content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
import time def retry(func_name, max_retry, *args): """Retry a function if the output of the function is false :param func_name: name of the function to retry :type func_name: Object :param max_retry: Maximum number of times to be retried :type max_retry: Integer :param args: Arguments passed to the function :type args: args :return: Output of the function if function is True :rtype: Boolean (True/False) or None Type(None) """ output = None for _ in range(max_retry): output = func_name(*args) if output and output != 'False': return output else: time.sleep(5) else: return output
29051605dbad65823c1ca99afb3237679a37a08c
21,018
def encode_randomness(randomness: hints.Buffer) -> str: """ Encode the given buffer to a :class:`~str` using Base32 encoding. The given :class:`~bytes` are expected to represent the last 10 bytes of a ULID, which are cryptographically secure random values. .. note:: This uses an optimized strategy from the `NUlid` project for encoding ULID bytes specifically and is not meant for arbitrary encoding. :param randomness: Bytes to encode :type randomness: :class:`~bytes`, :class:`~bytearray`, or :class:`~memoryview` :return: Value encoded as a Base32 string :rtype: :class:`~str` :raises ValueError: when the randomness is not 10 bytes """ length = len(randomness) if length != 10: raise ValueError('Expects 10 bytes for randomness; got {}'.format(length)) encoding = ENCODING return \ encoding[(randomness[0] & 248) >> 3] + \ encoding[((randomness[0] & 7) << 2) | ((randomness[1] & 192) >> 6)] + \ encoding[(randomness[1] & 62) >> 1] + \ encoding[((randomness[1] & 1) << 4) | ((randomness[2] & 240) >> 4)] + \ encoding[((randomness[2] & 15) << 1) | ((randomness[3] & 128) >> 7)] + \ encoding[(randomness[3] & 124) >> 2] + \ encoding[((randomness[3] & 3) << 3) | ((randomness[4] & 224) >> 5)] + \ encoding[randomness[4] & 31] + \ encoding[(randomness[5] & 248) >> 3] + \ encoding[((randomness[5] & 7) << 2) | ((randomness[6] & 192) >> 6)] + \ encoding[(randomness[6] & 62) >> 1] + \ encoding[((randomness[6] & 1) << 4) | ((randomness[7] & 240) >> 4)] + \ encoding[((randomness[7] & 15) << 1) | ((randomness[8] & 128) >> 7)] + \ encoding[(randomness[8] & 124) >> 2] + \ encoding[((randomness[8] & 3) << 3) | ((randomness[9] & 224) >> 5)] + \ encoding[randomness[9] & 31]
5d1ba06d4d16f724a86c2c47c180c12fe0b16602
21,019
from typing import OrderedDict import six import json def obtain_parameter_values(flow): """ Extracts all parameter settings from the model inside a flow in OpenML format. Parameters ---------- flow : OpenMLFlow openml flow object (containing flow ids, i.e., it has to be downloaded from the server) Returns ------- list A list of dicts, where each dict has the following names: - oml:name (str): The OpenML parameter name - oml:value (mixed): A representation of the parameter value - oml:component (int): flow id to which the parameter belongs """ openml.flows.functions._check_flow_for_server_id(flow) def get_flow_dict(_flow): flow_map = {_flow.name: _flow.flow_id} for subflow in _flow.components: flow_map.update(get_flow_dict(_flow.components[subflow])) return flow_map def extract_parameters(_flow, _flow_dict, component_model, _main_call=False, main_id=None): def is_subcomponent_specification(values): # checks whether the current value can be a specification of # subcomponents, as for example the value for steps parameter # (in Pipeline) or transformers parameter (in # ColumnTransformer). These are always lists/tuples of lists/ # tuples, size bigger than 2 and an OpenMLFlow item involved. if not isinstance(values, (tuple, list)): return False for item in values: if not isinstance(item, (tuple, list)): return False if len(item) < 2: return False if not isinstance(item[1], openml.flows.OpenMLFlow): return False return True # _flow is openml flow object, _param dict maps from flow name to flow # id for the main call, the param dict can be overridden (useful for # unit tests / sentinels) this way, for flows without subflows we do # not have to rely on _flow_dict exp_parameters = set(_flow.parameters) exp_components = set(_flow.components) model_parameters = set([mp for mp in component_model.get_params() if '__' not in mp]) if len((exp_parameters | exp_components) ^ model_parameters) != 0: flow_params = sorted(exp_parameters | exp_components) model_params = sorted(model_parameters) raise ValueError('Parameters of the model do not match the ' 'parameters expected by the ' 'flow:\nexpected flow parameters: ' '%s\nmodel parameters: %s' % (flow_params, model_params)) _params = [] for _param_name in _flow.parameters: _current = OrderedDict() _current['oml:name'] = _param_name current_param_values = openml.flows.sklearn_to_flow( component_model.get_params()[_param_name]) # Try to filter out components (a.k.a. subflows) which are # handled further down in the code (by recursively calling # this function)! if isinstance(current_param_values, openml.flows.OpenMLFlow): continue if is_subcomponent_specification(current_param_values): # complex parameter value, with subcomponents parsed_values = list() for subcomponent in current_param_values: # scikit-learn stores usually tuples in the form # (name (str), subcomponent (mixed), argument # (mixed)). OpenML replaces the subcomponent by an # OpenMLFlow object. if len(subcomponent) < 2 or len(subcomponent) > 3: raise ValueError('Component reference should be ' 'size {2,3}. ') subcomponent_identifier = subcomponent[0] subcomponent_flow = subcomponent[1] if not isinstance(subcomponent_identifier, six.string_types): raise TypeError('Subcomponent identifier should be ' 'string') if not isinstance(subcomponent_flow, openml.flows.OpenMLFlow): raise TypeError('Subcomponent flow should be string') current = { "oml-python:serialized_object": "component_reference", "value": { "key": subcomponent_identifier, "step_name": subcomponent_identifier } } if len(subcomponent) == 3: if not isinstance(subcomponent[2], list): raise TypeError('Subcomponent argument should be' 'list') current['value']['argument_1'] = subcomponent[2] parsed_values.append(current) parsed_values = json.dumps(parsed_values) else: # vanilla parameter value parsed_values = json.dumps(current_param_values) _current['oml:value'] = parsed_values if _main_call: _current['oml:component'] = main_id else: _current['oml:component'] = _flow_dict[_flow.name] _params.append(_current) for _identifier in _flow.components: subcomponent_model = component_model.get_params()[_identifier] _params.extend(extract_parameters(_flow.components[_identifier], _flow_dict, subcomponent_model)) return _params flow_dict = get_flow_dict(flow) parameters = extract_parameters(flow, flow_dict, flow.model, True, flow.flow_id) return parameters
25374b844eb3172927e74fe20b26483e547a1583
21,020
def logging_sync_ocns(cookie, in_from_or_zero, in_to_or_zero): """ Auto-generated UCSC XML API Method. """ method = ExternalMethod("LoggingSyncOcns") method.cookie = cookie method.in_from_or_zero = str(in_from_or_zero) method.in_to_or_zero = str(in_to_or_zero) xml_request = method.to_xml(option=WriteXmlOption.DIRTY) return xml_request
178e8207305f419a8f7d182b10b23ab8548ad624
21,021
def story_role(name, rawtext, text, lineno, inliner, options=None, content=None): """Link to a JIRA issue. Returns 2 part tuple containing list of nodes to insert into the document and a list of system messages. Both are allowed to be empty. :param name: The role name used in the document. :param rawtext: The entire markup snippet, with role. :param text: The text marked with the role. :param lineno: The line number where rawtext appears in the input. :param inliner: The inliner instance that called us. :param options: Directive options for customization. :param content: The directive content for customization. """ return role_base(name, rawtext, text, lineno, inliner, options=options, content=content, role_type='story')
0f347d7c5a7a802b9f3b23ee70996e86155d2ca9
21,022
def benedict_bornder_constants(g, critical=False): """ Computes the g,h constants for a Benedict-Bordner filter, which minimizes transient errors for a g-h filter. Returns the values g,h for a specified g. Strictly speaking, only h is computed, g is returned unchanged. The default formula for the Benedict-Bordner allows ringing. We can "nearly" critically damp it; ringing will be reduced, but not entirely eliminated at the cost of reduced performance. Parameters ---------- g : float scaling factor g for the filter critical : boolean, default False Attempts to critically damp the filter. Returns ------- g : float scaling factor g (same as the g that was passed in) h : float scaling factor h that minimizes the transient errors Examples -------- .. code-block:: Python from filterpy.gh import GHFilter, benedict_bornder_constants g, h = benedict_bornder_constants(.855) f = GHFilter(0, 0, 1, g, h) References ---------- Brookner, "Tracking and Kalman Filters Made Easy". John Wiley and Sons, 1998. """ g_sqr = g**2 if critical: return (g, 0.8 * (2. - g_sqr - 2*(1-g_sqr)**.5) / g_sqr) return (g, g_sqr / (2.-g))
ca40941b4843b3d71030549da2810c9241ebdf72
21,023
