content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
import sympy import warnings def _add_aliases_to_namespace(namespace, *exprs): """ Given a sequence of sympy expressions, find all aliases in each expression and add them to the namespace. """ for expr in exprs: if hasattr(expr, 'alias') and isinstance(expr, sympy.FunctionClass): if namespace.has_key(str(expr)): if namespace[str(expr)] != expr.alias: warnings.warn('two aliases with the same name were found') namespace[str(expr)] = expr.alias if hasattr(expr, 'func'): if isinstance(expr.func, sympy.FunctionClass) and hasattr(expr.func, 'alias'): if namespace.has_key(expr.func.__name__): if namespace[expr.func.__name__] != expr.func.alias: warnings.warn('two aliases with the same name were found') namespace[expr.func.__name__] = expr.func.alias if hasattr(expr, 'args'): try: _add_aliases_to_namespace(namespace, *expr.args) except TypeError: pass return namespace
e90e311aacd9c9c41363badc690ad25c18501251
23,195
def rotICA(V, kmax=6, learnrate=.0001, iterations=10000): """ ICA rotation (using basicICA) with default parameters and normalization of outputs. :Example: >>> Vica, W = rotICA(V, kmax=6, learnrate=.0001, iterations=10000) """ V1 = V[:, :kmax].T [W, changes_s] = basicICA(V1, learnrate, iterations) Vica = (W.dot(V1)).T for n in range(kmax): imax = abs(Vica[:, n]).argmax() Vica[:, n] = np.sign(Vica[imax, n]) * Vica[:, n] / np.linalg.norm( Vica[:, n]) return Vica, W
2db4bb0d5c5c5f70c9f7cf5a20b27fd2b146e26f
23,196
import socket def getipbyhost(hostname): """ return the IP address for a hostname """ return socket.gethostbyname(hostname)
9556f537e16fd710a566a96a51d4262335967893
23,197
def reduce_mem_usage(df) -> pd.DataFrame: """DataFrameのメモリ使用量を節約するための関数. Arguments: df {DataFrame} -- 対象のDataFrame Returns: [DataFrame] -- メモリ節約後のDataFrame """ numerics = [ 'int8', 'int16', 'int32', 'int64', 'float16', 'float32', 'float64' ] start_mem = df.memory_usage(deep=True).sum() / 1024**2 for col in df.columns: col_type = df[col].dtypes if col_type not in numerics: continue c_min = df[col].min() c_max = df[col].max() if str(col_type)[:3] == 'int': np_int_type_list = [np.int8, np.int16, np.int32, np.int64] for np_int_type in np_int_type_list: if c_min > np.iinfo(np_int_type).min and c_max < np.iinfo( np_int_type).max: df[col] = df[col].astype(np_int_type) else: np_float_type_list = [np.float16, np.float32, np.float64] for np_float_type in np_float_type_list: if c_min > np.finfo(np_float_type).min and c_max < np.finfo( np_float_type).max: df[col] = df[col].astype(np_float_type) end_mem = df.memory_usage(deep=True).sum() / 1024**2 if (start_mem - end_mem) > 0: print('Mem. usage decreased to {:5.2f} Mb ({:.1f}% reduction)'.format( end_mem, 100 * (start_mem - end_mem) / start_mem)) return df
b317c85aee9f51d221b3895bcc9ac1a6bc3535f6
23,198
import typing def findparam( parameters: _TYPE_FINDITER_PARAMETERS, selector: _TYPE_FINDITER_SELECTOR ) -> typing.Iterator[_T_PARAM]: """ Return an iterator yielding those parameters (of type :class:`inspect.Parameter` or :class:`~forge.FParameter`) that are mached by the selector. :paramref:`~forge.findparam.selector` is used differently based on what is supplied: - str: a parameter is found if its :attr:`name` attribute is contained - Iterable[str]: a parameter is found if its :attr:`name` attribute is contained - callable: a parameter is found if the callable (which receives the parameter), returns a truthy value. :param parameters: an iterable of :class:`inspect.Parameter` or :class:`~forge.FParameter` :param selector: an identifier which is used to determine whether a parameter matches. :returns: an iterator yield parameters """ if isinstance(selector, str): return filter(lambda param: param.name == selector, parameters) elif isinstance(selector, typing.Iterable): selector = list(selector) return filter( lambda param: param.name in selector, # type: ignore parameters, ) return filter(selector, parameters)
61da9c7e453d04bf2db9c5f923e815e250da4b53
23,199
def FSA(profile_exp, profile_sm, diffsys, time, Xlim=[], n=[400, 500], w=None, f=None, alpha=0.3, name=''): """ Forward Simulation Analysis Extract diffusion coefficients based on a diffusion profile. Please do not close any plot window during the FSA process. This is the final step of FSA. Parameters ---------- profile_exp : DiffProfile Experimental diffusion profile, used for comparison with simulation results. profile_sm : DiffProfile Diffusion profile after data smooth on experimental profile. diffsys : DiffSystem Diffusion coefficients time : float Diffusion time in seconds Xlim : list (float), optional Passed to 'pydiffusion.Dtools.SF', 'pydiffusion.utils.step'. Indicates the left and right concentration limits for calculation. Default value = [profile.X[0], profile.X[-1]]. n : list. optional Passed to 'pydiffusion.utils.automesh'. Meshing number range, default = [400, 500]. w : list, optional Weights of each phase to calculate error. Passed to 'pydiffusion.utils.error_profile'. f : function of Meshing Keyword argument of automesh() alpha : float Keyword argument of automesh() name : str, optional Name the output DiffProfile Returns ------- profile_sim : DiffProfile Simulated diffusion profile after FSA. diffsys_sim : DiffSystem Calculated diffusion efficients by FSA. Examples -------- After datasmooth() and Dmodel(), FSA can be performed to calculate accurate diffusion coefficients: >>> ds = datasmooth(exp) >>> dsys = Dmodel(ds, time) >>> fsa = FSA(exp, ds, dsys, time) """ # Create step profile on meshed grids dism = automesh(profile=profile_sm, diffsys=diffsys, n=n, f=f, alpha=alpha) matano = matanocalc(profile_sm, Xlim) if Xlim == [] and profile_sm.X[-1] < profile_sm.X[0]: profile_init = step(dism, matano, diffsys, [diffsys.Xr[-1, 1], diffsys.Xr[0, 0]]) else: profile_init = step(dism, matano, diffsys, Xlim) # Determine the stop criteria of forward simulations error_sm = error_profile(profile_sm, profile_exp) ipt = input('Default error = %.6f\nInput the stop criteria of error: [%.6f]\n' % (error_sm, error_sm*2)) error_stop = error_sm*2 if ipt == '' else float(ipt) # If there is no Xspl info in diffsys, use Phase Mode # else: ask if use Phase or Point Mode if diffsys.Xspl is not None: ipt = input('Use Phase Mode? [n]\n(The shape of diffusivity curve does not change)\n') pp = False if 'y' in ipt or 'Y' in ipt else True else: pp = False if name == '': name = profile_exp.name+'_FSA' # Diffusion coefficients used for forward simulations diffsys_sim = DiffSystem(diffsys.Xr, diffsys.Dfunc, Xspl=diffsys.Xspl, name=name) # Plot FSA status fig = plt.figure('FSA', figsize=(16, 6)) ax1, ax2 = fig.add_subplot(121), fig.add_subplot(122) profileplot(profile_exp, ax1, ls='none', marker='o', c='b', fillstyle='none') profileplot(profile_sm, ax1, ls='-', c='g', lw=1) SFplot(profile_sm, time, Xlim, ax2, ls='none', c='b', marker='.') DCplot(diffsys_sim, ax2, ls='-', c='r', lw=2) plt.draw() plt.tight_layout() plt.pause(0.1) n_sim = 0 while True: # Simulation n_sim += 1 profile_sim = mphSim(profile_init, diffsys_sim, time, name=name) error_sim = error_profile(profile_sim, profile_exp, w) print('Simulation %i, error = %f(%f)' % (n_sim, error_sim, error_stop)) # Plot simulation results ax1.cla() ax2.cla() profileplot(profile_exp, ax1, ls='none', marker='o', c='b', fillstyle='none') profileplot(profile_sm, ax1, ls='-', c='g', lw=1) profileplot(profile_sim, ax1, ls='-', c='r', lw=2) SFplot(profile_sm, time, Xlim, ax2, ls='none', c='b', marker='.') DCplot(diffsys_sim, ax2, ls='-', c='r', lw=2) plt.draw() plt.tight_layout() # DC adjust Dfunc_adjust = [0] * diffsys_sim.Np # If error > stop criteria, continue simulation by auto DC adjustment if error_sim > error_stop: for ph in range(diffsys_sim.Np): try: Dfunc_adjust[ph] = Dadjust(profile_sm, profile_sim, diffsys_sim, ph, pp) except (ValueError, TypeError) as error: ita_finish() raise error diffsys_sim.Dfunc = Dfunc_adjust # If error < stop criteria or simulate too many times if error_sim <= error_stop or n_sim > 9: ita_start() # Ask if exit ipt = ask_input('Satisfied with FSA? [n]') if 'y' in ipt or 'Y' in ipt: ita_finish() break # If use Point Mode if diffsys_sim.Xspl is not None: ipt = ask_input('Use Point Mode (y) or Phase Mode (n)? [y]') pp = False if 'n' in ipt or 'N' in ipt else True if pp: for ph in range(diffsys_sim.Np): try: Dfunc_adjust[ph] = Dadjust(profile_sm, profile_sim, diffsys_sim, ph, pp) except (ValueError, TypeError) as error: ita_finish() raise error diffsys_sim.Dfunc = Dfunc_adjust DCplot(diffsys_sim, ax2, ls='-', c='m', lw=2) plt.draw() plt.pause(0.1) ita_finish() continue # Phase Mode, ask if use manual input for each phase pp = False ipt = input('Phase Mode\nManually input for each phase? [n]') manual = True if 'y' in ipt or 'Y' in ipt else False for ph in range(diffsys_sim.Np): if manual: ipt = input('Input deltaD for phase # %i:\n(DC = DC * 10^deltaD, default deltaD = auto)\n' % (ph+1)) deltaD = float(ipt) if ipt != '' else None else: deltaD = None try: Dfunc_adjust[ph] = Dadjust(profile_sm, profile_sim, diffsys_sim, ph, pp, deltaD) except (ValueError, TypeError) as error: ita_finish() raise error # Apply the adjustment to diffsys_sim diffsys_sim.Dfunc = Dfunc_adjust DCplot(diffsys_sim, ax2, ls='-', c='m', lw=2) plt.draw() plt.pause(0.1) ita_finish() return profile_sim, diffsys_sim
049475203d30ac02dadc0cb281d38909ba32039c
23,201
def permutacion_matriz(U, fila_i, idx_max, verbose=False, P=None, r=None): """Efectua una permutación por filas de una matriz Args: U (matriz): MAtriz a permutar fila_i (int): indice de fila origen idx_max (int): indice de fila a la que permutar verbose (bool, optional): verbose. Defaults to False. P (mat, optional): matriz de permutación. Defaults to None. r (mat, optional): rhs de ecuación. Defaults to None. Returns: (U, P, r): Matrices U, P y r cambiadas """ print_verbose( [ f"Permutamos fila {fila_i} con {idx_max}", f"U antes:\n {np.array(U)}", f"P antes:\n {np.array(P)}", ], verbose, ) if fila_i != idx_max: fila_origen, fila_destino = U[fila_i, :].copy(), U[idx_max, :].copy() U[idx_max, :], U[fila_i, :] = fila_origen, fila_destino if P is not None: fila_origen, fila_destino = P[fila_i, :].copy(), P[idx_max, :].copy() P[idx_max, :], P[fila_i, :] = fila_origen, fila_destino if r is not None: fila_origen, fila_destino = r[fila_i, :].copy(), r[idx_max, :].copy() r[idx_max, :], r[fila_i, :] = fila_origen, fila_destino print_verbose( [f"U despues:\n {np.array(U)}", f"P despues:\n {np.array(P)}"], verbose ) return U, P, r
