFromNamespacedName(tag).name)) return ret_secure_tags
5cbf71885c167d5c9d0dcae3294be017512db73a
23,359
from typing import Callable from typing import Dict from typing import Any import functools def memoize(func: Callable): """ A decorator that memoizes a function by storing its inputs and outputs. Calling the function again with the same arguments will return the cached output. This function is somewhat more permissive than :func:`functools.lru_cache` in what kinds of arguments can be cached, but incurs a larger runtime overhead as a penalty. """ memo: Dict[Any, Any] = {} @functools.wraps(func) def memoizer(*args, **kwargs): key = _hash_args_kwargs(*args, **kwargs) try: v = memo[key] except KeyError: v = memo[key] = func(*args, **kwargs) return v return memoizer
7ba9500c57c867abcb43bf5ffe58087270ebef08
23,361
def mini_batch(positive_rdd, negative_rdd, num_iterations): """get the positive and negative classes with index for mini-batch""" # mini-batch preparation pos_num = int(batch_size / 46) neg_num = pos_num * 45 i = num_iterations % int(74 / pos_num) # get the new mini-batch rdd for this iteration new_rdd = positive_rdd. \ filter(lambda x: i * pos_num <= x[1] < (i + 1) * pos_num). \ map(lambda x: (x[0][0], x[0][1])).union( negative_rdd.filter( lambda x: i * neg_num <= x[1] < (i + 1) * neg_num).map( lambda x: (x[0][0], x[0][1]))) return new_rdd
e523c170d66cf9bdabf5f12ab78af417c59333a2
23,362
import math def draw_polygon(img, max_sides=8, min_len=32, min_label_len=64): """ Draw a polygon with a random number of corners and return the position of the junctions + line map. Parameters: max_sides: maximal number of sides + 1 """ num_corners = random_state.randint(3, max_sides) min_dim = min(img.shape[0], img.shape[1]) rad = max(random_state.rand() * min_dim / 2, min_dim / 10) # Center of a circle x = random_state.randint(rad, img.shape[1] - rad) y = random_state.randint(rad, img.shape[0] - rad) # Convert length constrain to pixel if given float number if isinstance(min_len, float) and min_len <= 1.: min_len = int(min_dim * min_len) if isinstance(min_label_len, float) and min_label_len <= 1.: min_label_len = int(min_dim * min_label_len) # Sample num_corners points inside the circle slices = np.linspace(0, 2 * math.pi, num_corners + 1) angles = [slices[i] + random_state.rand() * (slices[i+1] - slices[i]) for i in range(num_corners)] points = np.array( [[int(x + max(random_state.rand(), 0.4) * rad * math.cos(a)), int(y + max(random_state.rand(), 0.4) * rad * math.sin(a))] for a in angles]) # Filter the points that are too close or that have an angle too flat norms = [np.linalg.norm(points[(i-1) % num_corners, :] - points[i, :]) for i in range(num_corners)] mask = np.array(norms) > 0.01 points = points[mask, :] num_corners = points.shape[0] corner_angles = [angle_between_vectors(points[(i-1) % num_corners, :] - points[i, :], points[(i+1) % num_corners, :] - points[i, :]) for i in range(num_corners)] mask = np.array(corner_angles) < (2 * math.pi / 3) points = points[mask, :] num_corners = points.shape[0] # Get junction pairs from points segments = np.zeros([0, 4]) # Used to record all the segments no matter we are going to label it or not. segments_raw = np.zeros([0, 4]) for idx in range(num_corners): if idx == (num_corners - 1): p1 = points[idx] p2 = points[0] else: p1 = points[idx] p2 = points[idx + 1] segment = np.concatenate((p1, p2), axis=0) # Only record the segments longer than min_label_len seg_len = np.sqrt(np.sum((p1 - p2) ** 2)) if seg_len >= min_label_len: segments = np.concatenate((segments, segment[None, ...]), axis=0) segments_raw = np.concatenate((segments_raw, segment[None, ...]), axis=0) # If not enough corner, just regenerate one if (num_corners < 3) or check_segment_len(segments_raw, min_len): return draw_polygon(img, max_sides, min_len, min_label_len) # Get junctions from segments junctions_all = np.concatenate((segments[:, :2], segments[:, 2:]), axis=0) if junctions_all.shape[0] == 0: junc_points = None line_map = None else: junc_points = np.unique(junctions_all, axis=0) # Get the line map line_map = get_line_map(junc_points, segments) corners = points.reshape((-1, 1, 2)) col = get_random_color(int(np.mean(img))) cv.fillPoly(img, [corners], col) return { "points": junc_points, "line_map": line_map }
1dc1cdb18424c8d47ee95777d52713c884eedc5d
23,363
def order_budget_update(request, order_id): """ Update budget for order """ serializer = OrderBudgetSerializer(data=request.data) if serializer.is_valid(raise_exception=True): order = get_object_or_404(Order, pk=order_id) budget = serializer.validated_data['budget'] order.budget = budget order.save() serializer = OrderSerializer(order) return Response(serializer.data, status=status.HTTP_202_ACCEPTED)
adc708d7cbc429ea6e5d81c5f9db60d0fa5f298a
23,364
