content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def demean_dataframe_two_cat(df_copy, consist_var, category_col, is_unbalance): """ reference: Baltagi http://library.wbi.ac.id/repository/27.pdf page 176, equation (9.30) :param df_copy: Dataframe :param consist_var: List of columns need centering on fixed effects :param category_col: List of fixed effects :return: Demeaned dataframe """ if is_unbalance: # first determine which is uid or the category that has the most items max_ncat = df_copy[category_col[0]].nunique() max_cat = category_col[0] for cat in category_col: if df_copy[cat].nunique() >= max_ncat: max_ncat = df_copy[cat].nunique() max_cat = cat min_cat = category_col.copy() min_cat.remove(max_cat) min_cat = min_cat[0] df_copy.sort_values(by=[max_cat, min_cat], inplace=True) # demean on the first category variable, max_cat for consist in consist_var: df_copy[consist] = df_copy[consist] - df_copy.groupby(max_cat)[consist].transform('mean') dummies = get_dummies(df_copy[min_cat]) # time dummies dummies[max_cat] = df_copy[max_cat] dummies[min_cat] = df_copy[min_cat] dummies[max_cat] = dummies[max_cat].apply(str) dummies[min_cat] = dummies[min_cat].apply(str) dummies.set_index([max_cat, min_cat], inplace = True) group_mu = dummies.groupby(level=max_cat).transform("mean") out = dummies - group_mu # q_delta_1 @ delta_2 e = df_copy[consist_var].values d = out.values resid = e - d @ lstsq(d, e, rcond=None)[0] df_out = pd.DataFrame(data=resid, columns=consist_var) df_out[max_cat] = df_copy[max_cat] df_out[min_cat] = df_copy[min_cat] else: # balance for consist in consist_var: for cat in category_col: df_copy[consist] = df_copy[consist] - df_copy.groupby(cat)[consist].transform('mean') df_out = df_copy return df_out
a6a3f0bd56be214660eca857f0fb8630879bb2a8
22,731
from datetime import datetime import time def get_time_string(time_obj=None): """The canonical time string format (in UTC). :param time_obj: an optional datetime.datetime or timestruct (defaults to gm_time) Note: Changing this function will change all times that this project uses in the returned data. """ if isinstance(time_obj, datetime.datetime): if time_obj.tzinfo: offset = time_obj.tzinfo.utcoffset(time_obj) utc_dt = time_obj + offset return datetime.datetime.strftime(utc_dt, STRING_FORMAT) return datetime.datetime.strftime(time_obj, STRING_FORMAT) elif isinstance(time_obj, time.struct_time): return time.strftime(STRING_FORMAT, time_obj) elif time_obj is not None: raise TypeError("get_time_string takes only a time_struct, none, or a " "datetime. It was given a %s" % type(time_obj)) return time.strftime(STRING_FORMAT, time.gmtime())
73a623474e70850dc4194e2657b7e15aaa53996f
22,732
def apply_activation_checkpointing_wrapper( model, checkpoint_wrapper_fn=checkpoint_wrapper, check_fn=lambda _: True ): """ Applies :func:`checkpoint_wrapper` to modules within `model` based on a user-defined configuration. For each module within `model`, the `check_fn` is used to decide whether `module` should be wrapped with :func:`checkpoint_wrapper` or not. Note:: This function modifies `model` in place and replaces appropriate layers with their checkpoint-wrapped modules. Note:: This function will not wrap the overall root module. If this is needed, please directly use :class:`CheckpointWrapper`. Usage:: model = nn.Sequential( nn.Linear(10, 10), nn.Linear(10, 10), nn.Linear(10, 10) ) check_fn = lambda l: isinstance(l, nn.Linear) apply_activation_checkpointing(model, checkpoint_wrapper_fn=checkpoint_wrapper, check_fn=check_fn) Args: module (nn.Module): The model who's submodules (or self) should be wrapped with activation checkpointing. checkpoint_wrapper_fn (Optional[Callable[nn.Module]]) A `Callable` which will wrap modules check_fn (Optional[Callable[nn.Module, nn.Module]]) A lambda function which will be passed current layer and returns ``True`` or ``False`` depending on whether input layer should be wrapped. Returns: None (`model` is modified inplace) """ return _recursive_wrap( module=model, auto_wrap_policy=partial(lambda_auto_wrap_policy, lambda_fn=check_fn), wrapper_cls=checkpoint_wrapper_fn, ignored_modules=set(), ignored_params=set(), only_wrap_children=True )
ea4f7efef1f1c1c49a7cd078cae95be754f68c93
22,733
def train_validation_split(x, y): """ Prepare validation data with proper size Args: x: (pandas.DataFrame) Feature set / Affecting features y: (pandas.Dataframe) Target set / dependent feature Returns: x_train: (pandas.DataFrame) Feature set / Affecting features for training y_train: (pandas.Dataframe) Target set / dependent feature for training x_val: (pandas.DataFrame) Feature set / Affecting features for validation y_val: (pandas.Dataframe) Target set / dependent feature for validation """ # For large datasets if x.shape[0] > 100000: val_ratio = 0.2 # For medium size datasets elif x.shape[0] > 1000: val_ratio = 0.15 # For small datasets else: val_ratio = 0.1 # Splitting dataset into train and validation x_train, x_val, y_train, y_val = train_test_split(x, y, test_size=val_ratio, random_state=42) print(f"Validation data prepared." f" Train - Validation ratio taken {int(100 - val_ratio * 100)} % - {int(val_ratio * 100)} % .") return x_train, y_train, x_val, y_val
eac70c13b2ebd592681dfdc5cc181b558a93b233
22,734
from typing import Union from typing import Tuple from typing import List def topk_accuracy( rankings: np.ndarray, labels: np.ndarray, ks: Union[Tuple[int, ...], int] = (1, 5) ) -> List[float]: """Computes Top-K accuracies for different values of k Args: rankings: 2D rankings array: shape = (instance_count, label_count) labels: 1D correct labels array: shape = (instance_count,) ks: The k values in top-k, either an int or a list of ints. Returns: list of float: TOP-K accuracy for each k in ks Raises: ValueError If the dimensionality of the rankings or labels is incorrect, or if the length of rankings and labels aren't equal """ if isinstance(ks, int): ks = (ks,) _check_label_predictions_preconditions(rankings, labels) # trim to max k to avoid extra computation maxk = np.max(ks) # compute true positives in the top-maxk predictions tp = rankings[:, :maxk] == labels.reshape(-1, 1) # trim to selected ks and compute accuracies accuracies = [tp[:, :k].max(1).mean() for k in ks] if any(np.isnan(accuracies)): raise ValueError(f"NaN present in accuracies {accuracies}") return accuracies
36d3ac84b69b7d0f8764ad1213f56f82da717482
22,735
def has_substr(line, chars): """ checks to see if the line has one of the substrings given """ for char in chars: if char in line: return True return False
cf438600894ca43c177af1661a95447daa8b6b0d
22,736
def multifiltertestmethod(testmethod, strfilters): """returns a version of the testmethod that operates on filtered strings using strfilter""" def filteredmethod(str1, str2): return testmethod(multifilter(str1, strfilters), multifilter(str2, strfilters)) filteredmethod.__doc__ = testmethod.__doc__ filteredmethod.name = getattr(testmethod, 'name', testmethod.__name__) return filteredmethod
eec5e580bcc2987f8abfc23dd118897ed5d2b4c4
22,737
def getbasins(basin,Nx,Ny,Nz,S1,S2,S3): """ Args: basin (numpy array): including the Returns: N/A Only Extend CHGCAR while mode is 'all' """ temp = np.zeros(Nx*Ny*Nz*S1*S2*S3) basins = np.resize(temp,(Nz*S3,Ny*S2,Nx*S1)) block = np.resize(temp,(Nz*S3,Ny*S2,Nx*S1)) flag = 0 b = 1 teemp = [] for kss in range(Nz*S3): for jss in range(Ny*S2): for iss in range(Nx*S1): flag += 1 if (flag == Nx*Ny*Nz+1): b += 1 flag = 1 # print ('Nx:{:0} Ny:{:1} Nz:{:2} flagx:{:3} flagy:{:4} flagz:{:5}'.format(Nx,Ny,Nz,flagx,flagy,flagz)) block[kss,jss,iss] = b basins[kss,jss,iss] = int(S1*S2*S3*(basin[kss%Nz,jss%Ny,iss%Nx]-1)) + b basins_1D = np.resize(basins,Nx*Ny*Nz*S1*S2*S3) # numindex = [] # numcount = [0,0,0,0,0,0,0,0] # for i in basins_1D: # numcount[int(i)-1] += 1 # print (numcount) return basins_1D
97c489a7453aced3624f6898896924647f387d55
22,738
def makeframefromhumanstring(s): """Create a frame from a human readable string Strings have the form: <request-id> <stream-id> <stream-flags> <type> <flags> <payload> This can be used by user-facing applications and tests for creating frames easily without having to type out a bunch of constants. Request ID and stream IDs are integers. Stream flags, frame type, and flags can be specified by integer or named constant. Flags can be delimited by `|` to bitwise OR them together. If the payload begins with ``cbor:``, the following string will be evaluated as Python literal and the resulting object will be fed into a CBOR encoder. Otherwise, the payload is interpreted as a Python byte string literal. """ fields = s.split(b' ', 5) requestid, streamid, streamflags, frametype, frameflags, payload = fields requestid = int(requestid) streamid = int(streamid) finalstreamflags = 0 for flag in streamflags.split(b'|'): if flag in STREAM_FLAGS: finalstreamflags |= STREAM_FLAGS[flag] else: finalstreamflags |= int(flag) if frametype in FRAME_TYPES: frametype = FRAME_TYPES[frametype] else: frametype = int(frametype) finalflags = 0 validflags = FRAME_TYPE_FLAGS[frametype] for flag in frameflags.split(b'|'): if flag in validflags: finalflags |= validflags[flag] else: finalflags |= int(flag) if payload.startswith(b'cbor:'): payload = b''.join( cborutil.streamencode(stringutil.evalpythonliteral(payload[5:])) ) else: payload = stringutil.unescapestr(payload) return makeframe( requestid=requestid, streamid=streamid, streamflags=finalstreamflags, typeid=frametype, flags=finalflags, payload=payload, )
b588e61fb8b67b4160ac673eb3e70f373c7027b4
22,739
def display_full_name_with_correct_capitalization(full_name): """ See documentation here: https://github.com/derek73/python-nameparser :param full_name: :return: """ full_name.strip() full_name_parsed = HumanName(full_name) full_name_parsed.capitalize() full_name_capitalized = str(full_name_parsed) return full_name_capitalized
05133fc04631a39a19f2e27355456418ab7c78a7
22,740
from typing import Optional from typing import Iterable from typing import Dict from typing import Any import collections def load_experiment_artifacts( src_dir: str, file_name: str, selected_idxs: Optional[Iterable[int]] = None ) -> Dict[int, Any]: """ Load all the files in dirs under `src_dir` that match `file_name`. This function assumes subdirectories withing `dst_dir` have the following structure: ``` {dst_dir}/result_{idx}/{file_name} ``` where `idx` denotes an integer encoded in the subdirectory name. The function returns the contents of the files, indexed by the integer extracted from the subdirectory index name. :param src_dir: directory containing subdirectories of experiment results It is the directory that was specified as `--dst_dir` in `run_experiment.py` and `run_notebook.py` :param file_name: the file name within each run results subdirectory to load E.g., `result_bundle.pkl` :param selected_idxs: specific experiment indices to load - `None` (default) loads all available indices """ artifact_tuples = yield_experiment_artifacts( src_dir, file_name, selected_idxs ) artifacts = collections.OrderedDict() for key, artifact in artifact_tuples: artifacts[key] = artifact return artifacts
67d8b9aba64f79b0361e7ed175ae597b22367f8a
22,741
