content
stringlengths 35
762k
| sha1
stringlengths 40
40
| id
int64 0
3.66M
|
---|---|---|
def license(soup):
"""
Find the license text
"""
license = None
try:
license_section = get_license_section(soup)
license = extract_node_text(license_section[0], "license-p")
except(IndexError):
return None
return license
|
c7f677e369b7170623968cdfe0d0a85d75e4a339
| 23,992 |
def filter_nofix(df,NoFrames):
"""
Filter for immobilized origami with DNA-PAINT based tracking handle (TH) as described in `spt`_.
Positives are groups
- with a trajectory within the first 5 frames after the start of the measurement
- and number localizations within group are greater or equal to 20% of total measurement duration (in frames)
Args:
df(pandas.DataFrame): Immobile properties as calulated by apply_props()
Returns:
pandas.DataFrame: Positives in ``df`` according to TH filter as described above.
"""
istrue=df.min_frame<=5
istrue=istrue&(df.n_locs/NoFrames>=0.2) # Occupancy of more than 20%
df_filter=df.loc[istrue,:]
return df_filter
|
e115cc479c984037adbe3dd662bed1aa70acaafd
| 23,993 |
def read_array(cls, start=None,end=None,weight=None,use_datetime = False, convert_delta = False):
"""
Read arrays of values for start, end and weight values that represent either the cummulative value of the data steps or the direct step
values seperately, indexed by the start and possibly end arrays.
Parameters
==============
start : array_like
An array of step start location values.
end : array_like, Optional
An array of step end location values.
weight : array_like, Optional
An array of step weight values, if these are not provided, a value of 1 will be assigned for each row entry.
use_datetime : bool, Opyional
Assume start and end fields are of datetime format (Numpy.datetime64,datetime or Pandas.Timestamp).
convert_delta : bool, Optional
Assume weight values are individual step weights (default), or convert values by performing a delta between adjacent values. The data
is assumed to be sorted by the provided start values.
Returns
==============
Steps
See Also
==============
read_dataframe
read_dict
"""
if hasattr(start,'__iter__') or hasattr(end,'__iter__'): #needs to be an array like object
if convert_delta:
weight0 = 0
if weight[0] !=0:
weight0 = weight[0]
if weight0 !=0 and not pd.isnull(start[0]):
weight = np.diff(weight)
new_steps = cls(use_datetime).add_direct(start,end,weight)
new_steps.add_steps([[get_epoch_start(False),1,weight0]])
else:
weight = np.diff(weight,prepend=0)
new_steps = cls(use_datetime).add_direct(start,end,weight)
else:
new_steps = cls(use_datetime).add_direct(start,end,weight)
return new_steps
else:
raise TypeError("input data must be array like, python array or ndarray.")
|
98b97a53883ed39d762849313cab64f29fadfd8d
| 23,994 |
def store_nugget_nodes(gold_nuggets, sys_nuggets, m_mapping):
"""
Store nuggets as nodes.
:param gold_nuggets:
:param sys_nuggets:
:param m_mapping:
:return:
"""
# Stores time ML nodes that actually exists in gold standard and system.
gold_nodes = []
sys_nodes = []
# Store the mapping from nugget id to unified time ML node id.
system_nugget_to_node = {}
gold_nugget_to_node = {}
mapped_system_mentions = set()
tid = 0
for gold_index, (system_index, _) in enumerate(m_mapping):
node_id = "te%d" % tid
tid += 1
gold_script_instance_id = gold_nuggets[gold_index]
gold_nugget_to_node[gold_script_instance_id] = node_id
gold_nodes.append(node_id)
if system_index != -1:
system_nugget_id = sys_nuggets[system_index]
system_nugget_to_node[system_nugget_id] = node_id
sys_nodes.append(node_id)
mapped_system_mentions.add(system_index)
for system_index, system_nugget in enumerate(sys_nuggets):
if system_index not in mapped_system_mentions:
node_id = "te%d" % tid
tid += 1
system_nugget_to_node[system_nugget] = node_id
sys_nodes.append(node_id)
return gold_nodes, sys_nodes, gold_nugget_to_node, system_nugget_to_node
|
659eeccc244d7dfe7fc1c4b9813844d70973b5dc
| 23,995 |
def return_union_item(item):
"""union of statements, next statement"""
return " __result.update({0})".format(item)
|
60fff47ff948f5b62ff6c6793b9dd339c23ecfd7
| 23,996 |
def normalize_basename(s, force_lowercase=True, maxlen=255):
"""Replaces some characters from s with a translation table:
trans_table = {" ": "_",
"/": "_slash_",
"\\": "_backslash_",
"?": "_question_",
"%": "_percent_",
"*": "_asterisk_",
":": "_colon_",
"|": "_bar_",
'"': "_quote_",
"<": "_lt_",
">": "_gt_",
"&": "_amp_"}
then if the generated name is longer than maxlen, the name is truncated
to maxlen and the hash of the name modulo 0xffffffff is appended.
"""
# replace all whietspaces by _
l = s.lower() if force_lowercase else s
# table = mktrans(" ", "_")
# return l.translate(table)
trans_table = {" ": "_",
"/": "_slash_",
"\\": "_backslash_",
"?": "_question_",
"%": "_percent_",
"*": "_asterisk_",
":": "_colon_",
"|": "_bar_",
'"': "_quote_",
"<": "_lt_",
">": "_gt_",
"&": "_amp_"}
n = ("".join([trans_table.get(x, x) for x in l]))
if len(n) > maxlen - 8:
h = format(hash(n) & 0xffffffff, "08x")
n = n[:maxlen-8] + "_"+ h
return n
|
8b6c6fee3a55b3d704294d8bdaa7f72101ac477b
| 23,997 |
import re
def _get_toc_string_from_log(file_handle):
"""
Returns a toc string or None for a given log file (EAC or XLD)
Copyright (c) 2018 Konstantin Mochalov
Released under the MIT License
Original source: https://gist.github.com/kolen/765526
"""
def _filter_toc_entries(file_handle):
"""
Take file handle, return iterator of toc entries
"""
while True:
line = file_handle.readline()
# TOC table header:
if re.match(r""" \s*
.+\s+ \| (?#track)
\s+.+\s+ \| (?#start)
\s+.+\s+ \| (?#length)
\s+.+\s+ \| (?#start sec)
\s+.+\s*$ (?#end sec)
""", line, re.X):
file_handle.readline()
break
while True:
line = file_handle.readline()
m = re.match(r"""
^\s*
(?P<num>\d+)
\s*\|\s*
(?P<start_time>[0-9:.]+)
\s*\|\s*
(?P<length_time>[0-9:.]+)
\s*\|\s*
(?P<start_sector>\d+)
\s*\|\s*
(?P<end_sector>\d+)
\s*$
""", line, re.X)
if not m:
break
yield m.groupdict()
PREGAP = 150
try:
entries = list(_filter_toc_entries(file_handle))
num_entries = len(entries)
tracknums = [int(e['num']) for e in entries]
if [x for x in range(1, num_entries+1)] != tracknums:
# Non-standard track number sequence
return None
leadout_offset = int(entries[-1]['end_sector']) + PREGAP + 1
offsets = [(int(x['start_sector']) + PREGAP) for x in entries]
toc_numbers = [1, num_entries, leadout_offset] + offsets
return " ".join(str(x) for x in toc_numbers)
except Exception as e:
# can fail if the log file is malformed
print("Ignoring log file because of the following error:")
print(e)
pass
return None
|
1b8152171dcc5a512ea92df96bdc63497f01499a
| 23,999 |
def _matrix_M_entry(row, col):
"""Returns one entry for the matrix that maps alpha to theta.
See Eq. (3) in `Mรถttรถnen et al. (2004) <https://arxiv.org/pdf/quant-ph/0407010.pdf>`_.
Args:
row (int): one-based row number
col (int): one-based column number
Returns:
(float): transformation matrix entry at given row and column
"""
# (col >> 1) ^ col is the Gray code of col
b_and_g = row & ((col >> 1) ^ col)
sum_of_ones = 0
while b_and_g > 0:
if b_and_g & 0b1:
sum_of_ones += 1
b_and_g = b_and_g >> 1
return (-1) ** sum_of_ones
|
12b2d7b458d8b940504c108cd5704795184400a9
| 24,000 |
def get_environment_variable_names():
"""Helper to return names of environment variables queried.
Returns:
tuple: name of environment variable to control log level,
name of environment variable to control logging to file
"""
__log_file_environment_variable_name = mwi_env.get_env_name_log_file()
__log_level_environment_variable_name = mwi_env.get_env_name_logging_level()
return __log_level_environment_variable_name, __log_file_environment_variable_name
|
58457a843eeda900261fcecdb41a938ea59ff0c4
| 24,001 |
import pynvml
def get_device_total_memory(index=0):
"""
Return total memory of CUDA device with index
"""
pynvml.nvmlInit()
return pynvml.nvmlDeviceGetMemoryInfo(
pynvml.nvmlDeviceGetHandleByIndex(index)
).total
|
11fb76c85393531cf01d9193adddaeec59e5f5c5
| 24,002 |
def repeat_elements(x, rep, axis):
"""Repeats the elements of a tensor along an axis, like `np.repeat`.
If `x` has shape `(s1, s2, s3)` and `axis` is `1`, the output
will have shape `(s1, s2 * rep, s3)`.
# Arguments
x: Tensor or variable.
rep: Python integer, number of times to repeat.
axis: Axis along which to repeat.
# Returns
A tensor.
"""
return KerasSymbol(mx.sym.repeat(x.symbol, repeats=rep, axis=axis))
|
3a4e3617021afa59de1b980e9cebc7a40e4f32db
| 24,003 |
def deconv4x4_block(in_channels,
out_channels,
stride=1,
padding=3,
ext_padding=(2, 1, 2, 1),
out_padding=0,
dilation=1,
groups=1,
bias=False,
use_bn=True,
bn_eps=1e-5,
activation=(lambda: nn.ReLU(inplace=True))):
"""
4x4 version of the standard deconvolution block.
Parameters:
----------
in_channels : int
Number of input channels.
out_channels : int
Number of output channels.
stride : int or tuple/list of 2 int, default 1
Strides of the convolution.
padding : int or tuple/list of 2 int, default (2, 1, 2, 1)
Padding value for deconvolution layer.
ext_padding : tuple/list of 4 int, default None
Extra padding value for deconvolution layer.
out_padding : int or tuple/list of 2 int
Output padding value for deconvolution layer.
dilation : int or tuple/list of 2 int, default 1
Dilation value for convolution layer.
groups : int, default 1
Number of groups.
bias : bool, default False
Whether the layer uses a bias vector.
use_bn : bool, default True
Whether to use BatchNorm layer.
bn_eps : float, default 1e-5
Small float added to variance in Batch norm.
activation : function or str or None, default nn.ReLU(inplace=True)
Activation function or name of activation function.
"""
return DeconvBlock(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=4,
stride=stride,
padding=padding,
ext_padding=ext_padding,
out_padding=out_padding,
dilation=dilation,
groups=groups,
bias=bias,
use_bn=use_bn,
bn_eps=bn_eps,
activation=activation)
|
6f2274b8c23f2b649a274d8bec7d99174da785f4
| 24,004 |
def get_package_requirements():
""" Used to read requirements from requirements.txt file.
