content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
import itertools def generate_all_specs( population_specs, treatment_specs, outcome_specs, model_specs, estimator_specs ): """ Generate all combinations of population, treatment, outcome, causal model and estimator """ causal_graph = CausalGraph(treatment_specs, outcome_specs, model_specs) model_specs = causal_graph.create_gml_model_specs() specs = itertools.product( population_specs, treatment_specs, outcome_specs, model_specs, estimator_specs ) return [spec for spec in specs if is_valid_spec(spec)]
8180bd19d87b69d346edc4fd4442430e0c951873
23,771
def wsFoc(r,psi,L1,z0,alpha): """Return optimum focal surface height at radius r as given by Chase & Van Speybroeck """ return .0625*(psi+1)*(r**2*L1/z0**2)/tan(alpha)**2
90076856f2fbef0cea3d662d1789d8392e9b19e0
23,772
def hough_lines(img, rho, theta, threshold, min_line_len, max_line_gap, draw_function=draw_lines, **kwargs): """ `img` should be the output of a Canny transform. draw_function: Which which accepts image & line to render lanes. Default: draw_lines() Returns an image with hough lines drawn. """ rho = max(rho, 1) lines = cv2.HoughLinesP( img, rho, theta, threshold, np.array([]), minLineLength=min_line_len, maxLineGap=max_line_gap, ) line_img = np.zeros((img.shape[0], img.shape[1], 3), dtype=np.uint8) draw_function(line_img, lines, **kwargs) return line_img
586de545e1ad51c5495047f5d513b17ca2f7e369
23,773
from .models import Topography def instances_to_topographies(topographies, surfaces, tags): """Returns a queryset of topographies, based on given instances Given topographies, surfaces and tags are resolved and all topographies are returned which are either - explicitly given - given indirectly by a surface - given indirectly by a tag, if the topography is tagged accordingly - given indirectly by a tag, if its surface is tagged accordingly Parameters ---------- topographies: sequence of topographies surfaces: sequence of surfaces tags: sequence of tags Returns ------- Queryset of topography, distinct """ topography_ids = [topo.id for topo in topographies] surface_ids = [s.id for s in surfaces] tag_ids = [tag.id for tag in tags] topographies = Topography.objects.filter(id__in=topography_ids) topographies |= Topography.objects.filter(surface__in=surface_ids) topographies |= Topography.objects.filter(surface__tags__in=tag_ids) topographies |= Topography.objects.filter(tags__in=tag_ids) return topographies.distinct().order_by('id')
a5d94de84046a7218f92fb3f75320b7f78bde446
23,774
from typing import Optional from typing import Union from typing import Tuple import math def plot_histogram( s: pd.Series, *, number_bins: Optional[int] = None, bin_range: Union[Tuple[int, int], Tuple[int, int]] = None, figsize: Optional[Tuple[int, int]] = (8, 6), bin_width: Optional[int] = None, edgecolor: Optional[str] = '#ffffff', linewidth: Optional[int] = 1, bin_label_bool: Optional[bool] = False, color: Optional[str] = '#0077bb' ) -> Tuple[plt.Figure, axes.Axes]: """ Parameters ---------- s : pd.Series The input series. number_bins : Optional[int] = None The number of equal-width bins in the range s.max() - s.min(). bin_range : Union[Tuple[int, int],Tuple[int, int]] = None, The lower and upper range of the bins. If not provided, range is (s.min(), s.max()). figsize : Optional[Tuple[int, int]] = (8, 6), The figure size width, height (inch). bin_width : Optional[int] = None, The width of the bin in same units as the series s. edgecolor : Optional[str] = '#ffffff', The hexadecimal color value for the bar edges. linewidth : Optional[int] = 1, The bar edges line width (point). bin_label_bool : Optional[bool] = False If True, label the bars with count and percentage of total. color : Optional[str] = '#0077bb' The color of the bar faces. Returns ------- fig, ax : Tuple[plt.Figure, axes.Axes] Examples -------- Example 1 # Create a series of random floats, normal distribution, # with the default parameters. >>> import datasense as ds >>> s = ds.random_data() >>> fig, ax = ds.plot_histogram(s=s) Example 2 # Create a series of random integers, integer distribution, size = 113, # min = 0, max = 13. >>> import datasense as ds >>> s = ds.random_data( >>> distribution='randint', >>> size=113, >>> low=0, >>> high=14 >>> ) >>> fig, ax = ds.plot_histogram(s=s) Example 3 # Create a series of random integers, integer distribution, size = 113, # min = 0, max = 13. # Set histogram parameters to control bin width. >>> s = ds.random_data( >>> distribution='randint', >>> size=113, >>> low=0, >>> high=14 >>> ) >>> fig, ax = ds.plot_histogram( >>> s=s, >>> bin_width=1 ) Example 4 # Create a series of random integers, integer distribution, size = 113, # min = 0, hight = 14, # Set histogram parameters to control bin width and plotting range. >>> s = ds.random_data( >>> distribution='randint', >>> size=113, >>> low=0, >>> high=13 >>> ) >>> fig, ax = ds.plot_histogram( >>> s=s, >>> bin_width=1, >>> bin_range=(0, 10) >>> ) Example 5 # Create a series of random floats, size = 113, # average = 69, standard deviation = 13. # Set histogram parameters to control bin width and plotting range. >>> s = ds.random_data( >>> distribution='norm', >>> size=113, >>> loc=69, >>> scale=13 >>> ) >>> fig, ax = ds.plot_histogram( >>> s=s, >>> bin_width=5, >>> bin_range=(30, 110) >>> ) Example 6 # Create a series of random floats, size = 113, # average = 69, standard deviation = 13. # Set histogram parameters to control bin width, plotting range, labels. # Set colour of the bars. >>> s = ds.random_data( >>> distribution='norm', >>> size=113, >>> loc=69, >>> scale=13 >>> ) >>> fig, ax = ds.plot_histogram( >>> s=s, >>> bin_width=5, >>> bin_range=(30, 110), >>> figsize=(10,8), >>> bin_label_bool=True, >>> color='#33bbee' >>> ) """ fig = plt.figure(figsize=figsize) ax = fig.add_subplot(111) if bin_width and not bin_range: x = (s.max() - s.min()) / bin_width number_bins = math.ceil(x) elif bin_width and bin_range: number_bins = int((bin_range[1] - bin_range[0]) / bin_width) bin_range = bin_range counts, bins, patches = ax.hist( x=s, bins=number_bins, range=bin_range, edgecolor=edgecolor, linewidth=linewidth, color=color ) if bin_label_bool: ax.set_xticks(bins) ax.xaxis.set_major_formatter(FormatStrFormatter('%0.0f')) bin_centers = 0.5 * np.diff(bins) + bins[:-1] for count, x in zip(counts, bin_centers): ax.annotate( text=f'{str(int(count))}', xy=(x, 0), xytext=(0, -18), xycoords=( 'data', 'axes fraction' ), textcoords='offset points', va='top', ha='center' ) percent = f'{(100 * float(count) / counts.sum()):0.0f} %' ax.annotate( text=percent, xy=(x, 0), xytext=(0, -32), xycoords=( 'data', 'axes fraction' ), textcoords='offset points', va='top', ha='center' ) return (fig, ax)
3f51a9abbf8dde862e18bb21b82f89c34dd6a536
23,775
def get_tracks(): """ Returns all tracks on the minerva DB """ # connect to the database db = connect_minerva_db() # return all the tracks as a list tracks = list(db.tracks.find()) return tracks
65eedeaf32f448a6c32f8c77476dbea6b55a55b0
23,776
def mult_pair(pair): """Return the product of two, potentially large, numbers.""" return pair[0]*pair[1]
b616a0fb706eec5ca8723aa05c273ece079a2350
23,777
def get_only_filename(file_list): """ Get filename from file's path and return list that has only filename. Input: file_list: List. file's paths list. Attribute: file_name: String. "01.jpg" file_name_without_ext: String. "01" Return: filename_list: Only filename list. """ filename_list = list() for file_path in file_list: file_name = file_path.split("/")[-1] file_name_without_ext = file_name.split(".")[0] filename_list.append(file_name_without_ext) return filename_list
3b9b202a4320825eba9d32170f527c0de6e1bdc6
23,778
import _ctypes def simple_calculate_hmac(sym_key, message, digest_algo=DIGEST_ALGORITHM.SHA256): """Calculates a HMAC of given message using symmetric key.""" message_param = _get_char_param_nullify_if_zero(message) mac = _ctypes.POINTER(_ctypes.c_char)() mac_length = _ctypes.c_size_t() _lib.yaca_simple_calculate_hmac(digest_algo.value, sym_key, message_param, len(message), _ctypes.byref(mac), _ctypes.byref(mac_length)) mac_bytes = mac[:mac_length.value] _lib.yaca_free(mac) return mac_bytes
242f703d062366828f6980d90901a1b803fc426a
23,779
def convert_from_sliced_object(data): """Fix the memory of multi-dimensional sliced object.""" if isinstance(data, np.ndarray) and isinstance(data.base, np.ndarray): if not data.flags.c_contiguous: _log_warning("Usage of np.ndarray subset (sliced data) is not recommended " "due to it will double the peak memory cost in LightGBM.") return np.copy(data) return data
88361b30137ce9ca646e49b1865d79b65f2693aa
23,780
def stat_helper(path): """os.path.exists will return None for PermissionError (or any other exception) , leading us to believe a file is not present when it, in fact, is. This is behavior is awful, so stat_helper preserves any exception other than FileNotFoundError. """ try: return path.stat() except FileNotFoundError: return None
32e0863489ca19b55203d31b141d837189655cc2
23,782
from typing import Tuple from datetime import datetime def create_beacon_and_now_datetime( game_name: str = "st", waiting_time: float = 12.0, platform_name: str = "pc" ) -> Tuple[beacons.BeaconBase, datetime.datetime]: """Return a BeaconBase instance with start time to current time.""" now = datetime.datetime.now(datetime.timezone.utc) \ .replace(microsecond=0) beacon = create_beacon(game_name=game_name, waiting_time=waiting_time, platform_name=platform_name, start=now) return beacon, now
cff66d951e2b488a0c8ecd61f6ce5bdbeddae4f7
23,783
def validate(number, check_country=True): """Checks to see if the number provided is a valid IBAN. The country- specific check can be disabled with the check_country argument.""" number = compact(number) # ensure that checksum is valid mod_97_10.validate(number[4:] + number[:4]) # look up the number info = _ibandb.info(number) # check if the bban part of number has the correct structure bban = number[4:] if not _struct_to_re(info[0][1].get('bban', '')).match(bban): raise InvalidFormat() # check the country-specific module if it exists if check_country: module = _get_cc_module(number[:2]) if module: module.validate(number) # return the compact representation return number
55ee5423ff025ab9e4332d099e5c2d7b695163dd
23,784
from numpy import array def read_group(fname): """Reads the symmetry group in from the 'rot_perms' styled group output by enum.x. :arg fname: path to the file to read the group from. """ i=0 groupi = [] with open(fname) as f: for line in f: if i > 5: if ('Perm #:') in line: groupi.append(list(map(int, line.split()[4::]))) else: groupi[-1] += list(map(int, line.split())) i += 1 return(list(map(list, array(groupi)-1)))
7971781ae157c94329c638d4afd51a871b39498f
23,785
def find_last_layer(model): """ Find last layer. Args: model (_type_): Model. Returns: _type_: Last layer. """ for layer in reversed(model.layers): return layer
ff82705e4a74d7ad15b3d0e3e030c340b49052ca
23,787
def seconds_to_time(sec): """ Convert seconds into time H:M:S """ return "%02d:%02d" % divmod(sec, 60)
5fe639a9a6ade59258dfb2b3df8426c7e79d19fa
23,788
def _compute_nfp_real(l, u, counts, sizes): """Computes the expected number of false positives caused by using u to approximate set sizes in the interval [l, u], using the real set size distribution. Args: l: the lower bound on set sizes. u: the upper bound on set sizes. counts: the complete distribution of set sizes. sizes: the complete domain of set sizes. Return (float): the expected number of false positives. """ if l > u: raise ValueError("l must be less or equal to u") return np.sum((float(sizes[u])-sizes[l:u+1])/float(sizes[u])*counts[l:u+1])
40abf796ce116a92cd89c813a6343c917e413707
23,789