2ff9ae6a0b789de24c3479df49275fa254876dd2
23,202
def get_compliance_by_rules(scan_id): """ Lists compliance results by rule for a scan. """ items = [] offset = 0 while True: params = {'offset': offset} response = get('scans/%s/compliance_by_rules' % scan_id, params) items.extend(response['items']) if not response['is_truncated']: break offset = response['next_offset'] return items
205dccc9b7714eb9a2179272b2fc1cec4cbc26e3
23,203
def QuadRemeshBrep1(brep, parameters, guideCurves, multiple=False): """ Create Quad Remesh from a Brep Args: brep (Brep): Set Brep Face Mode by setting QuadRemeshParameters.PreserveMeshArrayEdgesMode guideCurves (IEnumerable<Curve>): A curve array used to influence mesh face layout The curves should touch the input mesh Set Guide Curve Influence by using QuadRemeshParameters.GuideCurveInfluence """ url = "rhino/geometry/mesh/quadremeshbrep-brep_quadremeshparameters_curvearray" if multiple: url += "?multiple=true" args = [brep, parameters, guideCurves] if multiple: args = list(zip(brep, parameters, guideCurves)) response = Util.ComputeFetch(url, args) response = Util.DecodeToCommonObject(response) return response
042e89c1da55fd74f18c9592fc18bd2e0a18e2a8
23,204
def tags2turbo(lon, lat, dist, bdim=155, timeout=60, pretty_print=False, maxsize=None, tags=[]): """ """ gtypes = ('node', 'way', 'relation',) turbo = Turbo() qconditions = [{ "query": filter2query(tags), "distance": dist, "gtypes": gtypes, # Optional. Possible values: # "node", "way", "relation", "way-node", node-relation", # "relation-way", "relation-relation", "relation-backwards" # "amplitude": 0, "newer": "%Y-%m-%ddT%H:%M:%SZ" # }] query = turbo.build_query( Turbo.optimize_centralized_query_by_base_tile(lon, lat, qconditions, bdim=bdim), timeout=timeout, maxsize=maxsize ) return dict(query=query)
a9eae6c63266818f9e05993100432bdce2df851e
23,205
async def get_people(from_number: int = None, up_to_number: int = None): """ Endpoint to get all people from-to given number :return: list of people from-to numbers """ return _people[from_number:up_to_number]
0ea214227493642eace1a1dc864268176cf872af
23,206
import chunk def window(x, y, width, overlap=0., x_0=None, expansion=None, cap_left=True, cap_right=True, ret_x=True): """Break arrays x and y into slices. Parameters ---------- x : array_like Monotonically increasing numbers. If x is not monotonically increasing then it will be flipped, beware that this may not have the desired effect. y : array_like Arbitrary values, same size as x. width : float Window width in the same units as x. overlap : float, optional Overlap of windows in the same units as x. If negative, the window steps along x values rather than binning. x_0 : float, optional Position in x at which to start windowing. (untested) expansion : polynomial coefficients, optional Describes the rate of change of window size with x. (not implimented) The idea is that width = width*np.polyval(expansion, x). Overlap is similarly increased. cap_left : boolean, optional Stop window exceeding left most (minimum) value of x. Only applies when overlap is positive. cap_right : boolean, optional Stop window exceeding right most (maximum) value of x. Only applies when overlap is positive. Returns ------- vals : numpy.array Contains all the windowed chunks of x and y. Notes ----- The current check on monotonicity is whether more than 20% of points in x are are not monotonic. This is a sort of hack to avoid flipping for the occasional erroneous non-monotonic point. """ if x.size != y.size: raise ValueError('x and y must be of equal size.') if overlap > width: raise ValueError('The overlap cannot be larger than the width.') # Incredibly bad check for monotonicity. not_monotonic = np.sum(np.diff(x) < 0) > 0.2*len(x) if not_monotonic: x = utils.flip_padded(x) y = utils.flip_padded(y) if x_0 is not None: idxs = ~np.isnan(x) & (x >= x_0) else: idxs = ~np.isnan(x) x = x[idxs] y = y[idxs] if overlap < 0.: left = x - width/2. right = left + width elif overlap >= 0.: step = width - overlap if cap_left: xmin = x[0] else: xmin = x[0] - width if cap_right: # Take away slightly less than the full width to allow for the last # bin to complete the full range. xmax = x[-1] - 0.99*width else: xmax = x[-1] left = np.arange(xmin, xmax, step) right = left + width bins = np.transpose(np.vstack((left, right))) if ret_x: vals = np.asarray([chunk(x, b, y) for b in bins]) else: vals = np.asarray([chunk(x, b, y)[1] for b in bins]) if not_monotonic: vals = np.flipud(vals) return vals
947b84a33e351e7e75fbdaf4997de689f44c83ec
23,209
import json def mark_property_purchased(request): """ Api to mark a property as purchased by the buyer without page reload using vue or htmx """ data = json.loads(request.body) property = data['property_id'] if not property.property_status == Property.SOLD and property.property_sold: property.update(property_status = Property.SOLD) messages.success(request, f"You have successfully completed {property.property_title} purchase.") return JsonResponse({"success": True})
2ce7e22b8cf566361d307c53423b0b0a26ab2dbc
23,210
def argmax_unique(arr, axis): """Return a mask so that we can exclude the nonunique maximums, i.e. the nodes that aren't completely resolved""" arrm = np.argmax(arr, axis) arrs = np.sum(arr, axis) nonunique_mask = np.ma.make_mask((arrs == 1) is False) uni_argmax = np.ma.masked_array(arrm, mask=nonunique_mask, fill_value=-1) return uni_argmax, nonunique_mask
e6691fea688c6f0044fd9e0a70e4651ae56aaa49
23,212
from typing import Dict import json def get_json(response: func.HttpResponse) -> Dict: """Get JSON from an HttpResponse.""" return json.loads(response.get_body().decode("utf-8"))
58fa7916d6b988b2e949e55db838f3f6b9430fb3
23,213
def _float_feature(value): """Returns a float_list from a float / double.""" if isinstance(value, list): return tf.train.Feature(float_list=tf.train.FloatList(value=value)) return tf.train.Feature(float_list=tf.train.FloatList(value=[value]))
2caaa8b572ee2744cf6deeaff6a287fb472cef7f
23,214
def sendVillasNodeOutput(message, output_mapping_vector, powerflow_results, state_estimation_results, scenario_flag): """ to create the payload according to "villas_node_output.json" @param message: received message from the server (json.loads(msg.payload)[0]) @param output_mapping_vector: according to villas_node_output.json (see function read_mapping_file) @param powerflow_results: results of powerflow (type acs.state_estimation.results.Results) @param state_estimation_results: results of state_estimation (type acs.state_estimation.results.Results) @param scenario_flag: @return: string formatted according to "villas_node_output.json" """ VillasNodeOutput = {} VillasNodeOutput["ts"] = {} VillasNodeOutput["ts"]["origin"] = message["ts"]["origin"] if "sequence" in message: VillasNodeOutput["sequence"] = message["sequence"] else: print('Sequence no. not available.') VillasNodeOutput["sequence"] = 1 # calculate Vmag_err Vmag_err = np.zeros(len(powerflow_results.nodes)) for idx, elem in enumerate(powerflow_results.nodes): uuid_pf = elem.topology_node.uuid Vmag_true = np.absolute(elem.voltage) Vmag_est = np.absolute(state_estimation_results.get_node(uuid=uuid_pf).voltage) Vmag_err[idx] = np.absolute(Vmag_est - Vmag_true) Vmag_err[idx] = 100 * np.divide(Vmag_err[idx], Vmag_true) max_err = np.amax(Vmag_err) mean_err = np.mean(Vmag_err) data = [None] * len(output_mapping_vector) for idx, elem in enumerate(output_mapping_vector): if elem[0] == "max_err": data[idx] = max_err continue elif elem[0] == "mean_err": data[idx] = mean_err continue elif elem[0] == "scenario_flag": data[idx] = float(scenario_flag) continue else: # elem = ["N4", "V", "phase", "est"] or elem = ["N4", "V", "phase", "pf"] node = None if elem[3] == "est": node = state_estimation_results.get_node(uuid=elem[0]) elif elem[3] == "pf": node = powerflow_results.get_node(uuid=elem[0]) value = None if elem[2] == "mag": # elem_data[2] = "mag" or "phase" value = np.absolute(node.voltage) elif elem[2] == "phase": value = np.angle(node.voltage) data[idx] = value VillasNodeOutput["data"] = data return "[" + dumps(VillasNodeOutput) + "]"
dc992622a625219c6befb865cee87c4d3ffa0aef
23,215
def find_org_rooms(dbs, user_id, meeting_date): """ 获取可分配的机构 :param dbs: :param user_id: :param meeting_date: :return: """ orgs = dbs.query(SysOrg.id, SysOrg.org_name, SysOrg.parent_id)\ .outerjoin(SysUserOrg, (SysUserOrg.org_id == SysOrg.id))\ .filter(SysUserOrg.user_id == user_id).all() rooms = dbs.query(HasBoardroom.id, HasBoardroom.name, HasBoardroom.org_id) \ .outerjoin(SysOrg, SysOrg.id == HasBoardroom.org_id)\ .outerjoin(SysUserOrg, (SysUserOrg.org_id == SysOrg.id)) \ .filter(SysUserOrg.user_id == user_id).all() meetings = dbs.query(HasMeeting.id, HasMeeting.name, HasMeeting.description, HasMeetBdr.boardroom_id, HasMeetBdr.meeting_date, HasMeeting.start_time, HasMeeting.end_time, HasMeeting.repeat, HasMeeting.create_user, HasMeeting.create_time, SysUser.user_name, SysUser.phone, SysOrg.org_name)\ .outerjoin(SysUser, HasMeeting.create_user == SysUser.id)\ .outerjoin(SysOrg, SysUser.org_id == SysOrg.id)\ .outerjoin(HasMeetBdr, HasMeetBdr.meeting_id == HasMeeting.id)\ .outerjoin(HasBoardroom, HasBoardroom.id == HasMeetBdr.boardroom_id)\ .filter(HasMeetBdr.meeting_date == meeting_date).all() lists = [] for org in orgs: org_id = org.id org_name = org.org_name parent_id = org.parent_id # room_list = [] # for room in rooms: # # 将会议室拼入公司机构list # if org_id == room.org_id: # room_dict = { # 'id': room.id, # 'name': room.name, # 'org_id': org_id # } # room_list.append(room_dict) temp_dict = { 'org_id': org_id, 'org_name': org_name, 'parent_id': parent_id # 'rooms': room_list } lists.append(temp_dict) return lists
18f3c9c75377a4c212141c0b14f4e4802d7782b5
23,216
def config_openapi(app: FastAPI, settings: ApiSettings): """Config openapi.""" def custom_openapi(): """Config openapi.""" if app.openapi_schema: return app.openapi_schema openapi_schema = get_openapi( title="Arturo STAC API", version="0.1", routes=app.routes ) if settings.api_extension_is_enabled(ApiExtensions.fields): openapi_schema["paths"]["/search"]["get"]["responses"]["200"]["content"][ "application/json" ]["schema"] = {"$ref": "#/components/schemas/ItemCollection"} openapi_schema["paths"]["/search"]["post"]["responses"]["200"]["content"][ "application/json" ]["schema"] = {"$ref": "#/components/schemas/ItemCollection"} app.openapi_schema = openapi_schema return app.openapi_schema app.openapi = custom_openapi
