content
stringlengths 35
762k
| sha1
stringlengths 40
40
| id
int64 0
3.66M
|
---|---|---|
from typing import Union
def render_orchestrator_inputs() -> Union[Driver, None]:
""" Renders input form for collecting orchestrator-related connection
metadata, and assembles a Synergos Driver object for subsequent use.
Returns:
Connected Synergos Driver (Driver)
"""
with st.sidebar.beta_container():
st.header("NETWORK")
with st.beta_expander("Orchestrator Parameters", expanded=True):
orchestrator_host = st.text_input(
label="Orchestrator IP:",
help="Declare the server IP of your selected orchestrator."
)
orchestrator_port = st.number_input(
label="Orchestrator Port:",
value=5000,
help="Declare the access port of your selected orchestrator."
)
if is_connection_valid(host=orchestrator_host, port=orchestrator_port):
driver = Driver(host=orchestrator_host, port=orchestrator_port)
else:
driver = None # Ensures rendering of unpopulated widgets
return driver | d67f3a40347a2f247183e2b9092429ca118bc739 | 22,852 |
def type_assert_dict(
d,
kcls=None,
vcls=None,
allow_none: bool=False,
cast_from=None,
cast_to=None,
dynamic=None,
objcls=None,
ctor=None,
desc: str=None,
false_to_none: bool=False,
check=None,
):
""" Checks that every key/value in @d is an instance of @kcls: @vcls
Will also unmarshal JSON objects to Python objects if
the value is an instance of dict and @vcls is a class type
Args:
d: The dict to type assert
kcls: The class to type assert for keys.
NOTE: JSON only allows str keys
vcls: The class to type assert for values
allow_none: Allow a None value for the values.
This would not make sense for the keys.
cast_from: type-or-tuple-of-types, If @obj is an instance
of this type(s), cast it to @cast_to
cast_to: type, The type to cast @obj to if it's an instance
of @cast_from, or None to cast to @cls.
If you need more than type(x), use a lambda or
factory function.
dynamic: @cls, A dynamic default value if @d is None,
and @dynamic is not None.
objcls: None-or-type, a type to assert @d is,
ie: dict, etc...
Note that isinstance considers
collections.OrderedDict to be of type dict
ctor: None-or-static-method: Use this method as the
constructor instead of __init__
desc: None-or-string, an optional description for this field,
for using this function to fully replace docstrings
false_to_none: bool, True to cast falsey values such as "", 0, [],
to None
check: None-lambda-function, Single argument function to check
a value, return False if not valid, for example:
lambda x: x >= 0 and x < 256
Returns:
@d, note that @d will be recreated, which
may be a performance concern if @d has many items
Raises:
TypeError: If a key is not an instance of @kcls or
a value is not an instance of @vcls
ValueError: If @check is not None and a value fails @check
"""
_check_dstruct(d, objcls)
if (
d is None
and
dynamic is not None
):
d = dynamic
t = type(d)
return t(
(
_check(k, kcls) if kcls else k,
_check(
v,
vcls,
allow_none,
cast_from,
cast_to,
ctor=ctor,
false_to_none=false_to_none,
check=check,
) if vcls else v,
)
for k, v in d.items()
) | 8a5590a86a0f2e1b4dbef5218c4a294dde3675e1 | 22,854 |
def get_missing_ids(raw, results):
"""
Compare cached results with overall expected IDs, return missing ones.
Returns a set.
"""
all_ids = set(raw.keys())
cached_ids = set(results.keys())
print("There are {0} IDs in the dataset, we already have {1}. {2} are missing.".format(len(all_ids), len(cached_ids), len(all_ids) - len(cached_ids)))
return all_ids - cached_ids | cb380c12f26de8b4d3908964f4314bc7efe43056 | 22,855 |
import collections
def _spaghettinet_edgetpu_s():
"""Architecture definition for SpaghettiNet-EdgeTPU-S."""
nodes = collections.OrderedDict()
outputs = ['c0n1', 'c0n2', 'c0n3', 'c0n4', 'c0n5']
nodes['s0'] = SpaghettiStemNode(kernel_size=5, num_filters=24)
nodes['n0'] = SpaghettiNode(
num_filters=48,
level=2,
layers=[
IbnFusedGrouped(3, 8, 2, 3, False),
],
edges=[SpaghettiPassthroughEdge(input='s0')])
nodes['n1'] = SpaghettiNode(
num_filters=64,
level=3,
layers=[
IbnFusedGrouped(3, 4, 2, 4, False),
IbnFusedGrouped(3, 4, 1, 4, True),
IbnFusedGrouped(3, 4, 1, 4, True),
],
edges=[SpaghettiPassthroughEdge(input='n0')])
nodes['n2'] = SpaghettiNode(
num_filters=72,
level=4,
layers=[
IbnOp(3, 8, 2, False),
IbnFusedGrouped(3, 8, 1, 4, True),
IbnOp(3, 8, 1, True),
IbnOp(3, 4, 1, True),
],
edges=[SpaghettiPassthroughEdge(input='n1')])
nodes['n3'] = SpaghettiNode(
num_filters=88,
level=5,
layers=[
IbnOp(3, 8, 2, False),
IbnOp(3, 8, 1, True),
IbnOp(3, 4, 1, True),
IbnOp(3, 4, 1, True),
],
edges=[SpaghettiPassthroughEdge(input='n2')])
nodes['n4'] = SpaghettiNode(
num_filters=88,
level=6,
layers=[
IbnOp(3, 8, 2, False),
SepConvOp(5, 1, True),
SepConvOp(5, 1, True),
SepConvOp(5, 1, True),
],
edges=[SpaghettiPassthroughEdge(input='n3')])
nodes['n5'] = SpaghettiNode(
num_filters=88,
level=7,
layers=[
SepConvOp(5, 2, False),
SepConvOp(3, 1, True),
],
edges=[SpaghettiPassthroughEdge(input='n4')])
nodes['c0n0'] = SpaghettiNode(
num_filters=144,
level=5,
layers=[
IbnOp(3, 4, 1, False),
IbnOp(3, 4, 1, True),
IbnOp(3, 4, 1, True),
IbnOp(3, 4, 1, True),
],
edges=[
SpaghettiResampleEdge(input='n3'),
SpaghettiResampleEdge(input='n4')
])
nodes['c0n1'] = SpaghettiNode(
num_filters=120,
level=4,
layers=[
IbnOp(3, 8, 1, False),
IbnOp(3, 4, 1, True),
IbnOp(3, 4, 1, True),
IbnOp(3, 4, 1, True),
],
edges=[
SpaghettiResampleEdge(input='n2'),
SpaghettiResampleEdge(input='c0n0')
])
nodes['c0n2'] = SpaghettiNode(
num_filters=168,
level=5,
layers=[
IbnOp(3, 4, 1, False),
],
edges=[
SpaghettiResampleEdge(input='c0n1'),
SpaghettiResampleEdge(input='c0n0')
])
nodes['c0n3'] = SpaghettiNode(
num_filters=136,
level=6,
layers=[
IbnOp(3, 4, 1, False),
SepConvOp(3, 1, True),
],
edges=[
SpaghettiResampleEdge(input='n5'),
SpaghettiResampleEdge(input='c0n0')
])
nodes['c0n4'] = SpaghettiNode(
num_filters=136,
level=7,
layers=[
IbnOp(3, 4, 1, False),
],
edges=[
SpaghettiResampleEdge(input='n5'),
SpaghettiResampleEdge(input='c0n0')
])
nodes['c0n5'] = SpaghettiNode(
num_filters=64,
level=8,
layers=[
SepConvOp(3, 1, False),
SepConvOp(3, 1, True),
],
edges=[SpaghettiPassthroughEdge(input='c0n4')])
node_specs = SpaghettiNodeSpecs(nodes=nodes, outputs=outputs)
return node_specs | 93b98a29654f8a838f39d6bfa59f78719ff6c42c | 22,856 |
def instance_of(type):
"""
A validator that raises a :exc:`TypeError` if the initializer is called
with a wrong type for this particular attribute (checks are perfomed using
:func:`isinstance` therefore it's also valid to pass a tuple of types).
:param type: The type to check for.
:type type: type or tuple of types
The :exc:`TypeError` is raised with a human readable error message, the
attribute (of type :class:`attr.Attribute`), the expected type, and the
value it got.
"""
return _InstanceOfValidator(type) | 2d41d457e9f7e60fa5e5d77f83454ca75dc112f7 | 22,857 |
def ass(stream: Stream, *args, **kwargs) -> FilterableStream:
"""https://ffmpeg.org/ffmpeg-filters.html#ass"""
return filter(stream, ass.__name__, *args, **kwargs) | 7f9d88fe1fdeb2337acce25e8b40db94d59f8748 | 22,859 |
def resultcallback(group):
"""Compatibility layer for Click 7 and 8."""
if hasattr(group, "result_callback") and group.result_callback is not None:
decorator = group.result_callback()
else:
# Click < 8.0
decorator = group.resultcallback()
return decorator | 1eb938400c90667eb532366f5ca83d02dd6429e1 | 22,860 |
from licensedcode import cache
def get_license_matches(location=None, query_string=None):
"""
Return a sequence of LicenseMatch objects.
"""
if not query_string:
return []
idx = cache.get_index()
return idx.match(location=location, query_string=query_string) | 5d2891d36dd10e6c4d1c24280df86d1bf39e464a | 22,861 |
def compute_corrector_prf(results, logger, on_detected=True):
"""
References:
https://github.com/sunnyqiny/
Confusionset-guided-Pointer-Networks-for-Chinese-Spelling-Check/blob/master/utils/evaluation_metrics.py
"""
TP = 0
FP = 0
FN = 0
all_predict_true_index = []
all_gold_index = []
for item in results:
src, tgt, predict, d_predict = item
gold_index = []
for i in range(len(list(src))):
if src[i] == tgt[i]:
continue
else:
gold_index.append(i)
all_gold_index.append(gold_index)
predict_index = []
for i in range(len(list(src))):
if src[i] == predict[i]:
continue
else:
predict_index.append(i)
each_true_index = []
for i in predict_index:
if i in gold_index:
TP += 1
each_true_index.append(i)
else:
FP += 1
for i in gold_index:
if i in predict_index:
continue
else:
FN += 1
all_predict_true_index.append(each_true_index)
# For the detection Precision, Recall and F1
dp, dr, detection_f1 = report_prf(TP, FP, FN,
'detection', logger=logger)
# store FN counts
n_misreported = int(FN)
TP = 0
FP = 0
FN = 0
# we only detect those correctly detected location, which is a different from the common metrics since
# we wanna to see the precision improve by using the confusion set
for i in range(len(all_predict_true_index)):
if len(all_predict_true_index[i]) > 0:
predict_words = []
for j in all_predict_true_index[i]:
predict_words.append(results[i][2][j])
if results[i][1][j] == results[i][2][j]:
TP += 1
else:
FP += 1
for j in all_gold_index[i]:
if results[i][1][j] in predict_words:
continue
else:
FN += 1
# For the correction Precision, Recall and F1
cp, cr, correction_f1 = report_prf(TP, FP, FN,
'correction', logger=logger)
# common metrics to compare with other baseline methods.
ccp, ccr, correction_cf1 = report_prf(TP, FP, FN + n_misreported,
'correction_common', logger=logger)
if not on_detected:
correction_f1 = correction_cf1
details = {
'det_p': dp,
'det_r': dr,
'det_f1': detection_f1,
'cor_p': cp,
'cor_r': cr,
'cor_f1': correction_f1,
'common_cor_p': ccp,
'common_cor_r': ccr,
'common_cor_f1': correction_cf1,
}
return detection_f1, correction_f1, details | 1f86b5f7cd91aba9a50007493d83cd3480eb9e20 | 22,862 |
def nonzero_sign(x, name=None):
"""Returns the sign of x with sign(0) defined as 1 instead of 0."""
with tf.compat.v1.name_scope(name, 'nonzero_sign', [x]):
x = tf.convert_to_tensor(value=x)
one = tf.ones_like(x)
return tf.compat.v1.where(tf.greater_equal(x, 0.0), one, -one) | 1955f37bece137537d53cde6681a8f56554cafea | 22,863 |
def tls_control_system_tdcops(tls_control_system):
"""Control system with time-dependent collapse operators"""
objectives, controls, _ = tls_control_system
c_op = [[0.1 * sigmap(), controls[0]]]
c_ops = [c_op]
H1 = objectives[0].H
H2 = objectives[1].H
objectives = [
krotov.Objective(
initial_state=ket('0'), target=ket('1'), H=H1, c_ops=c_ops
),
krotov.Objective(
initial_state=ket('0'), target=ket('1'), H=H2, c_ops=c_ops
),
]
controls_mapping = krotov.conversions.extract_controls_mapping(
objectives, controls
)
return objectives, controls, controls_mapping | b94f438291671e863bb759ce024a0e42e6230481 | 22,864 |
def create_new_credential(site_name,account_name, account_password):
"""Function to create a new account and its credentials"""
new_credential = Credentials(site_name,account_name, account_password)
return new_credential | 127335a31054d1b89521a1bc8b354ad51e193be6 | 22,865 |
from typing import Dict
def prepare_request_params(
request_params: Dict, model_id: Text, model_data: Dict
) -> Dict:
""" reverse hash names and correct types of input params """
request_params = correct_types(request_params, model_data["columns_data"])
if model_data["hashed_indexes"]:
request_params = reverse_hash_names(model_id, request_params)
return request_params | c7aee17db83e96cb3bcf6ce75ea650414035654a | 22,867 |
from typing import List
def get_all_listening_ports() -> List[int]:
"""
Returns all tcp port numbers in LISTEN state (on any address).
Reads port state from /proc/net/tcp.
"""
res = []
with open('/proc/net/tcp', 'r') as file:
try:
next(file)
for line in file:
split_line = line.strip().split(' ')
hex_port = split_line[1].split(':')[1]
hex_state = split_line[3]
if hex_state == '0A':
res.append(int(hex_port, 16))
except StopIteration:
pass
return res | cfc1b4b93358954ad802ce3727bd9d424ef9d136 | 22,869 |
async def mock_race_result() -> dict:
"""Create a mock race-result object."""
return {
"id": "race_result_1",
"race_id": "190e70d5-0933-4af0-bb53-1d705ba7eb95",
"timing_point": "Finish",
"no_of_contestants": 2,
"ranking_sequence": ["time_event_1", "time_event_2"],
"status": 0,
} | 33a2889bcb2665642a3e5743128a478bb103a82b | 22,870 |
import re
import binascii
def qr_to_install_code(qr_code: str) -> tuple[zigpy.types.EUI64, bytes]:
"""Try to parse the QR code.
if successful, return a tuple of a EUI64 address and install code.