from typing import Union from typing import Dict from typing import List from typing import Set def is_equal_subset( subset: Union[Dict, List, Set], superset: Union[Dict, List, Set] ) -> bool: """determine if all shared keys have equal value""" if isinstance(subset, dict): return all( key in superset and is_equal_subset(val, superset[key]) for key, val in subset.items() ) if isinstance(subset, list) or isinstance(subset, set): return all( any(is_equal_subset(subitem, superitem) for superitem in superset) for subitem in subset ) # assume that subset is a plain value if none of the above match return subset == superset
4c2edbc73c350783d795ee0aa6e12180642e205c
23,790
import copy import itertools def concatenate_over(argname): """Decorator to "vectorize" functions and concatenate outputs """ def _prepare_args(arg_map, value): params = copy(arg_map) params[argname] = value return params @decorator def _concatenate_over(func, *args, **kwargs): """Validate that an agument is a proportion [0, 1.0] """ arg_map = map_parameters_in_fn_call(args, kwargs, func) value = arg_map.get(argname) if isinstance(value, list): return list( itertools.chain.from_iterable( func(**_prepare_args(arg_map, v)) for v in value)) else: return func(**arg_map) return _concatenate_over
8bdf286566409bc6f8f97e06f5800e495afbc042
23,791
import ctypes def logicalToPhysicalPoint(window, x, y): """Converts the logical coordinates of a point in a window to physical coordinates. This should be used when points are received directly from a window that is not DPI aware. @param window: The window handle. @param x: The logical x coordinate. @type x: int @param y: The logical y coordinate. @type y: int @return: The physical x and y coordinates. @rtype: tuple of (int, int) """ if not _logicalToPhysicalPoint: return x, y point = ctypes.wintypes.POINT(x, y) _logicalToPhysicalPoint(window, ctypes.byref(point)) return point.x, point.y
81aeadcef460ffe1be64a69e64b562cea5dc94d6
23,793
import numba def _node2vec_walks(Tdata, Tindptr, Tindices, sampling_nodes, walklen, return_weight, neighbor_weight): """ Create biased random walks from the transition matrix of a graph in CSR sparse format. Bias method comes from Node2Vec paper. Parameters ---------- Tdata : 1d np.array CSR data vector from a sparse matrix. Can be accessed by M.data Tindptr : 1d np.array CSR index pointer vector from a sparse matrix. Can be accessed by M.indptr Tindices : 1d np.array CSR column vector from a sparse matrix. Can be accessed by M.indices sampling_nodes : 1d np.array of int List of node IDs to start random walks from. Is generally equal to np.arange(n_nodes) repeated for each epoch walklen : int length of the random walks return_weight : float in (0, inf] Weight on the probability of returning to node coming from Having this higher tends the walks to be more like a Breadth-First Search. Having this very high (> 2) makes search very local. Equal to the inverse of p in the Node2Vec paper. explore_weight : float in (0, inf] Weight on the probability of visitng a neighbor node to the one we're coming from in the random walk Having this higher tends the walks to be more like a Depth-First Search. Having this very high makes search more outward. Having this very low makes search very local. Equal to the inverse of q in the Node2Vec paper. Returns ------- out : 2d np.array (n_walks, walklen) A matrix where each row is a biased random walk, and each entry is the ID of the node """ n_walks = len(sampling_nodes) res = np.empty((n_walks, walklen), dtype=Tindices.dtype) for i in numba.prange(n_walks): # Current node (each element is one walk's state) state = sampling_nodes[i] res[i, 0] = state # Do one normal step first state = _node2vec_first_step(state, Tdata, Tindices, Tindptr) for k in range(1, walklen-1): # Write state res[i, k] = state state = _node2vec_inner( res, i, k, state, Tdata, Tindices, Tindptr, return_weight, neighbor_weight ) # Write final states res[i, -1] = state return res
1a6ec24c62168f905a22809fc411036ab9f83b57
23,794
def schedule_prettify(schedule): """ Принимает на вход расписание в формате: [День недели, Время, Тип занятия, Наименование занятия, Имя преподавателя, Место проведения] Например: ['Чт', '13:00 – 14:30', 'ПЗ', 'Физическая культура', '', 'Кафедра'] """ if not schedule: return 'Сегодня занятий нету' else: bot_message = '' time = '⌚ ' + schedule[1] + '\n' if schedule[2]: schedule_type = schedule[2] else: schedule_type = '' if schedule[3]: subject = '📝 ' + schedule[-3] + '\n' else: subject = '📝 ' + schedule_type + '\n' if schedule[4]: teacher = '👤 ' + schedule[4] + '\n' else: teacher = '' if schedule[5]: location = '📍 ' + schedule[5] + '\n' else: location = '' bot_message += teacher + subject + time + location + '\n' return bot_message
868469b99bb68ec407f6861e12d063bcd6b56236
23,795
def autodelegate(prefix=''): """ Returns a method that takes one argument and calls the method named prefix+arg, calling `notfound()` if there isn't one. Example: urls = ('/prefs/(.*)', 'prefs') class prefs: GET = autodelegate('GET_') def GET_password(self): pass def GET_privacy(self): pass `GET_password` would get called for `/prefs/password` while `GET_privacy` for `GET_privacy` gets called for `/prefs/privacy`. If a user visits `/prefs/password/change` then `GET_password(self, '/change')` is called. """ def internal(self, arg): if '/' in arg: first, rest = arg.split('/', 1) func = prefix + first args = ['/' + rest] else: func = prefix + arg args = [] if hasattr(self, func): try: return getattr(self, func)(*args) except TypeError: return notfound() else: return notfound() return internal
8ea5f555c3b102fc1830a4c616bd71f2dbf98ce4
23,796
def _compute_new_static_size(image, min_dimension, max_dimension): """Compute new static shape for resize_to_range method.""" image_shape = image.get_shape().as_list() orig_height = image_shape[0] orig_width = image_shape[1] num_channels = image_shape[2] # Scale factor such that maximal dimension is at most max_dimension orig_max_dim = max(orig_height, orig_width) small_scale_factor = max_dimension / float(orig_max_dim) # if this factor is less than 1 we have to act! # Scale factor such that minimal dimension is at least min_dimension orig_min_dim = min(orig_height, orig_width) large_scale_factor = min_dimension / float(orig_min_dim) # If image is already big enough... do nothing large_scale_factor = max(large_scale_factor, 1.0) # Take the minimum (we ensure that maxdim is not exceeded and if possible min_dim is met also) scale_factor = min(small_scale_factor, large_scale_factor) new_height = int(round(orig_height * scale_factor)) new_width = int(round(orig_width * scale_factor)) new_size = [new_height, new_width] return tf.constant(new_size + [num_channels])
1cc3a3465f69a8c799ccc529ba95efba0319fdf0
23,797
def deepupdate(original, update): """ Recursively update a dict. Subdict's won't be overwritten but also updated. """ for key, value in original.items(): if key not in update: update[key] = value elif isinstance(value, dict): deepupdate(value, update[key]) return update
fc06aded11a674a0c5815a6f365ff790506af362
23,798
import itertools def _omega_spectrum_odd_c(n, field): """Spectra of groups \Omega_{2n+1}(q) for odd q. [1, Corollary 6] """ n = (n - 1) // 2 q = field.order p = field.char # (1) t = (q ** n - 1) // 2 a1 = [t, t + 1] # (2) a2 = SemisimpleElements(q, n, min_length=2) # (3) k = 1 a3 = [] while True: n1 = n - (p ** (k - 1) + 1) // 2 if n1 < 1: break t = (q ** n1 - 1) // 2 a3.extend([t * p ** k, (t + 1) * p ** k]) k += 1 # (4) a4 = MixedElements(q, n, lambda k: (p ** (k - 1) + 1) // 2, lambda k: p ** k, min_length=2) # (5) k = numeric.get_exponent(2 * n - 1, p) a5 = [] if k is None else [p * (2 * n - 1)] return itertools.chain(a1, a2, a3, a4, a5)
02512e8368ce1ef048ce0bfa8380ff7e102cdff7
23,799
def get_service(hass, config, discovery_info=None): """Get the ClickSend notification service.""" if not _authenticate(config): _LOGGER.error("You are not authorized to access ClickSend") return None return ClicksendNotificationService(config)
4b3dd52d7ebcb37012bc847288d0ea38c4ca91f6
23,800
from faker import Faker def mock_features_dtypes(num_rows=100): """Internal function that returns the default full dataset. :param num_rows: The number of observations in the final dataset. Defaults to 100. :type num_rows: int, optional :return: The dataset with all columns included. :rtype tuple: (str, str) """ fake = Faker() def _remove_x_from_number(phone): if "x" in phone: phone = phone[: phone.find("x")] return phone phone_numbers = pd.Series([fake.phone_number() for _ in range(num_rows)]) phone_numbers = phone_numbers.apply(_remove_x_from_number) def _remove_newline_from_address(address): address = address.replace("\n", ", ") return address addresses = pd.Series([fake.address() for _ in range(num_rows)]) addresses = addresses.apply(_remove_newline_from_address) dtypes_dict = { "ints": [i for i in range(-num_rows // 2, num_rows // 2)], "rand_ints": np.random.choice([i for i in range(-5, 5)], num_rows), "floats": [float(i) for i in range(-num_rows // 2, num_rows // 2)], "rand_floats": np.random.uniform(low=-5.0, high=5.0, size=num_rows), "booleans": np.random.choice([True, False], num_rows), "categoricals": np.random.choice( ["First", "Second", "Third", "Fourth"], num_rows ), "dates": pd.date_range("1/1/2001", periods=num_rows), "texts": [ f"My children are miserable failures, all {i} of them!" for i in range(num_rows) ], "ints_nullable": np.random.choice( [i for i in range(-10 // 2, 10 // 2)] + [pd.NA], num_rows ), "floats_nullable": np.random.choice( np.append([float(i) for i in range(-5, 5)], pd.NA), num_rows ), "booleans_nullable": np.random.choice([True, False, None], num_rows), "full_names": pd.Series([fake.name() for _ in range(num_rows)]), "phone_numbers": phone_numbers, "addresses": addresses, "countries": pd.Series([fake.country() for _ in range(num_rows)]), "email_addresses": pd.Series( [fake.ascii_free_email() for _ in range(num_rows)] ), "urls": pd.Series([fake.url() for _ in range(num_rows)]), "currencies": pd.Series([fake.pricetag() for _ in range(num_rows)]), "file_paths": pd.Series([fake.file_path(depth=3) for _ in range(num_rows)]), "ipv4": pd.Series([fake.ipv4() for _ in range(num_rows)]), "ipv6": pd.Series([fake.ipv6() for _ in range(num_rows)]), "lat_longs": pd.Series([fake.latlng() for _ in range(num_rows)]), } return dtypes_dict
c9d9bef26d908b2e47d4bc2e013f0c29e328b2b3
23,801
def random_bitstring(n, p, failcount=0): """ Constructs a random bitstring of length n with parity p Parameters ---------- n : int Number of bits. p : int Parity. failcount : int, optional Internal use only. Returns ------- numpy.ndarray """ bitstring = _np.random.randint(0, 2, size=n) if _np.mod(sum(bitstring), 2) == p: return bitstring elif failcount < 100: return _np.array(random_bitstring(n, p, failcount + 1), dtype='int')
07637061e50bc1fe853aeb2eef19505ee1a6b612
23,802
import json def serializer(message): """serializes the message as JSON""" return json.dumps(message).encode('utf-8')
7e8d9ae8e31653aad594a81e9f45170a915e291d
23,803
def send_mail(request, format=None): """ Send mail to admin """ # serialize request data serializer = MailSerializer(data=request.data) if serializer.is_valid(): try: # create data for mail subject = settings.EMAIL_SUBJECT.format( first_name=request.data["first_name"], last_name=request.data["last_name"], ) msg = request.data["message"] email_from = request.data["email_from"] # send mail EmailMessage(subject, msg, email_from, [settings.EMAIL_TO]).send() # save mail instance serializer.save( owner=request.user, email_to=settings.EMAIL_TO, host_ip=request.META["REMOTE_ADDR"], ) return Response(serializer.data, status=status.HTTP_201_CREATED) except Exception: pass return Response(serializer.errors, status=status.HTTP_400_BAD_REQUEST)
02ac2d0f7bf76fcea0afcff0a2a690cf72836e08
23,804
def correct_name(name): """ Ensures that the name of object used to create paths in file system do not contain characters that would be handled erroneously (e.g. \ or / that normally separate file directories). Parameters ---------- name : str Name of object (course, file, folder, etc.) to correct Returns ------- corrected_name Corrected name """ corrected_name = name.replace(" ", "_") corrected_name = corrected_name.replace("\\", "_") corrected_name = corrected_name.replace("/", "_") corrected_name = corrected_name.replace(":", "_") return corrected_name
