content
stringlengths 35
762k
| sha1
stringlengths 40
40
| id
int64 0
3.66M
|
---|---|---|
def parameters_create_lcdm(Omega_c, Omega_b, Omega_k, h, norm_pk, n_s, status):
"""parameters_create_lcdm(double Omega_c, double Omega_b, double Omega_k, double h, double norm_pk, double n_s, int * status) -> parameters"""
return _ccllib.parameters_create_lcdm(Omega_c, Omega_b, Omega_k, h, norm_pk, n_s, status) | d0a623fcfbcee06a387a3bf7add96068a8205824 | 23,544 |
def _split_header_params(s):
"""Split header parameters."""
result = []
while s[:1] == b';':
s = s[1:]
end = s.find(b';')
while end > 0 and s.count(b'"', 0, end) % 2:
end = s.find(b';', end + 1)
if end < 0:
end = len(s)
f = s[:end]
result.append(f.strip())
s = s[end:]
return result | fabbfb0959133e70019742c6661cb3bb443ca34d | 23,545 |
def countDigits(string):
"""return number of digits in a string (Helper for countHaveTenDigits)"""
count = 0
for char in string:
if char == '0' or char == '1' or char == '2' or char == '3' or char == '4' or \
char == '5' or char == '6' or char == '7' or char == '8' or char == '9':
count += 1
return count | f8d2327e022efc7a117b744588dfe16a3a7ba75e | 23,546 |
def get_process_entry(process_id: int) -> Process:
"""Get process entry
:raises AssertionError: When illegal state: Active processes != 1
:param process_id: specify process
:return: Process entry
"""
active_process_entry_query = db.session.query(Process).filter(Process.id == process_id)
assert active_process_entry_query.count() == 1, "Active processes != 1: " + str(active_process_entry_query.count())
return active_process_entry_query.first() | 442df14f1d032ff1fe8c40598f39a06255982da8 | 23,547 |
def shrink(filename):
"""
The function will make the original image shrink to its half without losing too much quality.
:param filename: The directory of an image tou want to process.
:return img: SimpleImage, a shrink image that is similar to the original image.
"""
img = SimpleImage(filename)
# Create a blank image that its size is 1/2 of the original image.
img_blank = SimpleImage.blank(img.width // 2, img.height // 2)
for x in range(img_blank.width):
for y in range(img_blank.height):
new_pixel = img_blank.get_pixel(x, y)
# Right upper corner.
if x == 0 and y == 0:
new_pixel.red = (img.get_pixel(x, y+1).red + img.get_pixel(x+1, y).red + img.get_pixel(x+1, y+1).red + img.get_pixel(x, y).red) // 4
new_pixel.green = (img.get_pixel(x, y+1).green + img.get_pixel(x+1, y).green + img.get_pixel(x+1, y+1).green + img.get_pixel(x, y).green) // 4
new_pixel.blue = (img.get_pixel(x, y+1).blue + img.get_pixel(x+1, y).blue + img.get_pixel(x+1, y+1).blue) + img.get_pixel(x, y).blue // 4
# Left side.
elif x == 0 and y != 0:
new_pixel.red = (img.get_pixel(x, y*2).red + img.get_pixel(x, y*2+1).red + img.get_pixel(x+1, y*2).red + img.get_pixel(x+1, y*2+1).red) // 4
new_pixel.green = (img.get_pixel(x, y*2).green + img.get_pixel(x, y*2+1).green + img.get_pixel(x+1, y*2).green + img.get_pixel(x+1, y*2+1).green) // 4
new_pixel.blue = (img.get_pixel(x, y*2).blue + img.get_pixel(x, y*2+1).blue + img.get_pixel(x+1, y*2).blue + img.get_pixel(x+1, y*2+1).blue) // 4
# Top.
elif y == 0 and x != 0:
new_pixel.red = (img.get_pixel(x*2, y).red + img.get_pixel(x*2+1, y).red + img.get_pixel(x*2, y+1).red + img.get_pixel(x*2+1, y+1).red) // 4
new_pixel.green = (img.get_pixel(x*2, y).green + img.get_pixel(x*2+1, y).green + img.get_pixel(x*2, y+1).green + img.get_pixel(x*2+1, y+1).green) // 4
new_pixel.blue = (img.get_pixel(x*2, y).blue + img.get_pixel(x*2+1, y).blue + img.get_pixel(x*2, y+1).blue + img.get_pixel(x*2+1, y+1).blue) // 4
else:
new_pixel.red = (img.get_pixel(x*2, y*2).red + img.get_pixel(x*2+1, y*2).red + img.get_pixel(x*2, y*2+1).red + img.get_pixel(x*2+1, y*2+1).red) // 4
new_pixel.green = (img.get_pixel(x*2, y*2).green + img.get_pixel(x*2+1, y*2).green + img.get_pixel(x*2, y*2+1).green + img.get_pixel(x*2+1, y*2+1).green) // 4
new_pixel.blue = (img.get_pixel(x*2, y*2).blue + img.get_pixel(x*2+1, y*2).blue + img.get_pixel(x*2, y*2+1).blue + img.get_pixel(x*2+1, y*2+1).blue) // 4
return img_blank | 0bff7d59bb7ae512883103bfe21ba80598c28c17 | 23,548 |
import getpass
def get_target_config():
"""
Get details of the target database (Postgres)
"""
print('\n------------------------------------------')
print('Enter target database settings:')
print('------------------------------------------')
config = {}
config['username'] = input('- Username on target database (default "postgres"): ') or 'postgres'
config['host'] = input('- Hostname for target database (default "localhost"): ') or 'localhost'
config['port'] = input('- Port for target database (default "5432"): ') or 5432
config['database'] = input("- Name of target database (default 'oracle_migration'): ") or "oracle_migration"
config['password'] = getpass.getpass('- Password for target database: ')
print('\nUsername: {}'.format(config['username']))
print('Hostname: {}'.format(config['host']))
print('Port: {}'.format(config['port']))
print('Database name: {}'.format(config['database']))
print('Password: {}'.format('*'*len(config['password'])))
return config | 36820bae4af66b2db92ce1d467996b6e9a7a2624 | 23,549 |
def GetGPU():
"""Get the global index of GPU.
Returns
-------
int
The global index of GPU.
"""
return option['device_id'] | 2c392c97da988c33ff12f59db4bb10f6b41e3bc1 | 23,550 |
def get_generic_explanation(exception_type):
"""Provides a generic explanation about a particular exception."""
if hasattr(exception_type, "__name__"):
exception_name = exception_type.__name__
else:
exception_name = exception_type
if exception_name in GENERIC:
return GENERIC[exception_name]()
elif exception_name.endswith("Warning"):
return GENERIC["UnknownWarning"]()
elif hasattr(exception_type, "__name__") and issubclass(exception_type, OSError):
return os_error_subclass(exception_type.__name__)
else:
return no_information() | b590be31518f3eabdc1cdeb31b1c66e66b47b253 | 23,551 |
def simple_histogram(queryset, column, bins):
"""
Return a histogram from data in queryset.
:param queryset: A Queryet, Model, or Manager
:param column: The column we are aggregating into a histogram
:param bins: An ordered iterable of left endpoints of the bins. Must have at least two elements.
The endpoints must be a convertible to strings by force_text
:return: A dictionary with bin endpoints converted to strings as keys and
"""
queryset = _get_queryset(queryset)
queryset = queryset.annotate(column_name=Value(column, output_field=CharField()))
return multi_histogram(queryset, column, bins, slice_on='column_name', choices=((column, column),)) | b6f4f2738cdf5e3e610e830886e2c6639aae309e | 23,553 |
def bounding_box(points):
"""Bounding box
Args:
points: Array of shape (amount_of_points, dimensions)
Returns:
numpy.ndarray: Array of [[min, max], [min, max], ...] along the
dimensions of points.
"""
out = np.empty((points.ndim, 2))
for i in range(points.ndim):
x = points[:, i]
out[i, 0] = x.min()
out[i, 1] = x.max()
return out | 44871a584f3592296c982c82a798c05ee8b166f7 | 23,555 |
def get_ts_WFI(self):
"""
Get kinetic energy density
"""
ts = np.zeros((self.grid.Nelem, len(self.solver[0,:]) ))
if self.optInv.ens_spin_sym is not True:
for i in range(self.solver.shape[0]):
for j in range(self.solver.shape[1]):
self.solver[i,j].calc_ked_WFI()
#ts[i,j] = self.solver[i,j].get_ked_WFI()
#get_ked_WFI cannot be defined as a solver's method
#Get Kinetic Energy Density
for i in range(self.solver.shape[0]):
for j in range(self.solver.shape[1]):
if self.solver[i,j].ked_WFI is not None:
ts[:,j] = np.sum( self.solver[i,j].ked_WFI, axis=1 )
else:
for i in range(self.solver.shape[0]):
self.solver[i,0].calc_ked_WFI()
#Get Kinetic Energy Density
for i in range(self.solver.shape[0]):
for j in range(self.solver.shape[1]):
if self.solver[i,j].ked_WFI is not None:
ts[:,j] = np.sum( self.solver[i,j].ked_WFI, axis=1 )
return ts | 8384a5c3d1e2cdb5551ecb783101961f73a2d523 | 23,556 |
def _correct_outlier_correlation(rpeaks: pd.DataFrame, bool_mask: np.array, corr_thres: float, **kwargs) -> np.array:
"""Apply outlier correction method 'correlation'.
This function compute the cross-correlation coefficient between every single beat and the average of all detected
beats. It marks beats as outlier if the cross-correlation coefficient is below a certain threshold.
Parameters
----------
rpeaks : :class:`~pandas.DataFrame`
dataframe with detected R peaks. Output from :meth:`biopsykit.signals.ecg.EcgProcessor.ecg_process()`
bool_mask : :class:`numpy.array`
boolean array with beats marked as outlier.
Results of this outlier correction method will be combined with the array using a logical 'or'
corr_thres : float
threshold for cross-correlation coefficient. Beats below that threshold will be marked as outlier
**kwargs : additional parameters required for this outlier function, such as:
* ecg_signal :class:`~pandas.DataFrame`
dataframe with processed ECG signal. Output from :meth:`biopsykit.signals.ecg.EcgProcessor.ecg_process()`
* sampling_rate : float
sampling rate of recorded data in Hz
Returns
-------
:class:`numpy.array`
boolean array with beats marked as outlier. Logical 'or' combination of ``bool_mask`` and results from
this algorithm
"""
ecg_signal = kwargs.get("ecg_signal", None)
sampling_rate = kwargs.get("sampling_rate", None)
if any(v is None for v in [ecg_signal, sampling_rate]):
raise ValueError(
"Cannot apply outlier correction method 'correlation' because not all additionally required arguments "
"were provided! Make sure you pass the following arguments: 'ecg_signal', 'sampling_rate'."
)
# signal outlier
# segment individual heart beats
heartbeats = nk.ecg_segment(ecg_signal["ECG_Clean"], rpeaks["R_Peak_Idx"], int(sampling_rate))
heartbeats = nk.epochs_to_df(heartbeats)
heartbeats_pivoted = heartbeats.pivot(index="Time", columns="Label", values="Signal")
heartbeats = heartbeats.set_index("Index")
heartbeats = heartbeats.loc[heartbeats.index.intersection(rpeaks["R_Peak_Idx"])].sort_values(by="Label")
heartbeats = heartbeats[~heartbeats.index.duplicated()]
heartbeats_pivoted.columns = heartbeats.index
# compute the average over all heart beats and compute the correlation coefficient between all beats and
# the average
mean_beat = heartbeats_pivoted.mean(axis=1)
heartbeats_pivoted["mean"] = mean_beat
corr_coeff = heartbeats_pivoted.corr()["mean"].abs().sort_values(ascending=True)
corr_coeff = corr_coeff.drop("mean")
# compute RR intervals (in seconds) from R Peak Locations
rpeaks["RR_Interval"] = np.ediff1d(rpeaks["R_Peak_Idx"], to_end=0) / sampling_rate
# signal outlier: drop all beats that are below a correlation coefficient threshold
return np.logical_or(bool_mask, rpeaks["R_Peak_Idx"].isin(corr_coeff[corr_coeff < corr_thres].index)) | 7216b1c8e2c3352d14273aa058e5c9fd4398044b | 23,557 |
import time
def _time_from_timestamp(timestamp: int) -> time:
"""
Casts a timestamp representing the number of seconds from the midnigh to a time object
Parameters
----------
timestamp : int
The number of seconds since midnight
Returns
-------
time
The associated time object
"""
SECONDS_IN_MINUTE = 60
SECONDS_IN_HOUR = 60 * SECONDS_IN_MINUTE
remaining_time = timestamp
hour, remaining_time = divmod(remaining_time, SECONDS_IN_HOUR)
minute, second = divmod(remaining_time, SECONDS_IN_MINUTE)
return time(hour, minute, second) | 552f2b3b6841d48f3340ecdd94edb03f791a84c9 | 23,558 |
def get_marginal_frequencies_of_spikes_in_bins(symbol_counts, number_of_bins_d):
"""
Compute for each past bin 1...d the sum of spikes found in that bin across all
observed symbols.