def analyse_readability_metrics(article_text): """ Use the textstat library to report multiple readability measures. The readability metrics analysed are: * The Flesch Reading Ease Score. A score from 100 (very easy to read) to 0 (very confusing). * The grade score using the Flesch-Kincaid Grade Formula. For example a score of 9.3 means that a ninth grader would be able to read the document. * The FOG index of the given text * The SMOG index of the given text * The ARI(Automated Readability Index) which outputs a number that approximates the grade level needed to comprehend the text. For example if the ARI is 6.5, then the grade level to comprehend the text is 6th to 7th grade * The grade level of the text using the Coleman-Liau Formula * The grade level using the Lisear Write Formula * The grade level using the New Dale-Chall Formula. :param article_text: The article text to operate on. :return: An object containing all measures """ sylls = textstat.syllable_count(article_text) words = textstat.lexicon_count(article_text) sents = textstat.sentence_count(article_text) if article_text != "": """ returns the Flesch Reading Ease Score. Following table is helpful to access the ease of readability in a document. * 90-100 : Very Easy * 80-89 : Easy * 70-79 : Fairly Easy * 60-69 : Standard * 50-59 : Fairly Difficult * 30-49 : Difficult * 0-29 : Very Confusing """ flesch = textstat.flesch_reading_ease(article_text) """ returns the grade score using the Flesch-Kincaid Grade Formula. For example a score of 9.3 means that a ninth grader would be able to read the document. """ flesch_k = textstat.flesch_kincaid_grade(article_text) """ returns the FOG index of the given text. """ fog = textstat.gunning_fog(article_text) """ return the SMOG index of the given text. """ smog = textstat.smog_index(article_text) """ returns the ARI(Automated Readability Index) which outputs a number that approximates the grade level needed to comprehend the text. For example if the ARI is 6.5, then the grade level to comprehend the text is 6th to 7th grade """ ari = textstat.automated_readability_index(article_text) """ returns the grade level of the text using the Coleman-Liau Formula """ coleman_l = textstat.coleman_liau_index(article_text) """ returns the grade level using the Lisear Write Formula """ linsear_write = textstat.linsear_write_formula(article_text) """ Different from other tests, since it uses a lookup table of most commonly used 3000 english words. Thus it returns the grade level using the New Dale-Chall Formula. """ dale_chall = textstat.dale_chall_readability_score(article_text) """ Based upon all the above tests returns the best grade level under which the given text belongs to. """ overall_consensus = textstat.text_standard(article_text) return { "syllable_count": sylls, "word_count": words, "sentence_count": sents, "flesch_reading_ease": flesch, "flesch_kincaid_grade": flesch_k, "gunning_fog": fog, "smog_index": smog, "automated_readability_index": ari, "coleman_liau_index": coleman_l, "linsear_write_formula": linsear_write, "dale_chall_readability_score": dale_chall, "overall_consensus_grade": overall_consensus }
32a89cf4788d469a164f9cdd606f1675ddf219b8
23,365
def dx(data): """ Derivative by central difference Edges are takes as difference between nearest points Parameters ---------- data : ndarray Array of NMR data. Returns ------- ndata : ndarray Derivate of NMR data. """ z = np.empty_like(data) z[..., 0] = data[..., 1] - data[..., 0] # first point z[..., -1] = data[..., -1] - data[..., -2] # last point z[..., 1:-1] = data[..., 2:] - data[..., :-2] # interior return z
6e88618750ff69662ec7f41ecfc50efbaab717db
23,366
def grad(w): """ Dao ham """ N = Xbar.shape[0] return 1/N * Xbar.T.dot(Xbar.dot(w) - y)
8bcce8c10eeb7ffae6e2af3e2f273f03b6984885
23,367
import random def random_binary(): """ 测试 cached 缓存视图的装饰器 设置 key :return: """ return [random.randrange(0, 2) for i in range(500)]
3c30014d1222c136cb7d3d2fbe6e0d972decc776
23,369
def remove_from_end(string, text_to_remove): """ Remove a String from the end of a string if it exists Args: string (str): string to edit text_to_remove (str): the text to remove Returns: the string with the text removed """ if string is not None and string.endswith(text_to_remove): return string[:-len(text_to_remove)] return string
19cebd002fcf5aea5290a6998129427363342319
23,370
def get_node_number(self, node, typ) -> str: """Get the number for the directive node for HTML.""" ids = node.attributes.get("ids", [])[0] if isinstance(self, LaTeXTranslator): docname = find_parent(self.builder.env, node, "section") else: docname = node.attributes.get("docname", "") # Latex does not have builder.fignumbers fignumbers = self.builder.env.toc_fignumbers.get(docname, {}) number = fignumbers.get(typ, {}).get(ids, ()) return ".".join(map(str, number))
f88227ef727d45d14cd9343ee26bdbfb15f6a2fc
23,372
def get_client(client, aws_access_key_id, aws_secret_access_key, region=None): """Shortcut for getting an initialized instance of the boto3 client.""" return boto3.client( client, aws_access_key_id=aws_access_key_id, aws_secret_access_key=aws_secret_access_key, region_name=region )
4ebed5da9ca146b79563c0efb5bf04e7bc13f791