from datetime import datetime from typing import Tuple def get_market_metrics(market_portfolio: pd.DataFrame, t_costs: float, index_id: str, index_name: str, test_data_start_date: datetime.date, test_data_end_date: datetime.date, market_logs=False) -> \ Tuple[pd.Series, pd.Series, pd.Series]: """ Get performance metrics for full equal-weighted market portfolio :param market_logs: Write log data for market portfolio :param test_data_start_date: Start date (with regard to test set) :param test_data_end_date: End date (with regard to test set) :param index_name: Index name :param index_id: Index ID :param t_costs: Transaction costs per half-turn :param market_portfolio: DataFrame including full test set (market portfolio) :return: Tuple of market portfolio metrics (Series) and cumulative returns series (Series) """ market_portfolio_metrics = pd.Series([]).rename('Market') market_portfolio_metrics.index.name = 'Metrics' excess_return_series = calc_excess_returns( market_portfolio.loc[:, 'daily_return'].groupby(level=['datadate']).mean()).rename('daily_excess_return') excess_return_series = excess_return_series.reset_index() excess_return_series.loc[:, 'datadate'] = excess_return_series['datadate'].dt.strftime( '%Y-%m-%d') excess_return_series.set_index('datadate', inplace=True) cumulative_excess_return = (excess_return_series.get('daily_excess_return') + 1).cumprod().rename( 'Cumulative Market Return') cumulative_excess_return.index.name = 'Time' # cumulative_return.plot(title='Cumulative Market Performance') # plt.legend(loc='best') # plt.show() # JOB: Calculate metrics # noinspection DuplicatedCode annualized_sharpe = calc_sharpe(market_portfolio.loc[:, ['daily_return']].groupby(level=['datadate']).mean(), annualize=True) annualized_sharpe_atc = calc_sharpe( market_portfolio.loc[:, ['daily_return']].groupby(level=['datadate']).mean() - 4 * t_costs, annualize=True) annualized_sortino = calc_sortino(market_portfolio.loc[:, ['daily_return']].groupby(level=['datadate']).mean(), annualize=True) annualized_sortino_atc = calc_sortino( market_portfolio.loc[:, ['daily_return']].groupby(level=['datadate']).mean() - 4 * t_costs, annualize=True) mean_daily_return = market_portfolio.groupby(level=['datadate'])['daily_return'].mean().mean() mean_daily_excess_return = calc_excess_returns( market_portfolio.groupby(level=['datadate'])['daily_return'].mean().rename('daily_return')).mean() market_portfolio_metrics.loc['Mean Daily Return'] = mean_daily_return market_portfolio_metrics.loc['Annualized Return'] = annualize_metric(mean_daily_return) market_portfolio_metrics.loc['Mean Daily Excess Return'] = mean_daily_excess_return market_portfolio_metrics.loc['Annualized Excess Return'] = annualize_metric(mean_daily_excess_return) market_portfolio_metrics.loc['Annualized Sharpe'] = annualized_sharpe market_portfolio_metrics.loc['Annualized Sortino'] = annualized_sortino # JOB: Add metrics incl. transaction costs of 5 bps per half-turn market_portfolio_metrics.loc['Mean Daily Return_atc'] = mean_daily_return - 4 * t_costs market_portfolio_metrics.loc['Annualized Return_atc'] = annualize_metric(mean_daily_return - 4 * t_costs) market_portfolio_metrics.loc['Mean Daily Excess Return_atc'] = mean_daily_excess_return - 4 * t_costs market_portfolio_metrics.loc['Annualized Excess Return_atc'] = annualize_metric( mean_daily_excess_return - 4 * t_costs) market_portfolio_metrics.loc['Annualized Sharpe_atc'] = annualized_sharpe_atc market_portfolio_metrics.loc['Annualized Sortino_atc'] = annualized_sortino_atc data_record = { 'ID': config.run_id, 'Experiment Run End': datetime.datetime.now().isoformat(), 'Parent Model Type': 'Market', 'Model Type': 'Market', 'Index ID': index_id, 'Index Name': index_name, 'Study Period ID': config.study_period_id, 'Study Period Length': None, 'Period Range': None, 'Study Period Start Date': None, 'Study Period End Date': None, 'Test Set Size': None, 'Days Test Set': None, 'Constituent Number': None, 'Average Cross Section Size': None, 'Test Set Start Date': test_data_start_date.isoformat(), 'Test Set End Date': test_data_end_date.isoformat(), 'Total Accuracy': None, 'Top-k Accuracy Scores': None, 'Top-k Mean Daily Return': market_portfolio_metrics['Mean Daily Return'], 'Top-k Mean Daily Excess Return': market_portfolio_metrics['Mean Daily Excess Return'], 'Top-k Annualized Excess Return': market_portfolio_metrics['Annualized Excess Return'], 'Top-k Annualized Return': market_portfolio_metrics['Annualized Return'], 'Top-k Annualized Sharpe': market_portfolio_metrics['Annualized Sharpe'], 'Top-k Annualized Sortino': market_portfolio_metrics['Annualized Sortino'], 'Mean Daily Return (Short)': None, 'Mean Daily Return (Long)': None, 'Top-k Mean Daily Return_atc': market_portfolio_metrics['Mean Daily Return_atc'], 'Top-k Annualized Return_atc': market_portfolio_metrics['Annualized Return_atc'], 'Top-k Mean Daily Excess Return_atc': market_portfolio_metrics['Mean Daily Excess Return_atc'], 'Top-k Annualized Excess Return_atc': market_portfolio_metrics['Annualized Excess Return_atc'], 'Top-k Annualized Sharpe_atc': market_portfolio_metrics['Annualized Sharpe_atc'], 'Top-k Annualized Sortino_atc': market_portfolio_metrics['Annualized Sortino_atc'], 'Top-k Mean Daily Return (Short)_atc': None, 'Top-k Mean Daily Return (Long)_atc': None, 'Model Configs': None, 'Total Epochs': None, 'Return Series': excess_return_series['daily_excess_return'].to_dict(), 'Prediction Error': None } if market_logs: write_to_logs(data_record) return market_portfolio_metrics, excess_return_series, cumulative_excess_return
f5c77114c79ef901683ffdd4495a8a1022e42dc9
22,742
def get_puf_columns(seed=True, categorical=True, calculated=True): """Get a list of columns. Args: seed: Whether to include standard seed columns: ['MARS', 'XTOT', 'S006'] categorical: Whether to include categorical columns: ['F6251', 'MIDR', 'FDED', 'DSI'] calculated: Whether to include calculated columns: ['E00100', 'E09600'] Returns: List of columns. """ res = [] if seed: res += SEED_COLS if categorical: res += CATEGORICAL_COLS if calculated: res += CALCULATED_COLS return res
af7d6799b7f17b2b05b62a7ed88d0695784cde59
22,743
def list_all_vms(osvars): """Returns a listing of all VM objects as reported by Nova""" novac = novaclient.Client('2', osvars['OS_USERNAME'], osvars['OS_PASSWORD'], osvars['OS_TENANT_NAME'], osvars['OS_AUTH_URL'], service_type="compute") return novac.servers.list(True, {'all_tenants': '1'})
b03bc9c5e458d62403b86346bdb4f9a2c3081909
22,744
def exec_cmd(cmd, path): """ Execute the specified command and return the result. """ out = '' err = '' sys.stdout.write("-------- Running \"%s\" in \"%s\"...\n" % (cmd, path)) parts = cmd.split() try: process = subprocess.Popen(parts, cwd=path, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=(sys.platform == 'win32')) out, err = process.communicate() except IOError, (errno, strerror): raise except: raise return {'out': out, 'err': err}
ea75de47eebe526188533539a4d33e07d5a5bed3
22,745
def contains_numbers(iterable): """ Check if first iterable item is a number. """ return isinstance(iterable[0], Number)
0c6dc3031087e14ea50cb7d228da50b19a55a013
22,746
import tempfile from pathlib import Path import requests def get_image(img: PathStr) -> PILImage: """Get picture from either a path or URL""" if str(img).startswith("http"): with tempfile.TemporaryDirectory() as tmpdirname: dest = Path(tmpdirname) / str(img).split("?")[0].rpartition("/")[-1] # NOTE: to be replaced by download(url, dest=dest) [from unpackai.utils] with requests.get(str(img)) as resp: resp.raise_for_status() dest.write_bytes(resp.content) return PILImage.create(dest) else: return PILImage.create(img)
374e2ff8f97c4d63ceb3d621ced25451d10b6793
22,747
def FAIMSNETNN_model(train_df, train_y, val_df, val_y, model_args, cv=3): """FIT neuralnetwork model.""" input_dim = train_df.shape[1] if model_args["grid"] == "tiny": param_grid = {"n1": [100], "d1": [0.3, 0.1], "lr": [0.001, 0.01], "epochs": [50], "batch_size": [32, 128], "input_dim": [input_dim]} else: param_grid = {"n1": [100, 200, 500], "d1": [0.5, 0.3, 0.1], "lr": [0.0001, 0.001, 0.01], "epochs": [50], "batch_size": [32, 64, 128], "input_dim": [input_dim]} model = keras.wrappers.scikit_learn.KerasRegressor(build_fn=create_model, verbose=0) gs = GridSearchCV(estimator=model, param_grid=param_grid, n_jobs=model_args["jobs"], cv=cv, return_train_score=True, verbose=2) gsresults = gs.fit(train_df, train_y) # history = model.fit(train_df, train_y, validation_split=0.1, epochs=200, batch_size=16) print(gs.best_params_) gs.best_params_["epochs"] = 100 model = create_model(**gs.best_params_) history = model.fit(train_df, train_y, validation_split=0.1, epochs=gs.best_params_["epochs"], batch_size=gs.best_params_["batch_size"]) df_results, cv_res = format_summary(train_df, val_df, train_y, val_y, model, "FNN", gsresults) cv_res["params"] = str(gs.best_params_) return df_results, cv_res, gs, model
6f6520a3f9a746e6e1241f638358f00ce4f20ede
22,748
def assign_exam_blocks(data, departments, splitted_departments, number_exam_days): """ Assign departments to exam blocks and optimize this schedule to reduce conflicts. data (pandas.DataFrame): Course enrollments data departments (dict): Departments (str key) and courses in departments (list value) number_exam_days (int): The number of days for exams returns (list): Departments for each exam block """ # create two exam blocks per day exam_blocks = [[] for i in range(2*number_exam_days)] # sequentially fill exam_blocks with departments in random order i = 0 department_list = list(departments) index = np.random.permutation(np.arange(len(department_list))) for j in range(len(department_list)): department = department_list[index[j]] exam_blocks[i%(2*number_exam_days)].append(department) i += 1 # swap exam blocks until this swap method can no longer reduce conflicts total_conflicts = sum([count_conflicts(data, departments, block) for block in exam_blocks]) conflicts_reduced = True while conflicts_reduced: conflicts_reduced = False # do swapping between departments in exam block i and exam block j for i in range(len(exam_blocks)-1): for j in range(i+1, len(exam_blocks)): do_swapping(data, departments, exam_blocks[i], exam_blocks[j]) # do swapping between the two blocks of split departments to try to minimize # conflicts on a course basis course_conflicts_reduced = True while course_conflicts_reduced: current_conflicts = sum([count_conflicts(data, departments, block) for block in exam_blocks]) course_conflicts_reduced = False # do this for every splitted department for department in splitted_departments: courses = [departments[department+"-1"], departments[department+"-2"]] # this allows us to swap from first department exam block to other department exam block for course_index in (0, 1): # swap any course from one department section to the other if it reduces conflicts i = 0 while i < len(courses[course_index]): courses[~course_index].append(courses[course_index].pop(i)) tmp_conflicts = sum([count_conflicts(data, departments, block) for block in exam_blocks]) if tmp_conflicts >= current_conflicts: courses[course_index].insert(i, courses[~course_index].pop()) else: course_conflicts_reduced = True i += 1 current_conflicts = sum([count_conflicts(data, departments, block) for block in exam_blocks]) if current_conflicts < total_conflicts: total_conflicts = current_conflicts conflicts_reduced = True return exam_blocks
ae272ea00a277960497d96b2593371bc35a9c3cb
22,749
def aq_name(path_to_shp_file): """ Computes the name of a given aquifer given it's shape file :param path_to_shp_file: path to the .shp file for the given aquifer :return: a string (name of the aquifer) """ str_ags = path_to_shp_file.split('/') str_aq = "" if len(str_ags) >= 2: str_aq = str(str_ags[1]) print(str_aq) return str_aq
1cb6f9881383b4627ea4f78bf2f6fd9cdf97dbc4
22,751
def gini(arr, mode='all'): """Calculate the Gini coefficient(s) of a matrix or vector. Parameters ---------- arr : array-like Array or matrix on which to compute the Gini coefficient(s). mode : string, optional One of ['row-wise', 'col-wise', 'all']. Default is 'all'. Returns ------- coeffs : array-like Array of Gini coefficients. Note ---- If arr is a transition matrix A, such that Aij = P(S_k=j|S_{k-1}=i), then 'row-wise' is equivalent to 'tmat_departure' and 'col-wise' is equivalent to 'tmat_arrival'. Similarly, if arr is the observation (lambda) matrix of an HMM such that lambda \in \mathcal{C}^{n_states \times n_units}, then 'row-wise' is equivalent to 'lambda_across_units' and 'col-wise' is equivalent to 'lambda_across_units'. If mode = 'all', then the matrix is unwrapped into a numel-dimensional array before computing the Gini coefficient. """ if mode is None: mode = 'row-wise' if mode not in ['row-wise', 'col-wise', 'all']: raise ValueError("mode '{}' not supported!".format(mode)) gini_coeffs = None if mode=='all': arr = np.atleast_1d(arr).astype(float) gini_coeffs = _gini(arr) elif mode=='row-wise': arr = np.atleast_2d(arr).astype(float) gini_coeffs = [] for row in arr: gini_coeffs.append(_gini(row)) elif mode=='col-wise': arr = np.atleast_2d(arr).astype(float) gini_coeffs = [] for row in arr.T: gini_coeffs.append(_gini(row)) return gini_coeffs
9fb3116506db949d273000510724bcce0ed165e2
22,752