"""
return np.array(sum((emb.symbol_binary_to_array(symbol, number_of_bins_d)
* symbol_counts[symbol]
for symbol in symbol_counts)), dtype=int) | c1ace43f040715c87a3a137bebf64d862060a590 | 23,559 |
def pagination(cl):
"""
Generate the series of links to the pages in a paginated list.
"""
paginator, page_num = cl.paginator, cl.page_num
pagination_required = (not cl.show_all or not cl.can_show_all) and cl.multi_page
if not pagination_required:
page_range = []
else:
ON_EACH_SIDE = 2
ON_ENDS = 1
# If there are 10 or fewer pages, display links to every page.
# Otherwise, do some fancy
if paginator.num_pages <= 8:
page_range = range(paginator.num_pages)
else:
# Insert "smart" pagination links, so that there are always ON_ENDS
# links at either end of the list of pages, and there are always
# ON_EACH_SIDE links at either end of the "current page" link.
page_range = []
if page_num > (ON_EACH_SIDE + ON_ENDS):
page_range += [
*range(0, ON_ENDS),
DOT,
*range(page_num - ON_EACH_SIDE, page_num + 1),
]
else:
page_range.extend(range(0, page_num + 1))
if page_num < (paginator.num_pages - ON_EACH_SIDE - ON_ENDS - 1):
page_range += [
*range(page_num + 1, page_num + ON_EACH_SIDE - 1),
DOT,
*range(paginator.num_pages - ON_ENDS, paginator.num_pages),
]
else:
page_range.extend(range(page_num + 1, paginator.num_pages))
need_show_all_link = cl.can_show_all and not cl.show_all and cl.multi_page
return {
"cl": cl,
"pagination_required": pagination_required,
"show_all_url": need_show_all_link and cl.get_query_string({ALL_VAR: ""}),
"page_range": page_range,
"ALL_VAR": ALL_VAR,
"1": 1,
} | cca1b80f1bc2c60c8f4af44f138b5433023298f7 | 23,561 |
def ants_apply_inverse_warps_template_to_func(
workflow, strat, num_strat, num_ants_cores, input_node, input_outfile,
ref_node, ref_outfile, func_name, interp, input_image_type
):
"""Apply the functional-to-structural and structural-to-template warps
inversely to functional time-series in template space to warp it back to
native functional space.
Parameters
----------
workflow: Nipype workflow object
the workflow containing the resources involved
strat: C-PAC Strategy object
a strategy with one or more resource pools
num_strat: int
the number of strategy objects
num_ants_cores: int
the number of CPU cores dedicated to ANTS anatomical-to-standard
registration
input_node: Nipype pointer
pointer to the node containing the 4D functional time-series (often
the leaf node)
input_outfile: Nipype pointer
pointer to the output of the node, i.e. the 4D functional time-series
itself
ref_node: Nipype pointer
pointer to the node containing the reference volume for the C3D
FSL-to-ITK affine conversion (often the mean of the functional
time-series, which is a single volume)
ref_outfile: Nipype pointer
pointer to the output of ref_node, i.e. the reference volume itself
func_name: str
what the name of the warped functional should be when written to the
resource pool
interp: str
which interpolation to use when applying the warps
input_image_type: int
argument taken by the ANTs apply warp tool; in this case, should be
3 for 4D functional time-series
"""
# converts FSL-format .mat affine xfm into ANTS-format
# .txt; .mat affine comes from Func->Anat registration
fsl_to_itk_mni_func = create_wf_c3d_fsl_to_itk(
name='fsl_to_itk_%s_%d' % (func_name, num_strat)
)
# collects series of warps to be applied
collect_transforms_mni_func = \
create_wf_collect_transforms(
inverse=True,
name='collect_transforms_%s_%d' % (func_name, num_strat)
)
# apply ants warps
apply_ants_warp_mni_func = \
create_wf_apply_ants_warp(
inverse=True,
name='apply_ants_warp_%s_%d' % (func_name, num_strat),
ants_threads=int(num_ants_cores))
apply_ants_warp_mni_func.inputs.inputspec.dimension = 3
apply_ants_warp_mni_func.inputs.inputspec.interpolation = interp
# input_image_type:
# (0 or 1 or 2 or 3)
# Option specifying the input image type of scalar
# (default), vector, tensor, or time series.
apply_ants_warp_mni_func.inputs.inputspec. \
input_image_type = input_image_type
# convert the .mat from linear Func->Anat to
# ANTS format
node, out_file = strat['functional_to_anat_linear_xfm']
workflow.connect(node, out_file, fsl_to_itk_mni_func,
'inputspec.affine_file')
node, out_file = strat["anatomical_brain"]
workflow.connect(node, out_file, fsl_to_itk_mni_func,
'inputspec.reference_file')
workflow.connect(ref_node, ref_outfile,
fsl_to_itk_mni_func,
'inputspec.source_file')
workflow.connect(ref_node, ref_outfile,
apply_ants_warp_mni_func, 'inputspec.reference_image')
# Field file from anatomical nonlinear registration
node, out_file = strat['mni_to_anatomical_nonlinear_xfm']
workflow.connect(node, out_file,
collect_transforms_mni_func,
'inputspec.warp_file')
# initial transformation from anatomical registration
node, out_file = strat['ants_initial_xfm']
workflow.connect(node, out_file,
collect_transforms_mni_func,
'inputspec.linear_initial')
# affine transformation from anatomical registration
node, out_file = strat['ants_affine_xfm']
workflow.connect(node, out_file,
collect_transforms_mni_func,
'inputspec.linear_affine')
# rigid transformation from anatomical registration
node, out_file = strat['ants_rigid_xfm']
workflow.connect(node, out_file,
collect_transforms_mni_func,
'inputspec.linear_rigid')
# Premat from Func->Anat linear reg and bbreg
# (if bbreg is enabled)
workflow.connect(fsl_to_itk_mni_func,
'outputspec.itk_transform',
collect_transforms_mni_func,
'inputspec.fsl_to_itk_affine')
# this <node, out_file> pulls in directly because
# it pulls in the leaf in some instances
workflow.connect(input_node,
input_outfile,
apply_ants_warp_mni_func,
'inputspec.input_image')
workflow.connect(collect_transforms_mni_func,
'outputspec.transformation_series',
apply_ants_warp_mni_func,
'inputspec.transforms')
strat.update_resource_pool({
func_name: (apply_ants_warp_mni_func, 'outputspec.output_image')
})
strat.append_name(apply_ants_warp_mni_func.name)
return apply_ants_warp_mni_func | e1fdd24a9e3b13ff280baf89586eeca85f1f0a7d | 23,562 |
def get_metrics_influx(query, query_index):
""" Function to Query InfluxDB """
influx_connect = InfluxDBClient(
host=defs.INFLUX_DETAILS[query_index][0],
database=defs.INFLUX_DETAILS[query_index][1],
port=8086,
timeout=5,
retries=5)
response = influx_connect.query(query, epoch='s')
return response | 3f5d7c147553d3b16cfb3d18a1b86805f879fda7 | 23,563 |
def find_buckets(pc, target_centres, N, bucket_height=.38, bucket_radius=.15):
"""
Returns: pc, bucket_centres
"""
### find buckets and remove ###
print ('finding buckets')
buckets = pc[pc.z.between(.1, .4)]
# voxelise to speed-up dbscan
buckets.loc[:, 'xx'] = (buckets.x // .005) * .005
buckets.loc[:, 'yy'] = (buckets.y // .005) * .005
buckets.loc[:, 'zz'] = (buckets.z // .005) * .005
buckets.sort_values(['xx', 'yy', 'zz', 'refl'], inplace=True)
bucket_voxels = buckets[~buckets[['xx', 'yy', 'zz']].duplicated()]
# print(buckets)
dbscan = DBSCAN(min_samples=20, eps=.05).fit(bucket_voxels[['xx', 'yy', 'zz']])
bucket_voxels.loc[:, 'labels_'] = dbscan.labels_
# merge results back
buckets = pd.merge(buckets, bucket_voxels[['xx', 'yy', 'zz', 'labels_']], on=['xx', 'yy', 'zz'])
# find three largest targets (assumed buckets)
labels = buckets.labels_.value_counts().index[:N]
buckets = buckets[buckets.labels_.isin(labels)]
bucket_centres = buckets.groupby('labels_')[['x', 'y']].mean().reset_index()
bucket_centres.loc[:, 'aruco'] = -1
try:
# pair up aruco and buckets , identify and label bucket points
for i, lbl in enumerate(buckets.labels_.unique()):
bucket = buckets[buckets.labels_ == lbl]
X, Y = bucket[['x', 'y']].mean(), target_centres[['x', 'y']].astype(float)
dist2bucket = np.linalg.norm(X - Y, axis=1)
aruco = target_centres.loc[np.where(dist2bucket == dist2bucket.min())].aruco.values[0]
print ('bucket {} associated with aruco {}'.format(lbl, aruco))
bucket_centres.loc[bucket_centres.labels_ == lbl, 'aruco'] = aruco
# identify buckets points
x_shift = bucket_centres[bucket_centres.aruco == aruco].x.values
y_shift = bucket_centres[bucket_centres.aruco == aruco].y.values
pc.dist = np.sqrt((pc.x - x_shift)**2 + (pc.y - y_shift)**2)
idx = pc[(pc.z < bucket_height) & (pc.dist < bucket_radius) & (pc.is_branch)].index
pc.loc[idx, 'is_branch'] = False
# label branch base with aruco
idx = pc[(pc.z < bucket_height + .5) & (pc.dist < bucket_radius)].index
pc.loc[idx, 'aruco'] = aruco
except Exception as err:
plt.scatter(buckets.x.loc[::100], buckets.y.loc[::100], c=buckets.labels_.loc[::100])
plt.scatter(target_centres.x, target_centres.y)
[plt.text(r.x, r.y, r.aruco) for ix, r in target_centres.iterrows()]
raise Exception
return pc, bucket_centres | e7e5480783235e6e9ad48cbfc4d006e9a0a7b61e | 23,564 |
def red_bg(text):
"""
Red background.
"""
return _create_color_func(text, bgcolor=1) | c867f7415230b6f5c179a4369bf4751f9ee2a442 | 23,567 |
def does_block_type_support_children(block_type):
"""
Does the specified block type (e.g. "html", "vertical") support child
blocks?
"""
try:
return XBlock.load_class(block_type).has_children
except PluginMissingError:
# We don't know if this now-uninstalled block type had children
# but to be conservative, assume it may have.
return True | f1e86e6b378ef3e134106653e012c8a06cebf821 | 23,568 |
def jsonDateTimeHandler(obj):
"""Takes an object and tries to serialize it in JSON
by using strftime or isoformat."""
if hasattr(obj, "strftime"):
# To avoid problems with the js date-time format
return obj.strftime("%a %b %d, %Y %I:%M %p")
elif hasattr(obj, 'isoformat'):
return obj.isoformat()
# elif isinstance(obj, ...):
# return ...
else:
raise TypeError(
'Object of type %s with value of %s is not JSON serializable' %
(type(obj), repr(obj))) | 605f8a379575d185bc2a8b16810252511eec52af | 23,569 |
def get_crypto_price(crypto, fiat):
"""Helper function to convert any cryptocurrency to fiat"""
converted_btc_value = float(binance_convert_crypto(
crypto, "BTC").split('=')[1].strip().split()[0])
# grab latest bitcoin price
btc_price = float(get_price("btc", fiat).split('=')[1].strip().split()[0])
# converted_btc_value * latest reading
return converted_btc_value * btc_price | f91e56c74b3422d3ab272c029352ae94521033b0 | 23,571 |
def boxblur(stream: Stream, *args, **kwargs) -> FilterableStream:
"""https://ffmpeg.org/ffmpeg-filters.html#boxblur"""
return filter(stream, boxblur.__name__, *args, **kwargs) | 5f29981abaf050b43207452649f4ad9e3fafc05c | 23,572 |
def flatten(lis):
"""Given a list, possibly nested to any level, return it flattened."""
new_lis = []
for item in lis:
if type(item) == type([]):
new_lis.extend(flatten(item))
else:
new_lis.append(item)
return new_lis | 7e4e00af9f20f58dc0798a0731c352949dd71cf5 | 23,574 |
def name(ndims=2, ndepth=2):
""" encrypt n and version into a standardized string """
# Model name, depth and version
value = 'care_denoise_%dDdepth%d' % (ndims, ndepth)
return value | 1933ac0454eac4c860d70683e58c922074498b63 | 23,575 |
import string
import random
def _generate_url_slug(size=10, chars=string.ascii_lowercase + string.digits):
"""
This is for a Django project and it assumes your instance
has a model with a slug field and a title character (char) field.