import ispyb.model.datacollection import ispyb.model.processingprogram import ispyb.model.screening import ispyb.model.image_quality_indicators import ispyb.model.detector import ispyb.model.sample import ispyb.model.samplegroup import logging import configparser def enable(configuration_file, section="ispyb"): """Enable access to features that are currently under development.""" global _db, _db_cc, _db_config if _db_config: if _db_config == configuration_file: # This database connection is already set up. return logging.getLogger("ispyb").warn( "__future__ configuration file change requested" ) disable() logging.getLogger("ispyb").info( "NOTICE: This code uses __future__ functionality in the ISPyB API. " "This enables unsupported and potentially unstable code, which may " "change from version to version without warnings. Here be dragons." ) cfgparser = configparser.RawConfigParser() if not cfgparser.read(configuration_file): raise RuntimeError( "Could not read from configuration file %s" % configuration_file ) cfgsection = dict(cfgparser.items(section)) host = cfgsection.get("host") port = cfgsection.get("port", 3306) database = cfgsection.get("database", cfgsection.get("db")) username = cfgsection.get("username", cfgsection.get("user")) password = cfgsection.get("password", cfgsection.get("pw")) # Open a direct MySQL connection _db = mysql.connector.connect( host=host, port=port, user=username, password=password, database=database, use_pure=True, ) _db_config = configuration_file _db.autocommit = True class DictionaryCursorContextManager: """This class creates dictionary cursors for mysql.connector connections. By using a context manager it is ensured that cursors are closed immediately after use. Cursors created with this context manager return results as a dictionary and offer a .run() function, which is an alias to .execute that accepts query parameters as function parameters rather than a list. """ def __enter__(cm): """Enter context. Ensure the database is alive and return a cursor with an extra .run() function.""" _db.ping(reconnect=True) cm.cursor = _db.cursor(dictionary=True) def flat_execute(stmt, *parameters): """Pass all given function parameters as a list to the existing .execute() function.""" return cm.cursor.execute(stmt, parameters) setattr(cm.cursor, "run", flat_execute) return cm.cursor def __exit__(cm, *args): """Leave context. Close cursor. Destroy reference.""" cm.cursor.close() cm.cursor = None _db_cc = DictionaryCursorContextManager ispyb.model.datacollection.DataCollection.integrations = ( _get_linked_autoprocintegration_for_dc ) ispyb.model.datacollection.DataCollection.screenings = _get_linked_screenings_for_dc ispyb.model.datacollection.DataCollection.pdb = _get_linked_pdb_for_dc ispyb.model.processingprogram.ProcessingProgram.reload = _get_autoprocprogram ispyb.model.screening.Screening.outputs = _get_linked_outputs_for_screening ispyb.model.screening.Screening.reload = _get_screening ispyb.model.screening.ScreeningOutput.lattices = ( _get_linked_lattices_for_screening_output ) ispyb.model.screening.ScreeningOutput.strategies = ( _get_linked_strategies_for_screening_output ) ispyb.model.screening.ScreeningOutput.reload = _get_screening_output ispyb.model.screening.ScreeningOutputLattice.reload = _get_screening_output_lattice ispyb.model.screening.ScreeningStrategy.wedges = ( _get_linked_wedges_for_screening_strategy ) ispyb.model.screening.ScreeningStrategy.reload = _get_screening_strategy ispyb.model.screening.ScreeningStrategyWedge.sub_wedges = ( _get_linked_sub_wedges_for_screening_strategy_wedge ) ispyb.model.screening.ScreeningStrategyWedge.reload = _get_screening_strategy_wedge ispyb.model.screening.ScreeningStrategySubWedge.reload = ( _get_screening_strategy_sub_wedge ) ispyb.model.image_quality_indicators.ImageQualityIndicators.reload = ( _get_image_quality_indicators ) ispyb.model.image_quality_indicators.ImageQualityIndicatorsList.reload = ( _get_image_quality_indicators_for_dcid ) ispyb.model.datacollection.DataCollection.image_quality = ( _get_linked_image_quality_indicators_for_data_collection ) ispyb.model.detector.Detector.reload = _get_detector ispyb.model.sample.Sample.reload = _get_sample ispyb.model.datacollection.DataCollection.sample = _get_linked_sample_for_dcid ispyb.model.samplegroup.SampleGroup.reload = _get_sample_group ispyb.model.datacollection.DataCollection.sample_groups = ( _get_linked_sample_groups_for_dcid )
a48ce8d2157f151a4f3e7146e7d8c8881a4dfc23
21,024
def median(f, x, y, a, b): """ Return the median value of the `size`-neighbors of the given point. """ # Create the sub 2d array sub_f = f[x - a:x + a + 1, y - b:y + b + 1] # Return the median arr = np.sort(np.asarray(sub_f).reshape(-1)) return np.median(arr)
7cdb625ad4906efac92cd94b1dfce91df7854daf
21,025
from typing import Set from pathlib import Path def build_relevant_api_reference_files( docstring: str, api_doc_id: str, api_doc_path: str ) -> Set[str]: """Builds importable link snippets according to the contents of a docstring's `# Documentation` block. This method will create files if they do not exist, and will append links to the files that already do exist. Args: docstring: the docstring that contains the `# Documentation` block listing urls to be cross-linked. api_doc_id: A string representation of the API doc that will have the link applied to it. api_doc_path: a Docusaurus compliant path to the API document. Returns: A set containing the file paths that were created or appended to. """ output_paths = set() document_paths = get_document_paths(docstring) for relevant_path in document_paths: links_path = Path(f"..{relevant_path}__api_links.mdx") output_paths.add(links_path) if links_path.exists(): with open(links_path, "a") as f: f.write(f"- [{api_doc_id}]({api_doc_path})\n") else: with open(links_path, "w") as f: f.write(f"- [{api_doc_id}]({api_doc_path})\n") return output_paths
e83aaed8cfc0ec7ee8fffb3f95eb2c5aa948d212
21,026
def find_zip_entry(zFile, override_file): """ Implement ZipFile.getinfo() as case insensitive for systems with a case insensitive file system so that looking up overrides will work the same as it does in the Sublime core. """ try: return zFile.getinfo(override_file) except KeyError: if _wrap("ABC") == _wrap("abc"): override_file = _wrap(override_file) entry_list = zFile.infolist() for entry in entry_list: if _wrap(entry.filename) == override_file: return entry raise
33b1b868378a789ebc014615b1bc93b34b3f1e67
21,027
def get_mode(elements): """The element(s) that occur most frequently in a data set.""" dictionary = {} elements.sort() for element in elements: if element in dictionary: dictionary[element] += 1 else: dictionary[element] = 1 # Get the max value max_value = max(dictionary.values()) highest_elements = [key for key, value in dictionary.items() if value == max_value] modes = sorted(highest_elements) return modes[0]
bc792ffe58ffb3b9368559fe45ec623fe8accff6
21,028
def holtWintersAberration(requestContext, seriesList, delta=3): """ Performs a Holt-Winters forecast using the series as input data and plots the positive or negative deviation of the series data from the forecast. """ results = [] for series in seriesList: confidenceBands = holtWintersConfidenceBands(requestContext, [series], delta) lowerBand = confidenceBands[0] upperBand = confidenceBands[1] aberration = list() for i, actual in enumerate(series): if series[i] is None: aberration.append(0) elif upperBand[i] is not None and series[i] > upperBand[i]: aberration.append(series[i] - upperBand[i]) elif lowerBand[i] is not None and series[i] < lowerBand[i]: aberration.append(series[i] - lowerBand[i]) else: aberration.append(0) newName = "holtWintersAberration(%s)" % series.name results.append(TimeSeries(newName, series.start, series.end , series.step, aberration)) return results
05040695e7d6f6e5d8e117d32f66ebbfb0cb7392
21,029
def get_in_addition_from_start_to_end_item(li, start, end): """ 获取除开始到结束之外的元素 :param li: 列表元素 :param start: 开始位置 :param end: 结束位置 :return: 返回开始位置到结束位置之间的元素 """ return li[start:end + 1]
7106a9d409d9d77ab20e7e85d85c2ddb7a2a431c
21,030
import re def remove_special_message(section_content): """ Remove special message - "medicinal product no longer authorised" e.g. 'me di cin al p ro du ct n o lo ng er a ut ho ris ed' 'me dic ina l p rod uc t n o l on ge r a uth ori se d' :param section_content: content of a section :return: content of a section without special message """ # string as it is present in the section content SPECIAL_MESSAGE1 = 'me di cin al p ro du ct n o lo ng er a ut ho ris ed' SPECIAL_MESSAGE2 = 'me dic ina l p ro du ct no lo ng er au th or ise d' SPECIAL_MESSAGE3 = 'me dic ina l p rod uc t n o l on ge r a uth ori se d' SPECIAL_MESSAGE4 = 'me dic ina l p ro du ct no lo ng er au tho ris ed' SPECIAL_MESSAGE5 = 'me dic ina l p ro du ct no lo ng er a ut ho ris ed' SPECIAL_MESSAGE6 = 'me dic ina l p rod uc t n o l on ge r a uth ori sed' SPECIAL_MESSAGE7 = 'm ed ici na l p ro du ct no lo ng er a ut ho ris ed' SPECIAL_MESSAGE8 = 'm ed ici na l p ro du ct no lo ng er au th or ise d' SPECIAL_MESSAGE9 = 'med icin al pro du ct no lo ng er au tho ris ed' SPECIAL_MESSAGE_ARRAY = [SPECIAL_MESSAGE1, SPECIAL_MESSAGE2, SPECIAL_MESSAGE3, SPECIAL_MESSAGE4, SPECIAL_MESSAGE5, SPECIAL_MESSAGE6, SPECIAL_MESSAGE7, SPECIAL_MESSAGE8, SPECIAL_MESSAGE9] # in case message present in section content for SPECIAL_MESSAGE in SPECIAL_MESSAGE_ARRAY: section_content = section_content.replace(SPECIAL_MESSAGE, '') # remove multiple consecutive spaces section_content = re.sub(' +', ' ', section_content) return section_content
37d9cbd697a98891b3f19848c90cb17dafcd6345
21,031
def simulate_cash_flow_values(cash_flow_data, number_of_simulations=1): """Simulate cash flow values from their mean and standard deviation. The function returns a list of numpy arrays with cash flow values. Example: Input: cash_flow_data: [[100, 20], [-500, 10]] number_of_simulations: 3 Output: [array([113.36222158, 77.39297513, 77.15350701]), array([-506.58408186, -503.27855081, -500.37690891])]""" if cash_flow_data and number_of_simulations > 0: simulated = [get_random_numbers(mean, standard_deviation, number_of_simulations) for mean, standard_deviation in cash_flow_data] else: simulated = [] return simulated
691122945f811e20b40032cb49920d3b2c7f5c13
21,032
import time def sim_v1(sim_params, prep_result, progress=None, pipeline=None): """ Map the simulation over the peptides in prep_result. This is actually performed twice in order to get a train and (different!) test set The "train" set includes decoys, the test set does not; furthermore the the error modes and radiometry noise is different in each set. """ if sim_params.random_seed is None: sim_params.random_seed = int(time.time()) np.random.seed(sim_params.random_seed) # CREATE a *training-set* for all peptides (real and decoy) if pipeline: pipeline.set_phase(0, 2) # Sanity check that all the peps are accounted for pep_seqs_with_decoys = prep_result.pepseqs__with_decoys() n_peps = pep_seqs_with_decoys.pep_i.nunique() assert n_peps == prep_result.n_peps ( train_dytmat, train_radmat, train_pep_recalls, train_flus, train_flu_remainders, train_true_pep_iz, ) = _run_sim( sim_params, pep_seqs_with_decoys, name="train", n_peps=n_peps, n_samples=sim_params.n_samples_train, progress=progress, ) if sim_params.is_survey: test_dyemat = None test_radmat = None test_recalls = None test_flus = None test_flu_remainders = None test_true_pep_iz = None else: # CREATE a *test-set* for real-only peptides if pipeline: pipeline.set_phase(1, 2) ( test_dyemat, test_radmat, test_recalls, test_flus, test_flu_remainders, test_true_pep_iz, ) = _run_sim( sim_params, prep_result.pepseqs__no_decoys(), name="test", n_peps=n_peps, n_samples=sim_params.n_samples_test, progress=progress, ) # CHECK that the train and test are not identical in SOME non_zero_row # If they are, there was some sort of RNG seed errors which might happen # for example if sub-processes failed to re-init their RNG seeds. # Test this by looking at pep_i==1 non_zero_rows = np.any(train_radmat[1] > 