"""
for code_pattern in QR_CODES:
match = re.search(code_pattern, qr_code, re.VERBOSE)
if match is None:
continue
ieee_hex = binascii.unhexlify(match[1])
ieee = zigpy.types.EUI64(ieee_hex[::-1])
install_code = match[2]
# install_code sanity check
install_code = convert_install_code(install_code)
return ieee, install_code
raise vol.Invalid(f"couldn't convert qr code: {qr_code}") | 91ec3f90385e95b94c47c338f56b26315ff12e99 | 22,871 |
def vwr(scene, analyzer, test_number, workbook=None, sheet_format=None, agg_dict=None):
"""
Calculates Variability Weighted Return (VWR).
:param workbook: Excel workbook to be saved to disk.
:param analyzer: Backtest analyzer.
:param sheet_format: Dictionary holding formatting information such as col width, font etc.
:param agg_dict: Collects the dictionary outputs from backtrader for using in platting.
:return workbook: Excel workbook to be saved to disk.
"""
# Get the drawdowns auto ordered nested dictionary
vwr_dict = analyzer.get_analysis()
columns = [
"vwr",
]
if scene["save_db"]:
df = pd.DataFrame(vwr_dict.values(), index=vwr_dict.keys()).T
df = add_key_to_df(df, test_number)
agg_dict["vwr"] = df
if scene["save_excel"]:
worksheet = workbook.add_worksheet("vwr")
worksheet.write_row(0, 0, columns)
worksheet.set_row(0, None, sheet_format["header_format"])
worksheet.set_column("A:A", sheet_format["x_wide"], sheet_format["align_left"])
worksheet.set_column("B:B", sheet_format["medium"], sheet_format["align_left"])
for i, (k, v) in enumerate(vwr_dict.items()):
worksheet.write_row(i + 1, 0, [k])
worksheet.write_row(i + 1, 1, [v])
return workbook, agg_dict | 7fa8c9794e443be91d0cf246c209dfdc86e19f54 | 22,872 |
def dec2hms(dec):
"""
ADW: This should really be replaced by astropy
"""
DEGREE = 360.
HOUR = 24.
MINUTE = 60.
SECOND = 3600.
dec = float(dec)
fhour = dec*(HOUR/DEGREE)
hour = int(fhour)
fminute = (fhour - hour)*MINUTE
minute = int(fminute)
second = (fminute - minute)*MINUTE
return (hour, minute, second) | 4c2c564631d431d908f66486af40e380598f2724 | 22,873 |
def logfpsd(data, rate, window, noverlap, fmin, bins_per_octave):
"""Computes ordinary linear-frequency power spectral density, then multiplies by a matrix
that converts to log-frequency space.
Returns the log-frequency PSD, the centers of the frequency bins,
and the time points.
Adapted from Matlab code by Dan Ellis (Columbia):
http://www.ee.columbia.edu/ln/rosa/matlab/sgram/logfsgram.m"""
stft, linfreqs, times = specgram(data, window, Fs=rate, noverlap=noverlap)
# construct matrix for mapping to log-frequency space
fratio = 2**(1/bins_per_octave) # ratio between adjacent frequencies
nbins = np.floor(np.log((rate/2)/fmin)/np.log(fratio))
#fftfreqs = (rate/window)*np.arange(window/2+1)
nfftbins = window/2+1
logffreqs = fmin*np.exp(np.log(2)*np.arange(nbins)/bins_per_octave)
logfbws = logffreqs*(fratio-1)
logfbws = np.maximum(logfbws, rate/window)
bandoverlapconstant = 0.5475 # controls adjacent band overlap. set by hand by Dan Ellis
freqdiff = (np.repeat(logffreqs[:,np.newaxis],nfftbins,axis=1) - np.repeat(linfreqs[np.newaxis,:],nbins,axis=0))
freqdiff = freqdiff / np.repeat(bandoverlapconstant*logfbws[:,np.newaxis],nfftbins,axis=1)
mapping = np.exp(-0.5*freqdiff**2)
rowEs = np.sqrt(2*np.sum(mapping**2,axis=1))
mapping = mapping/np.repeat(rowEs[:,np.newaxis],nfftbins,axis=1)
# perform mapping
logfpsd = np.sqrt(np.dot(mapping,(np.abs(stft)**2)))
return logfpsd.T, logffreqs, times | cf9a9ee3a248760e6bfa36a82ae782d607269b10 | 22,874 |
def ppg_dual_double_frequency_template(width):
"""
EXPOSE
Generate a PPG template by using 2 sine waveforms.
The first waveform double the second waveform frequency
:param width: the sample size of the generated waveform
:return: a 1-D numpy array of PPG waveform
having diastolic peak at the low position
"""
t = np.linspace(0, 1, width, False) # 1 second
sig = np.sin(2 * np.pi * 2 * t - np.pi / 2) + \
np.sin(2 * np.pi * 1 * t - np.pi / 6)
sig_scale = MinMaxScaler().fit_transform(np.array(sig).reshape(-1, 1))
return sig_scale.reshape(-1) | 9c04afb7687e19a96fb84bf1d5367dc79ce6ceea | 22,875 |
def str_input(prompt: str) -> str:
"""Prompt user for string value.
Args:
prompt (str): Prompt to display.
Returns:
str: User string response.
"""
return input(f"{prompt} ") | ac6c3c694adf227fcc1418574d4875d7fa637541 | 22,877 |
def action(ra_deg, dec_deg, d_kpc, pm_ra_masyr, pm_dec_masyr, v_los_kms,
verbose=False):
"""
parameters:
----------
ra_deg: (float)
RA in degrees.
dec_deg: (float)
Dec in degress.
d_kpc: (float)
Distance in kpc.
pm_ra_masyr: (float)
RA proper motion in mas/yr.
pm_decmasyr: (float)
Dec proper motion in mas/yr.
v_los_kms: (float)
RV in kms.
returns:
------
R_kpc, phi_rad, z_kpc, vR_kms, vT_kms, vz_kms
jR: (float)
Radial action.
lz: (float)
Vertical ang mom.
jz: (float)
Vertical action.
"""
ra_rad = ra_deg * (np.pi / 180.) # RA [rad]
dec_rad = dec_deg * (np.pi / 180.) # dec [rad]
# Galactocentric position of the Sun:
X_gc_sun_kpc = 8. # [kpc]
Z_gc_sun_kpc = 0.025 # [kpc]
# Galactocentric velocity of the Sun:
vX_gc_sun_kms = -9.58 # = -U [kms]
vY_gc_sun_kms = 10.52 + 220. # = V+v_circ(R_Sun) [kms]
vZ_gc_sun_kms = 7.01 # = W [kms]
# a. convert spatial coordinates (ra,dec,d) to (R,z,phi)
# (ra,dec) --> Galactic coordinates (l,b):
lb = bovy_coords.radec_to_lb(ra_rad, dec_rad, degree=False, epoch=2000.0)
# l_rad = lb[:, 0]
# b_rad = lb[:, 1]
l_rad = lb[0]
b_rad = lb[1]
# (l,b,d) --> Galactocentric cartesian coordinates (x,y,z):
xyz = bovy_coords.lbd_to_XYZ(l_rad, b_rad, d_kpc, degree=False)
# x_kpc = xyz[:, 0]
# y_kpc = xyz[:, 1]
# z_kpc = xyz[:, 2]
x_kpc = xyz[0]
y_kpc = xyz[1]
z_kpc = xyz[2]
# (x,y,z) --> Galactocentric cylindrical coordinates (R,z,phi):
Rzphi = bovy_coords.XYZ_to_galcencyl(x_kpc, y_kpc, z_kpc,
Xsun=X_gc_sun_kpc, Zsun=Z_gc_sun_kpc)
# R_kpc = Rzphi[:, 0]
# phi_rad = Rzphi[:, 1]
# z_kpc = Rzphi[:, 2]
R_kpc = Rzphi[0]
phi_rad = Rzphi[1]
z_kpc = Rzphi[2]
# b. convert velocities (pm_ra,pm_dec,vlos) to (vR,vz,vT)
# (pm_ra,pm_dec) --> (pm_l,pm_b):
pmlpmb = bovy_coords.pmrapmdec_to_pmllpmbb(pm_ra_masyr, pm_dec_masyr,
ra_rad, dec_rad, degree=False,
epoch=2000.0)
# pml_masyr = pmlpmb[:, 0]
# pmb_masyr = pmlpmb[:, 1]
pml_masyr = pmlpmb[0]
pmb_masyr = pmlpmb[1]
# (v_los,pm_l,pm_b) & (l,b,d) --> (vx,vy,vz):
vxvyvz = bovy_coords.vrpmllpmbb_to_vxvyvz(v_los_kms, pml_masyr, pmb_masyr,
l_rad, b_rad, d_kpc, XYZ=False,
degree=False)
# vx_kms = vxvyvz[:, 0]
# vy_kms = vxvyvz[:, 1]
# vz_kms = vxvyvz[:, 2]
vx_kms = vxvyvz[0]
vy_kms = vxvyvz[1]
vz_kms = vxvyvz[2]
# (vx,vy,vz) & (x,y,z) --> (vR,vT,vz):
vRvTvZ = bovy_coords.vxvyvz_to_galcencyl(vx_kms, vy_kms, vz_kms, R_kpc,
phi_rad, z_kpc,
vsun=[vX_gc_sun_kms,
vY_gc_sun_kms,
vZ_gc_sun_kms],
galcen=True)
# vR_kms = vRvTvZ[:, 0]
# vT_kms = vRvTvZ[:, 1]
# vz_kms = vRvTvZ[:, 2]
vR_kms = vRvTvZ[0]
vT_kms = vRvTvZ[1]
vz_kms = vRvTvZ[2]
if verbose:
print("R = ", R_kpc, "\t kpc")
print("phi = ", phi_rad, "\t rad")
print("z = ", z_kpc, "\t kpc")
print("v_R = ", vR_kms, "\t km/s")
print("v_T = ", vT_kms, "\t km/s")
print("v_z = ", vz_kms, "\t km/s")
jR, lz, jz = calc_actions(R_kpc, phi_rad, z_kpc, vR_kms, vT_kms, vz_kms)
return R_kpc, phi_rad, z_kpc, vR_kms, vT_kms, vz_kms, jR, lz, jz | 0e707bff67cee3c909213f14181927a14d5d5656 | 22,878 |
def getProcWithParent(host,targetParentPID,procname):
""" returns (parentPID,procPID) tuple for the procname with the specified parent """
cmdStr="ps -ef | grep '%s' | grep -v grep" % (procname)
cmd=Command("ps",cmdStr,ctxt=REMOTE,remoteHost=host)
cmd.run(validateAfter=True)
sout=cmd.get_results().stdout
logger.info(cmd.get_results().printResult())
if sout is None:
return (0,0)
lines=sout.split('\n')
for line in lines:
if line == '':
continue
fields=line.lstrip(' ').split()
if len(fields) < 3:
logger.info("not enough fields line: '%s'" % line)
return (0,0)
procPID=int(line.split()[1])
parentPID=int(line.split()[2])
if parentPID == targetParentPID:
return (parentPID,procPID)
logger.info("couldn't find process with name: %s which is a child of PID: %s" % (procname,targetParentPID))
return (0,0) | 77f4f13eb381dc840eee26875724cd6e1cdf1e57 | 22,879 |
def temporal_autocorrelation(array):
"""Computes temporal autocorrelation of array."""
dt = array['time'][1] - array['time'][0]
length = array.sizes['time']
subsample = max(1, int(1. / dt))
def _autocorrelation(array):
def _corr(x, d):
del x
arr1 = jnp.roll(array, d, 0)
ans = arr1 * array
ans = jnp.sum(
jnp.where(
jnp.arange(length).reshape(-1, 1, 1, 1) >= d, ans / length, 0),
axis=0)
return d, ans
_, full_result = jax.lax.scan(_corr, 0, jnp.arange(0, length, subsample))
return full_result
full_result = jax.jit(_autocorrelation)(
jnp.array(array.transpose('time', 'sample', 'x', 'model').u))
full_result = xarray.Dataset(
data_vars=dict(t_corr=(['time', 'sample', 'x', 'model'], full_result)),
coords={
'dt': np.array(array.time[slice(None, None, subsample)]),
'sample': array.sample,
'x': array.x,
'model': array.model
})
return full_result | 69640da51fa94edd92e793f2c86ac34090e70a28 | 22,880 |
import json
def kv_detail(request, kv_class, kv_pk):
"""
GET to:
/core/keyvalue/api/<kv_class>/<kv_pk>/detail/
Returns a single KV instance.
"""
Klass = resolve_class(kv_class)
KVKlass = Klass.keyvalue_set.related.model
try:
kv = KVKlass.objects.get(pk=kv_pk)
except KVKlass.DoesNotExist:
return HttpResponse(
status=404, content=json.dumps({'success': False})
)
return HttpResponse(
json.dumps(kv.get_bundle())
) | bd8961c25e39f8540b57753b8f923229e77ae795 | 22,881 |
from typing import Protocol
import json
def opentrons_protocol(protocol_id):
"""Get OpenTrons representation of a protocol."""
current_protocol = Protocol.query.filter_by(id=protocol_id).first()
if not current_protocol:
flash('No such specification!', 'danger')
return redirect('.')
if current_protocol.user != current_user and not current_protocol.public:
flash('Not your project!', 'danger')
return redirect('.')
if not current_protocol.protocol:
return ""
protocol_object = json.loads(current_protocol.protocol)
converter = OpenTrons()
resp = make_response(converter.convert(protocol_object, current_protocol.name, current_protocol.description))
resp.headers['Content-Type'] = "text"
resp.headers['Content-Disposition'] = "attachment; filename=" + current_protocol.name + "-opentrons.py"
return resp | 3a8cc4355763f788f01bb1d95aa43f5cb249a68f | 22,882 |
def flag(request, comment_id, next=None):
"""
Flags a comment. Confirmation on GET, action on POST.
Templates: `comments/flag.html`,
Context:
comment
the flagged `comments.comment` object
"""
comment = get_object_or_404(comments.get_model(), pk=comment_id, site__pk=settings.SITE_ID)
# Flag on POST
if request.method == 'POST':
flag, created = comments.models.CommentFlag.objects.get_or_create(
comment = comment,
user = request.user,
flag = comments.models.CommentFlag.SUGGEST_REMOVAL
)
signals.comment_was_flagged.send(
sender = comment.__class__,
comment = comment,
flag = flag,
created = created,
request = request,
)
return next_redirect(request.POST.copy(), next, flag_done, c=comment.pk)
# Render a form on GET
else:
return render_to_response('comments/flag.html',
{'comment': comment, "next": next},
template.RequestContext(request)
) | e0997313c13446150ed3a0f402b2df74089aa4e9 | 22,884 |
from typing import List
def get_nodes_for_homek8s_group(inventory, group_name) -> List[str]:
"""Return the nodes' names of the given group from the inventory as a list."""
hosts_dict = inventory['all']['children']['homek8s']['children'][group_name]['hosts']
if hosts_dict:
return list(hosts_dict.keys())
else:
return [] | 806394259816ec4311e69dcd46e7b111c7ca0652 | 22,885 |
def is_blank_or_none(value: str):
"""
Returns True if the specified string is whitespace, empty or None.