Parameters
----------
size: <Int>
Size of the slug.
chars: <string.class>
Character class to be included in the slug.
"""
slug = ''.join(random.choice(chars) for _ in range(size))
if redis.exists(slug):
try:
return _generate_url_slug()
except RecursionError:
return
else:
return slug | 1ebe945730e7e5f977c80666db92cfefb9a1a1a7 | 23,576 |
def mc_compute_stationary(P):
"""
Computes the stationary distribution of Markov matrix P.
Parameters
----------
P : array_like(float, ndim=2)
A discrete Markov transition matrix
Returns
-------
solution : array_like(float, ndim=1)
The stationary distribution for P
Note: Currently only supports transition matrices with a unique
invariant distribution. See issue 19.
"""
n = len(P) # P is n x n
I = np.identity(n) # Identity matrix
B, b = np.ones((n, n)), np.ones((n, 1)) # Matrix and vector of ones
A = np.transpose(I - P + B)
solution = np.linalg.solve(A, b).flatten()
return solution | dc971399bc7b8626347ba9a20a6c8f449870b606 | 23,577 |
def isight_prepare_data_request(a_url, a_query, a_pub_key, a_prv_key):
"""
:param a_url:
:type a_url:
:param a_query:
:type a_query:
:param a_pub_key:
:type a_pub_key:
:param a_prv_key:
:type a_prv_key:
:return:
:rtype:
"""
header = set_header(a_prv_key, a_pub_key, a_query)
result = isight_load_data(a_url, a_query, header)
if not result:
PySight_settings.logger.error('Something went wrong when retrieving indicators from the FireEye iSight API')
return False
else:
return result | 8854013b509fa52a35bd1957f6680ce4e4c17dc4 | 23,578 |
def norm_fisher_vector(v, method=['power', 'l2']):
"""
Normalize a set of fisher vectors.
:param v: numpy.array
A matrix with Fisher vectors as rows (each row corresponding to an
image).
:param method: list
A list of normalization methods. Choices: 'power', 'l2'.
:return: numpy.array
The set of normalized vectors (as a matrix).
"""
if 'power' in method:
v = np.sign(v) * np.abs(v)**0.5
if 'l2' in method:
nrm = np.sqrt(np.sum(v**2, axis=1))
v /= nrm.reshape(-1, 1)
v[np.isnan(v)] = 100000.0 # some large value
return v | 06592b42914902f183d085f584b00cd9a1f057ce | 23,579 |
def get_top_funnels_df(funurl: str, funlen: int, useResolvedUrls: bool, events: DataFrame, limit_rows: int = 0) -> dict:
"""Get top funnels of specified length which contain the specified URL
:param funurl: URL that should be contained in the funnel
:param funlen: funnel length
:param useResolvedUrls: indicates whether original or resolved URLs should be used
:param events: events DataFrame
:param limit_rows: number of rows of events DataFrame to use (use all rows if 0)
:return: dictionary of funnels and their frequencies
"""
if useResolvedUrls:
columnToUse = analyze_traffic.RESOLVEDURL
else:
columnToUse = analyze_traffic.PAGEURL
if limit_rows != 0:
events = events.head(limit_rows)
if useResolvedUrls:
url_regex_resolver.resolve_urls(events, manage_resolutions.get_regex_dict(), analyze_traffic.PAGEURL, analyze_traffic.RESOLVEDURL)
si = analyze_traffic.build_session_index(events, columnToUse)
funnelCounts = get_funnel_lists(events, si, funurl, funlen, columnToUse)
return funnelCounts | 1fe29668e98076bbb39023e04fc1a5845788d9ef | 23,580 |
from typing import Dict
from typing import Any
def graph_to_json(obj: Graph) -> Dict[str, Any]:
"""
Uses regular serialization but excludes "operator" field to rid of circular references
"""
serialized_obj = {
k: v
for k, v in any_to_json(obj).items()
if k != 'operator' # to prevent circular reference
}
return serialized_obj | 922d53d5fb9b23773cdea13e94930985785f6c77 | 23,582 |
def log_ttest_vs_basal(df, basal_key):
"""Do t-tests in log space to see if sequences has the same activity as basal.
Parameters
----------
df : pd.DataFrame
Index is sequence ID, columns are average RNA/DNA barcode counts for each replicate.
basal_key : str
Index value for basal.
Returns
-------
pvals : pd.Series
p-value for t-test of the null hypothesis that the log activity of a sequence is the same as that of basal.
Does not include a p-value for basal.
"""
log_params = df.apply(_get_lognormal_params, axis=1)
# Pull out basal params
basal_mean, basal_std, basal_n = log_params.loc[basal_key]
# Drop basal from the df
log_params = log_params.drop(index=basal_key)
# Do t-tests on each row
pvals = log_params.apply(lambda x: stats.ttest_ind_from_stats(basal_mean, basal_std, basal_n,
x["mean"], x["std"], x["n"],
equal_var=False)[1],
axis=1)
return pvals | b41029c7c61b3b365bf71e2aaba8a81aecf5533a | 23,583 |
def spleen_lymph_cite_seq(
save_path: str = "data/",
protein_join: str = "inner",
remove_outliers: bool = True,
run_setup_anndata: bool = True,
) -> anndata.AnnData:
"""
Immune cells from the murine spleen and lymph nodes [GayosoSteier21]_.
This dataset was used throughout the totalVI manuscript, and named SLN-all.
Parameters
----------
save_path
Location to use when saving/loading the data.
protein_join
Whether to take an inner join or outer join of proteins
remove_outliers
Whether to remove clusters annotated as doublet or low quality
run_setup_anndata
If true, runs setup_anndata() on dataset before returning
Returns
-------
AnnData with batch info (``.obs['batch']``), label info (``.obs['cell_types']``),
protein expression (``.obsm["protein_expression"]``), and tissue (``.obs['tissue']``).
Missing protein values are zero, when ``protein_join == "outer`` and are identified during ``AnnData`` setup.
Examples
--------
>>> import scvi
>>> adata = scvi.data.spleen_lymph_cite_seq()
"""
return _load_spleen_lymph_cite_seq(
save_path=save_path,
protein_join=protein_join,
remove_outliers=remove_outliers,
run_setup_anndata=run_setup_anndata,
) | 7eeead5e6f69b7f3b9dff85b33cae675ea0a47ec | 23,584 |
def strftime_local(aware_time, fmt="%Y-%m-%d %H:%M:%S"):
"""
格式化aware_time为本地时间
"""
if not aware_time:
# 当时间字段允许为NULL时,直接返回None
return None
if timezone.is_aware(aware_time):
# translate to time in local timezone
aware_time = timezone.localtime(aware_time)
return aware_time.strftime(fmt) | 1294795d793c22e7639fb88ca02e34bb6b764892 | 23,586 |
import re
def filter_issues_fixed_by_prs(issues, prs, show_related_prs, show_related_issues):
"""
Find related issues to prs and prs to issues that are fixed.
This adds extra information to the issues and prs listings.
"""
words = [
'close', 'closes', 'fix', 'fixes', 'fixed', 'resolve', 'resolves',
'resolved'
]
pattern = re.compile(
r'(?P<word>' + r'|'.join(words) + r') '
r'((?P<repo>.*?)#(?P<number>\d*)|(?P<full_repo>.*)/(?P<number_2>\d*))',
re.IGNORECASE, )
issue_pr_map = {}
pr_issue_map = {}
for pr in prs:
is_pr = bool(pr.get('pull_request'))
if is_pr:
pr_url = pr.html_url
pr_number = pr.number
user = pr.user
repo_url = pr_url.split('/pull/')[0] + '/issues/'
pr_issue_map[pr_url] = []
body = pr.body or ''
# Remove blanks and markdown comments
if body:
lines = body.splitlines()
no_comments = [l for l in lines
if (l and not l.startswith("<!---"))]
body = '\n'.join(no_comments)
for matches in pattern.finditer(body):
dic = matches.groupdict()
issue_number = dic['number'] or dic['number_2'] or ''
repo = dic['full_repo'] or dic['repo'] or repo_url
# Repo name can't have spaces.
if ' ' not in repo:
# In case spyder-ide/loghub#45 was for example used
if 'http' not in repo:
repo = 'https://github.com/' + repo
if '/issues' not in repo:
issue_url = repo + '/issues/' + issue_number
elif repo.endswith('/') and issue_number:
issue_url = repo + issue_number
elif issue_number:
issue_url = repo + '/' + issue_number
else:
issue_url = None
else:
issue_url = None
# Set the issue data
issue_data = {'url': pr_url, 'text': pr_number, 'user': user}
if issue_url is not None:
if issue_number in issue_pr_map:
issue_pr_map[issue_url].append(issue_data)
else:
issue_pr_map[issue_url] = [issue_data]
pr_data = {'url': issue_url, 'text': issue_number}
pr_issue_map[pr_url].append(pr_data)
if show_related_issues:
pr['loghub_related_issues'] = pr_issue_map[pr_url]
for issue in issues:
issue_url = issue.html_url
if issue_url in issue_pr_map and show_related_prs:
issue['loghub_related_pulls'] = issue_pr_map[issue_url]
# Now sort the numbers in descending order
for issue in issues:
related_pulls = issue.get('loghub_related_pulls', [])
related_pulls = sorted(
related_pulls, key=lambda p: p['url'], reverse=True)
issue['loghub_related_pulls'] = related_pulls
for pr in prs:
related_issues = pr.get('loghub_related_issues', [])
related_issues = sorted(
related_issues, key=lambda i: i['url'], reverse=True)
pr['loghub_related_issues'] = related_issues
return issues, prs | 6e63dc9988c9343b4f9d2baae2d995b26b666ed3 | 23,587 |
import re
def run_job(answer: str, job: dict, grade: float, feedback: str):
"""
Match answer to regex inside job dictionary.
Add weight to grade if successful, else add comment to feedback.
:param answer: Answer.
:param job: Dictionary with regex, weight, and comment.
:param grade: Current grade for the answer.
:param feedback: Current feedback for the answer.
:return: Modified answer, grade, and feedback.
"""
match = re.search(job["regex"], answer)
if match:
grade += job["weight"]
answer = answer.replace(match[0], "", 1)
else:
feedback += job["comment"] + "\n"
return answer, grade, feedback | 487916da129b8958f8427b11f0118135268f9245 | 23,588 |
def __build_data__(feature, qars):
"""
Return all the data needed to build the Benin republic departments Layer
"""
data = {
'qars': qars,
}
# GEOJSON layer consisting of a single feature
department_name = feature["properties"]["NAME_1"]
data["department"] = department_name
data["predictions"] = data_dictionary[feature["properties"]["NAME_0"]][feature["properties"]["NAME_1"]][
"properties"]
z_list = []
# looping through all departments in Benin Repubic to get the ranking
for d in range(len(DeptSatellite.objects.all())):
y = DeptSatellite.objects.all()[d].department
x = CommuneSatellite.objects.filter(department=y).aggregate(Sum('cashew_tree_cover'))
x = x['cashew_tree_cover__sum']
z_list.append((y, x))
sorted_by_second = sorted(z_list, reverse=True, key=lambda tup: tup[1])
list1, _ = zip(*sorted_by_second)
# A small logic to solve the French symbols department error when viewed on local host
if heroku:
position = list1.index(department_name)
else:
position = 1
data["position"] = position
my_dict = {'0': "highest", '1': "2nd", '2': "3rd", '3': "4th", '4': "5th", '5': "6th", '6': "7th", '7': "8th",
'8': "9th", '9': "10th", '10': "11th", '11': "lowest"}
data["my_dict"] = my_dict
pred_dept_data = []
pred_ground_dept_data = [['Communes', 'Satellite Prediction', 'Ground Data Estimate']]
for c in CommuneSatellite.objects.filter(department=department_name):
y = c.commune
x = round(c.cashew_tree_cover / 10000, 2)
pred_dept_data.append([y, x])
pred_ground_dept_data.append([y, x, x])