23,374
import logging import traceback import json def main(req: func.HttpRequest) -> func.HttpResponse: """ main function for status/http """ logging.info('Status processed a request.') try: response = get_http_response_by_status(200) if req.get_body() and len(req.get_body()): response = get_http_response_by_status(202) headers = { "Access-Control-Allow-Origin": "*" } return func_json_response(response, headers, "message") #pylint: disable=broad-except except Exception as err: logging.error("Status HTTP error occurred: %s", traceback.format_exc()) msg_error = f"This endpoint encountered an error. {err}" func_response = json.dumps(jsend.error(msg_error)) return func.HttpResponse(func_response, status_code=500)
ac464fd479c0df9f9d462f37d884542bf670dfef
23,375
def _variable_map_by_name(variables): """ Returns Dict,representing referenced variable fields mapped by name. Keyword Parameters: variables -- list of 'variable_python_type' Warehouse support DTOs >>> from pprint import pprint >>> var1 = { 'column':'frob_hz', 'title':'Frobniz Resonance (Hz)' ... ,'python_type': 'float' ... ,'table': 'foo_fact'} >>> list1 = [var1] >>> pprint(_variable_map_by_name(list1)) {'frob_hz': {'column': 'frob_hz', 'python_type': 'float', 'table': 'foo_fact', 'title': 'Frobniz Resonance (Hz)'}} """ variable_by_field = {} for var in variables: field_name = var['column'] variable_by_field[field_name] = var return variable_by_field
91c27ceb84614313d036ec216ef4c4d567a68255
23,376
def true_divide(x, y): """Divides x / y elementwise (using Python 3 division operator semantics). NOTE: Prefer using the Tensor operator or tf.divide which obey Python division operator semantics. This function forces Python 3 division operator semantics where all integer arguments are cast to floating types first. This op is generated by normal `x / y` division in Python 3 and in Python 2.7 with `from __future__ import division`. If you want integer division that rounds down, use `x // y` or `tf.math.floordiv`. `x` and `y` must have the same numeric type. If the inputs are floating point, the output will have the same type. If the inputs are integral, the inputs are cast to `float32` for `int8` and `int16` and `float64` for `int32` and `int64` (matching the behavior of Numpy). Args: x (np.ndarray): input tensor. y (np.ndarray): another tensor. Returns: `x / y` evaluated in floating point. Raises: TypeError: If `x` and `y` have different dtypes. """ return np.true_divide(x, y)
3bdcf5052730fd2c3e2e25a395b0e16534d2dcf9
23,377
def ObjectNotFoundError(NDARError): """S3 object not found""" def __init__(self, object): self.object = object return def __str__(self): return 'Object not found: %s' % self.object
3cc552f7074f8117ed18fd975bc5ac0b09f8016a
23,378
def hello(): """ Say hello using a template file. """ return render_template('index.html')
b2b09afd651a69fdc270238dbf3f724fa9f40ae4
23,379
def pause_sale(ctx): """ Pause the token sale :param ctx:GetContext() used to access contract storage :return:bool Whether pausing the sale was successful """ if CheckWitness(TOKEN_OWNER): Put(ctx, SALE_STATUS_KEY, SALE_PAUSED) return True return False
63e99802a852146f7a20460a28a7d277c4104954
23,380
def parse_item_hash(value): """ Parses the item-hash datatype, e.g. sha-256:5b8e5ee02caedd0a6f3539b19d6b462dd2d08918764e7f476506996024f7b84a :param value: a string to parse :return: parsed value """ if isinstance(value, ItemHash): return value if not isinstance(value, str): raise ValueError('value must be a str') return ItemHash(value)
6275ab41d437728ea3448bf150f068668c3f1819
23,381
def __convert_swizzle_scale(scale, export_settings): """Convert a scale from Blender coordinate system to glTF coordinate system.""" if export_settings[gltf2_blender_export_keys.YUP]: return Vector((scale[0], scale[2], scale[1])) else: return Vector((scale[0], scale[1], scale[2]))
19c2f62c9cd3c267a3edc2451c5f0eba3208c34f
23,382
from pathlib import Path from typing import Type from typing import cast def load_config_from_expt_dir(experiment_dir: Path, loop_config: Type[OptimizerConfig]) -> OptimizerConfig: """ Locate a config file in experiment_dir or one of its subdirectories (for a per-seed config). Config files are now normally in seed subdirectories, as they contain seed values. """ config_files = sorted(experiment_dir.glob(f"*/seed*/{CONFIG_FILENAME}")) or [experiment_dir / CONFIG_FILENAME] config_file = config_files[0] if not config_file.exists(): raise FileNotFoundError(f"Cannot find {CONFIG_FILENAME} at or under {experiment_dir}") # pragma: no cover return cast(loop_config, simple_load_config(config_file, config_class=loop_config))
5c609b877c6c40f019d234b685caed17b287aca0
23,384
def glsadf_delay(order, stage): """Delay for glsadf Parameters ---------- order : int Order of glsadf filter coefficients stage : int -1 / gamma Returns ------- delay : array Delay """ return np.zeros(_sptk.glsadf_delay_length(order, stage))
dacf0a754ba2040ba7ae004658f02df3060c6251
23,385