d57f37ce33cef4639f635330c6313a9fea5ab7dc
23,217
from typing import Sequence def twelve_tone_matrix( row: Sequence, ) -> DataFrame: """ Returns a twelve-tone matrix in the form of a Pandas DataFrame. """ inverted_row = inversion(row) inv_mat = transposition(inverted_row, row[0]-inverted_row[0]) new = [row] for i in range(1, 12): k = transposition(row, (inv_mat[i] - row[0]) % 12) new.append(k) m = reshape(new, (12, 12)) df = DataFrame(m) return df
3ab247e7e347aa3c84e4b040380f0529e8081625
23,218
async def upstream_http_exception_handler(request, exc: HTTPError): """Handle http exceptions from upstream server""" logger.warning(f"Upstream HTTP error [{request.query_params['url']}]: {repr(exc)}") # Convert to FastApi exception exc = HTTPException(502, f"Upstream server returned: [{exc.status}] {exc.message}") return await http_exception_handler(request, exc)
9f96e83c5b120bdcb8f6f7173ec928a33be1b210
23,219
from typing import List from pathlib import Path import re def extract_latest_checkpoint_and_epoch(available_files: List[Path]) -> PathAndEpoch: """ Checkpoints are saved as recovery_epoch={epoch}.ckpt, find the latest ckpt and epoch number. :param available_files: all available checkpoints :return: path the checkpoint from latest epoch and epoch number """ recovery_epochs = [int(re.findall(r"[\d]+", f.stem)[0]) for f in available_files] idx_max_epoch = int(np.argmax(recovery_epochs)) return available_files[idx_max_epoch], recovery_epochs[idx_max_epoch]
f11d627b79baef580c0dc354a9d9be28552fe4d9
23,220
def bark_filter_banks(nfilts=20, nfft=512, fs=16000, low_freq=0, high_freq=None, scale="constant"): """ Compute Bark-filterbanks. The filters are stored in the rows, the columns correspond to fft bins. Args: nfilts (int) : the number of filters in the filterbank. (Default 20) nfft (int) : the FFT size. (Default is 512) fs (int) : sample rate/ sampling frequency of the signal. (Default 16000 Hz) low_freq (int) : lowest band edge of mel filters. (Default 0 Hz) high_freq (int) : highest band edge of mel filters. (Default samplerate/2) scale (str) : choose if max bins amplitudes ascend, descend or are constant (=1). Default is "constant" Returns: a numpy array of size nfilts * (nfft/2 + 1) containing filterbank. Each row holds 1 filter. """ # init freqs high_freq = high_freq or fs / 2 low_freq = low_freq or 0 # run checks if low_freq < 0: raise ParameterError(ErrorMsgs["low_freq"]) if high_freq > (fs / 2): raise ParameterError(ErrorMsgs["high_freq"]) # compute points evenly spaced in Bark scale (points are in Bark) low_bark = hz2bark(low_freq) high_bark = hz2bark(high_freq) bark_points = np.linspace(low_bark, high_bark, nfilts + 4) # we use fft bins, so we have to convert from Bark to fft bin number bins = np.floor(bark2fft(bark_points, fs, nfft)) fbank = np.zeros([nfilts, nfft // 2 + 1]) # init scaler if scale == "descendant" or scale == "constant": c = 1 else: c = 0 for j in range(2, nfilts + 2): # compute scaler if scale == "descendant": c -= 1 / nfilts c = c * (c > 0) + 0 * (c < 0) elif scale == "ascendant": c += 1 / nfilts c = c * (c < 1) + 1 * (c > 1) for i in range(int(bins[j - 2]), int(bins[j + 2])): fc = bark_points[j] fb = fft2bark(i, fs, nfft) fbank[j - 2, i] = c * Fm(fb, fc) return np.abs(fbank)
227edcca91c64515b73531d80e1bd9db7faf9bb0
23,221
import json def auth_check_response_fixture(): """Define a fixture to return a successful authorization check.""" return json.loads(load_fixture("auth_check_response.json"))
18bb02313534376f4244430725135d089941693f
23,222
def cancel_session(session_id): """ Cancel all tasks within a session Args: string: session_id Returns: dict: results """ lambda_response = {} all_cancelled_tasks = [] for state in task_states_to_cancel: res = cancel_tasks_by_status(session_id, state) print("Cancelling session: {} status: {} result: {}".format( session_id, state, res)) lambda_response["cancelled_{}".format(state)] = len(res) all_cancelled_tasks += res lambda_response["tatal_cancelled_tasks"] = len(all_cancelled_tasks) return(lambda_response)
5d07d9038023ad15eaca33bb409b5a4c4db66089
23,223
def get_cli_args(): """Gets, parses, and returns CLI arguments""" parser = ArgumentParser(description='Check modules formatting') parser.add_argument('filepath', help='path to a file to check') parser.add_argument('-n', '--fqcn', dest='fqcn', metavar='FQCN', default=False, required=False, help='FQCN to check examples') parser.add_argument("-c", "--comments", dest="check_comments", action="store_true", required=False, help="check comments") parser.add_argument("-l", "--length", dest="check_length", action="store_true", required=False, help="check description length") parser.add_argument("-s", "--spelling", dest="check_spelling", action="store_true", required=False, help="check spelling") return parser.parse_args()
4e54a7141e19ebba9c0502e4bb40293a583e2d96
23,225
def __virtual__(): """ Determine whether or not to load this module """ return __virtualname__
3b5f873a504d44aba03691f58d8f19a834287eff
23,226
def load_glove_embeddings(): """ Load the glove embeddings into a array and a dictionary with words as keys and their associated index as the value. Assumes the glove embeddings are located in the same directory and named "glove.6B.50d.txt" RETURN: embeddings: the array containing word vectors word_index_dict: a dictionary matching a word in string form to its index in the embeddings array. e.g. {"apple": 119"} """ #if you are running on the CSE machines, you can load the glove data from here #data = open("/home/cs9444/public_html/17s2/hw2/glove.6B.50d.txt",'r',encoding="utf-8") data = open("glove.6B.50d.txt",'r',encoding="utf-8") word_index_dict = {} word_index_dict['UNK'] = 0 embeddings = np.ndarray(shape=(500001, batch_size), dtype='float32') embeddings_list = [] i = 1 for line in data: load_array = line.split() # Sets the word to the 0th value in array word = load_array[0] # Other values are the assigned index values = np.asarray(load_array[1:], dtype='float32') # Put values in row of array embeddings[i] = values # E.g. word_index_dict["the"] = 0 word_index_dict[word] = i i = i+1 data.close() return embeddings, word_index_dict
eaac7465e7a4d9658add81ea7a17e62684d38bed
23,227
def _f2_rsub_ ( self , other ) : """Operator for ``2D-function - other''""" return _f2_rop_ ( self , other , Ostap.MoreRooFit.Subtraction , "Subtract_" )
2b771d39ea3d1cd3cb7f8c4bc88c11d3814f2e4e
23,228
def attenuate(source, factor=0.01, duration=1.0, srate=None): """Exponential attenuation towards target value within 'factor' in time 'duration' for constant signals.""" if srate is None: srate = get_srate() return onepole(source, 1.0, -factor ** (srate / duration), 1.0 - factor ** (srate / duration))
d67c141ec36bfcaf9dde2518488f8cc5d2b24ef5
23,229
def IsMultiPanel(hcuts, vcuts) -> bool: """ Check if the image is multi-panel or not. Could have more logic. """ return bool(hcuts or vcuts)
fc62a31007445eac90b6f5ceb3a7c9c006dd2eef
23,231
def is_subject_mutable(context, subject): """Return True if the subject is mutable in this context.""" if context.is_admin: return True if subject.owner is None or context.owner is None: return False return subject.owner == context.owner
74e36a2f79111c9d09ea9f90579ce9b51beb3e61
23,232
from datetime import datetime def time_filter(df, start_date, end_date): """Remove times that are not within the start/end bounds.""" if start_date: datetime_start = datetime.strptime(start_date, '%Y-%m-%d') start_selection = df.index >= datetime_start if end_date: datetime_end = datetime.strptime(end_date, '%Y-%m-%d') end_selection = df.index <= datetime_end if start_date and end_date: selection = start_selection & end_selection filtered_df = df[selection] elif start_date: filtered_df = df[start_selection] elif end_date: filtered_df = df[end_selection] else: filtered_df = df return filtered_df
13e66add286ddad649e4ae09dc9d6ec5dd013d8a
23,233
def collapse_umi(cells): """ Input set of genotypes for each read Return list with one entry for each UMI, per cell barcode """ collapsed_data = {} for cell_barcode, umi_set in cells.items(): for _, genotypes in umi_set.items(): if len(set(genotypes)) > 1: pass else: try: collapsed_data[cell_barcode] except KeyError: collapsed_data[cell_barcode] = [genotypes[0]] else: collapsed_data[cell_barcode].append(genotypes[0]) # count total ref, total alt UMIs for each genotype for key, value in collapsed_data.items(): collapsed_data[key] = [value.count("ref"), value.count("alt")] assert len(collapsed_data[key]) == 2 return collapsed_data
e98b44193487691fb04e8e0f4ec25c3438175c65
23,235
def get_corrected_PRES(PRES: np.ndarray, ele_gap: float, TMP: np.ndarray) -> np.ndarray: """気圧の標高補正 Args: PRES (np.ndarray): 補正前の気圧 [hPa] ele_gap (float): 標高差 [m] TMP (np.ndarray): 気温 [℃] Returns: np.ndarray: 標高補正後の気圧 [hPa] Notes: 気温減率の平均値を0.0065℃/mとする。 """ return PRES * np.power(1 - ((ele_gap * 0.0065) / (TMP + 273.15)), 5.257)
1be9c2bd5a07714463ac7a6b05bc4d7ca1f84e70
23,236
def mishra_bird(x, *args): """Mishra's Bird constrained function with 2 parameters. To be used in the constrained optimization examples. When subject to: (x[0] + 5) ** 2 + (x[1] + 5) ** 2 < 25 the global minimum is at f(-3.1302, -1.5821) = -106.7645 Bounds: -10 <= x[0] <= 0 -6.5 <= x[1] <= 0 Reference: https://en.wikipedia.org/wiki/Test_functions_for_optimization """ fx = np.sin(x[1]) * np.exp((1 - np.cos(x[0])) ** 2) + \ np.cos(x[0]) * np.exp((1 - np.sin(x[1])) ** 2) + (x[0] - x[1]) ** 2 return fx
ca6fd1211f8715ef1cbc39c75e252107774da54d
23,237
def find_target_migration_file(database=DEFAULT_DB_ALIAS, changelog_file=None): """Finds best matching target migration file""" if not database: database = DEFAULT_DB_ALIAS if not changelog_file: changelog_file = get_changelog_file_for_database(database) try: doc = minidom.parse(changelog_file) except ExpatError as ex: raise InvalidChangelogFile( 'Could not parse XML file %s: %s' % (changelog_file, ex)) try: dbchglog = doc.getElementsByTagName('databaseChangeLog')[0] except IndexError: raise InvalidChangelogFile( 'Missing <databaseChangeLog> node in file %s' % ( changelog_file)) else: nodes = list(filter(lambda x: x.nodeType is x.ELEMENT_NODE, dbchglog.childNodes)) if not nodes: return changelog_file last_node = nodes[-1] if last_node.tagName == 'include': last_file = last_node.attributes.get('file').firstChild.data return find_target_migration_file( database=database, changelog_file=last_file) else: return changelog_file