data["pred_dept_data"] = pred_dept_data
data["pred_ground_dept_data"] = pred_ground_dept_data
# load statistics from the database and formating them for displaying on popups.
# The try catch is to avoid error that arise when we round null values
tree_ha_pred_dept = CommuneSatellite.objects.filter(department=department_name).aggregate(Sum('cashew_tree_cover'))
try:
tree_ha_pred_dept = int(round(tree_ha_pred_dept['cashew_tree_cover__sum'] / 10000, 2))
except Exception as e:
tree_ha_pred_dept = 0
data["tree_ha_pred_dept"] = tree_ha_pred_dept
surface_area_d = BeninYield.objects.filter(department=department_name).aggregate(Sum('surface_area'))
try:
surface_area_d = int(round(surface_area_d['surface_area__sum'], 2))
except Exception as e:
surface_area_d = 0
data["surface_area_d"] = surface_area_d
total_yield_d = BeninYield.objects.filter(department=department_name).aggregate(Sum('total_yield_kg'))
try:
total_yield_d = int(round(total_yield_d['total_yield_kg__sum'], 2))
except Exception as e:
total_yield_d = 0
data["total_yield_d"] = total_yield_d
yield_ha_d = BeninYield.objects.filter(department=department_name).aggregate(Avg('total_yield_per_ha_kg'))
try:
yield_ha_d = int(round(yield_ha_d['total_yield_per_ha_kg__avg'], 2))
except Exception as e:
yield_ha_d = 0
data["yield_ha_d"] = yield_ha_d
# Used only in case of error in the try and except catch
yield_tree_d = BeninYield.objects.filter(department=department_name).aggregate(Avg('total_yield_per_tree_kg'))
try:
yield_tree_d = int(round(yield_tree_d['total_yield_per_tree_kg__avg'], 2))
except Exception as e:
yield_tree_d = 0
data["yield_tree_d"] = yield_tree_d
num_tree_d = BeninYield.objects.filter(department=department_name).aggregate(Sum('total_number_trees'))
try:
num_tree_d = int(num_tree_d['total_number_trees__sum'])
except Exception as e:
num_tree_d = 0
data["num_tree_d"] = num_tree_d
sick_tree_d = BeninYield.objects.filter(department=department_name).aggregate(Sum('total_sick_trees'))
try:
sick_tree_d = int(sick_tree_d['total_sick_trees__sum'])
except Exception as e:
sick_tree_d = 0
data["sick_tree_d"] = sick_tree_d
out_prod_tree_d = BeninYield.objects.filter(department=department_name).aggregate(Sum('total_trees_out_of_prod'))
try:
out_prod_tree_d = int(out_prod_tree_d['total_trees_out_of_prod__sum'])
except Exception as e:
out_prod_tree_d = 0
data["out_prod_tree_d"] = out_prod_tree_d
dead_tree_d = BeninYield.objects.filter(department=department_name).aggregate(Sum('total_dead_trees'))
try:
dead_tree_d = int(round(dead_tree_d['total_dead_trees__sum'], 2))
except Exception as e:
dead_tree_d = 0
data["dead_tree_d"] = dead_tree_d
region_size_d = area(feature['geometry']) / 10000
try:
active_trees_d = num_tree_d - sick_tree_d - out_prod_tree_d - dead_tree_d
except Exception as e:
active_trees_d = 0
data["active_trees_d"] = active_trees_d
try:
r_tree_ha_pred_dept = round(tree_ha_pred_dept, 1 - int(
floor(log10(abs(tree_ha_pred_dept))))) if tree_ha_pred_dept < 90000 else round(tree_ha_pred_dept,
2 - int(floor(log10(
abs(tree_ha_pred_dept)))))
except Exception as e:
r_tree_ha_pred_dept = tree_ha_pred_dept
data["r_tree_ha_pred_dept"] = r_tree_ha_pred_dept
try:
r_surface_area_d = round(surface_area_d,
1 - int(floor(log10(abs(surface_area_d))))) if surface_area_d < 90000 else round(
surface_area_d, 2 - int(floor(log10(abs(surface_area_d)))))
except Exception as e:
r_surface_area_d = surface_area_d
data["r_surface_area_d"] = r_surface_area_d
try:
r_total_yield_d = round(total_yield_d,
1 - int(floor(log10(abs(total_yield_d))))) if total_yield_d < 90000 else round(
total_yield_d, 2 - int(floor(log10(abs(total_yield_d)))))
except Exception as e:
r_total_yield_d = total_yield_d
data["r_total_yield_d"] = r_total_yield_d
try:
r_yield_ha_d = round(yield_ha_d, 1 - int(floor(log10(abs(yield_ha_d))))) if yield_ha_d < 90000 else round(
yield_ha_d, 2 - int(floor(log10(abs(yield_ha_d)))))
except Exception as e:
r_yield_ha_d = yield_ha_d
data["r_yield_ha_d"] = r_yield_ha_d
try:
yield_pred_dept = int(r_yield_ha_d * tree_ha_pred_dept)
except Exception as e:
yield_pred_dept = 0
data["yield_pred_dept"] = yield_pred_dept
try:
r_yield_pred_dept = round(yield_pred_dept, 1 - int(
floor(log10(abs(yield_pred_dept))))) if yield_pred_dept < 90000 else round(yield_pred_dept, 2 - int(
floor(log10(abs(yield_pred_dept)))))
except Exception as e:
r_yield_pred_dept = yield_pred_dept
data["r_yield_pred_dept"] = r_yield_pred_dept
try:
r_yield_tree_d = round(r_total_yield_d / active_trees_d)
except Exception as e:
r_yield_tree_d = yield_tree_d
data["r_yield_tree_d"] = r_yield_tree_d
try:
r_num_tree_d = round(num_tree_d, 1 - int(floor(log10(abs(num_tree_d))))) if num_tree_d < 90000 else round(
num_tree_d, 2 - int(floor(log10(abs(num_tree_d)))))
except Exception as e:
r_num_tree_d = num_tree_d
data["r_num_tree_d"] = r_num_tree_d
try:
r_region_size_d = round(region_size_d,
1 - int(floor(log10(abs(region_size_d))))) if region_size_d < 90000 else round(
region_size_d, 2 - int(floor(log10(abs(region_size_d)))))
except Exception as e:
r_region_size_d = region_size_d
data["r_region_size_d"] = r_region_size_d
return data | e1982a1f610ea724ca8cf06f6641a4bc3428fa47 | 23,589 |
def hook(callback):
"""
Installs a global listener on all available mouses, invoking `callback`
each time it is moved, a key status changes or the wheel is spun. A mouse
event is passed as argument, with type either `mouse.ButtonEvent`,
`mouse.WheelEvent` or `mouse.MoveEvent`.
Returns the given callback for easier development.
"""
_listener.add_handler(callback)
return callback | 4bf0884de591fc4f0b30bee42b6e36b06c526134 | 23,590 |
def notification_list(request):
"""
returns the notification list
"""
notifications = Notification.get_notifications(user=request.user)
return {"notifications": notifications} | c8e967fa8cef0dfd5cc9673c99289e17813f2e75 | 23,591 |
def predictClass(x, mus, sigmas, X_train, number_of_classes, class_probabilities):
"""
For every model, it calculates the likelihood for each class, and picks the class with max likelihood.
:param x: The datapoint we want to derive the class for.
:param mus: A list with the mean vector for each method. First three are for first class, next three for
second class, etc.
:param sigmas: A list with the covariance matrix for each method. Same as mus.
:param X_train: The train set - needed for Parzen Windows method.
:param number_of_classes: The number of different classes in the dataset.
:param class_probabilities: An array with the probability of each class.
:return: A vector with the predicted classes by each model.
"""
predictions = []
# For the parametric methods
number_of_models = int(len(mus) / 2)
for i in range(0, number_of_models):
method_likelihoods = []
for j in range(number_of_classes):
index = i + j * number_of_models # the index will "jump" over the other methds in the lists.
prob = gaussian(x, mus[index], sigmas[index]) * class_probabilities[j] # The beyes classifier rule
method_likelihoods.append(prob)
predictions.append(np.argmax(method_likelihoods))
# For the non-parametric method
method_likelihoods = []
for j in range(number_of_classes):
sumlog_pi = question_d(X_train, x)
p_i = sumlog_pi * class_probabilities[j] # The beyes classifier rule
method_likelihoods.append(p_i)
predictions.append(np.argmax(method_likelihoods))
return predictions | dbd9d6227c8877862d74d4bf1932f3f1acd37a2f | 23,593 |
def create_secret_id(vault, name, version=None):
"""
:param vault: The vault uri.
:type vault: str
:param name: The secret name.
:type name: str
:param version: The secret version.
:type version: str
:rtype: KeyVaultId
"""
return create_object_id('secrets', vault, name, version) | 65c918a8f9c1f5c087835ff36a9eb13233bada2d | 23,594 |
def config_output_page():
"""
Configuration landing page
:return: config.html
"""
config_type = "output"
c = ConfigFile()
# First load in all the configuration from the provided configuration file, if it exists
c.load_from_file(DEFAULT_CONFIG_FILE)
cdb = c.get_cdb()
cdb.update_path(config_type)
docs = cdb.get_all()
outputs = []
for doc in docs:
i = c.get_output_from_data(doc)
outputs.append(i)
output_types = c.get_outputs_available()
config_descr = """
Outputs act as stores - seperate from the local database - for host information
"""
return render_template('config.html', items=outputs, config_type=config_type, config_descr=config_descr, item_types=output_types) | 346ae058db6e0081a37a5ebedd6d231f0a3204da | 23,595 |
from typing import Optional
def compute_all_aggregator_metrics(
per_plan_confidences: np.ndarray,
predictions: np.ndarray,
ground_truth: np.ndarray,
metric_name: Optional[str] = None
):
"""Batch size B, we assume consistent number of predictions D per scene.
per_plan_confidences: np.ndarray, shape (B, D), we assume that all
prediction requests have the same number of proposed plans here.
predictions: np.ndarray, shape (B, D, T, 2)
ground_truth: np.ndarray, shape (B, T, 2), there is only one
ground_truth trajectory for each prediction request.
metric_name: Optional[str], if specified, compute a particular metric only.
"""
metrics_dict = defaultdict(list)
if metric_name is None:
base_metrics = VALID_BASE_METRICS
else:
base_metrics = []
for metric in VALID_BASE_METRICS:
if metric.upper() in metric_name:
base_metrics.append(metric)
if not base_metrics:
raise ValueError(f'Invalid metric name {metric_name} specified.')
if metric_name is None:
aggregators = VALID_AGGREGATORS
else:
aggregators = []
for agg in VALID_AGGREGATORS:
if agg in metric_name:
aggregators.append(agg)
if not aggregators:
raise ValueError(f'Invalid metric name {metric_name} specified.')
for base_metric_name in base_metrics:
if base_metric_name == 'ade':
base_metric = average_displacement_error
elif base_metric_name == 'fde':
base_metric = final_displacement_error
else:
raise NotImplementedError
# For each prediction request:
for index, (req_preds, req_gt, req_plan_confs) in enumerate(
zip(predictions, ground_truth, per_plan_confidences)):
req_plan_losses = base_metric(
predicted=req_preds, ground_truth=req_gt)
for aggregator in aggregators:
metric_key = f'{aggregator}{base_metric_name.upper()}'
metrics_dict[metric_key].append(
aggregate_prediction_request_losses(
aggregator=aggregator,
per_plan_losses=req_plan_losses,
per_plan_weights=_softmax_normalize(req_plan_confs)))
metrics_dict = {
key: np.stack(values) for key, values in metrics_dict.items()}
return metrics_dict | cd17c4c1273ec2a23aa16efebd7a4437dc4e16f7 | 23,596 |
import requests
import re
def query_url_base(_url, _proxy=True, _isPC=True, _isPhone=False):
""" 基于requset的模块,不能采集动态网页数据
:param _url<str>
:param _proxy<bool>
:param _isPc<bool>
:param _isPhone<bool>
:return _result<dict>
"""
_result = {}
_headers = {'Connection':'kepp-alive'}
if _isPC:
_headers['User-Agent'] = 'Mozilla/5.0 (Macintosh; Intel Mac OS X 11_2_1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/88.0.4324.150 Safari/537.36'
elif _isPhone:
_headers['User-Agent'] = 'Mozilla/5.0 (iPhone; CPU iPhone OS 13_2_3 like Mac OS X) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/13.0.3 Mobile/15E148 Safari/604.1'
_ip_url = 'https://restapi.amap.com/v3/ip?output=json&key=880b9655c8c084258bfbedf98145a936'
_proxy = {
'http': 'socks5://127.0.0.1:1080',
'https': 'socks5://127.0.0.1:1080',
} if _proxy else None
_pattern_dict = {
'title': r"<(title|TITLE)>(?P<title>[^<>]+)</(title|TITLE)>"}
# print(requests.get(_ip_url, proxies=_proxy).json())
response = requests.post(_url, proxies=_proxy, headers=_headers, verify=False, timeout=30)
content = response.text
for k,v in _pattern_dict.items():
_match = re.search(v, content)
if not re.match: continue
_result[k] = _match.groupdict()[k]
_result['text'] = html2text(content)
return _result | f916b974a472f6a3d079911461902da1ae7cb18d | 23,597 |
def timefstring(dtobj, tz_name=True):
"""Standardize the format used for timestamp string format.