0, axis=(1, 2)) non_zero_row_args = np.argwhere(non_zero_rows)[0:100] train_rows = train_radmat[1, non_zero_row_args].reshape( ( non_zero_row_args.shape[0], non_zero_row_args.shape[1] * train_radmat.shape[2] * train_radmat.shape[3], ) ) test_rows = test_radmat[1, non_zero_row_args].reshape( ( non_zero_row_args.shape[0], non_zero_row_args.shape[1] * test_radmat.shape[2] * test_radmat.shape[3], ) ) if train_rows.shape[0] > 0 and not sim_params.allow_train_test_to_be_identical: any_differences = np.any(np.diagonal(cdist(train_rows, test_rows)) != 0.0) check.affirm(any_differences, "Train and test sets are identical") if train_dytmat is not None: train_dytmat.reshape( (train_dytmat.shape[0] * train_dytmat.shape[1], *train_dytmat.shape[2:]) ) if train_radmat is not None: train_radmat.reshape( (train_radmat.shape[0] * train_radmat.shape[1], *train_radmat.shape[2:]) ) if test_dyemat is not None: test_dyemat.reshape( (test_dyemat.shape[0] * test_dyemat.shape[1], *test_dyemat.shape[2:]) ) if test_radmat is not None: test_radmat.reshape( (test_radmat.shape[0] * test_radmat.shape[1], *test_radmat.shape[2:]) ) # REMOVE all-zero rows (EXCEPT THE FIRST which is the nul row) assert np.all(train_dytmat[0, :, :] == 0) some_non_zero_row_args = np.argwhere( ~np.all(train_dytmat[:, :, :] == 0, axis=(1, 2)) ).flatten() some_non_zero_row_args = np.concatenate(([0], some_non_zero_row_args)) # TASK: Plucking out the non-zero rows doesn't work well # with Arrtay results -- I need to rethink that. # For now, I'm converting this back to np.ndarray train_dytmat = train_dytmat[some_non_zero_row_args] train_radmat = train_radmat[some_non_zero_row_args] train_true_pep_iz = train_true_pep_iz[some_non_zero_row_args] if test_dyemat is not None: assert np.all(test_dyemat[0, :, :] == 0) some_non_zero_row_args = np.argwhere( ~np.all(test_dyemat[:, :, :] == 0, axis=(1, 2)) ).flatten() # DO not add a nul row into the test data # some_non_zero_row_args = np.concatenate(([0], some_non_zero_row_args)) test_dyemat = test_dyemat[some_non_zero_row_args] test_radmat = test_radmat[some_non_zero_row_args] test_true_pep_iz = test_true_pep_iz[some_non_zero_row_args] return SimV1Result( params=sim_params, train_dytmat=train_dytmat, train_radmat=train_radmat, train_pep_recalls=train_pep_recalls, train_flus=train_flus, train_flu_remainders=train_flu_remainders, train_true_pep_iz=train_true_pep_iz, test_dyemat=test_dyemat, test_radmat=test_radmat, test_recalls=test_recalls, test_flus=test_flus, test_true_pep_iz=test_true_pep_iz, test_flu_remainders=test_flu_remainders, )
243fca643749a5d346013f0547cefea1c1df7767
21,033
def apply_function_elementwise_series(ser, func): """Apply a function on a row/column basis of a DataFrame. Args: ser (pd.Series): Series. func (function): The function to apply. Returns: pd.Series: Series with the applied function. Examples: >>> df = pd.DataFrame(np.array(range(12)).reshape(4, 3), columns=list('abc')) >>> ser = df['b'] >>> f = lambda x: '%.1f' % x >>> apply_function_elementwise_series(ser, f) 0 1.0 1 4.0 2 7.0 3 10.0 Name: b, dtype: object """ return ser.map(func)
d2af0a9c7817c602b4621603a8f06283f34ae81a
21,034
from bs4 import BeautifulSoup def is_the_bbc_html(raw_html, is_lists_enabled): """ Creates a concatenate string of the article, with or without li elements included from bbc.co.uk. :param raw_html: resp.content from response.get(). :param is_lists_enabled: Boolean to include <Li> elements. :return: List where List[0] is a concatenated String of the article. """ article = [""] parsed_html = BeautifulSoup(raw_html.decode('utf-8', 'ignore'), 'html.parser') text_body = parsed_html.find("div", {"class": "story-body__inner"}).findAll('p') for text in text_body: article[0] += text.text if is_lists_enabled: text_lists = parsed_html.find("div", {"class": "story-body__inner"}).findAll('ls') if len(text_lists) > 0: for text in text_lists: article[0] += text.text return article
fb6bca09e1ebb78d7afd6d2afaa52feab9843d21
21,035
def create_empty_module(module_name, origin=None): """Creates a blank module. Args: module_name: The name to be given to the module. origin: The origin of the module. Defaults to None. Returns: A blank module. """ spec = spec_from_loader(module_name, loader=None, origin=origin) module = module_from_spec(spec) return module
f65e1fbbbba13fc25e84ea89c57329ba48d22ac7
21,036
def BitWidth(n: int): """ compute the minimum bitwidth needed to represent and integer """ if n == 0: return 0 if n > 0: return n.bit_length() if n < 0: # two's-complement WITHOUT sign return (n + 1).bit_length()
46dcdfb0987268133d606e609d39c641b9e6faab
21,038
import copy import numpy def read_many_nam_cube(netcdf_file_names, PREDICTOR_NAMES): """Reads storm-centered images from many NetCDF files. :param netcdf_file_names: 1-D list of paths to input files. :return: image_dict: See doc for `read_image_file`. """ image_dict = None keys_to_concat = [PREDICTOR_MATRIX_KEY] for this_file_name in netcdf_file_names: #print('Reading data from: "{0:s}"...'.format(this_file_name)) this_image_dict = read_nam_maps(this_file_name, PREDICTOR_NAMES) if image_dict is None: image_dict = copy.deepcopy(this_image_dict) continue for this_key in keys_to_concat: image_dict[this_key] = numpy.concatenate( (image_dict[this_key], this_image_dict[this_key]), axis=0 ) return image_dict
100e6dfcd998ae6d2d2f673251c6110ccec90b00
21,039
def rouge_l_summary_level(evaluated_sentences, reference_sentences): """ Computes ROUGE-L (summary level) of two text collections of sentences. http://research.microsoft.com/en-us/um/people/cyl/download/papers/ rouge-working-note-v1.3.1.pdf Calculated according to: R_lcs = SUM(1, u)[LCS<union>(r_i,C)]/m P_lcs = SUM(1, u)[LCS<union>(r_i,C)]/n F_lcs = ((1 + beta^2)*R_lcs*P_lcs) / (R_lcs + (beta^2) * P_lcs) where: SUM(i,u) = SUM from i through u u = number of sentences in reference summary C = Candidate summary made up of v sentences m = number of words in reference summary n = number of words in candidate summary :param evaluated_sentences: The sentences that have been picked by the summarizer :param reference_sentences: The sentences from the referene set :returns float: F_lcs :raises ValueError: raises exception if a param has len <= 0 """ if len(evaluated_sentences) <= 0 or len(reference_sentences) <= 0: raise (ValueError("Collections must contain at least 1 sentence.")) # total number of words in reference sentences m = len(_split_into_words(reference_sentences)) # total number of words in evaluated sentences n = len(_split_into_words(evaluated_sentences)) union_lcs_sum_across_all_references = 0 for ref_s in reference_sentences: union_lcs_sum_across_all_references += _union_lcs(evaluated_sentences, ref_s) return _f_lcs(union_lcs_sum_across_all_references, m, n)
9022cc4cc90d9b57f48716839b5e97315a7b78c6
21,040
def construct_classifier(cfg, module_names, in_features, slot_machine=False, k=8, greedy_selection=True ): """ Constructs a sequential model of fully-connected layers :param cfg:(List) The configuration of the model :param module_names: (List) The names of the layers :param in_features: (int) The number of input features to first fully-connected layer :param slot_machine: (bool) constructs a module for weight updates or slot_machines :param k:(int), the number of options per weight if model is a slot machine :param greedy_selection: (bool), use greedy selection if model is slot machine :return: model: a sequential module of fully-connected layers """ model = nn.Sequential() for i, v in enumerate(cfg): if v == 'D': model.add_module(module_names[i], nn.Dropout(p=0.5)) elif v == "relu": model.add_module(module_names[i], nn.ReLU(inplace=True)) else: if slot_machine: model.add_module(module_names[i],Linear(in_features, v, k, greedy_selection)) else: model.add_module(module_names[i], nn.Linear(in_features, v, bias=False)) in_features = v return model
84091ce1a74a5baae8cde8b32c2ab28e0ccc7175
21,041
def size_adjustment(imgs, shape): """ Args: imgs: Numpy array with shape (data, width, height, channel) = (*, 240, 320, 3). shape: 256 or None. 256: imgs_adj.shape = (*, 256, 256, 3) None: No modification of imgs. Returns: imgs_adj: Numpy array with shape (data, modified width, modified height, channel) """ if shape is None: imgs_adj = imgs elif shape == 256: # Reshape from 240x320 to 256x256 imgs_adj = np.delete(imgs, obj=[i for i in range(32)] + [i for i in range(287, 319)], axis=2) _tmp = imgs_adj.shape mask = np.zeros(shape=(_tmp[0], 8, _tmp[2], _tmp[3]), dtype=np.uint8) imgs_adj = np.concatenate([imgs_adj, mask], axis=1) imgs_adj = np.concatenate([mask, imgs_adj], axis=1) return imgs_adj
5143a34b3ad2085596a682811b6f35dca040c3e0
21,042
def to_full_model_name(root_key: str) -> str: """ Find model name from the root_key in the file. Args: root_key: root key such as 'system-security-plan' from a top level OSCAL model. """ if root_key not in const.MODEL_TYPE_LIST: raise TrestleError(f'{root_key} is not a top level model name.') module = const.MODEL_TYPE_TO_MODEL_MODULE[root_key] class_name = utils.alias_to_classname(root_key, utils.AliasMode.JSON) return f'{module}.{class_name}'
8c73a54cb03c8cc52d24ec4bc284326289ff04f1
21,043
from typing import Dict def is_unique(s: str) -> bool: """ Time: O(n) Space: O(n) """ chars: Dict[str, int] = {} for char in s: if char in chars: return False else: chars[char] = 1 return True
4f77691be1192202b57b20bdc5676a31bc8b175e
21,044
def is_available() -> bool: """Return ``True`` if the handler has its dependencies met.""" return HAVE_RLE
b4e035dc62ef79211cb038a8b567985679c500aa
21,046
