content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def scale_intensity(data, out_min=0, out_max=255): """Scale intensity of data in a range defined by [out_min, out_max], based on the 2nd and 98th percentiles.""" p2, p98 = np.percentile(data, (2, 98)) return rescale_intensity(data, in_range=(p2, p98), out_range=(out_min, out_max))
57df2200fbefa4ab6f1c91f46063b1b1f147301e
23,078
def raises_regex_op(exc_cls, regex, *args): """ self.assertRaisesRegex( ValueError, "invalid literal for.*XYZ'$", int, "XYZ" ) asserts.assert_fails(lambda: int("XYZ"), ".*?ValueError.*izznvalid literal for.*XYZ'$") """ # print(args) # asserts.assert_fails(, f".*?{exc_cls.value.value}") invokable = _codegen.code_for_node( cst.Call( func=args[0].value, args=[ a.with_changes( whitespace_after_arg=cst.SimpleWhitespace(value="") ) for a in args[1:] ], ) ) regex = f'".*?{exc_cls.value.value}.*{regex.value.evaluated_value}"' return cst.parse_expression( f"asserts.assert_fails(lambda: {invokable}, {regex})" )
9b0e6aa0692d2285467578083f76c888de9874c1
23,079
def getParInfo(sourceOp, pattern='*', names=None, includeCustom=True, includeNonCustom=True): """ Returns parInfo dict for sourceOp. Filtered in the following order: pattern is a pattern match string names can be a list of names to include, default None includes all includeCustom to include custom parameters includeNonCustom to include non-custom parameters parInfo is {<parName>:(par.val, par.expr, par.mode string, par.bindExpr, par.default)...} """ parInfo = {} for p in sourceOp.pars(pattern): if (names is None or p.name in names) and \ ((p.isCustom and includeCustom) or \ (not p.isCustom and includeNonCustom)): parInfo[p.name] = [p.val, p.expr if p.expr else '', p.mode.name, p.bindExpr, p.default] return parInfo
01eafb065ef98e1fd4676898aeb8d0c5a7a74b9d
23,080
def generate_crontab(config): """Generate a crontab entry for running backup job""" command = config.cron_command.strip() schedule = config.cron_schedule if schedule: schedule = schedule.strip() schedule = strip_quotes(schedule) if not validate_schedule(schedule): schedule = config.default_crontab_schedule else: schedule = config.default_crontab_schedule return f'{schedule} {command}\n'
d958c47e0673d19dbd8d8eb2493995cdc2ada7ff
23,081
import attr def to_dict(observation: Observation): """Convert an Observation object back to dict format""" return _unprefix_attrs(attr.asdict(observation))
4ffd5ad24fee6bd983d7cb85ac7d1b9eeb56e751
23,085
def _consolidate_extrapolated(candidates): """Get the best possible derivative estimate, given an error estimate. Going through ``candidates`` select the best derivative estimate element-wise using the estimated candidates, where best is defined as minimizing the error estimate from the Richardson extrapolation. See https://tinyurl.com/ubn3nv5 for corresponding code in numdifftools and https://tinyurl.com/snle7mb for an explanation of how errors of Richardson extrapolated derivative estimates can be estimated. Args: candidates (dict): Dictionary containing different derivative estimates and their error estimates. Returns: consolidated (np.ndarray): Array of same shape as input derivative estimates. candidate_der_dict (dict): Best derivative estimate given method. candidate_err_dict (dict): Errors corresponding to best derivatives given method """ # first find minimum over steps for each method candidate_der_dict = {} candidate_err_dict = {} for key in candidates.keys(): _der = candidates[key]["derivative"] _err = candidates[key]["error"] derivative, error = _select_minimizer_along_axis(_der, _err) candidate_der_dict[key] = derivative candidate_err_dict[key] = error # second find minimum over methods candidate_der = np.stack(list(candidate_der_dict.values())) candidate_err = np.stack(list(candidate_err_dict.values())) consolidated, _ = _select_minimizer_along_axis(candidate_der, candidate_err) updated_candidates = (candidate_der_dict, candidate_err_dict) return consolidated, updated_candidates
2641a56d852ed9e4065c7dfad4b1fd51ef581b91
23,086
import torch def build_wideresnet_hub( num_class: int, name='wide_resnet50_2', pretrained=True): """[summary] Normalized mean = [0.485, 0.456, 0.406] std = [0.229, 0.224, 0.225] Args: name (str, optional): [description]. Defaults to 'wide_resnet50_2'. pretrained (bool, optional): [description]. Defaults to True. """ model = torch.hub.load( 'pytorch/vision:v0.6.0', name, pretrained=pretrained) num_ftrs = model.fc.in_features model.fc = nn.Linear(num_ftrs, num_class) return model
39f977a9ab368bd9fa15fb36c600c350afca7f53
23,088
def get_phoenix_model_wavelengths(cache=True): """ Return the wavelength grid that the PHOENIX models were computed on, transformed into wavelength units in air (not vacuum). """ wavelength_url = ('ftp://phoenix.astro.physik.uni-goettingen.de/v2.0/' 'HiResFITS/WAVE_PHOENIX-ACES-AGSS-COND-2011.fits') wavelength_path = download_file(wavelength_url, cache=cache, timeout=30) wavelengths_vacuum = fits.getdata(wavelength_path) # Wavelengths are provided at vacuum wavelengths. For ground-based # observations convert this to wavelengths in air, as described in # Husser 2013, Eqns. 8-10: sigma_2 = (10**4 / wavelengths_vacuum)**2 f = (1.0 + 0.05792105/(238.0185 - sigma_2) + 0.00167917 / (57.362 - sigma_2)) wavelengths_air = wavelengths_vacuum / f return wavelengths_air
ff5632086ffb3aa3eb6655c3ba18e182f0724bc4
23,089
def accuracy_boundingbox(data, annotation, method, instance): ## NOT IMPLEMENTED """ Calculate how far off each bounding box was Parameters ---------- data: color_image, depth_image annotation: pascal voc annotation method: function(instance, *data) instance: instance of object Returns ------- (int, int, int) boxes_found, boxes_missed, boxes_extra. """ FOUND_THRESHOLD = 5 # pixels ## bounding_boxes = method(instance, *data) ## boxes_found, boxes_missed, boxes_extra = 0, 0, 0 for value in annotation.findall('object'): annotation_bounding_box = value.find('bndbox') ax1, ay1, ax2, ay2 = [int(annotation_bounding_box.find(param).text) for param in ['xmin', 'ymin', 'xmax', 'ymax']] for bounding_box in bounding_boxes: X, Y, Z = [], [], [] for x, y in bounding_box.vertices: X.append(x) Y.append(y) X, Y = np.unique(X), np.unique(Y) bx1, by1, bx2, by2 = min(X), min(Y), max(X), max(Y) ## x1_close = bx1 - FOUND_THRESHOLD <= ax1 <= bx1 + FOUND_THRESHOLD y1_close = by1 - FOUND_THRESHOLD <= ay1 <= by1 + FOUND_THRESHOLD x2_close = bx2 - FOUND_THRESHOLD <= ax2 <= bx2 + FOUND_THRESHOLD y2_close = by2 - FOUND_THRESHOLD <= ay2 <= by2 + FOUND_THRESHOLD if all((x1_close, y1_close, x2_close, y2_close)): boxes_found += 1 boxes_missed = len(annotation.findall('object')) - boxes_found boxes_extra = len(bounding_boxes) - boxes_found return boxes_found, boxes_missed, boxes_extra
78fa63d5e2cbdad843feaddd277b98886789a517
23,091
import logging def test_kbd_gpios(): """Test keyboard row & column GPIOs. Note, test only necessary on 50pin -> 50pin flex These must be tested differently than average GPIOs as the servo side logic, a 4to1 mux, is responsible for shorting colX to rowY where X == 1|2 and Y = 1|2|3. To test the flex traces I'll set the row to both high and low and examine that the corresponding column gets shorted correctly. Returns: errors: integer, number of errors encountered while testing """ errors = 0 # disable everything initially kbd_off_cmd = 'kbd_m1_a0:1 kbd_m1_a1:1 kbd_m2_a0:1 kbd_m2_a1:1 kbd_en:off' for col_idx in xrange(2): if not set_ctrls(kbd_off_cmd): logging.error('Disabling all keyboard rows/cols') errors += 1 break mux_ctrl = KBD_MUX_COL_IDX[col_idx] kbd_col = 'kbd_col%d' % (col_idx + 1) for row_idx in xrange(3): kbd_row = 'kbd_row%d' % (row_idx + 1) cmd = '%s1:%d %s0:%d ' % (mux_ctrl, row_idx>>1, mux_ctrl, row_idx & 0x1) cmd += 'kbd_en:on %s' % (kbd_col) (retval, ctrls) = get_ctrls(cmd, timeout=30) if not retval: logging.error('ctrls = %s', ctrls) errors += 1 for set_val in [GPIO_MAPS[ctrls[kbd_col]], ctrls[kbd_col]]: cmd = '%s:%s sleep:0.2 %s' % (kbd_row, set_val, kbd_col) (retval, ctrls) = get_ctrls(cmd) if not retval: logging.error('ctrls = %s', ctrls) errors += 1 if ctrls[kbd_col] != set_val: logging.error('After setting %s, %s != %s', kbd_row, kbd_col, set_val) errors += 1 return errors
237f26a5da5711c480ef9dadbaa46170ca97c884
23,093
def fields_for_model(model): """ This function returns the fields for a schema that matches the provided nautilus model. Args: model (nautilus.model.BaseModel): The model to base the field list on Returns: (dict<field_name: str, graphqlType>): A mapping of field names to graphql types """ # the attribute arguments (no filters) args = {field.name.lower() : convert_peewee_field(field) \ for field in model.fields()} # use the field arguments, without the segments return args
9eb6f1a51513ff6b42ab720a1196cea1402cac23
23,094
def _landstat(landscape, updated_model, in_coords): """ Compute the statistic for transforming coordinates onto an existing "landscape" of "mountains" representing source positions. Since the landscape is an array and therefore pixellated, the precision is limited. Parameters ---------- landscape: nD array synthetic image representing locations of sources in reference plane updated_model: Model transformation (input -> reference) being investigated in_coords: nD array input coordinates Returns ------- float: statistic representing quality of fit to be minimized """ def _element_if_in_bounds(arr, index): try: return arr[index] except IndexError: return 0 out_coords = updated_model(*in_coords) if len(in_coords) == 1: out_coords = (out_coords,) out_coords2 = tuple((coords - 0.5).astype(int) for coords in out_coords) result = sum(_element_if_in_bounds(landscape, coord[::-1]) for coord in zip(*out_coords2)) ################################################################################ # This stuff replaces the above 3 lines if speed doesn't hold up # sum = np.sum(landscape[i] for i in out_coords if i>=0 and i<len(landscape)) # elif len(in_coords) == 2: # xt, yt = out_coords # sum = np.sum(landscape[iy,ix] for ix,iy in zip((xt-0.5).astype(int), # (yt-0.5).astype(int)) # if ix>=0 and iy>=0 and ix<landscape.shape[1] # and iy<landscape.shape[0]) ################################################################################ return -result
0205654ef8580a0d6731155d7d0c2b2c1a360e9c
23,095
def presence(label): """Higher-order function to test presence of a given label """ return lambda x, y: 1.0 * ((label in x) == (label in y))
49c7e0b4b7af69c808917af7ab4d6b56a7a4ef89
23,096
def make_formula(formula_str, row, col, first_data_row=None): # noinspection SpellCheckingInspection """ A cell will be written as a formula if the HTML tag has the attribute "data-excel" set. Note that this function is called when the spreadsheet is being created. The cell it applies to knows where it is and what the first data row is. Allowed formula strings: "SUM ROW A-C": sum the current row from A-C "SUM ROW A,C": sum cells A and C in the current row "SUM COL": sums current col from first_row to row - 1 "FORMULA RAW IF(F13 > 0, (F13-E13)/F13, '')": uses formula as is "FORMULA RELATIVE IF(colm001rowp000 > 0, (colm001rowp0-colm002rowp000)/colm001rowp001, '')": creates the formula relative to the current location. colm002 means two cols to the left of the current cell. rowp000 means the current row plus 0 (e.g. the current row) :param formula_str: the value of the "data-excel" tag containing params for generating the formula :param row: cell row :param col: cell column :param first_data_row: for column formulas :return: a string """ parts = formula_str.split(' ') func = parts[0] args = parts[-1] formula = '' if func == 'SUM': func_modifier = parts[1] if func_modifier == 'ROW': if '-' in args: cols = args.split('-') formula = '=SUM({}{}:{}{})'.format(cols[0], row + 1, cols[1], row + 1) elif ',' in args: cols = map(methodcaller('strip'), args.split(',')) # Put the row number after each col letter and then add them together cols = '+'.join(map(lambda x: x + str(row + 1), cols)) formula = '=SUM({})'.format(cols) elif func_modifier == 'COL': formula = '=SUM({}:{})'.format(xl_rowcol_to_cell(first_data_row, col), xl_rowcol_to_cell(row - 1, col)) elif func == 'FORMULA': func_modifier = parts[1] formula_str = ' '.join(parts[2:]) if func_modifier == 'RAW': formula = '=' + formula_str elif func_modifier == 'RELATIVE': formula = '=' + locate_cells(formula_str, row, col) return formula