import requests def getIndex(): """ Retrieves index value. """ headers = { 'accept': 'application/json', } indexData = requests.get( APIUrls.lnapi+APIUrls.indexUrl, headers=headers, ) if indexData.status_code == 200: return indexData.json() else: raise RuntimeError( 'Unable to fetch index data:\n' f'{indexData.text}' )
ba35e1573a62e76d1f413036761b8a9054a3a878
22,753
def input_as_string(filename:str) -> str: """returns the content of the input file as a string""" with open(filename, encoding="utf-8") as file: return file.read().rstrip("\n")
0343de48580a71a62895aa093af1213c3f0c0b84
22,755
def channame_to_python_format_string(node, succgen=None): """See channame_str_to_python_format_string @succgen is optional, if given will check that identifiers can be found. """ if not node: #empty AST return (True, "") if node.type == 'Identifier': # and len(node.children) >= 1: #if no succgen, assume its a channel if not succgen or node.children[0] in succgen.channel_identifiers: #Of the form "channame[x][x]...[x]" static = True if node.leaf: #Have IndexList? idxs = [] for c in node.leaf.children: assert c.type == 'Index' (exprstatic, expr) = _expression_to_python_format_string(c.leaf, succgen) static = static and exprstatic idxs += [expr] idxs = "".join(["[" + x + "]" for x in idxs]) return (static, node.children[0] + idxs) else: return (True, node.children[0]) else: print node, succgen.channel_identifiers raise IllegalExpressionException('Unknown channel ' + node.children[0]) else: raise IllegalExpressionException('Illegal expression type for channame: ' + node.type)
f7e71bd49624657e98e6f2c172e6f02d8bfc7307
22,756
import numpy import pandas def is_bad(x): """ for numeric vector x, return logical vector of positions that are null, NaN, infinite""" if can_convert_v_to_numeric(x): x = safe_to_numeric_array(x) return numpy.logical_or( pandas.isnull(x), numpy.logical_or(numpy.isnan(x), numpy.isinf(x)) ) return pandas.isnull(x)
b4cf9de18cd8e52ff90a801f1eccf6a4ee2500db
22,757
def T0_T0star(M, gamma): """Total temperature ratio for flow with heat addition (eq. 3.89) :param <float> M: Initial Mach # :param <float> gamma: Specific heat ratio :return <float> Total temperature ratio T0/T0star """ t1 = (gamma + 1) * M ** 2 t2 = (1.0 + gamma * M ** 2) ** 2 t3 = 2.0 + (gamma - 1.0) * M ** 2 return t1 / t2 * t3
2e5c8ec2ab24dd0d4dfa2feddd0053f277665b33
22,760
from typing import Optional def remount_as( ip: Optional[str] = None, writeable: bool = False, folder: str = "/system" ) -> bool: """ Mount/Remount file-system. Requires root :param folder: folder to mount :param writeable: mount as writeable or readable-only :param ip: device ip :rtype: true on success """ if writeable: return ( shell(f"mount -o rw,remount {folder}", ip=ip).code == ADBCommandResult.RESULT_OK ) else: return ( shell(f"mount -o ro,remount {folder}", ip=ip).code == ADBCommandResult.RESULT_OK )
8f343f96d066543359bdfcea3c42f41f40dcaf4d
22,761
def flip_channels(img): """Flips the order of channels in an image; eg, BGR <-> RGB. This function assumes the image is a numpy.array (what's returned by cv2 function calls) and uses the numpy re-ordering methods. The number of channels does not matter. If the image array is strictly 2D, no re-ordering is possible and the original data is returned untouched. """ if len(img.shape) == 2: return img; return img[:,:,::-1]
7aab0222f6fd66c06f8464cd042f30c6eac01c72
22,762
def parse_main(index): """Parse a main function containing block items. Ex: int main() { return 4; } """ err = "expected main function starting" index = match_token(index, token_kinds.int_kw, ParserError.AT, err) index = match_token(index, token_kinds.main, ParserError.AT, err) index = match_token(index, token_kinds.open_paren, ParserError.AT, err) index = match_token(index, token_kinds.close_paren, ParserError.AT, err) node, index = parse_compound_statement(index) return nodes.Main(node), index
ab932cf3d99340b97ec7d32fa668c4e00e16a3d1
22,764
def elist2tensor(elist, idtype): """Function to convert an edge list to edge tensors. Parameters ---------- elist : iterable of int pairs List of (src, dst) node ID pairs. idtype : int32, int64, optional Integer ID type. Must be int32 or int64. Returns ------- (Tensor, Tensor) Edge tensors. """ if len(elist) == 0: u, v = [], [] else: u, v = zip(*elist) u = list(u) v = list(v) return F.tensor(u, idtype), F.tensor(v, idtype)
a38c26a13b2fc7f111e3ec2c036e592b5b4c3c70
22,765
from datetime import datetime def _term_to_xapian_value(term, field_type): """ Converts a term to a serialized Xapian value based on the field_type. """ assert field_type in FIELD_TYPES def strf(dt): """ Equivalent to datetime.datetime.strptime(dt, DATETIME_FORMAT) but accepts years below 1900 (see http://stackoverflow.com/q/10263956/931303) """ return '%04d%02d%02d%02d%02d%02d' % ( dt.year, dt.month, dt.day, dt.hour, dt.minute, dt.second) if field_type == 'boolean': assert isinstance(term, bool) if term: value = 't' else: value = 'f' elif field_type == 'integer': value = INTEGER_FORMAT % term elif field_type == 'float': value = xapian.sortable_serialise(term) elif field_type == 'date' or field_type == 'datetime': if field_type == 'date': # http://stackoverflow.com/a/1937636/931303 and comments term = datetime.datetime.combine(term, datetime.time()) value = strf(term) else: # field_type == 'text' value = _to_xapian_term(term) return value
8fe2926a7093ff9a7b22cc222c4a3c5c8f6bc155
22,766
def pop_stl1(osurls, radiourls, splitos): """ Replace STL100-1 links in 10.3.3+. :param osurls: List of OS platforms. :type osurls: list(str) :param radiourls: List of radio platforms. :type radiourls: list(str) :param splitos: OS version, split and cast to int: [10, 3, 3, 2205] :type splitos: list(int) """ if newer_103(splitos, 3): osurls = osurls[1:] radiourls = radiourls[1:] return osurls, radiourls
d88576028bbfbf61ab6fec517e7a66d731b4ebf3
22,767
def empty_search(): """ :return: json response of empty list, meaning empty search result """ return jsonify(results=[])
59ac0a6d3b9a3d17f7a80e633ea4bb5b2d07ca33
22,768
def clip_raster_mean(raster_path, feature, var_nam): """ Opens a raster file from raster_path and applies a mask based on a polygon (feature). It then extracts the percentage of every class with respects to the total number of pixels contained in the mask. :param raster_path: raster path (raster must contain classes) :param feature: polygon feature (extracted from a shapefile or geojson) :return: dictionary containing the percentage of pixels contained in the mask """ with rasterio.open(raster_path) as src: # Apply mask to raster and crop out_image, out_transform = rasterio.mask.mask(src, [feature["geometry"]], crop=True) if var_nam == 'PTED': out_image[out_image < 0] = np.nan return np.nanmean(out_image)
82244272c2da713f679d0f56f5736810fcf8649c
22,769
import json def load_data(in_file): """load json file from seqcluster cluster""" with open(in_file) as in_handle: return json.load(in_handle)
93c1766cb1e36410a8c67e2291b93aa7280abd63
22,770
import re def expand_at_linestart(P, tablen): """只扩展行开头的制表符号""" def exp(m): return m.group().expandtabs(tablen) return ''.join([ re.sub(r'^\s+', exp, s) for s in P.splitlines(True) ])
2b8310e89efdba54b121667e11454281e2c214e3
22,772
def configs(): """Create a mock Configuration object with sentinel values Eg. Configuration( base_jar=sentinel.base_jar, config_file=sentinel.config_file, ... ) """ return Configuration(**dict( (k, getattr(sentinel, k)) for k in DEFAULTS._asdict().keys() ))
c8aa44e1c9695a8fe0188d739c87be07ab06bdb0
22,773
def svn_fs_revision_root_revision(root): """svn_fs_revision_root_revision(svn_fs_root_t * root) -> svn_revnum_t""" return _fs.svn_fs_revision_root_revision(root)
ce153da9527fb8b1235f5591dbd68e2f1c1ecab2
22,774
from typing import Any def is_floatscalar(x: Any) -> bool: """Check whether `x` is a float scalar. Parameters: ---------- x: A python object to check. Returns: ---------- `True` iff `x` is a float scalar (built-in or Numpy float). """ return isinstance(x, ( float, np.float16, np.float32, np.float64, ))
2a93524290eaa4b4e1f0b0cc7a8a0dcb2a46f9d3
22,776
def http_header_control_cache(request): """ Tipo de control de cache url: direccion de la pagina web""" print "--------------- Obteniendo cache control -------------------" try: cabecera = request.headers cache_control = cabecera.get("cache-control") except Exception: cache_control = "NA" print "Error inesperado en la %s no se encontro cache_control" % (url) return cache_control
976adffa3c3601c6f0fd49617e15e25aa9cb2c9b
22,777
def summation(limit): """ Returns the summation of all natural numbers from 0 to limit Uses short form summation formula natural summation :param limit: {int} :return: {int} """ return (limit * (limit + 1)) // 2 if limit >= 0 else 0
1ff16c7c4131458e50c9c9bd5c0f20895d8ab121
22,778
def load_and_initialize_hub_module(module_path, signature='default'): """Loads graph of a TF-Hub module and initializes it into a session. Args: module_path: string Path to TF-Hub module. signature: string Signature to use when creating the apply graph. Return: graph: tf.Graph Graph of the module. session: tf.Session Session with initialized variables and tables. inputs: dict Dictionary of input tensors. outputs: dict Dictionary of output tensors. Raises: ValueError: If signature contains a SparseTensor on input or output. """ graph = tf.Graph() with graph.as_default(): tf.compat.v1.logging.info('Importing %s', module_path) module = hub.Module(module_path) signature_inputs = module.get_input_info_dict(signature) signature_outputs = module.get_output_info_dict(signature) # First check there are no SparseTensors in input or output. for key, info in list(signature_inputs.items()) + list( signature_outputs.items()): if info.is_sparse: raise ValueError( 'Signature "%s" has a SparseTensor on input/output "%s".' ' SparseTensors are not supported.' % (signature, key)) # Create placeholders to represent the input of the provided signature. inputs = {} for input_key, input_info in signature_inputs.items(): inputs[input_key] = tf.compat.v1.placeholder( shape=input_info.get_shape(), dtype=input_info.dtype, name=input_key) outputs = module(inputs=inputs, signature=signature, as_dict=True) session = tf.compat.v1.Session(graph=graph) session.run(tf.compat.v1.global_variables_initializer()) session.run(tf.compat.v1.tables_initializer()) return graph, session, inputs, outputs
b04b5f77c7e0207d314ebb5910ec1c5e61f4755c
22,779
def j_index(true_labels, predicts): """ j_index Computes the Jaccard Index of the given set, which is also called the 'intersection over union' in multi-label settings. It's defined as the intersection between the true label's set and the prediction's set, divided by the sum, or union, of those two sets. Parameters ---------- true_labels: numpy.ndarray of shape (n_samples, n_target_tasks) A matrix with the true labels for all the classification tasks and for n_samples. predicts: numpy.ndarray of shape (n_samples, n_target_tasks) A matrix with the predictions for all the classification tasks and for n_samples. Returns ------- float The J-index, or 'intersection over union', for the given sets. Examples -------- >>> from skmultiflow.evaluation.metrics.metrics import j_index >>> true_labels = [[0,1,0,1],[0,0,0,1],[1,1,0,1],[1,1,1,1]] >>> predictions = [[0,1,0,1],[0,1,1,0],[0,1,0,1],[1,1,1,1]] >>> j_index(true_labels, predictions) 0.66666666666666663 """ if not hasattr(true_labels, 'shape'): true_labels = np.asarray(true_labels) if not hasattr(predicts, 'shape'): predicts = np.asarray(predicts) N, L = true_labels.shape s = 0.0 for i in range(N): inter = sum((true_labels[i, :] * predicts[i, :]) > 0) * 1. union = sum((true_labels[i, :] + predicts[i, :]) > 0) * 1. if union > 0: s += inter / union elif np.sum(true_labels[i, :]) == 0: s += 1. return s * 1. / N
33bef64196acf441c299a4a90da64b2bb866e364
22,780
import torch def odefun(x, t, net, alph=[1.0,1.0,1.0]): """ neural ODE combining the characteristics and log-determinant (see Eq. (2)), the transport costs (see Eq. (5)), and the HJB regularizer (see Eq. (7)). d_t [x ; l ; v ; r] = odefun( [x ; l ; v ; r] , t ) x - particle position l - log determinant v - accumulated transport costs (Lagrangian) r - accumulates violation of HJB condition along trajectory """ nex, d_extra = x.shape d = d_extra - 3 z = pad(x[:, :d], (0, 1, 0, 0), value=t) # concatenate with the time t gradPhi, trH = net.trHess(z) dx = -(1.0/alph[0]) * gradPhi[:,0:d] dl = -(1.0/alph[0]) * trH.unsqueeze(1) dv = 0.5 * torch.sum(torch.pow(dx, 2) , 1 ,keepdims=True) dr = torch.abs( -gradPhi[:,-1].unsqueeze(1) + alph[0] * dv ) return torch.cat( (dx,dl,dv,dr) , 1 )