def model_with_buckets(encoder_inputs, decoder_inputs, targets, weights, buckets, seq2seq, softmax_loss_function=None, per_example_loss=False, name=None): """Create a sequence-to-sequence model with support for bucketing. The seq2seq argument is a function that defines a sequence-to-sequence model, e.g., seq2seq = lambda x, y: basic_rnn_seq2seq( x, y, core_rnn_cell.GRUCell(24)) Args: encoder_inputs: A list of Tensors to feed the encoder; first seq2seq input. decoder_inputs: A list of Tensors to feed the decoder; second seq2seq input. targets: A list of 1D batch-sized int32 Tensors (desired output sequence). weights: List of 1D batch-sized float-Tensors to weight the targets. buckets: A list of pairs of (input size, output size) for each bucket. seq2seq: A sequence-to-sequence model function; it takes 2 input that agree with encoder_inputs and decoder_inputs, and returns a pair consisting of outputs and states (as, e.g., basic_rnn_seq2seq). softmax_loss_function: Function (labels-batch, inputs-batch) -> loss-batch to be used instead of the standard softmax (the default if this is None). per_example_loss: Boolean. If set, the returned loss will be a batch-sized tensor of losses for each sequence in the batch. If unset, it will be a scalar with the averaged loss from all examples. name: Optional name for this operation, defaults to "model_with_buckets". Returns: A tuple of the form (outputs, losses), where: outputs: The outputs for each bucket. Its j'th element consists of a list of 2D Tensors. The shape of output tensors can be either [batch_size x output_size] or [batch_size x num_decoder_symbols] depending on the seq2seq model used. losses: List of scalar Tensors, representing losses for each bucket, or, if per_example_loss is set, a list of 1D batch-sized float Tensors. Raises: ValueError: If length of encoder_inputs, targets, or weights is smaller than the largest (last) bucket. """ if len(encoder_inputs) < buckets[-1][0]: raise ValueError("Length of encoder_inputs (%d) must be at least that of la" "st bucket (%d)." % (len(encoder_inputs), buckets[-1][0])) if len(targets) < buckets[-1][1]: raise ValueError("Length of targets (%d) must be at least that of last" "bucket (%d)." % (len(targets), buckets[-1][1])) if len(weights) < buckets[-1][1]: raise ValueError("Length of weights (%d) must be at least that of last" "bucket (%d)." % (len(weights), buckets[-1][1])) all_inputs = encoder_inputs + decoder_inputs + targets + weights losses = [] outputs = [] with ops.name_scope(name, "model_with_buckets", all_inputs): for j, bucket in enumerate(buckets): with variable_scope.variable_scope( variable_scope.get_variable_scope(), reuse=True if j > 0 else None): bucket_outputs, _ = seq2seq(encoder_inputs[:bucket[0]], decoder_inputs[:bucket[1]]) outputs.append(bucket_outputs) if per_example_loss: losses.append( sequence_loss_by_example( outputs[-1], targets[:bucket[1]], weights[:bucket[1]], softmax_loss_function=softmax_loss_function)) else: losses.append( sequence_loss( outputs[-1], targets[:bucket[1]], weights[:bucket[1]], softmax_loss_function=softmax_loss_function)) return outputs, losses
795c7445bdf608db85148656179ccc0467af6dee
21,047
def sqlite_cast(vtype, v): """ Returns the casted version of v, for use in database. SQLite does not perform any type check or conversion so this function should be used anytime a data comes from outstide to be put in database. This function also handles CoiotDatetime objects and accepts "now" as an argument for them (the date will then be the calling date of this function). """ if vtype is type(v) or v is None: return v if vtype is bool: if type(v) is int: return bool(v) elif type(v) is str and v.lower() in ('true', 'false'): return v.lower() == 'true' elif vtype is int: if type(v) in (bool, str): return int(v) elif vtype is str: return str(v) elif vtype is CoiotDatetime: if type(v) in (float, int): return CoiotDatetime.fromepoch(v) elif v.lower() == 'now': return CoiotDatetime.now() raise TypeError("argument of type {} cannot be " + "casted to {}".format(type(v), vtype))
2ecf79b5aec2d5516cc624b9aa279be9f1b9d1b2
21,048
def read_table(name): """ Mock of IkatsApi.table.read method """ return TABLES[name]
261ab82a5389155997924c1468087a139b50f9e8
21,050
def cosh(x, out=None): """ Raises a ValueError if input cannot be rescaled to a dimensionless quantity. """ if not isinstance(x, Quantity): return np.cosh(x, out) return Quantity( np.cosh(x.rescale(dimensionless).magnitude, out), dimensionless, copy=False )
d50891be37de3c9729c3a15e1315f74ff55baedc
21,051
from datetime import datetime def dates_from_360cal(time): """Convert numpy.datetime64 values in 360 calendar format. This is because 360 calendar cftime objects are problematic, so we will use datetime module to re-create all dates using the available data. Parameters ---------- time: single or numpy.ndarray of cftime._cftime.Datetime360Day Returns ------- DatetimeIndex object. """ # noqa # get all dates as strings dates = [] for d in time: dstr = '%0.4i-%0.2i-%0.2i' % (d.year, d.month, d.day) date = datetime.datetime.strptime(dstr, '%Y-%m-%d') dates.append(date) return pd.to_datetime(dates)
d13e2146414a4dbd25cab0015348281503134331
21,052
def db_queue(**data): """Add a record to queue table. Arguments: **data: The queue record data. Returns: (dict): The inserted queue record. """ fields = data.keys() assert 'request' in fields queue = Queue(**data) db.session.add(queue) db.session.commit() return dict(queue)
ca5dda54fecf37be9eae682c2b04325b55caf931
21,053
def loadMnistData(trainOrTestData='test'): """Loads MNIST data from sklearn or web. :param str trainOrTestData: Must be 'train' or 'test' and specifies which \ part of the MNIST dataset to load. :return: images, targets """ mnist = loadMNIST() if trainOrTestData == 'train': X = mnist.data[:60000, :].astype(np.uint8) y = mnist.target[:60000].astype(np.uint8) elif trainOrTestData == 'test': X = mnist.data[60000:, :].astype(np.uint8) y = mnist.target[60000:].astype(np.uint8) else: raise ValueError("trainOrTestData must be 'train' or 'test'.") return X, y
3fb06616a784ac863f4df093e981982be077f5a7
21,054
def times_once() -> _Timing: """ Expect the request a single time :return: Timing object """ return _Timing(1)
dd4d97344613676668cf7e07fad6e5f696861924
21,055
def linear_growth(mesh, pos, coefficient): """Applies a homotety to a dictionary of coordinates. Parameters ---------- mesh : Topomesh Not used in this algorithm pos : dict(int -> iterable) Dictionary (pid -> ndarray) of the tissue vertices coefficient : float or ndarray Scaling coefficient for the homothety Returns ------- dict(int -> ndarray) dictionary (pid -> new position) of the vertices """ utilities.check_pos(pos) scaling = np.array(coefficient) res = dict((pid, scaling * vec) for pid,vec in pos.iteritems()) assert np.all(res.values() <> None) return res
bed27bc4a75d1628bf3331062817d1bf1b21e9c8
21,056
def einstein_t(tini, tfin, npoint, HT_lim=3000,dul=False,model=1): """ Computes the *Einstein temperature* Args: tini: minimum temperature (K) of the fitting interval tfin: maximum temperature npoint: number of points in the T range HT_lim: high temperature limit where Cv approaches the Dulong-Petit value model: if model=1 a single Einstein oscillator is considered (default), if model > 1, 2 Einstein oscillators are considered """ flag_int=False if f_fix.flag: kp_original=f_fix.value flag_int=True reset_fix() v0, k_gpa, kp=eos_temp(298.15,prt=False, update=True) set_fix(kp) print("Kp fixed to %4.2f" % kp) vol=new_volume(298.15,0.0001) ent, cve=entropy_v(298.15,vol[0]) dp_limit=apfu*3*avo*kb # Dulong Petit limit emp=10636/(ent/apfu+6.44) # Empirical Einstein T t_range=np.linspace(tini, tfin, npoint) cv_list=np.array([]) for ti in t_range: enti, cvi=entropy_v(ti, vol, plot=False, prt=False) cv_list=np.append(cv_list, cvi) reset_fix() if flag_int: set_fix(kp_original) t_range=np.append(t_range,HT_lim) cv_list=np.append(cv_list, dp_limit) sigma=np.ones(len(t_range)) sigma[len(sigma)-1]=0.1 if model==1: ein_fit, ein_cov=curve_fit(einstein_fun, t_range, cv_list, p0=emp, \ sigma=sigma, xtol=1e-15, ftol=1e-15) else: ein_fit, ein_cov=curve_fit(einstein_2_fun, t_range, cv_list, \ sigma=sigma,p0=[emp,emp], xtol=1e-15, ftol=1e-15) t_range_new=np.linspace(tini,HT_lim,50) plt.figure() if model==1: plt.plot(t_range_new, einstein_fun(t_range_new, ein_fit[0]), "k-", \ t_range, cv_list, "k*") else: plt.plot(t_range_new, einstein_2_fun(t_range_new, ein_fit[0],ein_fit[1]), "k-", \ t_range, cv_list, "k*") plt.xlabel("Temperature (K)") plt.ylabel("Cv (J/mol K)") plt.show() print("\nEinstein temperature") print("empirical estimation (from molar entropy): %6.2f K" % emp) if model==1: print("result from fit: %6.2f K" % ein_fit[0]) else: print("result from fit: %6.2f, %6.2f K" % (ein_fit[0],ein_fit[1])) print("Dulong-Petit limit for Cv (T = %5.2f K): %6.2f J/mol K" % \ (HT_lim, dp_limit)) t_table=np.linspace(tini,tfin,10) cv_real=np.array([]) cv_ein=np.array([]) for ti in t_table: enti, cri=entropy_v(ti, vol, plot=False, prt=False) if model==1: ce=einstein_fun(ti,ein_fit[0]) else: ce=einstein_2_fun(ti,ein_fit[0],ein_fit[1]) cv_real=np.append(cv_real, cri) cv_ein=np.append(cv_ein, ce) serie=(t_table,cv_real,cv_ein) pd.set_option('colheader_justify', 'center') df=pd.DataFrame(serie, index=['T (K)','Cv "real"','Cv "fit"']) df=df.T df2=df.round(2) print("") print(df2.to_string(index=False)) if model==1: print("\nFit at T = %6.2f K: Cv = %6.2f J/mol K" % \ (HT_lim, einstein_fun(HT_lim, ein_fit[0]))) else: print("\nFit at T = %6.2f K: Cv = %6.2f J/mol K" % \ (HT_lim, einstein_2_fun(HT_lim, ein_fit[0], ein_fit[1]))) if dul: return ein_fit
bc914dcd600f9f5b3327a0e954356f4dd5d87493
21,057
import pathlib def normalize_uri(path_uri: str) -> str: """Convert any path to URI. If not a path, return the URI.""" if not isinstance(path_uri, pathlib.Path) and is_url(path_uri): return path_uri return pathlib.Path(path_uri).resolve().as_uri()
b0682d1b2b1dea07195865db4be534a18e6b965e
21,058
import logging def RETune(ont: Ontology, training: [Annotation]): """ Tune the relation extraction class over a range of various values and return the correct parameters Params: ont (RelationExtractor/Ontology) - The ontology of information needed to form the base training ([Datapoint]) - A collection of data points to be able to perform cross validation Returns: scores - A data structure that holds all of the metric scores for the extractor against the structures then against the alphas structures - The network sizes and shapes alphas - The neural network """ logging.getLogger().setLevel(logging.ERROR) # Ensure that logging output is captured # The structures to validate structures = [(3,1), (4,2), (6,3), (8,4), (12,6), (20,10), (50,20)] alphas = logspace(-16,1,20) scores = [] for layers in structures: layer_scores = [] for alpha in alphas: def run(queue, tr, val): tr, val = [training[i] for i in tr], [training[i] for i in val] # Create a new extractor model ext = RelationExtractor(ontology=ont, hidden_layers=layers, alpha=alpha) # Generate the training and validation documents Xtr, Xtv = Document(), Document() Xtr.datapoints(tr) Xtv.datapoints(val) # Fit, predict and score ext.fit(Xtr) ext.predict(Xtv) results = score(ont, [Xtv]) queue.put(results[0]) queue = Queue() processors = [Process(target=run, args=(queue, tr, val)) for tr, val in KFold(n_splits=5, shuffle=True).split(training)] [p.start() for p in processors] [p.join() for p in processors] alpha_scores = [queue.get() for _ in range(5)] compressed = {"precision":[],"recall":[],"f1":[]} for r in alpha_scores: for k, v in r.items(): compressed[k].append(v) for k, v in compressed.items(): compressed[k] = sum(v)/len(v) layer_scores.append(compressed) scores.append(layer_scores) return scores, structures, alphas