:param value: the string to check
:return: True if the specified string is whitespace, empty or None
"""
try:
return "".__eq__(value.strip())
except AttributeError:
return value is None | 062e1ab33fc5043435af9e97cdf2443ffc4625bd | 22,886 |
import typing
def __get_play_widget(function: typing.Any) -> typing.Any:
"""Generate play widget.
:param function: Function to associate with Play.
:return: Play widget.
"""
play = widgets.interactive(
function,
i=widgets.Play(
value=0,
min=0,
max=500,
step=1,
interval=5000,
description="Press play",
disabled=False,
),
)
return play | 5bb63256f84f1c6f50e2ae007a08e6e794535bc5 | 22,887 |
def add_data_to_profile(id, profile_id, read_only, tree_identifier, folder_path=None, web_session=None):
"""Shares data to user group
Args:
id (int): The id of the data
profile_id (int): The id of profile
read_only (int): The flag that specifies whether the data is read only
tree_identifier (str): The identifier of the tree
folder_path (str): The folder path f.e. "/scripts/server1"
web_session (object): The webserver session object, optional. Will be
passed in my the webserver automatically
Returns:
The id of the folder to which the data was shared.
"""
if tree_identifier.strip() == "":
raise MSGException(Error.CORE_INVALID_PARAMETER, f"Parameter 'tree_identifier' cannot be empty.")
if folder_path.strip() == "" or folder_path.strip() == "/":
folder_path = None
with BackendDatabase(web_session) as db:
with BackendTransaction(db):
privileges = backend.get_user_privileges_for_data(db, id, web_session.user_id)
max_privilege = min([p['read_only'] for p in privileges])
# We check if the user is owner of given profile
if backend.get_profile_owner(db, profile_id) == web_session.user_id:
if max_privilege <= read_only:
profile_root_folder_id = backend.get_root_folder_id(db, tree_identifier, 'profile', profile_id)
if profile_root_folder_id is None:
profile_root_folder_id = backend.create_profile_data_tree(db, tree_identifier, profile_id)
if folder_path:
folder_profile_id, _ = backend.create_folder(db, folder_path, profile_root_folder_id)
else:
folder_profile_id = profile_root_folder_id
backend.add_data_to_folder(db, id, folder_profile_id, read_only)
else:
raise MSGException(Error.MODULES_SHARING_WITH_HIGHER_PERMISSIONS, "Cannot assign data to profile with higher permission than user has.")
else:
raise MSGException(Error.MODULES_USER_HAVE_NO_PRIVILEGES, "User have no privileges to perform operation.")
return folder_profile_id | 489d246b90506b7581ee8aef66c7f5f2ba6b9b88 | 22,888 |
def get_activation_function(activation):
"""
Gets an activation function module given the name of the activation.
:param activation: The name of the activation function.
:return: The activation function module.
"""
if activation == 'ReLU':
return nn.ReLU()
elif activation == 'LeakyReLU':
return nn.LeakyReLU(0.1)
elif activation == 'PReLU':
return nn.PReLU()
elif activation == 'tanh':
return nn.Tanh()
elif activation == 'SELU':
return nn.SELU()
elif activation == 'ELU':
return nn.ELU()
else:
raise ValueError('Activation "{}" not supported.'.format(activation)) | ae5d8e91667e2dc4fe34eb1ac96cff329d542103 | 22,889 |
def get_value_from_time(a_node="", idx=0):
"""
gets the value from the time supplied.
:param a_node: MFn.kAnimCurve node.
:param idx: <int> the time index.
:return: <tuple> data.
"""
return OpenMaya.MTime(a_node.time(idx).value(), OpenMaya.MTime.kSeconds).value(), a_node.value(idx), | 77c6cb47c4381df3537754dc66e03ef4366557de | 22,890 |
def getrinputs(rtyper, graph):
"""Return the list of reprs of the input arguments to the 'graph'."""
return [rtyper.bindingrepr(v) for v in graph.getargs()] | bb0f8861a29cd41af59432f267f07ff67601460c | 22,891 |
def mars_reshape(x_i):
"""
Reshape (n_stacks, 3, 16, 112, 112) into (n_stacks * 16, 112, 112, 3)
"""
return np.transpose(x_i, (0, 2, 3, 4, 1)).reshape((-1, 112, 112, 3)) | d842d4d9b865feadf7c56e58e66d09c4a3389edf | 22,893 |
def Rz_to_coshucosv(R,z,delta=1.):
"""
NAME:
Rz_to_coshucosv
PURPOSE:
calculate prolate confocal cosh(u) and cos(v) coordinates from R,z, and delta
INPUT:
R - radius
z - height
delta= focus
OUTPUT:
(cosh(u),cos(v))
HISTORY:
2012-11-27 - Written - Bovy (IAS)
"""
d12= (z+delta)**2.+R**2.
d22= (z-delta)**2.+R**2.
coshu= 0.5/delta*(sc.sqrt(d12)+sc.sqrt(d22))
cosv= 0.5/delta*(sc.sqrt(d12)-sc.sqrt(d22))
return (coshu,cosv) | f01ed002c09e488d89cfd4089343b16346dfb5fd | 22,894 |
import ast
import numpy
def rpFFNET_createdict(cf,ds,series):
""" Creates a dictionary in ds to hold information about the FFNET data used
to gap fill the tower data."""
# get the section of the control file containing the series
section = pfp_utils.get_cfsection(cf,series=series,mode="quiet")
# return without doing anything if the series isn't in a control file section
if len(section)==0:
logger.error("ERUsingFFNET: Series "+series+" not found in control file, skipping ...")
return
# check that none of the drivers have missing data
driver_list = ast.literal_eval(cf[section][series]["ERUsingFFNET"]["drivers"])
target = cf[section][series]["ERUsingFFNET"]["target"]
for label in driver_list:
data,flag,attr = pfp_utils.GetSeriesasMA(ds,label)
if numpy.ma.count_masked(data)!=0:
logger.error("ERUsingFFNET: driver "+label+" contains missing data, skipping target "+target)
return
# create the dictionary keys for this series
ffnet_info = {}
# site name
ffnet_info["site_name"] = ds.globalattributes["site_name"]
# source series for ER
opt = pfp_utils.get_keyvaluefromcf(cf, [section,series,"ERUsingFFNET"], "source", default="Fc")
ffnet_info["source"] = opt
# target series name
ffnet_info["target"] = cf[section][series]["ERUsingFFNET"]["target"]
# list of drivers
ffnet_info["drivers"] = ast.literal_eval(cf[section][series]["ERUsingFFNET"]["drivers"])
# name of ffnet output series in ds
ffnet_info["output"] = cf[section][series]["ERUsingFFNET"]["output"]
# results of best fit for plotting later on
ffnet_info["results"] = {"startdate":[],"enddate":[],"No. points":[],"r":[],
"Bias":[],"RMSE":[],"Frac Bias":[],"NMSE":[],
"Avg (obs)":[],"Avg (FFNET)":[],
"Var (obs)":[],"Var (FFNET)":[],"Var ratio":[],
"m_ols":[],"b_ols":[]}
# create an empty series in ds if the SOLO output series doesn't exist yet
if ffnet_info["output"] not in ds.series.keys():
data,flag,attr = pfp_utils.MakeEmptySeries(ds,ffnet_info["output"])
pfp_utils.CreateSeries(ds,ffnet_info["output"],data,flag,attr)
# create the merge directory in the data structure
if "merge" not in dir(ds): ds.merge = {}
if "standard" not in ds.merge.keys(): ds.merge["standard"] = {}
# create the dictionary keys for this series
ds.merge["standard"][series] = {}
# output series name
ds.merge["standard"][series]["output"] = series
# source
ds.merge["standard"][series]["source"] = ast.literal_eval(cf[section][series]["MergeSeries"]["Source"])
# create an empty series in ds if the output series doesn't exist yet
if ds.merge["standard"][series]["output"] not in ds.series.keys():
data,flag,attr = pfp_utils.MakeEmptySeries(ds,ds.merge["standard"][series]["output"])
pfp_utils.CreateSeries(ds,ds.merge["standard"][series]["output"],data,flag,attr)
return ffnet_info | 60646de63106895eeb716f763c49195b9c5459e8 | 22,895 |
def svn_client_relocate(*args):
"""
svn_client_relocate(char dir, char from_prefix, char to_prefix, svn_boolean_t recurse,
svn_client_ctx_t ctx, apr_pool_t pool) -> svn_error_t
"""
return _client.svn_client_relocate(*args) | 55e78e311d461e5a20e5cd04778e6c8431a6d990 | 22,896 |
def get_pairs(image1, image2, global_shift, current_objects, record, params):
""" Given two images, this function identifies the matching objects and
pairs them appropriately. See disparity function. """
nobj1 = np.max(image1)
nobj2 = np.max(image2)
if nobj1 == 0:
print('No echoes found in the first scan.')
return
elif nobj2 == 0:
zero_pairs = np.zeros(nobj1)
return zero_pairs
obj_match = locate_all_objects(image1,
image2,
global_shift,
current_objects,
record,
params)
pairs = match_pairs(obj_match, params)
return pairs | 5013764c7e2a1d5e12abc2107ffdbfca640f1423 | 22,897 |
def getComparedVotes(request):
"""
* @api {get} /getComparedVotes/?people_same={people_same_ids}&parties_same={parties_same_ids}&people_different={people_different_ids}&parties_different={parties_different_ids} List all votes where selected MPs/PGs voted the same/differently
* @apiName getComparedVotes
* @apiGroup Session
* @apiParam {people_same_ids} Comma separated list of Parladata ids for MPs who voted the same
* @apiParam {parties_same_ids} Comma separated list of Parladata ids for PGs who voted the same
* @apiParam {people_different_ids} Comma separated list of Parladata ids for MPs who voted differently
* @apiParam {parties_different_ids} Comma separated list of Parladata ids for PGs who voted the differently
* @apiSuccess {Integer} total Total number of votes so far
* @apiSuccess {Object[]} results List of votes that satisfy the supplied criteria
* @apiSuccess {Object} results.session Session data for this vote
* @apiSuccess {String} results.session.name Name of session.
* @apiSuccess {Date} results.session.date_ts Date and time of session.
* @apiSuccess {Date} results.session.date Date of session.
* @apiSuccess {Integer} results.session.id Id of session.
* @apiSuccess {Boolean} results.session.in_review Return true or false if session is in review.
* @apiSuccess {Object[]} results.session.orgs Organization object
* @apiSuccess {String} results.session.orgs.acronym Organization acronym
* @apiSuccess {Boolean} results.session.orgs.is_coalition True of False if organization is in coalition
* @apiSuccess {Integer} results.session.orgs.id Id of organization
* @apiSuccess {Integer} results.session.orgs.name Name of organization
* @apiSuccess {Object} results.results Results for this vote
* @apiSuccess {Integer} results.results.abstain Number of abstentions
* @apiSuccess {Integer} results.results.against Number of MPs who voted against the motion
* @apiSuccess {Integer} results.results.not_present Number of MPs who weren't present at the vote
* @apiSuccess {Integer} results.results.votes_for Number of MPs who voted for the motion
* @apiSuccess {date} results.results.date The date of the vote
* @apiSuccess {String} results.results.text The text of the motion which was voted upon
* @apiSuccess {String[]} results.results.tags List of tags that belong to this motion
* @apiSuccess {Boolean} results.results.is_outlier Is this vote a weird one (flame icon)?
* @apiSuccess {Boolean} results.results.result Did the motion pass?