b1df7a503324009a15f4f08e7641722d15a826b7
23,805
def runner(parallel, config): """Run functions, provided by string name, on multiple cores on the current machine. """ def run_parallel(fn_name, items): items = [x for x in items if x is not None] if len(items) == 0: return [] items = diagnostics.track_parallel(items, fn_name) logger.info("multiprocessing: %s" % fn_name) fn = get_fn(fn_name, parallel) if "wrapper" in parallel: wrap_parallel = {k: v for k, v in parallel.items() if k in set(["fresources"])} items = [[fn_name] + parallel.get("wrapper_args", []) + [wrap_parallel] + list(x) for x in items] return run_multicore(fn, items, config, parallel=parallel) return run_parallel
66ba2c5cd57d4d2738d9dd3d57ca9d5daca2ec8d
23,806
def hsv_to_hsl(hsv): """ HSV to HSL. https://en.wikipedia.org/wiki/HSL_and_HSV#Interconversion """ h, s, v = hsv s /= 100.0 v /= 100.0 l = v * (1.0 - s / 2.0) return [ HSV._constrain_hue(h), 0.0 if (l == 0.0 or l == 1.0) else ((v - l) / min(l, 1.0 - l)) * 100, l * 100 ]
4fee4508f6db770265ef46e928cfed6dee094892
23,807
from .._mesh import Mesh def reindex_faces(mesh, ordering): """ Reorder the faces of the given mesh, returning a new mesh. Args: mesh (lacecore.Mesh): The mesh on which to operate. ordering (np.arraylike): An array specifying the order in which the original faces should be arranged. Returns: lacecore.Mesh: The reindexed mesh. """ vg.shape.check(locals(), "ordering", (mesh.num_f,)) unique_values = np.unique(ordering) if not np.array_equal(unique_values, np.arange(mesh.num_f)): raise ValueError( "Expected new face indices to be unique, and range from 0 to {}".format( mesh.num_f - 1 ) ) return Mesh( v=mesh.v, f=mesh.f[ordering], face_groups=None if mesh.face_groups is None else mesh.face_groups.reindexed(ordering), )
254cf3a036fa92253b105f3acd93dfe26d33a61c
23,809
import re def check_exact_match(line, expected_line): """ Uses regular expressions to find an exact (not partial) match for 'expected_line' in 'line', i.e. in the example below it matches 'foo' and succeeds: line value: '66118.999958 - INFO - [MainThread] - ly_test_tools.o3de.asset_processor - foo' expected_line: 'foo' :param line: The log line string to search, i.e. '9189.9998188 - INFO - [MainThread] - example.tests.test_system_example - Log Monitoring test 1' :param expected_line: The exact string to match when searching the line param, i.e. 'Log Monitoring test 1' :return: An exact match for the string if one is found, None otherwise. """ # Look for either start of line or whitespace, then the expected_line, then either end of the line or whitespace. # This way we don't partial match inside of a string. So for example, 'foo' matches 'foo bar' but not 'foobar' regex_pattern = re.compile("(^|\\s){}($|\\s)".format(re.escape(expected_line)), re.UNICODE) if regex_pattern.search(line) is not None: return expected_line return None
d01eaa13c40d66999e870d3b287ac869f64ae314
23,810
def rounding_filters(filters, w_multiplier): """ Calculate and round number of filters based on width multiplier. """ if not w_multiplier: return filters divisor = 8 filters *= w_multiplier new_filters = max(divisor, int(filters + divisor / 2) // divisor * divisor) if new_filters < 0.9 * filters: # prevent rounding by more than 10% new_filters += divisor return int(new_filters)
eb2938732792564fd324602fd74be41e6f88b265
23,811
def process(request, service, identifier): """ View that displays a detailed description for a WPS process. """ wps = get_wps_service_engine(service) wps_process = wps.describeprocess(identifier) context = {'process': wps_process, 'service': service, 'is_link': abstract_is_link(wps_process)} return render(request, 'tethys_wps/process.html', context)
0d9f5a0cdf7c15470547ff82ff3534cf6f624960
23,812
def update(pipeline_id, name, description): """Submits a request to CARROT's pipelines update mapping""" # Create parameter list params = [ ("name", name), ("description", description), ] return request_handler.update("pipelines", pipeline_id, params)
e808fb0fc313e8a5e51bb448d0aca68e389bfc30
23,813
from re import S def symmetric_poly(n, *gens, **args): """Generates symmetric polynomial of order `n`. """ gens = _analyze_gens(gens) if n < 0 or n > len(gens) or not gens: raise ValueError("can't generate symmetric polynomial of order %s for %s" % (n, gens)) elif not n: poly = S.One else: poly = Add(*[ Mul(*s) for s in subsets(gens, int(n)) ]) if not args.get('polys', False): return poly else: return Poly(poly, *gens)
51177adf8873628669c1b75267c3c65821920044
23,814
from typing import Any def load(name: str, *args, **kwargs) -> Any: """ Loads the unit specified by `name`, initialized with the given arguments and keyword arguments. """ entry = get_entry_point(name) return entry.assemble(*args, **kwargs)
e924dcebf082443fb9f36cd81302cb62ac53775d
23,815
from typing import List def get_gate_names_2qubit() -> List[str]: """Return the list of valid gate names of 2-qubit gates.""" names = [] names.append("cx") names.append("cz") names.append("swap") names.append("zx90") names.append("zz90") return names
d3d7f20263805a186d9142ec087039eb53076346
23,816
def positive_leading_quat(quat): """Returns the positive leading version of the quaternion. This function supports inputs with or without leading batch dimensions. Args: quat: A quaternion [w, i, j, k]. Returns: The equivalent quaternion [w, i, j, k] with w > 0. """ # Ensure quat is an np.array in case a tuple or a list is passed quat = np.asarray(quat) quat = np.where(np.tile(quat[..., 0:1] < 0, quat.shape[-1]), -quat, quat) return quat
e0dce2e8fce42a15abdeeccc4bbf63c9e9241cf1
23,817
def comp_avg_silh_metric(data_input, cluster_indices, silh_max_samples, silh_distance): """ Given a input data matrix and an array of cluster indices, returns the average silhouette metric for that clustering result (computed across all clusters). Parameters ---------- data_input : ndarray Data to be clustered (each row contains a n-dimensional data sample) cluster_indices : list List containing for each data point (each row in data input) its cluster id silh_max_samples: int Maximum number of samples to compute the silhouette metric (higher for more exact values at higher computing costs) silh_distance: string Metric to use when calculating distance between instances e.g. 'euclidean', 'manhattan', 'cosine' Returns ------- avg_silhouette : float Silhouette metric averaged across all clusters """ # Sample data for computing the silhouette metric input_data_x_sample = None cluster_indices_sample = None for curr_cluster_id in set(cluster_indices): list_occurrences = [ i for i, x in enumerate(cluster_indices) if x == curr_cluster_id ] if input_data_x_sample is None: input_data_x_sample = data_input[list_occurrences[0:silh_max_samples]] else: input_data_x_sample = np.vstack( ( input_data_x_sample, data_input[list_occurrences[0:silh_max_samples]], ) ) if cluster_indices_sample is None: cluster_indices_sample = np.array(cluster_indices)[ list_occurrences[0:silh_max_samples] ] else: cluster_indices_sample = np.hstack( ( cluster_indices_sample, np.array(cluster_indices)[list_occurrences[0:silh_max_samples]], ) ) # Compute mean silhouette for each class and the average across all classes try: silh_array = metrics.silhouette_samples( input_data_x_sample, np.asarray(cluster_indices_sample), metric=silh_distance, ) np_silh_samples = np.column_stack((cluster_indices_sample, silh_array.tolist())) df_silh_samples = pd.DataFrame( data=np_silh_samples[0:, 0:], columns=["cluster_id", "silhouette"] ) df_silh_mean_per_class = df_silh_samples.groupby( ["cluster_id"] ).mean() # .sort_values(by='cluster_id') df_silh_mean_per_class.reset_index(level=0, inplace=True) df_silh_mean_per_class.sort_values(by="cluster_id") avg_silhouette = df_silh_mean_per_class["silhouette"].mean() except ValueError: avg_silhouette = np.nan return avg_silhouette
0d2cb42b1f0b354f4776c9c2064d23ed4b8f0b75
23,818
def prepare_url(base_url, path, url_params=None): """Prepare url from path and params""" if url_params is None: url_params = {} url = '{0}{1}'.format(base_url, path) if not url.endswith('/'): url += '/' url_params_str = urlencode(url_params) if url_params_str: url += '?' + url_params_str return url
0a447d9f340a4ea9c99b98ca1e6f778f907d8a3d
23,819
def extract_at_interval(da: xr.DataArray, interval) -> xr.DataArray: """Reduce size of an Error Grid by selecting data at a fixed interval along both the number of high- and low-fidelity samples. """ return da.where( da.n_high.isin(da.n_high[slice(None, None, interval)]) * da.n_low.isin(da.n_low[slice(None, None, interval)]) )
cad3dce9850edbad9decadbc37e0372001b8ecc9
23,820
def compute_log_zT_var(log_rho_var, log_seebeck_sqr_var, log_kappa_var): """Compute the variance of the logarithmic thermoelectric figure of merit zT. """ return log_rho_var + log_seebeck_sqr_var + log_kappa_var
3528181796aeafb3df5eac09b06852afe028cb13
23,821
def main(global_config, **settings): """ Very basic pyramid app """ config = Configurator(settings=settings) config.include('pyramid_swagger') config.add_route( 'sample_nonstring', '/sample/nonstring/{int_arg}/{float_arg}/{boolean_arg}', ) config.add_route('standard', '/sample/{path_arg}/resource') config.add_route('get_with_non_string_query_args', '/get_with_non_string_query_args') config.add_route('post_with_primitive_body', '/post_with_primitive_body') config.add_route('post_with_form_params', '/post_with_form_params') config.add_route('post_with_file_upload', '/post_with_file_upload') config.add_route('sample_post', '/sample') config.include(include_samples, route_prefix='/sample') config.add_route('throw_400', '/throw_400') config.add_route('swagger_undefined', '/undefined/path') config.add_route('echo_date', '/echo_date') config.add_route('echo_date_json_renderer', '/echo_date_json_renderer') config.add_route('post_endpoint_with_optional_body', '/post_endpoint_with_optional_body') config.scan() return config.make_wsgi_app()
677187e63b6b885f5dc27850039a54b7510ed9cf
23,822
def get_name(): """MUST HAVE FUNCTION! Returns plugin name.""" return "ASP.NET MVC"
08a8b413ad1c86c270c79da245f0718aa22883a8
23,823
def load_CIFAR(model_mode): """ Loads CIFAR-100 or CIFAR-10 dataset and maps it to Target Model and Shadow Model. :param model_mode: one of "TargetModel" and "ShadowModel". :param num_classes: one of 10 and 100 and the default value is 100 :return: Tuple of numpy arrays:'(x_train, y_train), (x_test, y_test), member'. :raise: ValueError: in case of invalid `model_mode`. """ if model_mode not in ['TargetModel', 'ShadowModel']: raise ValueError('model_mode must be one of TargetModel, ShadowModel.') (x_train, y_train), (x_test, y_test) = tf.keras.datasets.cifar100.load_data(label_mode='fine') if model_mode == "TargetModel": (x_train, y_train), (x_test, y_test) = (x_train[40000:50000], y_train[40000:50000]), \ (x_test, y_test) elif model_mode == "ShadowModel": (x_train, y_train), (x_test, y_test) = (x_train[:10000], y_train[:10000]), \ (x_train[10000:20000], y_train[10000:20000]) y_train = tf.keras.utils.to_categorical(y_train, num_classes=100) m_train = np.ones(y_train.shape[0]) y_test = tf.keras.utils.to_categorical(y_test, num_classes=100) m_test = np.zeros(y_test.shape[0]) member = np.r_[m_train, m_test] return (x_train, y_train), (x_test, y_test), member
d47d5546c26b1a776b84acb407782837170da43d
23,825
def _jbackslashreplace_error_handler(err): """ Encoding error handler which replaces invalid characters with Java-compliant Unicode escape sequences. :param err: An `:exc:UnicodeEncodeError` instance. :return: See https://docs.python.org/2/library/codecs.html?highlight=codecs#codecs.register_error """ if not isinstance(err, UnicodeEncodeError): raise err return _escape_non_ascii(err.object[err.start:err.end]), err.end