def find_next(s: str)->[int]: """ input:string output:the next array of string """ if len(s) == 1: return [-1] result = [0 for i in range(len(s))] result[0] = -1 result[1] = 0 i = 2 cn = 0 while i < len(result): if s[i-1] == s[cn]: cn += 1 result[i] = cn elif cn > 0: cn = result[cn] else: result[i+1] = 0 i = i + 1 return result
455297eee28360f75a4f714172f62a7645ca49e0
23,386
from datetime import datetime def _read_date(): """ read date from input; default to today """ # show date while 1: dts = prompt("Date", default=str(datetime.date.today())) try: datetime.datetime.strptime(dts, "%Y-%m-%d") break except ValueError: continue return dts
45cd0e68cc6ca14552c2e2953edd2cc15809f122
23,387
def handle_pending_submission(self, request, layout=None): """ Renders a pending submission, takes it's input and allows the user to turn the submission into a complete submission, once all data is valid. This view has two states, a completable state where the form values are displayed without a form and an edit state, where a form is rendered to change the values. Takes the following query parameters for customization:: * ``edit`` render the view in the edit state * ``return-to`` the view redirects to this url once complete * ``title`` a custom title (required if external submission) * ``quiet`` no success messages are rendered if present """ collection = FormCollection(request.session) form = request.get_form(self.form_class, data=self.data) form.action = request.link(self) form.model = self if 'edit' not in request.GET: form.validate() if not request.POST: form.ignore_csrf_error() elif not form.errors: collection.submissions.update(self, form) completable = not form.errors and 'edit' not in request.GET if completable and 'return-to' in request.GET: if 'quiet' not in request.GET: request.success(_("Your changes were saved")) # the default url should actually never be called return request.redirect(request.url) if 'title' in request.GET: title = request.GET['title'] else: title = self.form.title price = get_price(request, form, self) # retain some parameters in links (the rest throw away) form.action = copy_query( request, form.action, ('return-to', 'title', 'quiet')) edit_link = URL(copy_query( request, request.link(self), ('title', ))) # the edit link always points to the editable state edit_link = edit_link.query_param('edit', '') edit_link = edit_link.as_string() return { 'layout': layout or FormSubmissionLayout(self, request, title), 'title': title, 'form': form, 'completable': completable, 'edit_link': edit_link, 'complete_link': request.link(self, 'complete'), 'model': self, 'price': price, 'checkout_button': price and request.app.checkout_button( button_label=request.translate(_("Pay Online and Complete")), title=title, price=price, email=self.email or self.get_email_field_data(form), locale=request.locale ) }
b591246498c22d6079181654a94b4cd6290732ec
23,388
import functools def i18n_view(tpl_base_name=None, **defaults): """ Renders a template with locale name as suffix. Unlike the normal view decorator, the template name should not have an extension. The locale names are appended to the base template name using underscore ('_') as separator, and lower-case locale identifier. Any additional keyword arguments are used as default template variables. For example:: @i18n_view('foo') def render_foo(): # Renders 'foo_en' for English locale, 'foo_fr' for French, etc. return """ def decorator(func): @functools.wraps(func) def wrapper(*args, **kwargs): try: locale = request.locale tpl_name = '%s_%s' % (tpl_base_name, locale.lower()) except AttributeError: tpl_name = tpl_base_name tplvars = defaults.copy() result = func(*args, **kwargs) if isinstance(result, (dict, DictMixin)): tplvars.update(result) return template(tpl_name, **tplvars) elif result is None: return template(tpl_name, **tplvars) return result return wrapper return decorator
46c33f2be90fb9cca8059ba1f13f97c3e5a61807
23,389
def git_file_list(path_patterns=()): """Returns: List of files in current git revision matching `path_patterns`. This is basically git ls-files. """ return exec_output_lines(['git', 'ls-files', '--exclude-standard'] + path_patterns, False)
0c8cf1a3570d39e6d5c7f1658fd85b6ef2938d8a
23,390
def unreserve_id(): """ Removes the reservation of a SCSI ID as well as the memo for the reservation """ scsi_id = request.form.get("scsi_id") reserved_ids = get_reserved_ids()["ids"] reserved_ids.remove(scsi_id) process = reserve_scsi_ids(reserved_ids) if process["status"]: RESERVATIONS[int(scsi_id)] = "" flash(_(u"Released the reservation for SCSI ID %(id_number)s", id_number=scsi_id)) return redirect(url_for("index")) flash(_(u"Failed to release the reservation for SCSI ID %(id_number)s", id_number=scsi_id)) flash(process["msg"], "error") return redirect(url_for("index"))
6665297f37420a5ad3498f9aa9a705f5b8f1830f
23,391
def integral_sqrt_a2_minus_x2(x, a): """Integral of $\sqrt(a^2 - x^2)$ --- see (30) at http://integral-table.com. """ return 0.5*x*np.sqrt(a**2 - x**2) + 0.5*a**2*np.arctan2(x, np.sqrt(a**2 - x**2))