39a3ed89dacd9393f69e081aaf44c64f34852592
23,238
from functools import reduce def encode_message(ctl, addr, src_id, msg_code, data=""): """Encode a message for the PIM, assumes data formatted""" ctl = create_control_word(addr.is_link) if ctl == -1 else ctl length = 7 + len(data) ctl = ctl | (length << 8) msg = bytearray(length) msg[0:2] = ctl.to_bytes(2, byteorder="big") msg[2] = addr.network_id msg[3] = addr.upb_id msg[4] = src_id msg[5] = msg_code if data: msg[6 : len(data) + 6] = data msg[-1] = (256 - reduce(lambda x, y: x + y, msg)) % 256 # Checksum return msg.hex().upper()
3ffef7a1b65e5dabc6ae4c237018d446b7852cc1
23,239
def rule_16(l, r): """ Rule for "vyaṁjana sandhi - ghośī karaṇaya" :return: """ l_suffix = utils.endswith(l, letters.AGOSHA_LETTERS) r_prefix = utils.startswith(r, letters.GOSHA_LETTERS) if l_suffix is not None and r_prefix is not None: if r_prefix in letters.VOWELS: return l[:-len(l_suffix)] + letters.AGOSHA_TO_GOSHA_MAPPING[l_suffix][0] + \ letters.DIACRITICS_MAPPING[r_prefix] + r[len(r_prefix):] return l[:-len(l_suffix)] + letters.AGOSHA_TO_GOSHA_MAPPING[l_suffix] + r
ea151d8697128e933ecd927ac2e18d039f578a1c
23,240
def is_vertex_cover(G, vertex_cover): """Determines whether the given set of vertices is a vertex cover of graph G. A vertex cover is a set of vertices such that each edge of the graph is incident with at least one vertex in the set. Parameters ---------- G : NetworkX graph The graph on which to check the vertex cover. vertex_cover : Iterable of nodes. Returns ------- is_cover : bool True if the given iterable forms a vertex cover. Examples -------- This example checks two covers for a graph, G, of a single Chimera unit cell. The first uses the set of the four horizontal qubits, which do constitute a cover; the second set removes one node. >>> import dwave_networkx as dnx >>> G = dnx.chimera_graph(1, 1, 4) >>> cover = [0, 1, 2, 3] >>> dnx.is_vertex_cover(G,cover) True >>> cover = [0, 1, 2] >>> dnx.is_vertex_cover(G,cover) False """ cover = set(vertex_cover) return all(u in cover or v in cover for u, v in G.edges)
4213db1953ec976b1606c3756fa73ff0cae9f578
23,241
def datetimeformat(value, formatstring='%Y-%m-%d %H:%M', nonchar=''): """Formates a datetime. Tries to convert the given ``value`` to a ``datetime`` object and then formats it according to ``formatstring``:: {{ datetime.now()|datetimeformat }} {{ "20171224T235959"|datetimeformat('%H:%M') }} """ if not value: return nonchar return Markup(convert_to_datetime(value).strftime(formatstring).replace('-', '&#8209;'))
a95510b5734168899d81c893f647b5b836ee3b27
23,242
def get_interface_for_name(protocols, target_interface_name): # type: (Iterable[Protocol], str) -> Optional[Interface] """Given a name string, gets the interface that has that name, or None.""" for protocol in protocols: for interface in protocol.interfaces: if interface.name == target_interface_name: return interface return None
22c8d4ad64058a068700fd8f16a1dee49efe4001
23,243
def extract_validation_set(x: ndarray, y: ndarray, size=6000): """Will extract a validation set of "size" from given x,y pair Parameters: x (ndarray): numpy array y (ndarray): numpy array size (int): Size of validation set. Must be smaller than examples count in x, y and multiple of label_count """ assert x.shape[0] == y.shape[0] assert ( x.shape[0] % size == 0 ), f"number of examples ({x.shape[0]}) needs to be evenly divisible by parameter size ({size})" assert size % len(set(y)) == 0, "size must be a multiple of number of labels" x_balanced, y_balanced = classes_balanced_randomized_per_partition(x, y) xy_val = (x_balanced[:size], y_balanced[:size]) xy_train = (x_balanced[size:], y_balanced[size:]) return xy_train, xy_val
a5cc15cdd7a5889a29196c2bcee7b50aae5b3bc5
23,245
def send_update(peer_ip, attr, nlri, withdraw): """ send update message :param peer_ip: peer ip address :return: """ if cfg.CONF.bgp.running_config['factory'].fsm.protocol.send_update({ 'attr': attr, 'nlri': nlri, 'withdraw': withdraw}): return { 'status': True } else: return { 'status': False, 'code': 'failed when send this message out' }
f53f4ba009d21e3d36867d5292131fcffb73dc5e
23,246
def generate_basic_blame_experiment_actions( project: Project, bc_file_extensions: tp.Optional[tp.List[BCFileExtensions]] = None, extraction_error_handler: tp.Optional[PEErrorHandler] = None ) -> tp.List[actions.Step]: """ Generate the basic actions for a blame experiment. - handle caching of BC files - compile project, if needed Args: project: reference to the BB project bc_file_extensions: list of bitcode file extensions (e.g. opt, no opt) extraction_error_handler: handler to manage errors during the extraction process """ return get_bc_cache_actions( project, bc_file_extensions, extraction_error_handler )
bd2785e3e611fea95f9e64b8f68ecf8746905bff
23,247
from typing import Any from typing import Optional from typing import Union from typing import OrderedDict from typing import Mapping from typing import Literal def is_json_encodable(t: Any) -> bool: """ Checks whether a type is json encodable. """ # pylint:disable=invalid-name,too-many-return-statements,too-many-branches if not is_typecheckable(t): return False if t in JSON_BASE_TYPES: return True if t in (None, type(None)): return True if t is ...: return True if is_namedtuple(t): field_types = getattr(t, "_field_types") return all(is_json_encodable(field_types[field]) for field in field_types) if hasattr(t, "__origin__") and hasattr(t, "__args__"): if t.__origin__ in (list, set, frozenset, deque, Optional): return is_json_encodable(t.__args__[0]) if t.__origin__ is tuple: if len(t.__args__) == 2 and t.__args__[1] is ...: # pylint:disable=no-else-return return is_json_encodable(t.__args__[0]) else: return all(is_json_encodable(s) for s in t.__args__) if t.__origin__ is Union: return all(is_json_encodable(s) for s in t.__args__) if t.__origin__ in (dict, OrderedDict, Mapping): return t.__args__[0] == str and is_json_encodable(t.__args__[1]) if t.__origin__ is Literal: return all(isinstance(s, JSON_BASE_TYPES+(type(None),)) for s in t.__args__) return False
bdebbebd28d16949c2786386c4be666f3445783e
23,248
def request_parse_platform_id(validated_request): """Parses the PlatformID from a provided visibility API request. Args: validated_request (obj:Request): A Flask request object that has been generated for a visibility/opportunity endpoint. Requires: The request object MUST have been validated against the requested schema. Returns: A list of Satellite model objects. Throws: InputError: If any provided platform ID(s) are invalid. """ if 'PlatformID' not in validated_request.json: return Satellite.query.all() satellites = [] for satellite in validated_request.json['PlatformID']: satellite = Satellite.query.get(satellite) if satellite is None: raise InputError('PlatformID', 'No such platform') satellites.append(satellite) return satellites
68fd6847549cf68edddfed2fca4e9177a6e41e6f
23,249
def crear_comentario_submeta(request, pk): """ Crea y agrega un comentario a una meta identificada por su id """ # meta = get_object_or_404(Meta, pk=pk) meta = Submeta.objects.get(pk=pk) # si ya se creo se guarda el comentario y se redirecciona el navegador a # la meta if request.method == "POST": form = ComentarioFormulario(request.POST) if form.is_valid(): # Se crea el comentario con los datos del formulario comentario = form.save(commit=False) # se lo relaciona con la meta (foreing key y eso) comentario.meta = meta # se guarda el comentario en la base de datos comentario.save() # comentarios = Comentario.objects.filter(meta__pk=pk) return redirect('info_submeta', pk=meta.id) # sino se crea un formulario vacio y se lo envia al template # crear_comentario, para que el usuario cree el comentario # cargando los datos. else: form = ComentarioFormulario(instance=meta) return render(request, 'crear_comentario_submeta.html', {'form': form})
56452834478c43560eaf168553ac4723091d400d
23,250
def load_mask_from_shapefile(filename, shape, transform): """Load a mask from a shapefile.""" multipolygon, _ = load_shapefile2multipolygon(filename) mask = multipolygon2mask(multipolygon, shape, transform) return mask
82af816cb92828862003929a42ddb62f5153cada
23,251
def _spectra_resample(spectra, wvl_orig, wvl_target): """ :param spectra: :param wvl_orig: :param wvl_target: :param k: :return: """ idx_finite = np.isfinite(spectra) min_wvl_s = np.nanmin(wvl_orig[idx_finite]) max_wvl_s = np.nanmax(wvl_orig[idx_finite]) idx_target = np.logical_and(wvl_target >= min_wvl_s, wvl_target <= max_wvl_s) new_flux = np.interp(wvl_target[idx_target], wvl_orig[idx_finite], spectra[idx_finite]) nex_flux_out = np.ndarray(len(wvl_target)) nex_flux_out.fill(np.nan) nex_flux_out[idx_target] = new_flux return nex_flux_out
5dedfce082d1d417cd609e53a2c73fafa69c451a
23,252
from datetime import datetime def test_standard_surface(): """Test to read a standard surface file.""" def dtparse(string): return datetime.strptime(string, '%y%m%d/%H%M') skip = ['text'] gsf = GempakSurface(get_test_data('gem_std.sfc')) gstns = gsf.sfjson() gempak = pd.read_csv(get_test_data('gem_std.csv'), index_col=['STN', 'YYMMDD/HHMM'], parse_dates=['YYMMDD/HHMM'], date_parser=dtparse) for stn in gstns: idx_key = (stn['properties']['station_id'], stn['properties']['date_time']) gemsfc = gempak.loc[idx_key, :] for param, val in stn['values'].items(): if param not in skip: assert val == pytest.approx(gemsfc[param.upper()])
4538481d85b313826d488e09c5504956f06b7865
23,253
def calc_mu(Rs): """ Calculates mu for use in LinKK """ neg_sum = sum(abs(x) for x in Rs if x < 0) pos_sum = sum(abs(x) for x in Rs if x >= 0) return 1 - neg_sum/pos_sum
915cd4718d255e963fede2b73b5637a1afc13d4b
23,254
def computeAnomaly(data): """ Remove the seasonality """ period = _get_period(data) meanclim = computeMeanClimatology(data) anom = data.groupby(f'time.{period}') - meanclim return anom
2d42fb7c2f219f78e2971a554eaddb593f5dbc9c
23,255
def product(*args): """Calculate product of args. @param args: list of floats to multiply @type args: list of float @return: product of args @rtype: float """ r = args[0] for x in args[1:]: r *= x return r
3862c4c9ac2ccd8336f70d86a17ae9fee4c7fed5
23,256