d9a41a2906151a050afa78e099278b7d5462faa9
23,098
def select(population, to_retain): """Go through all of the warroirs and check which ones are best fit to breed and move on.""" #This starts off by sorting the population then gets all of the population dived by 2 using floor divison I think #that just makes sure it doesn't output as a pesky decimal. Then it takes one half of memebers which shall be females. # which tend to be not as strong as males(Not being sexist just science thats how we are built.) So the front half will be #The lower digits because we sorted it then the upper half will be males. Then it finishes off by getting the strongest males and #females and returns them. sorted_pop = sorted(population) to_keep_by_sex = to_retain//2 members = len(sorted_pop)//2 females = sorted_pop[:members] males = sorted_pop[members:] strong_females = females[-to_keep_by_sex:] strong_males = males[-to_keep_by_sex:] return strong_males, strong_females
4dc1251f09e6bd976d170017bbd328563e9ef786
23,099
import numpy def normal_function( sigma, width ): """ Defaulf fitting function, it returns values from a normal distribution """ log2 = log(2) sigma2 = float(sigma)**2 lo, hi = width, width+1 def normal_func(value, index): return value * exp( -index*index/sigma2 * log2 ) values = [ normal_func(1, x) for x in range(-lo, hi) ] values = numpy.array( values ) return lo, hi, values
797b4eb00db5a0d4675b547664982f537da9e6ab
23,100
def remove_duplicates(l): """ Remove any duplicates from the original list. Return a list without duplicates. """ new_l = l[:] tmp_l = new_l[:] for e in l: tmp_l.remove(e) if e in tmp_l: new_l.remove(e) return new_l
81132e3b23592589c19ddb11f661e80be6984782
23,102
import functools def in_boudoir(callback): """Décorateur : commande utilisable dans un boudoir uniquement. Lors d'une invocation de la commande décorée hors d'un boudoir (enregistré dans :class:`.bdd.Boudoir`), affiche un message d'erreur. Ce décorateur n'est utilisable que sur une commande définie dans un Cog. """ @functools.wraps(callback) async def new_callback(self, ctx, *args, **kwargs): try: Boudoir.from_channel(ctx.channel) except ValueError: await ctx.reply("Cette commande est invalide en dehors " "d'un boudoir.") else: # if ctx.authors return await callback(self, ctx, *args, **kwargs) return new_callback
ed086805f2d865331f559406218f9a9ecd4a7194
23,103
def xyz_to_pix(position, bounds, pixel_size): """Convert from 3D position to pixel location on heightmap.""" u = int(np.round((position[1] - bounds[1, 0]) / pixel_size)) v = int(np.round((position[0] - bounds[0, 0]) / pixel_size)) return (u, v)
d38b45d573a689f72fda4a7ed477be831bea26a8
23,105
import random def get_random_lb(): """ Selects a random location from the load balancers file. Returns: A string specifying a load balancer IP. """ with open(LOAD_BALANCERS_FILE) as lb_file: return random.choice([':'.join([line.strip(), str(PROXY_PORT)]) for line in lb_file])
2f8620a213bfc87dd3eae662ace409a31597931b
23,106
def enlarge(n): """ Multiplies a number by 100 Param: n (numeric) the number to enlarge Return the enlarged number(numeric) """ return n * 100
6685af169c8e321ceabc0086d1835d459a627a59
23,107
import re def ResolveWikiLinks(html): """Given an html file, convert [[WikiLinks]] into links to the personal wiki: <a href="https://z3.ca/WikiLinks">WikiLinks</a>""" wikilink = re.compile(r'\[\[(?:[^|\]]*\|)?([^\]]+)\]\]') def linkify(match): wiki_root = 'https://z3.ca' wiki_name = match.group(1).replace('\n', ' ') wiki_slug = wiki_name.replace(' ', '_') return f'<a class="wiki" href="{wiki_root}/{wiki_slug}">{wiki_name}</a>' return wikilink.sub(linkify, html)
bef3e309aa2489e720a1742e327e9dd4edf6d720
23,108
def handle_new_favorite(query_dict): """Does not handle multi-part data properly. Also, posts don't quite exist as they should.""" for required in POST_REQUIRED_PARAMS: if required not in query_dict: return False # not yet safe to use. post_id = str(string_from_interwebs(query_dict["post"][0])).strip() author_id = str(string_from_interwebs(query_dict["user"][0])).strip() with Connection('localhost', 27017) as connection: favorite = check_favorite(author_id, post_id, connection) if favorite is not None: delete_favorite(favorite, connection) update_post(post_id, connection) return True return False
7caed7d280870cb7a67b1bfd53200ec3486a4f41
23,109
def steam_ratings(html_text): """Tries to get both 'all' and 'recent' ratings.""" return { "overall": steam_all_app_rating(html_text), "recent": steam_recent_app_rating(html_text), }
71cb3e85e9a1f01e5d4b080372b24c2f848bf7cf
23,110
def separation_cos_angle(lon0, lat0, lon1, lat1): """Evaluate the cosine of the angular separation between two direction vectors.""" return (np.sin(lat1) * np.sin(lat0) + np.cos(lat1) * np.cos(lat0) * np.cos(lon1 - lon0))
a7e1a7ecdfd0ab7f1dc58b99190cc9eeab7fcf20
23,111
def get_band_params(meta, fmt='presto'): """ Returns (fmin, fmax, nchans) given a metadata dictionary loaded from a specific file format. """ if fmt == 'presto': fbot = meta['fbot'] nchans = meta['nchan'] ftop = fbot + nchans * meta['cbw'] fmin = min(fbot, ftop) fmax = max(fbot, ftop) elif fmt == 'sigproc': raise ValueError("Cannot parse observing band parameters from data in sigproc format") else: raise ValueError(f"Unknown format: {fmt}") return fmin, fmax, nchans
61e9b0781559de431e5189b89f69a0763b039d8f
23,113
import functools def logging(f): """Decorate a function to log its calls.""" @functools.wraps(f) def decorated(*args, **kwargs): sargs = map(str, args) skwargs = (f'{key}={value}' for key, value in kwargs.items()) print(f'{f.__name__}({", ".join([*sargs, *skwargs])})...') try: value = f(*args, **kwargs) except Exception as cause: print(f'! {cause}') raise print(f'=> {value}') return value return decorated
25822434fe331c59ce64b6f9cd5ec89b70b2542a
23,114
def yandex_mean_encoder(columns=None, n_jobs=1, alpha=100, true_label=None): """ Smoothed mean-encoding with custom smoothing strength (alpha) http://learningsys.org/nips17/assets/papers/paper_11.pdf """ buider = partial( build_yandex_mean_encoder, alpha=alpha, ) return TargetCategoryEncoder(buider, columns, n_jobs, true_label)
b38ac44cb2ff12c33f415d716cc4e13006eabf0b
23,115
from typing import Optional import math from typing import Counter def cure_sample_part( X: np.ndarray, k: int, c: int = 3, alpha: float = 0.3, u_min: Optional[int] = None, f: float = 0.3, d: float = 0.02, p: Optional[int] = None, q: Optional[int] = None, n_rep_finalclust: Optional[int] = None, plotting: bool = True, ): """ CURE algorithm variation for large datasets. Partition the sample space into p partitions, each of size len(X)/p, then partially cluster each partition until the final number of clusters in each partition reduces to n/(pq). Then run a second clustering pass on the n/q partial clusters for all the partitions. :param X: input data array. :param k: desired number of clusters. :param c: number of representatives for each cluster. :param alpha: parameter that regulates the shrinking of representative points toward the centroid. :param u_min: size of the smallest cluster u. :param f: percentage of cluster points (0 <= f <= 1) we would like to have in the sample. :param d: (0 <= d <= 1) the probability that the sample contains less than f*|u| points of cluster u is less than d. :param p: the number of partitions. :param q: the number >1 such that each partition reduces to n/(pq) clusters. :param n_rep_finalclust: number of representatives to use in the final assignment phase. :param plotting: if True, plots all intermediate steps. :return, rep, mat_a): returns the clusters dictionary, the dictionary of representatives, the matrix a. """ if ((p is None) and (q is not None)) or ((q is None) and (p is not None)): raise ValueError("p and q must be both specified if not None.") # choose the parameters suggested by the paper if the user doesnt provide input parameters if u_min is None: u_min = round(len(X) / k) if n_rep_finalclust is None: n_rep_finalclust = c _, df_nonan = build_initial_matrices(X) # this is done to ensure that the algorithm starts even when input params are bad while True: print("new f: ", f) print("new d: ", d) n = math.ceil(chernoffBounds(u_min=u_min, f=f, N=len(X), k=k, d=d)) if n <= len(df_nonan): b_sampled = df_nonan.sample(n, random_state=42) break else: if f >= 0.19: f = f - 0.1 else: d = d * 2 b_notsampled = df_nonan.loc[ [str(i) for i in range(len(df_nonan)) if str(i) not in b_sampled.index], : ] # find the best p and q according to the paper if (p is None) and (q is None): def g(x): res = (x[1] - 1) / (x[0] * x[1]) + 1 / (x[1] ** 2) return res results = {} for i in range(2, 15): for j in range(2, 15): results[(i, j)] = g([i, j]) p, q = max(results, key=results.get) print("p: ", p) print("q: ", q) if (n / (p * q)) < 2 * k: print("n/pq is less than 2k, results could be wrong.") if k * d >= 1: print("k*d is greater or equal to 1, results could be wrong.") # form the partitions lin_sp = np.linspace(0, n, p + 1, dtype="int") # lin_sp b_partitions = [] for num_p in range(p): # try: b_partitions.append(b_sampled.iloc[lin_sp[num_p]: lin_sp[num_p + 1]]) # except: # b_partitions.append(b_sampled.iloc[lin_sp[num_p]:]) k_prov = round(n / (p * q)) # perform clustering on each partition separately partial_clust = [] partial_rep = [] partial_CURE_df = [] for i in range(p): print("\n") print(i) clusters, rep, CURE_df = cure( b_partitions[i].values, k=k_prov, c=c, alpha=alpha, plotting=plotting, partial_index=b_partitions[i].index, ) partial_clust.append(clusters) partial_rep.append(rep) partial_CURE_df.append(CURE_df) # merging all data into single components # clusters clust_tot = {} for d in partial_clust: clust_tot.update(d) # representatives rep_tot = {} for d in partial_rep: rep_tot.update(d) # mat CURE_df diz = {i: len(b_partitions[i]) for i in range(p)} num_freq = Counter(diz.values()).most_common(1)[0][0] bad_ind = [k for k, v in diz.items() if v != num_freq] for ind in bad_ind: partial_CURE_df[ind]["{0}x".format(diz[ind])] = [np.nan] * k_prov partial_CURE_df[ind]["{0}y".format(diz[ind])] = [np.nan] * k_prov CURE_df_tot = partial_CURE_df[0].append(partial_CURE_df[1]) for i in range(1, len(partial_CURE_df) - 1): CURE_df_tot = CURE_df_tot.append(partial_CURE_df[i + 1]) # mat Xdist X_dist_tot = dist_mat_gen_cure(rep_tot) # final_clustering prep_data = [clust_tot, rep_tot, CURE_df_tot, X_dist_tot] clusters, rep, CURE_df = cure( b_sampled.values, k=k, c=c, alpha=alpha, preprocessed_data=prep_data, partial_index=b_sampled.index, n_rep_finalclust=n_rep_finalclust, not_sampled=b_notsampled.values, plotting=plotting, not_sampled_ind=b_notsampled.index, ) return clusters, rep, CURE_df
b85d2f23bd1b64a0f17abc5178cfc25e442419b5
23,116
from typing import Optional import pickle def deserialize_result(r: bytes, *, deserializer: Optional[Deserializer] = None) -> JobResult: """Given bytes, deserializes them into a JobResult object. :param r: bytes to deserialize. :param deserializer: Optional serializer to use for deserialization. If not set, pickle is used. :return: A JobResult object. :raises DeserializationError: If bytes cannot be converted to JobResult. """ if deserializer is None: deserializer = pickle.loads try: d = deserializer(r) return JobResult( job_try=d['t'], function=d['f'], args=d['a'], kwargs=d['k'], enqueue_time=ms_to_datetime(d['et']), score=None, success=d['s'], result=d['r'], start_time=ms_to_datetime(d['st']), finish_time=ms_to_datetime(d['ft']), ) except Exception as e: raise DeserializationError('unable to deserialize job result') from e