Include 3 letter string for timezone if set to True.
"""
if tz_name:
return f'{dtobj.strftime("%Y-%m-%d_%H:%M:%S%Z")}'
else:
return f'{dtobj.strftime("%Y-%m-%d_%H:%M:%S")}NTZ' | 5bbf0454a76ed1418cbc9c44de909940065fb51f | 23,598 |
def is_block(modules):
"""Check if is ResNet building block."""
if isinstance(modules, (ShuffleUnit, )):
return True
return False | ac6f059b763f25d81508826a3a8c8db5beb769b0 | 23,599 |
def _func(*args, **kwargs):
"""Test function used in some tests."""
return args, kwargs | 7fb2aa947806578e5378e66ce7dc1b4f3f593dbe | 23,601 |
def combine_parallel_circuits(IVprev_cols, pvconst):
"""
Combine crosstied circuits in a substring
:param IVprev_cols: lists of IV curves of crosstied and series circuits
:return:
"""
# combine crosstied circuits
Irows, Vrows = [], []
Isc_rows, Imax_rows = [], []
for IVcols in zip(*IVprev_cols):
Iparallel, Vparallel = zip(*IVcols)
Iparallel = np.asarray(Iparallel)
Vparallel = np.asarray(Vparallel)
Irow, Vrow = pvconst.calcParallel(
Iparallel, Vparallel, Vparallel.max(),
Vparallel.min()
)
Irows.append(Irow)
Vrows.append(Vrow)
Isc_rows.append(np.interp(np.float64(0), Vrow, Irow))
Imax_rows.append(Irow.max())
Irows, Vrows = np.asarray(Irows), np.asarray(Vrows)
Isc_rows = np.asarray(Isc_rows)
Imax_rows = np.asarray(Imax_rows)
return pvconst.calcSeries(
Irows, Vrows, Isc_rows.mean(), Imax_rows.max()
) | 31d6a96189b703bca0e9cf212472cb0c8870d3cd | 23,602 |
def _create_pipeline(pipeline_name: str, pipeline_root: str, data_root: str,
module_file: str, serving_model_dir: str,
metadata_path: str) -> tfx.dsl.Pipeline:
"""Creates a three component penguin pipeline with TFX."""
# Brings data into the pipeline.
example_gen = tfx.components.CsvExampleGen(input_base=data_root)
# Uses user-provided Python function that trains a model.
trainer = tfx.components.Trainer(
module_file=module_file,
examples=example_gen.outputs['examples'],
train_args=tfx.proto.TrainArgs(num_steps=100),
eval_args=tfx.proto.EvalArgs(num_steps=5))
# NEW: Get the latest blessed model for Evaluator.
model_resolver = tfx.dsl.Resolver(
strategy_class=tfx.dsl.experimental.LatestBlessedModelStrategy,
model=tfx.dsl.Channel(type=tfx.types.standard_artifacts.Model),
model_blessing=tfx.dsl.Channel(
type=tfx.types.standard_artifacts.ModelBlessing)).with_id(
'latest_blessed_model_resolver')
# NEW: Uses TFMA to compute evaluation statistics over features of a model and
# perform quality validation of a candidate model (compared to a baseline).
eval_config = tfma.EvalConfig(
model_specs=[tfma.ModelSpec(label_key='species')],
slicing_specs=[
# An empty slice spec means the overall slice, i.e. the whole dataset.
tfma.SlicingSpec(),
# Calculate metrics for each penguin species.
tfma.SlicingSpec(feature_keys=['species']),
],
metrics_specs=[
tfma.MetricsSpec(per_slice_thresholds={
'sparse_categorical_accuracy':
tfma.config.PerSliceMetricThresholds(thresholds=[
tfma.PerSliceMetricThreshold(
slicing_specs=[tfma.SlicingSpec()],
threshold=tfma.MetricThreshold(
value_threshold=tfma.GenericValueThreshold(
lower_bound={'value': 0.6}),
# Change threshold will be ignored if there is no
# baseline model resolved from MLMD (first run).
change_threshold=tfma.GenericChangeThreshold(
direction=tfma.MetricDirection.HIGHER_IS_BETTER,
absolute={'value': -1e-10}))
)]),
})],
)
evaluator = tfx.components.Evaluator(
examples=example_gen.outputs['examples'],
model=trainer.outputs['model'],
baseline_model=model_resolver.outputs['model'],
eval_config=eval_config)
# Checks whether the model passed the validation steps and pushes the model
# to a file destination if check passed.
pusher = tfx.components.Pusher(
model=trainer.outputs['model'],
model_blessing=evaluator.outputs['blessing'], # Pass an evaluation result.
push_destination=tfx.proto.PushDestination(
filesystem=tfx.proto.PushDestination.Filesystem(
base_directory=serving_model_dir)))
components = [
example_gen,
trainer,
# Following two components were added to the pipeline.
model_resolver,
evaluator,
pusher,
]
return tfx.dsl.Pipeline(
pipeline_name=pipeline_name,
pipeline_root=pipeline_root,
metadata_connection_config=tfx.orchestration.metadata
.sqlite_metadata_connection_config(metadata_path),
components=components) | 6254505a2d0309a8576a277b95a521294f9f8901 | 23,603 |
def create_global_step() -> tf.Variable:
"""Creates a `tf.Variable` suitable for use as a global step counter.
Creating and managing a global step variable may be necessary for
`AbstractTrainer` subclasses that perform multiple parameter updates per
`Controller` "step", or use different optimizers on different steps.
In these cases, an `optimizer.iterations` property generally can't be used
directly, since it would correspond to parameter updates instead of iterations
in the `Controller`'s training loop. Such use cases should simply call
`step.assign_add(1)` at the end of each step.
Returns:
A non-trainable scalar `tf.Variable` of dtype `tf.int64`, with only the
first replica's value retained when synchronizing across replicas in
a distributed setting.
"""
return tf.Variable(
0,
dtype=tf.int64,
trainable=False,
aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA) | d1fc499b60d09d50e555977b73eec04971e11b3b | 23,604 |
def supported_coins_balance(balance, tickers):
"""
Return the balance with non-supported coins removed
"""
supported_coins_balance = {}
for coin in balance.keys():
if coin != "BTC":
if f"{coin}/BTC" in tickers:
supported_coins_balance[coin] = balance[coin]
else:
try:
supported_coins_balance["BTC"] = balance[coin]
except KeyError:
print("BTC not in balance")
return supported_coins_balance | aaea856c728d04f47f52c1b07c66be57ff17d8cf | 23,605 |
def _identity_map(size):
"""Function returning list of lambdas mapping vector to itself."""
return [lambda x, id: x[id] for _ in range(size)] | 6236d42d359fdc9b006bffcc597fccbc161eb53d | 23,606 |
def With(prop, val):
"""The 'with <property> <value>' specifier.
Specifies the given property, with no dependencies.
"""
return Specifier(prop, val) | fc4a167322ab5bde74eabf1b69efb5d37f643405 | 23,607 |
def pad_node_id(node_id: np.uint64) -> str:
""" Pad node id to 20 digits
:param node_id: int
:return: str
"""
return "%.20d" % node_id | 28cdaad2aa327143432c5be58598271139574a50 | 23,608 |
def ballcurve(x: ArrayLike, xi: float) -> ArrayLike:
"""
function to generate the curve for the nested structure, given a shape
parameter xi. If xi= 1 is linear.
input:
----------
x: 1D array, [0,1]
initial values to be evaluated on the function
xi: number, >=1
shape parameter of how stylised is the curve
output:
----------
y: 1D array, [0,1]
evaluated function
"""
return 1 - (1 - (x) ** (1 / xi)) ** xi | 6b261793e1bdccc39bc66f25f4013d07d3bfc376 | 23,609 |
def center_vertices(vertices, faces, flip_y=True):
"""
Centroid-align vertices.
Args:
vertices (V x 3): Vertices.
faces (F x 3): Faces.
flip_y (bool): If True, flips y verts to keep with image coordinates convention.
Returns:
vertices, faces
"""
vertices = vertices - vertices.mean(dim=0, keepdim=True)
if flip_y:
vertices[:, 1] *= -1
faces = faces[:, [2, 1, 0]]
return vertices, faces | 85743c3b3e3838533e78c66b137cc9c8c7702519 | 23,610 |
def fingerprint_atompair(fpSize=2048, count=False):
"""Atom pair fingerprint (list of int).
Args:
fpSize: Size of the generated fingerprint (defaults to 2048).
count: The default value of False will generate fingerprint bits
(0 or 1) whereas a value of True will generate the count of each
fingerprint value.
"""
generator = rdFingerprintGenerator.GetAtomPairGenerator(fpSize=fpSize)
if count:
fingerprint_fn = _fingerprint_fn_count(generator)
else:
fingerprint_fn = _fingerprint_fn_bits(generator)
fingerprint_fn.__name__ = 'fingerprint_atompair(' + \
f'fpSize={fpSize},count={count})'
return fingerprint_fn | cbacf8bdaae11520f2bb71ae825ea574258f6242 | 23,611 |
def bend_euler_s(**kwargs) -> Component:
"""Sbend made of euler bends."""
c = Component()
b = bend_euler(**kwargs)
b1 = c.add_ref(b)
b2 = c.add_ref(b)
b2.mirror()
b2.connect("o1", b1.ports["o2"])
c.add_port("o1", port=b1.ports["o1"])
c.add_port("o2", port=b2.ports["o2"])
return c | 55c3d4dc5cc2766463f088ede2b4f04c6018eac6 | 23,612 |
def phot_error(star_ADU,n_pix,n_b,sky_ADU,dark,read,gain=1.0):
"""
Photometric error including
INPUT:
star_ADU - stellar flux in ADU (total ADU counts within aperture)
n_pix - number of pixels in aperture
n_b - number of background pixels
sky_ADU - in ADU/pix
dark - in e/pix
read - in e^2/pix
gain - gain in e/ADU
OUTPUT:
Photometric error N in ADUs
NOTES:
This is not the normalized error. To normalize, have to do sigma_rel = N / star_ADU
This does not include scintillation
"""
noise = np.sqrt( gain*star_ADU + n_pix *((1. + n_pix/n_b) * (gain*sky_ADU + dark + read**2. + (gain*0.289)**2. )) )/gain
return noise | 45d3f335c2b7fad1e2e0f8e8e415a0bda0f774e8 | 23,613 |
def tan(x):
"""
tan(x) -> number
Return the tangent of x; x in radians.
"""
try:
res, x = _init_check_mpfr(x)
gmp.mpfr_tan(res, x, gmp.MPFR_RNDN)
return mpfr._from_c_mpfr(res)
except TypeError:
res, x = _init_check_mpc(x)
gmp.mpc_tan(res, x, gmp.MPC_RNDNN)
return mpc._from_c_mpc(res) | 651119ccd44f313b25f49e03a3f5094fa1c1a829 | 23,614 |
def test_wrapped_func():
"""
Test uncertainty-aware functions obtained through wrapping.