* @apiExample {curl} Example:
curl -i https://analize.parlameter.si/v1/s/getComparedVotes/?people_same=&parties_same=1&people_different=&parties_different=2
* @apiSuccessExample {json} Example response:
{
"total": 2155,
"results": [{
"session": {
"name": "44. izredna seja",
"date_ts": "2017-05-30T02:00:00",
"orgs": [{
"acronym": "DZ",
"is_coalition": false,
"id": 95,
"name": "Dr\u017eavni zbor"
}],
"date": "30. 5. 2017",
"org": {
"acronym": "DZ",
"is_coalition": false,
"id": 95,
"name": "Dr\u017eavni zbor"
},
"id": 9587,
"in_review": false
},
"results": {
"abstain": 0,
"against": 0,
"motion_id": 7260,
"date": "09.06.2017",
"text": "Dnevni red v celoti",
"tags": ["Proceduralna glasovanja"],
"is_outlier": false,
"not_present": 34,
"votes_for": 56,
"result": true
}
}, {
"session": {
"name": "44. izredna seja",
"date_ts": "2017-05-30T02:00:00",
"orgs": [{
"acronym": "DZ",
"is_coalition": false,
"id": 95,
"name": "Dr\u017eavni zbor"
}],
"date": "30. 5. 2017",
"org": {
"acronym": "DZ",
"is_coalition": false,
"id": 95,
"name": "Dr\u017eavni zbor"
},
"id": 9587,
"in_review": false
},
"results": {
"abstain": 0,
"against": 34,
"motion_id": 7258,
"date": "09.06.2017",
"text": "Priporo\u010dilo Vladi RS v zvezi z okoljsko katastrofo, ki jo je povzro\u010dil po\u017ear v podjetju Kemis d.o.o. - Amandma: k 5. to\u010dki 9.6.2017 [SDS - Poslanska skupina Slovenske demokratske stranke]",
"tags": ["Odbor za infrastrukturo, okolje in prostor"],
"is_outlier": false,
"not_present": 35,
"votes_for": 21,
"result": false
}
}, {
"session": {
"name": "30. redna seja",
"date_ts": "2017-05-22T02:00:00",
"orgs": [{
"acronym": "DZ",
"is_coalition": false,
"id": 95,
"name": "Dr\u017eavni zbor"
}],
"date": "22. 5. 2017",
"org": {
"acronym": "DZ",
"is_coalition": false,
"id": 95,
"name": "Dr\u017eavni zbor"
},
"id": 9580,
"in_review": true
},
"results": {
"abstain": 4,
"against": 18,
"motion_id": 7219,
"date": "30.05.2017",
"text": "Zakon o dopolnitvi Zakona o omejevanju uporabe toba\u010dnih in povezanih izdelkov - Glasovanje o zakonu v celoti",
"tags": ["Odbor za zdravstvo"],
"is_outlier": false,
"not_present": 16,
"votes_for": 52,
"result": true
}
}, {
"session": {
"name": "30. redna seja",
"date_ts": "2017-05-22T02:00:00",
"orgs": [{
"acronym": "DZ",
"is_coalition": false,
"id": 95,
"name": "Dr\u017eavni zbor"
}],
"date": "22. 5. 2017",
"org": {
"acronym": "DZ",
"is_coalition": false,
"id": 95,
"name": "Dr\u017eavni zbor"
},
"id": 9580,
"in_review": true
},
"results": {
"abstain": 6,
"against": 23,
"motion_id": 7218,
"date": "30.05.2017",
"text": "Zakon o spremembah in dopolnitvah Zakona o zdravstveni dejavnosti - Eviden\u010dni sklep o primernosti predloga zakona 30.5.2017",
"tags": ["Odbor za zdravstvo"],
"is_outlier": false,
"not_present": 19,
"votes_for": 42,
"result": true
}
}, {
"session": {
"name": "30. redna seja",
"date_ts": "2017-05-22T02:00:00",
"orgs": [{
"acronym": "DZ",
"is_coalition": false,
"id": 95,
"name": "Dr\u017eavni zbor"
}],
"date": "22. 5. 2017",
"org": {
"acronym": "DZ",
"is_coalition": false,
"id": 95,
"name": "Dr\u017eavni zbor"
},
"id": 9580,
"in_review": true
},
"results": {
"abstain": 6,
"against": 23,
"motion_id": 7218,
"date": "30.05.2017",
"text": "Zakon o spremembah in dopolnitvah Zakona o zdravstveni dejavnosti - Eviden\u010dni sklep o primernosti predloga zakona 30.5.2017",
"tags": ["Odbor za zdravstvo"],
"is_outlier": false,
"not_present": 19,
"votes_for": 42,
"result": true
}
}, {
"session": {
"name": "30. redna seja",
"date_ts": "2017-05-22T02:00:00",
"orgs": [{
"acronym": "DZ",
"is_coalition": false,
"id": 95,
"name": "Dr\u017eavni zbor"
}],
"date": "22. 5. 2017",
"org": {
"acronym": "DZ",
"is_coalition": false,
"id": 95,
"name": "Dr\u017eavni zbor"
},
"id": 9580,
"in_review": true
},
"results": {
"abstain": 3,
"against": 22,
"motion_id": 7217,
"date": "30.05.2017",
"text": "Priporo\u010dilo v zvezi s problematiko slovenskega zdravstva - Eviden\u010dni sklep MDT 30.5.2017",
"tags": ["Odbor za zdravstvo"],
"is_outlier": false,
"not_present": 14,
"votes_for": 51,
"result": true
}
}, {
"session": {
"name": "30. redna seja",
"date_ts": "2017-05-22T02:00:00",
"orgs": [{
"acronym": "DZ",
"is_coalition": false,
"id": 95,
"name": "Dr\u017eavni zbor"
}],
"date": "22. 5. 2017",
"org": {
"acronym": "DZ",
"is_coalition": false,
"id": 95,
"name": "Dr\u017eavni zbor"
},
"id": 9580,
"in_review": true
},
"results": {
"abstain": 2,
"against": 51,
"motion_id": 7216,
"date": "30.05.2017",
"text": "Zakon o spremembah in dopolnitvah Zakona o pokojninskem in invalidskem zavarovanju - Eviden\u010dni sklep o primernosti predloga zakona 30.5.2017",
"tags": ["Odbor za delo, dru\u017eino, socialne zadeve in invalide"],
"is_outlier": false,
"not_present": 13,
"votes_for": 24,
"result": false
}
}]
}
"""
people_same = request.GET.get('people_same')
parties_same = request.GET.get('parties_same')
people_different = request.GET.get('people_different')
parties_different = request.GET.get('parties_different')
if people_same != '':
people_same_list = people_same.split(',')
else:
people_same_list = []
if parties_same != '':
parties_same_list = parties_same.split(',')
else:
parties_same_list = []
if people_different != '':
people_different_list = people_different.split(',')
else:
people_different_list = []
if parties_different != '':
parties_different_list = parties_different.split(',')
else:
parties_different_list = []
if len(people_same_list) + len(parties_same_list) == 0:
return HttpResponse('Need at least one same to compare.')
if len(people_same_list) + len(parties_same_list) < 2 and len(people_different_list) + len(parties_different_list) < 1:
return HttpResponse('Not enough to compare.')
beginning = 'SELECT * FROM '
select_same_people = ''
select_same_parties = ''
match_same_people_ballots = ''
match_same_people_persons = ''
match_same_people_options = ''
match_same_parties_ballots = ''
match_same_parties_organizations = ''
match_same_parties_options = ''
select_different_people = ''
select_different_parties = ''
match_different_people_ballots = ''
match_different_people_persons = ''
match_different_people_options = ''
match_different_parties_ballots = ''
match_different_parties_organizations = ''
match_different_parties_options = ''
# select for same people DONE
for i, e in enumerate(people_same_list):
if i < len(people_same_list) - 1:
select_same_people = '%s parlaseje_ballot b%s, parlaseje_activity a%s, parlaposlanci_person p%s, ' % (select_same_people, str(i), str(i), str(i))
else:
select_same_people = '%s parlaseje_ballot b%s, parlaseje_activity a%s, parlaposlanci_person p%s' % (select_same_people, str(i), str(i), str(i))
# select for same parties DONE
for i, e in enumerate(parties_same_list):
if i < len(parties_same_list) - 1:
select_same_parties = '%s parlaseje_ballot pb%s, parlaskupine_organization o%s, ' % (select_same_parties, str(i), str(i))
else:
select_same_parties = '%s parlaseje_ballot pb%s, parlaskupine_organization o%s' % (select_same_parties, str(i), str(i))
# select for different people DONE
for i, e in enumerate(people_different_list):
if i < len(people_different_list) - 1:
select_different_people = '%s parlaseje_ballot db%s, parlaseje_activity da%s, parlaposlanci_person dp%s, ' % (select_different_people, str(i), str(i), str(i))
else:
select_different_people = '%s parlaseje_ballot db%s, parlaseje_activity da%s, parlaposlanci_person dp%s' % (select_different_people, str(i), str(i), str(i))
# select for different parties DONE
for i, e in enumerate(parties_different_list):
if i < len(parties_different_list) - 1:
select_different_parties = '%s parlaseje_ballot dpb%s, parlaskupine_organization do%s, ' % (select_different_parties, str(i), str(i))
else:
select_different_parties = '%s parlaseje_ballot dpb%s, parlaskupine_organization do%s' % (select_different_parties, str(i), str(i))
# match same people ballots by vote id DONE
# if only one person was passed, match_same_people_ballots will remain an empty string
for i, e in enumerate(people_same_list):
if i != 0:
if i < len(people_same_list) - 1:
match_same_people_ballots = '%s b0.vote_id = b%s.vote_id AND ' % (match_same_people_ballots, str(i))
else:
match_same_people_ballots = '%s b0.vote_id = b%s.vote_id' % (match_same_people_ballots, str(i))
# match same parties ballots by vote id DONE
# if only one same party was passed match_same_parties_ballots will remain an empty string
if len(people_same_list) == 0:
# no same people were passed to the API
pass
if len(parties_same_list) == 0:
# no same parties were passed
return HttpResponse('You need to pass at least one "same" person or party.')
elif len(parties_same_list) == 1:
# only one same party was passed, there is nothing to match yet
match_same_parties_ballots = ''
else:
# more than one same party was passed
for i, e in enumerate(parties_same_list):
if i != 0:
# ignore the first one, because all others will be compared with it
if i < len(parties_same_list) - 1:
# not last
match_same_parties_ballots = '%s pb0.vote_id = pb%s.vote_id AND ' % (match_same_parties_ballots, str(i))
else:
# last
match_same_parties_ballots = '%s pb0.vote_id = pb%s.vote_id' % (match_same_parties_ballots, str(i))
elif len(people_same_list) > 0:
# one or more same people were passed
for i, e in enumerate(parties_same_list):
# do not ignore the first one, because all will be compared to the first person ballot
if i < len(parties_same_list) - 1:
# not last
match_same_parties_ballots = '%s b0.vote_id = pb%s.vote_id AND ' % (match_same_parties_ballots, str(i))
else:
# last
match_same_parties_ballots = '%s b0.vote_id = pb%s.vote_id' % (match_same_parties_ballots, str(i))
# match same people with persons DONE
for i, e in enumerate(people_same_list):
if i < len(people_same_list) - 1:
match_same_people_persons = '%s b%s.activity_ptr_id = a%s.id AND a%s.person_id = p%s.id AND p%s.id_parladata = %s AND ' % (match_same_people_persons, str(i), str(i), str(i), str(i), str(i), e)
else:
match_same_people_persons = '%s b%s.activity_ptr_id = a%s.id AND a%s.person_id = p%s.id AND p%s.id_parladata = %s' % (match_same_people_persons, str(i), str(i), str(i), str(i), str(i), e)
# match same parties with organizations DONE
for i, e in enumerate(parties_same_list):
if i < len(parties_same_list) -1:
match_same_parties_organizations = '%s pb%s.org_voter_id = o%s.id AND o%s.id_parladata = %s AND ' % (match_same_parties_organizations, str(i), str(i), str(i), e)
else:
match_same_parties_organizations = '%s pb%s.org_voter_id = o%s.id AND o%s.id_parladata = %s' % (match_same_parties_organizations, str(i), str(i), str(i), e)
# match same people based on options DONE
for i, e in enumerate(people_same_list):
if i != 0:
if i != len(people_same_list) - 1:
match_same_people_options = '%s b0.option = b%s.option AND ' % (match_same_people_options, str(i))
else:
match_same_people_options = '%s b0.option = b%s.option' % (match_same_people_options, str(i))
# match same parties based on options
for i, e in enumerate(parties_same_list):
if i == 0:
if select_same_people != '':
if len(parties_same_list) > 1:
match_same_parties_options = '%s b0.option = pb0.option AND ' % (match_same_parties_options)
else:
match_same_parties_options = '%s b0.option = pb0.option ' % (match_same_parties_options)
else:
if i != len(parties_same_list) - 1:
match_same_parties_options = '%s pb0.option = pb%s.option AND ' % (match_same_parties_options, str(i))
else:
match_same_parties_options = '%s pb0.option = pb%s.option' % (match_same_parties_options, str(i))
# compare different people and parties
if len(people_same_list) > 0:
# we compare with same people
# match different people ballots by vote id
for i, e in enumerate(people_different_list):
if i < len(people_different_list) - 1:
match_different_people_ballots = '%s b0.vote_id = db%s.vote_id AND ' % (match_different_people_ballots, str(i))
else:
match_different_people_ballots = '%s b0.vote_id = db%s.vote_id' % (match_different_people_ballots, str(i))
# match different parties ballots by vote id
for i, e in enumerate(parties_different_list):
if i < len(parties_different_list) - 1:
match_different_parties_ballots = '%s b0.vote_id = dpb%s.vote_id AND ' % (match_different_parties_ballots, str(i))
else:
match_different_parties_ballots = '%s b0.vote_id = dpb%s.vote_id' % (match_different_parties_ballots, str(i))
# match different people based on options
for i, e in enumerate(people_different_list):
if i != len(people_different_list) - 1:
match_different_people_options = '%s b0.option != db%s.option AND ' % (match_different_people_options, str(i))
else:
match_different_people_options = '%s b0.option != db%s.option' % (match_different_people_options, str(i))
# match different parties based on options
for i, e in enumerate(parties_different_list):
if i < len(parties_different_list) - 1:
match_different_parties_options = '%s b0.option != dpb%s.option AND ' % (match_different_parties_options, str(i))
else:
match_different_parties_options = '%s b0.option != dpb%s.option ' % (match_different_parties_options, str(i))
else:
# we compare with same parties
# match different people ballots by vote id
for i, e in enumerate(people_different_list):
if i < len(people_different_list) - 1:
match_different_people_ballots = '%s pb0.vote_id = db%s.vote_id AND ' % (match_different_people_ballots, str(i))
else:
match_different_people_ballots = '%s pb0.vote_id = db%s.vote_id' % (match_different_people_ballots, str(i))
# match different parties ballots by vote id
for i, e in enumerate(parties_different_list):
if i < len(parties_different_list) - 1:
match_different_parties_ballots = '%s pb0.vote_id = dpb%s.vote_id AND ' % (match_different_parties_ballots, str(i))
else:
match_different_parties_ballots = '%s pb0.vote_id = dpb%s.vote_id' % (match_different_parties_ballots, str(i))
# match different people based on options
for i, e in enumerate(people_different_list):
if i != len(people_different_list) - 1:
match_different_people_options = '%s pb0.option != db%s.option AND ' % (match_different_people_options, str(i))
else:
match_different_people_options = '%s pb0.option != db%s.option' % (match_different_people_options, str(i))
# match different parties based on options
for i, e in enumerate(parties_different_list):
if i < len(parties_different_list) - 1:
match_different_parties_options = '%s pb0.option != dpb%s.option AND ' % (match_different_parties_options, str(i))
else:
match_different_parties_options = '%s pb0.option != dpb%s.option ' % (match_different_parties_options, str(i))
# match different people with person
for i, e in enumerate(people_different_list):
if i < len(people_different_list) - 1:
match_different_people_persons = '%s db%s.activity_ptr_id = da%s.id AND da%s.person_id = dp%s.id AND dp%s.id_parladata = %s AND ' % (match_different_people_persons, str(i), str(i), str(i), str(i), str(i), e)
else:
match_different_people_persons = '%s db%s.activity_ptr_id = da%s.id AND da%s.person_id = dp%s.id AND dp%s.id_parladata = %s' % (match_different_people_persons, str(i), str(i), str(i), str(i), str(i), e)
# match different parties with organizations
for i, e in enumerate(parties_different_list):
if i < len(parties_different_list) - 1:
match_different_parties_organizations = '%s dpb%s.org_voter_id = do%s.id AND do%s.id_parladata = %s AND ' % (match_different_parties_organizations, str(i), str(i), str(i), e)
else:
match_different_parties_organizations = '%s dpb%s.org_voter_id = do%s.id AND do%s.id_parladata = %s' % (match_different_parties_organizations, str(i), str(i), str(i), e)
query = beginning
q_selectors_list = [select_same_people, select_same_parties, select_different_people, select_different_parties]
q_selectors_list_clean = [s for s in q_selectors_list if s != '']
q_selectors = ', '.join(q_selectors_list_clean)
print 'q_selectors ' + q_selectors
query = query + ' ' + q_selectors + ' WHERE'
q_match_ballots_list = [match_same_people_ballots, match_same_parties_ballots, match_different_people_ballots, match_different_parties_ballots]
q_match_ballots_list_clean = [s for s in q_match_ballots_list if s != '']
q_match_ballots = ' AND '.join(q_match_ballots_list_clean)
print 'q_match_ballots ' + q_match_ballots
# query = query + ' ' + q_match_ballots + ' AND'
q_match_options_list = [match_same_people_options, match_same_parties_options, match_different_people_options, match_different_parties_options]
q_match_options_list_clean = [s for s in q_match_options_list if s != '']
q_match_options = ' AND '.join(q_match_options_list_clean)
print 'q_match_options ' + q_match_options
# query = query + ' ' + q_match_options + ' AND'
q_match_persons_list = [match_same_people_persons, match_different_people_persons]
q_match_persons_list_clean = [s for s in q_match_persons_list if s != '']
q_match_persons = ' AND '.join(q_match_persons_list_clean)
print 'q_match_persons ' + q_match_persons
# query = query + ' ' + q_match_persons + ' AND'
q_match_organizations_list = [match_same_parties_organizations, match_different_parties_organizations]
q_match_organizations_list_clean = [s for s in q_match_organizations_list if s != '']
q_match_organizations = ' AND '.join(q_match_organizations_list_clean)
print 'q_match_organizations ' + q_match_organizations
# query = query + ' ' + q_match_organizations
after_where_list = [q_match_ballots, q_match_options, q_match_persons, q_match_organizations]
after_where_list_clean = [s for s in after_where_list if s != '']
after_where = ' AND '.join(after_where_list_clean)
query = query + after_where
if request.GET.get('special'):
# exclude 'ni'
exclude_ni_people_same = ''
exclude_ni_parties_same = ''
exclude_ni_people_different = ''
exclude_ni_parties_different = ''
for i, e in enumerate(people_same_list):
if i < len(people_same_list) - 1:
exclude_ni_people_same = '%s b%s.option != \'ni\' AND ' % (exclude_ni_people_same, i)
else:
exclude_ni_people_same = '%s b%s.option != \'ni\'' % (exclude_ni_people_same, i)
for i, e in enumerate(parties_same_list):
if i < len(parties_same_list) - 1:
exclude_ni_parties_same = '%s pb%s.option != \'ni\' AND ' % (exclude_ni_parties_same, i)
else:
exclude_ni_parties_same = '%s pb%s.option != \'ni\'' % (exclude_ni_parties_same, i)
for i, e in enumerate(people_different_list):
if i < len(people_different_list) - 1:
exclude_ni_people_different = '%s db%s.option != \'ni\' AND ' % (exclude_ni_people_different, i)
else:
exclude_ni_people_different = '%s db%s.option != \'ni\'' % (exclude_ni_people_different, i)
for i, e in enumerate(parties_different_list):
if i < len(parties_different_list) - 1:
exclude_ni_parties_different = '%s dpb%s.option != \'ni\' AND ' % (exclude_ni_parties_different, i)
else:
exclude_ni_parties_different = '%s dpb%s.option != \'ni\'' % (exclude_ni_parties_different, i)
exclude_ni_list = [exclude_ni_people_same, exclude_ni_parties_same, exclude_ni_people_different, exclude_ni_parties_different]
exclude_ni_list_clean = [s for s in exclude_ni_list if s != '']
exclude_ni = ' AND '.join(exclude_ni_list_clean)
query = query + ' AND ' + exclude_ni
# return HttpResponse(query)
print query
print 'STATEMENT PARTS:'
print 'select_same_people ' + select_same_people
print 'select_same_parties ' + select_same_parties
print 'match_same_people_ballots ' + match_same_people_ballots
print 'match_same_people_persons ' + match_same_people_persons
print 'match_same_people_options ' + match_same_people_options
print 'match_same_parties_ballots ' + match_same_parties_ballots
print 'match_same_parties_organizations ' + match_same_parties_organizations
print 'match_same_parties_options ' + match_same_parties_options
print 'select_different_people ' + select_different_people
print 'select_different_parties ' + select_different_parties
print 'match_different_people_ballots ' + match_different_people_ballots
print 'match_different_people_persons ' + match_different_people_persons
print 'match_different_people_options ' + match_different_people_options
print 'match_different_parties_ballots ' + match_different_parties_ballots
print 'match_different_parties_organizations ' + match_different_parties_organizations
print 'match_different_parties_options ' + match_different_parties_options
ballots = Ballot.objects.raw(query)
session_ids = set([b.vote.session.id for b in ballots])
sessions = {}
for s in session_ids:
sessions[s] = Session.objects.get(id=s).getSessionData()
print '[SESSION IDS:]'
print set(session_ids)
out = {
'total': Vote.objects.all().count(),
'results': []
}
for ballot in ballots:
out['results'].append({
'session': sessions[ballot.vote.session.id],
'results': {
'motion_id': ballot.vote.id_parladata,
'text': ballot.vote.motion,
'votes_for': ballot.vote.votes_for,
'against': ballot.vote.against,
'abstain': ballot.vote.abstain,
'not_present': ballot.vote.not_present,
'result': ballot.vote.result,
'is_outlier': ballot.vote.is_outlier,
'tags': ballot.vote.tags,
'date': ballot.start_time.strftime(API_DATE_FORMAT)
}
})
return JsonResponse(out, safe=False) | e49b2e1b181761e56795868a3dd6ff5a0452cd05 | 22,898 |
def get_bits(register, index, length=1):
"""
Get selected bit(s) from register while masking out the rest.
Returns as boolean if length==1
:param register: Register value
:type register: int
:param index: Start index (from right)
:type index: int
:param length: Number of bits (default 1)
:type length: int
:return: Selected bit(s)
:rtype: Union[int, bool]
"""
result = (register >> index) & ((1 << length) - 1)
if length == 1:
return result == 1
return result | 0663d925c2c74ece359a430392881cf24b75a575 | 22,899 |
def addactual():
"""Add actual spendings"""
if request.method == "POST":
allPayments = []
# Current user that is logged-in saved in variable
userId = session["user_id"]
month = request.form.get("month")
housing = request.form.get("housing")
housing = float(housing)
pensionIns = request.form.get("pensionIns")
pensionIns = float(pensionIns)
food = request.form.get("food")
food= float(food)
health = request.form.get("health")
health = float(health)
transport = request.form.get("transport")
transport = float(transport)
debt = request.form.get("debt")
debt = float(debt)
utilities = request.form.get("utilities")
utilities = float(utilities)
clothing = request.form.get("clothing")
clothing = float(clothing)
vacation = request.form.get("vacation")
vacation = float(vacation)
unexpected = request.form.get("unexpected")
unexpected = float(unexpected)
total = housing + pensionIns + food + health + transport + debt + utilities + clothing + vacation + unexpected
allPayments.append({"month": month, "housing": housing, "pensionIns": pensionIns, "food": food, "health": health, "transport": transport, "debt": debt, "utilities": utilities, "clothing": clothing, "vacation": vacation, "unexpected": unexpected, "total": total})
allMonths = db.execute("SELECT month FROM payments WHERE userid = :userId", userId=userId)
enteredMonths = allMonths[0]["month"]
db.execute("INSERT INTO payments(userId, month, housing, pensionIns, food, health, transport, debt, utilities, clothing, vacation, unexpected, total)\
VALUES(:userId, :month, :housing, :pensionIns, :food, :health, :transport, :debt, :utilities, :clothing, :vacation, :unexpected, :total)", userId=userId, month=month, housing=housing, pensionIns=pensionIns, food=food, health=health, transport=transport, debt=debt, utilities=utilities, clothing=clothing, vacation=vacation, unexpected=unexpected, total=total)
# Flash message to confirm that the user add a note
flash("Payments added")
if month in enteredMonths:
return apology("Monnth already entered!")
return redirect("/actual")
else:
return render_template("addactual.html") | ccf7d9c362aa1f250959dce51032e43b00ffe412 | 22,900 |
def parse_move(line):
""" Parse steps from a move string """
text = line.split()
if len(text) == 0:
raise ValueError("No steps in move given to parse. %s" % (repr(line)))
steps = []
for step in text:
from_ix = alg_to_index(step[1:3])
if len(step) > 3:
if step[3] == 'x':
continue
elif step[3] == 'n':
to_ix = from_ix + 8
elif step[3] == 's':
to_ix = from_ix - 8
elif step[3] == 'e':
to_ix = from_ix + 1
elif step[3] == 'w':
to_ix = from_ix - 1
else:
raise ValueError("Invalid step direction.")
steps.append((from_ix, to_ix))
else:
raise ValueError("Can't represent placing step")
return steps | 660374a82c19da61df3e0f8468f09c5df7d3be5e | 22,901 |
def get_tensor_name(node_name, output_slot):
"""Get tensor name given node name and output slot index.
Args:
node_name: Name of the node that outputs the tensor, as a string.
output_slot: Output slot index of the tensor, as an integer.
Returns:
Name of the tensor, as a string.
"""
return "%s:%d" % (node_name, output_slot) | d563a3e4be696fc1109aa7a60fb4dd140ec65431 | 22,903 |
def EstimateMarriageSurvival(resp):
"""Estimates the survival curve.
resp: DataFrame of respondents
returns: pair of HazardFunction, SurvivalFunction
"""
# NOTE: Filling missing values would be better than dropping them.
complete = resp[resp.evrmarry == 1].agemarry.dropna()
ongoing = resp[resp.evrmarry == 0].age
hf = EstimateHazardFunction(complete, ongoing)
sf = hf.MakeSurvival()
return hf, sf | 06f7d307662a70ef4c77073e4202f69ec68ee9e4 | 22,904 |
def get_cowell_data():
"""
Gets Cowell data.
:return: Data and headers.
"""
n = 10000
Y = np.random.normal(0, 1, n)
X = np.random.normal(Y, 1, n)
Z = np.random.normal(X, 1, n)
D = np.vstack([Y, X, Z]).T
return D, ['Y', 'X', 'Z'] | bd2084b889e8e9068d11b0f49c1d00226bfc6a1f | 22,905 |
def is_str_str_tuple(t):
"""Is this object a tuple of two strings?"""
return (isinstance(t, tuple) and len(t) == 2
and isinstance(t[0], basestring)
and isinstance(t[1], basestring)) | e568821ee2d7a3926744b93eaf11356744ca4538 | 22,906 |
def g(dist, aq):
"""
Compute function g (Lemma 5) for a given full parent isntantiation.
Parameters
----------
dists: list ints
Counts of the child variable for a given full parent instantiation.
aq: float
Equivalent sample size divided by the product of parents arities.
"""
res = log(2*min(dist)/aq + 1)
for d in dist:
res += - log(2*d/aq + 1)
return res | 505f5c0857f97579bcb1be9e812a90c31ecf4e5e | 22,907 |
def order_tweets_by_polarity(tweets, positive_highest=True):
"""Sort the tweets by polarity, receives positive_highest which determines
the order. Returns a list of ordered tweets."""
reverse = True if positive_highest else False
return sorted(tweets, key=lambda tweet: tweet.polarity, reverse=reverse) | 996c0aa6c374716f10d4d7a890162fe1bb87eef1 | 22,909 |
from scipy.stats import beta
from params import VoC_start_date, use_vaccine_effect
def read_in_Reff_file(file_date, VoC_flag=None, scenario=''):
"""
Read in Reff h5 file produced by generate_RL_forecast.
Args:
file_date: (date as string) date of data file
VoC_date: (date as string) date from which to increase Reff by VoC
"""
if file_date is None:
raise Exception('Need to provide file date to Reff read.')
file_date = pd.to_datetime(file_date).strftime("%Y-%m-%d")
df_forecast = pd.read_hdf('results/soc_mob_R'+file_date+scenario+'.h5', key='Reff')
if (VoC_flag != '') and (VoC_flag is not None):
VoC_start_date = pd.to_datetime(VoC_start_date)
if VoC_flag == 'Alpha':
print('This VoC will be deprecated in future.')
# Here we apply the beta(6,14)+1 scaling from VoC to the Reff.
# We do so by editing a slice of the data frame. Forgive me for my sins.
row_bool_to_apply_VoC = (df_forecast.type == 'R_L') & (pd.to_datetime(df_forecast.date, format='%Y-%m-%d') >= VoC_start_date)
index_map = df_forecast.index[row_bool_to_apply_VoC]
# Index 9 and onwards are the 2000 Reff samples.
df_slice_after_VoC = df_forecast.iloc[index_map, 8:]
multiplier = beta.rvs(6,14, size = df_slice_after_VoC.shape) + 1
if VoC_flag == 'Delta': # Increase from Delta
# Here we apply the beta(2,2)+3 scaling from VoC to the Reff based on CDC results.
# We do so by editing a slice of the data frame. Forgive me for my sins.
row_bool_to_apply_VoC = (df_forecast.type == 'R_L') & (pd.to_datetime(df_forecast.date, format='%Y-%m-%d') >= VoC_start_date)
index_map = df_forecast.index[row_bool_to_apply_VoC]
# Index 9 and onwards are the 2000 Reff samples.
df_slice_after_VoC = df_forecast.iloc[index_map, 8:]
multiplier = beta.rvs(3,3, size = df_slice_after_VoC.shape) + 2.1 - 0.5 # Mean 2.1 Delta
df_forecast.iloc[index_map , 8:] = df_slice_after_VoC*multiplier
if use_vaccine_effect:
# Load in vaccination effect data
vaccination_by_state = pd.read_csv('data/vaccination_by_state.csv', parse_dates=['date'])
vaccination_by_state = vaccination_by_state[['state', 'date','overall_transmission_effect']]
# Make datetime objs into strings
vaccination_by_state['date_str'] = pd.to_datetime(vaccination_by_state['date'], format='%Y-%m-%d').dt.strftime('%Y-%m-%d')
df_forecast['date_str'] = pd.to_datetime(df_forecast['date'], format='%Y-%m-%d').dt.strftime('%Y-%m-%d')
# Filling in future days will the same vaccination level as current.
for state, forecast_df_state in df_forecast.groupby('state'):
latest_Reff_data_date = max(forecast_df_state.date_str)
latest_vaccination_data_date = max(vaccination_by_state.groupby('state').get_group(state)['date'])
latest_vaccination_date_effect = vaccination_by_state.groupby(['state', 'date']).get_group((state, latest_vaccination_data_date))['overall_transmission_effect'].iloc[0]
# Fill in the future dates with the same level of vaccination.
vaccination_by_state = vaccination_by_state.append(pd.DataFrame([(state, pd.to_datetime(date), latest_vaccination_date_effect, date.strftime('%Y-%m-%d')) for date in pd.date_range(latest_vaccination_data_date, latest_Reff_data_date)], columns = ['state', 'date', 'overall_transmission_effect', 'date_str']))
# Create a (state,date) indexed map of transmission effect
overall_transmission_effect = vaccination_by_state.set_index(['state', 'date_str'])['overall_transmission_effect'].to_dict()
# Apply this effect to the forecast
vaccination_multiplier = df_forecast.apply(lambda row: 1 if row['type']!='R_L' else overall_transmission_effect.get((row['state'], row['date_str']),1), axis=1)
df_forecast = df_forecast.drop('date_str', axis='columns')
# Apply the vaccine effect to the forecast. The 8:onwards columns are all the Reff paths.
df_forecast.iloc[: , 8:] = df_forecast.iloc[: , 8:].multiply(vaccination_multiplier.to_numpy(), axis='rows')
return df_forecast | 219118c333f14ba9f7a44416bd30e38c66b3d5d9 | 22,911 |
def string_with_fixed_length(s="", l=30):
"""
Return a string with the contents of s plus white spaces until length l.