:return: list of requirements
:rtype: list
"""
requirements = []
for line in read_file_contents("requirements.txt").splitlines():
line = line.strip()
if line == "" or line.startswith("#"):
continue
requirements.append(line)
return requirements
|
0fea0b1ce42afdf6e4c130c6a5d5f22dbead5222
| 24,005 |
def graph2tree(mat, root, closedset=None):
"""Convert a graph to a tree data structure"""
if closedset is None:
closedset = set()
tree = Tree()
def walk(name):
node = TreeNode(name)
node.dist = 0
closedset.add(name)
for child in mat[name]:
if child not in closedset:
child_node = walk(child)
child_node.dist = mat[name][child]
tree.add_child(node, child_node)
return node
tree.root = walk(root)
tree.nextname = max(name for name in tree.nodes if isinstance(name, int))
return tree
|
70981e1ff28e6ce1c6278ec35206a1953499855d
| 24,008 |
import re
def is_hex(hex_str):
"""Helper function to verify a string is a hex value."""
return re.fullmatch('[0-9a-f]+', hex_str)
|
c5a53ccbcec36d77bee88d9c81aea46d2a0eec2d
| 24,009 |
def jet(data, range=None, exp=1.0):
"""
Creates a JET colormap from data
Parameters
----------
data : np.array [N,1]
Data to be converted into a colormap
range : tuple (min,max)
Optional range value for the colormap (if None, use min and max from data)
exp : float
Exponential value to weight the color differently
Returns
-------
colormap : np.array [N,3]
Colormap obtained from data
"""
# Return if data is not available
if data is None or data.size == 0 or isinstance(data, tuple):
return data
else:
# If data is a tensor, convert to numpy
if is_tensor(data):
data = data.detach().cpu().numpy()
# If data is [N,1], remove second dimensions
if len(data.shape) > 1:
data = data.reshape(-1)
# Determine range if not available
if range is None:
data = data.copy() - np.min(data)
data = data / (np.max(data) + 1e-6)
else:
data = (data - range[0]) / (range[1] - range[0])
data = np.maximum(np.minimum(data, 1.0), 0.0)
# Use exponential if requested
if exp != 1.0:
data = data ** exp
# Initialize colormap
jet = np.ones((data.shape[0], 3), dtype=np.float32)
# First stage
idx = (data <= 0.33)
jet[idx, 1] = data[idx] / 0.33
jet[idx, 0] = 0.0
# Second stage
idx = (data > 0.33) & (data <= 0.67)
jet[idx, 0] = (data[idx] - 0.33) / 0.33
jet[idx, 2] = 1.0 - jet[idx, 0]
# Third stage
idx = data > 0.67
jet[idx, 1] = 1.0 - (data[idx] - 0.67) / 0.33
jet[idx, 2] = 0.0
# Return colormap
return jet
|
6945558dd6fc53c458f0c5c3e3f98fd5a1486a10
| 24,011 |
def collatz_seq(n, collatz_dict={}):
""" Takes an integer n and returs the resulting Collatz sequence as a list. """
seq = [n]
while n > 1:
n = next_collatz(n)
if n in collatz_dict:
seq.extend(collatz_dict[n])
collatz_dict[seq[0]] = seq
return seq
else:
seq.append(n)
collatz_dict[seq[0]] = seq
return seq
|
ae7ec3a77c39262c15cde9f18a24d60ca237284e
| 24,012 |
def create_app():
"""
Create a Flask application using the app factory pattern.
:param settings_override: Override settings
:return: Flask app
"""
app = Flask(__name__)
app.config.from_object('config.settings')
app.register_blueprint(contact)
return app
|
3af4d596fe8fd32f88f06e860cae2e929aa799e7
| 24,013 |
def get_prebuilt_piccolo():
"""
:return: pair of picollo feature model filename and fm.json as a string
"""
DEFAULT_PREBUILT_PICCOLO = f'/home/besspinuser/tool-suite/tutorial/piccolo-simple-pregen.fm.json'
with open(DEFAULT_PREBUILT_PICCOLO, 'r') as f:
feature_model = f.read()
return 'piccolo-simple-pregen.fm.json', feature_model
|
90a1ecf20c6d6614b813250ff464b6f308c588dc
| 24,014 |
from datetime import datetime
def conflict_algorithm_session(date, start_time, end_time, venue):
#converting string to datetime type variable
"""
conflict_algorithm_session:
this algorithm is used to find if there any avaiable slot for the given date , stat_time ,end_time and venue
from the session_info to book the slot else it returns error.
@param:
date - date of the slot
start_time - starting time for the slot
end_time - ending time for the slot
venue - venue for the slot
@variables:
booked_session - contains the session_info of all previously alloted slots
"""
start_time = datetime.datetime.strptime(start_time, '%H:%M').time()
end_time = datetime.datetime.strptime(end_time, '%H:%M').time()
booked_Sessions = Session_info.objects.select_related('club','club__co_ordinator','club__co_ordinator__id','club__co_ordinator__id__user','club__co_ordinator__id__department','club__co_coordinator','club__co_coordinator__id','club__co_coordinator__id__user','club__co_coordinator__id__department','club__faculty_incharge','club__faculty_incharge__id','club__faculty_incharge__id__user','club__faculty_incharge__id__department').filter(date=date, venue=venue)
#placing start time and end time in tuple fashion inside this list
slots = [(start_time, end_time)]
for value in booked_Sessions:
slots.append((value.start_time, value.end_time))
slots.sort()
#if there isn't any slot present for the selected day just book the session
if (len(slots) == 1):
return "success"
else:
#this whole logic checks if the end time of any slot is less than the start time of next slot
counter = slots[0][1]
flag = 0
i=1
while i < len(slots):
if (slots[i][0] < counter):
flag = 1
break
counter = slots[i][1]
i = i + 1
if (flag == 0):
return "success"
else:
return "error"
|
06fffa780ed4a9afa7cc2cc078bf64dada9b4f21
| 24,015 |
def get_income_share_summary(df_centile, k):
"""
:param df_centile: pd.DataFrame
preprocessed {region}_{unit}_centile.csv !! (rank is 1~100)
:param k: str
key
"""
centile_range = {
'ํ์ 20%': (0, 20),
'๋ค์ 30%': (20, 50),
'ํ์ 50%': (0, 50),
'์ค์ 30%': (50, 80),
'์์ 20%': (80, 100),
'์์ 10%': (90, 100),
'์์ 1%': (99, 100),
}
results = list()
groupcols = ['std_yyyy', 'var']
yearly_count = df_centile.groupby(['var', 'std_yyyy']).max()['year_count'].rename('max_freq')
cpi = load_cpi(translate(k.split('_')[0]))
freq_adjustments = {}
# how many centiles(?) are just 0?
zero_thresh_mask = df_centile['rank'].diff() > 1.0
zero_thresh = df_centile.loc[zero_thresh_mask]
# add 0 ranks
expanded_centiles = []
for (year, var), gdf in df_centile.groupby(groupcols):
zero_fillers = {'std_yyyy': [], 'var': [], 'rank': [], 'freq': [], 'rank_sum': [], 'share': []}
mask = (zero_thresh['std_yyyy'] == year) & (zero_thresh['var'] == var)
if mask.sum() == 0:
expanded_centiles.append(gdf)
continue
t = int(zero_thresh[mask].iloc[0]['rank'])
year_total = yearly_count[(var, year)]
for i in range(2, t):
zero_fillers['std_yyyy'].append(year)
zero_fillers['var'].append(var)
zero_fillers['rank'].append(i)
zero_fillers['freq'].append(int(np.around(year_total / 100)))
zero_fillers['rank_sum'].append(0)
zero_fillers['share'].append(0)
gdf.loc[gdf['rank'] == 1, 'freq'] = year_total * ((t-1) / 100) - np.sum(zero_fillers['freq'])
gdf.loc[gdf['rank'] == t, 'freq'] = year_total - gdf.loc[(gdf['rank'] < t) | (gdf['rank'] > t), 'freq'].sum() - np.sum(zero_fillers['freq'])
expanded = pd.concat([gdf, pd.DataFrame(zero_fillers)]).sort_values(by=groupcols + ['rank'])
expanded_centiles.append(expanded)
expanded_centiles = pd.concat(expanded_centiles)
for name, r in centile_range.items():
mask = (expanded_centiles['rank'] > r[0]) & (expanded_centiles['rank'] <= r[1])
if mask.sum() == 0:
# Find max_freq: expected number of people in this income group
# (number of ppl can be very different because during quantile ranking,
# in case of a tie the individual was assigned the lower rank)
max_freq = ((r[1] - r[0]) * yearly_count / 100).apply(lambda x: int(np.around(x)))
_df = yearly_count.reset_index().drop(columns=['year_count'])
_df = _df.merge(max_freq.rename('freq').reset_index())
_df['share'] = 0
_df['group_mean'] = 0
_df['group_mean_real'] = 0
else:
_df = expanded_centiles[mask].copy()
_df = _df.groupby(groupcols).agg({'rank_sum': 'sum', 'freq': 'sum', 'share': 'sum'}).reset_index()
_df = _df.merge(cpi, on='std_yyyy', how='left')
_df['group_mean'] = _df['rank_sum'] / _df['freq']
_df['group_mean_real'] = _df['group_mean'] / _df.cpi
_df = _df.drop(columns=['rank_sum'])
_df.loc[:, 'income_group'] = name
results.append(_df)
df = pd.concat(results, axis=0).sort_values(by=['std_yyyy', 'var'])
df = df.pivot(index=['var', 'std_yyyy'], columns=['income_group'], values=['freq', 'group_mean', 'group_mean_real', 'share']).reset_index()
sorted_groups = ['ํ์ 20%', '๋ค์ 30%', 'ํ์ 50%', '์ค์ 30%', '์์ 20%', '์์ 10%', '์์ 1%']
df = df[[('var', ''), ('std_yyyy', '')] +
[('freq', k) for k in sorted_groups] +
[('group_mean', k) for k in sorted_groups] +
[('group_mean_real', k) for k in sorted_groups] +
[('share', k) for k in sorted_groups]]
return df
|
63f9a1e3f813a21681ad6d0061cd97e49485b885
| 24,016 |
def _get_cmdline_descriptors_for_hashtree_descriptor(ht):
"""Generate kernel cmdline descriptors for dm-verity.
Arguments:
ht: A AvbHashtreeDescriptor
Returns:
A list with two AvbKernelCmdlineDescriptor with dm-verity kernel cmdline
instructions. There is one for when hashtree is not disabled and one for
when it is.
"""
c = 'dm="1 vroot none ro 1,'
c += '0' # start
c += ' {}'.format((ht.image_size / 512)) # size (# sectors)
c += ' verity {}'.format(ht.dm_verity_version) # type and version
c += ' PARTUUID=$(ANDROID_SYSTEM_PARTUUID)' # data_dev
c += ' PARTUUID=$(ANDROID_SYSTEM_PARTUUID)' # hash_dev
c += ' {}'.format(ht.data_block_size) # data_block
c += ' {}'.format(ht.hash_block_size) # hash_block
c += ' {}'.format(ht.image_size / ht.data_block_size) # #blocks
c += ' {}'.format(ht.image_size / ht.data_block_size) # hash_offset
c += ' {}'.format(ht.hash_algorithm) # hash_alg
c += ' {}'.format(str(ht.root_digest).encode('hex')) # root_digest
c += ' {}'.format(str(ht.salt).encode('hex')) # salt
if ht.fec_num_roots > 0:
c += ' 10' # number of optional args
c += ' $(ANDROID_VERITY_MODE)'
c += ' ignore_zero_blocks'
c += ' use_fec_from_device PARTUUID=$(ANDROID_SYSTEM_PARTUUID)'
c += ' fec_roots {}'.format(ht.fec_num_roots)
# Note that fec_blocks is the size that FEC covers, *not* the
# size of the FEC data. Since we use FEC for everything up until
# the FEC data, it's the same as the offset.
c += ' fec_blocks {}'.format(ht.fec_offset / ht.data_block_size)
c += ' fec_start {}'.format(ht.fec_offset / ht.data_block_size)
else:
c += ' 2' # number of optional args
c += ' $(ANDROID_VERITY_MODE)'
c += ' ignore_zero_blocks'
c += '" root=/dev/dm-0'
# Now that we have the command-line, generate the descriptor.
desc = AvbKernelCmdlineDescriptor()
desc.kernel_cmdline = c
desc.flags = (
AvbKernelCmdlineDescriptor.FLAGS_USE_ONLY_IF_HASHTREE_NOT_DISABLED)
# The descriptor for when hashtree verification is disabled is a lot
# simpler - we just set the root to the partition.
desc_no_ht = AvbKernelCmdlineDescriptor()
desc_no_ht.kernel_cmdline = 'root=PARTUUID=$(ANDROID_SYSTEM_PARTUUID)'
desc_no_ht.flags = (
AvbKernelCmdlineDescriptor.FLAGS_USE_ONLY_IF_HASHTREE_DISABLED)
return [desc, desc_no_ht]
|
a57a33e50a8888781ed9a0fd1cddada12acea69e
| 24,017 |
from datetime import datetime
def assign_time():
"""Get latest time stamp value"""
return datetime.strftime(datetime.now(), format='%Y-%m-%d %T')
|
2096222b23f5eb0d0aa11a6db4f3751b0a207463
| 24,018 |
def read_pb2(filename, binary=True):
"""Convert a Protobuf Message file into mb.Compound.