def unpack_into_tensorarray(value, axis, size=None): """ unpacks a given tensor along a given axis into a TensorArray Parameters: ---------- value: Tensor the tensor to be unpacked axis: int the axis to unpack the tensor along size: int the size of the array to be used if shape inference resulted in None Returns: TensorArray the unpacked TensorArray """ shape = value.get_shape().as_list() rank = len(shape) dtype = value.dtype array_size = shape[axis] if not shape[axis] is None else size if array_size is None: raise ValueError("Can't create TensorArray with size None") array = tf.TensorArray(dtype=dtype, size=array_size) dim_permutation = [axis] + list(range(1, axis)) + [0] + list(range(axis + 1, rank)) unpack_axis_major_value = tf.transpose(value, dim_permutation) full_array = array.unstack(unpack_axis_major_value) return full_array
e6320350d5963a47ec8f853e5b9c819b730c352f
23,257
from datetime import datetime def get_error_page(status_code, message): """ 获取错误页面 :param status_code: :param message: :return: """ context = { 'site_web': settings.SITE_TITLE, 'site_url': reverse(settings.SITE_NAME), 'status_code': status_code, 'message': message, 'date': datetime.now().year } return context
76da02826b026fd63562c2d51976ee77ad86f794
23,258
def fits_difference(*args, **keys): """Difference two FITS files with parameters specified as Differencer class.""" differ = FitsDifferencer(*args, **keys) return differ.difference()
4ccfd9c521d76e5b3d47a2be8afefe594895e570
23,259
def esta_balanceada(expressao): """ Função que calcula se expressão possui parenteses, colchetes e chaves balanceados O Aluno deverá informar a complexidade de tempo e espaço da função Deverá ser usada como estrutura de dados apenas a pilha feita na aula anterior :param expressao: string com expressao a ser balanceada :return: boleano verdadeiro se expressao está balanceada e falso caso contrário """ #Análise de Complexidade #Tempo e memória são O(n) pilha = Pilha() if expressao == "": return True elif expressao[0] in ')}]': return False else: for caracter in expressao: if caracter in '({[': pilha.empilhar(caracter) else: try: desenpilhado = pilha.desempilhar() except PilhaVaziaErro: return pilha.vazia() if caracter == '}' and desenpilhado != '{': return False elif caracter == ']' and desenpilhado != '[': return False elif caracter == ')' and desenpilhado != '(': return False return pilha.vazia()
c35a2f8ca4afef76e722d03809edca9f4dbac3fd
23,260
def create_doc(im_src, tag, coords, fea_arr, fea_bin_arr): """ Create elasticsearch doc Params: im_src: image file name tag: tag or class for image coords: list of boxes corresponding to a tag fea_arr: list of ImFea objects fea_bin_arr: list of ImFeaBin objects """ doc = {} doc['coords'] = coords f_bin = ImFeaBinArr() f = ImFeaArr() f.arr.extend(fea_arr) f_bin.arr.extend(fea_bin_arr) obj_bin_str = b64encode(f_bin.SerializeToString()) obj_str = b64encode(f.SerializeToString()) doc['sigs'] = obj_str doc['bin_sigs'] = obj_bin_str doc['im_src'] = im_name doc['cl'] = tag return doc
4e7afe795d30873516840b66a0e4a54b4599fe8c
23,261
def scaled_mouse_pos(mouse): # pragma: no cover """ Renvoie la position de la souris mise à l'échelle de l'image. Parameters ---------- mouse : int * int La position réelle de la souris Returns ------- int * int La position mise à l'échelle """ # Récupération de la dimension de la fenêtre window_dimensions = ut.get_screen_size() # Calcul du facteur d'échelle scale_factor_x = cf.SCREEN_WIDTH / window_dimensions[0] scale_factor_y = cf.SCREEN_HEIGHT / window_dimensions[1] return mouse[0] * scale_factor_x, mouse[1] * scale_factor_y
ad216c50f1492bb0248c04f3195aceed4622bfe1
23,262
import re def is_valid_zcs_image_id(zcs_image_id): """ Validates Zadara Container Services (ZCS) image IDs, also known as the ZCS image "name". A valid ZCS image name should look like: img-00000001 - It should always start with "img-" and end with 8 hexadecimal characters in lower case. :type zcs_image_id: str :param zcs_image_id: The ZCS image name to be validated. :rtype: bool :return: True or False depending on whether zcs_image_id passes validation. """ if zcs_image_id is None: return False match = re.match(r'^img-[0-9a-f]{8}$', zcs_image_id) if not match: return False return True
4b2e689c5ff62c32c147dec1c05b77cf0df31c9a
23,263
import random def get_topology2(gid: int, cfg: Config): """ Create a uniformly and randomly sampled genome of fixed topology: Sigmoid with bias 1.5 --> Actuation default of 95,3% (key=0, bias=1.5) (key=1, bias=?) ____ / / / / GRU / | _____/ | / (key=-1) """ # Create an initial dummy genome with fixed configuration genome = Genome( key=gid, num_outputs=cfg.genome.num_outputs, bot_config=cfg.bot, ) # Setup the parameter-ranges conn_range = cfg.genome.weight_max_value - cfg.genome.weight_min_value bias_range = cfg.genome.bias_max_value - cfg.genome.bias_min_value rnn_range = cfg.genome.rnn_max_value - cfg.genome.rnn_min_value # Create the nodes genome.nodes[0] = OutputNodeGene(key=0, cfg=cfg.genome) # OutputNode 0 genome.nodes[0].bias = 1.5 # Drive with 0.953 actuation by default genome.nodes[1] = OutputNodeGene(key=1, cfg=cfg.genome) # OutputNode 1 genome.nodes[1].bias = random() * bias_range + cfg.genome.bias_min_value # Uniformly sampled bias genome.nodes[2] = GruNodeGene(key=2, cfg=cfg.genome, input_keys=[-1], input_keys_full=[-1]) # Hidden node genome.nodes[2].bias = 0 # Bias is irrelevant for GRU-node # Uniformly sample the genome's GRU-component genome.nodes[2].bias_h = rand_arr((3,)) * bias_range + cfg.genome.bias_min_value genome.nodes[2].weight_xh_full = rand_arr((3, 1)) * rnn_range + cfg.genome.weight_min_value genome.nodes[2].weight_hh = rand_arr((3, 1)) * rnn_range + cfg.genome.weight_min_value # Create the connections genome.connections = dict() # input2gru key = (-1, 2) genome.connections[key] = ConnectionGene(key=key, cfg=cfg.genome) genome.connections[key].weight = 1 # Simply forward distance genome.connections[key].enabled = True # gru2output - Uniformly sampled key = (2, 1) genome.connections[key] = ConnectionGene(key=key, cfg=cfg.genome) genome.connections[key].weight = 3 # Enforce capabilities of full spectrum genome.connections[key].enabled = True # input2output - Uniformly sampled key = (-1, 1) genome.connections[key] = ConnectionGene(key=key, cfg=cfg.genome) genome.connections[key].weight = random() * conn_range + cfg.genome.weight_min_value genome.connections[key].enabled = True genome.update_rnn_nodes(config=cfg.genome) return genome
4b8d21b8e22857c0bec06f58d6d13857a3834649
23,264
def dry_press( H, Pv, alt_setting=P0, alt_units=default_alt_units, press_units=default_press_units, ): """ Returns dry air pressure, i.e. the total air pressure, less the water vapour pressure. """ HP = pressure_alt(H, alt_setting, alt_units=alt_units) P = alt2press(HP, press_units=press_units, alt_units=alt_units) Pd = P - Pv return Pd
eceffd1bf8c13edc77c3a3bbb4131acf6c6b9bca
23,266
def InvocationAddCallerAuthid(builder, callerAuthid): """This method is deprecated. Please switch to AddCallerAuthid.""" return AddCallerAuthid(builder, callerAuthid)
63144e4311430009c419543c4ebb6a4f83f60281
23,267
def max_pool1d(input, ksize, strides, padding, data_format="NWC", name=None): """Performs the max pooling on the input. Note internally this op reshapes and uses the underlying 2d operation. Args: input: A 3-D `Tensor` of the format specified by `data_format`. ksize: An int or list of `ints` that has length `1` or `3`. The size of the window for each dimension of the input tensor. strides: An int or list of `ints` that has length `1` or `3`. The stride of the sliding window for each dimension of the input tensor. padding: A string, either `'VALID'` or `'SAME'`. The padding algorithm. See the "returns" section of `tf.nn.convolution` for details. data_format: An optional string from: "NWC", "NCW". Defaults to "NWC". name: A name for the operation (optional). Returns: A `Tensor` of format specified by `data_format`. The max pooled output tensor. """ with ops.name_scope(name, "MaxPool1d", [input]) as name: if data_format is None: data_format = "NWC" channel_index = 1 if data_format.startswith("NC") else 2 ksize = [1] + _get_sequence(ksize, 1, channel_index, "ksize") strides = [1] + _get_sequence(strides, 1, channel_index, "strides") expanding_dim = 1 if data_format == "NWC" else 2 data_format = "NHWC" if data_format == "NWC" else "NCHW" input = expand_dims_v2(input, expanding_dim) result = gen_nn_ops.max_pool( input, ksize=ksize, strides=strides, padding=padding, data_format=data_format, name=name) return array_ops.squeeze(result, expanding_dim)
d20db7475284f9b52ce1bc0d10d68f6ab96555a0
23,268
from typing import Concatenate def DeepLabV3Plus(shape): """ Inputs """ inputs = Input(shape) """ Pre-trained ResNet50 """ base_model = ResNet50(weights='imagenet', include_top=False, input_tensor=inputs) """ Pre-trained ResNet50 Output """ image_features = base_model.get_layer('conv4_block6_out').output x_a = ASPP(image_features) x_a = UpSampling2D((4, 4), interpolation="bilinear")(x_a) """ Get low-level features """ x_b = base_model.get_layer('conv2_block2_out').output x_b = Conv2D(filters=48, kernel_size=1, padding='same', use_bias=False)(x_b) x_b = BatchNormalization()(x_b) x_b = Activation('relu')(x_b) x = Concatenate()([x_a, x_b]) x = Conv2D(filters=256, kernel_size=3, padding='same', activation='relu',use_bias=False)(x) x = BatchNormalization()(x) x = Activation('relu')(x) x = Conv2D(filters=256, kernel_size=3, padding='same', activation='relu', use_bias=False)(x) x = BatchNormalization()(x) x = Activation('relu')(x) x = UpSampling2D((4, 4), interpolation="bilinear")(x) """ Outputs """ x = Conv2D(1, (1, 1), name='output_layer')(x) x = Activation('sigmoid')(x) """ Model """ model = Model(inputs=inputs, outputs=x) return model
da838d36b7926fc394bb8153ff3e6ed67926059b
23,269