1523b28f1568bcd668a3f8cc8ce39dfb7d8096fe
22,781
def create_transform(num_flow_steps, param_dim, context_dim, base_transform_kwargs): """Build a sequence of NSF transforms, which maps parameters x into the base distribution u (noise). Transforms are conditioned on strain data y. Note that the forward map is f^{-1}(x, y). Each step in the sequence consists of * A linear transform of x, which in particular permutes components * A NSF transform of x, conditioned on y. There is one final linear transform at the end. This function was adapted from the uci.py example in https://github.com/bayesiains/nsf Arguments: num_flow_steps {int} -- number of transforms in sequence param_dim {int} -- dimensionality of x context_dim {int} -- dimensionality of y base_transform_kwargs {dict} -- hyperparameters for NSF step Returns: Transform -- the constructed transform """ transform = transforms.CompositeTransform([ transforms.CompositeTransform([ create_linear_transform(param_dim), create_base_transform(i, param_dim, context_dim=context_dim, **base_transform_kwargs) ]) for i in range(num_flow_steps) ] + [ create_linear_transform(param_dim) ]) return transform
d4d556163af777f50aed2f4d86b1ae9c1de81047
22,782
def for_in_pyiter(it): """ >>> for_in_pyiter(Iterable(5)) [0, 1, 2, 3, 4] """ l = [] for item in it: l.append(item) return l
7d5c44ce771ea9847d57749235a31f200a01b67f
22,784
def train_test_split_with_none(X, y=None, sample_weight=None, random_state=0): """ Splits into train and test data even if they are None. @param X X @param y y @param sample_weight sample weight @param random_state random state @return similar to :epkg:`scikit-learn:model_selection:train_test_split`. """ not_none = [_ for _ in [X, y, sample_weight] if _ is not None] res = train_test_split(*not_none) inc = len(not_none) trains = [] tests = [] for i in range(inc): trains.append(res[i * 2]) tests.append(res[i * 2 + 1]) while len(trains) < 3: trains.append(None) tests.append(None) X_train, y_train, w_train = trains X_test, y_test, w_test = tests return X_train, y_train, w_train, X_test, y_test, w_test
8a789d6001a56096eba556301e130c57edd8cf87
22,785
def measure_time(func, repeat=1000): """ Repeatedly executes a function and records lowest time. """ def wrapper(*args, **kwargs): min_time = 1000 for _ in range(repeat): start = timer() result = func(*args, **kwargs) curr_time = timer() - start if curr_time < min_time: min_time = curr_time return [min_time, result] return wrapper
0515eca9cfa96a7395b3461bd3302a9780d05366
22,786
def initialise_players(frame_data, params): """ initialise_players(team,teamname,params) create a list of player objects that holds their positions and velocities from the tracking data dataframe Parameters ----------- team: row (i.e. instant) of either the home or away team tracking Dataframe teamname: team name "Home" or "Away" params: Dictionary of model parameters (default model parameters can be generated using default_model_params() ) Returns ----------- team_players: list of player objects for the team at at given instant """ # get player ids player_ids = np.unique([x.split("_")[0] for x in frame_data.keys()]) # create list team_players = [] for p in player_ids: # create a player object for player_id 'p' team_player = player(p, frame_data, params) if team_player.inframe: team_players.append(team_player) return team_players
4126ba5cf1cdcd61017692260026dbdd03523874
22,787
import gc def read_edgelist(f, directed=True, sep=r"\s+", header=None, keep_default_na=False, **readcsvkwargs): """ Creates a csrgraph from an edgelist. The edgelist should be in the form [source destination] or [source destination edge_weight] The first column needs to be the source, the second the destination. If there is a third column it's assumed to be edge weights. Otherwise, all arguments from pandas.read_csv can be used to read the file. f : str Filename to read directed : bool Whether the graph is directed or undirected. All csrgraphs are directed, undirected graphs simply add "return edges" sep : str CSV-style separator. Eg. Use "," if comma separated header : int or None pandas read_csv parameter. Use if column names are present keep_default_na: bool pandas read_csv argument to prevent casting any value to NaN read_csv_kwargs : keyword arguments for pd.read_csv Pass these kwargs as you would normally to pd.read_csv. Returns : csrgraph """ # Read in csv correctly to each column elist = pd.read_csv( f, sep=sep, header=header, keep_default_na=keep_default_na, **readcsvkwargs ) if len(elist.columns) == 2: elist.columns = ['src', 'dst'] elist['weight'] = np.ones(elist.shape[0]) elif len(elist.columns) == 3: elist.columns = ['src', 'dst', 'weight'] else: raise ValueError(f""" Invalid columns: {elist.columns} Expected 2 (source, destination) or 3 (source, destination, weight) Read File: \n{elist.head(5)} """) # Create name mapping to normalize node IDs # Somehow this is 1.5x faster than np.union1d. Shame on numpy. allnodes = list( set(elist.src.unique()) .union(set(elist.dst.unique()))) # Factor all nodes to unique IDs names = ( pd.Series(allnodes).astype('category') .cat.categories ) nnodes = names.shape[0] # Get the input data type if nnodes > UINT16_MAX: dtype = np.uint32 if nnodes > UINT32_MAX: dtype = np.uint64 else: dtype = np.uint16 name_dict = dict(zip(names, np.arange(names.shape[0], dtype=dtype))) elist.src = elist.src.map(name_dict).astype(dtype) elist.dst = elist.dst.map(name_dict).astype(dtype) # clean up temp data allnodes = None name_dict = None gc.collect() # If undirected graph, append edgelist to reversed self if not directed: other_df = elist.copy() other_df.columns = ['dst', 'src', 'weight'] elist = pd.concat([elist, other_df]) other_df = None gc.collect() # Need to sort by src for _edgelist_to_graph elist = elist.sort_values(by='src') # extract numpy arrays and clear memory src = elist.src.to_numpy() dst = elist.dst.to_numpy() weight = elist.weight.to_numpy() elist = None gc.collect() G = methods._edgelist_to_graph( src, dst, weight, nnodes, nodenames=names ) return G
dd4110700857c3deb86c53a176ab93b0366cd900
22,788
def is_comment(txt_row): """ Tries to determine if the current line of text is a comment line. Args: txt_row (string): text line to check. Returns: True when the text line is considered a comment line, False if not. """ if (len(txt_row) < 1): return True if ((txt_row[0] == '(') and (txt_row[len(txt_row) - 1] == ')')): return True else: return False
db54b90053244b17ec209ed1edb1905b62151165
22,789
import json def updateBillingPlanPaymentDefinition(pk, paypal_payment_definition): """Update an existing payment definition of a billing plan :param pk: the primary key of the payment definition (associated with a billing plan) :type pk: integer :param paypal_payment_definition: Paypal billing plan payment definition :type paypal_payment_definition: object :returns: True for successful update or False in any other case :rtype: bool """ try: try: frequency_interval = paypal_payment_definition['frequency_interval'] except: frequency_interval = None try: cycles = paypal_payment_definition['cycles'] except: cycles = None try: charge_models = paypal_payment_definition['charge_models'] except: charge_models = dict() try: amount_value = paypal_payment_definition['amount']['value'] except: amount_value = None try: amount_currency = paypal_payment_definition['amount']['currency'] except: amount_currency = None BillingPlanPaymentDefinition.objects.filter(pk=pk).update( name=paypal_payment_definition['name'], type=paypal_payment_definition['type'], frequency=paypal_payment_definition['frequency'], frequency_interval=frequency_interval, cycles=cycles, charge_models=json.dumps(utilities.object2dict(charge_models, False)), amount_value=amount_value, amount_currency=amount_currency, json=json.dumps(utilities.object2dict(paypal_payment_definition, False)) ) return True except Exception as ex: log.error("Error in billing plan's payment definition modification (pk:=%d): %s" % (pk, str(ex)) ) return False
b4bf58088c8e501ccf380dda98587467a8683ff9
22,790
from typing import List def format_float_list(array: List[float], precision: int = 4) -> List[str]: """ Formats a list of float values to a specific precision. :param array: A list of float values to format. :param precision: The number of decimal places to use. :return: A list of strings containing the formatted floats. """ return [format_float(f, precision) for f in array]
b790379327acc5ebdf54f99621a06edd6228941d
22,791
import html def counts_card() -> html.Div: """Return the div that contains the overall count of patients/studies/images.""" return html.Div( className="row", children=[ html.Div( className="four columns", children=[ html.Div( className="card gold-left-border", children=html.Div( className="container", children=[ html.H4(id="patient-count", children=""), html.P(children="patients"), ], ), ) ], ), html.Div( className="four columns", children=[ html.Div( className="card green-left-border", children=html.Div( className="container", children=[ html.H4(id="study-count", children=""), html.P(children="studies"), ], ), ) ], ), html.Div( className="four columns", children=[ html.Div( className="card purple-left-border", children=html.Div( className="container", children=[ html.H4(id="image-count", children=""), html.P(children="images"), ], ), ) ], ), ], )
f80ba28b7ef1b2407d6a8b3e8eaccf26c734566a
22,792
import logging def validate_est(est: EstData, include_elster_responses: bool = False): """ Data for a Est is validated using ERiC. If the validation is successful then this should return a 200 HTTP response with {'success': bool, 'est': est}. Otherwise this should return a 400 response if the validation failed with {‘code’ : int,‘message’: str,‘description’: str,‘‘validation_problems’ : [{‘code’: int, ‘message’: str}]} or a 400 response for other client errors and a 500 response for server errors with {‘code’ : int, ‘message’: str, ‘description’: str} :param est: the JSON input data for the ESt :param include_elster_responses: query parameter which indicates whether the ERiC/Server response are returned """ try: request = EstValidationRequestController(est, include_elster_responses) result = request.process() if "transferticket" in result: result["transfer_ticket"] = result.pop("transferticket") return result except EricProcessNotSuccessful as e: logging.getLogger().info("Could not validate est", exc_info=True) raise HTTPException(status_code=422, detail=e.generate_error_response(include_elster_responses))
2565572efd9b1ee52fabb98473b7934e13b691ca
22,793
from typing import Callable from typing import List async def list_solver_releases( solver_key: SolverKeyId, user_id: int = Depends(get_current_user_id), catalog_client: CatalogApi = Depends(get_api_client(CatalogApi)), url_for: Callable = Depends(get_reverse_url_mapper), ): """ Lists all releases of a given solver """ releases: List[Solver] = await catalog_client.list_solver_releases( user_id, solver_key ) for solver in releases: solver.url = url_for( "get_solver_release", solver_key=solver.id, version=solver.version ) return sorted(releases, key=attrgetter("pep404_version"))
0461e6ba72c01e789af8571d75b7da21d2f17801
22,794