778a5dc745c62727f192616448b6c98da3d93b5c
23,392
def read_length(file_obj): # pragma: no cover """ Numpy trick to get a 32-bit length from four bytes Equivalent to struct.unpack('<i'), but suitable for numba-jit """ sub = file_obj.read(4) return sub[0] + sub[1]*256 + sub[2]*256*256 + sub[3]*256*256*256
82c311c3a8e2d2e277979c19aaae665b0227f9cd
23,393
import json def ifttt_comparator_alpha_options(): """ Option values for alphanumeric comparators """ errmsg = check_ifttt_service_key() if errmsg: return errmsg, 401 data = {"data": [ {"value": "ignore", "label": "ignore"}, {"value": "equal", "label": "is equal to"}, {"value": "not_equal", "label": "is not equal to"}, {"value": "cont", "label": "contains"}, {"value": "not_cont", "label": "does not contain"}, {"value": "equal_nc", "label": "is equal to (ignore case)"}, {"value": "not_equal_nc", "label": "is not equal to (ignore case)"}, {"value": "cont_nc", "label": "contains (ignore case)"}, {"value": "not_cont_nc", "label": "does not contain (ignore case)"}, {"value": "in", "label": "in [json array]"}, {"value": "not_in", "label": "not in [json array]"}, {"value": "in_nc", "label": "in [json array] (ignore case)"}, {"value": "not_in_nc", "label": "not in [json array] (ignore case)"}, ]} return json.dumps(data)
d04d1f421eeda42324372702b7caf1777dfba964
23,396
def flat_abs_maximum(data, preserve_sign=True): """ Function to return the absolute maximum value in an array. By default, this function will preserve the sign, meaning that if an array contains [-75, -25, 0, 25, 50] then the function will return -75 because that value has the highest magnitude but it will return the original value (preserving the sign). Removing the sign preservation basically makes this function a composite of abs and max. :param data: data array source :param preserve_sign: whether or not to preserve the sign of the output, default is True :return: largest absolute value in the data array """ data = np.asarray(data) abs_data = np.abs(data) subset = np.unravel_index(np.argmax(abs_data), data.shape) return data[subset] if preserve_sign else abs_data[subset]
6276c874ba9e1dcd047b087f6954a11ee3b680a9
23,397
def get_image_to_groundplane_homography(P): """Given the 3x4 camera projection matrix P, returns the homography mapping image plane points onto the ground plane.""" return np.linalg.inv(get_groundplane_to_image_homography(P))
189bb5b80243c9145065260c591fe00c29a9a947
23,398
import logging def create_object_detection_edge_training( train_object_detection_edge_model_request: TrainImageEdgeModel, ): """[Train a Object Detection Model for Edge in AutoML GCP] Args: train_object_detection_edge_model_request (TrainImageEdgeModel): [Based on Input Schema] Raises: error: [Error] Returns: [type]: [description] """ try: logging.info( f"Create Object Detection Model Router: {train_object_detection_edge_model_request}" ) return TrainModelController().train_object_detection_edge_model_controller( request=train_object_detection_edge_model_request ) except Exception as error: logging.error(f"{error=}") raise error
afff20623b96195294740056de6e327add72148f
23,399
from typing import List def readOneLineFileWithCommas(filepath: str) -> List[str]: """ Reads a file that is one line long, separated by commas """ try: with open(filepath) as fp: s: str = fp.readline() return s.split(",") except: raise Exception(f"Failed to open {filepath}")
4c181523192fab0ea01ae5da0883c543565119c6
23,400
from operator import or_ def package_search(filters, context, limit=None, catalog=False): """Search packages with different filters Catalog param controls the base query creation. Catalog queries only search packages a user can deploy. Non-catalog queries searches packages a user can edit. * Admin is allowed to browse all the packages * Regular user is allowed to browse all packages belongs to user tenant and all other packages marked is_public. Also all packages should be enabled. * Use marker (inside filters param) and limit for pagination: The typical pattern of limit and marker is to make an initial limited request and then to use the ID of the last package from the response as the marker parameter in a subsequent limited request. """ session = db_session.get_session() pkg = models.Package query = session.query(pkg) if catalog: # Only show packages one can deploy, i.e. own + public query = query.filter(or_( pkg.owner_id == context.tenant, pkg.is_public) ) else: # Show packages one can edit. if not context.is_admin: query = query.filter(pkg.owner_id == context.tenant) # No else here admin can edit everything. if not filters.get('include_disabled', '').lower() == 'true': query = query.filter(pkg.enabled) if filters.get('owned', '').lower() == 'true': query = query.filter(pkg.owner_id == context.tenant) if 'type' in filters.keys(): query = query.filter(pkg.type == filters['type'].title()) if 'category' in filters.keys(): query = query.filter(pkg.categories.any( models.Category.name.in_(filters['category']))) if 