:param s: input string
:param l: total length of the string (will crop original string if longer than l)
:return:
"""
s_out = ""
for i in range(0, l):
if i < len(s):
s_out += s[i]
else:
s_out += " "
return s_out | 2230a2893913eadb2c42a03c85728a5fe79e1e0f | 22,913 |
def fetch_ref_proteomes():
"""
This method returns a list of all reference proteome accessions available
from Uniprot
"""
ref_prot_list = []
response = urllib2.urlopen(REF_PROT_LIST_URL)
for ref_prot in response:
ref_prot_list.append(ref_prot.strip())
return ref_prot_list | f42c879f78a0e7281df369b40145c5d60aedb32b | 22,914 |
from typing import BinaryIO
def load(fp: BinaryIO, *, fmt=None, **kwargs) -> TextPlistTypes:
"""Read a .plist file (forwarding all arguments)."""
if fmt is None:
header = fp.read(32)
fp.seek(0)
if FMT_TEXT_HANDLER["detect"](header):
fmt = PF.FMT_TEXT
if fmt == PF.FMT_TEXT:
return FMT_TEXT_HANDLER["parser"](**kwargs).parse(fp)
else:
# This one can fail a bit more violently like the original
return pl.load(fp, fmt=translation[fmt], **kwargs) | d8445e388b33f69555c1270cebecfd552a34196a | 22,915 |
def _swig_add_metaclass(metaclass):
"""Class decorator for adding a metaclass to a SWIG wrapped class - a slimmed down version of six.add_metaclass"""
def wrapper(cls):
return metaclass(cls.__name__, cls.__bases__, cls.__dict__.copy())
return wrapper | d1e4f766827c13fa312ce3485daf43be2fc0eda1 | 22,916 |
from typing import Set
def create_affected_entities_description(security_data: SecurityData, limit: int = 5) -> str:
"""Create a description of the entities which are affected by a security problem.
:param security_data: the security details for which to create the description
:param limit: the maximum number of entities to list in the description
:return: the description
"""
def _stringify(entity_list: Set[str], label: str, the_limit: int):
if len(entity_list) > the_limit:
return f"{len(entity_list)} {label} affected ([details|{security_data.url}])\n"
return f"Affected {label}: {', '.join(entity_list)}\n"
desc = _stringify(security_data.affected_entity_names, 'entities', limit)
desc += _stringify(security_data.related_hostnames, 'hostnames', limit)
return desc | 95adc5a6a1fe88e0ec80273deee95e39ee196a55 | 22,917 |
def amac_person_org_list_ext():
"""
中国证券投资基金业协会-信息公示-从业人员信息-基金从业人员资格注册外部公示信息
http://gs.amac.org.cn/amac-infodisc/res/pof/extperson/extPersonOrgList.html
:return:
:rtype: pandas.DataFrame
"""
data = get_data(url=amac_person_org_list_ext_url, payload=amac_person_org_list_ext_payload)
need_data = data["content"]
keys_list = [
"orgName",
"orgType",
"extWorkerTotalNum",
"extOperNum",
"extSalesmanNum",
"extInvestmentManagerNum",
"extFundManagerNum",
] # 定义要取的 value 的 keys
manager_data_out = pd.DataFrame(need_data)
manager_data_out = manager_data_out[keys_list]
manager_data_out.columns = [
"机构名称",
"机构性质",
"员工人数",
"基金从业资格",
"基金销售业务资格",
"基金经理",
"投资经理",
]
return manager_data_out | f84d40a79ae49ebdf5a8ecb6612b37515f5ea676 | 22,918 |
def ele_types(eles):
"""
Returns a list of unique types in eles
"""
return list(set([e['type'] for e in eles] )) | e87ea4c6256c2520f9f714dd065a9e8642f77555 | 22,920 |
def colorful_subgraph(G, colors, k, s, subgraph_type, get_detail=True, verbose=False):
"""Detect if colorful path exists fom s to any node by dynamic programming.
Args:
G (nx.Graph): with n nodes and m edges
colors (list): list of integers represents node colors
k (int): number of colors
s (int): starting node
subgraph (str): 'path' or 'cycle'
Return:
List: nodes connect to s with at least one colorful path
"""
n = G.number_of_nodes()
col = 2**k
dp_mat = np.zeros((n, col))
dp_mat[s][power2(colors[s])] = 1
targets = dp_helper(dp_mat, 2, G, colors, k, set([s]), s, subgraph_type)
if not get_detail:
return targets
else:
empty_color = 0
total_count = 0
for target in targets:
total_count += backtrack(dp_mat, G, colors, target, s, [str(target)], set_bit(empty_color, colors[target]), verbose)
if verbose:
print('from node', s, 'find in total', total_count, 'colorful paths of length', k)
return total_count | 644a1091bbee9bf79f236a8f815ae4c07fb1f538 | 22,921 |
import itertools
def find_all_combos(
conformer,
delta=float(120),
cistrans=True,
chiral_centers=True):
"""
A function to find all possible conformer combinations for a given conformer
Params:
- conformer (`Conformer`) an AutoTST `Conformer` object of interest
- delta (int or float): a number between 0 and 180 or how many conformers to generate per dihedral
- cistrans (bool): indication of if one wants to consider cistrans bonds
- chiral_centers (bool): indication of if one wants to consider chiral centers bonds
Returns:
- all_combos (list): a list corresponding to the number of unique conformers created.
"""
conformer.get_geometries()
_, torsions = find_terminal_torsions(conformer)
torsion_angles = np.arange(0, 360, delta)
torsion_combos = list(itertools.product(
torsion_angles, repeat=len(torsions)))
if cistrans:
cistranss = []
cistrans_options = ["E", "Z"]
try:
ring_info = conformer._pseudo_geometry.GetRingInfo()
except AttributeError:
ring_info = conformer.rdkit_molecule.GetRingInfo()
for cistrans in conformer.cistrans:
i,j,k,l = cistrans.atom_indices
if (ring_info.NumAtomRings(i) != 0) or (ring_info.NumAtomRings(k) != 0):
continue
cistranss.append(cistrans)
cistrans_combos = list(itertools.product(
cistrans_options, repeat=len(cistranss)))
else:
cistrans_combos = [()]
if chiral_centers:
chiral_centerss = []
chiral_options = ["R", "S"]
try:
ring_info = conformer._pseudo_geometry.GetRingInfo()
except AttributeError:
ring_info = conformer.rdkit_molecule.GetRingInfo()
for center in conformer.chiral_centers:
if ring_info.NumAtomRings(center.atom_index) != 0:
continue
chiral_centerss.append(center)
chiral_combos = list(itertools.product(
chiral_options, repeat=len(chiral_centerss)))
else:
chiral_combos = [()]
all_combos = list(
itertools.product(
torsion_combos,
cistrans_combos,
chiral_combos))
return all_combos | 1b5c5f44de23524a9392f51e76f46ef0f234648c | 22,922 |
def generate_abbreviations(
labels: tp.Iterable[str],
max_abbreviation_len: int = 3,
dictionary: tp.Union[tp.Tuple[str], str] = "cdfghjklmnpqrstvxz"):
"""
Returns unique abbreviations for the given labels. Generates the abbreviations with
:func:`beatsearch.utils.generate_unique_abbreviation`.
:param labels: labels to abbreviate
:param max_abbreviation_len: maximum length of the abbreviations
:param dictionary: characteristic characters (defaults to consonants)
:return: abbreviations of the given labels
"""
abbreviations = list()
for label in labels:
abbreviations.append(generate_unique_abbreviation(
label,
max_len=max_abbreviation_len,
taken_abbreviations=abbreviations,
dictionary=dictionary
))
return abbreviations | a22e68990147bd973c4a7af8e9e1a8f28fa7b4ac | 22,924 |
def best_hand(hand):
"""Из "руки" в 7 карт возвращает лучшую "руку" в 5 карт """
i = iter(combinations(hand, 5))
best_rank = 0, 0, 0
best_combination = None
for combination in i:
current_rank = hand_rank(combination)
if compare(current_rank, best_rank):
best_rank = current_rank
best_combination = combination
return best_combination | c885625c2b5f60453b6dca59e25003b9f977e9d4 | 22,925 |
def calculate_label_counts(examples):
"""Assumes that the examples each have ONE label, and not a distribution over labels"""
label_counts = {}
for example in examples:
label = example.label
label_counts[label] = label_counts.get(label, 0) + 1
return label_counts | 4c45378c6e29ce3d1b40b4d02a112e1fbd23d8b6 | 22,926 |
def printer(arg1):
"""
Even though 'times' is destroyed when printer() has been called,
the 'inner' function created remembers what times is. Same goes
for the argument arg1.
"""
times = 3
def inner():
for i in range(times): print(arg1)
return inner | 7e3d2033602eaef9ef570c97a058208066073427 | 22,927 |
from bs4 import BeautifulSoup
def from_get_proxy():
"""
From "http://www.getproxy.jp"
:return:
"""
base = 'http://www.getproxy.jp/proxyapi?' \
'ApiKey=659eb61dd7a5fc509bef01f2e8b15669dfdb0f54' \
'&area={:s}&sort=requesttime&orderby=asc&page={:d}'
urls = [base.format('CN', i) for i in range(1, 25)]
urls += [base.format('US', i) for i in range(1, 25)]
urls += [base.format('CN', i) for i in range(25, 50)]
urls += [base.format('US', i) for i in range(25, 50)]
proxies = []
i = 0
retry = 0
length = len(urls)
while i < length:
res = _safe_http(urls[i])
try:
soup = BeautifulSoup(res, 'lxml')
except:
i += 1
continue
data = soup.find_all('ip')
if len(data) == 0:
retry += 1
if retry == 4:
break
else:
sleep(62)
else:
retry = 0
proxies += [pro.text for pro in data]
i += 1
return proxies | b3302b0092eb973022e2d322cc00e1391fe68c8b | 22,928 |
def KORL(a, kappa=None):
""" log rounds k-ary OR """
k = len(a)
if k == 1:
return a[0]
else:
t1 = KORL(a[:k//2], kappa)
t2 = KORL(a[k//2:], kappa)
return t1 + t2 - t1.bit_and(t2) | 2c85f7131dcfe0b35d3bfd8b04b876fad320572f | 22,929 |
import json
import requests
def verify(token):
"""Verifies a JWS token, returning the parsed token if the token has a
valid signature by the key provided by the key of the OpenID
Connect server stated in the ISS claim of the token. If the
signature does not match that key, None is returned.
"""
unverified_token_data = json.loads(jose.jws.get_unverified_claims(token))
jwks_uri = requests.get("%s/.well-known/openid-configuration" % unverified_token_data["iss"]).json()["jwks_uri"]
keys = requests.get(jwks_uri).json()["keys"]
for key in keys:
try:
verified_token_data = json.loads(
jose.jws.verify(token, key, [key["alg"]]))
except:
pass
else:
return verified_token_data
return None | 8d1dac4d1c87de3d2d619f58bdf077f82b54dfda | 22,930 |
def get_listing_panel(tool, ghidra):
""" Get the code listing UI element, so we can get up-to-date location/highlight/selection """
cvs = tool.getService(ghidra.app.services.CodeViewerService)
return cvs.getListingPanel() | f14477cf13cb7eb4e7ede82b0c2068ca53a30723 | 22,931 |
def template_data(environment, template_name="report_html.tpl", **kwds):
"""Build an arbitrary templated page.
"""
template = env.get_template(template_name)
return template.render(**environment) | 6b3c1ea5c280931280b5d6c69f380b9349ac0627 | 22,932 |
def resnet152_ibn_a(**kwargs):
"""
Constructs a ResNet-152-IBN-a model.
"""
model = ResNet_IBN(block=Bottleneck_IBN,
layers=[3, 8, 36, 3],
ibn_cfg=('a', 'a', 'a', None),
**kwargs)
return model | 5cb059910c5442b0df7c08471f75b96fe3fb4c80 | 22,933 |
import scipy
def calibratePose(pts3,pts2,cam,params_init):
"""
Calibrates the camera to match the view calibrated by updating R,t so that pts3 projects
as close as possible to pts2
:param pts3: Coordinates of N points stored in a array of shape (3,N)
:param pts2: Coordinates of N points stored in a array of shape (2,N)
:param cam_init: Initial estimate of camera
:param params_init:
:return: Refined estimate of camera with updated R,t parameters
"""
func = lambda rt: residuals(pts3,pts2,cam,rt)
least = scipy.optimize.leastsq(func,params_init)[0]
cam.update_extrinsics(least)
return cam | 5f1fcf55ec934596fd46f129d12e8457173239eb | 22,934 |
import base64
def image_to_base64(file_image):
"""
ESSA FUNÇÃO TEM COMO OBJETIVO, CONVERTER FORMATO DE INPUT (PNG) -> BASE64
O ARQUIVO OBTIDO (PNG) É SALVO NA MÁQUINA QUE ESTÁ EXECUTANDO O MODELO.
# Arguments
file_image - Required : Caminho do arquivo
no formato imagem (String)
# Returns
built_base64 - Required : Valor no formato Base64 (BASE64)
"""
# INICIANDO A VARIÁVEL QUE RECEBERÁ O VALOR DA BASE64
built_base64 = None
try:
# DECODOFICANDO A BASE64, ARMAZENANDO-O NO OBJETO ABERTO
# ESCREVENDO NA MÁQUINA
built_base64 = base64.b64encode(open(file_image, 'rb').read())
except Exception as ex:
execute_log.error("ERRO NA FUNÇÃO {} - {}".format(stack()[0][3], ex))
return built_base64 | 74e9c46ce48e23fdb5453cb9ce5223dfb8e6004b | 22,935 |
from pathlib import Path
from typing import Set
def get_files_recurse(path: Path) -> Set:
"""Get all files recursively from given :param:`path`."""
res = set()
for p in path.rglob("*"):
if p.is_dir():
continue
res.add(p)
return res | c129ce43130da09962264f6e7935410685815943 | 22,936 |
from typing import List
def img_after_ops(img: List[str], ops: List[int]) -> List[str]:
"""Apply rotation and flip *ops* to image *img* returning the result"""
new_img = img[:]
for op in ops:
if op == Tile.ROTATE:
new_img = [cat(l)[::-1] for l in zip(*new_img)]
elif op == Tile.FLIP:
new_img = [l[::-1] for l in new_img]
return new_img | a28f1dbdf7f756c9b8b313d889596797466ab729 | 22,937 |
import functools
import urllib
def authenticated(method):
"""Decorate methods with this to require that the user be logged in.
Fix the redirect url with full_url.
Tornado use uri by default.