049a453a7277f30a38019ca59bedbc458fbaf84c
23,118
def form_symb_dCdU(): """Form a symbolic version of dCdU""" dCdU = form_nd_array("dCdU",[3,3,8*12]) for I in range(3): for J in range(3): for K in range(3,8*12): dCdU[I,J,K] = 0 return dCdU
ec802da453dd7c522bf5725fd70fd16a2406c12e
23,119
import torch def predict(X, y, clf, onehot_encoder, params): """ Runs a forward pass for a SINGLE sample and returns the output prediction. Arguments: X (list[int]) : a list of integers with each integer an input class of step y (list[int]) : a list of integers with each integer an output class of step Returns: y_pred (list[int]) : a list of integers with each integer the prediction of each step """ scalar = params['scalar'] output_dim = params['output_dim'] X = torch.tensor(X).cuda() # shape(seq_len,) X = X.unsqueeze(0) # shape(batch_size=1, seq_len) if scalar is True: seq_len = [X.shape[1]] else: seq_len = [len(y)] # 2d list if scalar is True: y = torch.tensor([[y]]).cuda().float().cuda() # shape(1,) else: y = lists2onehottensors([y], output_dim, onehot_encoder) # change to 1-hot y_pred = clf.forward(X, seq_len) loss = clf.compute_loss(y_pred, y, seq_len) loss = loss.item() if scalar is False: # convert softmax y_pred and y to 1d list y_pred = onehottensors2classlist(y_pred, seq_len)[0] return y_pred
8e0aa3c687a3ad24e02f730a5dca31f4fd36c6ad
23,120
def parse_modules_and_elabs(raw_netlist, net_manager): """ Parses a raw netlist into its IvlModule and IvlElab objects. Returns a tuple: (modules, elabs) modules is a list of IvlModule objects. elabs is a list of IvlElab objects. """ sections = parse_netlist_to_sections(raw_netlist) modules_lines = group_lines(sections['SCOPES']) elab_bundles_lines = group_lines(sections['ELABORATED NODES']) modules = [parse_module_lines(lines, net_manager) for lines in modules_lines] elabs = [parse_elab_bundle_lines(lines, net_manager) for lines in elab_bundles_lines] return modules, elabs
029d5a86de450eb6c104cc2582e21fe854c557e7
23,121
def scrub_dt_dn(dt, dn): """Returns in lowercase and code friendly names of doctype and name for certain types""" ndt, ndn = dt, dn if dt in lower_case_files_for: ndt, ndn = scrub(dt), scrub(dn) return ndt, ndn
853959c073f45be0ffc97dfd8733d2b10a837a32
23,122
def by_uri(uri): """A LicenseSelector-less means of picking a License from a URI.""" if _BY_URI_CACHE.has_key(uri): return _BY_URI_CACHE[uri] for key, selector in cc.license.selectors.SELECTORS.items(): if selector.has_license(uri): license = selector.by_uri(uri) _BY_URI_CACHE[uri] = license return license return None
1dc3dfe4070857984768e1af6462927fd08daf77
23,123
def read_S(nameIMGxml): """ This function extract the images's center from the xml file. Parameters ---------- nameIMGxml : str the name of the file generated by MM3D. Usually, it is "Orientation-Im[n°i].JPG.xml" Returns ------- numpy.ndarray: the center of the IMG (size 1*3) """ tree = etree.parse(nameIMGxml) for user in tree.xpath("/ExportAPERO/OrientationConique/Externe/Centre"): # print(user.text) S = user.text.split(" ") center = np.array(S, float) return np.transpose(center)
f4054827c8ecfa6d81ac752e8ac46e4cccbc5245
23,124
def AddBatchJob(client): """Add a new BatchJob to upload operations to. Args: client: an instantiated AdWordsClient used to retrieve the BatchJob. Returns: The new BatchJob created by the request. """ # Initialize appropriate service. batch_job_service = client.GetService('BatchJobService', version='v201601') # Create a BatchJob. batch_job_operations = [{ 'operand': {}, 'operator': 'ADD' }] return batch_job_service.mutate(batch_job_operations)['value'][0]
6c48997e4739f05fe6df826654a45b6f7deafc1b
23,125
def bellmanFord(obj,source): """Determination of minimum distance between vertices using Bellman Ford Algorithm.""" validatePositiveWeight(obj) n = CountVertices(obj) minDist = dict() for vertex in obj.vertexList: if vertex == source: minDist[vertex] = 0 else: minDist[vertex] = float("inf") #Comparing if minDist[i]+edge_weight(i,j)<minDist[j] for i in range(n-1): for vertex in obj.adjList: for nbrVertex in obj.adjList[vertex]: if minDist[nbrVertex]>minDist[vertex]+obj.weightList[vertex][obj.adjList[vertex].index(nbrVertex)]: minDist[nbrVertex] = minDist[vertex]+obj.weightList[vertex][obj.adjList[vertex].index(nbrVertex)] return minDist
83cdbab547741a070ef694b4cea8f16355eb4af5
23,126
from typing import Callable import inspect import click def auto_default_option(*param_decls, **attrs) -> Callable[[_C], _C]: """ Attaches an option to the command, with a default value determined from the decorated function's signature. All positional arguments are passed as parameter declarations to :class:`click.Option`; all keyword arguments are forwarded unchanged (except ``cls``). This is equivalent to creating an :class:`click.Option` instance manually and attaching it to the :attr:`click.Command.params` list. .. versionadded:: 0.7.0 :param cls: the option class to instantiate. This defaults to :class:`click.Option`. """ def decorator(f: _C) -> _C: option_attrs = attrs.copy() if "help" in option_attrs: option_attrs["help"] = inspect.cleandoc(option_attrs["help"]) OptionClass = option_attrs.pop("cls", click.Option) option = OptionClass(param_decls, **option_attrs) _param_memo(f, option) _get_default_from_callback_and_set(f, option) return f return decorator
e1813faf2c0d936333edf4d2a1b111dec6c7a376
23,127
def zCurve(seq): """Return 3-dimensional Z curve corresponding to sequence. zcurve[n] = zcurve[n-1] + zShift[n] """ zcurve = np.zeros((len(seq), 3), dtype=int) zcurve[0] = zShift(seq, 0) for pos in range(1, len(seq)): zcurve[pos] = np.add(zcurve[pos - 1], zShift(seq, pos)) return zcurve
4118274fc3bee084777847553dcfa9c4dc92c6c9
23,129
def getgeo(): """ Grabbing and returning the zones """ data = request.args.get('zone_name', None) print data #Check if data is null - get all zones out = [] if data: rec = mongo.db.zones.find({'zone_name':data}) else: rec = mongo.db.zones.find() for r in rec: r.pop('_id') out.append(r['loc']) jsonOut = json.dumps(out) print jsonOut return Response(response=jsonOut, status=200, mimetype="application/json")
822e8e995ae47d887340a2750eeda5646dfa9d5b
23,130
def photo_upload(request): """AJAX POST for uploading a photo for any given application.""" response = None if request.is_ajax() and request.method == 'POST': form = PhotoForm( data=request.POST, files=request.FILES, use_required_attribute=False, ) if form.is_valid(): ct = request.POST.get('content_type') oid = request.POST.get('oid') if ct and oid: ct = ContentType.objects.get(pk=ct) mod = ct.model_class() try: instance = mod.objects.get(pk=oid) phile = form.save(commit=False) phile.content_object = instance phile.save() response = render( request, 'dashboard/view_photo.ajax.html', {'photo': phile, 'ct': ct, 'oid': oid}, ) except Exception as error: msg = "Fail: {0}".format(str(error)) else: msg = "Fail: No Content Type or Object ID Provided" else: msg = "Fail: {0}".format(form.errors) else: msg = "AJAX POST required" if not response: response = HttpResponse(msg, content_type='text/plain; charset=utf-8') return response
e760570d07f43800c05f4d1d8b36b9cb84804003
23,131
def table_str(bq_target): # type: (BigqueryTarget) -> str """Given a BigqueryTarget returns a string table reference.""" t = bq_target.table return "%s.%s.%s" % (t.project_id, t.dataset_id, t.table_id)
95053c839d2bc1e4d628261d669a73a6b9dcb309
23,132
def any_to_any_translate_back(content, from_='zh-CN', to_='en'): """ 中英,英中回译 :param content:str, 4891个字, 用户输入 :param from_: str, original language :param to_: str, target language :return: str, result of translate """ translate_content = any_to_any_translate(content, from_=from_, to_=to_) result = any_to_any_translate(translate_content, from_=to_, to_=from_) return result
def5100d73712fd1f244913aca725328cbe02b4d
23,133
def to_short_site_cname(user, site): """ 订阅源显示名称,最多 10 个汉字,支持用户自定义名称 """ if isinstance(site, dict): site_id = site['id'] site_cname = site['cname'] else: site_id = site.id site_cname = site.cname if user: cname = get_user_site_cname(user.oauth_id, site_id) if cname: return cut_to_short(cname, 20) return cut_to_short(site_cname, 20)
70b4874af06e4185a72a45ff82838b2d00cdcec6
23,134
def load_roed_data(full_output=False): """ Load master table with all labels """ mtab = load_master_table() df1 = table.Table.read("roed14_stars.fits").to_pandas() def renamer(x): """ match master table Star with Name """ x = x.strip() if x.startswith("BD") or x.startswith("CD"): return x.replace(" ","_") return x.replace(" ","") df1.index = map(renamer, df1["Name"]) star_labels = ["Teff", "logg", "Vt", "__M_H_"] # Should include some other columns eventually # to test how individual stars might affect things star_labels += ["SN3950","SN4550","SN5200","SN6750","Cl"] for label in star_labels: mtab.add_column(mtab.Column(df1.loc[mtab["Star"]][label], label)) mtab.rename_column("__M_H_", "[M/H]") # Set up abundances df2 = table.Table.read("roed14_abunds.fits").to_pandas() df2["Name"] = map(renamer, df2["Name"]) df2.loc[:,"log_e_"][df2["l_log_e_"] == "<"] = np.nan df2.loc[:,"__X_Fe_"][df2["l_log_e_"] == "<"] = np.nan all_ions = np.unique(df2["Ion"]) groups = df2.groupby("Ion") _abunds = [] for ion in all_ions: tdf = groups.get_group(ion) xfe = pd.Series(tdf["__X_Fe_"], name=ion.strip(), copy=True) xfe.index = tdf["Name"] _abunds.append(xfe) abunds = pd.DataFrame(_abunds).transpose() for ion in all_ions: ion = ion.strip() if "(" in ion and ")" in ion: newname = ion.split("(")[1][:-1] assert len(newname) == 2, newname newname = "[{}/Fe]".format(newname) elif "Fe " in ion: newname = "[{}/H]".format(ion) else: newname = "[{}/Fe]".format(ion) mtab.add_column(mtab.Column(abunds.loc[mtab["Star"]][ion], name=newname, copy=True)) if full_output: return mtab, df1, abunds return mtab
8698b478abb9a3e617ce9a23feb89fecf220e341
23,135
import math def calculate_distance(p1, p2): """ Calculate distance between two points param p1: tuple (x,y) point1 param p2: tuple (x,y) point2 return: distance between two points """ x1, y1 = p1 x2, y2 = p2 d = math.sqrt(pow(x2 - x1, 2) + pow(y2 - y1, 2)) return d
756b609a91e17299eb879e27e83cd663800e46dd
23,136
def statistics(request, network): """ some nice statistics for the whole pool """ # some basic statistics days = 1 current_height, all_blocks, pool_blocks, pool_blocks_percent, bbp_mined = get_basic_statistics(network, days) miners_count = get_miner_count(network, days) graph_days = 7 top_miners = get_top_miners(network) # the solution and block statistics share_statistics = get_solution_statistics(network, days=graph_days) block_statistics = list(get_block_statistics(network, days=graph_days)) statistics = [] # now we join the statistics for i, share_stat in enumerate(list(share_statistics)): statistics.append([share_stat[0], share_stat[1], block_statistics[i][1]]) # and finally the forecast for the blocks blocks_two_days = statistics[-2][2] + statistics[-1][2] blocks_per_hour = blocks_two_days / (24 + timezone.now().hour) forecast_blocks = int(round(blocks_per_hour * 24)) last_blocks = Block.objects.filter(network=network, pool_block=True).values('height', 'inserted_at').order_by('-height')[0:50] return render(request, 'purepool/statistics.html', { 'network': network, 'statistics': statistics, 'top_miners': top_miners, 'last_blocks': last_blocks, 'forecast_blocks': forecast_blocks, 'days': days, 'current_height': current_height, 'all_blocks': all_blocks, 'pool_blocks': pool_blocks, 'pool_blocks_percent': pool_blocks_percent, 'bbp_mined': bbp_mined, 'miners_count': miners_count, })
d44033323bfe041ee53109a9274ff2fd9c9d9df3
23,137