2bec9e9563a7f4a4d206f630f7d8372fa7c56d89
23,826
from pathlib import Path def run_on_host(con_info, command): """ Runs a command on a target pool of host defined in a hosts.yaml file. """ # Paramiko client configuration paramiko.util.log_to_file(base + "prt_paramiko.log") UseGSSAPI = (paramiko.GSS_AUTH_AVAILABLE) DoGSSAPIKeyExchange = (paramiko.GSS_AUTH_AVAILABLE) try: client = paramiko.SSHClient() client.set_missing_host_key_policy(paramiko.AutoAddPolicy()) client.load_system_host_keys() if not UseGSSAPI and not DoGSSAPIKeyExchange: client.connect( con_info[1]['IP'], port=con_info[1]['PORT'], username=con_info[1]['USER'], key_filename=str(base + 'prt_rsa.key') ) else: client.connect( con_info[1]['IP'], port=con_info[1]['PORT'], username=con_info['USER'], key_filename=str(Path.home()) + 'prt_rsa.key', gss_auth=UseGSSAPI, gss_kex=DoGSSAPIKeyExchange, ) con_status = str('Connection Succeeded') stdin, stdout, stderr = client.exec_command(command) results_dict = { 'name': con_info[0], 'uname': con_info[1]['NAME'], 'status': con_status, 'stdout': [x.replace('\n', '') for x in stdout.readlines()], 'stderr': [x.replace('\n', '') for x in stderr.readlines()] } client.close() except Exception as error: con_status = str("Connection Failed : PRT Caught exception(%s: %s" % (error.__class__, error) + ')') results_dict = { 'name': con_info[0], 'uname': con_info[1]['NAME'], 'status': con_status, 'stdout': [], 'stderr': [] } try: client.close() except Exception: pass return results_dict
e3747daa1ea6e68ae4900bd596458bf756017c69
23,828
import colorsys import hashlib def uniqueColor(string): """ Returns a color from the string. Same strings will return same colors, different strings will return different colors ('randomly' different) Internal: string =md5(x)=> hex =x/maxhex=> float [0-1] =hsv_to_rgb(x,1,1)=> rgb =rgb_to_int=> int :param string: input string :return: int color """ return sum(round(c * 255) << d for c, d in zip(colorsys.hsv_to_rgb(int(hashlib.md5(string.encode('utf-8')).hexdigest(), 16) / 2 ** 128, 1, 1), [16, 8, 0]))
0c895612c3bf2dd5f594a15daf6f2aa5d778eeb0
23,829
def _quoteattr(data, entities={}): """ Escape and quote an attribute value. Escape &, <, and > in a string of data, then quote it for use as an attribute value. The \" character will be escaped as well, if necessary. You can escape other strings of data by passing a dictionary as the optional entities parameter. The keys and values must all be strings; each key will be replaced with its corresponding value. """ entities['\n']='&#10;' entities['\r']='&#12;' data = _escape(data, entities) if '"' in data: if "'" in data: data = '"%s"' % data.replace('"', "&quot;") else: data = "'%s'" % data else: data = '"%s"' % data return data
1f03a09e19d349458ec48b6041159e48ef93d97e
23,830
import http import urllib def external_login_confirm_email_get(auth, uid, token): """ View for email confirmation links when user first login through external identity provider. HTTP Method: GET When users click the confirm link, they are expected not to be logged in. If not, they will be logged out first and redirected back to this view. After OSF verifies the link and performs all actions, they will be automatically logged in through CAS and redirected back to this view again being authenticated. :param auth: the auth context :param uid: the user's primary key :param token: the verification token """ user = User.load(uid) if not user: raise HTTPError(http.BAD_REQUEST) destination = request.args.get('destination') if not destination: raise HTTPError(http.BAD_REQUEST) # if user is already logged in if auth and auth.user: # if it is a wrong user if auth.user._id != user._id: return auth_logout(redirect_url=request.url) # if it is the expected user new = request.args.get('new', None) if destination in campaigns.get_campaigns(): # external domain takes priority campaign_url = campaigns.external_campaign_url_for(destination) if not campaign_url: campaign_url = campaigns.campaign_url_for(destination) return redirect(campaign_url) if new: status.push_status_message(language.WELCOME_MESSAGE, kind='default', jumbotron=True, trust=True) return redirect(web_url_for('dashboard')) # token is invalid if token not in user.email_verifications: raise HTTPError(http.BAD_REQUEST) verification = user.email_verifications[token] email = verification['email'] provider = verification['external_identity'].keys()[0] provider_id = verification['external_identity'][provider].keys()[0] # wrong provider if provider not in user.external_identity: raise HTTPError(http.BAD_REQUEST) external_status = user.external_identity[provider][provider_id] try: ensure_external_identity_uniqueness(provider, provider_id, user) except ValidationError as e: raise HTTPError(http.FORBIDDEN, e.message) if not user.is_registered: user.register(email) if email.lower() not in user.emails: user.emails.append(email.lower()) user.date_last_logged_in = timezone.now() user.external_identity[provider][provider_id] = 'VERIFIED' user.social[provider.lower()] = provider_id del user.email_verifications[token] user.verification_key = generate_verification_key() user.save() service_url = request.url if external_status == 'CREATE': mails.send_mail( to_addr=user.username, mail=mails.WELCOME, mimetype='html', user=user ) service_url += '&{}'.format(urllib.urlencode({'new': 'true'})) elif external_status == 'LINK': mails.send_mail( user=user, to_addr=user.username, mail=mails.EXTERNAL_LOGIN_LINK_SUCCESS, external_id_provider=provider, ) # redirect to CAS and authenticate the user with the verification key return redirect(cas.get_login_url( service_url, username=user.username, verification_key=user.verification_key ))
18a92d289e63224b245e4e958efd6d5924495ce1
23,831
def date_since_epoch(date, unit='day'): """ Get the date for the specified date in unit :param date: the date in the specified unit :type date: int :param unit: one of 'year', 'month' 'week', 'day', 'hour', 'minute', or 'second' :return: the corresponding date :rtype: ee.Date """ epoch = ee.Date(EE_EPOCH.isoformat()) return epoch.advance(date, unit)
f787170869ba081a2d321d0198d27948dc44ffa6
23,832
def eval_assoc(param_list, meta): """ Evaluate the assoication score between a given text and a list of categories or statements. Param 1 - string, the text in question Param 2 - list of strings, the list of categories to associate Param 1 to """ data = { 'op': 'eval_assoc', 'text': param_list[0], 'cats': param_list[1] } return BART_API.post(data)['sorted_associations']
f49d5080d0b5f6a526be11b487bbbf17782d7197
23,833
def quiver3d(*args, **kwargs): """Wraps `mayavi.mlab.quiver3d` Args: *args: passed to `mayavi.mlab.quiver3d` **kwargs: Other Arguments are popped, then kwargs is passed to `mayavi.mlab.quiver3d` Keyword Arguments: cmap (str, None, False): see :py:func:`apply_cmap` alpha (number, sequence): see :py:func:`apply_cmap` clim (sequence): see :py:func:`apply_cmap` symmetric (bool): see :py:func:`apply_cmap` logscale (bool): see :py:func:`apply_cmap` Returns: TYPE: Description """ kwargs, cmap_kwargs = _extract_cmap_kwargs(kwargs) quivers = mlab.quiver3d(*args, **kwargs) apply_cmap(quivers, mode='scalar', **cmap_kwargs) apply_cmap(quivers, mode='vector', **cmap_kwargs) return quivers
8cfd494f0b801490372d94f7ab842c0b5cd19099
23,834
def get_instance_types(self): """ Documentation: --- Description: Generate SSH pub """ instance_types = sorted([instance_type["InstanceType"] for instance_type in self.ec2_client.describe_instance_types()["InstanceTypes"]]) return instance_types
583311de8b2f23a967e40c8be5d140f6ab28244c
23,835
def ret_digraph_points(sed, digraph): """Finds the digraph points of the subject extracted data. Parameters ---------- `sed` (object) "_subject","_track_code", "data": [{"digraph","points"}] Returns --------- (list) The points of the particular digraph found """ ret = [d['points'] for d in sed['data'] if d['digraph'] == digraph] if ret == []: pynocomm.send_to_node( '**Warning: No digraph points found in ret_digraph_points, digraph:' + digraph) _foo = 1 else: ret = ret[0] return ret
853dac3afdb542dbc2878340c8d75b8b4544c531
23,836
def _sizeof_fmt(num): """Format byte size to human-readable format. https://web.archive.org/web/20111010015624/http://blogmag.net/blog/read/38/Print_human_readable_file_size Args: num (float): Number of bytes """ for x in ["bytes", "KB", "MB", "GB", "TB", "PB"]: if num < 1024.0: return f"{num:3.1f} {x}" num /= 1024.0
97c700954248a455592b3da9b274bfda69a7370f
23,837
from .. import sim from typing import Dict def gatherData(gatherLFP = True): """ Function for/to <short description of `netpyne.sim.gather.gatherData`> Parameters ---------- gatherLFP : bool <Short description of gatherLFP> **Default:** ``True`` **Options:** ``<option>`` <description of option> """ sim.timing('start', 'gatherTime') ## Pack data from all hosts if sim.rank==0: print('\nGathering data...') # flag to avoid saving sections data for each cell (saves gather time and space; cannot inspect cell secs or re-simulate) if not sim.cfg.saveCellSecs: for cell in sim.net.cells: cell.secs = None cell.secLists = None # flag to avoid saving conns data for each cell (saves gather time and space; cannot inspect cell conns or re-simulate) if not sim.cfg.saveCellConns: for cell in sim.net.cells: cell.conns = [] # Store conns in a compact list format instead of a long dict format (cfg.compactConnFormat contains list of keys to include) elif sim.cfg.compactConnFormat: sim.compactConnFormat() # remove data structures used to calculate LFP if gatherLFP and sim.cfg.recordLFP and hasattr(sim.net, 'compartCells') and sim.cfg.createNEURONObj: for cell in sim.net.compartCells: try: del cell.imembVec del cell.imembPtr del cell._segCoords except: pass for pop in list(sim.net.pops.values()): try: del pop._morphSegCoords except: pass simDataVecs = ['spkt', 'spkid', 'stims', 'dipole'] + list(sim.cfg.recordTraces.keys()) if sim.cfg.recordDipoles: _aggregateDipoles() simDataVecs.append('dipole') singleNodeVecs = ['t'] if sim.nhosts > 1: # only gather if >1 nodes netPopsCellGids = {popLabel: list(pop.cellGids) for popLabel,pop in sim.net.pops.items()} # gather only sim data if getattr(sim.cfg, 'gatherOnlySimData', False): nodeData = {'simData': sim.simData} data = [None]*sim.nhosts data[0] = {} for k,v in nodeData.items(): data[0][k] = v gather = sim.pc.py_alltoall(data) sim.pc.barrier() if sim.rank == 0: # simData print(' Gathering only sim data...') sim.allSimData = Dict() for k in list(gather[0]['simData'].keys()): # initialize all keys of allSimData dict if gatherLFP and k == 'LFP': sim.allSimData[k] = np.zeros((gather[0]['simData']['LFP'].shape)) elif sim.cfg.recordDipoles and k == 'dipole': for dk in sim.cfg.recordDipoles: sim.allSimData[k][dk] = np.zeros(len(gather[0]['simData']['dipole'][dk])) else: sim.allSimData[k] = {} for key in singleNodeVecs: # store single node vectors (eg. 't') sim.allSimData[key] = list(nodeData['simData'][key]) # fill in allSimData taking into account if data is dict of h.Vector (code needs improvement to be more generic) for node in gather: # concatenate data from each node for key,val in node['simData'].items(): # update simData dics of dics of h.Vector if key in simDataVecs: # simData dicts that contain Vectors if isinstance(val, dict): for key2,val2 in val.items(): if isinstance(val2,dict): sim.allSimData[key].update(Dict({key2:Dict()})) for stim,val3 in val2.items(): sim.allSimData[key][key2].update({stim:list(val3)}) # udpate simData dicts which are dicts of dicts of Vectors (eg. ['stim']['cell_1']['backgrounsd']=h.Vector) #elif key == 'dipole': # sim.allSimData[key][key2] = np.add(sim.allSimData[key][key2],val2.as_numpy()) # add together dipole values from each node else: sim.allSimData[key].update({key2:list(val2)}) # udpate simData dicts which are dicts of Vectors (eg. ['v']['cell_1']=h.Vector) else: sim.allSimData[key] = list(sim.allSimData[key])+list(val) # udpate simData dicts which are Vectors elif gatherLFP and key == 'LFP': sim.allSimData[key] += np.array(val) elif key not in singleNodeVecs: sim.allSimData[key].update(val) # update simData dicts which are not Vectors if len(sim.allSimData['spkt']) > 0: sim.allSimData['spkt'], sim.allSimData['spkid'] = zip(*sorted(zip(sim.allSimData['spkt'], sim.allSimData['spkid']))) # sort spks sim.allSimData['spkt'], sim.allSimData['spkid'] = list(sim.allSimData['spkt']), list(sim.allSimData['spkid']) sim.net.allPops = ODict() # pops for popLabel,pop in sim.net.pops.items(): sim.net.allPops[popLabel] = pop.