"""
########################################
# Function which can automatically handle numbers with
# uncertainties:
def f_auto_unc(angle, *list_var):
return umath.cos(angle) + sum(list_var)
def f(angle, *list_var):
# We make sure that this function is only ever called with
# numbers with no uncertainty (since it is wrapped):
assert not isinstance(angle, uncert_core.UFloat)
assert not any(isinstance(arg, uncert_core.UFloat)
for arg in list_var)
return f_auto_unc(angle, *list_var)
f_wrapped = uncert_core.wrap(f)
my_list = [1, 2, 3]
########################################
# Test of a wrapped function that only calls the original
# function: it should obtain the exact same result:
assert f_wrapped(0, *my_list) == f(0, *my_list)
# 1 == 1 +/- 0, so the type must be checked too:
assert type(f_wrapped(0, *my_list)) == type(f(0, *my_list))
########################################
# Call with uncertainties:
angle = uncert_core.ufloat(1, 0.1)
list_value = uncert_core.ufloat(3, 0.2)
# The random variables must be the same (full correlation):
assert ufloats_close(f_wrapped(angle, *[1, angle]),
f_auto_unc(angle, *[1, angle]))
assert ufloats_close(f_wrapped(angle, *[list_value, angle]),
f_auto_unc(angle, *[list_value, angle]))
########################################
# Non-numerical arguments, and explicit and implicit derivatives:
def f(x, y, z, t, u):
return x+2*z+3*t+4*u
f_wrapped = uncert_core.wrap(
f, [lambda *args: 1, None, lambda *args:2, None]) # No deriv. for u
assert f_wrapped(10, 'string argument', 1, 0, 0) == 12
x = uncert_core.ufloat(10, 1)
assert numbers_close(f_wrapped(x, 'string argument', x, x, x).std_dev,
(1+2+3+4)*x.std_dev) | 9f432e6fd0c796c733e43c2ca66d2d0373148ee4 | 23,615 |
def T2str_mag_simplified(K, TE, T2str, N):
"""Signal Model of T2str-weighted UTE GRE Magnitude Image
S = K * [ exp(-TE/T2*) ] + N
parameters:
K :: constant (proportional to proton density)
TE :: sequence echo time
T2str :: relaxation due to spin-spin effects and dephasing
N :: constant offset "noise" term
@return expected (magnitude) signal
"""
S = K * np.exp((-1.0 * TE)/T2str) + N
return S | ddf829cf8e209602b141f1b13c8fbf5af566a8d7 | 23,616 |
def tune(runner, kernel_options, device_options, tuning_options):
""" Find the best performing kernel configuration in the parameter space
:params runner: A runner from kernel_tuner.runners
:type runner: kernel_tuner.runner
:param kernel_options: A dictionary with all options for the kernel.
:type kernel_options: kernel_tuner.interface.Options
:param device_options: A dictionary with all options for the device
on which the kernel should be tuned.
:type device_options: kernel_tuner.interface.Options
:param tuning_options: A dictionary with all options regarding the tuning
process.
:type tuning_options: kernel_tuner.interface.Options
:returns: A list of dictionaries for executed kernel configurations and their
execution times. And a dictionary that contains a information
about the hardware/software environment on which the tuning took place.
:rtype: list(dict()), dict()
"""
dna_size = len(tuning_options.tune_params.keys())
pop_size = 20
generations = 100
tuning_options["scaling"] = False
tune_params = tuning_options.tune_params
population = random_population(dna_size, pop_size, tune_params)
best_time = 1e20
all_results = []
cache = {}
for generation in range(generations):
if tuning_options.verbose:
print("Generation %d, best_time %f" % (generation, best_time))
#determine fitness of population members
weighted_population = []
for dna in population:
time = _cost_func(dna, kernel_options, tuning_options, runner, all_results, cache)
weighted_population.append((dna, time))
population = []
#'best_time' is used only for printing
if tuning_options.verbose and all_results:
best_time = min(all_results, key=lambda x: x["time"])["time"]
#population is sorted such that better configs have higher chance of reproducing
weighted_population.sort(key=lambda x: x[1])
#crossover and mutate
for _ in range(pop_size//2):
ind1 = weighted_choice(weighted_population)
ind2 = weighted_choice(weighted_population)
ind1, ind2 = crossover(ind1, ind2)
population.append(mutate(ind1, dna_size, tune_params))
population.append(mutate(ind2, dna_size, tune_params))
return all_results, runner.dev.get_environment() | 099b5e513ab52353efbce8ba1e7465acf5b1f6bc | 23,617 |
def getTimeString(t, centi=True):
"""
category: General Utility Functions
Given a value in milliseconds, returns a Lstr with:
(hours if > 0):minutes:seconds:centiseconds.
WARNING: this Lstr value is somewhat large so don't use this to
repeatedly update node values in a timer/etc. For that purpose you
should use timeDisplay nodes and attribute connections.
"""
if type(t) is not int: t = int(t)
bits = []
subs = []
h = (t/1000)/(60*60)
if h != 0:
bits.append('${H}')
subs.append(('${H}', bs.Lstr(resource='timeSuffixHoursText',
subs=[('${COUNT}', str(h))])))
m = ((t/1000)/60)%60
if m != 0:
bits.append('${M}')
subs.append(('${M}', bs.Lstr(resource='timeSuffixMinutesText',
subs=[('${COUNT}', str(m))])))
# we add seconds if its non-zero *or* we havn't added anything else
if centi:
s = (t/1000.0 % 60.0)
if s >= 0.005 or not bits:
bits.append('${S}')
subs.append(('${S}', bs.Lstr(resource='timeSuffixSecondsText',
subs=[('${COUNT}', ('%.2f' % s))])))
else:
s = (t/1000 % 60)
if s != 0 or not bits:
bits.append('${S}')
subs.append(('${S}', bs.Lstr(resource='timeSuffixSecondsText',
subs=[('${COUNT}', str(s))])))
return bs.Lstr(value=' '.join(bits), subs=subs) | 12cbcf4fcfd8450af110f93c77c4c5b50285c0fd | 23,618 |
def validation_supervised(model, input_tensor, y_true, loss_fn, multiclass =False, n_classes= 1):
"""
Returns average loss for an input batch of data with a supervised model.
If running on multiclass mode, it also returns the accuracy.
"""
y_pred = model(input_tensor.float())
if multiclass:
loss = loss_fn(y_pred, y_true)
y_hat = y_pred.argmax(dim = 1)
acc = accuracy(y_hat, y_true)
else:
loss = loss_fn(y_pred, y_true.view(-1, n_classes).float())
try:
acc = accuracy(y_pred, y_true.view(-1, n_out).float())
except:
acc = None
return loss.mean().item(), acc | 901f4416fab5ebc23115ef2f3aab1b971607368e | 23,619 |
def timing(func=None, *, name=None, is_stage=None):
"""
Decorator to measure the time taken by the function to execute
:param func: Function
:param name: Display Name of the function for which the time is being calculated
:param is_stage: Identifier for mining stage
Examples:
>>>
>>> @timing(name="foo")
>>> def func():
>>> ...
>>>
>>> @timing
>>> def func():
>>> ...
>>>
"""
if func is None:
return partial(timing, name=name, is_stage=is_stage)
@wraps(func)
def wrapper(*args, **kwargs):
start = timer()
result = func(*args, **kwargs)
end = timer()
total_time = end - start
logger.info(f"Time taken to execute `{name}`: {total_time} sec")
if not is_stage:
if name in ELAPSED_TIME_ON_FUNCTIONS:
ELAPSED_TIME_ON_FUNCTIONS[name] += total_time
else:
ELAPSED_TIME_ON_FUNCTIONS[name] = total_time
else:
if name in STAGE_WISE_TIME:
STAGE_WISE_TIME[name] += total_time
else:
STAGE_WISE_TIME[name] = total_time
return result
return wrapper | e7368e64bda81811075a295b6e36f0f9e9e7bcd5 | 23,621 |
def is_skip_file(filename):
""" Should the given file be skipped over for testing
:param filename: The file's name
:type filename: String
:return: True if the given file should be skipped, false otherwise
:rtype: Boolean
"""
filename_len = len(filename)
for skip_name in SKIP_FILES:
skip_name_len = len(skip_name)
if (skip_name_len <= filename_len) and (
skip_name == filename[-skip_name_len:]):
return True
return False | 066bcfbff6f984fb293c422f613746967713b31b | 23,622 |
def lowercase_or_notify(x):
""" Lowercases the input if it is valid, otherwise logs the error and sets a default value
Args:
String to lowercase
Returns:
Lowercased string if possible, else unmodified string or default value.
"""
try:
return x.lower()
except Exception:
if x and not np.isnan(x):
logger.info('Program activity of {} was unable to be lowercased. Entered as-is.'.format(x))
return x
else:
logger.info('Null value found for program activity name. Entered default value.') # should not happen
return '(not provided)' | a9e9cce9450f21f5cec80739d435e362288e8844 | 23,623 |
def is_not_null(node, eval_type, given_variables):
"""Process the is_not_null operator.
:param node: Formula node
:param eval_type: Type of evaluation
:param given_variables: Dictionary of var/values
:return: Boolean result, SQL query, or text result
"""
if eval_type == EVAL_EXP:
# Python evaluation
return not value_is_null(get_value(node, given_variables))
if eval_type == EVAL_SQL:
# SQL evaluation
query = sql.SQL('({0} is not null)').format(
OnTaskDBIdentifier(node['field']),
)
return query, []
# Text evaluation
return '{0} is not null'.format(node['field']) | a261731103f81f1e4fe2c6eb191d3127acb163fe | 23,624 |
def search_for_rooms(filters, allow_admin=False, availability=None):
"""Search for a room, using the provided filters.
:param filters: The filters, provided as a dictionary
:param allow_admin: A boolean specifying whether admins have override privileges
:param availability: A boolean specifying whether (un)available rooms should be provided,
or `None` in case all rooms should be returned.
"""
query = (Room.query
.outerjoin(favorite_room_table, db.and_(favorite_room_table.c.user_id == session.user.id,
favorite_room_table.c.room_id == Room.id))
.reset_joinpoint() # otherwise filter_by() would apply to the favorite table
.options(joinedload('owner').load_only('id'))
.filter(~Room.is_deleted)
.order_by(favorite_room_table.c.user_id.is_(None), db.func.indico.natsort(Room.full_name)))
criteria = {}
if 'capacity' in filters:
query = query.filter(Room.capacity >= filters['capacity'])
if 'building' in filters:
criteria['building'] = filters['building']
if 'division' in filters:
criteria['division'] = filters['division']
query = query.filter_by(**criteria)
if 'text' in filters:
text = ' '.join(filters['text'].strip().split())
if text.startswith('#') and text[1:].isdigit():
query = query.filter(Room.id == int(text[1:]))
else:
query = query.filter(_make_room_text_filter(text))
if filters.get('equipment'):
subquery = (db.session.query(RoomEquipmentAssociation)
.with_entities(db.func.count(RoomEquipmentAssociation.c.room_id))
.filter(RoomEquipmentAssociation.c.room_id == Room.id,
EquipmentType.name.in_(filters['equipment']))
.join(EquipmentType, RoomEquipmentAssociation.c.equipment_id == EquipmentType.id)
.correlate(Room)
.as_scalar())
query = query.filter(subquery == len(filters['equipment']))
if filters.get('features'):
for feature in filters['features']:
query = query.filter(Room.available_equipment.any(EquipmentType.features.any(RoomFeature.name == feature)))
if filters.get('favorite'):
query = query.filter(favorite_room_table.c.user_id.isnot(None))
if filters.get('mine'):
ids = get_managed_room_ids(session.user)
query = query.filter(Room.id.in_(ids))
query = _filter_coordinates(query, filters)
if availability is None:
return query
start_dt, end_dt = filters['start_dt'], filters['end_dt']
repeatability = (filters['repeat_frequency'], filters['repeat_interval'])
availability_filters = [Room.filter_available(start_dt, end_dt, repeatability, include_blockings=False,
include_pre_bookings=False)]
if not (allow_admin and rb_is_admin(session.user)):
selected_period_days = (filters['end_dt'] - filters['start_dt']).days
booking_limit_days = db.func.coalesce(Room.booking_limit_days, rb_settings.get('booking_limit'))
criterion = db.and_(Room.filter_bookable_hours(start_dt.time(), end_dt.time()),
Room.filter_nonbookable_periods(start_dt, end_dt),
db.or_(booking_limit_days.is_(None),
selected_period_days <= booking_limit_days))
unbookable_ids = [room.id
for room in query.filter(db.and_(*availability_filters), ~criterion)
if not room.can_override(session.user, allow_admin=False)]
availability_filters.append(~Room.id.in_(unbookable_ids))
availability_criterion = db.and_(*availability_filters)
if availability is False:
availability_criterion = ~availability_criterion
return query.filter(availability_criterion) | fe29ec5b4bf27d51b45ed2ba87cb7153d176583c | 23,625 |
def get_scalar(obj):
"""obj can either be a value, or a type
Returns the Stella type for the given object"""
type_ = type(obj)
if type_ == type(int):
type_ = obj
elif type_ == PyWrapper:
type_ = obj.py
# HACK {
if type_ == type(None): # noqa
return None_
elif type_ == str:
return Str
# } HACK
try:
return _pyscalars[type_]
except KeyError:
raise exc.TypeError("Invalid scalar type `{0}'".format(type_)) | 2b5c829a8a933ff5f80a1d17d0ba8c2a49c90643 | 23,626 |
import math
def sin(x, deg=None, **kwargs):
"""Computes the sine of x in either degrees or radians"""
x = float(x)
if deg or (trigDeg and deg is None):
x = math.radians(x)
return math.sin(x) | 5f5809fac0fd6970fa58a20b8c70e9f6a53d96d7 | 23,628 |
def bloated_nested_block(block_dets, *, repeat=False, **_kwargs):
"""
Look for long indented blocks under conditionals, inside loops etc that are
candidates for separating into functions to simplify the narrative of the
main code.