d53831f08fd1855537b3bb7cb5a5f27625fa8b31
21,059
def create_instance(test_id, config, args): """ Invoked by TestExecutor class to create a test instance @test_id - test index number @config - test parameters from, config @args - command line args """ return TestNodeConnectivity(test_id, config, args)
a3defb1f0f72fc0788fa2120829334f9a9670042
21,060
def to_me() -> Rule: """ :说明: 通过 ``event.is_tome()`` 判断事件是否与机器人有关 :参数: * 无 """ return Rule(ToMeRule())
92b6a04bbeac6e0b3eb3f53641efd2552b19f620
21,061
def unsaturated_atom_keys(xgr): """ keys of unsaturated (radical or pi-bonded) atoms """ atm_unsat_vlc_dct = atom_unsaturated_valences(xgr, bond_order=False) unsat_atm_keys = frozenset(dict_.keys_by_value(atm_unsat_vlc_dct, bool)) return unsat_atm_keys
0af0469b3370a0c015238cad5b2717fbb977e6c5
21,062
def clip_data(input_file, latlim, lonlim): """ Clip the data to the defined extend of the user (latlim, lonlim) Keyword Arguments: input_file -- output data, output of the clipped dataset latlim -- [ymin, ymax] lonlim -- [xmin, xmax] """ try: if input_file.split('.')[-1] == 'tif': dest_in = gdal.Open(input_file) else: dest_in = input_file except: dest_in = input_file # Open Array data_in = dest_in.GetRasterBand(1).ReadAsArray() # Define the array that must remain Geo_in = dest_in.GetGeoTransform() Geo_in = list(Geo_in) Start_x = np.max([int(np.floor(((lonlim[0]) - Geo_in[0])/ Geo_in[1])),0]) End_x = np.min([int(np.ceil(((lonlim[1]) - Geo_in[0])/ Geo_in[1])),int(dest_in.RasterXSize)]) Start_y = np.max([int(np.floor((Geo_in[3] - latlim[1])/ -Geo_in[5])),0]) End_y = np.min([int(np.ceil(((latlim[0]) - Geo_in[3])/Geo_in[5])), int(dest_in.RasterYSize)]) #Create new GeoTransform Geo_in[0] = Geo_in[0] + Start_x * Geo_in[1] Geo_in[3] = Geo_in[3] + Start_y * Geo_in[5] Geo_out = tuple(Geo_in) data = np.zeros([End_y - Start_y, End_x - Start_x]) data = data_in[Start_y:End_y,Start_x:End_x] dest_in = None return(data, Geo_out)
bf691d4021cf0bbeade47b6d389e5daa3261f22a
21,063
def fetch_last_posts(conn) -> list: """Fetch tooted posts from db""" cur = conn.cursor() cur.execute("select postid from posts") last_posts = cur.fetchall() return [e[0] for e in last_posts]
dd5addd1ba19ec2663a84617904f6754fe7fc1fc
21,064
def update_click_map(selectedData, date, hoverData, inputData): """ click to select a airport to find the detail information :param selectedData: :param date: :param hoverData: :return: """ timestamp = pd.to_datetime(date) if date else 0 fig = px.scatter_geo( airports_info, scope="usa", lat=airports_info["LATITUDE"], lon=airports_info["LONGITUDE"], hover_name=airports_info["IATA_CODE"], color="COLOR_MAP", color_discrete_map="identity" ) fig.update_layout(hovermode="closest", margin=dict(l=5, r=0, t=20, b=20), clickmode="event+select", template='ggplot2') if inputData: origin_lon = location_dic[inputData]['lon'] origin_lat = location_dic[inputData]['lat'] airport = inputData infos = airports[(airports["ORIGIN_AIRPORT"] == airport) & (airports["DATE"] == timestamp)] if timestamp != 0 \ else overview_destination[overview_destination["ORIGIN_AIRPORT"] == airport] destinations = infos["DESTINATION_AIRPORT"].tolist()[0] if infos["DESTINATION_AIRPORT"].tolist() else [] points = airports_info[airports_info["IATA_CODE"].isin(destinations) | (airports_info["IATA_CODE"] == airport)] points["COLOR_MAP"] = "#525252" fig = px.scatter_geo( airports_info, scope="usa", lat=points["LATITUDE"], lon=points["LONGITUDE"], hover_name=points["IATA_CODE"], hover_data=None, color=points["COLOR_MAP"], color_discrete_map="identity" ) fig.update_layout(clickmode="event+select", margin=dict(l=0, r=0, t=20, b=20), template="ggplot2") for des in destinations: fig.add_trace( go.Scattergeo( lon=[origin_lon, location_dic[des]["lon"]], lat=[origin_lat, location_dic[des]["lat"]], mode="lines", line=dict(width=1, color='#cb181d'), marker=dict(color='#cb181d'), hoverinfo="skip", showlegend=False ) ) return fig if selectedData and inputData: point_dict = selectedData["points"][0] origin_lon = point_dict['lon'] origin_lat = point_dict['lat'] airport = point_dict['hovertext'] infos = airports[(airports["ORIGIN_AIRPORT"] == airport) & (airports["DATE"] == timestamp)] if timestamp != 0 \ else overview_destination[overview_destination["ORIGIN_AIRPORT"] == airport] destinations = infos["DESTINATION_AIRPORT"].tolist()[0] if infos["DESTINATION_AIRPORT"].tolist() else [] points = airports_info[airports_info["IATA_CODE"].isin(destinations) | (airports_info["IATA_CODE"] == airport)] points["COLOR_MAP"] = "#525252" fig = px.scatter_geo( airports_info, scope="usa", lat=points["LATITUDE"], lon=points["LONGITUDE"], hover_name=points["IATA_CODE"], hover_data=None, color=points["COLOR_MAP"], color_discrete_map="identity" ) fig.update_layout(clickmode="event+select") fig.update_layout( margin=dict(l=0, r=0, t=20, b=20), template="ggplot2" ) for des in destinations: fig.add_trace( go.Scattergeo( lon=[origin_lon, location_dic[des]["lon"]], lat=[origin_lat, location_dic[des]["lat"]], mode="lines", line=dict(width=1, color='#cb181d'), marker=dict(color='#cb181d'), hoverinfo="skip", showlegend=False ) ) return fig # hover的时候显示hover的点可以去到的机场 elif hoverData: point_dict = hoverData["points"][0] origin_lon = point_dict['lon'] origin_lat = point_dict['lat'] airport = point_dict['hovertext'] infos = airports[(airports["ORIGIN_AIRPORT"] == airport) & (airports["DATE"] == timestamp)] if timestamp != 0 \ else overview_destination[overview_destination["ORIGIN_AIRPORT"] == airport] # infos = airports[(airports["ORIGIN_AIRPORT"]==airport) & (airports["DATE"]==timestamp)] destinations = infos["DESTINATION_AIRPORT"].tolist()[0] if infos["DESTINATION_AIRPORT"].tolist() else [] for des in destinations: fig.add_trace( go.Scattergeo( lon=[origin_lon, location_dic[des]["lon"]], lat=[origin_lat, location_dic[des]["lat"]], mode="lines", line=dict(width=1, color='#cb181d'), hoverinfo="skip", showlegend=False ) ) # fig.update_layout(clear_on_unhover=True) return fig else: return fig
1baaba25254eede65c2dff9b95c9ac40a0777dac
21,065
def EncoderText(model_name, vocab_size, word_dim, embed_size, num_layers, use_bi_gru=False, text_norm=True, dropout=0.0): """A wrapper to text encoders. Chooses between an different encoders that uses precomputed image features. """ model_name = model_name.lower() EncoderMap = { 'scan': EncoderTextRegion, 'vsepp': EncoderTextGlobal, 'sgraf': EncoderTextRegion, 'imram': EncoderTextRegion } if model_name in EncoderMap: txt_enc = EncoderMap[model_name](vocab_size, word_dim, embed_size, num_layers, use_bi_gru, text_norm, dropout) else: raise ValueError("Unknown model: {}".format(model_name)) return txt_enc
bf3657e2c5def238e9ec84cd674c21c079169b9e
21,066
def feat_extract(pretrained=False, **kwargs): """Constructs a ResNet-Mini-Imagenet model""" model_urls = { 'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth', 'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth', 'resnet52': 'https://download.pytorch.org/models/resnet50-19c8e357.pth', 'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth', 'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth', } logger = kwargs['opts'].logger # resnet"x", x = 1 + sum(layers)x3 if kwargs['structure'] == 'resnet40': model = ResNet(Bottleneck, [3, 4, 6], kwargs['in_c']) elif kwargs['structure'] == 'resnet19': model = ResNet(Bottleneck, [2, 2, 2], kwargs['in_c']) elif kwargs['structure'] == 'resnet12': dropblock_size = 5 if 'imagenet' in kwargs['opts'].dataset.name else 2 model = resnet12(avg_pool=False, drop_rate=0.1, dropblock_size=dropblock_size) elif kwargs['structure'] == 'resnet52': model = ResNet(Bottleneck, [4, 8, 5], kwargs['in_c']) elif kwargs['structure'] == 'resnet34': model = ResNet(Bottleneck, [3, 4, 4], kwargs['in_c']) elif kwargs['structure'] == 'shallow': model = CNNEncoder(kwargs['in_c']) else: raise NameError('structure not known {} ...'.format(kwargs['structure'])) if pretrained: logger('Using pre-trained model from pytorch official webiste, {:s}'.format(kwargs['structure'])) model.load_state_dict(model_zoo.load_url(model_urls[kwargs['structure']]), strict=False) return model
9e628b4905e696aa55c9e4313888f406bf1fb413
21,067
from typing import Union from pathlib import Path from typing import Optional import fnmatch import tempfile def compose_all( mirror: Union[str, Path], branch_pattern: str = "android-*", work_dir: Optional[Path] = None, force: bool = False, ) -> Path: """Iterates through all the branches in AOSP and create the source maps. This methods: - list all the existing branches and filter those matching the pattern - does a partial checkout of each of them - parses the Soong File and store them :param mirror: Path/Link to a mirror directory or an URL. :param branch_pattern: Optional. Pattern to filter branches :param work_dir: Optional. Work directory :param force: Optional. Overrides results. :return: The path to the work directory """ # List branches all_branches = get_all_branches(mirror) branches = fnmatch.filter(all_branches, branch_pattern) if work_dir is None: work_dir = Path(tempfile.mkdtemp(prefix="bgraph_")) logger.info("Found %d branches", len(branches)) for branch_name in branches: compose_manifest_branch(branch_name, mirror, work_dir, force) logger.info("Finished") return work_dir
4293df4708633574ccab70fe597ca390b04aa12c
21,068
def rearrange_digits(input_list): """ Rearrange Array Elements so as to form two number such that their sum is maximum. Args: input_list(list): Input List Returns: (int),(int): Two maximum sums """ n = len(input_list) heap_sort(input_list) decimal_value = 1 n1 = 0 for i in range(0, n, 2): n1 += input_list[i] * decimal_value decimal_value *= 10 decimal_value = 1 n2 = 0 for i in range(1, n, 2): n2 += input_list[i] * decimal_value decimal_value *= 10 return n1, n2
3d0d4964ce5faca8aeb27bef56de1840e5cb5f51
21,069
def _partial_ema_scov_update(s:dict, x:[float], r:float=None, target=None): """ Update recency weighted estimate of scov-like matrix by treating quadrants individually """ assert len(x)==s['n_dim'] # If target is not supplied we maintain a mean that switches from emp to ema if target is None: target = s['target'] if target is None: target = s['sma']['mean'] # Update running partial scatter estimates for q,(w,sgn1,sgn2) in QUADRANTS.items(): # Morally: # x1 = max(0, (x-target)*sgn1) * sgn1 # x2 = (np.max(0, (x-target)*sgn2) * sgn2) if sgn1!=sgn2 else x1 x1 = (x-target)*sgn1 x2 = (x-target)*sgn2 x1[x1<0]=0 x2[x2<0]=0 x1 = sgn1*x1 x2 = sgn2*x2 s[q] = _ema_scov_update(s[q],x=x1,r=r,target=0, y=x2) s['mean'] = np.copy( s['sma']['mean'] ) s['n_samples'] = s['sma']['n_samples'] if s['n_samples']>=2: s['scov'] = np.zeros(shape=((s['n_dim'],s['n_dim']))) for q in QUADRANTS: try: s['scov'] += s[q]['scov'] except: pass else: s['scov'] = np.eye(s['n_dim']) s['sma'] = sma(s=s['sma'], x=x, r=r) return s