'tag' in filters.keys(): query = query.filter(pkg.tags.any( models.Tag.name.in_(filters['tag']))) if 'class_name' in filters.keys(): query = query.filter(pkg.class_definitions.any( models.Class.name == filters['class_name'])) if 'fqn' in filters.keys(): query = query.filter(pkg.fully_qualified_name == filters['fqn']) if 'search' in filters.keys(): fk_fields = {'categories': 'Category', 'tags': 'Tag', 'class_definitions': 'Class'} conditions = [] for attr in dir(pkg): if attr.startswith('_'): continue if isinstance(getattr(pkg, attr), attributes.InstrumentedAttribute): search_str = filters['search'] for delim in ',;': search_str = search_str.replace(delim, ' ') for key_word in search_str.split(): _word = '%{value}%'.format(value=key_word) if attr in fk_fields.keys(): condition = getattr(pkg, attr).any( getattr(models, fk_fields[attr]).name.like(_word)) conditions.append(condition) elif isinstance(getattr(pkg, attr) .property.columns[0].type, sa.String): conditions.append(getattr(pkg, attr).like(_word)) query = query.filter(or_(*conditions)) sort_keys = [SEARCH_MAPPING[sort_key] for sort_key in filters.get('order_by', ['name'])] marker = filters.get('marker') sort_dir = filters.get('sort_dir') if marker is not None: # set marker to real object instead of its id marker = _package_get(marker, session) query = utils.paginate_query( query, pkg, limit, sort_keys, marker, sort_dir) return query.all()
0d15d2936f713437e3d9dad794cd07faf1ca3090
23,401
def _jitter_boxes(gt_boxes, jitter=0.05): """ """ jittered_boxes = gt_boxes.copy() ws = jittered_boxes[:, 2] - jittered_boxes[:, 0] + 1.0 hs = jittered_boxes[:, 3] - jittered_boxes[:, 1] + 1.0 width_offset = (np.random.rand(jittered_boxes.shape[0]) - 0.5) * jitter * ws height_offset = (np.random.rand(jittered_boxes.shape[0]) - 0.5) * jitter * hs jittered_boxes[:, 0] += width_offset jittered_boxes[:, 2] += width_offset jittered_boxes[:, 1] += height_offset jittered_boxes[:, 3] += height_offset return jittered_boxes
570fa7a6bd2f898ce1d64dd9f6e666e50251fcf5
23,403
def lcm_gcd(a, b): """Finds the least common multiple of two integers Args: a, b: integers greater than or equal to 1 """ return a * b//greatest_common_divisor(a, b)
3b23d04164c8e69eee26e48ab2b1a60e8e99fd14
23,405
def test_ahocorasick_rs_overlapping(benchmark, test_data): """ahocorasick_rs overlapping matches.""" patterns, haystacks = test_data ac = ahocorasick_rs.AhoCorasick(patterns) def run(): for haystack in haystacks: x = ac.find_matches_as_strings(haystack, overlapping=True) return x print(benchmark(run))
3c53369e8006502a5071fb73a75ace4705421a84
23,406
import warnings def merge_frames(frames): """ Merge the multiple data files downloaded from the M2M system or the Gold Copy THREDDS server into a single xarray data set. Keep track of how many files fail to merge. :param frames: The data frames to concatenate/merge into a single data set :return data: The final, merged data set """ # merge the list of processed data frames into a single data set nfiles = len(frames) nframes = nfiles bad_files = 0 if nframes > 1: # try merging all of the frames into a single data set (some frames may be corrupted, and will be skipped) data, fail = _frame_merger(frames[0], frames) # if all of the files, except for the first one, failed that would suggest the first file is the problem. # try the merge again, reset the starting frame to skip the first one. if nframes - fail == 1: data, fail = _frame_merger(frames[1], frames[1:]) nframes -= 1 # if we still can't merge the frames, then there probably is something more fundamentally wrong, and trying # to account for it here is not going to be possible if nframes - 1 - fail == 1: message = f"Unable to merge the {len(frames)} files downloaded from the Gold Copy THREDDS server." warnings.warn(message) return None else: bad_files = nfiles - nframes + fail else: # there is just the one data = frames[0] if bad_files > 0: message = "{} of the {} downloaded files failed to merge.".format(bad_files, nfiles) warnings.warn(message) data = data.sortby(['deployment', 'time']) data.attrs['time_coverage_start'] = ('%sZ' % data.time.min().values) data.attrs['time_coverage_end'] = ('%sZ' % data.time.max().values) data.attrs['time_coverage_resolution'] = ('P%.2fS' % (np.mean(data.time.diff('time').values).astype(float) / 1e9)) return data
b8b083d8f0e9360df325fbeb812b64fffc8d1d0f
23,407
import re def sorted_nicely(l): """ This function sorts the given iterable in the way that is expected Obtained from: https://arcpy.wordpress.com/2012/05/11/sorting-alphanumeric-strings-in-python/ :param l: The iterable to be sorted :return: Sorted iterable """ convert = lambda text: int(text) if text.isdigit() else text alphanum_key = lambda key: [convert(c) for c in re.split('([0-9]+)', key)] return sorted(l, key=alphanum_key)
c2e398e7a654a1a1ec7cc113fcad500beefd876a
23,408