from textwrap import dedent def package_load_instructions(inst_distributions): """Load instructions, displayed in the package notes""" per_package_inst = '' for dist in inst_distributions: if dist.type == 'zip': per_package_inst += dedent( """ # Loading the ZIP Package Zip packages are compressed, so large resources may load faster. import metapack as mp pkg = mp.open_package('{url}') """.format(url=dist.package_url.inner)) elif dist.type == 'csv': per_package_inst += dedent( """ # Loading the CSV Package CSV packages load resources individually, so small resources may load faster. import metapack as mp pkg = mp.open_package('{url}') """.format(url=dist.package_url.inner)) if per_package_inst: return '\n---\n'+per_package_inst else: return ''
321a7486f27a3cb327ae7556e317bc53c24726ac
23,138
def specialize_transform(graph, args): """Specialize on provided non-None args. Parameters that are specialized on are removed. """ mng = graph.manager graph = transformable_clone(graph, relation=f'sp') mng.add_graph(graph) for p, arg in zip(graph.parameters, args): if arg is not None: mng.replace(p, Constant(arg)) new_parameters = [p for p, arg in zip(graph.parameters, args) if arg is None] mng.set_parameters(graph, new_parameters) return graph
44b892312ff677bdc5bee84bf5df1e1dc4bd5ba5
23,139
from functools import reduce import operator import itertools def Multiplication(k): """ Generate a function that performs a polynomial multiplication and return coefficients up to degree k """ assert isinstance(k, int) and k > 0 def isum(factors): init = next(factors) return reduce(operator.iadd, factors, init) def mul_function(x1, x2): # prepare indices for convolution l1, l2 = len(x1), len(x2) M = min(k + 1, l1 + l2 - 1) indices = [[] for _ in range(M)] for (i, j) in itertools.product(range(l1), range(l2)): if i + j >= M: continue indices[i + j].append((i, j)) # wrap with log-tensors for stability X1 = [LogTensor(x1[i]) for i in range(l1)] X2 = [LogTensor(x2[i]) for i in range(l2)] # perform convolution coeff = [] for c in range(M): coeff.append(isum(X1[i] * X2[j] for (i, j) in indices[c]).torch()) return coeff return mul_function
23a663231e44b09cd446e9ba1d269e7b123efc1d
23,140
def safe_divide(a, b): """ Avoid divide by zero http://stackoverflow.com/questions/26248654/numpy-return-0-with-divide-by-zero """ with np.errstate(divide='ignore', invalid='ignore'): c = np.true_divide(a, b) c[c == np.inf] = 0 c = np.nan_to_num(c) return c
104970a64f5d77f674a46f9da08b039345fa546a
23,141
def read_image(filepath, gray=False): """ read image :param filepath: :param gray: :return: """ if gray: return cv2.cvtColor(cv2.imread(filepath), cv2.COLOR_BGR2GRAY) else: return cv2.cvtColor(cv2.imread(filepath), cv2.COLOR_BGR2RGB)
d5743c8ad517f5c274e3ac64d6082ea36539cfe3
23,143
from ...hubble.helper import parse_hub_uri def mixin_hub_pull_parser(parser): """Add the arguments for hub pull to the parser :param parser: the parser configure """ def hub_uri(uri: str) -> str: parse_hub_uri(uri) return uri parser.add_argument( 'uri', type=hub_uri, help='The URI of the executor to pull (e.g., jinahub[+docker]://NAME)', ) mixin_hub_pull_options_parser(parser)
9f62462baecc744ab7b7e3e78b5446a3d5347569
23,144
from typing import Tuple from typing import List import yaml from typing import Dict def load_config() -> Tuple[List, List]: """Get configuration from config file. Returns repo_paths and bare_repo_dicts. """ if config_file.exists(): with open(config_file, "r") as ymlfile: config = yaml.load(ymlfile, Loader=yaml.Loader) repo_paths = flatten_list( [expand_path(i) for i in config.get('repo_paths', [])] ) bare_repo_dicts: List[Dict] = config.get('bare_repos', []) bare_repo: Dict[str, str] for bare_repo in bare_repo_dicts: bare_repo['git_dir'] = expand_path(bare_repo['git_dir'])[0] bare_repo['work_tree'] = expand_path(bare_repo['work_tree'])[0] else: repo_paths = [] bare_repo_dicts = [] return repo_paths, bare_repo_dicts
e9f483c6cc3ff1335a5d9866cc577e72a9a8084f
23,145
def deindented_source(src): """De-indent source if all lines indented. This is necessary before parsing with ast.parse to avoid "unexpected indent" syntax errors if the function is not module-scope in its original implementation (e.g., staticmethods encapsulated in classes). Parameters ---------- src : str input source Returns ------- str : de-indented source; the first character of at least one line is non-whitespace, and all other lines are deindented by the same """ lines = src.splitlines() n_chars = float("inf") for line in lines: len_line = len(line) idx = 0 # we're Python 3, so we assume you're not mixing tabs and spaces while idx < n_chars and idx < len_line and line[idx] in [" ", '\t']: idx += 1 if len_line > idx: n_chars = min(idx, n_chars) lines = [line[n_chars:] for line in lines] src = "\n".join(lines) return src
227d5e8e35b251f02ce5e9237f8120d2dd9c7e4b
23,146
def home(): """Render the home page.""" form = SearchForm() search_results = None if form.validate_on_submit(): search_term = form.username.data cur = conn.cursor() cur.execute(f"SELECT * FROM student WHERE name = '{search_term}';") search_results = cur.fetchall() cur.close() return render_template( "home.html", form=form, search_results=search_results)
d578e4ba95af57828dfa6f483ad9aa0aeac8ea92
23,147
def capacity(): """ Returns the raw capacity of the filesystem Returns: filesystem capacity (int) """ return hdfs.capacity()
c9e220b19a1a1a200d2393bb98116be1767370b9
23,148
async def deploy(current_user: User = Depends(auth.get_current_user)): """ This function is used to deploy the model of the currently trained chatbot """ response = mongo_processor.deploy_model(bot=current_user.get_bot(), user=current_user.get_user()) return {"message": response}
cb7d53f605616e8a979dd144b786313c99f7a244
23,149
def find_rocks(img,rgb_thresh=(100, 100, 60)): """ Find rock in given image frame""" color_select = np.zeros_like(img[:,:,0]) # Require that each pixel be above all three threshold values in RGB # above_thresh will now contain a boolean array with "True" # where threshold was met above_thresh = (img[:,:,0] > rgb_thresh[0]) \ & (img[:,:,1] > rgb_thresh[1]) \ & (img[:,:,2] < rgb_thresh[2]) # Index the array of zeros with the boolean array and set to 1 color_select[above_thresh] = 1 return color_select
f0bffadfdf826f1f649029f3aaf224d07681589e
23,150
from pathlib import Path def maybe_start_with_home_prefix(p: Path) -> Path: """ If the input path starts with the home directory path string, then return a path that starts with the home directory and points to the same location. Otherwise, return the path unchanged. """ try: return Path("~", p.relative_to(Path.home())) except ValueError: return p
6ee4e49e8dfb9bc68a1c10f5ea792715fb5d5336
23,151
def parse_nrc_lexicon(): """Extract National Resource Council Canada emotion lexicon from http://saifmohammad.com/WebPages/lexicons.html Returns: {str: [str]} A defaultdict of emotion to list of associated words """ emotion2words = defaultdict(list) with open(NRC_LEXICON) as lexicon_file: lexicon_file.__next__() for line in lexicon_file: word, emotion, associated = line.split() if associated == '1': emotion2words[emotion].append(word) return emotion2words
869988934a7ab6a1b0b601f96472ff85a2686975
23,152
def rouge_2_fscore(predictions, labels, **unused_kwargs): """ROUGE-2 F1 score computation between labels and predictions. This is an approximate ROUGE scoring method since we do not glue word pieces or decode the ids and tokenize the output. Args: predictions: tensor, model predictions labels: tensor, gold output. Returns: rouge2_fscore: approx rouge-2 f1 score. """ outputs = tf.to_int32(tf.argmax(predictions, axis=-1)) # Convert the outputs and labels to a [batch_size, input_length] tensor. outputs = tf.squeeze(outputs, axis=[-1, -2]) labels = tf.squeeze(labels, axis=[-1, -2]) rouge_2_f_score = tf.py_func(rouge_n, (outputs, labels), tf.float32) return rouge_2_f_score, tf.constant(1.0)
1c0ab9b514c36cf9947b31624e8a2cf308cdfe6b
23,153
def enhancedFeatureExtractorDigit(datum): """ Your feature extraction playground. You should return a util.Counter() of features for this datum (datum is of type samples.Datum). ## DESCRIBE YOUR ENHANCED FEATURES HERE... ## """ features = basicFeatureExtractorDigit(datum) "*** YOUR CODE HERE ***" return features
564e324cd12b2cb98bd65cb053b5acea2f4d5831
23,155
def tested_function(x): """ Testovana funkce Da se sem napsat vselijaka cunarna """ freq = 1 damp_fac = 0.1 val = np.sin(freq * x) damp = np.exp(-1 * damp_fac * abs(x)) return val * damp
95808b55ace5b0536104f02de874344aa02d7033
23,157
def parse_line(line): """ Parses a (non-comment) line of a GFF3 file. The attribute field is parsed into a dict. :param line: line to parse as string :return: dict with for each column (key) the corresponding value """ parts = line.strip().split('\t') output = {} if len(parts) != len(COLUMNS): raise Exception('Incorrect number of columns in line.', parts, COLUMNS) for key, value in zip(COLUMNS, parts): if key == 'attributes': output[key] = parse_attributes(value) elif key == 'start' or key == 'stop': output[key] = int(value) else: output[key] = value return output
0ea071c5a4165fd2bbbe77798bec09b033250c72
23,158
import requests from datetime import datetime def get_time_string(place: str = "Europe/Moscow"): """ Get time data from worldtimeapi.org and return simple string Parameters ---------- place : str Location, i.e. 'Europe/Moscow'. Returns ------- string Time in format '%Y-%m-%d %H:%M:%S' Examples -------- >>> get_time_string() 2021-08-16 16:03:34 """ url = "http://worldtimeapi.org/api/timezone/" + place data = requests.get(url).json() date = datetime.fromisoformat(data["datetime"]) string = date.strftime("%Y-%m-%d %H:%M:%S") return string
f15ef5a843317c55d3c60bf2ee8c029258e1cd78
23,159
from typing import Type from typing import Dict from typing import Callable def new_worker_qthread( Worker: Type[WorkerProtocol], *args, _start_thread: bool = False, _connect: Dict[str, Callable] = None, **kwargs, ): """This is a convenience function to start a worker in a Qthread. In most cases, the @thread_worker decorator is sufficient and preferable. But this allows the user to completely customize the Worker object. However, they must then maintain control over the thread and clean up appropriately. It follows the pattern described here: https://www.qt.io/blog/2010/06/17/youre-doing-it-wrong and https://doc.qt.io/qt-5/qthread.html#details see also: https://mayaposch.wordpress.com/2011/11/01/how-to-really-truly-use-qthreads-the-full-explanation/ A QThread object is not a thread! It should be thought of as a class to *manage* a thread, not as the actual code or object that runs in that thread. The QThread object is created on the main thread and lives there. Worker objects which derive from QObject are the things that actually do the work. They can be moved to a QThread as is done here. .. note:: Mostly ignorable detail While the signals/slots syntax of the worker looks very similar to standard "single-threaded" signals & slots, note that inter-thread signals and slots (automatically) use an event-based QueuedConnection, while intra-thread signals use a DirectConnection. See `Signals and Slots Across Threads <https://doc.qt.io/qt-5/threads-qobject.html#signals-and-slots-across-threads>`_ Parameters ---------- Worker : QObject QObject type that implements a `work()` method. The Worker should also emit a finished signal when the work is done. _start_thread : bool If True, thread will be started immediately, otherwise, thread must be manually started with thread.start(). _connect : dict, optional Optional dictionary of {signal: function} to connect to the new worker. for instance: _connect = {'incremented': myfunc} will result in: worker.incremented.connect(myfunc) *args will be passed to the Worker class on instantiation. **kwargs will be passed to the Worker class on instantiation. Returns ------- worker : WorkerBase The created worker. thread : QThread The thread on which the worker is running. Examples -------- Create some QObject that has a long-running work method: .. code-block:: python class Worker(QObject): finished = Signal() increment = Signal(int) def __init__(self, argument): super().__init__() self.argument = argument @Slot() def work(self): # some long running task... import time for i in range(10): time.sleep(1) self.increment.emit(i) self.finished.emit() worker, thread = new_worker_qthread( Worker, 'argument', _start_thread=True, _connect={'increment': print}, ) """ if _connect and not isinstance(_connect, dict): raise TypeError("_connect parameter must be a dict") thread = QThread() worker = Worker(*args, **kwargs) worker.moveToThread(thread) thread.started.connect(worker.work) worker.finished.connect(thread.quit) worker.finished.connect(worker.deleteLater) thread.finished.connect(thread.deleteLater) if _connect: [getattr(worker, key).connect(val) for key, val in _connect.items()] if _start_thread: thread.start() # sometimes need to connect stuff before starting return worker, thread