b54f2897abe45eec85cb843a23e8d6f0f4f2642d
21,070
def _get_chrome_options(): """ Returns the chrome options for the following arguments """ chrome_options = Options() # Standard options chrome_options.add_argument("--disable-infobars") chrome_options.add_argument('--ignore-certificate-errors') # chrome_options.add_argument('--no-sandbox') chrome_options.add_argument('--disable-dev-shm-usage') chrome_options.add_argument("--start-maximized") chrome_options.add_argument("--auto-select-desktop-capture-source=Entire screen") return chrome_options
0db0799c53487e35b4d2de977fa07fb260d7e930
21,072
def legendre(n, monic=0): """Returns the nth order Legendre polynomial, P_n(x), orthogonal over [-1,1] with weight function 1. """ if n < 0: raise ValueError("n must be nonnegative.") if n==0: n1 = n+1 else: n1 = n x,w,mu0 = p_roots(n1,mu=1) if n==0: x,w = [],[] hn = 2.0/(2*n+1) kn = _gam(2*n+1)/_gam(n+1)**2 / 2.0**n p = orthopoly1d(x,w,hn,kn,wfunc=lambda x: 1.0,limits=(-1,1),monic=monic, eval_func=lambda x: eval_legendre(n,x)) return p
bfd2bb0603e320e9ea330c8e51b17ab53a03382f
21,074
def cal_sort_key(cal): """ Sort key for the list of calendars: primary calendar first, then other selected calendars, then unselected calendars. (" " sorts before "X", and tuples are compared piecewise) """ if cal["selected"]: selected_key = " " else: selected_key = "X" if cal["primary"]: primary_key = " " else: primary_key = "X" return (primary_key, selected_key, cal["summary"])
4235700b003689fed304b88085ba9fa9880f3839
21,075
def preview_game_num(): """retorna el numero de la ultima partida jugada""" df = pd.read_csv('./data/stats.csv', encoding="utf8") x = sorted(df["Partida"],reverse=True)[0] return x
7af698416fd60be4e7be74e7a104cd6fa956f649
21,077
def XCO( directed = False, preprocess = "auto", load_nodes = True, load_node_types = True, load_edge_weights = True, auto_enable_tradeoffs = True, sort_tmp_dir = None, verbose = 2, cache = True, cache_path = None, cache_sys_var = "GRAPH_CACHE_DIR", version = "4.46", **kwargs ) -> Graph: """Return XCO graph Parameters ---------- directed = False preprocess = "auto" Preprocess for optimal load time & memory peak. Will preprocess in Linux/macOS but not Windows. load_nodes = True Load node names or use numeric range auto_enable_tradeoffs = True Enable when graph has < 50M edges cache_path = None Path to store graphs Defaults either to `GRAPH_CACHE_DIR` sys var or `graphs` cache_sys_var = "GRAPH_CACHE_DIR" version = "4.46" Version to retrieve The available versions are: - 4.46 """ return AutomaticallyRetrievedGraph( "XCO", version, "kgobo", directed, preprocess, load_nodes, load_node_types, load_edge_weights, auto_enable_tradeoffs, sort_tmp_dir, verbose, cache, cache_path, cache_sys_var, kwargs )()
34c77f3074031b41fba8da0523a263a511734bff
21,078
def wraplatex(text, width=WIDTH): """ Wrap the text, for LaTeX, using ``textwrap`` module, and ``width``.""" return "$\n$".join(wrap(text, width=width))
b558f2524917ec73160f4bea48029dedb9b6a12e
21,080
def register(request): """ Render and process a basic registration form. """ ctx = {} if request.user.is_authenticated(): if "next" in request.GET: return redirect(request.GET.get("next", 'control:index')) return redirect('control:index') if request.method == 'POST': form = GlobalRegistrationForm(data=request.POST) if form.is_valid(): user = User.objects.create_global_user( form.cleaned_data['email'], form.cleaned_data['password'], locale=request.LANGUAGE_CODE, timezone=request.timezone if hasattr(request, 'timezone') else settings.TIME_ZONE ) user = authenticate(identifier=user.identifier, password=form.cleaned_data['password']) auth_login(request, user) return redirect('control:index') else: form = GlobalRegistrationForm() ctx['form'] = form return render(request, 'pretixcontrol/auth/register.html', ctx)
f8d81d16903d0d5fe2e3224a535fd8f1795f9ad0
21,081
from typing import List def green_agg(robots: List[gs.Robot]) -> np.ndarray: """ This is a dummy aggregator function (for demonstration) that just saves the value of each robot's green color channel """ out_arr = np.zeros([len(robots)]) for i, r in enumerate(robots): out_arr[i] = r._color[1] return out_arr
8e86200bf7ed51cea3bdce06be2fb3300ac20a5a
21,082
import socket def tcp_port_open_locally(port): """ Returns True if the given TCP port is open on the local machine """ sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) result = sock.connect_ex(("127.0.0.1", port)) return result == 0
f5c801a5016085eedbed953089742e184f514db5
21,083
def wrap(text, width=80): """ Wraps a string at a fixed width. Arguments --------- text : str Text to be wrapped width : int Line width Returns ------- str Wrapped string """ return "\n".join( [text[i:i + width] for i in range(0, len(text), width)] )
793840a1cae51397de15dd16051c5dfffc211768
21,084
def parallel_vector(R, alt, max_alt=1e5): """ Generates a viewing and tangent vectors parallel to the surface of a sphere """ if not hasattr(alt, '__len__'): alt = np.array([alt]) viewer = np.zeros(shape=(3, len(alt))) tangent = np.zeros_like(viewer) viewer[0] = -(R+max_alt*2) viewer[1] = R+alt tangent[1] = R+alt return viewer, tangent
49f4a1c4fe7267078cfac05af78c2fc850c1edfb
21,085
from pathlib import Path def load_datasets(parser, args): """Loads the specified dataset from commandline arguments Returns: train_dataset, validation_dataset """ args = parser.parse_args() dataset_kwargs = { "root": Path(args.train_dir), } source_augmentations = Compose( [globals()["_augment_" + aug] for aug in args.source_augmentations] ) train_dataset = MIMIIDataset( split="0dB", subset=train_tracks, sources=args.sources, targets=args.sources, source_augmentations=source_augmentations, random_track_mix=True, segment=args.seq_dur, random_segments=True, sample_rate=args.sample_rate, samples_per_track=args.samples_per_track, **dataset_kwargs, ) train_dataset = filtering_out_valid(train_dataset) valid_dataset = MIMIIDataset( split="0dB", subset=validation_tracks, sources=args.sources, targets=args.sources, segment=None, **dataset_kwargs, ) return train_dataset, valid_dataset
17f25443b34b9b6bc87c259c65d4af13b76b5303
21,086
def stock_total_deal_money(): """ 总成交量 :return: """ df = stock_zh_index_spot() # 深证成指:sz399001,上证指数:sh00001 ds = df[(df['代码'] == 'sz399001') | (df['代码'] == 'sh000001')] return ds['成交额'].sum() / 100000000
241c0080ed64acc21c1d8072befd168415184130
21,087
def _ls(dir=None, project=None, all=False, appendType=False, dereference=False, directoryOnly=False): """ Lists file(s) in specified MDSS directory. :type dir: :obj:`str` :param dir: MDSS directory path for which files are listed. :type project: :obj:`str` :param project: NCI project identifier string, if :samp:`None`, uses default project (as returned from the :func:`getDefaultProject` function). :type all: :obj:`bool` or :obj:`str` :param all: If :samp:`True` or :samp:`"all"` lists files/directories whose names begin with '.'. If :samp:`almost-all` lists files/directories whose names begin with '.' but not the :samp:`"."` and :samp:`".."` entries. :type appendType: :obj:`bool` :param appendType: If :samp:`True` each name in the listing will have a character appended which indicates the type of *file*. :type dereference: :obj:`bool` :param dereference: If :samp:`True` symbolic links are dereferenced in the listing. :type directoryOnly: :obj:`bool` :param directoryOnly: If :samp:`True` only list directory name and not directory contents. :rtype: :obj:`list` of :obj:`str` :return: MDSS directory listing. """ args = ["-1"] # Separate listed entries with newline, one entry per line. args += _getListDirAllArg(all) args += _getListDirDirectoryOnlyArg(directoryOnly) args += _getListDirAppendTypeArg(appendType) args += _getListDirDereferenceArg(dereference) if (dir != None): args += [dir,] else: args = [] p = MdssCommand(commandStr="ls", project=project, args=args).execute() return p.communicate()[0].split("\n")[0:-1]
7a26c9459381364ad145bab2b6230fd2037e5433
21,088
def uploadMetadata(doi, current, delta, forceUpload=False, datacenter=None): """ Uploads citation metadata for the resource identified by an existing scheme-less DOI identifier (e.g., "10.5060/FOO") to DataCite. This same function can be used to overwrite previously-uploaded metadata. 'current' and 'delta' should be dictionaries mapping metadata element names (e.g., "Title") to values. 'current+delta' is uploaded, but only if there is at least one DataCite-relevant difference between it and 'current' alone (unless 'forceUpload' is true). 'datacenter', if specified, should be the identifier's datacenter, e.g., "CDL.BUL". There are three possible returns: None on success; a string error message if the uploaded DataCite Metadata Scheme record was not accepted by DataCite (due to an XML-related problem); or a thrown exception on other error. No error checking is done on the inputs. """ try: oldRecord = formRecord("doi:" + doi, current) except AssertionError: oldRecord = None m = current.copy() m.update(delta) try: newRecord = formRecord("doi:" + doi, m) except AssertionError, e: return "DOI metadata requirements not satisfied: " + str(e) if newRecord == oldRecord and not forceUpload: return None if not _enabled: return None # To hide transient network errors, we make multiple attempts. for i in range(_numAttempts): o = urllib2.build_opener(_HTTPErrorProcessor) r = urllib2.Request(_metadataUrl) # We manually supply the HTTP Basic authorization header to avoid # the doubling of the number of HTTP transactions caused by the # challenge/response model. r.add_header("Authorization", _authorization(doi, datacenter)) r.add_header("Content-Type", "application/xml; charset=UTF-8") r.add_data(newRecord.encode("UTF-8")) c = None try: _modifyActiveCount(1) c = o.open(r, timeout=_timeout) s = c.read() assert s.startswith("OK"), ( "unexpected return from DataCite store metadata operation: " + s ) except urllib2.HTTPError, e: message = e.fp.read() if e.code in [400, 422]: return "element 'datacite': " + message if e.code != 500 or i == _numAttempts - 1: raise e except: if i == _numAttempts - 1: raise else: return None finally: _modifyActiveCount(-1) if c: c.close() time.sleep(_reattemptDelay)
22902f2649f20d638ba61b8db7ff6a32821bf965
21,089