def white_noise(template, rms_uKarcmin_T, rms_uKarcmin_pol=None): """Generate a white noise realisation corresponding to the template pixellisation Parameters ---------- template: ``so_map`` template the template for the white noise generalisation rms_uKarcmin_T: float the white noise temperature rms in uK.arcmin rms_uKarcmin_pol: float the white noise polarisation rms in uK.arcmin if None set it to sqrt(2)*rms_uKarcmin_T """ noise = template.copy() rad_to_arcmin = 60 * 180 / np.pi if noise.pixel == "HEALPIX": nside = noise.nside pixArea = hp.pixelfunc.nside2pixarea(nside) * rad_to_arcmin ** 2 if noise.pixel == "CAR": pixArea = noise.data.pixsizemap() * rad_to_arcmin ** 2 if noise.ncomp == 1: if noise.pixel == "HEALPIX": size = len(noise.data) noise.data = np.random.randn(size) * rms_uKarcmin_T / np.sqrt(pixArea) if noise.pixel == "CAR": size = noise.data.shape noise.data = np.random.randn(size[0], size[1]) * rms_uKarcmin_T / np.sqrt(pixArea) if noise.ncomp == 3: if rms_uKarcmin_pol is None: rms_uKarcmin_pol = rms_uKarcmin_T * np.sqrt(2) if noise.pixel == "HEALPIX": size = len(noise.data[0]) noise.data[0] = np.random.randn(size) * rms_uKarcmin_T / np.sqrt(pixArea) noise.data[1] = np.random.randn(size) * rms_uKarcmin_pol / np.sqrt(pixArea) noise.data[2] = np.random.randn(size) * rms_uKarcmin_pol / np.sqrt(pixArea) if noise.pixel == "CAR": size = noise.data[0].shape noise.data[0] = np.random.randn(size[0], size[1]) * rms_uKarcmin_T / np.sqrt(pixArea) noise.data[1] = np.random.randn(size[0], size[1]) * rms_uKarcmin_pol / np.sqrt(pixArea) noise.data[2] = np.random.randn(size[0], size[1]) * rms_uKarcmin_pol / np.sqrt(pixArea) return noise
2e72d5362e66409081e0a4a222d49d18034006e2
23,271
def index(): """process request to the root.""" return render_template('index.html')
ea02cfd380d51670ca69cbec74f9b299dd650e88
23,272
import torch def aromatic_bonds(mol: IndigoObject) -> dict: """Get whether bonds in a molecule are aromatic or not. Args: IndigoObject: molecule object Returns: dict: key - feature name, value - torch.tensor of booleans """ is_aromatic = [] for bond in mol.iterateBonds(): is_aromatic.append(bond.bondOrder() == 4) return {"is_aromatic": torch.tensor(is_aromatic * 2).unsqueeze(1).float()}
92bae4b5b5a67f8165732ab64e345f85ddaa7d28
23,273
import warnings def get_unitroot(df: pd.DataFrame, fuller_reg: str, kpss_reg: str) -> pd.DataFrame: """Calculate test statistics for unit roots Parameters ---------- df : pd.DataFrame DataFrame of target variable fuller_reg : str Type of regression of ADF test kpss_reg : str Type of regression for KPSS test Returns ------- pd.DataFrame Dataframe with results of ADF test and KPSS test """ # The Augmented Dickey-Fuller test # Used to test for a unit root in a univariate process in the presence of serial correlation. try: result = adfuller(df, regression=fuller_reg) except MissingDataError: df = df.dropna(axis=0) result = adfuller(df, regression=fuller_reg) cols = ["Test Statistic", "P-Value", "NLags", "Nobs", "ICBest"] vals = [result[0], result[1], result[2], result[3], result[5]] data = pd.DataFrame(data=vals, index=cols, columns=["ADF"]) # Kwiatkowski-Phillips-Schmidt-Shin test # Test for level or trend stationarity # This test seems to produce an Interpolation Error which says # The test statistic is outside of the range of p-values available in the # look-up table. The actual p-value is greater than the p-value returned. # Wrap this in catch_warnings to prevent with warnings.catch_warnings(): warnings.simplefilter("ignore") res2 = kpss(df, regression=kpss_reg, nlags="auto") vals2 = [res2[0], res2[1], res2[2], "", ""] data["KPSS"] = vals2 return data
2d459e0980cb8983a03269f4e6b57e831065e6a0
23,274
def lat_avg(data, lat_wgt): """Perform latitude average of data: Inputs: data - n dimensional spatial data. The last 2 dimensions are assumed to lat and lon respectively lat_wgt - weights by latitudes""" lat_shape = lat_wgt.shape data_shape = data.shape # If one dimensional: if(len(lat_wgt) == 1): lat_wgt_re = np.broadcast_to(lat_wgt, data.shape) elif(len(lat_shape) > 1): raise ValueError ("lat_wgt must be 1 dimensional latitude weights") else: lat_2d = np.broadcast_to(lat_wgt.reshape(len(lat_wgt), 1), data_shape[-2:]) lat_wgt_re = np.broadcast_to(lat_2d, data_shape) return (data * lat_wgt_re).mean(axis = -2)
2cef0a7e0eeead1983a8ae9dfc9d4cd7954a2c29
23,275
def create_line(line_coefficients, height=5, step=0.5, vis=False): """ Args: line_coefficients: A dictionary containing cylindrical coefficients: (r, x0, y0, z0_, a, b, c r not used: to keep the same form between cylinder coefficients and line coefficients, so that a same group of coefficients can generate a cylinder and a line, then the line is the Central axis of the cylinder x0,y0,z0 the Starting center of the cylinder a, b, c the axis coefficient of the cylinder) height: length of the line step: Density of line point cloud vis: whether to visualize the cylinder Returns: numpy form of the line point cloud: n x 3 @Author: Carlos_Lee 202111 """ x0 = line_coefficients['x0'] y0 = line_coefficients['y0'] z0 = line_coefficients['z0'] a = line_coefficients['a'] b = line_coefficients['b'] c = line_coefficients['c'] v = np.arange(0, height, step) npy = np.zeros((len(v), 3)) for idx_, i in enumerate(v): x = x0 + a / np.power(a * a + b * b + c * c, 0.5) * i y = y0 + b / np.power(a * a + b * b + c * c, 0.5) * i z = z0 + c / np.power(a * a + b * b + c * c, 0.5) * i npy[idx_] = [x, y, z] if vis: coordinate_ = o3d.geometry.TriangleMesh.create_coordinate_frame(size=height / 2., origin=[0.0, 0.0, 0.0]) pcd_ = o3d.geometry.PointCloud() pcd_.points = o3d.utility.Vector3dVector(npy) o3d.visualization.draw_geometries([coordinate_, pcd_], window_name="generate line", width=960, height=900, left=960, top=100) return npy
0cafddb6263841152d506c08177ef8cc0691dd89
23,276
def get_result_summaries_query(start, end, sort, state, tags): """Returns TaskResultSummary.query() with these filters. Arguments: start: Earliest creation date of retrieved tasks. end: Most recent creation date of retrieved tasks, normally None. sort: Order to use. Must default to 'created_ts' to use the default. Cannot be used along start and end. state: One of State enum value as str. Use 'all' to get all tasks. tags: List of search for one or multiple task tags. """ # Disable the in-process local cache. This is important, as there can be up to # a thousand entities loaded in memory, and this is a pure memory leak, as # there's no chance this specific instance will need these again, therefore # this leads to 'Exceeded soft memory limit' AppEngine errors. q = TaskResultSummary.query( default_options=ndb.QueryOptions(use_cache=False)) # Filter by one or more tags. if tags: # Add TaskResultSummary indexes if desired. if sort != 'created_ts': raise ValueError( 'Add needed indexes for sort:%s and tags if desired' % sort) for tag in tags: parts = tag.split(':', 1) if len(parts) != 2 or any(i.strip() != i or not i for i in parts): raise ValueError('Invalid tags') values = parts[1].split(OR_DIM_SEP) separated_tags = ['%s:%s' % (parts[0], v) for v in values] q = q.filter(TaskResultSummary.tags.IN(separated_tags)) return filter_query(TaskResultSummary, q, start, end, sort, state)
45e0d7c09ea2c2a4cd9f3827fff5eaf09b12d98a
23,277
def approx_jacobian(tform, image, delta=0.01): """approximate the image pixel gradient wrt tform using central differences (This has been so helpful while troubleshooting jacobians, let's keep it around for unit testing. Parameters ---------- tform : TForm current transform, to be applied to image and its gradient image : ndarray(h, v) untransformed image delta : real or ndarray(nparams) stepsize Returns ------- jacobian : ndarray(h * v, nparams) transformation parameter derivatives at each image pixel. out-of-bounds points will be populated with 0's """ if not isinstance(delta, np.ndarray): delta = np.ones(len(tform.paramv)) * delta npixels = np.prod(tform.output_shape) gradvecs = np.empty((npixels, len(tform.paramv))) for i in range(len(tform.paramv)): dimage = np.zeros(tform.output_shape) for sign in (-1, 1): paramv = tform.paramv.copy() paramv[i] += delta[i] * sign stepT = tform.clone(paramv) dimage += stepT.imtransform(image) * sign gradvecs[:, i] = (dimage / (2 * delta[i])).flatten() return np.nan_to_num(gradvecs)
4153471fe4f94255a21b4d63c564aabe0db3b1d6
23,278
from typing import Collection def create_collection(collection_id: str) -> Collection: """Creates a STAC Collection for Landsat Collection 2 Level-1 or Level-2 data. Args: collection_id (str): ID of the STAC Collection. Must be one of "landsat-c2-l1" or "landsat-c2-l2". Returns: Collection: The created STAC Collection. """ if collection_id not in COLLECTION_IDS: raise ValueError(f"Invalid collection id: {collection_id}") fragment = CollectionFragments(collection_id).collection() collection = Collection(id=collection_id, title=fragment["title"], description=fragment["description"], license=fragment["license"], keywords=fragment["keywords"], providers=fragment["providers"], extent=fragment["extent"], summaries=fragment["summaries"]) collection.add_links(fragment["links"]) item_assets = ItemAssetsExtension(collection) item_assets.item_assets = fragment["item_assets"] ItemAssetsExtension.add_to(collection) ViewExtension.add_to(collection) ScientificExtension.add_to(collection) RasterExtension.add_to(collection) EOExtension.add_to(collection) return collection
111992f59a9a69aac0742350a0bce8b66b1ebb5d
23,279
def rician_noise(image, sigma, rng=None): """ Add Rician distributed noise to the input image. Parameters ---------- image : array-like, shape ``(dim_x, dim_y, dim_z)`` or ``(dim_x, dim_y, dim_z, K)`` sigma : double rng : random number generator (a numpy.random.RandomState instance). """ n1 = rng.normal(loc=0, scale=sigma, size=image.shape) n2 = rng.normal(loc=0, scale=sigma, size=image.shape) return np.sqrt((image + n1)**2 + n2**2)
a7f5962a8c388cd69f1bdb364fa8fd5dcd1e2dd4
23,280
def compute_composition_df(seq_df): """ Compute the composition matrix for all proteins. Args: seq_df: df, dataframe with sequences Returns: df, with the composition of the proteins """ # get composition table df_seq_comp = pd.DataFrame( list(seq_df["sequence"].apply(parser.amino_acid_composition).values)) * 1.0 # add column with 0s for amino acids that didnt occur in the protein fasta file for i in parser.std_amino_acids: if i not in df_seq_comp.columns: df_seq_comp[i] = 0 df_seq_comp = df_seq_comp.fillna(0.0) df_seq_comp.index = seq_df.index return df_seq_comp
4d68dc4568914df8349dd32d9e24a55f74896023
23,282