f607799bd7abf4b275d90bc4523dc9f0e8d2d200
23,160
import fnmatch def contains(filename, value=None, fnvalue=None): """ If a string is contained within a yaml (and is not a comment or key), return where we found it """ if filename in ALL_STRINGS: for el in ALL_STRINGS[filename]: if (value and value in el[0]) or (fnvalue and fnmatch.fnmatch(el[0], fnvalue)): return el[1].strip()
2c21aee4fe7121ad26e588b33dfa2f09f1d4066b
23,161
def plot_with_overview( ds, tn, forcing_vars=["dqdt_adv", "dtdt_adv"], domain_var="q", overview_window_width=4, ): """ Produce a forcing plot with timestep `tn` highlighted together with overview plots of domain data variable `domain_var`. The width over the overview plot is set with `overview_window_width` (in degrees) """ ds_forcing = ds ds_domain = domain_load.load_data( root_data_path="data", name=ds_forcing.domain_name ) ds_traj = trajectory_load.load_data( root_data_path="data", name=ds_forcing.trajectory_name ) N_vars = len(forcing_vars) figwidth = 12 subplot_height = 3 traj_color = "red" N_vars = len(forcing_vars) figsize = (figwidth, 4 + subplot_height * N_vars) fig = plt.figure(figsize=figsize) gs = GridSpec(2 + N_vars, 2) ds_forc_tn = ds_forcing.isel(time=tn) lat0, lon0 = ds_forc_tn.lat, ds_forc_tn.lon domain_window = dict( lat=slice(lat0 - overview_window_width / 2, lat0 + overview_window_width / 2), lon=slice(lon0 - overview_window_width / 2, lon0 + overview_window_width / 2), time=ds_forc_tn.time, ) da_domain = ds_domain[domain_var].sel(**domain_window).sum(dim="level")["q"] ax_domain = _add_overview_axes(fig=fig, gs=gs[:2, 0]) da_domain.plot(ax=ax_domain) ax_satellite = _add_overview_axes(fig=fig, gs=gs[0:2, 1]) ax_satellite.set_extent(ax_domain.get_extent()) traj_plot_kwargs = dict( ds=ds_traj, add_ref="eurec4a_circle", color=traj_color, reference_time=ds_forc_tn.time, ) trajectory_plot.main(ax=ax_domain, **traj_plot_kwargs) trajectory_plot.main(ax=ax_satellite, **traj_plot_kwargs) ax = None for n, v in enumerate(forcing_vars): ax = fig.add_subplot(gs[n + 2, :], sharex=ax) ds_forcing[v].plot(ax=ax, y="level") # .item() doesn't return a np.datetime64 object sadly, so we have to # make our own... t0 = np.datetime64(ds_forc_tn[v].time.item(), "ns") ax.axvline(x=t0, color="black", linestyle="--", alpha=0.5) fig.tight_layout() title = f"{ds.name} {ds.trajectory_type} trajectory\n{ds.domain_name} domain\n" if hasattr(ds, "velocity_method"): title += ( f"{ds.velocity_method} velocity method using " "{ds.velocity_method_kwargs_height}m height\n" ) plt.suptitle(title, y=1.01) return fig
e02be6157853b5a0a409fe45a02f52d685913e22
23,162
def optimize(nn_last_layer, correct_label, learning_rate, num_classes): """ Build the TensorFLow loss and optimizer operations. :param nn_last_layer: TF Tensor of the last layer in the neural network :param correct_label: TF Placeholder for the correct label image :param learning_rate: TF Placeholder for the learning rate :param num_classes: Number of classes to classify :return: Tuple of (logits, train_op, cross_entropy_loss) """ # Flatten last layer and training labels logits = tf.reshape(nn_last_layer, (-1, num_classes)) labels = tf.reshape(correct_label, (-1, num_classes)) # Create cross entropy loss function and optimizer cross_entropy_loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=labels)) # Include regularizers to the loss function l2_loss = tf.losses.get_regularization_losses() cross_entropy_loss += tf.reduce_sum(l2_loss) adam_op = tf.train.AdamOptimizer(learning_rate) # Create training operation with defined optimizer and loss function train_op = adam_op.minimize(cross_entropy_loss) return logits, train_op, cross_entropy_loss
b618626f7e458e1ef3ffda74af7532d93668a9cb
23,163
def expanded_indexer(key, ndim): """Given a key for indexing an ndarray, return an equivalent key which is a tuple with length equal to the number of dimensions. The expansion is done by replacing all `Ellipsis` items with the right number of full slices and then padding the key with full slices so that it reaches the appropriate dimensionality. """ if not isinstance(key, tuple): # numpy treats non-tuple keys equivalent to tuples of length 1 key = (key,) new_key = [] # handling Ellipsis right is a little tricky, see: # http://docs.scipy.org/doc/numpy/reference/arrays.indexing.html#advanced-indexing found_ellipsis = False for k in key: if k is Ellipsis: if not found_ellipsis: new_key.extend((ndim + 1 - len(key)) * [slice(None)]) found_ellipsis = True else: new_key.append(slice(None)) else: new_key.append(k) if len(new_key) > ndim: raise IndexError("too many indices") new_key.extend((ndim - len(new_key)) * [slice(None)]) return tuple(new_key)
a4fa3b1e4a106350348c128ef5ce8b86dac1f0c0
23,164
def downsample( data, sampling_freq=None, target=None, target_type="samples", method="mean" ): """Downsample pandas to a new target frequency or number of samples using averaging. Args: data: (pd.DataFrame, pd.Series) data to downsample sampling_freq: (float) Sampling frequency of data in hertz target: (float) downsampling target target_type: type of target can be [samples,seconds,hz] method: (str) type of downsample method ['mean','median'], default: mean Returns: out: (pd.DataFrame, pd.Series) downsmapled data """ if not isinstance(data, (pd.DataFrame, pd.Series)): raise ValueError("Data must by a pandas DataFrame or Series instance.") if not (method == "median") | (method == "mean"): raise ValueError("Metric must be either 'mean' or 'median' ") if target_type == "samples": n_samples = target elif target_type == "seconds": n_samples = target * sampling_freq elif target_type == "hz": n_samples = sampling_freq / target else: raise ValueError('Make sure target_type is "samples", "seconds", ' ' or "hz".') idx = np.sort(np.repeat(np.arange(1, data.shape[0] / n_samples, 1), n_samples)) # if data.shape[0] % n_samples: if data.shape[0] > len(idx): idx = np.concatenate([idx, np.repeat(idx[-1] + 1, data.shape[0] - len(idx))]) if method == "mean": return data.groupby(idx).mean().reset_index(drop=True) elif method == "median": return data.groupby(idx).median().reset_index(drop=True)
4dca048a77ac1f20d0ee1bac702c48e4311f8900
23,165
def available_commands(mod, ending="_command"): """Just returns the available commands, rather than the whole long list.""" commands = [] for key in mod.__dict__: if key.endswith(ending): commands.append(key.split(ending)[0]) return commands
38a96ca9485e9814ba161550613d3d96db126693
23,166
def retrieve_browse(browse_location, config): """ Retrieve browse image and get the local path to it. If location is a URL perform download. """ # if file_name is a URL download browse first and store it locally validate = URLValidator() try: validate(browse_location) input_filename = abspath(get_storage_path( basename(browse_location), config=config)) logger.info("URL given, downloading browse image from '%s' to '%s'.", browse_location, input_filename) if not exists(input_filename): start = time() try: # timeout in seconds setdefaulttimeout(120) remote_browse = urlopen(browse_location) with open(input_filename, "wb") as local_browse: local_browse.write(remote_browse.read()) except HTTPError, error: raise IngestionException("HTTP error downloading '%s': %s" % (browse_location, error.code)) except URLError, error: raise IngestionException("URL error downloading '%s': %s" % (browse_location, error.reason)) logger.info( "Retrieved %s %dB in %.3fs", browse_location, getsize(input_filename), time() - start, ) else: raise IngestionException("File to download already exists locally " "as '%s'" % input_filename) except ValidationError: input_filename = abspath(get_storage_path(browse_location, config=config)) logger.info("Filename given, using local browse image '%s'.", input_filename) # check that the input filename is valid -> somewhere under the storage dir storage_path = get_storage_path() if commonprefix((input_filename, storage_path)) != storage_path: raise IngestionException("Input path '%s' points to an invalid " "location." % browse_location) try: models.FileNameValidator(input_filename) except ValidationError, error: raise IngestionException("%s" % str(error), "ValidationError") return input_filename
6c5b5e916542db20584205588e5e2929df692b38
23,167
def add_suffix(input_dict, suffix): """Add suffix to dict keys.""" return dict((k + suffix, v) for k,v in input_dict.items())
7dbedd523d24bfdf194c999b8927a27b110aad3e
23,168
from autots.tools.transform import GeneralTransformer from autots.tools.transform import simple_context_slicer from datetime import datetime def ModelPrediction( df_train, forecast_length: int, transformation_dict: dict, model_str: str, parameter_dict: dict, frequency: str = 'infer', prediction_interval: float = 0.9, no_negatives: bool = False, constraint: float = None, future_regressor_train=[], future_regressor_forecast=[], holiday_country: str = 'US', startTimeStamps=None, grouping_ids=None, random_seed: int = 2020, verbose: int = 0, n_jobs: int = None, ): """Feed parameters into modeling pipeline Args: df_train (pandas.DataFrame): numeric training dataset of DatetimeIndex and series as cols forecast_length (int): number of periods to forecast transformation_dict (dict): a dictionary of outlier, fillNA, and transformation methods to be used model_str (str): a string to be direct to the appropriate model, used in ModelMonster frequency (str): str representing frequency alias of time series prediction_interval (float): width of errors (note: rarely do the intervals accurately match the % asked for...) no_negatives (bool): whether to force all forecasts to be > 0 constraint (float): when not None, use this value * data st dev above max or below min for constraining forecast values. future_regressor_train (pd.Series): with datetime index, of known in advance data, section matching train data future_regressor_forecast (pd.Series): with datetime index, of known in advance data, section matching test data holiday_country (str): passed through to holiday package, used by a few models as 0/1 regressor. startTimeStamps (pd.Series): index (series_ids), columns (Datetime of First start of series) n_jobs (int): number of processes Returns: PredictionObject (autots.PredictionObject): Prediction from AutoTS model object """ transformationStartTime = datetime.datetime.now() try: coerce_integer = transformation_dict['coerce_integer'] grouping = transformation_dict['grouping'] if grouping == 'user' and grouping_ids is None: grouping = 'kmeans5' transformation_dict['grouping'] = 'kmeans5' reconciliation = transformation_dict['reconciliation'] except Exception: coerce_integer = False grouping = None grouping_ids = None reconciliation = None transformer_object = GeneralTransformer( outlier_method=transformation_dict['outlier_method'], outlier_threshold=transformation_dict['outlier_threshold'], outlier_position=transformation_dict['outlier_position'], fillna=transformation_dict['fillna'], transformation=transformation_dict['transformation'], detrend=transformation_dict['detrend'], second_transformation=transformation_dict['second_transformation'], transformation_param=transformation_dict['transformation_param'], third_transformation=transformation_dict['third_transformation'], transformation_param2=transformation_dict['transformation_param2'], fourth_transformation=transformation_dict['fourth_transformation'], discretization=transformation_dict['discretization'], n_bins=transformation_dict['n_bins'], grouping=grouping, grouping_ids=grouping_ids, reconciliation=reconciliation, coerce_integer=coerce_integer, ).fit(df_train) df_train_transformed = transformer_object.transform(df_train) # slice the context, ie shorten the amount of data available. if transformation_dict['context_slicer'] not in [None, 'None']: df_train_transformed = simple_context_slicer( df_train_transformed, method=transformation_dict['context_slicer'], forecast_length=forecast_length, ) # make sure regressor has same length. This could be a problem if wrong size regressor is passed. if len(future_regressor_train) > 0: future_regressor_train = future_regressor_train.tail( df_train_transformed.shape[0] ) transformation_runtime = datetime.datetime.now() - transformationStartTime # from autots.evaluator.auto_model import ModelMonster model = ModelMonster( model_str, parameters=parameter_dict, frequency=frequency, prediction_interval=prediction_interval, holiday_country=holiday_country, random_seed=random_seed, verbose=verbose, forecast_length=forecast_length, n_jobs=n_jobs, ) model = model.fit(df_train_transformed, future_regressor=future_regressor_train) df_forecast = model.predict( forecast_length=forecast_length, future_regressor=future_regressor_forecast ) if df_forecast.forecast.isnull().all(axis=0).astype(int).sum() > 0: raise ValueError( "Model {} returned NaN for one or more series".format(model_str) ) transformationStartTime = datetime.datetime.now() # Inverse the transformations df_forecast.forecast = pd.DataFrame( transformer_object.inverse_transform(df_forecast.forecast) ) # , index = df_forecast.forecast_index, columns = df_forecast.forecast_columns) df_forecast.lower_forecast = pd.DataFrame( transformer_object.inverse_transform(df_forecast.lower_forecast) ) # , index = df_forecast.forecast_index, columns = df_forecast.forecast_columns) df_forecast.upper_forecast = pd.DataFrame( transformer_object.inverse_transform(df_forecast.upper_forecast) ) # , index = df_forecast.forecast_index, columns = df_forecast.forecast_columns) df_forecast.transformation_parameters = transformation_dict # Remove negatives if desired # There's df.where(df_forecast.forecast > 0, 0) or df.clip(lower = 0), not sure which faster if no_negatives: df_forecast.lower_forecast = df_forecast.lower_forecast.clip(lower=0) df_forecast.forecast = df_forecast.forecast.clip(lower=0) df_forecast.upper_forecast = df_forecast.upper_forecast.clip(lower=0) if constraint is not None: if verbose > 2: print("Using constraint.") constraint = float(constraint) train_std = df_train.std(axis=0) train_min = df_train.min(axis=0) - (constraint * train_std) train_max = df_train.max(axis=0) + (constraint * train_std) df_forecast.forecast = df_forecast.forecast.clip(lower=train_min, axis=1) df_forecast.forecast = df_forecast.forecast.clip(upper=train_max, axis=1) transformation_runtime = transformation_runtime + ( datetime.datetime.now() - transformationStartTime ) df_forecast.transformation_runtime = transformation_runtime return df_forecast
afb3dccc20c2399a50c2564aeb0d1f214d80dd6a
23,169
def make_year_key(year): """A key generator for sorting years.""" if year is None: return (LATEST_YEAR, 12) year = str(year) if len(year) == 4: return (int(year), 12) if len(year) == 6: return (int(year[:4]), int(year[4:])) raise ValueError('invalid year %s' % year)
ced5617772af14a3e438cb268f58ceee3895083d
23,170
def set_stereo_from_geometry(gra, geo, geo_idx_dct=None): """ set graph stereo from a geometry (coordinate distances need not match connectivity -- what matters is the relative positions at stereo sites) """ gra = without_stereo_parities(gra) last_gra = None atm_keys = sorted(atom_keys(gra)) geo_idx_dct = (geo_idx_dct if geo_idx_dct is not None else {atm_key: idx for idx, atm_key in enumerate(atm_keys)}) # set atom and bond stereo, iterating to self-consistency atm_keys = set() bnd_keys = set() while last_gra != gra: last_gra = gra atm_keys.update(stereogenic_atom_keys(gra)) bnd_keys.update(stereogenic_bond_keys(gra)) gra = _set_atom_stereo_from_geometry(gra, atm_keys, geo, geo_idx_dct) gra = _set_bond_stereo_from_geometry(gra, bnd_keys, geo, geo_idx_dct) return gra
d26248883b90a561c8d70bb8a12be68affe40c2a
23,171
def multiply_MPOs(op0, op1): """Multiply two MPOs (composition along physical dimension).""" # number of lattice sites must agree assert op0.nsites == op1.nsites L = op0.nsites # physical quantum numbers must agree assert np.array_equal(op0.qd, op1.qd) # initialize with dummy tensors and bond quantum numbers op = MPO(op0.qd, (L+1)*[[0]]) # combine virtual bond quantum numbers for i in range(L + 1): op.qD[i] = qnumber_flatten([op0.qD[i], op1.qD[i]]) for i in range(L): # multiply physical dimensions and reorder dimensions op.A[i] = np.tensordot(op0.A[i], op1.A[i], (1, 0)).transpose((0, 3, 1, 4, 2, 5)) # merge virtual bonds s = op.A[i].shape assert len(s) == 6 op.A[i] = op.A[i].reshape((s[0], s[1], s[2]*s[3], s[4]*s[5])) # consistency check assert is_qsparse(op.A[i], [op.qd, -op.qd, op.qD[i], -op.qD[i+1]]), \ 'sparsity pattern of MPO tensor does not match quantum numbers' return op
62e9e250c46d281ccbb39c0ddf1082d45386a1d3
23,172
import json from typing import OrderedDict def build_list_of_dicts(val): """ Converts a value that can be presented as a list of dict. In case top level item is not a list, it is wrapped with a list Valid values examples: - Valid dict: {"k": "v", "k2","v2"} - List of dict: [{"k": "v"}, {"k2","v2"}] - JSON decodable string: '{"k": "v"}', or '[{"k": "v"}]' - List of JSON decodable strings: ['{"k": "v"}', '{"k2","v2"}'] Invalid values examples: - ["not", "a", "dict"] - [123, None], - [["another", "list"]] :param val: Input value :type val: Union[list, dict, str] :return: Converted(or original) list of dict :raises: ValueError in case value cannot be converted to a list of dict """ if val is None: return [] if isinstance(val, str): # use OrderedDict to preserve order val = json.loads(val, object_pairs_hook=OrderedDict) if isinstance(val, dict): val = [val] for index, item in enumerate(val): if isinstance(item, str): # use OrderedDict to preserve order val[index] = json.loads(item, object_pairs_hook=OrderedDict) if not isinstance(val[index], dict): raise ValueError("Expected a list of dicts") return val
dfd92f619ff1ec3ca5cab737c74af45c86a263e0
23,173
def add_borders_to_DataArray_U_points(da_u, da_v): """ A routine that adds a column to the "right" of the 'u' point DataArray da_u so that every tracer point in the tile will have a 'u' point to the "west" and "east" After appending the border the length of da_u in x will be +1 (one new column) This routine is pretty general. Any tiles can be in the da_u and da_v DataArrays but if the tiles to the "right" of the da_u tiles are not available then the new rows will be filled with nans. Parameters ---------- da_u : DataArray The `DataArray` object that has tiles of a u-point variable Tiles of the must be in their original llc layout. da_v : DataArray The `DataArray` object that has tiles of the v-point variable that corresponds with da_u. (e.g., VVEL corresponds with UVEL) Tiles of the must be in their original llc layout. Returns ------- da_u_new: DataArray a new `DataArray` object that has the appended values of 'u' along its right edge. The lon_u and lat_u coordinates are lost but all other coordinates remain. """ #%% # the i_g dimension will be incremented by one. i_g = np.arange(1, len(da_u.i_g)+2) # the j dimension is unchanged. j = da_u['j'].values llcN = len(j) # the k dimension, if it exists, is unchanged. if 'k' in da_u.dims: nk = len(da_u.k) k = da_u['k'].values else: nk = 0 # the time dimension, if it exists, is unchanged if 'time' in da_u.dims: time = da_u['time'].values #%% #print "\n>>> ADDING BORDERS TO U POINT TILES\n" # tiles whose tile to the right are rotated 90 degrees counter clockwise # to add borders from tiles 4, 5, or 6 we need to use the da_v fields rot_tiles = {4, 5, 6} # the new arrays will be one longer in the j direction, +1 column pad_j = 1 # add one to the second dimension (x) pad_i = 0 # we do not pad in first dimension (y) # set the number of processed tiles counter to zero num_proc_tiles = 0 # find the number of non-tile dimensions if 'tile' in da_u.dims: num_dims = da_u.ndim - 1 else: num_dims = da_u.ndim # loop through all tiles in da_u for tile_index in da_u.tile.values: # find out which tile is to the right of this da_u tile right_tile_index, top_tile_index, corner_tile_index = \ get_llc_tile_border_mapping(tile_index) # if 'tile' exists as a dimension, select and copy the proper da_u tile if 'tile' in da_u.dims: ref_arr = deepcopy(da_u.sel(tile=tile_index)) else: # otherwise we have a single da_u tile so make a copy of it ref_arr = deepcopy(da_u) # the append_border flag will be true if we have a tile to the right. append_border = False #print '\ncurrent da_u tile ', tile_index #print 'right tile index ', right_tile_index # check to see if there even is a tile to the right of da_u tile_index # tiles 10 and 13 don't have one! if right_tile_index > 0: #print 'there is a tile to the right of da_u tile ', tile_index # determine whether the tile to the right is rotated relative # to da_u tile_index. if so we'll need da_v! if tile_index in rot_tiles: #print 'append with da_v tile ', right_tile_index if right_tile_index in da_v.tile.values: #print 'we have da_v tile ', right_tile_index # see if we have multiple da_v tiles. if len(da_v.tile) > 1: # pull out the one we need. right_arr = da_v.sel(tile=right_tile_index) append_border = True #print 'appending from da_v tile ', right_tile_index # there is only one da_v tile elif da_v.tile == right_tile_index: # it is the one we need. right_arr = da_v append_border = True #print 'appending from da_v tile ', right_tile_index # something may have gone wrong. else: print('something is wrong with the da_v tile') # if we do not have the da_v tile, then we can't append! else: print('we do not have da_v tile ', right_tile_index) # the values to append to the top come from another da_u tile else: #print 'append with da_u tile ', right_tile_index # see if we have the required da_u tile if right_tile_index in da_u.tile.values: #print 'we have da_u tile ', right_tile_index # see if we have multiple da_u tiles if len(da_u.tile) > 1: # pull out the one we need. right_arr = da_u.sel(tile=right_tile_index) append_border = True #print 'appending from da_u tile ', right_tile_index # if we only have one tile then something is wrong because # the tile to the right of this da_u tile cannot be itself else: print('tile to the right cannot be tile_index') # we do not have the required da_u tile. else: print('we do not have da_u tile ', right_tile_index) # there is no tile to the right #else: # print 'there is no tile to the right of da_u tile ', tile_index # if we have found a tile to the right we can do the appending if append_border: new_arr=append_border_to_tile(ref_arr, tile_index, 'u', llcN, right = right_arr) # if not then we will append an array of nans else: if num_dims == 2: pad = ((0, pad_i), (0, pad_j)) elif num_dims == 3: pad = ((0, 0), (0, pad_i), (0, pad_j)) elif num_dims == 4: pad = ((0, 0), (0, 0), (0, pad_i), (0, pad_j)) new_arr = np.pad(ref_arr, pad_width = pad, mode='constant', constant_values = np.nan) # create a new DataArray if num_dims == 2: new_coords = [('j', j), ('i_g', i_g)] elif num_dims == 3 and nk > 0: new_coords = [('k', k), ('j', j), ('i_g', i_g)] elif num_dims == 3 and nk == 0: new_coords = [('time', time),('j', j), ('i_g', i_g)] elif num_dims == 4: new_coords = [('time', time), ('k', k), ('j', j), ('i_g',i_g)] tmp_DA = xr.DataArray(new_arr, name = da_u.name, coords=new_coords) # give the new DataArray the same attributes as da_u tmp_DA.attrs = da_u.attrs # give the new DataArray a tile coordinate tmp_DA.coords['tile'] = tile_index # increment the number of processed tiles counter by one num_proc_tiles += 1 # set da_u_new equal to tmp_DA if this is the first processed tile if num_proc_tiles == 1: da_u_new = tmp_DA # otherwise, concatentate tmp_DA with da_u_new along the 'tile' dim else: da_u_new = xr.concat([da_u_new, tmp_DA],'tile') # reset tmp_DA tmp_DA = [] # add all time coordinates to_da_u_new from da_u. for idx, var in enumerate(da_u.coords): if 'tim' in var: da_u_new[var] = da_u[var] da_u_new.attrs['padded'] = True #%% return da_u_new #%%