import copy def offset_perimeter(geometry, offset, side='left', plot_offset=False): """Offsets the perimeter of a geometry of a :class:`~sectionproperties.pre.sections.Geometry` object by a certain distance. Note that the perimeter facet list must be entered in a consecutive order. :param geometry: Cross-section geometry object :type geometry: :class:`~sectionproperties.pre.sections.Geometry` :param float offset: Offset distance for the perimeter :param string side: Side of the perimeter offset, either 'left' or 'right'. E.g. 'left' for a counter-clockwise offsets the perimeter inwards. :param bool plot_offset: If set to True, generates a plot comparing the old and new geometry The following example 'corrodes' a 200UB25 I-section by 1.5 mm and compares a few of the section properties:: import sectionproperties.pre.sections as sections from sectionproperties.pre.offset import offset_perimeter from sectionproperties.analysis.cross_section import CrossSection # calculate original section properties original_geometry = sections.ISection(d=203, b=133, t_f=7.8, t_w=5.8, r=8.9, n_r=16) original_mesh = original_geometry.create_mesh(mesh_sizes=[3.0]) original_section = CrossSection(original_geometry, original_mesh) original_section.calculate_geometric_properties() original_area = original_section.get_area() (original_ixx, _, _) = original_section.get_ic() # calculate corroded section properties corroded_geometry = offset_perimeter(original_geometry, 1.5, plot_offset=True) corroded_mesh = corroded_geometry.create_mesh(mesh_sizes=[3.0]) corroded_section = CrossSection(corroded_geometry, corroded_mesh) corroded_section.calculate_geometric_properties() corroded_area = corroded_section.get_area() (corroded_ixx, _, _) = corroded_section.get_ic() # compare section properties print("Area reduction = {0:.2f}%".format( 100 * (original_area - corroded_area) / original_area)) print("Ixx reduction = {0:.2f}%".format( 100 *(original_ixx - corroded_ixx) / original_ixx)) The following plot is generated by the above example: .. figure:: ../images/offset_example.png :align: center :scale: 75 % 200UB25 with 1.5 mm corrosion. The following is printed to the terminal: .. code-block:: text Area reduction = 41.97% Ixx reduction = 39.20% """ # initialise perimeter points list perimeter_points = [] # add perimeter points to the list for facet_idx in geometry.perimeter: # get the facet facet = geometry.facets[facet_idx] # get the first point on the facet point = geometry.points[facet[0]] # add the (x,y) tuple to the list perimeter_points.append((point[0], point[1])) # create LinearRing object perimeter = LinearRing(perimeter_points) # offset perimeter new_perimeter = perimeter.parallel_offset( distance=offset, side=side, resolution=0, join_style=2 ) (new_xcoords, new_ycoords) = new_perimeter.xy # create deep copy of original geometry object new_geometry = copy.deepcopy(geometry) # replace offset points in new geometry for (i, facet_idx) in enumerate(new_geometry.perimeter): # get the facet facet = new_geometry.facets[facet_idx] # get the first point on the facet point = new_geometry.points[facet[0]] # replace the point location with the offset location point[0] = new_xcoords[i] point[1] = new_ycoords[i] if plot_offset: (fig, ax) = plt.subplots() # plot new geometry for (i, f) in enumerate(new_geometry.facets): if i == 0: ax.plot([new_geometry.points[f[0]][0], new_geometry.points[f[1]][0]], [new_geometry.points[f[0]][1], new_geometry.points[f[1]][1]], 'ko-', markersize=2, label='Offset Geometry') else: ax.plot([new_geometry.points[f[0]][0], new_geometry.points[f[1]][0]], [new_geometry.points[f[0]][1], new_geometry.points[f[1]][1]], 'ko-', markersize=2) # plot the original perimeter for (i, facet_idx) in enumerate(geometry.perimeter): f = geometry.facets[facet_idx] if i == 0: ax.plot([geometry.points[f[0]][0], geometry.points[f[1]][0]], [geometry.points[f[0]][1], geometry.points[f[1]][1]], 'r--', markersize=2, label='Original Perimeter') else: ax.plot([geometry.points[f[0]][0], geometry.points[f[1]][0]], [geometry.points[f[0]][1], geometry.points[f[1]][1]], 'r--', markersize=2) ax.legend(loc='center left', bbox_to_anchor=(1, 0.5)) ax.set_title('Offset Geometry') ax.set_aspect('equal', anchor='C') plt.tight_layout() plt.show() return new_geometry
e8b2851ea5ffd17faeb62bd3ca094e4cb6dd162a
22,796
def WalterComposition(F,P): """ Calculates the melt composition generated as a function of F and P, using the parameterisation of Duncan et al. (2017). Parameters ----- F: float Melt fraction P: float Pressure in GPa Returns ----- MeltComposition: series Major elements in wt% T: float Temperatures associated with the melt in C """ if isinstance(F,float): F = np.array([F]) P = np.array([P]) if isinstance(F,list): F = np.array(F) P = np.array(P) comp = pd.DataFrame(np.array([P,F]).T,columns=['P','X']) F = F*100 if F[F.argmin()] == 0: F[F.argmin()] = F[F.argmin()+1] comp['SiO2'] = ((-2.137e-5*P-9.83e-4)*F**2 + (5.975e-3*P+8.513e-2)*F +(-4.236e-1*P+4.638e1)) comp['Al2O3'] = ((-1.908e-4*P-1.366e-4)*F**2+(4.589e-2*P-1.525e-1)*F +(-2.685*P+2.087e1)) comp['FeO'] = ((2.365e-4*P-8.492e-4)*F**2+(-3.723e-2*P+1.1e-1)*F +(1.366*P+5.488)) comp['MgO'] = ((-8.068e-5*P+1.747e-3)*F**2+(-1.268e-2*P+9.761e-2)*F +(2.12*P+9.914)) comp['CaO'] = ((4.305e-5*P-4.513e-4)*F**2+(1.104e-3*P-4.948e-2)*F +(-5.564e-1*P+1.294e1)) comp['TiO2'] = 12.370*F**-0.917 comp['Na2O'] = 5.339*F**-0.654 comp['K2O'] = 6.612*F**-0.923 limTiO2 = 12.370*3**-0.917 limNa2O = 5.339*3**-0.654 limK2O = 6.612*3**-0.923 comp.TiO2[comp.TiO2>limTiO2] = limTiO2 comp.Na2O[comp.Na2O>limNa2O] = limNa2O comp.K2O[comp.K2O>limK2O] = limK2O comp['Cr2O3'] = -7.86e-5*F**2 + 9.705e-3*F + 2.201e-1 comp['MnO'] = -6.757e-6*F**2 + -2.04e-5*F + 2.014e-1 T = ((8.597e-3*P-1.963e-2)*F**2 + (-1.374*P+7.383)*F + 9.369e1*P + 1.177e3) return comp, T
54b2b5d6e6f4500da1c17e54bcb9b8804a65e9b0
22,797
from pathlib import Path def fetch_study_metadata( data_dir: Path, version: int = 7, verbose: int = 1 ) -> pd.DataFrame: """ Download if needed the `metadata.tsv.gz` file from Neurosynth and load it into a pandas DataFrame. The metadata table contains the metadata for each study. Each study (ID) is stored on its own line. These IDs are in the same order as the id column of the associated `coordinates.tsv.gz` file, but the rows will differ because the coordinates file will contain multiple rows per study. They are also in the same order as the rows in the `features.npz` files for the same version. The metadata will therefore have N rows, N being the number of studies in the Neurosynth dataset. The columns (for version 7) are: - id - doi - space - title - authors - year - journal Parameters ---------- data_dir : Path the path for the directory where downloaded data should be saved. version : int, optional the neurosynth data version, by default 7 verbose : int, optional verbose param for nilearn's `_fetch_files`, by default 1 Returns ------- pd.DataFrame the study metadata dataframe """ metadata_filename = f"data-neurosynth_version-{version}_metadata.tsv.gz" metadata_file = _fetch_files( data_dir, [ ( metadata_filename, NS_DATA_URL + metadata_filename, {}, ), ], verbose=verbose, )[0] metadata = pd.read_table(metadata_file) return metadata
e04a0dd631f8b8a53708118134b8d5039e83bcdf
22,798
from typing import Union def proveFormula(formula: str) -> Union[int, str]: """ Implements proveFormula according to grader.py >>> proveFormula('p') 1 >>> proveFormula('(NOT (NOT (NOT (NOT not)) )\t)') 1 >>> proveFormula('(NOT (NOT (NOT (NOT not)) )') 'E' >>> proveFormula('(IF p p)') 'T' >>> proveFormula('(AND p (NOT p))') 'U' >>> proveFormula('(OR p (NOT q))') 3 """ ast = parse(formula) if ast is None: return 'E' result = determine_satisfiability(ast) if result is True: return 'T' if result is False: return 'U' return result
4c078bdfa586b9807b6265db43ee7187e6aef349
22,799
def sendSingleCommand(server, user, password, command): """Wrapper function to open a connection and execute a single command. Args: server (str): The IP address of the server to connect to. username (str): The username to be used in the connection. password (str): The password associated with the user. command (str): The command to be executed. Returns: String: String containing the command output. """ # Open SSH connection channel = openChannel(server, user, password) output = "" try: output = sendCommand(channel, command) finally: # Close ssh connection closeChannel(channel) return output
78a339b2bcb320ad81e79b8656867b894be22ecd
22,801
def test_piecewise_fermidirac(precision): """Creates a Chebyshev approximation of the Fermi-Dirac distribution within the interval (-3, 3), and tests its accuracy for scalars, matrices, and distributed matrices. """ mu = 0.0 beta = 10.0 def f(x): return 1 / (np.exp(beta * (x - mu)) + 1) is_vectorized = True interval = (-3, 3) n_cheb = 200 # The first one comes from Chebyshev error, the latter from numerical. rtol = max(5e-6, 10 * testutils.eps(precision)) atol = max(5e-6, 10 * testutils.eps(precision)) test_samples = 1000 test_margin = 0 p_sz = 16 D = 128 dtype = np.float32 M = random_self_adjoint(D, dtype) # Make sure the spectrum of M is within the interval. interval_range = max(abs(i) for i in interval) M = M / (jnp.linalg.norm(M) / interval_range) v = np.random.randn(D, 1).astype(dtype) chebyshev_test( f, interval, M, v, n_cheb, is_vectorized, atol, rtol, test_samples, test_margin, p_sz, precision=precision, )
587b7acfc5a114677f1bf5ab5a72a9f2019c6063
22,802
def load_img(flist): """ Loads images in a list of arrays Args : list of files Returns list of all the ndimage arrays """ rgb_imgs = [] for i in flist: rgb_imgs.append(cv2.imread(i, -1)) # flag <0 to return img as is print "\t> Batch import of N frames\t", len(rgb_imgs) size_var = cv2.imread(i) # (height, width, channels) return rgb_imgs, size_var
74d3c312e936f434b3738eae79b8f499755cdd0a
22,803
import astropy.io.fits as pyfits def makesimpleheader(headerin,naxis=2,radesys=None,equinox=None,pywcsdirect=False): """ Function to make a new 'simple header' from the WCS information in the input header. Parameters ---------- headerin : astropy.io.fits.header Header object naxis : int Specifies how many axes the final header should have. Default=2 radesys :str RA/DEC system to use (valid SkyCoord frame system, e.g. 'icrs') equinox : str Equinox to use for the output header pywcsdirect : bool True to create the header directly with astropy.wcs.WCS Returns ------- astropy.io.fits.header Output header """ if type(headerin)==str: headerin=pyfits.getheader(headerin) if pywcsdirect==True: wcstemp=pywcs.WCS(header=headerin) else: wcstemp=pywcs.WCS(naxis=naxis); if naxis>2: wcstemp.wcs.crpix=[float(headerin['CRPIX1']),float(headerin['CRPIX2']),float(headerin['CRPIX3'])] wcstemp.wcs.crval=[float(headerin['CRVAL1']),float(headerin['CRVAL2']),float(headerin['CRVAL3'])] wcstemp.wcs.ctype=[headerin['CTYPE1'],headerin['CTYPE2'],headerin['CTYPE3']] try: wcstemp.wcs.cunit=[headerin['CUNIT1'],headerin['CUNIT2'],headerin['CUNIT3']] except: pass try: wcstemp.wcs.cdelt=list(getcdelts(headerin))+[headerin['CDELT3']]; except: raise(Exception('Invalid WCS CDELTS')) else: wcstemp.wcs.crpix=[float(headerin['CRPIX1']),float(headerin['CRPIX2'])] wcstemp.wcs.crval=[float(headerin['CRVAL1']),float(headerin['CRVAL2'])] wcstemp.wcs.ctype=[headerin['CTYPE1'],headerin['CTYPE2']] try: wcstemp.wcs.cunit=[headerin['CUNIT1'],headerin['CUNIT2']] except: pass try: wcstemp.wcs.cdelt=list(getcdelts(headerin)); except: raise(Exception('Invalid WCS CDELTS')) try: crota=getcdelts(headerin,getrot=True)[-1] #degrees, from N except: raise(Exception('Invalid WCS params for CROTAx')) #if crota!=0.: wcstemp.wcs.crota=[crota]*2 #Header will include PC_x cards if crot not 0 try: wcstemp.wcs.radesys=headerin['RADESYS'] except: pass try: wcstemp.wcs.equinox=headerin['EQUINOX'] except: pass if radesys is not None: wcstemp.wcs.radesys=radesys; #e.g. 'FK5', 'ICRS'. For manually forcing string, not true reprojection. if equinox is not None: wcstemp.wcs.equinox=equinox; #e.g. 2000.0 simpleheader=wcstemp.to_header() if pywcsdirect==False: if crota!=0.: simpleheader['CROTA2']=crota #Alternative method to just use (deprecated) CROTA2 card simpleheader['NAXIS']=naxis; try: simpleheader['NAXIS1']=int(headerin['NAXIS1']); simpleheader['NAXIS2']=int(headerin['NAXIS2']); except: pass if naxis>2: for card in ['NAXIS3','CRPIX3','CRVAL3','CDELT3','CTYPE3','CUNIT3', 'SPECSYS','ALTRVAL','ALTRPIX']: try: simpleheader[card]=headerin[card] except: pass for card in ['CROTA','CROTA1','CROTA2','BSCALE','BZERO','ZSCALE','BMAJ','BMIN','BPA', 'JANSCALE','FLUXCONV', 'WAVELEN','FREQ', 'RESTFRQ', 'LATPOLE','LONPOLE']: try: simpleheader[card]=float(headerin[card]) except: pass for card in ['BUNIT','OBJECT','TELESCOP','ZUNITS','SPECSYS']: try: simpleheader[card]=headerin[card] except: pass return simpleheader
ffdc8f755227451e3df2329e8ec804b7444a553d
22,804