def one_away(string_1: str, string_2: str)-> bool: """DP, classic edit distance funny move, we calculate the LCS and then substract from the len() of the biggest string in O(n*m) """ if string_1 == string_2: return False @lru_cache(maxsize=1024) def dp(s_1, s_2, distance=0): """standard longest common substring """ if not s_1 or not s_2: return distance if s_1[0] == s_2[0]: return dp(s_1[1:], s_2[1:], distance+1) return max(dp(s_1[1:], s_2, distance), dp(s_1, s_2[1:], distance)) return max(len(string_1), len(string_2)) - dp(string_1, string_2) == 1
754cd1b383d21935992ba95bde65bde5340a8ef8
21,090
def test(net, loss_normalizer): """ Tests the Neural Network using IdProbNet on the test set. Args: net -- (IdProbNet instance) loss_normalizer -- (Torch.Tensor) value to be divided from the loss Returns: 3-tuple -- (Execution Time, End loss value, Model's prediction after feed forward [Px]) """ return run_model_data_t(net, loss_normalizer, NUM_TEST, 'test')
4abdd1426545af6d093be2f549f6e2b8e86b3659
21,091
def scale_from_matrix(matrix): """Return scaling factor, origin and direction from scaling matrix. """ M = jnp.array(matrix, dtype=jnp.float64, copy=False) M33 = M[:3, :3] factor = jnp.trace(M33) - 2.0 try: # direction: unit eigenvector corresponding to eigenvalue factor w, V = jnp.linalg.eig(M33) i = jnp.where(abs(jnp.real(w) - factor) < 1e-8)[0][0] direction = jnp.real(V[:, i]).squeeze() direction /= vector_norm(direction) #WARNING(@cpgoodri): I'm not sure if this error-handling approach works with JAX, but it seems to pass tests... except IndexError: # uniform scaling factor = (factor + 2.0) / 3.0 direction = None # origin: any eigenvector corresponding to eigenvalue 1 w, V = jnp.linalg.eig(M) i = jnp.where(abs(jnp.real(w) - 1.0) < 1e-8)[0] if not len(i): raise ValueError('no eigenvector corresponding to eigenvalue 1') origin = jnp.real(V[:, i[-1]]).squeeze() origin /= origin[3] return factor, origin, direction
1e6ef044b35ec4eff86764d9a222764c74977fb1
21,092
def get_fort44_info(NDX, NDY, NATM, NMOL, NION, NSTRA, NCL, NPLS, NSTS, NLIM): """Collection of labels and dimensions for all fort.44 variables, as collected in the SOLPS-ITER 2020 manual. """ fort44_info = { "dab2": [r"Atom density ($m^{-3}$)", (NDX, NDY, NATM)], "tab2": [r"Atom temperature (eV )", (NDX, NDY, NATM)], "dmb2": [r"Molecule density ($m^{-3}$)", (NDX, NDY, NMOL)], "tmb2": [r"Molecule temperature (eV )", (NDX, NDY, NMOL)], "dib2": [r"Test ion density ($m^{-3}$)", (NDX, NDY, NION)], "tib2": [r" Test ion temperature (eV)", (NDX, NDY, NION)], "rfluxa": [r"Radial flux density of atoms ($m^{-2} s^{-1}$)", (NDX, NDY, NATM)], "rfluxm": [ r"Radial flux density of molecules ($m^{-2} s^{-1}$)", (NDX, NDY, NMOL), ], "pfluxa": [ r"Poloidal flux density of atoms ($m^{-2} s^{-1}$)", (NDX, NDY, NATM), ], "pfluxm": [ r"Poloidal flux density of molecules ($m^{-2} s^{-1}$)", (NDX, NDY, NMOL), ], "refluxa": [ r"Radial energy flux density carried by atoms ($W m^{-2}$)", (NDX, NDY, NATM), ], "refluxm": [ r"Radial energy flux density carried by molecules ($W m^{-2}$)", (NDX, NDY, NMOL), ], "pefluxa": [ r"Poloidal energy flux density carried by atoms ($W m^{-2}$)", (NDX, NDY, NATM), ], "pefluxm": [ r"Poloidal energy flux density carried by molecules ($W m^{-2}$)", (NDX, NDY, NMOL), ], # "emiss": [ r"$H_\alpha$ emissivity due to atoms ($photons m^{-2} s^{-1}$)", (NDX, NDY), ], "emissmol": [ r"$H_\alpha$ emissivity due to molecules and molecular ions ($photons m^{-2} s^{-1}$)", (NDX, NDY), ], "srcml": [r"Molecule particle source (A)", (NDX, NDY, NMOL)], "edissml": [ r"Energy spent for dissociating hydrogenic molecules (W)", (NDX, NDY, NMOL), ], "wldnek": [ r"Heat transferred by neutrals (W), total over strata", (NLIM + NSTS,), ], "wldnep": [ r"Potential energy released by neutrals (W), total over strata", (NLIM + NSTS,), ], "wldna": [ r"Flux of atoms impinging on surface (A), total over strata", (NLIM + NSTS, NATM), ], "ewlda": [ r"Average energy of impinging atoms on surface (eV), total over strata", (NLIM + NSTS, NATM), ], "wldnm": [ r"Flux of molecules impinging on surface (A), total over strata", (NLIM + NSTS, NMOL), ], "ewldm": [ r"Average energy of impinging molecules on surface (eV), total over strata", (NLIM + NSTS, NMOL), ], "p1,p2": [ r"Endpoints of surface (X and Y coordinates, in m), total over strata", (NLIM,), ], "wldra": [ r"Flux of reflected atoms from surface (A), total over strata", (NLIM + NSTS, NATM), ], "wldrm": [ r"Flux of reflected molecules from surface (A), total over strata", (NLIM + NSTS, NMOL), ], } for i in np.arange(NSTRA + 1): # from 0 to NSTRA, unlike in manual fort44_info.update( { f"wldnek({i})": [r"Heat transferred by neutrals (W)", (NLIM + NSTS,)], f"wldnep({i})": [ r"Potential energy released by neutrals (W)", (NLIM + NSTS,), ], f"wldna({i})": [ r"Flux of atoms impinging on surface (A)", (NLIM + NSTS, NATM), ], f"ewlda({i})": [ r"Average energy of impinging atoms on surface (eV)", (NLIM + NSTS, NATM), ], f"wldnm({i})": [ r"Flux of molecules impinging on surface (A)", (NLIM + NSTS, NMOL), ], f"ewldm({i})": [ r"Average energy of impinging molecules on surface (eV)", (NLIM + NSTS, NMOL), ], f"wldra({i})": [ r"Flux of reflected atoms from surface (A)", (NLIM + NSTS, NATM), ], f"wldrm({i})": [ r"Flux of reflected molecules from surface (A)", (NLIM + NSTS, NMOL), ], } ) fort44_info.update( { "wldpp": [ r"Flux of plasma ions impinging on surface (A), total over strata", (NLIM + NSTS, NPLS), ], "wldpa": [ r"Net flux of atoms emitted from surface (A), total over strata", (NLIM + NSTS, NATM), ], "wldpm": [ r"Net flux of molecules emitted from surface (A), total over strata", (NLIM + NSTS, NMOL), ], "wldpeb": [ r"Power carried by particles emitted from surface (W), total over strata", (NLIM + NSTS,), ], "wldspt": [ r"Flux of sputtered wall material (A), total over strata", (NLIM + NSTS,), ], "wldspta": [ r"Flux of sputtered wall material per atom (A), total over strata", (NLIM + NSTS, NATM), ], "wldsptm": [ r"Flux of sputtered wall material per molecule (A), total over strata", (NLIM + NSTS, NMOL), ], } ) for i in np.arange(NSTRA + 1): # from 0 to NSTRA, unlike in manual fort44_info.update( { f"wldpp({i})": [ r"Flux of plasma ions impinging on surface (A)", (NLIM + NSTS, NPLS), ], f"wldpa({i})": [ r"Net flux of atoms emitted from surface (A)", (NLIM + NSTS, NATM), ], f"wldpm({i})": [ r"Net flux of molecules emitted from surface (A)", (NLIM + NSTS, NMOL), ], f"wldpeb({i})": [ r"Power carried by particles emitted from surface (W)", (NLIM + NSTS,), ], f"wldspt({i})": [ r"Flux of sputtered wall material (A)", (NLIM + NSTS,), ], f"wldspta({i})": [ r"Flux of sputtered wall material per atom (A)", (NLIM + NSTS, NATM), ], f"wldsptm({i})": [ r"Flux of sputtered wall material per molecule (A)", (NLIM + NSTS, NMOL), ], } ) fort44_info.update( { "isrftype": [r"ILIIN surface type variable in Eirene", (NLIM + NSTS,)], "wlarea": [r"Surface area (m2)", (NLIM + NSTS,)], "wlabsrp(A)": [r"Absorption rate for atoms", (NATM, NLIM + NSTS)], "wlabsrp(M)": [r"Absorption rate for molecules", (NMOL, NLIM + NSTS)], "wlabsrp(I)": [r"Absorption rate for test ions", (NION, NLIM + NSTS)], "wlabsrp(P)": [r"Absorption rate for plasma ions", (NPLS, NLIM + NSTS)], "wlpump(A)": [r"Pumped flux per atom (A)", (NATM, NLIM + NSTS)], "wlpump(M)": [r"Pumped flux per molecule (A)", (NMOL, NLIM + NSTS)], "wlpump(I)": [r"Pumped flux per test ion (A)", (NION, NLIM + NSTS)], "wlpump(P)": [r"Pumped flux per plasma ion (A)", (NPLS, NLIM + NSTS)], "eneutrad": [r"Radiation rate due to atoms (W)", (NDX, NDY, NATM)], "emolrad": [r"Radiation rate due to molecules (W)", (NDX, NDY, NMOL)], "eionrad": [r"Radiation rate due to test ions (W)", (NDX, NDY, NION)], # eirdiag rather than eirdiag_nds, as in manual... "eirdiag": [ r"Indices for segments on resolved non-standard surfaces", (5 * NSTS + 1,), ], "sarea_res": [r"Surface area of surface segment (m2)", (NCL,)], "wldna_res": [ r"Flux of atoms impinging on surface segment (A)", (NATM, NCL), ], "wldnm_res": [ r"Flux of molecules impinging on surface segment (A)", (NMOL, NCL), ], "ewlda_res": [ r"Average energy of impinging atoms on surface segment (eV)", (NATM, NCL), ], "ewldm_res": [ r"Average energy of impinging molecules on surface segment (eV)", (NMOL, NCL), ], "ewldea_res": [ r"Energy flux carried by emitted atoms from surface segment (W)", (NATM, NCL), ], "ewldem_res": [ r"Energy flux carried by emitted molecules from surface segment (W)", (NMOL, NCL), ], "ewldrp_res": [ r"Total energy flux carried by emitted particles from surface segment (W)", (NCL,), ], "ewldmr_res": [ r"Flux of emitted molecules from recycling atoms (A)", (NMOL, NCL), ], "wldspt_res": [r"Flux of sputtered wall material (A)", (NCL,)], "wldspta_res": [ r"Flux of sputtered wall material per atom (A)", (NCL, NATM), ], "wldsptm_res": [ r"Flux of sputtered wall material per molecule (A)", (NCL, NMOL), ], "wlpump_res(A)": [r"Pumped flux per atom (A)", (NCL, NATM)], "wlpump_res(M)": [r"Pumped flux per molecule (A)", (NCL, NMOL)], "wlpump_res(I)": [r"Pumped flux per test ion (A)", (NCL, NION)], "wlpump_res(P)": [r"Pumped flux per plasma ion (A)", (NCL, NPLS)], "ewldt_res": [r"Total wall power loading from Eirene particles", (NCL,)], "pdena_int": [ r"Integral number of atoms over the entire Eirene computational grid", (NATM, NSTRA + 1), ], "pdenm_int": [ r"Integral number of molecules over the entire Eirene computational grid", (NMOL, NSTRA + 1), ], "pdeni_int": [ r"Integral number of test ions over the entire Eirene computational grid", (NION, NSTRA + 1), ], "pdena_int_b2": [ r"Integral number of atoms over the B2.5 computational grid", (NATM, NSTRA + 1), ], "pdenm_int_b2": [ r"Integral number of molecules over the B2.5 computational grid", (NMOL, NSTRA + 1), ], "pdeni_int_b2": [ r"Integral number of test ions over the B2.5 computational grid", (NION, NSTRA + 1), ], "edena_int": [ r"Integral energy carried by atoms over the entire Eirene computational grid (J)", (NATM, NSTRA + 1), ], "edenm_int": [ r"Integral energy carried by molecules over the entire Eirene computational grid (J)", (NMOL, NSTRA + 1), ], "edeni_int": [ r"Integral energy carried by test ions over the entire Eirene computational grid (J)", (NION, NSTRA + 1), ], "edena_int_b2": [ r"Integral energy carried by atoms over the B2.5 computational grid (J)", (NATM, NSTRA + 1), ], "edenm_int_b2": [ r"Integral energy carried by molecules over the B2.5 computational grid (J)", (NMOL, NSTRA + 1), ], "edeni_int_b2": [ r"Integral energy carried by test ions over the B2.5 computational grid (J)", (NION, NSTRA + 1), ], } ) # extra, undocumented fort44_info.update({"wall_geometry": [r"Wall geometry points", (4 * NLIM,)]}) return fort44_info