e9b3e057fb56a998821e84a96b77e00bac4e0923
23,174
def arg(prevs, newarg): """ Joins arguments to list """ retval = prevs if not isinstance(retval, list): retval = [retval] return retval + [newarg]
8d591595add095542ad697b4bd54642a4a14a17c
23,175
def quote_plus(s, safe='', encoding=None, errors=None): """Quote the query fragment of a URL; replacing ' ' with '+'""" if ' ' in s: s = quote(s, safe + ' ', encoding, errors) return s.replace(' ', '+') return quote(s, safe, encoding, errors)
e0a5ba9237550856b695e236e7a457c34f053ba0
23,176
def mod(x, y): """Implement `mod`.""" return x % y
f19c019ed3cf072b1b5d3ec851c14a824c14edb5
23,177
from typing import List def _lower_batch_matmul(op: relay.Call, inputs: List[te.Tensor]) -> te.Tensor: """Lower a batch_matmul using cuBLAS.""" return cublas.batch_matmul( inputs[0], inputs[1], transa=op.attrs["transpose_a"], transb=op.attrs["transpose_b"], dtype=op.checked_type.dtype, )
2fa7be16c558e0edf9233d699139c004b44a93c2
23,178
from re import S def cross_entropy_loss(inputs, labels, rescale_loss=1): """ cross entropy loss with a mask """ criterion = mx.gluon.loss.SoftmaxCrossEntropyLoss(weight=rescale_loss) loss = criterion(inputs, labels) mask = S.var('mask') loss = loss * S.reshape(mask, shape=(-1,)) return S.make_loss(loss.mean())
7151ace5b1ac93439defe93a4d6e45002cbfb8a6
23,179
def as_wrapping_formatters(objs, fields, field_labels, formatters, no_wrap=None, no_wrap_fields=[]): """This function is the entry point for building the "best guess" word wrapping formatters. A best guess formatter guesses what the best columns widths should be for the table celldata. It does this by collecting various stats on the celldata (min, max average width of column celldata) and from this celldata decides the desired widths and the minimum widths. Given a list of formatters and the list of objects (objs), this function first determines if we need to augment the passed formatters with word wrapping formatters. If the no_wrap parameter or global no_wrap flag is set, then we do not build wrapping formatters. If any of the formatters within formatters is a word wrapping formatter, then it is assumed no more wrapping is required. :param objs: :param fields: :param field_labels: :param formatters: :param no_wrap: :param no_wrap_fields: :return: When no wrapping is required, the formatters parameter is returned -- effectively a NOOP in this case When wrapping is required, best-guess word wrapping formatters are returned with original parameter formatters embedded in the word wrapping formatters """ no_wrap = is_nowrap_set(no_wrap) if not needs_wrapping_formatters(formatters, no_wrap): return formatters format_spec = build_best_guess_formatters_using_average_widths(objs, fields, field_labels, formatters, no_wrap_fields) formatters = build_wrapping_formatters(objs, fields, field_labels, format_spec) return formatters
1f60c9ebaebb919ab8d4478e029aed649931df8a
23,180
import torch def classification_metrics(n_classes: int = 2): """Function to set up the classification metrics""" logger.info(f"Setting up metrics for: {n_classes}") metrics_dict_train = torch.nn.ModuleDict( { "accuracy": Accuracy(), "recall": Recall(), "precision": Precision(), "F1": F1(), } ) metrics_dict_val = torch.nn.ModuleDict( { "accuracy": Accuracy(), "recall": Recall(), "precision": Precision(), "F1": F1(), } ) return metrics_dict_train, metrics_dict_val
b876c7ac3da006cf54bc04e91f13de5a35103dab
23,181
def ping(device, address, ttl=None, timeout=None, tos=None, dscp=None, size=None, count=None, source=None, rapid=False, do_not_fragment=False, validate=False, vrf=None, command=None, output=None): """ execute ping and parse ping result and return structure data Args: device ('obj'): Device object address ('str'): Address value tos ('int'): type of service value dscp (`str`): DSCP value size ('str'): data bytes expected ttl ('int'): Not supported timeout ('int'): timeout interval count ('int'): repeat count source ('str'): source address or interface, default: None rapid ('bool'): Not supported do_not_fragment ('bool'): enable do not fragment bit in IP header, default: False validate (`bool`): validate reply data, default: False vrf ('str'): VRF name command (`str`): ping command. This will ignore all other arguments output (`str`): ping command output. no parser call involved Returns: Boolean Raises: None """ try: obj = Ping(device=device) return obj.parse(addr=address, vrf=vrf, tos=tos, dscp=dscp, size=size, ttl=ttl, timeout=timeout, count=count, source=source, rapid=rapid, do_not_fragment=do_not_fragment, validate=validate, command=command, output=output) except SchemaEmptyParserError: log.info('parsed_output was empty') return {} except Exception as e: log.warning(e) return {}
1e13d1af7e9678bc8650bc3173858b148fbedc86
23,182
import numpy import scipy def _subSquare(vectors, var, full=False): """ given a series of vectors, this function calculates: (variances,vectors)=numpy.linalg.eigh(vectors.H*vectors) it's a seperate function because if there are less vectors than dimensions the process can be accelerated, it just takes some dancing it is based on this: >>> vectors=Matrix(helpers.ascomplex(numpy.random.randn( ... numpy.random.randint(1,10),numpy.random.randint(1,10),2 ... ))) >>> cov = vectors.H*vectors >>> Xcov = vectors*vectors.H >>> (Xval,Xvec) = numpy.linalg.eigh(Xcov) >>> vec = Xvec.H*vectors >>> assert vec.H*vec == cov """ vectors = Matrix(vectors) shape = vectors.shape if not all(shape): val = numpy.zeros([0]) vec = numpy.zeros([0, shape[1]]) return (val, vec) eig = numpy.linalg.eigh if shape[0] >= shape[1] or full or not vectors.any() or (var < 0).any(): scaled = Matrix(var[:, None]*numpy.array(vectors)) cov = vectors.H*scaled (val, vec) = eig(cov) vec = vec.H elif not var.any(): cov = vectors.H*vectors (_,vec) = eig(cov) vec = vec.H val = numpy.zeros(vec.shape[0]) else: scaled = Matrix(scipy.sqrt(var)[:, None]*numpy.array(vectors)) Xcov = scaled*scaled.H #Xcov = var[:,None]*numpy.array(vectors)*vectors.H (_, Xvec) = eig(Xcov) Xscaled = (Xvec.H*scaled) val = helpers.mag2(Xscaled) vec = numpy.array(Xscaled)/scipy.sqrt(val[:, numpy.newaxis]) return (val, vec)
8f588d3f64eaf892a1481983436c13d7c5010f12
23,184
def to_pickle(data): """ This prepares data on arbitrary form to be pickled. It handles any nested structure and returns data on a form that is safe to pickle (including having converted any database models to their internal representation). We also convert any Saver*-type objects back to their normal representations, they are not pickle-safe. """ def process_item(item): "Recursive processor and identification of data" dtype = type(item) if dtype in (basestring, int, long, float, bool): return item elif dtype == tuple: return tuple(process_item(val) for val in item) elif dtype in (list, _SaverList): return [process_item(val) for val in item] elif dtype in (dict, _SaverDict): return dict((process_item(key), process_item(val)) for key, val in item.items()) elif dtype in (set, _SaverSet): return set(process_item(val) for val in item) elif hasattr(item, '__item__'): # we try to conserve the iterable class, if not convert to list try: return item.__class__([process_item(val) for val in item]) except (AttributeError, TypeError): return [process_item(val) for val in item] return pack_dbobj(item) return process_item(data)
e52dddec911b0ac548daed81452d041aee41f548
23,185
import requests def spot_silver_benchmark_sge() -> pd.DataFrame: """ 上海黄金交易所-数据资讯-上海银基准价-历史数据 https://www.sge.com.cn/sjzx/mrhq :return: 历史数据 :rtype: pandas.DataFrame """ url = "https://www.sge.com.cn/graph/DayilyShsilverJzj" payload = {} r = requests.post(url, data=payload) data_json = r.json() temp_df = pd.DataFrame(data_json["wp"]) temp_df.columns = [ "交易时间", "晚盘价", ] temp_df["交易时间"] = pd.to_datetime(temp_df["交易时间"], unit="ms").dt.date temp_zp_df = pd.DataFrame(data_json["zp"]) temp_zp_df.columns = [ "交易时间", "早盘价", ] temp_zp_df["交易时间"] = pd.to_datetime(temp_zp_df["交易时间"], unit="ms").dt.date temp_df["早盘价"] = temp_zp_df["早盘价"] return temp_df
8bfcc5d24116231835a41447fb284f346586628e
23,186
def requires_all_permissions(permission, login_url=None, raise_exception=False): """ Decorator for views that defines what permissions are required, and also adds the required permissions as a property to that view function. The permissions added to the view function can then be used by the sidebar template to know whether to render the sidebar menu item that links to that view function """ def decorator(function): if isinstance(permission, str): permissions = (permission, ) else: permissions = permission function.permissions = permissions @wraps(function) @permission_required(permission, login_url, raise_exception) def wrap(request, *args, **kwargs): return function(request, *args, **kwargs) return wrap return decorator
e2368c7f32185ebe1ee7cec50625a72b0fe9ec03
23,187
def hasTable(cur, table): """checks to make sure this sql database has a specific table""" cur.execute("SELECT name FROM sqlite_master WHERE type='table' AND name='table_name'") rows = cur.fetchall() if table in rows: return True else: return False
dfdb3db0901832330083da8b645ae90e28cfb26d
23,188
def _check_wkt_load(x): """Check if an object is a loaded polygon or not. If not, load it.""" if isinstance(x, str): try: x = loads(x) except WKTReadingError: warn('{} is not a WKT-formatted string.'.format(x)) return x
457a02cffa7f56e05ad7ca3a8df83f5f719346b7
23,189
def _yielddefer(function, *args, **kwargs): """ Called if a function decorated with :func:`yieldefer` is invoked. """ try: retval = function(*args, **kwargs) except: return defer.fail() if isinstance(retval, defer.Deferred): return retval if not (hasattr(retval, '__iter__') and hasattr(retval, 'next') and hasattr(retval, 'send') and hasattr(retval, 'throw')): return defer.succeed(retval) iterator = retval def maybe_deferred(val): # We don't want exceptions to become twisted failures # because exceptions thrown by the generator methods # indicate exceptions thrown by the code _between_ the # yield statements or it indicates the end of the # iteration. if isinstance(val, defer.Deferred): return val else: return defer.succeed(val) def success(value): try: d = maybe_deferred(iterator.send(value)) d.addCallbacks(success, fail) return d except StopIteration: return None except defer._DefGen_Return as e: return e.value def fail(failure): try: d = maybe_deferred(failure.throwExceptionIntoGenerator(iterator)) #d = iterator.throw(failure.value) d.addCallbacks(success, fail) return d except StopIteration: return None except defer._DefGen_Return as e: return e.value try: d = maybe_deferred(iterator.next()) d.addCallbacks(success, fail) except StopIteration: d = defer.succeed(None) except defer._DefGen_Return as e: d = defer.succeed(e.value) except: d = defer.fail() return d