def _callcatch(ui, func): """like scmutil.callcatch but handles more high-level exceptions about config parsing and commands. besides, use handlecommandexception to handle uncaught exceptions. """ detailed_exit_code = -1 try: return scmutil.callcatch(ui, func) except error.AmbiguousCommand as inst: detailed_exit_code = 10 ui.warn( _(b"hg: command '%s' is ambiguous:\n %s\n") % (inst.prefix, b" ".join(inst.matches)) ) except error.CommandError as inst: detailed_exit_code = 10 if inst.command: ui.pager(b'help') msgbytes = pycompat.bytestr(inst.message) ui.warn(_(b"hg %s: %s\n") % (inst.command, msgbytes)) commands.help_(ui, inst.command, full=False, command=True) else: ui.warn(_(b"hg: %s\n") % inst.message) ui.warn(_(b"(use 'hg help -v' for a list of global options)\n")) except error.UnknownCommand as inst: detailed_exit_code = 10 nocmdmsg = _(b"hg: unknown command '%s'\n") % inst.command try: # check if the command is in a disabled extension # (but don't check for extensions themselves) formatted = help.formattedhelp( ui, commands, inst.command, unknowncmd=True ) ui.warn(nocmdmsg) ui.write(formatted) except (error.UnknownCommand, error.Abort): suggested = False if inst.all_commands: sim = error.getsimilar(inst.all_commands, inst.command) if sim: ui.warn(nocmdmsg) ui.warn(b"(%s)\n" % error.similarity_hint(sim)) suggested = True if not suggested: ui.warn(nocmdmsg) ui.warn(_(b"(use 'hg help' for a list of commands)\n")) except IOError: raise except KeyboardInterrupt: raise except: # probably re-raises if not handlecommandexception(ui): raise if ui.configbool(b'ui', b'detailed-exit-code'): return detailed_exit_code else: return -1
495531b930187f1d3aff329453235f9683bc25bc
22,805
def _determ_estim_update(new_bit, counts): """Beliefs only a sequence of all ones or zeros. """ new_counts = counts[:] new_counts[new_bit] += 1 if new_counts[0] > 0 and new_counts[1] > 0: return LOG_ZERO log_p_new = _determ_log_p(new_counts) log_p_old = _determ_log_p(counts) return log_p_new - log_p_old
ea6f172161b215d5d474241da18fdd222692f245
22,806
def get_projects(config): """Find all XNAT projects and the list of scan sites uploaded to each one. Args: config (:obj:`datman.config.config`): The config for a study Returns: dict: A map of XNAT project names to the URL(s) of the server holding that project. """ projects = {} for site in config.get_sites(): xnat_project = config.get_key("XnatArchive", site=site) projects.setdefault(xnat_project, set()).add(site) return projects
09824b67e73f8190d777ec782454940f27b70e33
22,807
import json def load_jsonrpc_method(name): """Load a method based on the file naming conventions for the JSON-RPC. """ base_path = (repo_root() / "doc" / "schemas").resolve() req_file = base_path / f"{name.lower()}.request.json" resp_file = base_path / f"{name.lower()}.schema.json" request = CompositeField.from_js(json.load(open(req_file)), path=name) response = CompositeField.from_js(json.load(open(resp_file)), path=name) # Normalize the method request and response typename so they no # longer conflict. request.typename += "Request" response.typename += "Response" return Method( name=method_name_override.get(name, name), request=request, response=response, )
173fdaad563989042f6ff3c5622c4b56be1a5fa5
22,808
def client_decrypt_hello_reply(ciphertext, iv1, key1): """ Decrypt the server's reply using the IV and key we sent to it. Returns iv2, key2, salt2 (8 bytes), and the original salt1. The pair iv2/key2 are to be used in future communications. Salt1 is returned to help confirm the integrity of the operation. """ iv1 = bytes(iv1) key1 = bytes(key1) # iv_ = ciphertext[0:AES_BLOCK_BYTES] # of no interest cipher = Cipher( algorithms.AES(key1), modes.CBC(iv1), backend=default_backend()) decryptor = cipher.decryptor() plaintext = decryptor.update(ciphertext) + decryptor.finalize() # unpadded = strip_pkcs7_padding(plaintext, AES_BLOCK_BYTES) unpadder = padding.PKCS7(AES_BLOCK_BITS).unpadder() unpadded = unpadder.update(plaintext) + unpadder.finalize() iv2 = unpadded[:AES_BLOCK_BYTES] key2 = unpadded[AES_BLOCK_BYTES: 3 * AES_BLOCK_BYTES] salt2 = unpadded[3 * AES_BLOCK_BYTES: 3 * AES_BLOCK_BYTES + 8] salt1 = unpadded[3 * AES_BLOCK_BYTES + 8: 3 * AES_BLOCK_BYTES + 16] v_bytes = unpadded[3 * AES_BLOCK_BYTES + 16: 3 * AES_BLOCK_BYTES + 20] version2 = v_bytes[0] |\ (v_bytes[1] << 8) |\ (v_bytes[2] << 16) |\ (v_bytes[3] << 24) return iv2, key2, salt2, salt1, version2
70f3361acbeaa26376d4a54605a526ecac5ea61e
22,810
import pandas def load_labeled_data(filename): """ Loads data from a csv, where the last column is the label of the data in that row :param filename: name of the file to load :return: data frames and labels in separate arrays """ dataframe = pandas.read_csv(filename, header=None) dataset = dataframe.values data = dataset[:, 0:-1].astype(float) labels = dataset[:, -1] return data, labels
727691d376b744ccfdffbd62dd9f386e7bd7c4dd
22,811
def _get_data_tuple(sptoks, asp_termIn, label): """ Method obtained from Trusca et al. (2020), no original docstring provided. :param sptoks: :param asp_termIn: :param label: :return: """ # Find the ids of aspect term. aspect_is = [] asp_term = ' '.join(sp for sp in asp_termIn).lower() for _i, group in enumerate(window(sptoks, len(asp_termIn))): if asp_term == ' '.join([g.lower() for g in group]): aspect_is = list(range(_i, _i + len(asp_termIn))) break elif asp_term in ' '.join([g.lower() for g in group]): aspect_is = list(range(_i, _i + len(asp_termIn))) break pos_info = [] for _i, sptok in enumerate(sptoks): pos_info.append(min([abs(_i - i) for i in aspect_is])) lab = None if label == 'negative': lab = -1 elif label == 'neutral': lab = 0 elif label == "positive": lab = 1 else: raise ValueError("Unknown label: %s" % lab) return pos_info, lab
2dae699ba4da27f6a36b7aac21cc8bc759a71d67
22,814
from pathlib import Path def setup_environment(new_region: Path) -> bool: """Try to create new_region folder""" if new_region.exists(): print(f"{new_region.resolve()} exists, this may cause problems") proceed = input("Do you want to proceed regardless? [y/N] ") sep() return proceed.startswith("y") new_region.mkdir() print(f"Saving newly generated region files to {new_region.resolve()}") return True
175e21b10aca860d9886841be743d8f2a240dfc6
22,815
def headers(): """Default headers for making requests.""" return { 'content-type': 'application/json', 'accept': 'application/json', }
53e42df6cae8ba9cbdc5f0e0a86a0154d3ba360e
22,817
def merge_two_lists(l1: ListNode, l2: ListNode) -> ListNode: """Returns a single sorted, in-place merged linked list of two sorted input linked lists The linked list is made by splicing together the nodes of l1 and l2 Args: l1: l2: Examples: >>> l1 = linked_list.convert_list_to_linked_list([1,2,4]) >>> l2 = linked_list.convert_list_to_linked_list([1,3,4]) >>> merge_two_lists(l1, l2).as_list() [1, 1, 2, 3, 4, 4] >>> l1 = linked_list.convert_list_to_linked_list([]) >>> l2 = linked_list.convert_list_to_linked_list([0]) >>> merge_two_lists(l1, l2).as_list() [0] >>> merge_two_lists(l2, l1).as_list() [0] >>> merge_two_lists(None, None) """ """ALGORITHM""" head_handle = curr = ListNode(None) while l1 is not None and l2 is not None: if l1.val <= l2.val: curr.next, l1 = l1, l1.next else: curr.next, l2 = l2, l2.next curr = curr.next # Post-condition: # if at least one list was not None, one list is now exhausted and `curr` # is the last node of the now exhausted list; complete splice by assigning # the head of the remaining non-exhausted list to `curr.next` curr.next = l1 if l1 is not None else l2 return head_handle.next
49033ef17e0940a201c70555cc0e49b8e745fb3b
22,818
import csv def map_SOPR_to_firm(): """ Map SOPR identifiers to a lobbying CUID. Return a dictionnary. """ firms = {} with open(DATASET_PATH_TO['LOBBYING_FIRMS'], 'rb') as f: reader = csv.reader(f, delimiter='%', quoting=csv.QUOTE_NONE) for record in reader: SOPR_reports = record[3].split(';') CUID_firm = record[0] for report_id in SOPR_reports: firms[report_id] = CUID_firm return firms
e0f00d7f720512eef3e32685bb8ba5ed4ed0203c
22,819
from typing import Set def specialbefores_given_external_square( befores: Set[Before], directly_playable_squares: Set[Square], external_directly_playable_square: Square) -> Set[Specialbefore]: """ Args: befores (Set[Before]): a set of Befores used to create Specialbefores. directly_playable_squares (Set[Square]): a set of directly playable squares, possibly including square. external_directly_playable_square (Square): a square to be used as the external directly playable square of each Specialbefore. Returns: specialbefores (Set[Specialbefore]): a set of Specialbefores. Each Specialbefore uses square as its external directly playable square. """ specialbefores = set() for before in befores: directly_playable_squares_in_before_group = internal_directly_playable_squares( before, directly_playable_squares) for internal_directly_playable_square in directly_playable_squares_in_before_group: if can_be_used_with_before(external_directly_playable_square, before): specialbefores.add(Specialbefore( before=before, internal_directly_playable_square=internal_directly_playable_square, external_directly_playable_square=external_directly_playable_square, )) return specialbefores
bb0405cc783ee94130893d0dca0f0b06e43d71c5
22,820
import pytest def check_if_all_tests_pass(option='-x'): """Runs all of the tests and only returns True if all tests pass. The -x option is the default, and -x will tell pytest to exit on the first encountered failure. The -s option prints out stdout from the tests (normally hidden.)""" options = [option] arguments = options exitcode = pytest.main(arguments) all_passed = exitcode == 0 if not all_passed: input() return all_passed
81e41cb985bcf346d9351d327d0ca0941ed7320e
22,822
import http def init(api, _cors, impl): """Configures REST handlers for allocation resource.""" namespace = webutils.namespace( api, __name__, 'Local nodeinfo redirect API.' ) @namespace.route('/<hostname>/<path:path>') class _NodeRedirect(restplus.Resource): """Redirects to local nodeinfo endpoint.""" def get(self, hostname, path): """Returns list of local instances.""" hostport = impl.get(hostname) if not hostport: return 'Host not found.', http.client.NOT_FOUND url = utils.encode_uri_parts(path) return flask.redirect('http://%s/%s' % (hostport, url), code=http.client.FOUND)
77430c891ceac87bec3d8b1cfa46557fbc1fd9f5
22,823
def split_matrix_2(input1): """ Split matrix. Args: inputs:tvm.Tensor of type float32. Returns: akg.tvm.Tensor of type float32 with 3d shape. """ dim = input1.shape[0] split_num = dim // split_dim result_3 = allocate((split_num, split_dim, split_dim), input1.dtype, 'local') for i in range(split_num): for j in range(split_dim): for k in range(split_dim): result_3[i,j,k] = input1[i * split_dim + j, i * split_dim + k] return result_3
8ee5b4069c28166ef6181cb8c6ef1e21232239a4
22,824
import glob def load_all(path, jobmanager=None): """Load all jobs from *path*. This function works as a multiple execution of |load_job|. It searches for ``.dill`` files inside the directory given by *path*, yet not directly in it, but one level deeper. In other words, all files matching ``path/*/*.dill`` are used. That way a path to the main working folder of previously run script can be used to import all jobs run by that script. The purpose of this function is to provide quick and easy way of restarting a script that previously failed. Loading all successful jobs from the previous run prevents double work and allows the script to proceed directly to the place where it failed. Jobs are loaded using default job manager stored in ``config.jm``. If you wish to use a different one you can pass it as *jobmanager* argument of this function. Returned value is a dictionary containing all loaded jobs as values and absolute paths to ``.dill`` files as keys. """ jm = jobmanager or config.jm loaded_jobs = {} for f in glob.glob(opj(path, '*', '*.dill')): loaded_jobs[f] = jm.load_job(f) return loaded_jobs
f76e2baeaa0b35283eed4748d68403827bdaff97
22,825
import numpy def relative_error(estimate, exact): """ Compute the relative error of an estimate, in percent. """ tol = 1e-15 if numpy.abs(exact) < tol: if numpy.abs(estimate - exact) < tol: relative_error = 0.0 else: relative_error = numpy.inf else: relative_error = numpy.abs((estimate - exact) / exact) * 100.0 return relative_error
4170fd4a7c448eb312ea9f42d436d12acd828695
22,826
def list_users(cursor): """ Returns the current roles """ cursor.execute( """ SELECT r.rolname AS name, r.rolcanlogin AS login, ARRAY( SELECT b.rolname FROM pg_catalog.pg_auth_members m JOIN pg_catalog.pg_roles b ON (m.roleid = b.oid) WHERE m.member = r.oid ) AS memberof FROM pg_catalog.pg_roles r """ ) return map(User.create, cursor.fetchall())