"""
@functools.wraps(method)
def wrapper(self, *args, **kwargs):
user = self.current_user
if not user:
if self.request.method == "GET":
url = self.get_login_url()
if "?" not in url:
url += "?" + urllib.urlencode(dict(next=self.request.full_url()))
self.redirect(url)
return
raise HTTPError(403)
#self._current_user = user
return method(self, *args, **kwargs)
return wrapper | c4dc18af60b9270d644ed807ea1c74b821ea7bca | 22,938 |
import math
def ring_samp_ranges(zma, rng_atoms):
""" Set sampling range for ring dihedrals.
:param zma: Z-Matrix
:type zma: automol.zmat object
:param rng_atoms: idxs for atoms inside rings
:type rng_atoms: list
"""
samp_range_dct = {}
ring_value_dct = ring_dihedrals(zma, rng_atoms)
for key, value in ring_value_dct.items():
samp_range_dct[key] = [value - math.pi/4, value + math.pi/4]
return samp_range_dct | 6e1958f66f596d9b1230864e3b9a2b73cd01cb35 | 22,939 |
def users_key(group='default'):
""" Returns the user key """
return db.Key.from_path('users', group) | 1912165ff75c39c9fbcb1432f46ef80f9b08c096 | 22,940 |
def VolumetricFlow(self):
"""Volumetric flow (m^3/hr)."""
stream, mol = self.data
m = mol[0]
if m:
c = self.name # c = compound
c.T = stream.T
c.P = stream.P
c.phase = stream._phase
return c.Vm * m * 1000
else:
return 0. | c799c27079494561e30975a6e03b5c1cefe9a907 | 22,941 |
def build_queue_adapter(workflow_client, logger=None, **kwargs):
"""Constructs a queue manager based off the incoming queue socket type.
Parameters
----------
workflow_client : object ("distributed.Client", "fireworks.LaunchPad")
A object wrapper for different distributed workflow types
logger : logging.Logger, Optional. Default: None
Logger to report to
**kwargs
Additional kwargs for the Adapter
Returns
-------
ret : Adapter
Returns a valid Adapter for the selected computational queue
"""
adapter_type = type(workflow_client).__module__ + "." + type(workflow_client).__name__
if adapter_type == "parsl.dataflow.dflow.DataFlowKernel":
adapter = parsl_adapter.ParslAdapter(workflow_client, logger=logger)
elif adapter_type == "distributed.client.Client":
adapter = dask_adapter.DaskAdapter(workflow_client, logger=logger)
elif adapter_type == "fireworks.core.launchpad.LaunchPad":
adapter = fireworks_adapter.FireworksAdapter(workflow_client, logger=logger)
else:
raise KeyError("QueueAdapter type '{}' not understood".format(adapter_type))
return adapter | bbd013fef1095dd4881a8b51561ed4080682141e | 22,942 |
import torch
def pad_sents(sents, pad_token, return_tensor = False):
""" Pad list of sentences according to the longest sentence in the batch.
The paddings should be at the end of each sentence.
@param sents (list[list[str]]): list of sentences, where each sentence
is represented as a list of words
@param pad_token (str): padding token
@returns sents_padded (list[list[str]]): list of sentences where sentences shorter
than the max length sentence are padded out with the pad_token, such that
each sentences in the batch now has equal length.
"""
sents_padded = []
maxLen = 0
### YOUR CODE HERE (~6 Lines)
for i in sents:
maxLen = max(len(i),maxLen)
for i in range(len(sents)):
sen = sents[i].cpu().numpy().tolist()
for j in range(maxLen - len(sen)):
sen.append(pad_token)
sen = torch.tensor(sen, dtype=torch.long).cuda()
sents_padded.append(sen)
if return_tensor:
t = torch.zeros(len(sents), maxLen).long()
for i in range(len(sents)):
t[i] = sents_padded[i]
sents_padded = t.cuda()
return sents_padded | 3100ef6f1924685f7a46b22753830cdf203e565d | 22,943 |
def _take_along_axis(array, indices,
axis):
"""Takes values from the input array by matching 1D index and data slices.
This function serves the same purpose as jax.numpy.take_along_axis, except
that it uses one-hot matrix multiplications under the hood on TPUs:
(1) On TPUs, we use one-hot matrix multiplications to select elements from the
array.
(2) Otherwise, we fall back to jax.numpy.take_along_axis.
Notes:
- To simplify matters in case (1), we only support slices along the second
or last dimensions.
- We may wish to revisit (1) for very large arrays.
Args:
array: Source array.
indices: Indices to take along each 1D slice of array.
axis: Axis along which to take 1D slices.
Returns:
The indexed result.
"""
if array.ndim != indices.ndim:
raise ValueError(
"indices and array must have the same number of dimensions; "
f"{indices.ndim} vs. {array.ndim}.")
if (axis != -1 and axis != array.ndim - 1 and # Not last dimension
axis != 1 and axis != -array.ndim + 1): # Not second dimension
raise ValueError(
"Only slices along the second or last dimension are supported; "
f"array.ndim = {array.ndim}, while axis = {axis}.")
if _favor_one_hot_slices():
one_hot_length = array.shape[axis]
one_hot_indices = jax.nn.one_hot(indices, one_hot_length, axis=axis)
if axis == -1 or array.ndim == 1:
# Take i elements from last dimension (s).
# We must use HIGHEST precision to accurately reproduce indexing
# operations with matrix multiplications.
result = jnp.einsum(
"...s,...is->...i",
array,
one_hot_indices,
precision=jax.lax.Precision.HIGHEST)
else:
# Take i elements from second dimension (s). We assume here that we always
# want to slice along the second dimension.
# We must use HIGHEST precision to accurately reproduce indexing
# operations with matrix multiplications.
result = jnp.einsum(
"ns...,nis...->ni...",
array,
one_hot_indices,
precision=jax.lax.Precision.HIGHEST)
return jax.lax.convert_element_type(result, array.dtype)
else:
return jnp.take_along_axis(array, indices, axis=axis) | 9a926a53341e0fc964fc568474ca29db286ed14e | 22,944 |
import requests
import logging
def send_envelope(
adfs_host: str,
envelope: str,
) -> requests.Response:
"""Send an envelope to the target ADFS server.
Arguments:
adfs_host: target ADFS server
envelope: envelope to send
Returns:
ADFS server response
"""
url = f"http://{adfs_host}/adfs/services/policystoretransfer"
headers = {"Content-Type": "application/soap+xml"}
response = None
try:
response = requests.post(url, data=envelope, headers=headers)
except Exception as e:
logging.error(e)
return response | bc59fa99fa28432dd969f1a72bbae00af716b443 | 22,945 |
def display_main(choice):
"""
Link option To main board
"""
return main(choice) | 66b0b0d36d47b4107b5b57dce9ea94787f3fa83b | 22,946 |
import random
def generate_network_table(seed=None):
"""
Generates a table associating MAC and IP addressed to be distributed by our virtual network adapter via DHCP.
"""
# we use the seed in case we want to generate the same table twice
if seed is not None:
random.seed(seed)
# number of IPs per network is 253 (2-254)
# generate random MACs, set ensures they are unique
macs: set[str] = set()
while len(macs) < 253:
macs.add(
"48:d2:24:bf:"
+ to_byte(random.randint(0, 255))
+ ":"
+ to_byte(random.randint(0, 255))
)
# associate each MAC with a sequential IP
table = {}
ip_counter = 2
for mac in macs:
table[mac] = "192.168.150." + str(ip_counter)
ip_counter += 1
return table | d39915c129b2d5a99fc41c90b718fcca17d20cd5 | 22,947 |
import torch
def loss_mGLAD(theta, S):
"""The objective function of the graphical lasso which is
the loss function for the meta learning of glad
loss-meta = 1/B(-log|theta| + <S, theta>)
Args:
theta (tensor 3D): precision matrix BxDxD
S (tensor 3D): covariance matrix BxDxD (dim=D)
Returns:
loss (tensor 1D): the loss value of the obj function
"""
B, D, _ = S.shape
t1 = -1*torch.logdet(theta)
# Batch Matrix multiplication: torch.bmm
t21 = torch.einsum("bij, bjk -> bik", S, theta)
# getting the trace (batch mode)
t2 = torch.einsum('jii->j', t21)
# print(t1, torch.det(theta), t2)
# regularization term
# tr = 1e-02 * torch.sum(torch.abs(theta))
meta_loss = torch.sum(t1+t2)/B # sum over the batch
return meta_loss | b056a5c57e681cca40c6a7a0d030dee25049e6de | 22,948 |
def parse_remote_path(remote_path):
""" Wrapper around the utils function - checks for the right protocol """
protocol, bucket, key = utils.parse_remote_path(remote_path)
assert protocol == "s3:", "Mismatched protocol (expected AWS S3)"
return bucket, key | 65c26139d0e28f64ae966a75bf730d1a6b8b2248 | 22,949 |
from typing import Callable
def operations(func: Callable) -> Callable:
"""Allows developers to specify operations which
should not be called in the fuzzing process.
Examples:
Ignoring operations specified by operation ids in lists
>>> @fuzz_lightyear.exclude.operations
... def b():
... return ['get_pets', 'get_store_inventory']
Ignoring operations specified by "tag.operation_id" in lists
>>> @fuzz_lightyear.exclude.operations
... def c():
... return ['pets.get_pets', 'store.get_store_inventory']
"""
get_operations_fn = _get_formatted_operations(func)
get_excluded_operations().update(get_operations_fn())
return func | ce6d9596ff307f15c86d4823d3ebcfdafa5f4e33 | 22,950 |
def _gen_dfa_table(t: UxsdComplex) -> str:
"""Generate a 2D C++ array representing DFA table from an UxsdComplex's DFA.
The array is indexed by the state and input token value, such that table[state][input]
gives the next state.
"""
assert isinstance(t.content, UxsdDfa)
dfa = t.content.dfa
out = ""
out += "constexpr int NUM_%s_STATES = %d;\n" % (t.cpp.upper(), len(dfa.states))
out += "constexpr const int NUM_%s_INPUTS = %d;\n" % (t.cpp.upper(), len(dfa.alphabet))
out += "constexpr int gstate_%s[NUM_%s_STATES][NUM_%s_INPUTS] = {\n" % (t.cpp, t.cpp.upper(), t.cpp.upper())
for i in range(0, max(dfa.states)+1):
state = dfa.transitions[i]
row = [str(state[x]) if state.get(x) is not None else "-1" for x in dfa.alphabet]
out += "\t{%s},\n" % ", ".join(row)
out += "};\n"
return out | f0bae5dd8f897786a62016b7b807e2c7730f1e89 | 22,951 |
def get_heat_capacity_derivative(Cv, temperature_list, plotfile='dCv_dT.pdf'):
"""
Fit a heat capacity vs T dataset to cubic spline, and compute derivatives
:param Cv: heat capacity data series
:type Cv: Quantity or numpy 1D array
:param temperature_list: List of temperatures used in replica exchange simulations
:type temperature: Quantity or numpy 1D array
:param plotfile: path to filename to output plot
:type plotfile: str
:returns:
- dC_v_out ( 1D numpy array (float) ) - 1st derivative of heat capacity, from a cubic spline evaluated at each point in Cv)
- d2C_v_out ( 1D numpy array (float) ) - 2nd derivative of heat capacity, from a cubic spline evaluated at each point in Cv)
- spline_tck ( scipy spline object (tuple) ) - knot points (t), coefficients (c), and order of the spline (k) fit to Cv data
"""
xdata = temperature_list
ydata = Cv
# Strip units off quantities:
if type(xdata[0]) == unit.quantity.Quantity:
xdata_val = np.zeros((len(xdata)))
xunit = xdata[0].unit
for i in range(len(xdata)):
xdata_val[i] = xdata[i].value_in_unit(xunit)
xdata = xdata_val
if type(ydata[0]) == unit.quantity.Quantity:
ydata_val = np.zeros((len(ydata)))
yunit = ydata[0].unit
for i in range(len(ydata)):
ydata_val[i] = ydata[i].value_in_unit(yunit)
ydata = ydata_val
# Fit cubic spline to data, no smoothing
spline_tck = interpolate.splrep(xdata, ydata, s=0)
xfine = np.linspace(xdata[0],xdata[-1],1000)
yfine = interpolate.splev(xfine, spline_tck, der=0)
dCv = interpolate.splev(xfine, spline_tck, der=1)
d2Cv = interpolate.splev(xfine, spline_tck, der=2)
dCv_out = interpolate.splev(xdata, spline_tck, der=1)
d2Cv_out = interpolate.splev(xdata, spline_tck, der=2)
figure, axs = plt.subplots(
nrows=3,
ncols=1,
sharex=True,
)
axs[0].plot(
xdata,
ydata,
'ok',
markersize=4,
fillstyle='none',
label='simulation data',
)
axs[0].plot(
xfine,
yfine,
'-b',
label='cubic spline',
)
axs[0].set_ylabel(r'$C_{V} (kJ/mol/K)$')
axs[0].legend()
axs[1].plot(
xfine,
dCv,
'-r',
label=r'$\frac{dC_{V}}{dT}$',
)
axs[1].legend()
axs[1].set_ylabel(r'$\frac{dC_{V}}{dT}$')
axs[2].plot(
xfine,
d2Cv,
'-g',
label=r'$\frac{d^{2}C_{V}}{dT^{2}}$',
)
axs[2].legend()
axs[2].set_ylabel(r'$\frac{d^{2}C_{V}}{dT^{2}}$')
axs[2].set_xlabel(r'$T (K)$')
plt.tight_layout()
plt.savefig(plotfile)
plt.close()
return dCv_out, d2Cv_out, spline_tck | 49f27209c9f6387fc25936481d5d35cebdc6523f | 22,952 |
def get_gradients_of_activations(model, x, y, layer_names=None, output_format='simple', nested=False):
"""
Get gradients of the outputs of the activation functions, regarding the loss.
Intuitively, it shows how your activation maps change over a tiny modification of the loss.
:param model: keras compiled model or one of ['vgg16', 'vgg19', 'inception_v3', 'inception_resnet_v2',
'mobilenet_v2', 'mobilenetv2'].
:param x: Model input (Numpy array). In the case of multi-inputs, x should be of type List.
:param y: Model target (Numpy array). In the case of multi-inputs, y should be of type List.
:param layer_names: (optional) Single name of a layer or list of layer names for which activations should be
returned. It is useful in very big networks when it is computationally expensive to evaluate all the layers/nodes.
:param output_format: Change the output dictionary key of the function.
- 'simple': output key will match the names of the Keras layers. For example Dense(1, name='d1') will
return {'d1': ...}.
- 'full': output key will match the full name of the output layer name. In the example above, it will
return {'d1/BiasAdd:0': ...}.
- 'numbered': output key will be an index range, based on the order of definition of each layer within the model.
:param nested: (optional) If set, will move recursively through the model definition to retrieve nested layers.
Recursion ends at leaf layers of the model tree or at layers with their name specified in layer_names.