b226984e1b4845783dc47f187d24482e040cc6c0
23,190
import scipy import warnings def dimension_parameters(time_series, nr_steps=100, literature_value=None, plot=False, r_minmin=None, r_maxmax=None, shortness_weight=0.5, literature_weight=1.): """ Estimates parameters r_min and r_max for calculation of correlation dimension using the algorithm by Grassberger and Procaccia and uses them to calculate it. This experimental function performs a simple grid search on r_min and r_max in the intervall given by r_minmin, r_maxmax and nr_steps. The performance of the parameters is measured by a combination of NRMSE, a penalty for small intervalls relative to given r_minmin and r_maxmax and a quadratic penalty for the difference from the literature value if given. For calculating the dimension of a high number of similar time_series in a row it is advisable to use this function only once to get the parameters and then use the function dimension with them in the subsequent computations. Might fail for short time_series or unreasonable choices of parameters. It is recommended to use the plot option to double check the plausibility of the results. Args: time_series (np.ndarray): time series to calculate dimension of, shape (T, d) r_minmin (float): minimum radius in grid search r_maxmax (float): maximum radius in grid search nr_steps (int): number of steps in grid search plot (boolean): flag for plotting loglog plot Returns: tuple: 3-element tuple containing: - **best_r_min** (*float*): Estimation for r_min - **best_r_max** (*float*): Estimation for r_max - **dimension** (*float*): Estimation for dimension using the parameters best_r_min and best_r_max """ if r_maxmax is None: expansion = [] for d in range(time_series.shape[1]): expansion.append(np.max(time_series[:, d] - np.min(time_series[:, d]))) r_maxmax = np.max(expansion) if r_minmin is None: r_minmin = 0.001 * r_maxmax literature_cost = 0 nr_points = float(time_series.shape[0]) radii = np.logspace(np.log10(r_minmin), np.log10(r_maxmax), nr_steps) tree = scipy.spatial.cKDTree(time_series) N_r = np.array(tree.count_neighbors(tree, radii), dtype=float) / nr_points N_r = np.vstack((radii, N_r)) loss = None for start_index in range(nr_steps - 1): for end_index in range(start_index + 1, nr_steps): # print(str(start_index)+', '+ str(end_index)) current_N_r = N_r[:, start_index:end_index] current_r_min = radii[start_index] current_r_max = radii[end_index] # linear fit based on loglog scale, to get slope/dimension: slope, intercept = np.polyfit(np.log(current_N_r[0]), np.log(current_N_r[1]), deg=1)[0:2] dimension = slope estimated_line = intercept + slope * np.log(current_N_r[0]) error = rmse(np.log(current_N_r[1]), estimated_line, normalization="historic") shortness_cost = nr_steps / (end_index - start_index) ** 3 if literature_value is not None: literature_cost = np.sqrt(literature_value - dimension) new_loss = error + shortness_weight * shortness_cost + literature_weight * literature_cost * 5. if loss is None: loss = new_loss best_r_min = current_r_min best_r_max = current_r_max best_slope = slope best_intercept = intercept elif new_loss < loss: loss = new_loss best_r_min = current_r_min best_r_max = current_r_max best_slope = slope best_intercept = intercept dimension = best_slope # ###plotting # if plot: # # plt.loglog(N_r[0], N_r[1], 'x', basex=10., basey=10.,label='data') # plt.loglog(N_r[0], best_intercept + best_slope*N_r[1], # label='fit: r_min ='+str(round(best_r_min,3))+', r_max = '+ # str(round(best_r_max,3))) # plt.axvline(x=best_r_min) # plt.axvline(x=best_r_max) # plt.title('loglog plot of the N_r(radius), slope/dim = ' + str(dimension)) # plt.legend() # plt.show() if plot: warn_string = "Plotting was removed in the entirety of the rescomp package.\n" \ "The 'plot' paramter will be removed in future releases as well." warnings.warn(warn_string, UserWarning) return best_r_min, best_r_max, dimension
abec1b064b42083b9e60bb2cb4827d7fe8f7b2e9
23,191
def seir_model_with_soc_dist(init_vals, params, t): """ SEIR infection model with social distancing. rho = social distancing factor. """ S_0, E_0, I_0, R_0 = init_vals S, E, I, R = [S_0], [E_0], [I_0], [R_0] alpha, beta, gamma, rho = params dt = t[1] - t[0] for _ in t[1:]: next_S = S[-1] - (rho * beta * S[-1] * I[-1]) * dt next_E = E[-1] + (rho * beta * S[-1] * I[-1] - alpha * E[-1]) * dt next_I = I[-1] + (alpha * E[-1] - gamma * I[-1]) * dt next_R = R[-1] + (gamma * I[-1]) * dt S.append(next_S) E.append(next_E) I.append(next_I) R.append(next_R) return np.stack([S, E, I, R]).T
dae5ace760055f5bbb78f079b660e8d55587b2fe
23,193
import torch def greeq(data, transmit=None, receive=None, opt=None, **kwopt): """Fit a non-linear relaxometry model to multi-echo Gradient-Echo data. Parameters ---------- data : sequence[GradientEchoMulti] Observed GRE data. transmit : sequence[PrecomputedFieldMap], optional Map(s) of the transmit field (b1+). If a single map is provided, it is used to correct all contrasts. If multiple maps are provided, there should be one for each contrast. receive : sequence[PrecomputedFieldMap], optional Map(s) of the receive field (b1-). If a single map is provided, it is used to correct all contrasts. If multiple maps are provided, there should be one for each contrast. If no receive map is provided, the output `pd` map will have a remaining b1- bias field. opt : GREEQOptions or dict, optional Algorithm options. {'preproc': {'register': True}, # Co-register contrasts 'optim': {'nb_levels': 1, # Number of pyramid levels 'max_iter_rls': 10, # Max reweighting iterations 'max_iter_gn': 5, # Max Gauss-Newton iterations 'max_iter_cg': 32, # Max Conjugate-Gradient iterations 'tolerance_rls': 1e-05, # Tolerance for early stopping (RLS) 'tolerance_gn': 1e-05, "" 'tolerance_cg': 1e-03}, "" 'backend': {'dtype': torch.float32, # Data type 'device': 'cpu'}, # Device 'penalty': {'norm': 'jtv', # Type of penalty: {'tkh', 'tv', 'jtv', None} 'factor': {'r1': 10, # Penalty factor per (log) map 'pd': 10, 'r2s': 2, 'mt': 2}}, 'verbose': 1} Returns ------- pd : ParameterMap Proton density r1 : ParameterMap Longitudinal relaxation rate r2s : ParameterMap Apparent transverse relaxation rate mt : ParameterMap, optional Magnetisation transfer saturation Only returned is MT-weighted data is provided. """ opt = GREEQOptions().update(opt, **kwopt) dtype = opt.backend.dtype device = opt.backend.device backend = dict(dtype=dtype, device=device) # --- estimate noise / register / initialize maps --- data, transmit, receive, maps = preproc(data, transmit, receive, opt) vx = spatial.voxel_size(maps.affine) has_mt = hasattr(maps, 'mt') # --- prepare penalty factor --- lam = opt.penalty.factor if isinstance(lam, dict): lam = [lam.get('pd', 0), lam.get('r1', 0), lam.get('r2s', 0), lam.get('mt', 0)] lam = core.utils.make_vector(lam, 4, **backend) # PD, R1, R2*, MT # --- initialize weights (RLS) --- if str(opt.penalty.norm).lower() == 'none' or all(lam == 0): opt.penalty.norm = '' opt.penalty.norm = opt.penalty.norm.lower() mean_shape = maps[0].shape rls = None sumrls = 0 if opt.penalty.norm in ('tv', 'jtv'): rls_shape = mean_shape if opt.penalty.norm == 'tv': rls_shape = (len(maps),) + rls_shape rls = torch.ones(rls_shape, **backend) sumrls = 0.5 * core.py.prod(rls_shape) if opt.penalty.norm: print(f'With {opt.penalty.norm.upper()} penalty:') print(f' - PD: {lam[0]:.3g}') print(f' - R1: {lam[1]:.3g}') print(f' - R2*: {lam[2]:.3g}') if has_mt: print(f' - MT: {lam[3]:.3g}') else: print('Without penalty') if opt.penalty.norm not in ('tv', 'jtv'): # no reweighting -> do more gauss-newton updates instead opt.optim.max_iter_gn *= opt.optim.max_iter_rls opt.optim.max_iter_rls = 1 printer = CritPrinter(max_levels=opt.optim.nb_levels, max_rls=opt.optim.max_iter_rls, max_gn=opt.optim.max_iter_gn, penalty=opt.penalty.norm, verbose=opt.verbose) printer.print_head() shape0 = shape = maps.shape[1:] aff0 = aff = maps.affine vx0 = vx = spatial.voxel_size(aff0) vol0 = vx0.prod() vol = vx.prod() / vol0 for level in range(opt.optim.nb_levels, 0, -1): printer.level = level if opt.optim.nb_levels > 1: aff, shape = _get_level(level, aff0, shape0) vx = spatial.voxel_size(aff) vol = vx.prod() / vol0 maps, rls = _resize(maps, rls, aff, shape) if opt.penalty.norm in ('tv', 'jtv'): sumrls = 0.5 * vol * rls.reciprocal().sum(dtype=torch.double) # --- compute derivatives --- nb_prm = len(maps) nb_hes = nb_prm * (nb_prm + 1) // 2 grad = torch.empty((nb_prm,) + shape, **backend) hess = torch.empty((nb_hes,) + shape, **backend) ll_rls = [] ll_max = core.constants.ninf max_iter_rls = max(opt.optim.max_iter_rls // level, 1) for n_iter_rls in range(max_iter_rls): # --- Reweighted least-squares loop --- printer.rls = n_iter_rls multi_rls = rls if opt.penalty.norm == 'tv' else [rls] * len(maps) # --- Gauss Newton loop --- ll_gn = [] for n_iter_gn in range(opt.optim.max_iter_gn): printer.gn = n_iter_gn crit = 0 grad.zero_() hess.zero_() # --- loop over contrasts --- for contrast, b1m, b1p in zip(data, receive, transmit): # compute gradient crit1, g1, h1 = _nonlin_gradient(contrast, maps, b1m, b1p, opt) # increment if hasattr(maps, 'mt') and not contrast.mt: # we optimize for mt but this particular contrast # has no information about mt so g1/h1 are smaller # than grad/hess. grad[:-1] += g1 hind = list(range(nb_prm-1)) cnt = nb_prm for i in range(nb_prm): for j in range(i+1, nb_prm): if i != nb_prm-1 and j != nb_prm-1: hind.append(cnt) cnt += 1 hess[hind] += h1 crit += crit1 else: grad += g1 hess += h1 crit += crit1 del g1, h1 # --- penalty --- reg = 0. if opt.penalty.norm: for i, (map, weight, l) in enumerate(zip(maps, multi_rls, lam)): if not l: continue reg1, g1 = _nonlin_reg(map.fdata(**backend), vx, weight, l * vol) reg += reg1 grad[i] += g1 del g1 # --- gauss-newton --- if not hess.isfinite().all(): print('WARNING: NaNs in hess') if not grad.isfinite().all(): print('WARNING: NaNs in hess') if opt.penalty.norm: hess = hessian_sym_loaddiag(hess, 1e-5, 1e-8) deltas = _nonlin_solve(hess, grad, multi_rls, lam * vol, vx, opt) else: hess = hessian_sym_loaddiag(hess, 1e-3, 1e-4) deltas = hessian_sym_solve(hess, grad) if not deltas.isfinite().all(): print('WARNING: NaNs in delta') for map, delta in zip(maps, deltas): map.volume -= delta if map.min is not None or map.max is not None: map.volume.clamp_(map.min, map.max) del deltas # --- Compute gain --- ll = crit + reg + sumrls ll_max = max(ll_max, ll) ll_prev = ll_gn[-1] if ll_gn else ll_max gain = (ll_prev - ll) / (ll_max - ll_prev) ll_gn.append(ll) printer.print_crit(crit, reg, sumrls, gain) if gain < opt.optim.tolerance_gn: print('GN converged: ', ll_prev.item(), '->', ll.item()) break # --- Update RLS weights --- if opt.penalty.norm in ('tv', 'jtv'): del multi_rls rls = _nonlin_rls(maps, lam, opt.penalty.norm) sumrls = (0.5 * vol) * rls.sum(dtype=torch.double) eps = core.constants.eps(rls.dtype) rls = rls.clamp_min_(eps).reciprocal_() # --- Compute gain --- # (we are late by one full RLS iteration when computing the # gain but we save some computations) ll = ll_gn[-1] ll_prev = ll_rls[-1][-1] if ll_rls else ll_max ll_rls.append(ll_gn) gain = (ll_prev - ll) / (ll_max - ll_prev) if abs(gain) < opt.optim.tolerance_rls: print(f'RLS converged ({gain:7.2g})') break del grad if opt.uncertainty: multi_rls = rls if opt.penalty.norm == 'tv' else [rls] * len(maps) uncertainty = _nonlin_uncertainty(hess, multi_rls, lam * vol, vx, opt) maps.pd.uncertainty = uncertainty[0] maps.r1.uncertainty = uncertainty[1] maps.r2s.uncertainty = uncertainty[2] if hasattr(maps, 'mt'): maps.mt.uncertainty = uncertainty[3] # --- Prepare output --- return postproc(maps)
4190b82de68f6362bf6cec48e4e88419bab7b0da
23,194