"""
bloated_outer_types = set()
included_if = False
for lbl, outer_xpath in OUTER_XPATHS.items():
if has_long_block(block_dets.element, outer_xpath):
bloated_outer_types.add(lbl)
if lbl == 'if':
included_if = True
if not bloated_outer_types:
return None
title = layout("""\
### Possibility of avoiding excessively long nested blocks
""")
summary_bits = []
for bloated_outer_type in bloated_outer_types:
summary_bits.append(layout(f"""\
The code has at least one long nested block under
`{bloated_outer_type}:`
"""))
summary = ''.join(summary_bits)
short_circuit_msg = layout("""\
#### Short-circuit and exit early
It may be possible to unnest the indented code block by exiting early if the
condition in the `if` expression is not met.
""")
short_circuit_demo_msg = (
layout("""
For example, instead of:
""")
+
layout("""\
if tall_enough:
## add to basketball team
line 1
line 2
line 3
...
line 30
logging.info("Finished!")
""", is_code=True)
+
layout("""\
we could possibly write:
""")
+
layout('''\
if not tall_enough:
return
## add to basketball team
line 1
line 2
line 3
...
line 30
logging.info("Finished!")
''', is_code=True)
)
move_to_func_msg = layout("""\
#### Shift to function
It may be possible to pull most of the nested code block into a function
which can be called instead.
""")
move_to_func_demo_msg = (
layout("""
For example, instead of:
""")
+
layout("""\
for name in names:
## contact name
line 1
line 2
line 3
...
line 30
logging.info("Finished!")
""", is_code=True)
+
layout("""\
we could possibly write:
""")
+
layout('''\
def contact(name):
"""
Contact person ...
"""
line 1
line 2
line 3
...
line 30
for name in names:
contact(name)
logging.info("Finished!")
''', is_code=True)
)
if not repeat:
brief_strategy = layout("""\
You might want to consider applying a strategy for avoiding
excessively long indented blocks:
""")
if included_if:
short_circuit = short_circuit_msg
short_circuit_demo = short_circuit_demo_msg
else:
short_circuit = ''
short_circuit_demo = ''
move_to_func = move_to_func_msg
move_to_func_demo = move_to_func_demo_msg
human = layout("""\
Computers can handle lots of nesting without malfunctioning. Human
brains are not so fortunate. As it says in The Zen of Python:
> "Flat is better than nested."
""")
else:
brief_strategy = ''
short_circuit = ''
short_circuit_demo = ''
move_to_func = ''
move_to_func_demo = ''
human = ''
message = {
conf.Level.BRIEF: (title + summary + brief_strategy + short_circuit
+ move_to_func),
conf.Level.MAIN: (title + summary + brief_strategy + short_circuit
+ short_circuit_demo + move_to_func + move_to_func_demo),
conf.Level.EXTRA: human,
}
return message | fc25529485c9725cf0de3fe5917299b084f499a3 | 23,630 |
from typing import Any
def _to_bytes(value: Any, type_str: str = "bytes32") -> bytes:
"""Convert a value to bytes"""
if isinstance(value, bool) or not isinstance(value, (bytes, str, int)):
raise TypeError(f"Cannot convert {type(value).__name__} '{value}' to {type_str}")
value = _to_hex(value)
if type_str == "bytes":
return eth_utils.to_bytes(hexstr=value)
if type_str == "byte":
type_str = "bytes1"
size = int(type_str.strip("bytes"))
if size < 1 or size > 32:
raise ValueError(f"Invalid type: {type_str}")
try:
return int(value, 16).to_bytes(size, "big")
except OverflowError:
raise OverflowError(f"'{value}' exceeds maximum length for {type_str}") | f324d915377cd281eacb25b3afbde7b83deedad1 | 23,631 |
def _map_sbs_sigs_back(df: pd.DataFrame) -> pd.Series:
"""
Map Back Single-Base Substitution Signatures.
-----------------------
Args:
* df: pandas.core.frame.DataFrame with index to be mapped
Returns:
* pandas.core.series.Series with matching indices to context96
"""
def _check_to_flip(x, ref):
if x in ref:
return x
else:
return compl(x)
if df.index.name is None: df.index.name = 'index'
df_idx = df.index.name
if ">" in df.index[0]:
# Already in arrow format
context_s = df.reset_index()[df_idx].apply(sbs_annotation_converter)
else:
# Already in word format
context_s = df.reset_index()[df_idx]
return context_s.apply(lambda x: _check_to_flip(x, context96.keys())) | d6a8843c80acdaf5320191af51cb40c8ce7e0d42 | 23,632 |
def rmsd(
coords1: np.ndarray,
coords2: np.ndarray,
atomicn1: np.ndarray,
atomicn2: np.ndarray,
center: bool = False,
minimize: bool = False,
atol: float = 1e-9,
) -> float:
"""
Compute RMSD
Parameters
----------
coords1: np.ndarray
Coordinate of molecule 1
coords2: np.ndarray
Coordinates of molecule 2
atomicn1: np.ndarray
Atomic numbers for molecule 1
atomicn2: np.ndarray
Atomic numbers for molecule 2
center: bool
Center molecules at origin
minimize: bool
Compute minimum RMSD (with QCP method)
atol: float
Absolute tolerance parameter for QCP method (see :func:`qcp_rmsd`)
Returns
-------
float
RMSD
Notes
-----
When `minimize=True`, the QCP method is used. [1]_ The molecules are
centred at the origin according to the center of geometry and superimposed
in order to minimize the RMSD.
.. [1] D. L. Theobald, *Rapid calculation of RMSDs using a quaternion-based
characteristic polynomial*, Acta Crys. A **61**, 478-480 (2005).
"""
assert np.all(atomicn1 == atomicn2)
assert coords1.shape == coords2.shape
# Center coordinates if required
c1 = utils.center(coords1) if center or minimize else coords1
c2 = utils.center(coords2) if center or minimize else coords2
if minimize:
rmsd = qcp.qcp_rmsd(c1, c2, atol)
else:
n = coords1.shape[0]
rmsd = np.sqrt(np.sum((c1 - c2) ** 2) / n)
return rmsd | e5f430d3ddb330c7bf61e0674c29cba3d6fadd7f | 23,633 |
def get_bridge_interfaces(yaml):
"""Returns a list of all interfaces that are bridgedomain members"""
ret = []
if not "bridgedomains" in yaml:
return ret
for _ifname, iface in yaml["bridgedomains"].items():
if "interfaces" in iface:
ret.extend(iface["interfaces"])
return ret | dad9e634a1c5306289e73d465b08b7ea857518e4 | 23,634 |
from typing import List
import tqdm
def get_entity_matched_docs(doc_id_map: List[str], data: List[dict]):
"""Gets the documents where the document name is contained inside the claim
Args:
doc_id_map (List[str]): A list of document names
data (List[dict]): One of the FEVEROUS datasets
Returns:
List[List[str]]: A list of lists of the related documents
"""
claims = [d["claim"] for d in data]
related_docs = []
for claim in tqdm(claims):
claim_docs = [doc_id for doc_id in doc_id_map if doc_id in claim]
claim_docs = [doc for doc in claim_docs if len(doc) > 3]
related_docs.append(claim_docs)
return related_docs | dd49d58bd2a4dc4eed06e16d5673c85bf1ed8b73 | 23,636 |
import requests
def getTemplateKeys(k):
"""
Prints out templates key for license or gitignore templates from github api
Params: str
Return: code
"""
code = 0
if k.lower() == "license":
r = requests.get(GITHUB_LICENSE_API)
if r.status_code != 200:
code = 1
print("Github LICENSE template keys: ")
for item in r.json():
print(item["key"])
elif k.lower() == "git":
r = requests.get(GITHUB_GITIGNORE_API)
if r.status_code != 200:
code = 1
print("Github .gitignore template keys: ")
for item in r.json():
print(item)
else:
print("Invalid argument for --get-template-keys! : options [git, license]")
code = 2
return code | 641e6aeb599fb206214530b55faea44be7de7d37 | 23,637 |
def get_num_conv2d_layers(model, exclude_downsample=True, include_linear=True):
""" Check the number of Conv2D layers. """
num = 0
for n, m in model.named_modules():
if "downsample" in n and exclude_downsample:
continue
if is_conv2d(m) or (include_linear and isinstance(m, nn.Linear)):
num += 1
return num | 79d1453f4cc49d358329a7d59fdd07bcdbb97736 | 23,638 |
def im_list_to_blob(ims, RGB, NIR, DEPTH):
"""Convert a list of images into a network input.
Assumes images are already prepared (means subtracted, BGR order, ...).
"""
max_shape = np.array([im.shape for im in ims]).max(axis=0)
num_images = len(ims)
if RGB & NIR & DEPTH:
blob = np.zeros((num_images, max_shape[0], max_shape[1], 5),
dtype=np.float32)
elif (RGB & NIR) | (RGB & DEPTH) | (NIR & DEPTH):
blob = np.zeros((num_images, max_shape[0], max_shape[1], 4),
dtype=np.float32)
else:
blob = np.zeros((num_images, max_shape[0], max_shape[1], 3),
dtype=np.float32)
for i in xrange(num_images):
im = ims[i]
blob[i, 0:im.shape[0], 0:im.shape[1], :] = im
return blob | 96036933eddd742b9db4e211188c1716933d37dc | 23,639 |
async def async_setup_entry(hass, config_entry, async_add_devices):
"""Set up entry."""
miniserver = get_miniserver_from_config_entry(hass, config_entry)
loxconfig = miniserver.lox_config.json
devices = []
for switch_entity in get_all_switch_entities(loxconfig):
if switch_entity["type"] in ["Pushbutton", "Switch"]:
switch_entity.update(
{
"room": get_room_name_from_room_uuid(
loxconfig, switch_entity.get("room", "")
),
"cat": get_cat_name_from_cat_uuid(
loxconfig, switch_entity.get("cat", "")
),
}
)
new_push_button = LoxoneSwitch(**switch_entity)
devices.append(new_push_button)
elif switch_entity["type"] == "TimedSwitch":
switch_entity.update(
{
"room": get_room_name_from_room_uuid(
loxconfig, switch_entity.get("room", "")
),
"cat": get_cat_name_from_cat_uuid(
loxconfig, switch_entity.get("cat", "")
),
}
)
new_push_button = LoxoneTimedSwitch(**switch_entity)
devices.append(new_push_button)
elif switch_entity["type"] == "Intercom":
if "subControls" in switch_entity:
for sub_name in switch_entity["subControls"]:
subcontol = switch_entity["subControls"][sub_name]
_ = subcontol
_.update(
{
"name": "{} - {}".format(
switch_entity["name"], subcontol["name"]
)
}
)
_.update(
{
"room": get_room_name_from_room_uuid(
loxconfig, switch_entity.get("room", "")
)
}
)
_.update(
{
"cat": get_cat_name_from_cat_uuid(
loxconfig, switch_entity.get("cat", "")
)
}
)
new_push_button = LoxoneIntercomSubControl(**_)
devices.append(new_push_button)
async_add_devices(devices, True)
return True | 1cd4114645b7454c371bc23a13e212e2ae9f8173 | 23,640 |
import torch
def gradU_from_momenta(x, p, y, sigma):
"""
strain F'(x) for momenta p defined at control points y
a method "convolve_gradient" is doing a similar job but only compute (gradF . z)
x (M, D)
p (N, D)
y (N, D)
return
gradU (M, D, D)
"""
kern = deformetrica.support.kernels.factory("torch", gpu_mode=False, kernel_width=sigma)
# move tensors with respect to gpu_mode
t_x = torch.tensor(x, device="cpu")
t_y = torch.tensor(y, device="cpu")
t_p = torch.tensor(p, device="cpu")
# A = exp(-(x_i - y_j)^2/(ker^2)).
sq = kern._squared_distances(t_x, t_y)
A = torch.exp(-sq / (sigma ** 2)) # M, N
# B = -2/(ker^2) * (x_i - y_j)*exp(-(x_i - y_j)^2/(ker^2)).
B = (-2/(sigma ** 2)) * kern._differences(t_x, t_y) * A # (D, M, N)
res = torch.matmul(B, t_p) # (D, M, D)
return np.array(res.transpose(0,1)) | 03dc67bf8bc6b8a576b1ed96de841003bcb53383 | 23,641 |
def process(seed, K):
"""
K is model order / number of zeros
"""
print(K, end=" ")
# create the dirac locations with many, many points
rng = np.random.RandomState(seed)
tk = np.sort(rng.rand(K)*period)
# true zeros
uk = np.exp(-1j*2*np.pi*tk/period)
coef_poly = poly.polyfromroots(uk) # more accurate than np.poly
# estimate zeros
uk_hat = np.roots(np.flipud(coef_poly))
# place on unit circle?
uk_hat_unit = uk_hat / np.abs(uk_hat)
# compute error
min_dev_norm = distance(uk, uk_hat)[0]
_err_roots = 20*np.log10(np.linalg.norm(uk)/min_dev_norm)
min_dev_norm = distance(uk, uk_hat_unit)[0]
_err_unit = 20*np.log10(np.linalg.norm(uk)/min_dev_norm)
return _err_roots, _err_unit | 544d5116cf5ef3a2bff08253ee697d4a04994a2e | 23,642 |
def _gen_sieve_array(M, factor_base):
"""Sieve Stage of the Quadratic Sieve. For every prime in the factor_base
that doesn't divide the coefficient `a` we add log_p over the sieve_array
such that ``-M <= soln1 + i*p <= M`` and ``-M <= soln2 + i*p <= M`` where `i`
is an integer. When p = 2 then log_p is only added using
``-M <= soln1 + i*p <= M``.