Parameters
----------
filename : str
binary: bool, default True
If True, will print a binary file
If False, will print to a text file
Returns
-------
root_compound : mb.Compound
"""
root_proto = compound_pb2.Compound()
if binary:
with open(filename, "rb") as f:
root_proto.ParseFromString(f.read())
else:
with open(filename, "r") as f:
Merge(f.read(), root_proto)
proto_to_cmpd = {}
root_compound = _proto_to_mb(root_proto)
proto_to_cmpd[root_proto.id] = root_compound
for sub_proto, parent_proto in _proto_successors(root_proto):
if parent_proto.id not in proto_to_cmpd:
parent_cmpd = _proto_to_mb(parent_proto)
proto_to_cmpd[parent_proto.id] = parent_cmpd
parent_cmpd = proto_to_cmpd[parent_proto.id]
if sub_proto.id not in proto_to_cmpd:
sub_cmpd = _proto_to_mb(sub_proto)
proto_to_cmpd[sub_proto.id] = sub_cmpd
sub_cmpd = proto_to_cmpd[sub_proto.id]
parent_cmpd.add(sub_cmpd)
_add_mb_bonds(root_proto, root_compound, proto_to_cmpd)
return root_compound
|
29c128020eab6b6a33fd1e4f36be395c0672c3b4
| 24,020 |
import logging
def _OneSubChunk(wav_file):
"""Reads one subchunk and logs it.
Returns:
Returns a chunk if a chunk is found. None otherwise.
"""
chunk_id = _ReadChunkId(wav_file)
if not chunk_id:
return None
size = _ReadSize(wav_file)
data = wav_file.read(size)
logging.info('Subchunk: {} {}'.format(chunk_id, size))
return Chunk(chunk_id, data)
|
c43cb5fb9367d4d255475ec8f1fc41df3ea422cc
| 24,021 |
def _convert_tensorshape_to_tensor(value, dtype=None):
"""Copied from TF's TensorShape conversion."""
if not value.is_fully_defined():
raise ValueError(
'Cannot convert a partially known TensorShape to a Tensor: {}'.format(
value))
value_list = value.as_list()
int64_value = 0
for dim in value_list:
if dim >= 2**31:
int64_value = dim
break
if dtype is not None:
if dtype not in (np.int32, np.int64):
raise TypeConversionError(value, dtype)
if dtype == np.int32 and int64_value:
raise ValueError('Cannot convert a TensorShape to dtype int32; '
'a dimension is too large ({})'.format(int64_value))
else:
dtype = np.int64 if int64_value else np.int32
return convert_to_tensor(value_list, dtype=dtype)
|
bc5cc28b6694faf1676aaf4f523a5c135a9bb0d0
| 24,022 |
def get_upside_capture(
nav_data,
benchmark_nav_data,
risk_free_rate=None,
window=250 * 3,
annualiser=250,
tail=True,
):
"""
The up-market capture ratio is the statistical measure of an investment manager's overall
performance in up-markets. It is used to evaluate how well an investment manager performed
relative to an index during periods when that index has risen. The ratio is calculated by
dividing the manager's returns by the returns of the index during the up-market and
multiplying that factor by 100. (Investopedia)
:param nav_data:
:param benchmark_nav_data:
:param risk_free_rate: float
:param window: int
:param annualiser: int
:param tail: bool
:return:
"""
nav_dataframe = _transform_df(nav_data)
benchmark_nav_dataframe = _transform_df(benchmark_nav_data)
df = RatioCalculator(
nav_dataframe,
benchmark_nav_dataframe=benchmark_nav_dataframe,
risk_free_rate=risk_free_rate,
annualiser=annualiser,
).get_upside_capture(window)
return float(df["upside_capture_ratio"][-1]) if tail else df
|
7828b6c6e222fe4e6886d4ebf4c3bec2cbf3e795
| 24,024 |
import ssl
import urllib
import json
def generateToken(username, password, portalUrl):
"""Retrieves a token to be used with API requests."""
context = ssl._create_unverified_context() if NOSSL else None
params = urllib.urlencode({'username' : username,
'password' : password, 'client' : 'referer',
'referer': portalUrl, 'expiration': 60, 'f' : 'json'})
resp = urlopen(portalUrl + '/sharing/rest/generateToken?', params, context=context)
jsonResponse = json.load(resp)
if 'token' in jsonResponse:
return jsonResponse['token']
elif 'error' in jsonResponse:
errMsg = jsonResponse['error']['message']
for detail in jsonResponse['error']['details']:
errMsg += "\n"+ detail
raise Exception( errMsg )
|
ba4cc48f88b088c899de9d278795706dee014c94
| 24,025 |
def get_logreg(prof, tm, j, prods):
"""
Train logistic regression (Markov-chain approach).
prof: task-mode data generated using lhs.py
tm: task-mode
j: name of unit
prods: list of products
"""
# Filter relevant data
dfj = prof.loc[prof["unit"] == j, ].copy()
dfj["tm"] = [row["task"] + "-" + row["mode"] for i, row in dfj.iterrows()]
dfj["tm-1"] = dfj["tm"].shift(-1)
dfj.loc[pd.isna(dfj["tm-1"]), "tm-1"] = "None-None"
dfj = dfj[dfj["tm"] == tm]
# Train logistic regression
if dfj.shape[0] > 0 and len(np.unique(dfj["tm-1"])) > 1:
X = np.array(dfj[prods])
Y = np.array(dfj["tm-1"])
if(len(np.unique(Y)) > 2):
# Multinomial if more than 2 classes
logreg = linear_model.LogisticRegression(multi_class="multinomial",
solver="lbfgs",
# solver="sag",
max_iter=10000,
verbose=2)
else:
# Binomial if only two classes
logreg = linear_model.LogisticRegression(max_iter=10000,
verbose=2)
logreg.fit(X, Y)
return logreg
elif dfj.shape[0] > 0:
return np.array(dfj["tm-1"])[0]
else:
return "None-None"
|
ff5279d3cb82e769abcff64fa7573b2601da31bb
| 24,026 |
def slowness2speed(value):
"""invert function of speed2slowness"""
speed = (31 - value) / 30
return speed
|
54d192b2db667ee05b9c5bdd636af23313b72246
| 24,027 |
def complex_covariance_from_real(Krr, Kii, Kri):
"""Summary
Parameters
----------
Krr : TYPE
Description
Kii : TYPE
Description
Kri : TYPE
Description
Returns
-------
TYPE
Description
"""
K = Krr + Kii + 1j * (Kri.T - Kri)
Kp = Krr - Kii + 1j * (Kri.T + Kri)
return K, Kp
|
0c3e7b01bb06ba6b5bbae50f1fab98cb8bd63f45
| 24,028 |
def is_in_cap(objs, radecrad):
"""Determine which of an array of objects lie inside an RA, Dec, radius cap.
Parameters
----------
objs : :class:`~numpy.ndarray`
An array of objects. Must include at least the columns "RA" and "DEC".
radecrad : :class:`list`, defaults to `None`
3-entry list of coordinates [ra, dec, radius] forming a cap or
"circle" on the sky. ra, dec and radius are all in degrees.
Returns
-------
:class:`~numpy.ndarray`
``True`` for objects in the cap, ``False`` for objects outside of the cap.
Notes
-----
- Tests the separation with <=, so include objects on the cap boundary.
- See also is_in_circle() which handles multiple caps.
"""
ra, dec, radius = radecrad
cobjs = SkyCoord(objs["RA"]*u.degree, objs["DEC"]*u.degree)
center = SkyCoord(ra*u.degree, dec*u.degree)
ii = center.separation(cobjs) <= radius*u.degree
return ii
|
e85abee591dd2956ed8d9be5c47eafaa9c249cb2
| 24,029 |
from typing import Any
from typing import List
import numbers
def _ensure_list(value: Any) -> List[Any]:
"""If value is a scalar, converts it to a list of size 1."""
if isinstance(value, list):
return value
if isinstance(value, str) or isinstance(value, numbers.Number):
return [value]
raise TypeError(
f'Value must be a list, number or a string. Got {type(value)}')
|
e9cb9814060d9f2f2ad15fe42d0f6bbe192cc60e
| 24,031 |
import types
from typing import Callable
import copy
def _ExtractMetaFeature( # pylint: disable=invalid-name
extracts: types.Extracts,
new_features_fn: Callable[[types.FeaturesPredictionsLabels],
types.DictOfFetchedTensorValues]
) -> types.Extracts:
"""Augments FPL dict with new feature(s)."""
# Create a new feature from existing ones.
fpl_copy = get_fpl_copy(extracts)
new_features = new_features_fn(fpl_copy)
# Add the new features to the existing ones.
update_fpl_features(fpl_copy, new_features)
result = copy.copy(extracts)
result[constants.FEATURES_PREDICTIONS_LABELS_KEY] = fpl_copy
return result
|
14ad08a2e2158989ec48d605dd954311cac30cfe
| 24,032 |
import re
def parse_notebook_index(ntbkpth):
"""
Parse the top-level notebook index file at `ntbkpth`. Returns a list of
subdirectories in order of appearance in the index file, and a dict
mapping subdirectory name to a description.
"""
# Convert notebook to RST text in string
rex = RSTExporter()
rsttxt = rex.from_filename(ntbkpth)[0]
# Clean up trailing whitespace
rsttxt = re.sub(r'\n ', r'', rsttxt, re.M | re.S)
pthidx = {}
pthlst = []
lines = rsttxt.split('\n')
for l in lines:
m = re.match(r'^-\s+`([^<]+)\s+<([^>]+).ipynb>`__', l)
if m:
# List of subdirectories in order of appearance in index.rst
pthlst.append(m.group(2))
# Dict mapping subdirectory name to description
pthidx[m.group(2)] = m.group(1)
return pthlst, pthidx
|
74ce532c577df8b5ecf02cbe4163422a80360bf6
| 24,033 |
from pathlib import Path
def import_requirements():
"""Import ``requirements.txt`` file located at the root of the repository."""
with open(Path(__file__).parent / 'requirements.txt') as file:
return [line.rstrip() for line in file.readlines()]
|
ee22aaa76e13c150a2a7981d171ba227887fbceb
| 24,034 |
from typing import Literal
def _get_timestamp_range_edges(
first: Timestamp,
last: Timestamp,
freq: BaseOffset,
closed: Literal["right", "left"] = "left",
origin="start_day",
offset: Timedelta | None = None,
) -> tuple[Timestamp, Timestamp]:
"""
Adjust the `first` Timestamp to the preceding Timestamp that resides on
the provided offset. Adjust the `last` Timestamp to the following
Timestamp that resides on the provided offset. Input Timestamps that
already reside on the offset will be adjusted depending on the type of
offset and the `closed` parameter.
Parameters
----------
first : pd.Timestamp
The beginning Timestamp of the range to be adjusted.
last : pd.Timestamp
The ending Timestamp of the range to be adjusted.
freq : pd.DateOffset
The dateoffset to which the Timestamps will be adjusted.
closed : {'right', 'left'}, default "left"
Which side of bin interval is closed.
origin : {'epoch', 'start', 'start_day'} or Timestamp, default 'start_day'
The timestamp on which to adjust the grouping. The timezone of origin must
match the timezone of the index.