__getstate__() # can't use dict comprehension for OrderedDict sim.net.allCells = [c.__dict__ for c in sim.net.cells] # gather cells, pops and sim data else: nodeData = {'netCells': [c.__getstate__() for c in sim.net.cells], 'netPopsCellGids': netPopsCellGids, 'simData': sim.simData} data = [None]*sim.nhosts data[0] = {} for k,v in nodeData.items(): data[0][k] = v #print data gather = sim.pc.py_alltoall(data) sim.pc.barrier() if sim.rank == 0: allCells = [] allPops = ODict() for popLabel,pop in sim.net.pops.items(): allPops[popLabel] = pop.__getstate__() # can't use dict comprehension for OrderedDict allPopsCellGids = {popLabel: [] for popLabel in netPopsCellGids} sim.allSimData = Dict() for k in list(gather[0]['simData'].keys()): # initialize all keys of allSimData dict if gatherLFP and k == 'LFP': sim.allSimData[k] = np.zeros((gather[0]['simData']['LFP'].shape)) elif sim.cfg.recordDipoles and k == 'dipole': for dk in sim.cfg.recordDipoles: sim.allSimData[k][dk] = np.zeros(len(gather[0]['simData']['dipole'][dk])) else: sim.allSimData[k] = {} for key in singleNodeVecs: # store single node vectors (eg. 't') sim.allSimData[key] = list(nodeData['simData'][key]) # fill in allSimData taking into account if data is dict of h.Vector (code needs improvement to be more generic) for node in gather: # concatenate data from each node allCells.extend(node['netCells']) # extend allCells list for popLabel,popCellGids in node['netPopsCellGids'].items(): allPopsCellGids[popLabel].extend(popCellGids) for key,val in node['simData'].items(): # update simData dics of dics of h.Vector if key in simDataVecs: # simData dicts that contain Vectors if isinstance(val,dict): for key2,val2 in val.items(): if isinstance(val2,dict): sim.allSimData[key].update(Dict({key2:Dict()})) for stim,val3 in val2.items(): sim.allSimData[key][key2].update({stim:list(val3)}) # udpate simData dicts which are dicts of dicts of Vectors (eg. ['stim']['cell_1']['backgrounsd']=h.Vector) #elif key == 'dipole': # sim.allSimData[key][key2] = np.add(sim.allSimData[key][key2],val2.as_numpy()) # add together dipole values from each node else: sim.allSimData[key].update({key2:list(val2)}) # udpate simData dicts which are dicts of Vectors (eg. ['v']['cell_1']=h.Vector) else: sim.allSimData[key] = list(sim.allSimData[key])+list(val) # udpate simData dicts which are Vectors elif gatherLFP and key == 'LFP': sim.allSimData[key] += np.array(val) elif key not in singleNodeVecs: sim.allSimData[key].update(val) # update simData dicts which are not Vectors if len(sim.allSimData['spkt']) > 0: sim.allSimData['spkt'], sim.allSimData['spkid'] = zip(*sorted(zip(sim.allSimData['spkt'], sim.allSimData['spkid']))) # sort spks sim.allSimData['spkt'], sim.allSimData['spkid'] = list(sim.allSimData['spkt']), list(sim.allSimData['spkid']) sim.net.allCells = sorted(allCells, key=lambda k: k['gid']) for popLabel,pop in allPops.items(): pop['cellGids'] = sorted(allPopsCellGids[popLabel]) sim.net.allPops = allPops # clean to avoid mem leaks for node in gather: if node: node.clear() del node for item in data: if item: item.clear() del item else: # if single node, save data in same format as for multiple nodes for consistency if sim.cfg.createNEURONObj: sim.net.allCells = [Dict(c.__getstate__()) for c in sim.net.cells] else: sim.net.allCells = [c.__dict__ for c in sim.net.cells] sim.net.allPops = ODict() for popLabel,pop in sim.net.pops.items(): sim.net.allPops[popLabel] = pop.__getstate__() # can't use dict comprehension for OrderedDict sim.allSimData = Dict() for k in list(sim.simData.keys()): # initialize all keys of allSimData dict sim.allSimData[k] = Dict() for key,val in sim.simData.items(): # update simData dics of dics of h.Vector if key in simDataVecs+singleNodeVecs: # simData dicts that contain Vectors if isinstance(val,dict): for cell,val2 in val.items(): if isinstance(val2,dict): sim.allSimData[key].update(Dict({cell:Dict()})) for stim,val3 in val2.items(): sim.allSimData[key][cell].update({stim:list(val3)}) # udpate simData dicts which are dicts of dicts of Vectors (eg. ['stim']['cell_1']['backgrounsd']=h.Vector) else: sim.allSimData[key].update({cell:list(val2)}) # udpate simData dicts which are dicts of Vectors (eg. ['v']['cell_1']=h.Vector) else: sim.allSimData[key] = list(sim.allSimData[key])+list(val) # udpate simData dicts which are Vectors else: sim.allSimData[key] = val # update simData dicts which are not Vectors ## Print statistics sim.pc.barrier() if sim.rank == 0: sim.timing('stop', 'gatherTime') if sim.cfg.timing: print((' Done; gather time = %0.2f s.' % sim.timingData['gatherTime'])) print('\nAnalyzing...') sim.totalSpikes = len(sim.allSimData['spkt']) sim.totalSynapses = sum([len(cell['conns']) for cell in sim.net.allCells]) if sim.cfg.createPyStruct: if sim.cfg.compactConnFormat: preGidIndex = sim.cfg.compactConnFormat.index('preGid') if 'preGid' in sim.cfg.compactConnFormat else 0 sim.totalConnections = sum([len(set([conn[preGidIndex] for conn in cell['conns']])) for cell in sim.net.allCells]) else: sim.totalConnections = sum([len(set([conn['preGid'] for conn in cell['conns']])) for cell in sim.net.allCells]) else: sim.totalConnections = sim.totalSynapses sim.numCells = len(sim.net.allCells) if sim.totalSpikes > 0: sim.firingRate = float(sim.totalSpikes)/sim.numCells/sim.cfg.duration*1e3 # Calculate firing rate else: sim.firingRate = 0 if sim.numCells > 0: sim.connsPerCell = sim.totalConnections/float(sim.numCells) # Calculate the number of connections per cell sim.synsPerCell = sim.totalSynapses/float(sim.numCells) # Calculate the number of connections per cell else: sim.connsPerCell = 0 sim.synsPerCell = 0 print((' Cells: %i' % (sim.numCells) )) print((' Connections: %i (%0.2f per cell)' % (sim.totalConnections, sim.connsPerCell))) if sim.totalSynapses != sim.totalConnections: print((' Synaptic contacts: %i (%0.2f per cell)' % (sim.totalSynapses, sim.synsPerCell))) if 'runTime' in sim.timingData: print((' Spikes: %i (%0.2f Hz)' % (sim.totalSpikes, sim.firingRate))) print((' Simulated time: %0.1f s; %i workers' % (sim.cfg.duration/1e3, sim.nhosts))) print((' Run time: %0.2f s' % (sim.timingData['runTime']))) if sim.cfg.printPopAvgRates and not sim.cfg.gatherOnlySimData: trange = sim.cfg.printPopAvgRates if isinstance(sim.cfg.printPopAvgRates, list) else None sim.allSimData['popRates'] = sim.analysis.popAvgRates(tranges=trange) if 'plotfI' in sim.cfg.analysis: sim.analysis.calculatefI() # need to call here so data is saved to file sim.allSimData['avgRate'] = sim.firingRate # save firing rate return sim.allSimData
a40b61088aaedbb8f866014f933671b2264a2031
23,838
def stations_by_distance(stations, p): """For a list of stations (MonitoringStation object) and coordinate p (latitude, longitude), returns list of tuples (station, distance) sorted by the distance from the given coordinate p""" # Create the list of (stations, distance) tuples station_dist = [] # Append data to the list for station in stations: station_dist.append((station, haversine(p, station.coord))) # Return station_dist list sorted by the distance from p return sorted_by_key(station_dist, 1)
098e692c2ec18b7c15cebf84043eaca768566075
23,839
from typing import TextIO from typing import Optional from typing import Dict import csv def process(fh: TextIO, headers: Optional[Dict[str, str]], writer: csv.DictWriter, args: Args) -> int: """ Process the file into Mongo (client) First 5 columns are: STREAM, DATE, STATION, REP, #GRIDS Columns after that are the measurements """ reader = csv.DictReader(fh, delimiter=',') flds = reader.fieldnames values = defaultdict(list) # to average replicates # Parse file into values for each variable, station, and date for i, row in enumerate(reader, start=1): # Base record has station/date station = get_station(row.get('STATION', '')) date = get_date(row.get('DATE', '')) if not all([date, station]): continue for fld in filter(lambda f: f != '', flds[5:]): raw_val = row[fld].strip() if raw_val == '': continue # Remove leading "="? if raw_val.startswith('='): raw_val = raw_val[1:] # Try to convert value to float val = None try: val = float(raw_val) except Exception: continue if val is not None: values[(fld, station, date)].append(val) # Write the averages for each variable, station, and date num_written = 0 for key, replicates in values.items(): fld, station, date = key # Maybe convert "ACENTR" -> "Ephemeroptera Baetidae Acentrella spp." variable = headers.get(fld.upper(), fld) if headers else fld # Take the average of the values val = mean(replicates) print(f'{fld} {station} {date} => {val}') writer.writerow({ 'source': args.source, 'unit': '', 'location_name': station, 'location_type': 'station', 'variable_name': fld, 'variable_desc': variable, 'collected_on': date, 'value': val, 'medium': args.medium }) num_written += 1 return num_written
40a68091d65e1f9a56ca150703aaaa207ef438a2
23,840
def dipole_moment_programs(): """ Constructs a list of program modules implementing static dipole moment output readers. """ return pm.program_modules_with_function(pm.Job.DIP_MOM)
a225997a445451411819ebfb8c7bf14629ee3742
23,841
def kappa(a, b, c, d): """ GO term 2 | yes | no | ------------------------------- GO | yes | a | b | term1 | no | c | d | kapa(GO_1, GO_2) = 1 - (1 - po) / (1 - pe) po = (a + d) / (a + b + c + d) marginal_a = ( (a + b) * ( a + c )) / (a + b + c + d) marginal_b = ( (c + d) * ( b + d )) / (a + b + c + d) pe = (marginal_a + marginal_b) / (a + b + c + d) """ a = float(len(a)) b = float(len(b)) c = float(len(c)) d = float(len(d)) po = (a + d) / (a + b + c + d) marginal_a = ( (a + b) * ( a + c )) / (a + b + c + d) marginal_b = ( (c + d) * ( b + d )) / (a + b + c + d) pe = (marginal_a + marginal_b) / (a + b + c + d) #print (f" {a} | {b}\n {c} | {d}") return 1 - (1 - po) / (1 - pe)
5884a6745f6a93b044eabb1bfe38834cb59366d4
23,842