b51efbae5da08089987e3bc2753e1da3c13ee365
22,828
def get_job_exe_output_vol_name(job_exe): """Returns the container output volume name for the given job execution :param job_exe: The job execution model (must not be queued) with related job and job_type fields :type job_exe: :class:`job.models.JobExecution` :returns: The container output volume name :rtype: string :raises Exception: If the job execution is still queued """ return '%s_output_data' % job_exe.get_cluster_id()
c625b596f9ee819eb0c7afc9aed1328ecef0e206
22,830
def bytes2human(n, format='%(value).1f %(symbol)s', symbols='customary'): """ Convert n bytes into a human readable string based on format. symbols can be either "customary", "customary_ext", "iec" or "iec_ext", see: http://goo.gl/kTQMs >>> bytes2human(0) '0.0 B' >>> bytes2human(0.9) '0.0 B' >>> bytes2human(1) '1.0 B' >>> bytes2human(1.9) '1.0 B' >>> bytes2human(1024) '1.0 K' >>> bytes2human(1048576) '1.0 M' >>> bytes2human(1099511627776127398123789121) '909.5 Y' >>> bytes2human(9856, symbols="customary") '9.6 K' >>> bytes2human(9856, symbols="customary_ext") '9.6 kilo' >>> bytes2human(9856, symbols="iec") '9.6 Ki' >>> bytes2human(9856, symbols="iec_ext") '9.6 kibi' >>> bytes2human(10000, "%(value).1f %(symbol)s/sec") '9.8 K/sec' >>> # precision can be adjusted by playing with %f operator >>> bytes2human(10000, format="%(value).5f %(symbol)s") '9.76562 K' """ n = int(n) if n < 0: raise ValueError("n < 0") symbols = SYMBOLS[symbols] prefix = {} for i, s in enumerate(symbols[1:]): prefix[s] = 1 << (i+1)*10 for symbol in reversed(symbols[1:]): if n >= prefix[symbol]: value = float(n) / prefix[symbol] return format % locals() return format % dict(symbol=symbols[0], value=n)
21d3f52fe60a25a860c8350c20e0b43209802751
22,831
def check_if_free(driver, available, movie_hulu_url): """ Check if "Watch Movie" button is there if not, it's likely available in a special package (Starz etc) or availabe for Rent on Hulu. """ is_free = False if available: driver.get(movie_hulu_url) sleep(3) watch_movie_button = driver.find_elements_by_class_name("WatchAction") for e in watch_movie_button: #print(e.text) #print(e.get_attribute('href')) if e.text == "WATCH MOVIE": is_free = True return is_free
e27d62538e5bf9c416bcaedb4b7c5c4706493ba0
22,832
def scatter_add(data, indices, updates, axis=0): """Update data by adding values in updates at positions defined by indices Parameters ---------- data : relay.Expr The input data to the operator. indices : relay.Expr The index locations to update. updates : relay.Expr The values to be added. axis : int The axis to scatter on Returns ------- ret : relay.Expr The computed result. """ if axis < 0: axis += len(data.shape) assert axis >= 0 assert axis < len(data.shape) rank = len(data.shape) assert 1 <= rank <= 4, "scatter_add only supports 1-4 dimensions" ir_funcs = { 1: gen_scatter_add_1d_atomic, 2: gen_ir_2d, 3: gen_ir_3d, 4: gen_ir_4d, } def update_func(dst_ptr, dst_index, update): dst_ptr[dst_index] += update out_shape = data.shape out_buf = tvm.tir.decl_buffer(out_shape, data.dtype, "out_buf") out = te.extern( [out_shape], [data, indices, updates], lambda ins, outs: ir_funcs[rank](ins[0], ins[1], ins[2], axis, outs[0], update_func), dtype=data.dtype, out_buffers=[out_buf], name="scatter_add_gpu", tag="scatter_add_gpu", ) return out
641d96562700553a2ed4a5c4df323d468bba1bd8
22,833
def generate_test_linked_list(size=5, singly=False): """ Generate node list for test case :param size: size of linked list :type size: int :param singly: whether or not this linked list is singly :type singly: bool :return: value list and generated linked list """ assert size >= 1 val_list = [i for i in range(size)] node_list = LinkedList(singly=singly) node_list.append_val_list(val_list) return val_list, node_list
5d6d5fc3c6027cc18fd6da24a7cefc506e64eb2a
22,834
def _bytes_to_long(bytestring, byteorder): """Convert a bytestring to a long For use in python version prior to 3.2 """ result = [] if byteorder == 'little': result = (v << i * 8 for (i, v) in enumerate(bytestring)) else: result = (v << i * 8 for (i, v) in enumerate(reversed(bytestring))) return sum(result)
fcaa038b21aef2822ad7a513c28a7a2ed3c08cbc
22,835
import contextlib import ast def SoS_exec(script: str, _dict: dict = None, return_result: bool = True) -> None: """Execute a statement.""" if _dict is None: _dict = env.sos_dict.dict() if not return_result: if env.verbosity == 0: with contextlib.redirect_stdout(None): exec( compile(script, filename=stmtHash.hash(script), mode="exec"), _dict ) else: exec(compile(script, filename=stmtHash.hash(script), mode="exec"), _dict) return None try: stmts = list(ast.iter_child_nodes(ast.parse(script))) if not stmts: return if isinstance(stmts[-1], ast.Expr): # the last one is an expression and we will try to return the results # so we first execute the previous statements if len(stmts) > 1: if env.verbosity == 0: with contextlib.redirect_stdout(None): exec( compile( ast.Module(body=stmts[:-1], type_ignores=[]), filename=stmtHash.hash(script), mode="exec", ), _dict, ) else: exec( compile( ast.Module(body=stmts[:-1], type_ignores=[]), filename=stmtHash.hash(script), mode="exec", ), _dict, ) # then we eval the last one if env.verbosity == 0: with contextlib.redirect_stdout(None): res = eval( compile( ast.Expression(body=stmts[-1].value), filename=stmtHash.hash(script), mode="eval", ), _dict, ) else: res = eval( compile( ast.Expression(body=stmts[-1].value), filename=stmtHash.hash(script), mode="eval", ), _dict, ) else: # otherwise we just execute the entire code if env.verbosity == 0: with contextlib.redirect_stdout(None): exec( compile(script, filename=stmtHash.hash(script), mode="exec"), _dict, ) else: exec( compile(script, filename=stmtHash.hash(script), mode="exec"), _dict ) res = None except SyntaxError as e: raise SyntaxError(f"Invalid code {script}: {e}") # if check_readonly: # env.sos_dict.check_readonly_vars() return res
c524aa064dfc396d421cdef9962d81ca79c7010b
22,837
def aten_dim(mapper, graph, node): """ 构造获取维度的PaddleLayer。 TorchScript示例: %106 : int = aten::dim(%101) 参数含义: %106 (int): 输出,Tensor的维度。 %101 (Tensor): 输入的Tensor。 """ scope_name = mapper.normalize_scope_name(node) output_name = mapper._get_outputs_name(node)[0] layer_outputs = [output_name] layer_inputs = {} inputs_name, inputs_node = mapper._get_inputs_name(node) # 获取当前节点输出的list current_outputs = [output_name] # 处理输入0,即%input.8 mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs, scope_name) layer_inputs["input"] = inputs_name[0] # 获取当前节点输入的list current_inputs = list(layer_inputs.values()) graph.add_layer( "prim.shape", inputs=layer_inputs, outputs=layer_outputs, scope_name=scope_name) graph.add_layer( "prim.len", inputs={"input": output_name}, outputs=layer_outputs, scope_name=scope_name) return current_inputs, current_outputs
8037cc1943577aed2737aceee47b97b59c6a9244
22,838
def plot_LA(mobile, ref, GDT_TS, GDT_HA, GDT_ndx, sel1="protein and name CA", sel2="protein and name CA", cmap="GDT_HA", **kwargs): """ Create LocalAccuracy Plot (heatmap) with - xdata = residue ID - ydata = frame number - color = color-coded pair distance .. Note:: do not pass too many data points otherwise the plot will get squeezed Args: mobile (universe, atomgrp): mobile structure with trajectory ref (universe, atomgrp): reference structure GDT_TS (array): array with GDT_TS scores. GDT_HA (array): array with GDT_HA scores. GTD_ndx (array): array with corresponding index values (representative for frame numbers). sel1 (str): selection string of mobile structure (calculation of pair distances) sel2 (str): selection string of reference structure (calculation of pair distances) cmap (str): | "GDT_TS" or "TS": color map with new colors at values (0, 1, 2, 4, 8) and vmin, vmax = (0, 10). | "GDT_HA" or "HA": color map with new colors at values (0, .5, 1, 2, 4) and vmin, vmax = (0, 5). | "nucleic" or "RNA" or "DNA": color map with new colors at values (0, .5, 1, 2, 4) and vmin, vmax = (0, 20). | other cmap names: see help(plt.colormaps) or alternatively https://matplotlib.org/examples/color/colormaps_reference.html Keyword Args: prec (None, int): | rounding precision of scores | None: rounding off | int: rounding on to <int> decimals ndx_offset (int): | offset/shift of GDT_ndx to match real "mobile" frames. Defaults to 0. | Look up "start" parameter during execution of gdt.GDT() rank_num (int): plot only <rank_num> best ranked frames. Defaults to 30. show_cbar (bool): show/hide colorbar. Defaults to True. show_frames (bool): show/hide frame numbers. Defaults to False. show_scores (bool): show/hide GDT_TS and GDT_HA scores. Defaults to True. save_as (None, str): save name or realpath to save file. Defaults to None. cbar_ticks (None, list): color bar tick positions. Defaults to None. cbar_label/label (str) cbar_fontweight/fontweight (str): "normal", "bold" cbar_location/location (str): "right", "bottom", "left", "top" cbar_orientation/orientation (str): "horizontal", "vertical" cbar_min/vmin (None, int): min value of colorbar and heatmap. Gets overwritten by cmaps such as "GDT_TS", "GDT_HA", "RNA" etc. cbar_max/vmax (None, int): max value of colorbar and heatmap. Gets overwritten by cmaps such as "GDT_TS", "GDT_HA", "RNA" etc. text_pos_Frame (list): [x0, y0] position of the "Frame" text box (label) text_pos_TS (list): [x0, y0] position of the "TS" text box (label) text_pos_HA (list): [x0, y0] position of the "HA" text box (label) font_scale (float) .. Hint:: Args and Keyword of misc.figure() are also valid. Returns: fig (class) matplotlib.figure.Figure ax (class, list) ax or list of axes ~ matplotlib.axes._subplots.Axes LA_data (tuple) | LA_data[0]: PairDistances (list) | LA_data[1]: Frames (list) Example: | # obtain data | >> GDT = gdt.GDT(mobile, ref, sss=[None,None,None]) | >> GDT_percent, GDT_resids, GDT_cutoff, RMSD, FRAME = GDT | | # rank data | >> SCORES = gdt.GDT_rank_scores(GDT_percent, ranking_order="GDT_HA") | >> GDT_TS_ranked, GDT_HA_ranked, GDT_ndx_ranked = SCORES | | # edit text box positions of labels "Frame", "TS", "HA" | >>text_pos_kws = {"text_pos_Frame": [-8.8, -0.3], | "text_pos_TS": [-4.2, -0.3], | "text_pos_HA": [-1.9, -0.3]} | | # plot | >> gdt.plot_LA(mobile, ref, SCORES[0], SCORES[1], SCORES[2], **text_pos_kws) """ # init CONFIG object with default parameter and overwrite them if kwargs contain the same keywords. default = {"figsize": (7.5, 6), "font_scale": 1.2, "ndx_offset": 0, "rank_num": 30, "show_cbar": True, "show_frames": False, "show_scores": True, "save_as": None, "prec": 2, "cmap": cmap, "cbar_ticks": None, "cbar_label": r"mobile-reference CA-CA distances ($\AA$)", "cbar_fontweight": "bold", "cbar_location": 'right', "cbar_orientation": 'vertical', "cbar_min": None, "cbar_max": None, "vmin": None, "vmax": None, "text_pos_Frame": [-8.8, -0.3], "text_pos_TS": [-3.8, -0.3], "text_pos_HA": [-1.7, -0.3]} cfg = _misc.CONFIG(default, **kwargs) cfg.update_by_alias(alias="label", key="cbar_label", **kwargs) cfg.update_by_alias(alias="fontweight", key="cbar_fontweight", **kwargs) cfg.update_by_alias(alias="location", key="cbar_location", **kwargs) cfg.update_by_alias(alias="orientation", key="cbar_orientation", **kwargs) cfg.update_by_alias(alias="vmin", key="cbar_min", **kwargs) cfg.update_by_alias(alias="vmax", key="cbar_max", **kwargs) ############################################################################ ### load data PAIR_DISTANCES = [] FRAMES = [i+cfg.ndx_offset for i in GDT_ndx[:cfg.rank_num]] for ts in mobile.trajectory[FRAMES]: PD, *_ = get_Pair_Distances(mobile, ref, sel1=sel1, sel2=sel2) PAIR_DISTANCES.append(PD) if cfg.prec != None and cfg.prec != -1: GDT_TS = np.around(GDT_TS[: cfg.rank_num], cfg.prec) GDT_HA = np.around(GDT_HA[: cfg.rank_num], cfg.prec) xticks = mobile.select_atoms(sel1).residues.resids xticks = [x if x % 5 == 0 else "." for x in xticks] xticklabels = xticks if cfg.show_frames and cfg.show_scores: yticks = [f"{FRAMES[i]:>9}{GDT_TS[i]:>10.2f}{GDT_HA[i]:>8.2f} " if GDT_TS[i] != 100 else f"{FRAMES[i]:>9}{GDT_TS[i]:>9.2f}{GDT_HA[i]:>8.2f} " for i in range(len(FRAMES))] elif cfg.show_frames: yticks = FRAMES elif cfg.show_scores: yticks = [f"{GDT_TS[i]:>10.2f}{GDT_HA[i]:>8.2f} " if