If a timestamp is not used, these values are also supported:
- 'epoch': `origin` is 1970-01-01
- 'start': `origin` is the first value of the timeseries
- 'start_day': `origin` is the first day at midnight of the timeseries
offset : pd.Timedelta, default is None
An offset timedelta added to the origin.
Returns
-------
A tuple of length 2, containing the adjusted pd.Timestamp objects.
"""
if isinstance(freq, Tick):
index_tz = first.tz
if isinstance(origin, Timestamp) and (origin.tz is None) != (index_tz is None):
raise ValueError("The origin must have the same timezone as the index.")
elif origin == "epoch":
# set the epoch based on the timezone to have similar bins results when
# resampling on the same kind of indexes on different timezones
origin = Timestamp("1970-01-01", tz=index_tz)
if isinstance(freq, Day):
# _adjust_dates_anchored assumes 'D' means 24H, but first/last
# might contain a DST transition (23H, 24H, or 25H).
# So "pretend" the dates are naive when adjusting the endpoints
first = first.tz_localize(None)
last = last.tz_localize(None)
if isinstance(origin, Timestamp):
origin = origin.tz_localize(None)
first, last = _adjust_dates_anchored(
first, last, freq, closed=closed, origin=origin, offset=offset
)
if isinstance(freq, Day):
first = first.tz_localize(index_tz)
last = last.tz_localize(index_tz)
else:
first = first.normalize()
last = last.normalize()
if closed == "left":
first = Timestamp(freq.rollback(first))
else:
first = Timestamp(first - freq)
last = Timestamp(last + freq)
return first, last
|
a1d5a9998fb8e88badd354779c50be0e26be37f8
| 24,035 |
def create_export(request, username, id_string, export_type):
"""
Create async export tasks view.
"""
owner = get_object_or_404(User, username__iexact=username)
xform = get_form({'user': owner, 'id_string__iexact': id_string})
if not has_permission(xform, owner, request):
return HttpResponseForbidden(_(u'Not shared.'))
if export_type == Export.EXTERNAL_EXPORT:
# check for template before trying to generate a report
if not MetaData.external_export(xform):
return HttpResponseForbidden(_(u'No XLS Template set.'))
credential = None
if export_type == Export.GOOGLE_SHEETS_EXPORT:
credential = _get_google_credential(request)
if isinstance(credential, HttpResponseRedirect):
return credential
query = request.POST.get("query")
force_xlsx = request.POST.get('xls') != 'true'
# export options
group_delimiter = request.POST.get("options[group_delimiter]", '/')
if group_delimiter not in ['.', '/']:
return HttpResponseBadRequest(
_("%s is not a valid delimiter" % group_delimiter))
# default is True, so when dont_.. is yes
# split_select_multiples becomes False
split_select_multiples = request.POST.get(
"options[dont_split_select_multiples]", "no") == "no"
binary_select_multiples = getattr(settings, 'BINARY_SELECT_MULTIPLES',
False)
remove_group_name = request.POST.get("options[remove_group_name]", "false")
value_select_multiples = request.POST.get(
"options[value_select_multiples]", "false")
# external export option
meta = request.POST.get("meta")
options = {
'group_delimiter': group_delimiter,
'split_select_multiples': split_select_multiples,
'binary_select_multiples': binary_select_multiples,
'value_select_multiples': str_to_bool(value_select_multiples),
'remove_group_name': str_to_bool(remove_group_name),
'meta': meta.replace(",", "") if meta else None,
'google_credentials': credential
}
try:
create_async_export(xform, export_type, query, force_xlsx, options)
except ExportTypeError:
return HttpResponseBadRequest(
_("%s is not a valid export type" % export_type))
else:
audit = {"xform": xform.id_string, "export_type": export_type}
audit_log(Actions.EXPORT_CREATED, request.user, owner,
_("Created %(export_type)s export on '%(id_string)s'.") % {
'export_type': export_type.upper(),
'id_string': xform.id_string,
}, audit, request)
return HttpResponseRedirect(
reverse(
export_list,
kwargs={
"username": username,
"id_string": id_string,
"export_type": export_type
}))
|
d94b674409b094693470132cc84b63c33bd657a1
| 24,036 |
def draft_bp(app):
"""Callable draft blueprint (we need an application context)."""
with app.app_context():
return BibliographicDraftResource(
service=BibliographicRecordService()
).as_blueprint("bibliographic_draft_resource")
|
e0c1846e74399d9a946b11cd68a586c55e93cb3a
| 24,037 |
import tarfile
import io
def _unpack(stream: bytes, path: str) -> str:
"""Unpack archive in bytes string into directory in ``path``."""
with tarfile.open(fileobj=io.BytesIO(stream)) as tar:
tar.extractall(path)
return path
|
81a05c0a60fb06d43592a0a4f4d30cf62d406e01
| 24,038 |
def create_client(client):
"""Creates a new client."""
rv = client.post('/v1/oauth/', follow_redirects=True, data={
'submit': 'Add Client',
})
db.app = jobaddservice.app
oauth_clients = Client.query.all()
client_id = oauth_clients[0].client_id
return client_id
|
4de5a7e9feae199c8424871962d1a11a5a9f34c8
| 24,039 |
def FPS(name, sort, explicit_name=None):
"""
Creates a floating-point symbol.
:param name: The name of the symbol
:param sort: The sort of the floating point
:param explicit_name: If False, an identifier is appended to the name to ensure uniqueness.
:return: An FP AST.
"""
n = _make_name(name, sort.length, False if explicit_name is None else explicit_name, prefix='FP_')
return FP('FPS', (n, sort), variables={n}, symbolic=True, length=sort.length)
|
137595ce164b72438c16fa8f74838270b43fb3db
| 24,041 |
def _calc_cat_outlier(df: dd.DataFrame, col_x: str, threshold: int = 1) -> Intermediate:
"""
calculate outliers based on the threshold for categorical values.
:param df: the input dataframe
:param col_x: the column of df (univariate outlier detection)
:return: dict(index: value) of outliers
"""
groups = df.groupby([col_x]).size()
result = {"outlier_index": list(groups[groups <= threshold].index.compute())}
raw_data = {"df": df, "col_x": col_x, "threshold": threshold}
return Intermediate(result, raw_data)
|
3b2c7ea6a7491fd81b2467d1f2b5faad36523177
| 24,045 |
def add_precursor_mz(spectrum_in: SpectrumType) -> SpectrumType:
"""Add precursor_mz to correct field and make it a float.
For missing precursor_mz field: check if there is "pepmass"" entry instead.
For string parsed as precursor_mz: convert to float.
"""
if spectrum_in is None:
return None
spectrum = spectrum_in.clone()
if isinstance(spectrum.get("precursor_mz", None), str):
spectrum.set("precursor_mz", float(spectrum.get("precursor_mz").strip()))
elif spectrum.get("precursor_mz", None) is None:
pepmass = spectrum.get("pepmass")
if isinstance(pepmass[0], float):
spectrum.set("precursor_mz", pepmass[0])
else:
print("No precursor_mz found in metadata.")
return spectrum
|
297fbb280aa00992d7658dc47306c4c98018d19e
| 24,046 |
import functools
import click
def echo_result(function):
"""Decorator that prints subcommand results correctly formatted.
:param function: Subcommand that returns a result from the API.
:type function: callable
:returns: Wrapped function that prints subcommand results
:rtype: callable
"""
@functools.wraps(function)
def wrapper(*args, **kwargs):
result = function(*args, **kwargs)
context = click.get_current_context()
params = context.params
output_format = params["output_format"]
formatter = FORMATTERS[output_format]
if isinstance(formatter, dict):
# For the text formatter, there's a separate formatter for each subcommand
formatter = formatter[context.command.name]
output = formatter(result, params.get("verbose", False)).strip("\n")
click.echo(
output, file=params.get("output_file", click.open_file("-", mode="w"))
)
return wrapper
|
7a4956eea317f77ec816d7c68ff61749a971b025
| 24,047 |
import numpy
def load_cifar10():
""" Load the CIFAR-10 dataset.
"""
def post(inputs, labels):
return inputs.astype(numpy.float32) / 255, labels.flatten().astype(numpy.int32)
return NumpySet.from_keras(tf.keras.datasets.cifar10.load_data, post=post)
|
436411f1258803a45d0ba4f570dc80c5ec0cd4b8
| 24,048 |
def parse_names(filename):
"""
Parse an NCBI names.dmp file.
"""
taxid_to_names = dict()
with xopen(filename, 'rt') as fp:
for n, line in enumerate(fp):
line = line.rstrip('\t|\n')
x = line.split('\t|\t')
taxid, name, uniqname, name_class = x
taxid = int(taxid)
if name_class == 'scientific name':
taxid_to_names[taxid] = (name, uniqname, name_class)
return taxid_to_names
|
cca9249333c373a56c1829557caff876df210859
| 24,049 |
def parse(pm, doc):
""" Parse one document using the given parsing model
:type pm: ParsingModel
:param pm: an well-trained parsing model
:type fedus: string
:param fedus: file name of an document (with segmented EDUs)
"""
pred_rst = pm.sr_parse(doc)
return pred_rst
|
4389ac7993d370f2a7d404e5668eb7522ee4db70
| 24,051 |
def two_sum(nums, target):
"""
Given an array of integers, return indices of the two numbers such that
they add up to a specific target.
You may assume that each input would have exactly one solution, and you
may not use the same element twice.
:type nums: List[int]
:type target: int
:rtype: List[int]
"""
diffs_idx = {}
for i in range(len(nums)):
if nums[i] in diffs_idx:
return [diffs_idx[nums[i]], i]
diffs_idx[target - nums[i]] = i
|
ac72eb7137eb0f7161c26b172cd07553c984b5a8
| 24,052 |
def remove_columns(tx, header, columns_to_remove):
"""
Removes the given features from the given set of features.
Args:
tx: the numpy array representing the given set of features
header: the header line of the .csv representing the data set
columns_to_remove: The indices of the features that will be removed
from the numpy array of features
"""
print("\nRemoving columns...")
num_removed = 0
for col in columns_to_remove:
tx = np.delete(tx, col - num_removed, 1)
header = np.delete(header, col - num_removed + 2)
num_removed += 1
print("\n... finished.")
return tx, header
|
d7f2ed3092fc094ccc48f27813ad8a77358dfc19
| 24,053 |
def pangenome(groups_file, fasta_list):
#creating the len_dict
"""
The len_dict is used to remember all of the common names and lengths of EVERY gene in each species, which are matched to the arbitrary name.
The len_dict is in form len_dict = {speciesA:{arb_name1:[com_name, length], arb_name2:[com_name,length]}, speciesB: {arb_name1:[com_name, length], arb_name2:[com_name,length]}}
"""
len_dict={}
for the_file in fasta_list:
each_file=open(str(the_file), 'r')
the_file = the_file.split('.')
if the_file[0] == 'E':
if the_file[1][0] == 'v':
species = 'verr'
elif the_file[2] == 'typeA':
species = 'pistA'
elif the_file[2] == 'typeB':
species = 'pistB'
else:
species = the_file[1][:5]
else:
species = the_file[0]
len_dict[species] = {}
for each_line in each_file:
if each_line[0] == '>':
information = get_info(each_line)
length = 0
else:
#sequence line
for amino_acid in each_line:
length +=3
arb_name = information[0]
com_name= information[1]
len_dict[species][arb_name] = [com_name, length]
each_file.close()
# creating the gene_dict
groups_file = open(str(groups_file), 'r')
"""
The gene_dict is used to match and remember the genes within each cluster (similar genes), lengths of the cluster as a whole, and which species they correspond to.
The gene_dict only accounts for the genes that are in MULTIPLE species, NOT THE GENES ONLY IN A SINGLE SPECIES.