def run_board(effects: list, audio: np.array, sample_rate: float) -> np.array: """Run board on input audio data. Args: board (list): List of Pedalboard effects. audio (np.array): Input audio data. Returns: Output (effected) audio data """ board = Pedalboard(effects, sample_rate=sample_rate) return board(audio)
062f7d34aa7eadad5401e64df1e96857606cbcf6
23,409
def html_escape( s ): """ """ s = s.replace( '&', '&amp' ) s = s.replace( '<', '&lt' ) s = s.replace( '>', '&gt' ) return s
eb47ba4d4651763cb74f081095b78d53ee9bebc1
23,410
def model_query(context, model, *args, **kwargs): """Query helper. :param context: context to query under :param session: if present, the session to use """ session = kwargs.get('session') or object_sqla.get_session() query = session.query(model, *args) return filter_by_project(context, query)
c6e5fb09b7e9a4d85ab6c6abc1e03e227010591f
23,411
def bert_dropout_model(num_classes, bert_config, use_mc_dropout_mha=False, use_mc_dropout_att=False, use_mc_dropout_ffn=False, use_mc_dropout_output=False, channel_wise_dropout_mha=False, channel_wise_dropout_att=False, channel_wise_dropout_ffn=False): """Creates a BERT classifier model with MC dropout.""" last_layer_initializer = tf.keras.initializers.TruncatedNormal( stddev=bert_config.initializer_range) # Build encoder model. mc_dropout_bert_encoder = get_mc_dropout_transformer_encoder( bert_config, use_mc_dropout_mha=use_mc_dropout_mha, use_mc_dropout_att=use_mc_dropout_att, use_mc_dropout_ffn=use_mc_dropout_ffn, channel_wise_dropout_mha=channel_wise_dropout_mha, channel_wise_dropout_att=channel_wise_dropout_att, channel_wise_dropout_ffn=channel_wise_dropout_ffn) # Build classification model. mc_dropout_bert_model = DropoutBertClassifier( mc_dropout_bert_encoder, num_classes=num_classes, dropout_rate=bert_config.hidden_dropout_prob, use_mc_dropout=use_mc_dropout_output, initializer=last_layer_initializer) return mc_dropout_bert_model, mc_dropout_bert_encoder
6ee1d09b2070e54ba631bd6e1b8e3e453960073a
23,412
def calculate_monthly_sales(year: int, month: int, beer_style: str) -> int: """Calculates the sales of a particular type of beer in a given month. param: month -- an int ranges from 1 to 12, beer_style; return: total_sales """ total_sales = 0 for item in data: if item[2].year == year and item[2].month == month and item[3] == beer_style: total_sales += int(item[5]) return total_sales
fa448a8e9dfb7186652a6dc3000d3a8465320994
23,413
def check_canopy_height(region_info, regional_lookup): """ Check the regional canopy height. """ mean_canopy_height = region_info['mean_canopy_height'] if mean_canopy_height == 'no data': mean_canopy_height = 0 return mean_canopy_height
5f04ad71df7f0b1c9ef73e97bbe99bea1916ae5e
23,414
def annotated_var(prs): """ Parser for annotated variable in parentheses. Annotation is parsed with prs. Parser output is a var token annotation is stored in attribute 'annotation' of var token. Sample input to parser: (x : A) """ def trt(acc): v,ann = acc if len(ann) > 0: return c.copy_token(v,{'annotation':ann[0]}) return v return c.paren(var() + colon_annotation(prs)).treat(trt)
42acdf6eb09952701d17fab73a2ee8fc20c7dc5e
23,415
def action_from_json(project, value): """return a action from the given json """ json_type = value.get('type') for class_ in sftoolbox.engine.action_classes_register: if json_type == class_.json_type: return class_.from_json(project, value) return DummyAction.from_json(project, value)
69658b53e839c7d112b7509e3ecdf57a82de817a
23,416
def get_springer_doi(node): """ :param node: :return: """ for elem in find_key(node, 'occurrence'): if isinstance(elem, list): for sub_elem in elem: if isinstance(sub_elem, dict): values = sub_elem.values() if len(values) == 2 and values[0] == 'DOI': return values[1] return ''
ca8773f10e6fed6b41064a5a5ad6717afd540bb5
23,417
def check_versions(versions=[]): """ Check if there are version to build the changelog. """ if len(versions) == 0: raise NotEnoughVersionsError() return True
f9c7f81c02f08a867f27f329554ed85eddc34243
23,418
def create_fnet(widths, nfeat, nfeato, orthoinit, llbias): """ Creates feature-generating network, a multi-layer perceptron. Parameters: widths: list of widths of hidden layers nfeat, nfeato: # input and output channels of the convolution orthoinit: whether to use orthogonal weight initialization llbias: whether to use bias in the last layer """ fnet_modules = [] for k in range(len(widths) - 1): fnet_modules.append(nn.Linear(widths[k], widths[k + 1])) if orthoinit: init.orthogonal_(fnet_modules[-1].weight, gain=init.calculate_gain('relu')) fnet_modules.append(nn.ReLU(True)) fnet_modules.append(nn.Linear(widths[-1], nfeat * nfeato, bias=llbias)) if orthoinit: init.orthogonal_(fnet_modules[-1].weight) return nn.Sequential(*fnet_modules)
3bdfdd89d77b6ba172e2ac85df191b11e78ab049
23,419
def pytorch_array_setitem(op): """Implementation of array_setitem for pytorch.""" def _impl(array, begin, end, strides, value): idx = tuple(slice(b, e, s) for b, e, s in zip(begin, end, strides)) ret = array.clone() ret[idx] = value return (ret,) return _impl, op.inputs[1:]
b0c6504b2c0d1971ec16e5fdf198b20a911d4946
23,420