def make_gradient_squared( grid: CylindricalSymGrid, central: bool = True ) -> OperatorType: """make a discretized gradient squared operator for a cylindrical grid {DESCR_CYLINDRICAL_GRID} Args: grid (:class:`~pde.grids.cylindrical.CylindricalSymGrid`): The grid for which the operator is created central (bool): Whether a central difference approximation is used for the gradient operator. If this is False, the squared gradient is calculated as the mean of the squared values of the forward and backward derivatives. Returns: A function that can be applied to an array of values """ # use processing for large enough arrays dim_r, dim_z = grid.shape parallel = dim_r * dim_z >= config["numba.parallel_threshold"] if central: # use central differences scale_r, scale_z = 0.25 / grid.discretization ** 2 @jit(parallel=parallel) def gradient_squared(arr: np.ndarray, out: np.ndarray) -> None: """apply gradient operator to array `arr`""" for i in nb.prange(1, dim_r + 1): # iterate radial points for j in range(1, dim_z + 1): # iterate axial points term_r = (arr[i + 1, j] - arr[i - 1, j]) ** 2 term_z = (arr[i, j + 1] - arr[i, j - 1]) ** 2 out[i, j] = term_r * scale_r + term_z * scale_z else: # use forward and backward differences scale_r, scale_z = 0.5 / grid.discretization ** 2 @jit(parallel=parallel) def gradient_squared(arr: np.ndarray, out: np.ndarray) -> None: """apply gradient operator to array `arr`""" for i in nb.prange(1, dim_r + 1): # iterate radial points for j in range(1, dim_z + 1): # iterate axial points arr_z_l, arr_c, arr_z_h = arr[i, j - 1], arr[i, j], arr[i, j + 1] term_r = (arr[i + 1, j] - arr_c) ** 2 + (arr_c - arr[i - 1, j]) ** 2 term_z = (arr_z_h - arr_c) ** 2 + (arr_c - arr_z_l) ** 2 out[i, j] = term_r * scale_r + term_z * scale_z return gradient_squared
a5e64b5e217200b9b5d22b20484217c2483420f2
23,283
def state(git_root): """Return a hash of the current state of the .git directory. Only considers fsck verbose output and refs. """ if not git_root.is_dir(): return 0 rc, stdout, stderr = util.captured_run(*"git fsck --full -v".split(), cwd=git_root) refs = "".join([ref.name + ref.value for ref in collect_refs(git_root)]) return hash(stdout + stderr + refs)
c86f528dc80cdb12e88e83ce0bfdb7b393d8ede5
23,284
def search_handler(data_type_name, search_key=None, search_value=None): """ Purpose: Adapt PathError and QueryError to appropriate Django error types. Input Parameters: data_type_name - One of the searchable types 'PasswordData' or 'GroupData'. search_key - Name of searchable field for type specified Optional, default = None. search_value - Value of defined field to match from data, default = None. Return: HttpResponse with json representation of returned values. Exceptions: Http404 on QueryError, ImproperlyConfigured on PathError """ result_list = [] try: search_type = settings.PWDSVC_SEARCH if search_type == 'DataBaseSearch': db_search = DataBaseSearch(DATAMGR) result_list = db_search.search(data_type_name, search_key, search_value) else: result_list = DATAMGR.search(data_type_name, search_key, search_value) except PathError, path_error: raise ImproperlyConfigured(path_error) except QueryError, query_error: raise Http404(query_error) if not result_list: raise Http404('No results.') return result_list
5c2fd5a9e3199418febe215ee10524f70a5e9af3
23,285
def render_CardsCounter_edit(self, h, comp, *args): """Render the title of the associated object""" text = var.Var(self.text) with h.div(class_='list-counter'): with h.div(class_='cardCounter'): with h.form(onsubmit='return false;'): action = h.input(type='submit').action(lambda: self.validate(text(), comp)).get('onclick') id_ = h.generate_id() h << h.input(id=id_, type='text', value=self.column.nb_max_cards or '', onblur=action).action(text) h << h.script( """YAHOO.util.Event.on(%s, 'keyup', function (e) { if (e.keyCode == 13) { e.preventDefault(); this.blur(); } var result = this.value.replace(/[^0-9]/g, '') if (this.value !=result) { this.value = result; } });""" % ajax.py2js(id_) ) h << h.script( "YAHOO.kansha.app.selectElement(%s);" % ajax.py2js(id_) ) if self.error is not None: with h.div(class_='nagare-error-message'): h << self.error return h.root
fca04ae6551961f1c0187d016ac06614d1a77388
23,286
def get_embedding_tids(tids, mapping): """Obtain token IDs based on our own tokenization, through the mapping to BERT tokens.""" mapped = [] for t in tids: mapped += mapping[t] return mapped
a31c9b0cf5b791590d6e30d8238cf0eb6ae2272b
23,287
import requests def extract_stream_url(ashx_url): """ Extract real stream url from tunein stream url """ r = requests.get(ashx_url) for l in r.text.splitlines(): if len(l) != 0: return l
679ca261510413f652d0953551b65db8e5c2a62e
23,289
def check_for_rematch(player_id1, player_id2): """Checks whether the two players specified have played a match before. Args: player_id1: ID of first player player_id2: ID of second player Returns: Bool: True if they have met before, False if they have not. """ query = """SELECT EXISTS(SELECT 1 FROM matches WHERE winner_pid=%(id1)s AND loser_pid=%(id2)s OR winner_pid=%(id2)s AND loser_pid=%(id1)s);""" parameter = {'id1': player_id1, 'id2': player_id2} with connect_to_db() as database: database['cursor'].execute(query, parameter) is_rematch = database['cursor'].fetchone()[0] return is_rematch # Credits # Idea for using the EXISTS PSQL keyword found on this Stack Overflow page: # http://stackoverflow.com/questions/7471625/
8ee0652dc089cb286021f1d54672439881e86e56
23,290
def nextrandombitsAES(cipher, bitlength): """ <Purpose> generate random bits using AES-CTR <Arguments> bitlength: the lenght of the random string in BITS <Side Effects> Increases the AES counter <Returns> A random string with the supplied bitlength (the rightmost bits are zero if bitlength is not a multiple of 8) """ # offset for the last byte bytelength = bits_to_bytes(bitlength) bitoffset = bitlength % 8 if bitoffset > 0: # if the bitlength is not a multiple of 8, clear the rightmost bits pt = (bytelength - 1) * b'\0' randombytes = cipher.encrypt(pt) b = cipher.encrypt(b'\0') b = (b[0] & ((0xff00 >> bitoffset) & 0xff)).to_bytes(1, byteorder = 'big') randombytes += b return randombytes else: pt = bytelength * b'\0' return cipher.encrypt(pt)
ccc8a0ca2e2af595452e996d17e2d51125bf1d97
23,291
def _binparams2img(mc, param): """ Maximum data of all the bins Parameters ---------- mc : dict Molecular cloud dimensions param : boolean Parameter ---------- """ if not param in sos.all_params: raise Exception('Parameter not valid') # Get binned or full dimensions dims, nbins, mc_binned = _get_mc_dims(mc) sx, sy = dims # Define paremeter matrix param_matrix = np.zeros((sx, sy)) # Scan all the bins for b in range(nbins): if mc_binned: # Get bin name name = 'B'+str(b) # Get coordinates i, j = mc[name]['pos'] if not mc[name]['flag']: # Get parameter value m = mc[name][param] else: m = np.nan else: # Get coordinate i, j = 0, 0 # Get parameter value m = mc[param] #if param == 'den': # m = m/(1.28*1e3*1.672622e-27) # Neutral gas * proton mass [g] param_matrix[i][j] = m return param_matrix, dims
70224eeb3e9a6096d4ac19232f55966873078174
23,292
def arccos(x): """ Compute the inverse cosine of x. Return the "principal value" (for a description of this, see `numpy.arccos`) of the inverse cosine of `x`. For real `x` such that `abs(x) <= 1`, this is a real number in the closed interval :math:`[0, \\pi]`. Otherwise, the complex principle value is returned. Parameters ---------- x : array_like or scalar The value(s) whose arccos is (are) required. Returns ------- out : ndarray or scalar The inverse cosine(s) of the `x` value(s). If `x` was a scalar, so is `out`, otherwise an array object is returned. See Also -------- numpy.arccos Notes ----- For an arccos() that returns ``NAN`` when real `x` is not in the interval ``[-1,1]``, use `numpy.arccos`. Examples -------- >>> np.set_printoptions(precision=4) >>> np.emath.arccos(1) # a scalar is returned 0.0 >>> np.emath.arccos([1,2]) array([ 0.-0.j , 0.+1.317j]) """ x = _fix_real_abs_gt_1(x) return nx.arccos(x)
67b387ce0ee0b3b7927d97f163bd3258f87388bf
23,293
def request_authentication(user, organization_id, short_code): """ Request for an authentication token from Safaricom's MPesa API """ mpesa_api_account = get_object_or_404( MpesaAPIAccount.objects.filter( organization__owner=user, linked_account__identifier=short_code, organization__organization_id=organization_id )) return api.authenticate( env="production" if mpesa_api_account.in_production else "sandbox", app_key=mpesa_api_account.consumer_key, app_secret=mpesa_api_account.consumer_secret)
afc012a8160c24d44b6e8986d09ffdf61ad25554
23,294
def none_to_null(value): """ Returns None if the specified value is null, else returns the value """ return "null" if value == None else value
394b1f9620cf69c862905171f4aec96838ffc631
23,295
def get_dsd_url(): """Returns the remote URL to the global SDMX DSD for the SDGs.""" return 'https://registry.sdmx.org/ws/public/sdmxapi/rest/datastructure/IAEG-SDGs/SDG/latest/?format=sdmx-2.1&detail=full&references=children'
996568a92825aa7a7bf1be1db8ac2cac0828360a
23,296
from jcvi.utils.orderedcollections import SortedCollection def range_closest(ranges, b, left=True): """ Returns the range that's closest to the given position. Notice that the behavior is to return ONE closest range to the left end (if left is True). This is a SLOW method. >>> ranges = [("1", 30, 40), ("1", 33, 35), ("1", 10, 20)] >>> b = ("1", 22, 25) >>> range_closest(ranges, b) ('1', 10, 20) >>> range_closest(ranges, b, left=False) ('1', 33, 35) >>> b = ("1", 2, 5) >>> range_closest(ranges, b) """ key = (lambda x: x) if left else (lambda x: (x[0], x[2], x[1])) rr = SortedCollection(ranges, key=key) try: if left: s = rr.find_le(b) assert key(s) <= key(b), (s, b) else: s = rr.find_ge(b) assert key(s) >= key(b), (s, b) except ValueError: s = None return s
c32d19a4725d733855cf86bc7edd62133c42fa0f
23,297
def _fill_array(data, mask=None, fill_value=None): """ Mask numpy array and/or fill array value without demasking. Additionally set fill_value to value. If data is not a MaskedArray and mask is None returns silently data. :param mask: apply mask to array :param fill_value: fill value """ if mask is not None and mask is not False: data = np.ma.MaskedArray(data, mask=mask, copy=False) if np.ma.is_masked(data) and fill_value is not None: data._data[data.mask] = fill_value np.ma.set_fill_value(data, fill_value) # elif not np.ma.is_masked(data): # data = np.ma.filled(data) return data
de6190f9960a854e6cb67fe5eb61fd6f984cb147
23,298
def make_Dog(size, name): """Create dog entity.""" new_dog = Dog(size=size, name=str(name)) if new_dog.called() == "": return f"The {size} dog says {new_dog.talk()}." return f"{new_dog.called()}, the {size} dog says {new_dog.talk()}."