The gene_dict is in the form gene_dict = {speciesA: {cluster1: [[arb_name1, arb_name2], [len1, len2]]}, speciesB: {cluster1:[[arb_name1, arbname2], [len1, len2]]}}
"""
gene_dict = {}
arb_dict = {}
for each_line in groups_file:
# each_line consists of a cluster of genes, each with a different arbitrary name and species it belongs to
each_line = each_line.split()
cluster = each_line[0].rstrip(':')
n=0
for each_segment in each_line:
# each segment looks like 'species|arbitrary_name'
if n == 0:
# cluster name
n = 1
else:
n+=1
each_segment = each_segment.split('|')
species = each_segment[0]
arb_name = each_segment[1]
# The arb_dict is simply a quick reference of ONLY the genes that are in MULTIPLE SPECIES. Genes that only have a single copy in one species will not be included.
arb_dict[arb_name] = 0
if species not in gene_dict:
gene_dict[species] = {}
if cluster not in gene_dict[species]:
gene_dict[species][cluster] = [[],[]]
gene_dict[species][cluster][0].append(arb_name)
length = len_dict[species][arb_name][1]
gene_dict[species][cluster][1].append(length)
"""'
The cluster_dict is used to remember the lengths of entire clusters (similar genes; essentially genes with very similar function).
If speciesA has 3 copies of the gene and speciesB only has 1 copy, speciesA will take up more space. The purpose of this dict is to
have all of the same genes line up visually. We want the maximum length for all the species. In the example, speciesB will have three slots for the gene and 2 will be empty.
The cluster dict is in the format cluster_dict= {cluster1: integer, cluster2: integer}
"""
cluster_dict = {}
for species in gene_dict:
for cluster in gene_dict[species]:
if cluster not in cluster_dict or cluster_dict[cluster] < sum(gene_dict[species][cluster][1]):
cluster_dict[cluster] = sum(gene_dict[species][cluster][1])
return len_dict, gene_dict, cluster_dict, arb_dict
|
9b9fd884ab6e464b5e40ae84d01801743da222be
| 24,054 |
import torch
def argmin(x):
"""Deterministic argmin.
Different from torch.argmin, which may have undetermined result if the are
multiple elements equal to the min, this argmin is guaranteed to return the
index of the first element equal to the min in each row.
Args:
x (Tensor): only support rank-2 tensor
Returns:
rank-1 int64 Tensor represeting the column of the first element in each
row equal to the minimum of the row.
"""
assert x.ndim == 2
m, _ = x.min(dim=1, keepdims=True)
r, c = torch.nonzero(x == m, as_tuple=True)
r, num_mins = torch.unique(r, return_counts=True)
i = torch.cumsum(num_mins, 0)
i = torch.cat([torch.tensor([0]), i[:-1]])
return c[i]
|
93efe99e616f2266c14c94fb81d9251d8bcfba18
| 24,055 |
import json
def check_geometry_size(footprint):
"""
Excessive large geometries are problematic of AWS SQS (max size 256kb) and cause
performance issues becuase they are stored in plain text in the JSON
blob.
This func reads the geojson and applies a simple heuristic to reduce the
footprint size through simplification. With each iteration, the geometry
is simplified by 0.01 degrees.
Parameters
----------
footprint : obj
A shapely Polygon or MultiPolygon
Returns
-------
geojson : dict
A geojson representation of the geometry
"""
geojson = footprint.__geo_interface__
as_str = json.dumps(geojson)
geomsize = len(as_str.encode('utf-8'))
n_iterations = 0
while geomsize > 125000:
footprint = footprint.simplify(0.01)
geojson = footprint.__geo_interface__
as_str = json.dumps(geojson)
geomsize = len(as_str.encode('utf-8'))
n_iterations += 1
return geojson
|
b2525958a1440fc1ce0d2560150b7fe28b3ec450
| 24,056 |
def get_global_comments():
"""Returns all global comments"""
return GlobalComment.query.all()
|
f7dcf7be712187aac784787e4745c366e0759cf5
| 24,057 |
def is_descending(path):
"""
Return ``True`` if this profile is a descending
profile.
"""
return _re_search(path, _re_descending)
|
6afb24abc76fa1fa1b33793aca14b1d425664e7e
| 24,058 |
def mises_promo_gain_cote(cotes, mise_minimale, rang, output=False):
"""
Calcule la rรฉpartition des mises pour la promotion "gain en freebet de la cote gagnรฉe"
"""
mis = []
gains = cotes[rang] * 0.77 + mise_minimale * cotes[rang]
for cote in cotes:
mis.append((gains / cote))
mis[rang] = mise_minimale
if output:
print("somme mises=", sum(mis))
print("gain=", gains)
return mis
|
6dfbb9305e769982257a05cb41800a6d2656767b
| 24,059 |
def recalculateResult(request, question_id):
"""Called when poll owner wants to recalculate result manually."""
question = get_object_or_404(Question, pk=question_id)
getPollWinner(question)
return HttpResponseRedirect(request.META.get('HTTP_REFERER'))
|
32e21808f8fd63b1f02981c966c58a6fdeecf6a5
| 24,060 |
def covden_win(cov_resampled, lut):
"""
Method to associate resampled vegitation coverage to PRMS covden_win
Parameters
----------
cov_resampled : np.ndarray
lut : dict
Returns
-------
gsflow.prms.ParameterRecord object
"""
covden = covden_sum(cov_resampled, lut)
covden.name = "covden_win"
return covden
|
5289954b2be41539981ad8af73bc683835c13bde
| 24,061 |
def login_webauthn_route():
"""login webauthn route"""
user = User.query.filter(User.id == session.get('webauthn_login_user_id')).one_or_none()
if not user:
return login_manager.unauthorized()
form = WebauthnLoginForm()
if form.validate_on_submit():
try:
assertion = cbor.decode(b64decode(form.assertion.data))
webauthn.authenticate_complete(
session.pop('webauthn_login_state'),
webauthn_credentials(user),
assertion['credentialRawId'],
ClientData(assertion['clientDataJSON']),
AuthenticatorData(assertion['authenticatorData']),
assertion['signature'])
regenerate_session()
login_user(user)
return redirect_after_login()
except (KeyError, ValueError) as e:
current_app.logger.exception(e)
flash('Login error during Webauthn authentication.', 'error')
return render_template('auth/login_webauthn.html', form=form)
|
d1f31035e696f539f58019c8a37c650089e92d23
| 24,062 |
def generate_feature_matrix(genotypes, phenotypes, reg_type,phewas_cov=''): # diff - done
"""
Generates the feature matrix that will be used to run the regressions.
:param genotypes:
:param phenotypes:
:type genotypes:
:type phenotypes:
:returns:
:rtype:
"""
feature_matrix = np.zeros((3, genotypes.shape[0], phewas_codes.shape[0]), dtype=float)
count = 0
for i in genotypes['id']:
if reg_type == 0:
temp = pd.DataFrame(phenotypes[phenotypes['id'] == i][['phewas_code', 'MaxAgeAtICD','count']]).drop_duplicates()
match = phewas_codes['phewas_code'].isin(list(phenotypes[phenotypes['id'] == i]['phewas_code']))
cts = pd.merge(phewas_codes, temp, on='phewas_code', how='left')['count']
cts[np.isnan(cts)] = 0
match = (match)&(cts>0)
feature_matrix[0][count, match[match == True].index] = 1
age = pd.merge(phewas_codes, temp, on='phewas_code', how='left')['MaxAgeAtICD']
#assert np.all(np.isfinite(age)), "make sure MaxAgeAtVisit is filled"
age[np.isnan(age)] = genotypes[genotypes['id'] == i].iloc[0]['MaxAgeBeforeDx']
feature_matrix[1][count, :] = age
if phewas_cov:
feature_matrix[2][count, :] = int(phewas_cov in list(phenotypes[phenotypes['id'] == i]['phewas_code']))
else:
if reg_type == 1:
temp = pd.DataFrame(
phenotypes[phenotypes['id'] == i][['phewas_code', 'MaxAgeAtICD', 'count','lor']]).drop_duplicates()
cts = pd.merge(phewas_codes, temp, on='phewas_code', how='left')['count']
cts[np.isnan(cts)] = 0
if temp.empty!=1:
cts=cts/temp['lor'].iloc[0]
feature_matrix[0][count, :] = cts
age = pd.merge(phewas_codes, temp, on='phewas_code', how='left')['MaxAgeAtICD']
#assert np.all(np.isfinite(age)), "make sure MaxAgeAtVisit is filled"
age[np.isnan(age)] = genotypes[genotypes['id'] == i].iloc[0]['MaxAgeBeforeDx']
feature_matrix[1][count, :] = age
if phewas_cov:
feature_matrix[2][count, :] = int(
phewas_cov in list(phenotypes[phenotypes['id'] == i]['phewas_code']))
elif reg_type == 2:
temp = pd.DataFrame(
phenotypes[phenotypes['id'] == i][['phewas_code', 'MaxAgeAtICD', 'duration','lor']]).drop_duplicates()
dura = pd.merge(phewas_codes, temp, on='phewas_code', how='left')['duration']
dura[np.isnan(dura)] = 0
if temp.empty!=1:
dura=dura/temp['lor'].iloc[0]
feature_matrix[0][count, :] = dura
age = pd.merge(phewas_codes, temp, on='phewas_code', how='left')['MaxAgeAtICD']
#assert np.all(np.isfinite(age)), "make sure MaxAgeAtVisit is filled"
age[np.isnan(age)] = genotypes[genotypes['id'] == i].iloc[0]['MaxAgeBeforeDx']
feature_matrix[1][count, :] = age
if phewas_cov:
feature_matrix[2][count, :] = int(
phewas_cov in list(phenotypes[phenotypes['id'] == i]['phewas_code']))
count += 1
return feature_matrix
|
95abe0e89060145b90abe4debe7dfd23ba6a4969
| 24,063 |
def get_entity(db: SQLAlchemy, id: str) -> EntityOut:
"""Get and entity by id."""
db_session = db.session_class()
entry = repository.get_entity(db_session, id)
if not entry:
raise exc.NotFound()
return EntityOut(entry)
|
16b64a90251eee3dfa79ede4d5524ecfb28a1a82
| 24,064 |
def cov(sources):
"""
Given the array of sources for all image patches, calculate the covariance
array between all modes.
Parameters
----------
sources : numpy array (floats)
The {NUM_MODES x NUM_PATCHES} array of sources.
Returns
-------
numpy array (floats)
The {NUM_MODES x NUM_MODES} covariance array between all modes.
"""
return (sources @ sources.T)/sources.shape[1]
|
268dfbc98a5b443e92aadd27ba577f7911ca398f
| 24,065 |
import json
def VerifierMiddleware(verifier):
"""Common wrapper for the authentication modules.
* Parses the request before passing it on to the authentication module.
* Sets 'pyoidc' cookie if authentication succeeds.
* Redirects the user to complete the authentication.
* Allows the user to retry authentication if it fails.
:param verifier: authentication module
"""
@wraps(verifier.verify)
def wrapper(environ, start_response):
data = get_post(environ)
kwargs = dict(urlparse.parse_qsl(data))
kwargs["state"] = json.loads(urlparse.unquote(kwargs["state"]))
val, completed = verifier.verify(**kwargs)
if not completed:
return val(environ, start_response)
if val:
set_cookie, cookie_value = verifier.create_cookie(val, "auth")
cookie_value += "; path=/"
url = "{base_url}?{query_string}".format(
base_url="/authorization",
query_string=kwargs["state"]["query"])
response = SeeOther(url, headers=[(set_cookie, cookie_value)])
return response(environ, start_response)
else: # Unsuccessful authentication
url = "{base_url}?{query_string}".format(
base_url="/authorization",
query_string=kwargs["state"]["query"])
response = SeeOther(url)
return response(environ, start_response)
return wrapper
|
1b8d62830ba57bf7761b77ac271a19c5a486bb20
| 24,066 |
def hls_stream(hass, hass_client):
"""Create test fixture for creating an HLS client for a stream."""
async def create_client_for_stream(stream):
stream.ll_hls = True
http_client = await hass_client()
parsed_url = urlparse(stream.endpoint_url(HLS_PROVIDER))
return HlsClient(http_client, parsed_url)
return create_client_for_stream
|
ca759edc6bf819ba8788e20d8d44da96bfaa73fe
| 24,067 |
def AsinhNorm(a=0.1):
"""Custom Arcsinh Norm.