import functools import torch def test_CreativeProject_integration_ask_tell_ask_works(covars, model_type, train_X, train_Y, covars_proposed_iter, covars_sampled_iter, response_sampled_iter, monkeypatch): """ test that both surrogate model and acquisition functions are added and updated following two rounds of ask-tell. Monkeypatch "_read_covars_manual_input" and "_read_response_manual_input" from ._observe.py to circumvent manual input via builtins.input. This automatically tests the new functionality of random start by starting from no data (train_X, train_Y) """ # initialize the class # random_start = True is default, so this tests random start cc = TuneSession(covars=covars, model=model_type) # set attributes on class (to simulate previous iterations of ask/tell functionality) cc.train_X = train_X cc.proposed_X = train_X cc.train_Y = train_Y cc.model["covars_proposed_iter"] = covars_proposed_iter cc.model["covars_sampled_iter"] = covars_sampled_iter cc.model["response_sampled_iter"] = response_sampled_iter # define decorator to add 1.0 to all entries in monkeypatched returned data. This to be able to tell that the last # entry (from second "tell") is different than the first, and know that it has been overwritten def add_one(func): @functools.wraps(func) def wrapper_add_one(*args, **kwargs): wrapper_add_one.num_calls += 1 output = func(*args, **kwargs) return output + wrapper_add_one.num_calls wrapper_add_one.num_calls = 0 return wrapper_add_one # monkeypatch "_read_covars_manual_input" candidate_tensor = torch.tensor([[tmp[0] for tmp in covars]], dtype=torch.double) @add_one def mock_read_covars_manual_input(additional_text): return candidate_tensor monkeypatch.setattr(cc, "_read_covars_manual_input", mock_read_covars_manual_input) # monkeypatch "_read_response_manual_input" resp_tensor = torch.tensor([[12]], dtype=torch.double) @add_one def mock_read_response_manual_input(additional_text): return resp_tensor monkeypatch.setattr(cc, "_read_response_manual_input", mock_read_response_manual_input) # run the ask method cc.ask() # run the tell method cc.tell() # test that data is added to pretty formats assert cc.x_data.shape[0] == 1 for i in range(candidate_tensor.size()[1]): col = cc.x_data.columns[i] assert cc.x_data[col].iloc[-1] == candidate_tensor[0, i].item() + 1 assert cc.y_data.shape[0] == 1 assert cc.y_data["Response"].iloc[-1] == resp_tensor[0, 0].item() + 1 # grab the model state surrogate_model1 = cc.model["model"] # run the ask method AGAIN cc.ask() # grab the acquisition function acq_func1 = cc.acq_func["object"] # run the tell method AGAIN cc.tell() # test that new rows are added to pretty format data print(candidate_tensor) print(cc.x_data) assert cc.x_data.shape[0] == 2 for i in range(candidate_tensor.size()[1]): col = cc.x_data.columns[i] assert cc.x_data[col].iloc[-1] == candidate_tensor[0, i].item() + 2 assert cc.y_data.shape[0] == 2 assert cc.y_data["Response"].iloc[-1] == resp_tensor[0, 0].item() + 2 # grab the model state surrogate_model2 = cc.model["model"] # run the ask method a THIRD TIME cc.ask() # grab the acquisition function acq_func2 = cc.acq_func["object"] # assert that both model and acquisition functions exist assert cc.model["model"] is not None assert cc.acq_func["object"] is not None # assert that surrogate model has updated assert surrogate_model1 != surrogate_model2 # assert that acquisition function has updated assert acq_func1 != acq_func2
98d665e85b19acf956026848614d9b49e204afb8
23,843
def ferret_init(id): """ Initialization for the stats_chisquare Ferret PyEF """ axes_values = [ pyferret.AXIS_DOES_NOT_EXIST ] * pyferret.MAX_FERRET_NDIM axes_values[0] = pyferret.AXIS_CUSTOM false_influences = [ False ] * pyferret.MAX_FERRET_NDIM retdict = { "numargs": 3, "descript": "Returns chi-square test stat. and prob. (and num. good categories, N) " \ "that sample counts of cat. data matches pop. expected counts. ", "axes": axes_values, "argnames": ( "SAMPLE_CNTS", "EXPECT_CNTS", "DELTA_DEGFREE", ), "argdescripts": ( "Sample counts of categorical data", "Expected counts or relative frequencies (will be adjusted)", "Difference from standard (N-1) degrees of freedom (num. computed parameters)", ), "argtypes": ( pyferret.FLOAT_ARRAY, pyferret.FLOAT_ARRAY, pyferret.FLOAT_ONEVAL, ), "influences": ( false_influences, false_influences, false_influences, ), } return retdict
5231fec470d8c968334d6f72766cc1d0ad9ae61c
23,844
def has(key): """Checks if the current context contains the given key.""" return not not (key in Context.currentContext.values)
0c6c46812e97c9d38d101dcc06346b329a3cd81a
23,845
def VGG_16(weights_path=None): """ Creates a convolutional keras neural network, training it with data from ct scans from both datasets. Using the VGG-16 architecture. ---- Returns the model """ X_train, Y_train = loadfromh5(1, 2, 19) X_train1, Y_train1 = loadfromh5(2, 2, 19) X_train.extend(X_train1) Y_train.extend(Y_train1) X_train = np.asarray(X_train).reshape(np.asarray(X_train).shape[0], 64, 64, 1) # X_train = np.transpose(X_train, (0,3,1,2)) print(X_train.shape) model = Sequential() model.add(ZeroPadding2D((1, 1), input_shape=(64, 64, 1))) model.add(Convolution2D(64, 3, 3, activation="relu")) model.add(ZeroPadding2D((1, 1))) model.add(Convolution2D(64, 3, 3, activation="relu")) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(ZeroPadding2D((1, 1))) model.add(Convolution2D(128, 3, 3, activation="relu")) model.add(ZeroPadding2D((1, 1))) model.add(Convolution2D(128, 3, 3, activation="relu")) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(ZeroPadding2D((1, 1))) model.add(Convolution2D(256, 3, 3, activation="relu")) model.add(ZeroPadding2D((1, 1))) model.add(Convolution2D(256, 3, 3, activation="relu")) model.add(ZeroPadding2D((1, 1))) model.add(Convolution2D(256, 3, 3, activation="relu")) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(ZeroPadding2D((1, 1))) model.add(Convolution2D(512, 3, 3, activation="relu")) model.add(ZeroPadding2D((1, 1))) model.add(Convolution2D(512, 3, 3, activation="relu")) model.add(ZeroPadding2D((1, 1))) model.add(Convolution2D(512, 3, 3, activation="relu")) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(ZeroPadding2D((1, 1))) model.add(Convolution2D(512, 3, 3, activation="relu")) model.add(ZeroPadding2D((1, 1))) model.add(Convolution2D(512, 3, 3, activation="relu")) model.add(ZeroPadding2D((1, 1))) model.add(Convolution2D(512, 3, 3, activation="relu")) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Flatten()) model.add(Dense(4096, activation="relu")) model.add(Dropout(0.5)) model.add(Dense(4096, activation="relu")) model.add(Dropout(0.5)) model.add(Dense(1)) model.compile(loss="mean_squared_error", optimizer="sgd", metrics=["mse"]) K.set_value(model.optimizer.learning_rate, 0.001) model.fit(X_train, Y_train, batch_size=32, epochs=10, verbose=1) if weights_path: model.load_weights(weights_path) return model
640aa7480afac0c8c4b71f3045f702888672172f
23,846
from scipy import optimize def inv_fap_davies(p, fmax, t, y, dy, normalization='standard'): """Inverse of the davies upper-bound""" args = (fmax, t, y, dy, normalization) z0 = inv_fap_naive(p, *args) func = lambda z, *args: fap_davies(z, *args) - p res = optimize.root(func, z0, args=args, method='lm') if not res.success: raise ValueError('inv_fap_baluev did not converge for p={0}'.format(p)) return res.x
9b6f8a82ca25235785d5fe83a5c671130ddd509b
23,847
def public(request): """browse public repos. Login not required""" username = request.user.get_username() public_repos = DataHubManager.list_public_repos() # This should really go through the api... like everything else # in this file. public_repos = serializers.serialize('json', public_repos) return render_to_response("public-browse.html", { 'login': username, 'repo_base': 'repo_base', 'repos': [], 'public_repos': public_repos})
0d44053c6db872032b65b4786c5771dbecad946a
23,848
def get_boundaries_old(im,su=5,sl=5,valley=5,cutoff_max=1.,plt_val=False): """Bintu et al 2018 candidate boundary calling""" im_=np.array(im) ratio,ration,center,centern=[],[],[],[] for i in range(len(im)): x_im_l,y_im_l = [],[] x_im_r,y_im_r = [],[] xn_im_l,yn_im_l = [],[] xn_im_r,yn_im_r = [],[] for j in range(sl): xn_im_l.extend(i+j-np.arange(su)-1) yn_im_l.extend([i+j]*su) xn_im_r.extend(i+j+sl-np.arange(su)-1) yn_im_r.extend([i+j+sl]*su) x_im_l.extend(i+j+np.arange(su)+1) y_im_l.extend([i+j]*su) x_im_r.extend(i+j+sl+np.arange(su)+1) y_im_r.extend([i+j+sl]*su) x_im_l,y_im_l,x_im_r,y_im_r = list(map(np.array,[x_im_l,y_im_l,x_im_r,y_im_r])) xn_im_l,yn_im_l,xn_im_r,yn_im_r = list(map(np.array,[xn_im_l,yn_im_l,xn_im_r,yn_im_r])) in_image = np.all(x_im_l>=0) and np.all(x_im_r>=0) and np.all(y_im_l>=0) and np.all(y_im_r>=0) in_image = in_image and np.all(x_im_l<len(im)) and np.all(x_im_r<len(im)) and np.all(y_im_l<len(im)) and np.all(y_im_r<len(im)) in_imagen = np.all(xn_im_l>=0) and np.all(xn_im_r>=0) and np.all(yn_im_l>=0) and np.all(yn_im_r>=0) in_imagen = in_imagen and np.all(xn_im_l<len(im)) and np.all(xn_im_r<len(im)) and np.all(yn_im_l<len(im)) and np.all(yn_im_r<len(im)) if in_image: val_l,val_r = np.nanmean(im_[x_im_l,y_im_l]),np.nanmean(im_[x_im_r,y_im_r]) ratio.append(val_l/val_r) center.append(i+sl) if in_imagen: val_l,val_r = np.nanmean(im_[xn_im_l,yn_im_l]),np.nanmean(im_[xn_im_r,yn_im_r]) ration.append(val_r/val_l) centern.append(i+sl) if False:#i==9: plt.figure(figsize=(20,20)) plt.plot(xn_im_l,yn_im_l,'mo') plt.plot(xn_im_r,yn_im_r,'go') plt.plot(x_im_l,y_im_l,'ro') plt.plot(x_im_r,y_im_r,'bo') plt.imshow(im,interpolation='nearest',cmap='seismic_r',vmax=1000) plt.show() print(x_im_l,y_im_l,x_im_r,y_im_r) center,ratio=np.array(center),np.array(ratio) centern,ration=np.array(centern),np.array(ration) max_ratio = np.zeros(len(im))+np.nan max_ratio[center]=ratio max_ratio[centern]=np.nanmax([max_ratio[centern],ration],axis=0) local_max_good = get_ind_loc_max(max_ratio,cutoff_max=cutoff_max,valley=valley) #local_max_goodn = get_ind_loc_max(ration,cutoff_max=cutoff_max,valley=valley) ###Plotting if plt_val: #plt.close('all') plt.figure(figsize=(12,7)) #print local_max_good,local_max_goodn plt.plot(center,np.log(ratio),'o-') plt.plot(centern,np.log(ration),'o-') plt.plot(np.log(max_ratio),'k-') if len(local_max_good)>0: plt.plot(local_max_good,np.log(max_ratio[local_max_good]),'o') plt.show() fig, ax = plt.subplots(figsize=(12,7)) if len(local_max_good)>0: ax.plot(local_max_good[:],local_max_good[:],'go',ms=10,mec='k',mew=2) #cax = ax.imshow(set_diag(img,np.nanmax(img)),interpolation='nearest',cmap='bwr')#,vmax=1000,vmin=0) cax = ax.imshow(im,interpolation='nearest',cmap='seismic_r',vmax=1000,vmin=0) cbar = fig.colorbar(cax) plt.show() return local_max_good,max_ratio[local_max_good]
620fa37306f85a06d88b4f08fd84e9873866e011
23,849
def zfsr32(val, n): """zero fill shift right for 32 bit integers""" return (val >> n) if val >= 0 else ((val + 4294967296) >> n)
4b890caa0b7b086e923e7b229e5551fd66d24016
23,850
def n_optimize_fn(step: int) -> int: """`n_optimize` scheduling function.""" if step <= FLAGS.change_n_optimize_at: return FLAGS.n_optimize_1 else: return FLAGS.n_optimize_2
2d8b05a19c05a662119e51ace97817246c38ebe3
23,851
import torch def compute_receptive_field(model, img_size=(1, 3, 3)): """Computes the receptive field for a model. The receptive field is computed using the magnitude of the gradient of the model's output with respect to the input. Args: model: Model for hich to compute the receptive field. Assumes NCHW input. img_size: The (channels, height, width) of the input to the model. """ c, h, w = img_size img = torch.randn((1, c, h, w), requires_grad=True) model(img)[0, 0, h // 2, w // 2].mean().backward() grad = img.grad.abs()[0, 0, :, :] return torch.where(grad > 0, torch.ones_like(grad), torch.zeros_like(grad))
bdc3065e696bf221698d1abdb0717b7da957ca84
23,852
def flippv(pv, n): """Flips the meaning of an index partition vector. Parameters ---------- pv : ndarray The index partition to flip. n : integer The length of the dimension to partition. Returns ------- notpv : ndarray The complement of pv. Example: >>> import numpy as np >>> import locate >>> pv = np.array([0,3,5]) >>> locate.flippv(pv,8) array([1, 2, 4, 6, 7]) """ tf = np.ones(n, dtype=bool) tf[pv] = False return tf.nonzero()[0]
6c063169100eba098460cd12339f7a6266ea01f0
23,853
from typing import Union from pathlib import Path def is_dir(path: Union[str, Path]) -> bool: """Check if the given path is a directory :param path: path to be checked """ if isinstance(path, str): path = Path(path) if path.exists(): return path.is_dir() else: return str(path).endswith("/")
540cce7f5c6a25186427ba71b94aa090c2ab90a7
23,854
from itertools import cycle def _replace_dendro_colours( colours, above_threshold_colour="C0", non_cluster_colour="black", colorscale=None ): """ Returns colorscale used for dendrogram tree clusters. Keyword arguments: colorscale -- Colors to use for the plot in rgb format. Should have 8 colours. """ if isinstance(colorscale, str): colorscale = _mpl_cmap_to_str(colorscale) elif colorscale is None: colorscale = [ 'rgb(0,116,217)', # instead of blue 'rgb(35,205,205)', # cyan 'rgb(61,153,112)', # green 'rgb(40,35,35)', # black 'rgb(133,20,75)', # magenta 'rgb(255,65,54)', # red 'rgb(255,255,255)', # white 'rgb(255,220,0)', # yellow ] else: assert isinstance(colorscale, (list, tuple)), \ "colorscale must be a list or tuple of strings" assert all(isinstance(c, str) for c in colorscale), \ "colorscale must be a list or tuple of strings" original_colours = set(colours) original_colours.remove(above_threshold_colour) colour_map = dict(zip(original_colours, cycle(colorscale))) colour_map[above_threshold_colour] = non_cluster_colour return [colour_map[c] for c in colours]