4c091b09d045fc8d354beebffbb1ef12b9d63840
23,299
def one_way_mi(df, feature_list, group_column, y_var, bins): """ Calculates one-way mutual information group variable and a target variable (y) given a feature list regarding. Parameters ---------- df : pandas DataFrame df with features used to train model, plus a target variable and a group column. feature_list : list DataFrame List of strings, feature names. group_column : string name of column for testing bias, should contain numeric categories y_var : string name of target variable column bins : tuple number of bins for each dimension Returns ------- mi_table : pandas DataFrame data frame with mutual information values, with one row per feature in the feature_list, columns for group and y. """ group_cats = df[group_column].values y_cats = df[y_var].values c_g = [ np.histogramdd([np.array(df[feature]), group_cats], bins=bins)[0] for feature in feature_list ] c_y = [ np.histogramdd([np.array(df[feature]), y_cats], bins=bins)[0] for feature in feature_list ] # compute mutual information (MI) between trait and gender/eth/y mi_g = [mutual_info_score(None, None, contingency=i) for i in c_g] mi_y = [mutual_info_score(None, None, contingency=i) for i in c_y] mi_table = pd.DataFrame({'feature': feature_list, group_column: mi_g, y_var: mi_y}) # NOTE: Scale group and y where the highest MI is scaled to 1 to # facilitate interpreting relative importance to bias and performance mi_table["{}_scaled".format(group_column)] = ( mi_table[group_column] / mi_table[group_column].max() ) mi_table["{}_scaled".format(y_var)] = ( mi_table[y_var] / mi_table[y_var].max() ) return mi_table
2b3e8336a5843a2e4bedc4f42699c233bb2118d3
23,301
import tqdm def draw_parametric_bs_reps_mle( mle_fun, gen_fun, data, args=(), size=1, progress_bar=False ): """Draw parametric bootstrap replicates of maximum likelihood estimator. Parameters ---------- mle_fun : function Function with call signature mle_fun(data, *args) that computes a MLE for the parameters gen_fun : function Function to randomly draw a new data set out of the model distribution parametrized by the MLE. Must have call signature `gen_fun(*params, size)`. data : one-dimemsional Numpy array Array of measurements args : tuple, default () Arguments to be passed to `mle_fun()`. size : int, default 1 Number of bootstrap replicates to draw. progress_bar : bool, default False Whether or not to display progress bar. Returns ------- output : numpy array Bootstrap replicates of MLEs. """ params = mle_fun(data, *args) if progress_bar: iterator = tqdm(range(size)) else: iterator = range(size) return np.array( [mle_fun(gen_fun(*params, size=len(data), *args)) for _ in iterator] )
75569e4be203fe4614f55f077c5d0abff20b468e
23,302
def parse_subpalette(words): """Turn palette entry into a list of color-to-index mappings. For example, #AAA=2 or #AAAAAA=2 means that (170, 170, 170) will be recognized as color 2 in that subpalette. If no =number is specified, indices are recognized sequentially from 1. Return a list of ((r, g, b), index) tuples. """ out = [] for i, word in enumerate(words): color_index = word.split("=", 1) color = parse_color(color_index[0]) index = int(color_index[1]) if len(color_index) > 1 else i + 1 out.append((color, index)) return out
13d52a4b8092755cac28401356183025dac7dfb3
23,303
import json def data_word2vec(input_file, num_labels, word2vec_model): """ Create the research data tokenindex based on the word2vec model file. Return the class _Data() (includes the data tokenindex and data labels). Args: input_file: The research data num_labels: The number of classes word2vec_model: The word2vec model file Returns: The Class _Data() (includes the data tokenindex and data labels) Raises: IOError: If the input file is not the .json file """ vocab = dict([(k, v.index) for (k, v) in word2vec_model.wv.vocab.items()]) def _token_to_index(content): result = [] for item in content: word2id = vocab.get(item) if word2id is None: word2id = 0 result.append(word2id) return result def _create_onehot_labels(labels_index): label = [0] * num_labels for item in labels_index: label[int(item)] = 1 return label if not input_file.endswith('.json'): raise IOError("[Error] The research data is not a json file. " "Please preprocess the research data into the json file.") with open(input_file) as fin: testid_list = [] content_index_list = [] labels_list = [] onehot_labels_list = [] labels_num_list = [] total_line = 0 for eachline in fin: data = json.loads(eachline) testid = data['testid'] features_content = data['features_content'] labels_index = data['labels_index'] labels_num = data['labels_num'] testid_list.append(testid) content_index_list.append(_token_to_index(features_content)) labels_list.append(labels_index) onehot_labels_list.append(_create_onehot_labels(labels_index)) labels_num_list.append(labels_num) total_line += 1 class _Data: def __init__(self): pass @property def number(self): return total_line @property def testid(self): return testid_list @property def tokenindex(self): return content_index_list @property def labels(self): return labels_list @property def onehot_labels(self): return onehot_labels_list @property def labels_num(self): return labels_num_list return _Data()
b5330fce3c71a62896fdfdc40a20743df0a313aa
23,304
def object_difference(): """Compute the difference parts between selected shapes. - Select two objects. Original code from HighlightDifference.FCMacro https://github.com/FreeCAD/FreeCAD-macros/blob/master/Utility/HighlightDifference.FCMacro Authors = 2015 Gaël Ecorchard (Galou) """ global verbose msg = verbose m_actDoc = get_ActiveDocument(info=msg) if m_actDoc is None: return None createFolders('WorkObjects') error_msg =\ "INCORRECT Object(s) Selection:\n" +\ "You Must Select Two(2) Objects !" result_msg = ": Difference object created into WorkFeatures/WorkObjects/" name = "Part" part = "Part::Feature" grp = "WorkObjects" try: selectionObjects = Gui.Selection.getSelection() if len(selectionObjects) < 2: printError_msg(error_msg) return object_list = [] for obj in selectionObjects: object_list.append(obj) for i, object_a in enumerate(object_list): shape_a = object_a.Shape label_a = object_a.Label for object_b in object_list[(i + 1):]: shape_b = object_b.Shape label_b = object_b.Label shape_addition = shape_a.cut(shape_b) if shape_addition.Volume < 1e-6: print_gui_msg("No Cut of " +\ str(label_a.encode('utf-8')) +\ " by " +\ str(label_b.encode('utf-8'))) else: print_msg("Volume of the red " +\ str(label_a.encode('utf-8')) +\ " Cut by " +\ str(label_b.encode('utf-8')) +\ ": " +\ str(shape_addition.Volume) + "\n") if not(App.ActiveDocument.getObject(grp)): App.ActiveDocument.addObject("App::DocumentObjectGroup", grp) added = FreeCAD.ActiveDocument.addObject(part) added.Label = "Cut red (" +\ str(label_a.encode('utf-8')) +\ "-" +\ str(label_b.encode('utf-8')) +\ ")" added.Shape = shape_addition App.ActiveDocument.getObject(grp).addObject(added) added.ViewObject.ShapeColor = (1.0, 0.0, 0.0, 1.0) shape_removal = shape_b.cut(shape_a) if shape_removal.Volume < 1e-6: print_gui_msg("No Cut of " +\ str(label_b.encode('utf-8')) +\ " by " +\ str(label_a.encode('utf-8'))) else: print_msg("Volume of the green " +\ str(label_b.encode('utf-8')) +\ " Cut by " +\ str(label_a.encode('utf-8')) +\ ": " +\ str(shape_removal.Volume) + "\n") if not(App.ActiveDocument.getObject(grp)): App.ActiveDocument.addObject("App::DocumentObjectGroup", grp) removed = FreeCAD.ActiveDocument.addObject(part) removed.Label = "Cut green (" +\ str(label_b.encode('utf-8')) +\ "-" +\ str(label_a.encode('utf-8')) +\ ")" removed.Shape = shape_removal App.ActiveDocument.getObject(grp).addObject(removed) removed.ViewObject.ShapeColor = (0.0, 0.5, 0.0, 1.0) object_a.ViewObject.Transparency = 80 object_b.ViewObject.Transparency = 80 except: printError_msg(error_msg)
b99fb61e0d85cc66ae395273f785f8f7441fd297
23,306
def diffusionkernel(sigma, N=4, returnt=False): """ diffusionkernel(sigma, N=4, returnt=False) A discrete analog to the continuous Gaussian kernel, as proposed by Toni Lindeberg. N is the tail length factor (relative to sigma). """ # Make sure sigma is float sigma = float(sigma) # Often refered to as the scale parameter, or t sigma2 = sigma*sigma # Where we start, from which we go backwards # This is also the tail length if N > 0: nstart = int(np.ceil(N*sigma)) + 1 else: nstart = abs(N) + 1 # Allocate kernel and times t = np.arange(-nstart, nstart+1, dtype='float64') k = np.zeros_like(t) # Make a start n = nstart # center (t[nstart]==0) k[n+nstart] = 0 n = n-1 k[n+nstart] = 0.01 # Iterate! for n in range(nstart-1,0,-1): # Calculate previous k[(n-1)+nstart] = 2*n/sigma2 * k[n+nstart] + k[(n+1)+nstart] # The part at the left can be erroneous, so let's use the right part only k[:nstart] = np.flipud(k[-nstart:]) # Remove the tail, which is zero k = k[1:-1] t = t[1:-1] # Normalize k = k / k.sum() # the function T that we look for is T = e^(-sigma2) * I(n,sigma2) # We found I(n,sigma2) and because we normalized it, the normalization term # e^(-sigma2) is no longer necesary. # Done if returnt: return k, t else: return k
3fe620454963eec357072bd0ecd64fd66b392600
23,307
def CalculateTopologicalTorsionFingerprint(mol): """ ################################################################# Calculate Topological Torsion Fingerprints Usage: result=CalculateTopologicalTorsionFingerprint(mol) Input: mol is a molecule object. Output: result is a tuple form. The first is the number of fingerprints. The second is a dict form whose keys are the position which this molecule has some substructure. The third is the DataStructs which is used for calculating the similarity. ################################################################# """ res = Torsions.GetTopologicalTorsionFingerprint(mol) return res.GetLength(), res.GetNonzeroElements(), res
0c646ea977ea257c523425a7f8526c16f8531e14
23,308