Parameters
----------
a : float, optional
Returns
-------
ImageNormalize
"""
return ImageNormalize(stretch=AsinhStretch(a=a))
|
fecc3bfec6e14033f5d29fb044fb099bddb8b4b3
| 24,068 |
def sub(x, y):
"""sub two numbers"""
return y-x
|
345279da515a877c1f08a8b54ff8f2e7d6a95fec
| 24,069 |
def addSplashScreen(splashSDKName, decompileDir):
""" add splash screen
channel hasn't Splash if channel["bHasSplash"] = 0
otherwise channel["bHasSplash"] express orientation and color
"""
channelHasSplash ="0";
try:
#read has splash to funcellconfig.xml
config = ET.parse(file_operate.getConfigXmlPath())
root = config.getroot()
splash = root.find("splash")
channelHasSplash = splash.get('hasSplash');
except Exception,e:
print e
print "Error: cannot parse file: funcellconfig.xml."
print 'channelHasSplash = '+channelHasSplash
if channelHasSplash == "0":
return (0, False)
SplashPath = decompileDir + '/ForSplash/' + channelHasSplash + '/'
SplashPath = file_operate.getFullPath(SplashPath)
print "SplashPath : "+SplashPath
SplashCodePath = 'channel/SplashActivity.smali'
SplashCodePath = file_operate.getFullPath(SplashCodePath)
print "SplashCodePath : "+SplashCodePath
SplashCode2Path = 'channel/SplashActivity$1.smali'
SplashCode2Path = file_operate.getFullPath(SplashCode2Path)
print "SplashCode2Path : "+SplashCode2Path
xmlSplashSrc = 'channel/funcell_plugin_splash.xml'
xmlSplashSrc = file_operate.getFullPath(xmlSplashSrc)
print "xmlSplashSrc : "+xmlSplashSrc
if not os.path.exists(SplashPath) or not os.path.exists(SplashCodePath) or not os.path.exists(SplashCode2Path) or not os.path.exists(xmlSplashSrc):
error_operate.error(111)
return (1, False)
codeDir = decompileDir+'/oldApkDir/' + '/smali/com/haowan/funcell/sdk/api/splash'
newSplashCodePath = codeDir + '/SplashActivity.smali'
print "newSplashCodePath : "+newSplashCodePath
file_operate.copyFile(SplashCodePath, newSplashCodePath)
newSplashCode2Path = codeDir + '/SplashActivity$1.smali'
file_operate.copyFile(SplashCode2Path, newSplashCode2Path)
activityName = removeStartActivity(channelHasSplash, decompileDir+'/oldApkDir/')
modifyManifestForSplash(channelHasSplash, decompileDir+'/oldApkDir/')
xmlSplashTarget = decompileDir+'/oldApkDir/' + '/res/layout'
if not os.path.exists(xmlSplashTarget):
os.mkdir(xmlSplashTarget)
xmlSplashTarget = xmlSplashTarget + '/funcell_plugin_splash.xml'
file_operate.copyFile(xmlSplashSrc, xmlSplashTarget)
resDir = decompileDir +'/oldApkDir/'+ '/res'
file_operate.copyFiles(SplashPath, resDir)
# assetsDir = decompileDir + '/assets'
# developerFile = assetsDir + '/developerInfo.xml'
# if not os.path.exists(assetsDir):
# os.makedirs(assetsDir)
# targetTree = None
# targetRoot = None
# if not os.path.exists(developerFile):
# targetTree = ElementTree()
# targetRoot = Element('developer')
# targetTree._setroot(targetRoot)
# else:
# targetTree = ET.parse(developerFile)
# targetRoot = targetTree.getroot()
# infoNode = targetRoot.find('channel')
# if infoNode is None:
# infoNode = SubElement(targetRoot, 'channel')
# infoNode.set('GameMainActivity', activityName)
# targetTree.write(developerFile, 'UTF-8')
print "add splash activity name : "+activityName
file_operate.modifyFileContent(newSplashCodePath, '.smali', '###FuncellSdk_Start_Activity###', activityName)
return (0, True)
|
52964383a6ee440a9b18a2e1ab35a25d5f376753
| 24,070 |
def get_k8s_helper(namespace=None, silent=False):
"""
:param silent: set to true if you're calling this function from a code that might run from remotely (outside of a
k8s cluster)
"""
global _k8s
if not _k8s:
_k8s = K8sHelper(namespace, silent=silent)
return _k8s
|
81104cf72709a15fc56edca6d4e6fc005412ae75
| 24,072 |
def authenticate():
"""Authorize."""
return redirect(Vend().authenticate())
|
f34d8df5e69b9552592349db71fac1b193effce1
| 24,073 |
import re
def non_device_name_convention(host):
"""
Helper filter function to filter hosts based targeting
host names which do NOT match a specified naming convention
Examples:
- lab-junos-08.tstt.dfjt.local
- dfjt-arista-22.prd.dfjt.local
- lab-nxos-001.lab.dfjt.local
:param host: The host you want to filter on
:return bool: True if does not match, False if it matches the convention
"""
# Perform regex match on host name and return boolean
if re.match("\w{3}\-\w+\-\d{2}.\w{3}.dfjt.local", host.name):
return False
else:
return True
|
ecb455eb61e3917ee41ebc5a6cacfd8829d6e3f6
| 24,074 |
def recursive_swagger_spec(minimal_swagger_dict, node_spec):
"""
Return a swager_spec with a #/definitions/Node that is
recursive.
"""
minimal_swagger_dict['definitions']['Node'] = node_spec
return Spec(minimal_swagger_dict)
|
be13e07689378b46964c45830b1ac5eb2f30be14
| 24,075 |
import json
def _get_base_parts(config):
"""
Builds the base ip array for the first N octets based on
supplied base or on the /N subnet mask in the cidr
"""
if 'base' in config:
parts = config.get('base').split('.')
else:
parts = []
if 'cidr' in config:
cidr = config['cidr']
if '/' in cidr:
mask = cidr[cidr.index('/') + 1:]
if not mask.isdigit():
raise datagen.SpecException('Invalid Mask in cidr for config: ' + json.dumps(config))
if int(mask) not in [8, 16, 24]:
raise datagen.SpecException('Invalid Subnet Mask in cidr for config: ' + json.dumps(config)
+ ' only one of /8 /16 or /24 supported')
ip_parts = cidr[0:cidr.index('/')].split('.')
if len(ip_parts) < 4 or not all(part.isdigit() for part in ip_parts):
raise datagen.SpecException('Invalid IP in cidr for config: ' + json.dumps(config))
if mask == '8':
parts = ip_parts[0:1]
if mask == '16':
parts = ip_parts[0:2]
if mask == '24':
parts = ip_parts[0:3]
else:
raise datagen.SpecException('Invalid Subnet Mask in cidr for config: ' + json.dumps(config)
+ ' only one of /8 /16 or /24 supported')
return parts
|
9257db10a07a9468ea81912e0818e220be240beb
| 24,076 |
def diff_exp(counts, group1, group2):
"""Computes differential expression between group 1 and group 2
for each column in the dataframe counts.
Returns a dataframe of Z-scores and p-values."""
mean_diff = counts.loc[group1].mean() - counts.loc[group2].mean()
pooled_sd = np.sqrt(counts.loc[group1].var() / len(group1)
+ counts.loc[group2].var() / len(group2))
z_scores = mean_diff / pooled_sd
z_scores = z_scores.fillna(0)
# t-test
p_vals = (1 - stats.norm.cdf(np.abs(z_scores))) * 2
df = pd.DataFrame({'z': z_scores})
df['p'] = p_vals
return df
|
be70eb9c843d9cfd72efb9c85f023b91c3a6730e
| 24,077 |
def load(source):
"""HTSใใซใณใณใใญในใใฉใใซ(Sinsy็จ)ใ่ชญใฟๅใ
source: path, lines
"""
song = HTSFullLabel()
return song.load(source)
|
5cc2c7cfdf4e04071fc6d6525803c09592c7889f
| 24,078 |
def _binary_clf_curve(y_true, y_score, pos_label=None):
"""Calculate true and false positives per binary classification threshold.
Parameters
----------
y_true : array, shape = [n_samples]
True targets of binary classification
y_score : array, shape = [n_samples]
Estimated probabilities or decision function
pos_label : int, optional (default=1)
The label of the positive class
Returns
-------
fps : array, shape = [n_thresholds]
A count of false positives, at index i being the number of negative
samples assigned a score >= thresholds[i]. The total number of
negative samples is equal to fps[-1] (thus true negatives are given by
fps[-1] - fps).
tps : array, shape = [n_thresholds := len(np.unique(y_score))]
An increasing count of true positives, at index i being the number
of positive samples assigned a score >= thresholds[i]. The total
number of positive samples is equal to tps[-1] (thus false negatives
are given by tps[-1] - tps).
thresholds : array, shape = [n_thresholds]
Decreasing score values.
"""
y_true, y_score = check_arrays(y_true, y_score)
y_true = column_or_1d(y_true)
y_score = column_or_1d(y_score)
# ensure binary classification if pos_label is not specified
classes = np.unique(y_true)
if (pos_label is None and
not (np.all(classes == [0, 1]) or
np.all(classes == [-1, 1]) or
np.all(classes == [0]) or
np.all(classes == [-1]) or
np.all(classes == [1]))):
raise ValueError("Data is not binary and pos_label is not specified")
elif pos_label is None:
pos_label = 1.
# make y_true a boolean vector
y_true = (y_true == pos_label)
# Sort scores and corresponding truth values
desc_score_indices = np.argsort(y_score, kind="mergesort")[::-1]
y_score = y_score[desc_score_indices]
y_true = y_true[desc_score_indices]
# y_score typically has many tied values. Here we extract
# the indices associated with the distinct values. We also
# concatenate a value for the end of the curve.
distinct_value_indices = np.where(np.diff(y_score))[0]
threshold_idxs = np.r_[distinct_value_indices, y_true.size - 1]
# accumulate the true positives with decreasing threshold
tps = y_true.cumsum()[threshold_idxs]
fps = 1 + threshold_idxs - tps
return fps, tps, y_score[threshold_idxs]
|
0dd0f1bb711b0df052c115534b886b93ae8e59f3
| 24,079 |
def term_open_failed(data=None):
"""
Construct a template for a term event
"""
tpl = term()
tpl.addKey(name='event', data="open-failed")
if data is not None:
tpl.addKey(name='data', data=data)
return tpl
|
7eae9e897294a545c4aaf27fe4204a6fd8b106a1
| 24,080 |
def create_error_payload(exception, message, endpoint_id):
"""
Creates an error payload to be send as a response in case of failure
"""
print(f'{exception}: {message}')
error_payload = {
'status': 'MESSAGE_NOT_SENT',
'endpointId': endpoint_id if endpoint_id else 'NO_ENDPOINT_ID',
'message': f'{exception}: {message}'
}
return error_payload
|
90f266d22429d385e828dcdd92fca3d7b2e6df48
| 24,081 |
def has_columns(df, columns):
"""Check if DataFrame has necessary columns.
Args:
df (pd.DataFrame): DataFrame.
columns (list(str): columns to check for.
Returns:
bool: True if DataFrame has specified columns.