GDT_TS[i] != 100 else f"{GDT_TS[i]:>9.2f}{GDT_HA[i]:>8.2f} " for i in range(len(FRAMES))] yticklabels = yticks ############################################################################ ### heatmap/cbar settings cmap_GDT = ["lightblue", "lightgreen", "yellow", "yellow", "orange", "orange", "orange", "orange", "red", "red"] cmap_RNA = ["lightblue", "lightblue", "lightgreen", "lightgreen", "yellow", "yellow", "orange", "orange", "red", "red"] # apply color bar limits if passed (vmin and vmax have higher priority than cbar_min and cbar_max) if cfg.cbar_min is not None: cfg.vmin = cfg.cbar_min if cfg.cbar_max is not None: cfg.vmax = cfg.cbar_max # if no limits passed: apply pre-defined limits if cfg.cmap in ["GDT_HA", "HA"]: if cfg.vmin is None: cfg.vmin = 0.0 if cfg.vmax is None: cfg.vmax = 5.0 elif cfg.cmap in ["GDT_TS", "TS"]: if cfg.vmin is None: cfg.vmin = 0.0 if cfg.vmax is None: cfg.vmax = 10.0 elif cfg.cmap in ["nucleic", "rna", "dna", "RNA", "DNA"]: if cfg.vmin is None: cfg.vmin = 0.0 if cfg.vmax is None: cfg.vmax = 14.0 ############################################################################ ### plot fig, ax = _misc.figure(**cfg) if cfg.show_cbar: cbar_ax = _misc.add_cbar_ax(ax, location=cfg.cbar_location, orientation=cfg.cbar_orientation) cbar_kws = {'orientation': cfg.cbar_orientation} else: cbar_ax = None cbar_kws = dict() if cfg.cmap in ["GDT_TS", "TS", "GDT_HA", "HA"]: hm = sns.heatmap(PAIR_DISTANCES, cmap=cmap_GDT, vmin=cfg.vmin, vmax=cfg.vmax, xticklabels=xticklabels, yticklabels=yticklabels, square=False, annot=False, linewidths=1.0, ax=ax, cbar_ax=cbar_ax, cbar_kws=cbar_kws, cbar=cfg.show_cbar) elif cfg.cmap in ["nucleic", "rna", "dna", "RNA", "DNA"]: hm = sns.heatmap(PAIR_DISTANCES, cmap=cmap_RNA, vmin=cfg.vmin, vmax=cfg.vmax, xticklabels=xticklabels, yticklabels=yticklabels, square=False, annot=False, linewidths=1.0, ax=ax, cbar_ax=cbar_ax, cbar_kws=cbar_kws, cbar=cfg.show_cbar) else: hm = sns.heatmap(PAIR_DISTANCES, cmap=cfg.cmap, vmin=cfg.vmin, vmax=cfg.vmax, xticklabels=xticklabels, yticklabels=yticklabels, square=False, annot=False, linewidths=1.0, ax=ax, cbar_ax=cbar_ax, cbar_kws=cbar_kws, cbar=cfg.show_cbar) if cfg.show_cbar: cbar = hm.collections[0].colorbar cbar.set_label(label=cfg.cbar_label, fontweight=cfg.cbar_fontweight) _misc.cbar_set_ticks_position(cbar, cfg.cbar_location) if cfg.cbar_ticks is None and cfg.cmap in ["nucleic", "rna", "dna", "RNA", "DNA"]: cbar.set_ticks(np.arange(0, 22, 2)) if cfg.cbar_ticks is not None: cbar.set_ticks(cfg.cbar_ticks) ax.tick_params(left=False, bottom=False) # hide ticks of heatmap plt.title("Local Accuracy", fontweight='bold') plt.xlabel("Residue ID", fontweight='bold') # table labels if cfg.show_frames: ax.text(cfg.text_pos_Frame[0], cfg.text_pos_Frame[1], 'Frame', fontweight='bold') if cfg.show_scores: ax.text(cfg.text_pos_TS[0], cfg.text_pos_TS[1], 'TS', fontweight='bold') ax.text(cfg.text_pos_HA[0], cfg.text_pos_HA[1], 'HA', fontweight='bold') plt.tight_layout() plt.tight_layout() if cfg.save_as != None: _misc.savefig(cfg.save_as) if len(FRAMES) > 50: print("Displaying data for more than 50 frames...") print("Consider reducing the input data (e.g. rank scores and use top 40 frames).") LA_data = (PAIR_DISTANCES, FRAMES) return(fig, ax, LA_data)
8103dbeb9801b08125ebb5e26cb5f76c948262ec
22,840
def simulateGVecs(pd, detector_params, grain_params, ome_range=[(-np.pi, np.pi), ], ome_period=(-np.pi, np.pi), eta_range=[(-np.pi, np.pi), ], panel_dims=[(-204.8, -204.8), (204.8, 204.8)], pixel_pitch=(0.2, 0.2), distortion=None): """ returns valid_ids, valid_hkl, valid_ang, valid_xy, ang_ps panel_dims are [(xmin, ymin), (xmax, ymax)] in mm pixel_pitch is [row_size, column_size] in mm simulate the monochormatic scattering for a specified - space group - wavelength - orientation - strain - position - detector parameters - oscillation axis tilt (chi) subject to - omega (oscillation) ranges (list of (min, max) tuples) - eta (azimuth) ranges pd................a hexrd.crystallography.PlaneData instance detector_params...a (10,) ndarray containing the tilt angles (3), translation (3), chi (1), and sample frame translation (3) parameters grain_params......a (12,) ndarray containing the exponential map (3), translation (3), and inverse stretch tensor compnents in Mandel-Voigt notation (6). * currently only one panel is supported, but this will likely change soon """ bMat = pd.latVecOps['B'] wlen = pd.wavelength full_hkls = _fetch_hkls_from_planedata(pd) # extract variables for convenience rMat_d = xfcapi.makeDetectorRotMat(detector_params[:3]) tVec_d = np.ascontiguousarray(detector_params[3:6]) chi = detector_params[6] tVec_s = np.ascontiguousarray(detector_params[7:10]) rMat_c = xfcapi.makeRotMatOfExpMap(grain_params[:3]) tVec_c = np.ascontiguousarray(grain_params[3:6]) vInv_s = np.ascontiguousarray(grain_params[6:12]) # first find valid G-vectors angList = np.vstack( xfcapi.oscillAnglesOfHKLs( full_hkls[:, 1:], chi, rMat_c, bMat, wlen, vInv=vInv_s ) ) allAngs, allHKLs = _filter_hkls_eta_ome( full_hkls, angList, eta_range, ome_range ) if len(allAngs) == 0: valid_ids = [] valid_hkl = [] valid_ang = [] valid_xy = [] ang_ps = [] else: # ??? preallocate for speed? det_xy, rMat_s, on_plane = _project_on_detector_plane( allAngs, rMat_d, rMat_c, chi, tVec_d, tVec_c, tVec_s, distortion ) # on_panel_x = np.logical_and( det_xy[:, 0] >= panel_dims[0][0], det_xy[:, 0] <= panel_dims[1][0] ) on_panel_y = np.logical_and( det_xy[:, 1] >= panel_dims[0][1], det_xy[:, 1] <= panel_dims[1][1] ) on_panel = np.logical_and(on_panel_x, on_panel_y) # op_idx = np.where(on_panel)[0] # valid_ang = allAngs[op_idx, :] valid_ang[:, 2] = xfcapi.mapAngle(valid_ang[:, 2], ome_period) valid_ids = allHKLs[op_idx, 0] valid_hkl = allHKLs[op_idx, 1:] valid_xy = det_xy[op_idx, :] ang_ps = angularPixelSize(valid_xy, pixel_pitch, rMat_d, rMat_s, tVec_d, tVec_s, tVec_c, distortion=distortion) return valid_ids, valid_hkl, valid_ang, valid_xy, ang_ps
bdff9dc1b7fd15d7b3b1cf45a4364dc495790293
22,842
import logging def get_logger(name: str): """Get logger call. Args: name (str): Module name Returns: Logger: Return Logger object """ logger = logging.getLogger(name) logger.setLevel(logging.INFO) logger.addHandler(get_file_handler()) logger.addHandler(get_stream_handler()) return logger
6d661896d38e2227b6825e649bdbd719dd64670a
22,843
def create_label_colormap(dataset=_PASCAL): """Creates a label colormap for the specified dataset. Args: dataset: The colormap used in the dataset. Returns: A numpy array of the dataset colormap. Raises: ValueError: If the dataset is not supported. """ if dataset == _PASCAL: return create_pascal_label_colormap() elif dataset == _CITYSCAPES: return create_cityscapes_label_colormap() elif dataset == _ADE: return create_ade_label_colormap() else: raise ValueError('Unsupported dataset.')
683d52f3f2c476b0e39e41ae7f2a0f897fee60d3
22,844
def SDM_lune(params, dvals, title=None, label_prefix='ham='): """Exact calculation for SDM circle intersection. For some reason mine is a slight upper bound on the results found in the book. Uses a proof from Appendix B of the SDM book (Kanerva, 1988). Difference is neglible when norm=True.""" res = expected_intersection_lune(params.n, dvals, params.hamm_radius, params.r ) if params.plot_lines: plot_line(dvals, res, label_prefix, params.hamm_radius, params.norm) if params.fit_beta_and_plot_attention: fit_beta_res, beta = fit_beta_regression(params.n, dvals, res) plot_line(dvals, fit_beta_res, 'fit_beta | '+label_prefix, params.hamm_radius, params.norm) if title: # else can call "label plot separately" label_plot(title, params.norm) return res
e1465e002632ceb1431fa1a668abfdaa7deb307b
22,845
def font_match(obj): """ Matches the given input againts the available font type matchers. Args: obj: path to file, bytes or bytearray. Returns: Type instance if matches. Otherwise None. Raises: TypeError: if obj is not a supported type. """ return match(obj, font_matchers)
8cf99e626578d278b3ce9e598233cb6dfa407820
22,846
import six def time_monotonically_increases(func_or_granularity): """ Decorate a unittest method with this function to cause the value of :func:`time.time` and :func:`time.gmtime` to monotonically increase by one each time it is called. This ensures things like last modified dates always increase. We make three guarantees about the value of :func:`time.time` returned while the decorated function is running: 1. It is always *at least* the value of the *real* :func:`time.time`; 2. Each call returns a value greater than the previous call; 3. Those two constraints hold across different invocations of functions decorated. This decorator can be applied to a method in a test case:: class TestThing(unittest.TestCase) @time_monotonically_increases def test_method(self): t = time.time() ... It can also be applied to a bare function taking any number of arguments:: @time_monotonically_increases def utility_function(a, b, c=1): t = time.time() ... By default, the time will be incremented in 1.0 second intervals. You can specify a particular granularity as an argument; this is useful to keep from running too far ahead of the real clock:: @time_monotonically_increases(0.1) def smaller_increment(): t1 = time.time() t2 = time.time() assrt t2 == t1 + 0.1 """ if isinstance(func_or_granularity, (six.integer_types, float)): # We're being used as a factory. wrapper_factory = _TimeWrapper(func_or_granularity) return wrapper_factory # We're being used bare wrapper_factory = _TimeWrapper() return wrapper_factory(func_or_granularity)
f3f76502cf0cd5f402cb4f585d6cd06db8eb5851
22,848
def rotate_coordinates(coords: np.ndarray, axis_coords: np.ndarray) -> np.ndarray: """ Given a set of coordinates, `coords`, and the eigenvectors of the principal moments of inertia tensor, use the scipy `Rotation` class to rotate the coordinates into the principal axis frame. Parameters ---------- coords : np.ndarray NumPy 1D array containing xyz coordinates axis_coords : np.ndarray NumPy 2D array (shape 3x3) containing the principal axis vectors Returns ------- np.ndarray NumPy 1D array containing the rotated coordinates. """ # Create a Rotation object from the eigenvectors r_mat = R.from_matrix(axis_coords) # transform the coordinates into the principal axis return r_mat.apply(coords)
686657f464fdf846fa394128ad1f8be6d00adf06
22,849
from typing import Type from typing import Any def get_maggy_ddp_wrapper(module: Type[TorchModule]): """Factory function for MaggyDDPModuleWrapper. :param module: PyTorch module passed by the user. """ class MaggyDDPModuleWrapper(TorchDistributedDataParallel): """Wrapper around PyTorch's DDP Module. The wrapper replaces the user's module. Since the module's signature needs to be preserved, we cannot add the module as an additional parameter during initialization. Instead, it is configured by its factory function. """ __module = module # Avoid overwriting torch module def __init__(self, *args: Any, **kwargs: Any): """Initializes the previously set module, moves it to the GPU and initializes a DDP module with it. :param args: Arguments passed by the user for module initialization. :param kwargs: Keyword arguments passed by the user for module initialization. """ # Avoid self because bound method adds to args which makes the function call fail model = MaggyDDPModuleWrapper.__module(*args, **kwargs).cuda() super().__init__(model) return MaggyDDPModuleWrapper
53f7e5096c41221072d7584470dd8a1bcf32a04f
22,850
def random_jitter(cv_img, saturation_range, brightness_range, contrast_range): """ 图像亮度、饱和度、对比度调节,在调整范围内随机获得调节比例,并随机顺序叠加三种效果 Args: cv_img(numpy.ndarray): 输入图像 saturation_range(float): 饱和对调节范围,0-1 brightness_range(float): 亮度调节范围,0-1 contrast_range(float): 对比度调节范围,0-1 Returns: 亮度、饱和度、对比度调整后图像 """ saturation_ratio = np.random.uniform(-saturation_range, saturation_range) brightness_ratio = np.random.uniform(-brightness_range, brightness_range) contrast_ratio = np.random.uniform(-contrast_range, contrast_range) order = [1, 2, 3] np.random.shuffle(order) for i in range(3): if order[i] == 0: cv_img = saturation_jitter(cv_img, saturation_ratio) if order[i] == 1: cv_img = brightness_jitter(cv_img, brightness_ratio) if order[i] == 2: cv_img = contrast_jitter(cv_img, contrast_ratio) return cv_img
f7ff6d2e0bbe1656abe5ad1dca404e1903417166
22,851