ce50b8c061bb908d8670b059261cde83e7dd62b1
23,856
import re def document_to_vector(lemmatized_document, uniques): """ Converts a lemmatized document to a bow vector representation. 1/0 for word exists/doesn't exist """ #print(uniques) # tokenize words = re.findall(r'\w+', lemmatized_document.lower()) # vector = {} vector = [0]*len(uniques) # list of the words is accessible via vector.keys() # list of 0/1 is accessible via vector.values() # seen = [] for i in range(len(uniques)): for j in range(len(words)): if uniques[i] == words[j]: vector[i] = 1 continue return vector
e4b108b8e99a827788d7eff5d4eabf71021d6e21
23,857
def ubcOcTree(FileName_Mesh, FileName_Model, pdo=None): """ Description ----------- Wrapper to Read UBC GIF OcTree mesh and model file pairs. UBC OcTree models are defined using a 2-file format. The "mesh" file describes how the data is descritized. The "model" file lists the physical property values for all cells in a mesh. A model file is meaningless without an associated mesh file. This only handles OcTree formats Parameters ---------- `FileName_Mesh` : str - The OcTree Mesh filename as an absolute path for the input mesh file in UBC OcTree Mesh Format `FileName_Model` : str - The model filename as an absolute path for the input model file in UBC OcTree Model Format. `pdo` : vtk.vtkUnstructuredGrid, optional - The output data object Returns ------- Returns a vtkUnstructuredGrid generated from the UBC 2D/3D Mesh grid. Mesh is defined by the input mesh file. Cell data is defined by the input model file. """ # Construct/read the mesh mesh = ubcOcTreeMesh(FileName_Mesh, pdo=pdo) # Read the model data # - read model file for OcTree format if FileName_Model is not None: model = ubcModel3D(FileName_Model) # Place the model data onto the mesh mesh = placeModelOnOcTreeMesh(mesh, model) return mesh
f9d71c7beebc8ca5f3c45fc24a4fd6ccae607634
23,858
def load_colormaps(): """Return the provided colormaps.""" return load_builtin_data('colormaps')
00b0d73e127cbbf11b76d5a2281493af95337008
23,859
def discriminator(hr_images, scope, dim): """ Discriminator """ conv_lrelu = partial(conv, activation_fn=lrelu) def _combine(x, newdim, name, z=None): x = conv_lrelu(x, newdim, 1, 1, name) y = x if z is None else tf.concat([x, z], axis=-1) return minibatch_stddev_layer(y) def _conv_downsample(x, dim, ksize, name): y = conv2d_downscale2d(x, dim, ksize, name=name) y = lrelu(y) return y with tf.compat.v1.variable_scope(scope, reuse=tf.compat.v1.AUTO_REUSE): with tf.compat.v1.variable_scope("res_4x"): net = _combine(hr_images[1], newdim=dim, name="from_input") net = conv_lrelu(net, dim, 3, 1, "conv1") net = conv_lrelu(net, dim, 3, 1, "conv2") net = conv_lrelu(net, dim, 3, 1, "conv3") net = _conv_downsample(net, dim, 3, "conv_down") with tf.compat.v1.variable_scope("res_2x"): net = _combine(hr_images[2], newdim=dim, name="from_input", z=net) dim *= 2 net = conv_lrelu(net, dim, 3, 1, "conv1") net = conv_lrelu(net, dim, 3, 1, "conv2") net = conv_lrelu(net, dim, 3, 1, "conv3") net = _conv_downsample(net, dim, 3, "conv_down") with tf.compat.v1.variable_scope("res_1x"): net = _combine(hr_images[4], newdim=dim, name="from_input", z=net) dim *= 2 net = conv_lrelu(net, dim, 3, 1, "conv") net = _conv_downsample(net, dim, 3, "conv_down") with tf.compat.v1.variable_scope("bn"): dim *= 2 net = conv_lrelu(net, dim, 3, 1, "conv1") net = _conv_downsample(net, dim, 3, "conv_down1") net = minibatch_stddev_layer(net) # dense dim *= 2 net = conv_lrelu(net, dim, 1, 1, "dense1") net = conv(net, 1, 1, 1, "dense2") net = tf.reduce_mean(net, axis=[1, 2]) return net
9af149750aed5febd17ab37b1e816356d2e27a40
23,860
def addchallenges(request) : """ 管理员添加新的题目 """ if request.user.is_superuser : if request.method == 'POST' : success = 0 form = forms.AddChallengeForm(request.POST, request.FILES) if form.is_valid() : success = 1 print(request.FILES) if request.FILES : i = models.Challenges(file=request.FILES['file'], name=request.POST['name'], category=request.POST['category'], description=request.POST['description'], points=request.POST['points'], challenge_id=assignID(request.POST['name']), flag=request.POST['flag'], author=request.POST['author']) i.save() else : i = models.Challenges( name=request.POST['name'], category=request.POST['category'], description=request.POST['description'], points=request.POST['points'], challenge_id=assignID(request.POST['name']), flag=request.POST['flag'], author=request.POST['author']) i.save() return render(request, 'addchallenges.html', {'form':form,'success':success}) else : form = forms.AddChallengeForm() return render(request, 'addchallenges.html', {'form':form}) else : return redirect("/")
e7aaa3a8418f66322f050dee74d74fd1d71bc0c9
23,861
def _decompose_ridge(Xtrain, alphas, n_alphas_batch=None, method="svd", negative_eigenvalues="zeros"): """Precompute resolution matrices for ridge predictions. To compute the prediction:: Ytest_hat = Xtest @ (XTX + alphas * Id)^-1 @ Xtrain^T @ Ytrain where XTX = Xtrain^T @ Xtrain, this function precomputes:: matrices = (XTX + alphas * Id)^-1 @ Xtrain^T. Parameters ---------- Xtrain : array of shape (n_samples_train, n_features) Concatenated input features. alphas : float, or array of shape (n_alphas, ) Range of ridge regularization parameter. n_alphas_batch : int or None If not None, returns a generator over batches of alphas. method : str in {"svd"} Method used to diagonalize the kernel. negative_eigenvalues : str in {"nan", "error", "zeros"} If the decomposition leads to negative eigenvalues (wrongly emerging from float32 errors): - "error" raises an error. - "zeros" remplaces them with zeros. - "nan" returns nans if the regularization does not compensate twice the smallest negative value, else it ignores the problem. Returns ------- matrices : array of shape (n_alphas, n_samples_test, n_samples_train) or \ (n_alphas, n_features, n_samples_train) if test is not None Precomputed resolution matrices. alpha_batch : slice Slice of the batch of alphas. """ backend = get_backend() use_alpha_batch = n_alphas_batch is not None if n_alphas_batch is None: n_alphas_batch = len(alphas) if method == "svd": # SVD: X = U @ np.diag(eigenvalues) @ Vt U, eigenvalues, Vt = backend.svd(Xtrain, full_matrices=False) else: raise ValueError("Unknown method=%r." % (method, )) for start in range(0, len(alphas), n_alphas_batch): batch = slice(start, start + n_alphas_batch) ev_weighting = eigenvalues / (alphas[batch, None] + eigenvalues ** 2) # negative eigenvalues can emerge from incorrect kernels, # or from float32 if eigenvalues[0] < 0: if negative_eigenvalues == "nan": ev_weighting[alphas[batch] < -eigenvalues[0] * 2, :] = \ backend.asarray(backend.nan, type=ev_weighting.dtype) elif negative_eigenvalues == "zeros": eigenvalues[eigenvalues < 0] = 0 elif negative_eigenvalues == "error": raise RuntimeError( "Negative eigenvalues. Make sure the kernel is positive " "semi-definite, increase the regularization alpha, or use" "another solver.") else: raise ValueError("Unknown negative_eigenvalues=%r." % (negative_eigenvalues, )) matrices = backend.matmul(Vt.T, ev_weighting[:, :, None] * U.T) if use_alpha_batch: yield matrices, batch else: return matrices, batch del matrices
ba7d466546f4d417f9f455aee5fa0cccdaba968c
23,862
import requests def get_new_listing(old_listing): """Get the new listing.""" try: fetched_listing = requests.get(cfg['api_url']).json()['product'] except requests.exceptions.RequestException: return old_listing else: old_item_ids = {old_item['productId'] for old_item in old_listing} new_listing = [fetched_item for fetched_item in fetched_listing if fetched_item['productId'] not in old_item_ids] if new_listing: save_listing(new_listing) return new_listing
f8aa02d1a804ef5cfbb1192da15091d8e8816d16
23,863
from typing import Union import logging def create_user(engine: create_engine, data: dict) -> Union[User, None]: """ Function for creating row in database :param engine: sqlmodel's engine :param data: dictionary with data that represents user :return: Created user instance or nothing """ logging.info('Creating an user') user = User(**data) with Session(engine) as session: try: session.add(user) session.commit() session.refresh(user) logging.info('User was created') except exc.CompileError: logging.warning('User was not created') return None return user
bb1dff7aca37a8a1eab9104d0b6cd27cb55f78da
23,864
def _densify_2D(a, fact=2): """Densify a 2D array using np.interp. :fact - the factor to density the line segments by :Notes :----- :original construction of c rather than the zero's approach : c0 = c0.reshape(n, -1) : c1 = c1.reshape(n, -1) : c = np.concatenate((c0, c1), 1) """ # Y = a changed all the y's to a a = np.squeeze(a) n_fact = len(a) * fact b = np.arange(0, n_fact, fact) b_new = np.arange(n_fact - 1) # Where you want to interpolate c0 = np.interp(b_new, b, a[:, 0]) c1 = np.interp(b_new, b, a[:, 1]) n = c0.shape[0] c = np.zeros((n, 2)) c[:, 0] = c0 c[:, 1] = c1 return c
e9a881f014c9ebcae6f3550c3b0c4d7beb576203
23,865
from typing import Union def get_neighbor_edge( graph: srf.Alignment, edge: tuple[int, int], column: str = 'z', direction: str = 'up', window: Union[None, int] = None, statistic: str = 'min' ) -> Union[None, tuple[int, int]]: """Return the neighboring edge having the lowest minimum value Parameters: graph: directed network graph edge: edge for which to determine a neighbor Other Parameters: column: column to test in vertices direction: 'up' tests predecessor edges; 'down' tests successors window: number of neighbor vertices to test statistic: test statistic Returns: edge meeting the criteria """ vertices = graph.vertices result = None val = None if direction == 'up': neighbors = [(i, edge[0]) for i in graph.predecessors(edge[0])] else: neighbors = [(edge[1], i) for i in graph.successors(edge[1])] if len(neighbors) > 0: for neighbor in neighbors: if window: test_verts = vertices[vertices['edge'] == neighbor].tail(window) else: test_verts = vertices[vertices['edge'] == neighbor] if statistic == 'min': test_val = test_verts[column].min() if val: if test_val < val: result = neighbor val = test_val else: result = neighbor val = test_val return result
df81a5480a673efbf66bda7951b634f99996ffcf
23,867
def show_comparison(x_coordinates: np.ndarray, analytic_expression: callable, numeric_solution: [dict, np.ndarray], numeric_label: str = "Numeric Solution", analytic_label: str = "Analytic Solution", title: str = None, x_label: str = None, y_label: str = None, save_file_as: str = None): """ Method that shows the comparison between the analytic and numeric solutions. :param x_coordinates: Array of input values for function. :param numeric_solution: Array of values for the numeric solution. :param analytic_expression: Function that describes the analytic solution. :param numeric_label: Label for numeric solution on graph. :param analytic_label: Label for analytic solution on graph. :param title: Title of plot figure. :param x_label: Label for the x axis. :param y_label: Label for the y axis. :param save_file_as: Filename used to save generated figure. If not defined figure is not saved. :return: Displays the graphical comparison. """ check_method_call(x_coordinates) check_method_call(analytic_expression) check_method_call(numeric_solution) analytic_solution = analytic_expression(x_coordinates) default_cycler = cycler('color', ['b', 'g', 'k']) * cycler('linestyle', ['--', '-.', ':']) plt.rc('axes', prop_cycle=default_cycler) plt.plot(x_coordinates, analytic_solution, "r-", label=analytic_label) if isinstance(numeric_solution, dict): [plt.plot(x_coordinates, numeric_solution[key], label=("{:.4f}s".format(key) if isinstance(key, (float, int)) else key)) for key in sorted(numeric_solution)] else: plt.plot(x_coordinates, numeric_solution, "b--", label=numeric_label) axes = plt.gca() if x_label: axes.set_xlabel(x_label) if y_label: axes.set_ylabel(y_label) if title: axes.set_title(title) plt.grid() plt.legend() # Calculate errors numeric_solution = np.array(numeric_solution if not isinstance(numeric_solution, dict) else numeric_solution[max(numeric_solution.keys())]) error_array = np.nan_to_num(abs(numeric_solution - analytic_solution)/analytic_solution) print("Mean Error: {0}\nStandard Error: {1}".format(np.mean(error_array), np.std(error_array))) if save_file_as is not None and isinstance(save_file_as, str): plt.savefig("{0}".format(save_file_as)) return plt.show()