"""
result = True
for column in columns:
if column not in df.columns:
print("Missing column: {} in DataFrame".format(column))
result = False
return result
|
d2752099fb13cf3fb220cb0c8402917488c32ef1
| 24,082 |
def render(template, **kwargs):
"""Render template with default values set"""
return JINJA_ENV.get_template(template).render(
autograde=autograde,
css=CSS,
favicon=FAVICON,
timestamp=timestamp_utc_iso(),
**kwargs
)
|
a523822c6c3bb9ff2b41a63091d2c89f612b18b4
| 24,083 |
def _cytof_analysis_derivation(context: DeriveFilesContext) -> DeriveFilesResult:
"""Generate a combined CSV for CyTOF analysis data"""
cell_counts_analysis_csvs = pd.json_normalize(
data=context.trial_metadata,
record_path=["assays", "cytof", "records"],
meta=[prism.PROTOCOL_ID_FIELD_NAME],
)
artifacts = []
for combined_f_kind in [
"cell_counts_assignment",
"cell_counts_compartment",
"cell_counts_profiling",
]:
res_df = pd.DataFrame()
for index, row in cell_counts_analysis_csvs.iterrows():
obj_url = row[f"output_files.{combined_f_kind}.object_url"]
cell_counts_csv = context.fetch_artifact(obj_url, True)
if not cell_counts_csv:
raise Exception(
f"Failed to read {obj_url} building Cytof analysis derivation"
)
df = pd.read_csv(cell_counts_csv)
# Each cell_counts_... file consist of just records for one sample.
# The first column of each cell_counts_csv (CellSubset) contains cell group types
# and the second contains counts for those types.
# Create a new, transposed dataframe with cell group types as column headers
# and a single row of cell count data.
df = df.set_index("CellSubset")
df = df.drop(
columns="Unnamed: 0", axis=1
) # Cell counts files contain an unnamed index column
df = df.transpose()
# and adding metadata, so we can distinguish different samples
df = df.rename(index={"N": row["cimac_id"]})
df["cimac_id"] = row["cimac_id"]
df["cimac_participant_id"] = participant_id_from_cimac(row["cimac_id"])
df[prism.PROTOCOL_ID_FIELD_NAME] = row[prism.PROTOCOL_ID_FIELD_NAME]
# finally combine them
res_df = pd.concat([res_df, df])
# and add as artifact
artifacts.append(
_build_artifact(
context=context,
file_name=f"combined_{combined_f_kind}.csv",
data=res_df.to_csv(index=False),
data_format="csv", # confusing, but right
file_type=combined_f_kind.replace("_", " "),
include_upload_type=True,
)
)
return DeriveFilesResult(
artifacts, context.trial_metadata # return metadata without updates
)
|
21ca42e0d53f602c09a3901b6287d0d970bc7d7b
| 24,084 |
def get_field(name, data):
"""
Return a valid Field by given data
"""
if isinstance(data, AbstractField):
return data
data = keys_to_string(data)
type = data.get('type', 'object')
if type == "string":
return StringField(name=name, **data)
elif type == "boolean":
return BooleanField(name=name, **data)
elif type == "short":
return ShortField(name=name, **data)
elif type == "integer":
return IntegerField(name=name, **data)
elif type == "long":
return LongField(name=name, **data)
elif type == "float":
return FloatField(name=name, **data)
elif type == "double":
return DoubleField(name=name, **data)
elif type == "ip":
return IpField(name=name, **data)
elif type == "date":
return DateField(name=name, **data)
elif type == "multi_field":
return MultiField(name=name, **data)
elif type == "geo_point":
return GeoPointField(name=name, **data)
elif type == "attachment":
return AttachmentField(name=name, **data)
elif type == "object":
if '_all' in data:
return DocumentObjectField(name=name, **data)
return ObjectField(name=name, **data)
raise RuntimeError("Invalid type: %s" % type)
|
61abdb216ff76f54c752878023bc3c60128e18f4
| 24,085 |
def data_context_connectivity_context_connectivity_serviceuuid_namevalue_name_get(uuid, value_name): # noqa: E501
"""data_context_connectivity_context_connectivity_serviceuuid_namevalue_name_get
returns tapi.common.NameAndValue # noqa: E501
:param uuid: Id of connectivity-service
:type uuid: str
:param value_name: Id of name
:type value_name: str
:rtype: TapiCommonNameAndValue
"""
return 'do some magic!'
|
f703f90bfbd4f476b58f7aacceecca9a444835e4
| 24,086 |
def open_alleles_file(N0, n, U, Es, mmax, mwt, mutmax, rep):
"""
This function opens the output files and returns file
handles to each.
"""
sim_id = 'N%d_n%d_U%.6f_Es%.5f_mmax%.2f_mwt%.2f_mutmax%d_rep%d' %(N0, n, U, Es, mmax, mwt, mutmax, rep)
data_dir = '../SIM_DATA'
outfile = open("%s/alleles_%s.csv" %(data_dir,sim_id),"w")
return outfile
|
62455b1ba4dd65b6ef78f3b4cfdb31efd8433db6
| 24,087 |
def approximateWcs(wcs, camera_wrapper=None, detector_name=None,
obs_metadata=None,
order=3, nx=20, ny=20, iterations=3,
skyTolerance=0.001*LsstGeom.arcseconds, pixelTolerance=0.02):
"""
Approximate an existing WCS as a TAN-SIP WCS
The fit is performed by evaluating the WCS at a uniform grid of
points within a bounding box.
@param[in] wcs wcs to approximate
@param[in] camera_wrapper is an instantiation of GalSimCameraWrapper
@param[in] detector_name is the name of the detector
@param[in] obs_metadata is an ObservationMetaData characterizing
the telescope pointing
@param[in] order order of SIP fit
@param[in] nx number of grid points along x
@param[in] ny number of grid points along y
@param[in] iterations number of times to iterate over fitting
@param[in] skyTolerance maximum allowed difference in world
coordinates between input wcs and approximate wcs
(default is 0.001 arcsec)
@param[in] pixelTolerance maximum allowed difference in pixel
coordinates between input wcs and approximate wcs
(default is 0.02 pixels) @return the fit TAN-SIP WCS
"""
tanWcs = wcs
# create a matchList consisting of a grid of points covering the bbox
refSchema = afwTable.SimpleTable.makeMinimalSchema()
refCoordKey = afwTable.CoordKey(refSchema["coord"])
refCat = afwTable.SimpleCatalog(refSchema)
sourceSchema = afwTable.SourceTable.makeMinimalSchema()
SingleFrameMeasurementTask(schema=sourceSchema) # expand the schema
sourceCentroidKey = afwTable.Point2DKey(sourceSchema["slot_Centroid"])
sourceCat = afwTable.SourceCatalog(sourceSchema)
# 20 March 2017
# the 'try' block is how it works in swig;
# the 'except' block is how it works in pybind11
try:
matchList = afwTable.ReferenceMatchVector()
except AttributeError:
matchList = []
bbox = camera_wrapper.getBBox(detector_name)
bboxd = LsstGeom.Box2D(bbox)
for x in np.linspace(bboxd.getMinX(), bboxd.getMaxX(), nx):
for y in np.linspace(bboxd.getMinY(), bboxd.getMaxY(), ny):
pixelPos = LsstGeom.Point2D(x, y)
ra, dec = camera_wrapper.raDecFromPixelCoords(
np.array([x]), np.array([y]),
detector_name,
obs_metadata=obs_metadata,
epoch=2000.0,
includeDistortion=True)
skyCoord = LsstGeom.SpherePoint(ra[0], dec[0], LsstGeom.degrees)
refObj = refCat.addNew()
refObj.set(refCoordKey, skyCoord)
source = sourceCat.addNew()
source.set(sourceCentroidKey, pixelPos)
matchList.append(afwTable.ReferenceMatch(refObj, source, 0.0))
# The TAN-SIP fitter is fitting x and y separately, so we have to
# iterate to make it converge
for _ in range(iterations):
sipObject = makeCreateWcsWithSip(matchList, tanWcs, order, bbox)
tanWcs = sipObject.getNewWcs()
fitWcs = sipObject.getNewWcs()
return fitWcs
|
a0dbf47c197033291541d3afc19406e161173b81
| 24,088 |
def parse_table_column_names(table_definition_text):
"""
Parse the table and column names from the given SQL table
definition. Return (table-name, (col1-name, col2-name, ...)).
Naรฏvely assumes that ","s separate column definitions regardless of
quoting, escaping, and context.
"""
match = _table_def_pattern.match(table_definition_text)
if match is None:
raise ValueError('Cannot parse table definition from: {!r}'
.format(table_definition_text))
tbl_nm = match[1]
col_defs = match[2].split(',')
col_nms = (col_def.split(maxsplit=1)[0] for col_def in col_defs)
return (tbl_nm, tuple(col_nms))
|
3ec88640a0411799e35b25987a809b1489f4a03b
| 24,089 |
def show_all_positions():
"""
This leads user to the position page when user clicks on the positions
button on the top right and it is supposed to show user all the positions
in the database
"""
db=main()
conn = create_connection(db)
mycur = conn.cursor()
post=mycur.execute("SELECT * FROM positions")
#positions = positions.query.all()
return render_template('position-all.html', positions=post)
|
df59bf0f97e46cf79d23d93037972513759942d3
| 24,091 |
import copy
def get_subtree_tips(terms: list, name: str, tree):
"""
get lists of subsubtrees from subtree
"""
# get the duplicate sequences
dups = [e for e in terms if e.startswith(name)]
subtree_tips = []
# for individual sequence among duplicate sequences
for dup in dups:
# create a copy of the tree
temptree = copy.deepcopy(tree)
# get the node path for the duplicate sequence
node_path = temptree.get_path(dup)
# for the terminals of the parent of the duplicate sequence
# get the terminal names and append them to temp
temp = []
for term in node_path[-2].get_terminals():
temp.append(term.name)
subtree_tips.append(temp)
return subtree_tips, dups
|
7bebf86ba95ede46f4e4c3ad0926784d4755124b
| 24,092 |
def pressure_to_cm_h2o(press_in):
"""Convert pressure in [pa] to [cm H2O]
Returns a rounded integer"""
conversion_factor = 98.0665
return int(round(press_in / conversion_factor))
|
cabf905a71747c0e053356d89beebad7f03e85e7
| 24,093 |
def parse_deceased_field(deceased_field):
"""
Parse the deceased field.
At this point the deceased field, if it exists, is garbage as it contains First Name, Last Name, Ethnicity,
Gender, D.O.B. and Notes. We need to explode this data into the appropriate fields.
:param list deceased_field: a list where each item is a word from the deceased field
:return: a dictionary representing a deceased field.
:rtype: dict
"""
dob_index = -1
dob_tokens = [Fields.DOB, '(D.O.B', '(D.O.B.', '(D.O.B:', '(DOB', '(DOB:', 'D.O.B.', 'DOB:']
while dob_index < 0 and dob_tokens:
dob_token = dob_tokens.pop()
try:
dob_index = deceased_field.index(dob_token)
except ValueError:
pass
else:
break
if dob_index < 0:
raise ValueError(f'Cannot parse {Fields.DECEASED}: {deceased_field}')
d = {}
d[Fields.DOB] = deceased_field[dob_index + 1]
notes = deceased_field[dob_index + 2:]
if notes:
d[Fields.NOTES] = ' '.join(notes)
# `fleg` stands for First, Last, Ethnicity, Gender. It represents the info stored before the DOB.
fleg = deceased_field[:dob_index]
# Try to pop out the results one by one. If pop fails, it means there is nothing left to retrieve,
# For example, there is no first name and last name.
try:
d[Fields.GENDER] = fleg.pop().replace(',', '')
d[Fields.ETHNICITY] = fleg.pop().replace(',', '')
d[Fields.LAST_NAME] = fleg.pop().replace(',', '')
d[Fields.FIRST_NAME] = fleg.pop().replace(',', '')
except IndexError:
pass
return d
|
f87faed7b9def61f0533dc0d3bdd7823490031cf
| 24,094 |
def rate(epoch, rate_init, epochs_per_order):
""" Computes learning rate as a function of epoch index.