Parameters:
===========
M : sieve interval
factor_base : factor_base primes
"""
sieve_array = [0]*(2*M + 1)
for factor in factor_base:
if factor.soln1 is None: #The prime does not divides a
continue
for idx in range((M + factor.soln1) % factor.prime, 2*M, factor.prime):
sieve_array[idx] += factor.log_p
if factor.prime == 2:
continue
#if prime is 2 then sieve only with soln_1_p
for idx in range((M + factor.soln2) % factor.prime, 2*M, factor.prime):
sieve_array[idx] += factor.log_p
return sieve_array | 98a8e5bedaa56dbe53aa8a152c20a015d7b3556d | 23,643 |
def yolo_eval_weighted_nms(yolo_outputs,
anchors,
num_classes,
image_shape,
score_threshold=.6):
""" yolo evaluate
Args:
yolo_outputs: [batch, 13, 13, 3*85]
anchors: [9, 2]
num_classes: num of your own classes
image_shape: the shape of original image
score_threshold: when score > score threshold, the anchor is positive
Returns:
boxes_, scores_, classes_
"""
num_layers = len(yolo_outputs)
anchor_mask = [[6, 7, 8], [3, 4, 5], [0, 1, 2]]
input_shape = K.shape(yolo_outputs[0])[1:3] * 32
boxes = []
box_scores = []
for l in range(num_layers):
_boxes, _box_scores = yolo_boxes_and_scores(yolo_outputs[l],
anchors[anchor_mask[l]],
num_classes,
input_shape,
image_shape,
l)
boxes.append(_boxes)
box_scores.append(_box_scores)
boxes = K.concatenate(boxes, axis=0)
box_scores = K.concatenate(box_scores, axis=0)
mask = box_scores >= score_threshold
boxes_ = []
scores_ = []
classes_ = []
for c in range(num_classes):
# get positive anchors by using box_scores >= score_threshold
class_boxes = tf.boolean_mask(boxes, mask[:, c])
class_box_scores = tf.boolean_mask(box_scores[:, c], mask[:, c])
classes = K.ones_like(class_box_scores, 'int32') * c
boxes_.append(class_boxes)
scores_.append(class_box_scores)
classes_.append(classes)
return boxes_, scores_, classes_ | 7066f2dbb4908709a3d762443385376d44d7f9f6 | 23,644 |
def next_coach_id():
"""
Generates the next id for newly added coaches, since their slugs (which combine the id and name fields)
are added post-commit.
"""
c = Coach.objects.aggregate(Max("id"))
return c['id__max']+1 | 55be7f6411685b391e9130bd9248588f3d0d8ffc | 23,645 |
def get_unsigned_short(data, index):
"""Return two bytes from data as an unsigned 16-bit value"""
return (data[index+1] << 8) + data[index] | 9e3b7dc30eaedb99edfb35b944442d7386ad8f9e | 23,646 |
def getObjDetRoI(imgSize, imgPatchSize, objx1, objy1, objx2, objy2):
"""
Get region of interest (ROI) for a given object detection with respect to image and image patch boundaries.
:param imgSize: size of the image of interest (e.g., [1920x1080]).
:param imgPatchSize: Patch size of the image patch of interest (e.g., 192).
:param objx1: Upper left x coordinate of the object detection.
:param objy1: Upper left y coordinate of the object detection.
:param objx2: Lower right x coordinate of the object detection.
:param objy2: Lower right y coordinate of the object detection.
"""
# Cast to float values for calculations
startX = float(objx1);
startY = float(objy1);
endX = float(objx2);
endY = float(objy2);
# Ensure image and image patch boundaries
xRange = endX - startX;
yRange = endY - startY;
addX = (imgPatchSize - (xRange % imgPatchSize));
addY = (imgPatchSize - (yRange % imgPatchSize));
endX = endX + addX;
endY = endY + addY;
if endX > imgSize[1]:
endX = imgSize[1]
if endY > imgSize[0]:
endY = imgSize[0]
return startX, startY, endX, endY | 2feedb9a5f79c24d0fda4eaa9b8db5bd6922b4ce | 23,647 |
def sigma_pp(b):
"""pair production cross section"""
return (
sigma_T
* 3.0
/ 16.0
* (1 - b ** 2)
* (2 * b * (b ** 2 - 2) + (3 - b ** 4) * np.log((1 + b) / (1 - b)))
) | a3745b5f39e71c5f5713e3d7e0c7fbdb53146d15 | 23,648 |
def compute_radii_simple(distances):
"""
Compute the radius for every hypersphere given the pairwise distances
to satisfy Eq. 6 in the paper. Does not implement the heuristic described
in section 3.5.
"""
n_inputs = tf.shape(distances)[1]
sorted_distances = tf.sort(distances, direction="ASCENDING", axis=-1)
median_index = n_inputs // 2
radii = sorted_distances[:, median_index]
return radii | a935bbe6539c32d9de87b80dbaa6314152979b07 | 23,649 |
def data_resolution_and_offset(data, fallback_resolution=None):
"""Compute resolution and offset from x/y axis data.
Only uses first two coordinate values, assumes that data is regularly
sampled.
Returns
=======
(resolution: float, offset: float)
"""
if data.size < 2:
if data.size < 1:
raise ValueError("Can't calculate resolution for empty data")
if fallback_resolution is None:
raise ValueError("Can't calculate resolution with data size < 2")
res = fallback_resolution
else:
res = (data[data.size - 1] - data[0]) / (data.size - 1.0)
res = res.item()
off = data[0] - 0.5 * res
return res, off.item() | 9cb5a14ff5be8509509e67b1576146231258583b | 23,650 |
from typing import List
def get_changed_files_committed_and_workdir(
repo: Git, commithash_to_compare: str
) -> List[str]:
"""Get changed files between given commit and the working copy"""
return repo.repo.git.diff("--name-only", commithash_to_compare).split() | 1696c3bc41084db5d260bc1ddd7811dd9f143586 | 23,651 |
from typing import Optional
from typing import Any
def load_document_by_string(
string: str, uri: str, loadingOptions: Optional[LoadingOptions] = None
) -> Any:
"""Load a CWL object from a serialized YAML string."""
yaml = yaml_no_ts()
result = yaml.load(string)
return load_document_by_yaml(result, uri, loadingOptions) | 1750f0df653f155e112b3cbb363e4ee499f76ab6 | 23,652 |
import re
def rename_symbol(symbol):
"""Rename the given symbol.
If it is a C symbol, prepend FLAGS.rename_string to the symbol, but
account for the symbol possibly having a prefix via split_symbol().
If it is a C++ symbol, prepend FLAGS.rename_string to all instances of the
given namespace.
Args:
symbol: C or C++ symbol to rename.
Returns:
Dictionary, keys = old symbols, values = renamed symbols.
"""
new_renames = {}
if is_cpp_symbol(symbol):
# Scan through the symbol looking for the namespace name, then modify it.
new_symbol = symbol
if FLAGS.platform in ["linux", "android", "darwin", "ios"]:
for ns in FLAGS.hide_cpp_namespaces:
if symbol_includes_cpp_namespace(symbol, ns):
# Linux and Darwin: To rename "namespace" to "prefixnamespace",
# change all instances of "9namespace" to "15prefixnamespace".
# (the number is the length of the namespace name)
# See https://itanium-cxx-abi.github.io/cxx-abi/abi.html#mangling
new_ns = FLAGS.rename_string + ns
new_symbol = re.sub("(?<=[^0-9])%d%s" % (len(ns), ns),
"%d%s" % (len(new_ns), new_ns), new_symbol)
new_renames[symbol] = new_symbol
elif FLAGS.platform == "windows":
for ns in FLAGS.hide_cpp_namespaces:
if symbol_includes_cpp_namespace(symbol, ns):
# Windows: To rename "namespace" to "prefixnamespace",
# change all instances of "@namespace@@" to "@prefixnamespace@@".
# See https://msdn.microsoft.com/en-us/library/56h2zst2.aspx
new_ns = FLAGS.rename_string + ns
new_symbol = re.sub("@%s@@" % ns, "@%s@@" % new_ns, new_symbol)
new_renames[symbol] = new_symbol
else:
if FLAGS.platform == "windows" and symbol.startswith("$LN"):
# Don't rename $LN*, those are local symbols.
return new_renames
# C symbol. Just split, rename, and re-join.
(prefix, remainder) = split_symbol(symbol)
new_symbol = prefix + FLAGS.rename_string + remainder
new_renames[symbol] = new_symbol
for added_prefix in _additional_symbol_prefixes.get(FLAGS.platform, []):
new_renames[added_prefix + symbol] = new_renames[symbol]
return new_renames | 4c2291e3c604157df1f4d8f1f4e3b7a1277ceee2 | 23,653 |
from datetime import datetime
def py_time(data):
""" returns a python Time
"""
if '.' in data:
return datetime.datetime.strptime(data, '%H:%M:%S.%f').time()
else:
return datetime.datetime.strptime(data, '%H:%M:%S').time() | 53f1bb601ab08e06f67b759fdc9f41820ea0ff20 | 23,654 |
def create_empty_copy(G,with_nodes=True):
"""Return a copy of the graph G with all of the edges removed.
Parameters
----------
G : graph
A NetworkX graph
with_nodes : bool (default=True)
Include nodes.
Notes
-----
Graph, node, and edge data is not propagated to the new graph.
"""
H=G.__class__()
if with_nodes:
H.add_nodes_from(G)
return H | aea151473bd9f11b4e0cdfdf2ac4a689a1b5af49 | 23,655 |
def trim_resize_frame(frame, resize_ratio, trim_factor):
"""
Resize a frame according to specified ratio while
keeping original the original aspect ratio, then trim
the longer side of the frame according to specified
factor.
Parameters
----------
frame: np.array
The input frame
resize_ratio: float
Resize factor.
trim_factor: float
Trim factor for the longer side of the frame. Must
be btw 0 and 1.
Returns
----------
np.array
Resized and trimmed frame.
"""
frame = cv2.resize(
frame, dsize=(0,0), fx=resize_ratio, fy=resize_ratio)
__hor_longer, __l = (
True, frame.shape[1] if frame.shape[1] > frame.shape[0]
else (False, frame.shape[0]))
__t = int(__l * trim_factor)
__i = int((max(__l-__t, 0))/2)
if __hor_longer:
frame = frame[:,__i:__i+__t,:]
else:
frame = frame[__i:__i+__t,:,:]
return frame | 55569da6aad4b24ef367828a2ce3353048f27ae9 | 23,656 |
def copy_doclist(doclist, no_copy = []):
"""
Save & return a copy of the given doclist
Pass fields that are not to be copied in `no_copy`
"""
cl = []
# main doc
c = Document(fielddata = doclist[0].fields.copy())
# clear no_copy fields
for f in no_copy:
if c.fields.has_key(f):
c.fields[f] = None
c.name = None
c.save(1)
cl.append(c)
# new parent name
parent = c.name
# children
for d in doclist[1:]:
c = Document(fielddata = d.fields.copy())
c.name = None
# clear no_copy fields
for f in no_copy:
if c.fields.has_key(f):
c.fields[f] = None
c.parent = parent
c.save(1)
cl.append(c)
return cl | 73e6554696abce1d94ace2b50cb8a28b0563fb30 | 23,657 |
def set_from_tags(tags, title, description, all=True):
"""all=True means include non-public photos"""
user = flickr.test_login()
photos = flickr.photos_search(user_id=user.id, auth=all, tags=tags)
set = flickr.Photoset.create(photos[0], title, description)
set.editPhotos(photos)
return set | 14e30d7334c75d29eccaf7957f53dadc164aedf0 | 23,658 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.