def time_series_seasonal_test(x: pd.Series, expected_lags: list): """ 通过自相关系数来获取不同lag的相关系数,通过相关系数来判断时序数据的周期值 PS:需要列出lag的值的列表 :param x: 时序数据x,type: Series :param expected_lags: 可供选择的的滞后值 :return: 返回滞后值值的自相关性排序序列 """ acf_scores = [] for lag in expected_lags: acf_score = acf(x.values, nlags=lag, fft=False)[-1] acf_scores.append(abs(acf_score)) sorted_idx = np.argsort(acf_scores) return [expected_lags[i] for i in sorted_idx]
5c0614b986eb8dfe576821245e80ef0244c70c69
23,421
def comment_like(): """ - 1.判断用户是否登陆 - 2.获取参数 - 3.校验参数,为空校验 - 4.操作类型校验 - 5.根据评论编号取出,评论对象 - 6.判断评论对象是否存在 - 7.根据操作类型,点赞,取消点赞 - 8.返回响应 :return: """ # - 1.判断用户是否登陆 if not g.user: return jsonify(errno=RET.NODATA, errmsg="用户未登录") # - 2.获取参数 comment_id = request.json.get("comment_id") action = request.json.get("action") # - 3.校验参数,为空校验 if not all([comment_id, action]): return jsonify(errno=RET.PARAMERR, errmsg="参数不全") # - 4.操作类型校验 if not action in ["add", "remove"]: return jsonify(errno=RET.DATAERR, errmsg="操作类型有误") # - 5.根据评论编号取出,评论对象 try: comment = Comment.query.get(comment_id) except Exception as e: current_app.logger.error(e) return jsonify(errno=RET.DBERR, errmsg="获取评论失败") # - 6.判断评论对象是否存在 if not comment: return jsonify(errno=RET.NODATA, errmsg="评论不存在") try: # - 7.根据操作类型,点赞,取消点赞 if action == "add": # 判断用户是否点过赞 comment_like = CommentLike.query.filter(CommentLike.user_id == g.user.id, CommentLike.comment_id == comment_id).first() if not comment_like: # 创建点赞对象 comment_like = CommentLike() comment_like.user_id = g.user.id comment_like.comment_id = comment_id # 保存点赞对象到数据库 db.session.add(comment_like) db.session.commit() # 点赞数量+1 comment.like_count += 1 else: # 判断用户是否点过赞 comment_like = CommentLike.query.filter(CommentLike.user_id == g.user.id, CommentLike.comment_id == comment_id).first() if comment_like: # 移除点赞对象 db.session.delete(comment_like) db.session.commit() # 点赞数量-1 if comment.like_count > 0: comment.like_count -= 1 except Exception as e: current_app.logger.error(e) db.session.rollback() return jsonify(errno=RET.DBERR, errmsg="操作失败") # - 8.返回响应 return jsonify(errno=RET.OK, errmsg="操作成功")
09564653f3d843c7d82e16946507c8a081374ce6
23,422
def create_relationships(model_cls, data): """ Create the relationship dict of the specified model class with the data :param model_cls: :param data: :return: """ relationships = model_cls.get_relationships() relationship_map = {} for key in relationships.keys(): relationship_cls = relationships[key].mapper.class_ relationship_kwargs = data.get(key) if isinstance(relationship_kwargs, list): # 1:n relationship = [] for item in relationship_kwargs: r_ins = create_instance(relationship_cls, item) if r_ins is not None: relationship.append(r_ins) else: relationship = create_instance(relationship_cls, relationship_kwargs) # 1:1 if relationship is not None: relationship_map[key] = relationship return relationship_map
6ed811b180141190cde5eaa20d4fca817647c970
23,424
import requests def get_news_items_from_web(url): """ Calls the Athletics News RSS API, parses the resulting response and returns a list of parsed news_items to be stored in DynamoDB :param url: Url for the RSS API for UBCO Heat :return: Parsed news items in a JSON formatted list """ try: request_response = requests.get(url).text return feedparser.parse(request_response)["entries"] except RequestException as e: LOGGER.error("Error in network request to RSS Feed") detailed_exception(LOGGER) return []
aff75310b155475d185f15c5bbaadeda9902aae3
23,425
def get_node_model(manager, handle_id=None, node=None): """ :param manager: Context manager to handle transactions :type manager: Neo4jDBSessionManager :param handle_id: Nodes handle id :type handle_id: str|unicode :param node: Node object :type node: neo4j.v1.types.Node :return: Node model :rtype: models.BaseNodeModel or sub class of models.BaseNodeModel """ bundle = get_node_bundle(manager, handle_id, node) for label in bundle.get('labels'): try: classname = '{meta_type}{base}Model'.format(meta_type=bundle.get('meta_type'), base=label).replace('_', '') return getattr(models, classname)(manager).load(bundle) except AttributeError: pass for label in bundle.get('labels'): try: classname = '{base}Model'.format(base=label).replace('_', '') return getattr(models, classname)(manager).load(bundle) except AttributeError: pass try: classname = '{base}Model'.format(base=bundle.get('meta_type')) return getattr(models, classname)(manager).load(bundle) except AttributeError: return models.BaseNodeModel(manager).load(bundle)
a8c42b8e72b6ae96e897bd5c7f5a06b5820b4b56
23,426
from functools import reduce def convert_hcp_plane(plane: list) -> np.ndarray: """ four index notion to three index notion for hcp and rhombohedral plane Args: plane (list): four index notion Returns: three index notion of plane """ u1 = plane[0] v1 = plane[1] w1 = plane[3] plane = [u1, v1, w1] if reduce(gcd, plane) != 1: index = reduce(gcd, plane) plane = [int(round(x / index)) for x in plane] return np.array(plane)
aa6d7527a55d8b14bd03b2f6660ed94c8cf760a8
23,427