Inputs:
epoch - Index of current epoch.
rate_init - Initial rate.
epochs_per_order - Number of epochs to drop an order of magnitude.
"""
return rate_init * 10.0 ** (-epoch / epochs_per_order)
|
cc1c7850d4bd98d30b97c7915ceb96eaeadef327
| 24,095 |
import networkx
def has_loop(net):
"""
Check if the network is a loop
"""
try:
networkx.algorithms.cycles.find_cycle(net)
return True
except networkx.exception.NetworkXNoCycle:
return False
|
8141b0609e780297ba3ecabc1d9bd97ca7ea09c3
| 24,096 |
def get_query_name(hmma):
"""
get the panther family name from the query target
"""
hmma_list = hmma.split ('.')
if len(hmma_list) > 2:
hmm_fam = hmma_list[0]
hmm_sf = hmma_list[1]
something_else = hmma_list[2]
elif len(hmma_list) == 2:
hmm_fam = hmma_list[0]
something_else = hmma_list[1]
hmm_id = hmm_fam
if hmm_sf and hmm_sf.startswith("SF"):
hmm_id = hmm_fam + ':' + hmm_sf
return hmm_id
|
cdb7bc6f9db022842872e710266937c872768407
| 24,097 |
def staff_member_required(view_func, redirect_field_name=REDIRECT_FIELD_NAME, login_url='admin:login'):
"""
Decorator for views that checks that the user is logged in and is a staff
member, displaying the login page if necessary.
"""
return user_passes_test(
lambda u: u.is_active and u.is_staff,
login_url=login_url,
redirect_field_name=redirect_field_name
)(view_func)
|
bf62abb607e5fcef5a71938dce2fd8c0f008d9cf
| 24,098 |
from typing import Dict
def get_event_listeners(ctx: Configuration) -> Dict:
"""List of events that is being listened for."""
try:
req = restapi(ctx, METH_GET, hass.URL_API_EVENTS)
return req.json() if req.status_code == 200 else {} # type: ignore
except (HomeAssistantCliError, ValueError):
# ValueError if req.json() can't parse the json
_LOGGER.exception("Unexpected result retrieving event listeners")
return {}
|
aebe497010e1719a815274e2f0e6ebb6177650d5
| 24,099 |
def process_tce(tce):
"""Processes the light curve for a Kepler TCE and returns processed data
Args:
tce: Row of the input TCE table.
Returns:
Processed TCE data at each stage (flattening, folding, binning).
Raises:
IOError: If the light curve files for this Kepler ID cannot be found.
"""
# Read and process the light curve.
time, flattened_flux = preprocess.read_and_process_light_curve(tce.kepid, KEPLER_DATA_DIR)
time, folded_flux = preprocess.phase_fold_and_sort_light_curve(time, flattened_flux, tce.tce_period, tce.tce_time0bk)
# Generate the local and global views.
local_view = preprocess.local_view(time, folded_flux, tce.tce_period, tce.tce_duration, num_bins=201, bin_width_factor=0.16, num_durations=4)
global_view = preprocess.global_view(time, folded_flux, tce.tce_period, num_bins=2001, bin_width_factor=1 / 2001)
return flattened_flux, folded_flux, local_view, global_view
|
f20e62b48828c7c4d9fac8697035f058f48f5799
| 24,100 |
def _build_kwic(docs, search_tokens, context_size, match_type, ignore_case, glob_method, inverse,
highlight_keyword=None, with_metadata=False, with_window_indices=False,
only_token_masks=False):
"""
Helper function to build keywords-in-context (KWIC) results from documents `docs`.
:param docs: list of tokenized documents, optionally as 2-tuple where each element in `docs` is a tuple
of (tokens list, tokens metadata dict)
:param search_tokens: search pattern(s)
:param context_size: either scalar int or tuple (left, right) -- number of surrounding words in keyword context.
if scalar, then it is a symmetric surrounding, otherwise can be asymmetric
:param match_type: One of: 'exact', 'regex', 'glob'. If 'regex', `search_token` must be RE pattern. If `glob`,
`search_token` must be a "glob" pattern like "hello w*"
(see https://github.com/metagriffin/globre).
:param ignore_case: If True, ignore case for matching.
:param glob_method: If `match_type` is 'glob', use this glob method. Must be 'match' or 'search' (similar
behavior as Python's :func:`re.match` or :func:`re.search`).
:param inverse: Invert the matching results.
:param highlight_keyword: If not None, this must be a string which is used to indicate the start and end of the
matched keyword.
:param with_metadata: add document metadata to KWIC results
:param with_window_indices: add window indices to KWIC results
:param only_token_masks: return only flattened token masks for filtering
:return: list with KWIC results per document
"""
tokens = docs
if docs:
first_elem = next(iter(docs))
if isinstance(first_elem, tuple) and len(first_elem) == 2:
tokens = list(zip(*docs))[0]
# find matches for search criteria -> list of NumPy boolean mask arrays
matches = _token_pattern_matches(tokens, search_tokens, match_type=match_type,
ignore_case=ignore_case, glob_method=glob_method)
if not only_token_masks and inverse:
matches = [~m for m in matches]
left, right = context_size
kwic_list = []
for mask, dtok in zip(matches, docs):
if isinstance(dtok, tuple):
dtok, dmeta = dtok
else:
dmeta = None
dtok_arr = np.array(dtok, dtype=str)
ind = np.where(mask)[0]
ind_windows = make_index_window_around_matches(mask, left, right,
flatten=only_token_masks, remove_overlaps=True)
if only_token_masks:
assert ind_windows.ndim == 1
assert len(ind) <= len(ind_windows)
# from indices back to binary mask; this only works with remove_overlaps=True
win_mask = np.repeat(False, len(dtok))
win_mask[ind_windows] = True
if inverse:
win_mask = ~win_mask
kwic_list.append(win_mask)
else:
assert len(ind) == len(ind_windows)
windows_in_doc = []
for match_ind, win in zip(ind, ind_windows): # win is an array of indices into dtok_arr
tok_win = dtok_arr[win].tolist()
if highlight_keyword is not None:
highlight_mask = win == match_ind
assert np.sum(highlight_mask) == 1
highlight_ind = np.where(highlight_mask)[0][0]
tok_win[highlight_ind] = highlight_keyword + tok_win[highlight_ind] + highlight_keyword
win_res = {'token': tok_win}
if with_window_indices:
win_res['index'] = win
if with_metadata and dmeta is not None:
for meta_key, meta_vals in dmeta.items():
win_res[meta_key] = np.array(meta_vals)[win].tolist()
windows_in_doc.append(win_res)
kwic_list.append(windows_in_doc)
assert len(kwic_list) == len(docs)
return kwic_list
|
d6252c716831bf51342f06aaab343d0f88f6811d
| 24,101 |
from datetime import datetime
import pytz
import logging
def filter_records(records,
arns_to_filter_for=None,
from_date=datetime.datetime(1970, 1, 1, tzinfo=pytz.utc),
to_date=datetime.datetime.now(tz=pytz.utc)):
"""Filter records so they match the given condition"""
result = list(pipe(records, filterz(_by_timeframe(from_date, to_date)), filterz(_by_role_arns(arns_to_filter_for))))
if not result and records:
logging.warning(ALL_RECORDS_FILTERED)
return result
|
6a3f14e577cef4a2a883781f50d3c695e11f8c82
| 24,103 |
from typing import Tuple
from typing import Dict
from operator import inv
def generate_prob_matrix(A: int, D: int)\
-> Tuple[Dict[Tuple[int, int], int], Dict[Tuple[int, int], int], np.ndarray]:
"""Generate the probability outcome matrix"""
transient_state, absorbing_state = generate_states(A, D)
transient_state_lookup = {s: i for i, s in enumerate(transient_state)}
absorbing_state_lookup = {s: i for i, s in enumerate(absorbing_state)}
transient_length, absorbing_length = len(transient_state), len(absorbing_state)
# Add probability to transition elements
Qrow = []
Qcol = []
Qdata = []
Rrow = []
Rcol = []
Rdata = []
for i, (a, d) in enumerate(transient_state):
max_deaths = 2 if a > 1 and d > 1 else 1
for dl in range(0, max_deaths + 1):
al = max_deaths - dl
na, nd = a - al, d - dl
if a - al > 0 and d - dl > 0:
Qrow.append(i)
Qcol.append(transient_state_lookup[(na, nd)])
Qdata.append(probable_outcome(min(a, 3), min(d, 2), dl))
else:
Rrow.append(i)
Rcol.append(absorbing_state_lookup[(na, nd)])
Rdata.append(probable_outcome(min(a, 3), min(d, 2), dl))
Q = csc_matrix((Qdata, (Qrow, Qcol)), shape=(transient_length, transient_length))
R = csc_matrix((Rdata, (Rrow, Rcol)), shape=(transient_length, absorbing_length))
iden = identity(transient_length)
F = inv(iden - Q) * R
return transient_state_lookup, absorbing_state_lookup, F
|
00f8074f19436fcd9031af5c553f8b307b6008ba
| 24,104 |
import threading
import time
def _prepare_func(app_id, run_id, train_fn, args_dict, local_logdir):
"""
Args:
app_id:
run_id:
train_fn:
args_dict:
local_logdir:
Returns:
"""
def _wrapper_fun(iter):
"""
Args:
iter:
Returns:
"""
for i in iter:
executor_num = i
experiment_utils._set_ml_id(app_id, run_id)
tb_hdfs_path = ''
hdfs_exec_logdir = experiment_utils._get_logdir(app_id, run_id)
t = threading.Thread(target=devices._print_periodic_gpu_utilization)
if devices.get_num_gpus() > 0:
t.start()
try:
#Arguments
if args_dict:
param_string, params, args = experiment_utils.build_parameters(train_fn, executor_num, args_dict)
hdfs_exec_logdir, hdfs_appid_logdir = experiment_utils._create_experiment_subdirectories(app_id, run_id, param_string, 'grid_search', params=params)
logfile = experiment_utils._init_logger(hdfs_exec_logdir)
tb_hdfs_path, tb_pid = tensorboard._register(hdfs_exec_logdir, hdfs_appid_logdir, executor_num, local_logdir=local_logdir)
print(devices._get_gpu_info())
print('-------------------------------------------------------')
print('Started running task ' + param_string)
task_start = time.time()
retval = train_fn(*args)
task_end = time.time()
experiment_utils._handle_return_simple(retval, hdfs_exec_logdir, logfile)
time_str = 'Finished task ' + param_string + ' - took ' + experiment_utils._time_diff(task_start, task_end)
print(time_str)
print('-------------------------------------------------------')
else:
tb_hdfs_path, tb_pid = tensorboard._register(hdfs_exec_logdir, hdfs_exec_logdir, executor_num, local_logdir=local_logdir)
logfile = experiment_utils._init_logger(hdfs_exec_logdir)
print(devices._get_gpu_info())
print('-------------------------------------------------------')
print('Started running task')
task_start = time.time()
retval = train_fn()
task_end = time.time()
experiment_utils._handle_return_simple(retval, hdfs_exec_logdir, logfile)
time_str = 'Finished task - took ' + experiment_utils._time_diff(task_start, task_end)
print(time_str)
print('-------------------------------------------------------')
except:
raise
finally:
experiment_utils._cleanup(tensorboard, t)
return _wrapper_fun
|
93ec02a10e9dedd00787e302db5cca716e2d4f37
| 24,105 |
import re
def convert_camel_to_snake(string, remove_non_alphanumeric=True):
"""
converts CamelCase to snake_case
:type string: str
:rtype: str
"""
if remove_non_alphanumeric:
string = remove_non_alpha(string, replace_with='_', keep_underscore=True)
s1 = _first_cap_re.sub(r'\1_\2', string)
result = _all_cap_re.sub(r'\1_\2', s1).lower()
result = re.sub(pattern='\s*_+', repl="_", string=result)
return result
|
ed21ab5a58b08f2bc8b00d9b1cd5aa812b4e4148
| 24,106 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.