10727c4db401469f88fa93db31a13e21037f8e63
23,868
def has_master(mc: MasterCoordinator) -> bool: """ True if `mc` has a master. """ return bool(mc.sc and not mc.sc.master and mc.sc.master_url)
314fc4a2aa4deed7291d4676230bc9dafbb142d8
23,869
import time def sz_margin_details(date='', retry_count=3, pause=0.001): """ 获取深市融资融券明细列表 Parameters -------- date:string 明细数据日期 format:YYYY-MM-DD 默认为空'' retry_count : int, 默认 3 如遇网络等问题重复执行的次数 pause : int, 默认 0 重复请求数据过程中暂停的秒数,防止请求间隔时间太短出现的问题 Return ------ DataFrame opDate:信用交易日期 stockCode:标的证券代码 securityAbbr:标的证券简称 rzmre: 融资买入额(元) rzye:融资余额(元) rqmcl: 融券卖出量 rqyl: 融券余量 rqye: 融券余量(元) rzrqye:融资融券余额(元) """ for _ in range(retry_count): time.sleep(pause) try: request = Request(rv.MAR_SZ_MX_URL%(ct.P_TYPE['http'], ct.DOMAINS['szse'], ct.PAGES['szsefc'], date)) lines = urlopen(request, timeout = 10).read() if len(lines) <= 200: return pd.DataFrame() df = pd.read_html(lines, skiprows=[0])[0] df.columns = rv.MAR_SZ_MX_COLS df['stockCode'] = df['stockCode'].map(lambda x:str(x).zfill(6)) df['opDate'] = date except Exception as e: print(e) else: return df raise IOError(ct.NETWORK_URL_ERROR_MSG)
115ef7ec68a08de065f086b53835c7bd05a34ff8
23,870
def delay_slot_insn(*args): """ delay_slot_insn(ea, bexec, fexec) -> bool Helper function to get the delay slot instruction. @param ea (C++: ea_t *) @param bexec (C++: bool *) @param fexec (C++: bool *) """ return _ida_idp.delay_slot_insn(*args)
6b0316845c4cefa2a33a9e9f5e0c24c1f2920a52
23,871
import numpy def pairwise_radial_basis(K: numpy.ndarray, B: numpy.ndarray) -> numpy.ndarray: """Compute the TPS radial basis function phi(r) between every row-pair of K and B where r is the Euclidean distance. Arguments --------- K : numpy.array n by d vector containing n d-dimensional points. B : numpy.array m by d vector containing m d-dimensional points. Return ------ P : numpy.array n by m matrix where. P(i, j) = phi( norm( K(i,:) - B(j,:) ) ), where phi(r) = r^2*log(r), if r >= 1 r*log(r^r), if r < 1 """ # r_mat(i, j) is the Euclidean distance between K(i, :) and B(j, :). r_mat = cdist(K, B) pwise_cond_ind1 = r_mat >= 1 pwise_cond_ind2 = r_mat < 1 r_mat_p1 = r_mat[pwise_cond_ind1] r_mat_p2 = r_mat[pwise_cond_ind2] # P correcponds to the matrix K from [1]. P = numpy.empty(r_mat.shape) P[pwise_cond_ind1] = (r_mat_p1**2) * numpy.log(r_mat_p1) P[pwise_cond_ind2] = r_mat_p2 * numpy.log(numpy.power(r_mat_p2, r_mat_p2)) return P
5ce4ff200bf953d80b7aff30b84b4ae0a62a0445
23,873
def low_index_subgroups(G, N, Y=[]): """ Implements the Low Index Subgroups algorithm, i.e find all subgroups of ``G`` upto a given index ``N``. This implements the method described in [Sim94]. This procedure involves a backtrack search over incomplete Coset Tables, rather than over forced coincidences. Parameters ========== G: An FpGroup < X|R > N: positive integer, representing the maximum index value for subgroups Y: (an optional argument) specifying a list of subgroup generators, such that each of the resulting subgroup contains the subgroup generated by Y. Examples ======== >>> from sympy.combinatorics.free_groups import free_group >>> from sympy.combinatorics.fp_groups import FpGroup, low_index_subgroups >>> F, x, y = free_group("x, y") >>> f = FpGroup(F, [x**2, y**3, (x*y)**4]) >>> L = low_index_subgroups(f, 4) >>> for coset_table in L: ... print(coset_table.table) [[0, 0, 0, 0]] [[0, 0, 1, 2], [1, 1, 2, 0], [3, 3, 0, 1], [2, 2, 3, 3]] [[0, 0, 1, 2], [2, 2, 2, 0], [1, 1, 0, 1]] [[1, 1, 0, 0], [0, 0, 1, 1]] References ========== .. [1] Holt, D., Eick, B., O'Brien, E. "Handbook of Computational Group Theory" Section 5.4 .. [2] Marston Conder and Peter Dobcsanyi "Applications and Adaptions of the Low Index Subgroups Procedure" """ C = CosetTable(G, []) R = G.relators # length chosen for the length of the short relators len_short_rel = 5 # elements of R2 only checked at the last step for complete # coset tables R2 = {rel for rel in R if len(rel) > len_short_rel} # elements of R1 are used in inner parts of the process to prune # branches of the search tree, R1 = {rel.identity_cyclic_reduction() for rel in set(R) - R2} R1_c_list = C.conjugates(R1) S = [] descendant_subgroups(S, C, R1_c_list, C.A[0], R2, N, Y) return S
03dc48ada37302ca6d4bc5054660aae60bca2ca5
23,874
def ifft_complex(fft_sig_complex) -> np.ndarray: """ Compute the one-dimensional inverse discrete Fourier Transform. :param fft_sig_complex: input array, can be complex. :return: the truncated or zero-padded input, transformed along the axis """ ifft_sig = np.fft.ifft(fft_sig_complex) fft_points = len(ifft_sig) ifft_sig *= fft_points return ifft_sig
101189d4116b0d968ee015534ab8b8fc0020a769
23,875
def merge_eopatches(*eopatches, features=..., time_dependent_op=None, timeless_op=None): """ Merge features of given EOPatches into a new EOPatch :param eopatches: Any number of EOPatches to be merged together :type eopatches: EOPatch :param features: A collection of features to be merged together. By default all features will be merged. :type features: object :param time_dependent_op: An operation to be used to join data for any time-dependent raster feature. Before joining time slices of all arrays will be sorted. Supported options are: - None (default): If time slices with matching timestamps have the same values, take one. Raise an error otherwise. - 'concatenate': Keep all time slices, even the ones with matching timestamps - 'min': Join time slices with matching timestamps by taking minimum values. Ignore NaN values. - 'max': Join time slices with matching timestamps by taking maximum values. Ignore NaN values. - 'mean': Join time slices with matching timestamps by taking mean values. Ignore NaN values. - 'median': Join time slices with matching timestamps by taking median values. Ignore NaN values. :type time_dependent_op: str or Callable or None :param timeless_op: An operation to be used to join data for any timeless raster feature. Supported options are: - None (default): If arrays are the same, take one. Raise an error otherwise. - 'concatenate': Join arrays over the last (i.e. bands) dimension - 'min': Join arrays by taking minimum values. Ignore NaN values. - 'max': Join arrays by taking maximum values. Ignore NaN values. - 'mean': Join arrays by taking mean values. Ignore NaN values. - 'median': Join arrays by taking median values. Ignore NaN values. :type timeless_op: str or Callable or None :return: A dictionary with EOPatch features and values :rtype: Dict[(FeatureType, str), object] """ reduce_timestamps = time_dependent_op != 'concatenate' time_dependent_op = _parse_operation(time_dependent_op, is_timeless=False) timeless_op = _parse_operation(timeless_op, is_timeless=True) all_features = {feature for eopatch in eopatches for feature in FeatureParser(features)(eopatch)} eopatch_content = {} timestamps, sort_mask, split_mask = _merge_timestamps(eopatches, reduce_timestamps) eopatch_content[FeatureType.TIMESTAMP] = timestamps for feature in all_features: feature_type, feature_name = feature if feature_type.is_raster(): if feature_type.is_time_dependent(): eopatch_content[feature] = _merge_time_dependent_raster_feature( eopatches, feature, time_dependent_op, sort_mask, split_mask ) else: eopatch_content[feature] = _merge_timeless_raster_feature(eopatches, feature, timeless_op) if feature_type.is_vector(): eopatch_content[feature] = _merge_vector_feature(eopatches, feature) if feature_type is FeatureType.META_INFO: eopatch_content[feature] = _select_meta_info_feature(eopatches, feature_name) if feature_type is FeatureType.BBOX: eopatch_content[feature] = _get_common_bbox(eopatches) return eopatch_content
6328528c6b6fc3013db6aa17f0153354230efd4b
23,876
import math def dispos(dra0, decd0, dra, decd): """ Source/credit: Skycat dispos computes distance and position angle solving a spherical triangle (no approximations) INPUT :coords in decimal degrees OUTPUT :dist in arcmin, returns phi in degrees (East of North) AUTHOR :a.p.martinez Parameters: dra0: center RA decd0: center DEC dra: point RA decd: point DEC Returns: distance in arcmin """ radian = 180.0/math.pi # coord transformed in radians alf = dra / radian alf0 = dra0 / radian del_ = decd / radian del0 = decd0 / radian sd0 = math.sin(del0) sd = math.sin(del_) cd0 = math.cos(del0) cd = math.cos(del_) cosda = math.cos(alf - alf0) cosd = sd0*sd + cd0*cd*cosda dist = math.acos(cosd) phi = 0.0 if dist > 0.0000004: sind = math.sin(dist) cospa = (sd*cd0 - cd*sd0*cosda)/sind #if cospa > 1.0: # cospa=1.0 if math.fabs(cospa) > 1.0: # 2005-06-02: fix from [email protected] cospa = cospa/math.fabs(cospa) sinpa = cd*math.sin(alf-alf0)/sind phi = math.acos(cospa)*radian if sinpa < 0.0: phi = 360.0-phi dist *= radian dist *= 60.0 if decd0 == 90.0: phi = 180.0 if decd0 == -90.0: phi = 0.0 return (phi, dist)
5c1b7c79a82f59764fd43ba0d89a763955b09a04
23,878
import socket def bind_port(sock, host=HOST): """Bind the socket to a free port and return the port number. Relies on ephemeral ports in order to ensure we are using an unbound port. This is important as many tests may be running simultaneously, especially in a buildbot environment. This method raises an exception if the sock.family is AF_INET and sock.type is SOCK_STREAM, *and* the socket has SO_REUSEADDR or SO_REUSEPORT set on it. Tests should *never* set these socket options for TCP/IP sockets. The only case for setting these options is testing multicasting via multiple UDP sockets. Additionally, if the SO_EXCLUSIVEADDRUSE socket option is available (i.e. on Windows), it will be set on the socket. This will prevent anyone else from bind()'ing to our host/port for the duration of the test. """ if sock.family == socket.AF_INET and sock.type == socket.SOCK_STREAM: if hasattr(socket, 'SO_REUSEADDR'): if sock.getsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR) == 1: raise TestFailed("tests should never set the SO_REUSEADDR " \ "socket option on TCP/IP sockets!") if hasattr(socket, 'SO_REUSEPORT'): try: if sock.getsockopt(socket.SOL_SOCKET, socket.SO_REUSEPORT) == 1: raise TestFailed("tests should never set the SO_REUSEPORT " \ "socket option on TCP/IP sockets!") except OSError: # Python's socket module was compiled using modern headers # thus defining SO_REUSEPORT but this process is running # under an older kernel that does not support SO_REUSEPORT. pass if hasattr(socket, 'SO_EXCLUSIVEADDRUSE'): sock.setsockopt(socket.SOL_SOCKET, socket.SO_EXCLUSIVEADDRUSE, 1) sock.bind((host, 0)) port = sock.getsockname()[1] return port
a326581bea0f0873292028a5e39a710ea89fde4b
23,879
from typing import Union def node_to_html(node: Union[str, NodeElement, list]) -> str: """ Convert Nodes to HTML :param node: :return: """ if isinstance(node, str): # Text return escape(node) elif isinstance(node, list): # List of nodes result = '' for child_node in node: result += node_to_html(child_node) return result elif not isinstance(node, NodeElement): raise TypeError(f"Node must be instance of str or NodeElement, not {type(node)}") # NodeElement # Open result = "<" + node.tag if node.attrs: result += ' ' + ' '.join(f"{k}=\"{v}\"" for k, v in node.attrs.items()) if node.tag in VOID_ELEMENTS: # Close void element result += '/>' else: result += '>' for child_node in node.children: # Container body result += node_to_html(child_node) result += '</' + node.tag + '>' # Close tag return result
0366dffc181f27ac10cbae8d9eae65b6822371c6
23,880