E.g., a model with the following structure
-layer1
-conv1
...
-fc1
-layer2
-fc2
... yields a dictionary with keys 'layer1/conv1', ..., 'layer1/fc1', 'layer2/fc2'.
If layer_names = ['layer2/fc2'] is specified, the dictionary will only hold one key 'layer2/fc2'.
The layer names are generated by joining all layers from top level to leaf level with the separator '/'.
:return: Dict {layer_names (specified by output_format) -> activation of the layer output/node (Numpy array)}.
"""
nodes = _get_nodes(model, output_format, nested=nested, layer_names=layer_names)
return _get_gradients(model, x, y, nodes) | 5cb9234594b867383f92f4e2e7e91e39eb79d120 | 22,953 |
def string_to_screens_and_lines(source, allowed_width, allowed_height, f, pixels_between_lines = None, end_screens_with = (), do_not_include = ()):
"""
Convert a string to screens and lines.
Pygame does not allow line breaks ("\n") when rendering text. The purpose
of this function is to break a string into lines and screens given a font
and screen dimensions.
The following two assumptions are made:
1. Line breaks ("\n") in source denote the start of a new paragraph.
Therefore, to have an actual blank line (i.e., an empty string)
appear in the returned array, add another "\n" immediately
following the first.
2. Spaces denote the end of a word.
Parameters:
source: the string to divide into screens and lines.
allowed_width: the width, in pixels, permitted for lines; can be a
number of pixels or a proportion of the active screen's width.
allowed_height: same as allowed_width but for the height of a single
screen.
f: the font with which source is measured.
Keyword Parameters:
pixels_between_lines: blank pixel rows between lines of text; defaults
to None, in which case it is obtained from f.
end_screens_with: a restricted set of characters that may end a
screen; defaults to an empty tuple, in which case any character
ending a word can end a screen.
do_not_include: words that are exceptions to the end_screens_with
words (e.g., "Mrs." ends in a period but should not end a screen)
Returns:
screens: a multidimensional list of screens and lines.
"""
# Check if allowed_height and allowed_width need to be set:
if 0 < allowed_width <= 1 and 0 < allowed_height <= 1:
allowed_width, allowed_height = screen_dimensions()
elif 0 < allowed_width <= 1 or 0 < allowed_height <= 1:
raise ValueError("Both or neither of allowed_width and \
allowed_height can be between 0 and 1.")
# Check if pixels_between_lines needs to be set:
if not pixels_between_lines:
pixels_between_lines = f.get_linesize()
else:
assert pixels_between_lines > 0, "pixels_between_lines must be \
positive."
# Make sure that allowed_height can accommodate the tallest word in
# source:
assert f.size(source)[1] <= allowed_height, "allowed_height cannot \
accommodate source."
screens = []
# Break source into paragraphs and paragraphs into single words:
paragraphs = source.split("\n")
single_words = []
for paragraph in paragraphs:
individual_words = paragraph.split(" ")
# While here, verify that the longest word fits:
widest_word, pixels = longest_string_to_render(individual_words, f)
assert pixels < allowed_width, "{:s} in source is too long for \
allowed_width.".format(widest_word)
single_words.append(individual_words)
# The function branches next, depending on whether restrictions have been
# placed on where screen breaks can occur.
if not end_screens_with:
# Screen breaks can occur following any word.
# Break single_words into lines without regard to screens:
lines_of_text, total_height = wrap_text(
single_words,
allowed_width,
f,
return_height = True,
line_height = pixels_between_lines
)
if total_height <= allowed_height:
# Everything fits on one screen.
screens.append(lines_of_text)
else:
# There will be at least two screens.
# Initialize the first screen and a height counter:
screen = []
screen_height = 0
for line in lines_of_text:
line_height = f.size(line)[1]
screen_height = screen_height+line_height+pixels_between_lines
if screen_height < allowed_height:
# line fits on the current screen.
screen.append(line)
elif screen_height == allowed_height or screen_height-pixels_between_lines < allowed_height:
# line fits, but no more will.
screen.append(line)
screens.append(screen)
screen = []
screen_height = 0
else:
# line doesn't fit.
screens.append(screen)
screen = [line]
screen_height = line_height+pixels_between_lines
# Check for a remaining screen:
if screen:
screens.append(screen)\
else:
# Screens can only end following specific strings.
# These strings do not need to be end-of-sentence characters, but it
# is difficult to imagine what else they would be. Therefore, I refer
# to the resulting strings as sentences, acknowledging that this may
# be incorrect terminology.
# Break paragraphs into sentences:
sentences = []
for paragraph in paragraphs:
if sentences:
# This is not the first line, so start the paragraph on a new
# line:
sentences.append("")
if paragraph:
# paragraph is not a blank line.
# Break it into sentences:
paragraph_as_sentences = text_to_sentences(
paragraph,
terminators = end_screens_with,
exclude = do_not_include
)
sentences = sentences+paragraph_as_sentences
else:
# paragraph is a blank line.
sentences.append("")
# Initialize the first screen:
screen = []
for sentence in sentences:
# Determine whether sentence starts on a new line or continues
# from the current line:
if screen:
# If the last line in screen is blank, then sentence starts on
# a new line.
last_line = screen[-1]
if last_line:
next_line = False
else:
next_line = True
else:
# This screen is blank.
# Arbitrarily set next_line to False:
next_line = False
# Try adding sentence to the current screen:
possible_screen, screen_height = wrap_text(
sentence,
allowed_width,
f,
old_text = screen,
start_new_line = next_line,
return_height = True,
line_height = pixels_between_lines
)
if screen_height <= allowed_height:
# Update the current screen:
screen = possible_screen
else:
# This sentence does not fit.
# If screen is currently blank, it means that sentence needs
# to be broken across screens (i.e., it will not fit on a
# single screen).
if screen:
# This is not an issue.
# Save screen:
screens.append(screen)
# Initialize the next screen with sentence:
screen, current_height = wrap_text(
sentence,
allowed_width,
f,
return_height = True,
line_height = pixels_between_lines
)
if current_height > allowed_height:
# sentence needs to be broken across screens.
# This can be accomplished by calling the present
# function without restrictions on screen endings.
# However, the text currently on screen is needed too.
text_to_add = ""
for line in screen:
text_to_add = text_to_add+line+""
text_to_add = text_to_add+sentence
multiple_screens = string_to_screens_and_lines(
text_to_add,
allowed_width,
allowed_height,
f,
pixels_between_lines = pixels_between_lines
)
for s in multiple_screens:
screens.append(s)
else:
# screen is empty, but sentence will not fit.
# Call the present function to get this sentence's
# screens:
multiple_screens = string_to_screens_and_lines(
sentence,
allowed_width,
allowed_height,
f,
pixels_between_lines = pixels_between_lines
)
for s in multiple_screens:
screens.append(s)
# Check if a final screen needs to be added:
if screen:
screens.append(screen)
return screens | f43907fdf47b342b1eac3100c07e9d452b0d865f | 22,954 |
def trim_spectrum(self, scouse, flux):
"""
Trims a spectrum according to the user inputs
"""
return flux[scouse.trimids] | 3f18259986e677f8e8a9718408cdb56352d956e5 | 22,955 |
def test_bitwise_and(a, b):
"""
>>> test_bitwise_and(0b01, 0b10)
0L
>>> test_bitwise_and(0b01, 0b11)
1L
>>> test_bitwise_and(0b01, 2.0)
Traceback (most recent call last):
...
NumbaError: 27:15: Expected an int, or object, or bool
>>> test_bitwise_and(2.0, 0b01)
Traceback (most recent call last):
...
NumbaError: 27:11: Expected an int, or object, or bool
"""
return a & b | 0855921300751368eb0ad3f3cba37b6ddac759fd | 22,956 |
import inspect
def flagFunction(method, name=None):
"""
Determine whether a function is an optional handler for a I{flag} or an
I{option}.
A I{flag} handler takes no additional arguments. It is used to handle
command-line arguments like I{--nodaemon}.
An I{option} handler takes one argument. It is used to handle command-line
arguments like I{--path=/foo/bar}.
@param method: The bound method object to inspect.
@param name: The name of the option for which the function is a handle.
@type name: L{str}
@raise UsageError: If the method takes more than one argument.
@return: If the method is a flag handler, return C{True}. Otherwise return
C{False}.
"""
if _PY3:
reqArgs = len(inspect.signature(method).parameters)
if reqArgs > 1:
raise UsageError('Invalid Option function for %s' %
(name or method.__name__))
if reqArgs == 1:
return False
else:
reqArgs = len(inspect.getargspec(method).args)
if reqArgs > 2:
raise UsageError('Invalid Option function for %s' %
(name or method.__name__))
if reqArgs == 2:
return False
return True | 265f92ca52ec4b3c1b6b3955a7ac719f64099bad | 22,957 |
from pathlib import Path
def envnotfound(env):
"""`'Env "my-venv" not found. Did you mean "./my-venv"?'`"""
msg = f'Env "{env}" not found.'
if arg_is_name(env) and Path(env).exists():
msg += f'\nDid you mean "./{env}"?'
return msg | e2437bbf141a841650f33ede5d7fb6489a954f00 | 22,958 |
def random_translation_along_x(gt_boxes, points, offset_range):
"""
Args:
gt_boxes: (N, 7), [x, y, z, dx, dy, dz, heading, [vx], [vy]]
points: (M, 3 + C),
offset_range: [min max]]
Returns:
"""
offset = np.random.uniform(offset_range[0], offset_range[1])
points[:, 0] += offset
gt_boxes[:, 0] += offset
# if gt_boxes.shape[1] > 7:
# gt_boxes[:, 7] += offset
return gt_boxes, points | 6998e463313faeaaf75e96b0374c0bdc5415c8f1 | 22,959 |
import numpy
import scipy
def predband(xd,yd,a,b,conf=0.95,x=None):
"""
Calculates the prediction band of the linear regression model at the desired confidence
level, using analytical methods.
Clarification of the difference between confidence and prediction bands:
"The 2sigma confidence interval is 95% sure to contain the best-fit regression line.
This is not the same as saying it will contain 95% of the data points. The prediction bands are
further from the best-fit line than the confidence bands, a lot further if you have many data
points. The 95% prediction interval is the area in which you expect 95% of all data points to fall."
(from http://graphpad.com/curvefit/linear_regression.htm)
Arguments:
- conf: desired confidence level, by default 0.95 (2 sigma)
- xd,yd: data arrays
- a,b: linear fit parameters as in y=ax+b
- x: (optional) array with x values to calculate the confidence band. If none is provided, will
by default generate 100 points in the original x-range of the data.
Usage:
>>> lpb,upb,x=nemmen.predband(all.kp,all.lg,a,b,conf=0.95)
calculates the prediction bands for the given input arrays
>>> pylab.fill_between(x, lpb, upb, alpha=0.3, facecolor='gray')
plots a shaded area containing the prediction band
:returns: Sequence (lpb,upb,x) with the arrays holding the lower and upper confidence bands
corresponding to the [input] x array.
References:
1. `Introduction to Simple Linear Regression, Gerard
E. Dallal, Ph.D. <http://www.JerryDallal.com/LHSP/slr.htm>`_
"""
alpha=1.-conf # significance
n=xd.size # data sample size
if x is None: x=numpy.linspace(xd.min(),xd.max(),100)
# Predicted values (best-fit model)
y=a*x+b
# Auxiliary definitions
sd=scatterfit(xd,yd,a,b) # Scatter of data about the model
sxd=numpy.sum((xd-xd.mean())**2)
sx=(x-xd.mean())**2 # array
# Quantile of Student's t distribution for p=1-alpha/2
q=scipy.stats.t.ppf(1.-alpha/2.,n-2)
# Prediction band
dy=q*sd*numpy.sqrt( 1.+1./n + sx/sxd )
upb=y+dy # Upper prediction band
lpb=y-dy # Lower prediction band
return lpb,upb,x | a235548f4593cfc105bba9d7268dba2e14374df7 | 22,960 |
def orient_edges(G):
"""Orient remaining edges after colliders have been oriented.
:param G: partially oriented graph (colliders oriented)
:returns: maximally oriented DAG
"""
undir_list = [edge for edge in G.edges() if G.is_undir_edge(edge)]
undir_len = len(undir_list)
idx = 0
while idx < undir_len:
success = False
for edge in undir_list:
if can_orient(G,edge):
G.remove_edge(*edge[::-1])
success = True
if success:
undir_list = [edge for edge in G.edges() if G.is_undir_edge(edge)]
idx += 1
else:
break
return G | 958c22b7c7906219bfc52d2cc59945a22e4e1060 | 22,961 |
def _create_deserialize_fn(attributes: dict, globals: dict, bases: tuple[type]) -> str:
"""
Create a deserialize function for binary struct from a buffer
The function will first deserialize parent classes, then the class attributes
"""
lines = []
# For this class bases
for parent in bases:
if not _is_parent_fn_callable(parent, 'deserialize'):
continue
lines.append(f'{parent.__name__}.deserialize(self, buf)')
lines.append(f'buf = buf[{parent.__name__}._bs_size(self):]')
# For this class attributes
for name, annotation in attributes.items():
annotation_type = _get_annotation_type(annotation)
if annotation_type == AnnotationType.TYPED_BUFFER:
lines.append(f'self.{name}.deserialize(buf)')
else:
lines.append(f'self.{name}.deserialize(buf[:self.{name}.size_in_bytes])')
lines.append(f'buf = buf[self.{name}.size_in_bytes:]')
return _create_fn('deserialize', ['self, buf'], lines + ['return self'], globals) | e5058b73d47a034323a4ebe65edbf888bdf98321 | 22,962 |
def blck_repeat(preprocessor: Preprocessor, args: str, contents: str) -> str:
"""The repeat block.
usage: repeat <number>
renders its contents one and copies them number times"""
args = args.strip()
if not args.isnumeric():
preprocessor.send_error("invalid-argument", "invalid argument. Usage: repeat [uint > 0]")
number = int(args)
if number <= 0:
preprocessor.send_error("invalid-argument", "invalid argument. Usage: repeat [uint > 0]")
preprocessor.context.update(preprocessor.current_position.end, "in block repeat")
contents = preprocessor.parse(contents)
preprocessor.context.pop()
return contents * number | 8dfedd854a68b2fcc33ea4b9714744302fe5934d | 22,963 |
import math
def is_prime(n: int) -> bool:
"""Determines if the natural number n is prime."""
# simple test for small n: 2 and 3 are prime, but 1 is not
if n <= 3:
return n > 1
# check if multiple of 2 or 3
if n % 2 == 0 or n % 3 == 0:
return False
# search for subsequent prime factors around multiples of 6
max_factor = int(math.sqrt(n))
for i in range(5, max_factor + 1, 6):
if n % i == 0 or n % (i + 2) == 0:
return False
return True | e7bd02271681906f9ee4e63305c5a6f630578171 | 22,964 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.