0eca35ae512d3fd690124c45d5cde303d860ae0b
21,093
def lens2memnamegen_first50(nmems): """Generate the member names for LENS2 simulations Input: nmems = number of members Output: memstr(nmems) = an array containing nmems strings corresponding to the member names """ memstr=[] for imem in range(0,nmems,1): if (imem < 10): memstr1=str(1000+imem*20+1) memstr2=str(imem+1).zfill(3) memstr.append(memstr1+'.'+memstr2) if ((imem >= 10) and (imem < 20)): memstr1=str(1231) memstr2=str(imem-10+1).zfill(3) memstr.append(memstr1+'.'+memstr2) if ((imem >= 20) and (imem < 30)): memstr1=str(1251) memstr2=str(imem-20+1).zfill(3) memstr.append(memstr1+'.'+memstr2) if ((imem >= 30) and (imem < 40)): memstr1=str(1281) memstr2=str(imem-30+1).zfill(3) memstr.append(memstr1+'.'+memstr2) if ((imem >= 40) and (imem < 50)): memstr1=str(1301) memstr2=str(imem-40+1).zfill(3) memstr.append(memstr1+'.'+memstr2) return memstr
81ebbf1b17c56d604d8c6c9bc7bacd4a3093ec82
21,094
def initialize_settings(tool_name, source_path, dest_file_name=None): """ Creates settings directory and copies or merges the source to there. In case source already exists, merge is done. Destination file name is the source_path's file name unless dest_file_name is given. """ settings_dir = os.path.join(SETTINGS_DIRECTORY, tool_name) if not os.path.exists(settings_dir): os.mkdir(settings_dir) if not dest_file_name: dest_file_name = os.path.basename(source_path) settings_path = os.path.join(settings_dir, dest_file_name) if not os.path.exists(settings_path): shutil.copy(source_path, settings_path) else: try: SettingsMigrator(source_path, settings_path).migrate() except ConfigObjError, parsing_error: print 'WARNING! corrupted configuration file replaced with defaults' print parsing_error shutil.copy(source_path, settings_path) return os.path.abspath(settings_path)
c32e35f6323e2ae87c5d53a8b2e2c0d69a30c6e4
21,095
def get_stopword_list(filename=stopword_filepath): """ Get a list of stopword from a file """ with open(filename, 'r', encoding=encoding) as f: stoplist = [line for line in f.read().splitlines()] return stoplist
8578428ec387309907f428f3eec91a526f11167a
21,096
def to_text(value): """Convert an opcode to text. *value*, an ``int`` the opcode value, Raises ``dns.opcode.UnknownOpcode`` if the opcode is unknown. Returns a ``str``. """ return Opcode.to_text(value)
85395ecdaa2fae4fc121072747401c114d7b4ed3
21,098
import torch def _demo_mm_inputs(input_shape, num_classes): """Create a superset of inputs needed to run test or train batches. Args: input_shape (tuple): input batch dimensions num_classes (int): number of semantic classes """ (N, C, H, W) = input_shape rng = np.random.RandomState(0) imgs = rng.rand(*input_shape) segs = rng.randint( low=0, high=num_classes - 1, size=(N, 1, H, W)).astype(np.uint8) img_metas = [{ 'img_shape': (H, W, C), 'ori_shape': (H, W, C), 'pad_shape': (H, W, C), 'filename': '<demo>.png', 'scale_factor': 1.0, 'flip': False, } for _ in range(N)] mm_inputs = { 'imgs': torch.FloatTensor(imgs).requires_grad_(True), 'img_metas': img_metas, 'gt_semantic_seg': torch.LongTensor(segs) } return mm_inputs
9d8de5d5bd337720f386a45ad40f9e901a999b52
21,100
import socket def get_ephemeral_port(sock_family=socket.AF_INET, sock_type=socket.SOCK_STREAM): """Return an ostensibly available ephemeral port number.""" # We expect that the operating system is polite enough to not hand out the # same ephemeral port before we can explicitly bind it a second time. s = socket.socket(sock_family, sock_type) s.bind(('', 0)) port = s.getsockname()[1] s.close() return port
37287b70e35b8aa7fbdb01ced1882fb3bbf38543
21,101
from typing import Optional def IR_guess_model(spectrum: ConvSpectrum, peak_args: Optional[dict] = None) -> tuple[Model, dict]: """ Guess a fit for the IR spectrum based on its peaks. :param spectrum: the ConvSpectrum to be fit :param peak_args: arguments for finding peaks :return: Model, parameters """ min_intensity, max_intensity = spectrum.range range_intensities = max_intensity - min_intensity IR_peak_defaults = { "prominence": 0.1 * range_intensities, } peak_args = IR_peak_defaults if peak_args is None else {**IR_peak_defaults, **peak_args} peak_indices, peak_properties = spectrum.peaks(**peak_args, indices=True) params = Parameters() composite_model = None # Fit the peaks for i, peak_idx in enumerate(peak_indices): prefix = f"a{i}_" model = models.GaussianModel(prefix=prefix) center = spectrum.energies[peak_idx] height = spectrum.intensities[peak_idx] model.set_param_hint("amplitude", min=0.05 * height) model.set_param_hint("center", min=center - 10, max=center + 10) model.set_param_hint("sigma", min=0.1, max=100) peak_params = { f"{prefix}amplitude": height * 0.8, f"{prefix}center": center, f"{prefix}sigma": 10, } params = params.update(model.make_params(**peak_params)) composite_model = model if composite_model is None else composite_model + model return composite_model, params
fa56e3c183ef08b35f177df1d727ff134c964eaf
21,102
def virus_monte_carlo(initial_infected, population, k): """ Generates a list of points to which some is infected at a given value k starting with initial_infected infected. There is no mechanism to stop the infection from reaching the entire population. :param initial_infected: The amount of people whom are infected at the start. :type initial_infected: int :param population: The total population sample. :type population: int :param k: The rate of infection. :type k: float :return: An array of the amount of people per time infected. :rtype: tuple(time, infected) """ people_array = np.arange(1, population+1, dtype=int) current_infected = initial_infected people_infected = np.array([current_infected]) time_array = np.array([0]) # Array math. counter = 0 for _ in people_array: probability = (k)*current_infected/population random_array = np.random.uniform(0, 1, size=people_array.size) random_bool = np.where(random_array <= probability, True, False) people_array = people_array[random_bool != True] if people_array.size != population: current_infected = (population-people_array.size) people_infected = np.append(people_infected, current_infected) counter+=1 time_array = np.append(time_array, counter) if people_infected.size == population: break return (time_array, people_infected)
856af13a8a7fdbb931ba32b97ff7bd5207e9ca49
21,103
def threadsafe_generator(f): """ A decorator that takes a generator function and makes it thread-safe. """ def g(*a, **kw): return threadsafe_iter(f(*a, **kw)) return g
013e0df91f70da8c8f4f501bc31d8bddcf378787
21,104
def lastmsg(self): """ Return last logged message if **_lastmsg** attribute is available. Returns: last massage or empty str """ return getattr(self, '_last_message', '')
ad080c05caadbb644914344145460db0164f017c
21,105
def _callback_on_all_dict_keys(dt, callback_fn): """ Callback callback_fn on all dictionary keys recursively """ result = {} for (key, val) in dt.items(): if type(val) == dict: val = _callback_on_all_dict_keys(val, callback_fn) result[callback_fn(key)] = val return result
3cab018413a7ba8a0e5bbae8574025253a2ea885
21,106
def top_ngrams(df, n=2, ngrams=10): """ * Not generalizable in this form * * This works well, but is very inefficient and should be optimized or rewritten * Takes a preposcessed, tokenized column and create a large list. Returns most frequent ngrams Arguments: df = name of DataFrame with no_hashtags column (this will be generalizable in a future commit) n = number of words per grouping eg. 1, 2 or 3 ngrams = Number of ngrams to return """ word_list = preprocess(''.join(str(df['lemma'].tolist()))) return (pd.Series(nltk.ngrams(word_list, n)).value_counts())[:ngrams]
a6c540a30a288a8d26bf6f966b44b9f080db0026
21,108
def install_openvpn(instance, arg, verbose=True): """ """ install(instance, {"module":"openvpn"}, verbose=True) generate_dh_key(instance, {"dh_name":"openvpn", "key_size":"2048"}) server_conf = open("simulation/workstations/"+instance.name+"/server_openvpn.conf", "w") server_conf.write("port 1197\n") server_conf.write("proto udp\n") server_conf.write("dev tun\n") server_conf.write("ca /certs/"+arg["private_key_certificate_name"]+"/"+arg["private_key_middle_certificate_name"]+".cert\n") server_conf.write("cert /certs/"+arg["private_key_certificate_name"]+"/"+arg["private_key_certificate_name"]+".cert\n") server_conf.write("key /certs/"+arg["private_key_certificate_name"]+"/"+arg["private_key_certificate_name"]+".key\n") server_conf.write("dh /certs/dh/openvpn-2048.key\n") server_conf.write("server 10.122.0.0 255.255.255.0 \n") server_conf.write("push \"10.122.1.0 255.255.255.0\"\n") server_conf.write("keepalive \n") server_conf.write("cipher AES-128-CBC \n") server_conf.write("comp-lzo \n") server_conf.write("max-clients "+arg["max_client"]+"\n") if arg["user"] == "": server_conf.write("user nobody\n") else: server_conf.write("user "+arg["user"]+"\n") if arg["group"] == "": server_conf.write("group nobody\n") else: server_conf.write("group "+arg["group"]+"\n") server_conf.write("persist-key\n") server_conf.write("persist-tun\n") server_conf.write("status openvpn-status.log\n") server_conf.write("log openvpn.log\n") server_conf.write("verb 9\n") server_conf.close() if upload_file(instance, {"instance_path":"/etc/openvpn/server.conf", "host_manager_path": "simulation/workstations/"+instance.name+"/server_openvpn.conf"}, verbose=False) == 1: return 1 if restart_service(instance, {"service":"openvpn"}) == 1: return 1
d95d99e7847dd08c43f54fc3dde769f69888da77
21,109
def rossoporn_parse(driver: webdriver.Firefox) -> tuple[list[str], int, str]: """Read the html for rossoporn.com""" #Parses the html of the site soup = soupify(driver) dir_name = soup.find("div", class_="content_right").find("h1").text dir_name = clean_dir_name(dir_name) images = soup.find_all("div", class_="wrapper_g") images = ["".join([PROTOCOL, img.get("src").replace("tn_", "")]) for tag_list in images for img in tag_list.find_all("img")] num_files = len(images) driver.quit() return (images, num_files, dir_name)
21aad0798bc3e13badb1076ec40c36c56f47ebf7
21,110
def pid_from_context(_, context, **kwargs): """Get PID from marshmallow context.""" pid = (context or {}).get('pid') return pid.pid_value if pid else missing
350fd4c915e186dd41575c5842e47beb7d055fb5
21,111
def score_text(text, tokenizer, preset_model, finetuned_model): """ Uses rule-based rankings. Higher is better, but different features have different scales. Args: text (str/ List[str]): one story to rank. tokenizer (Pytroch tokenizer): GPT2 Byte Tokenizer. preset_model (Pytorch model): preset GPT2 model of the same/ different size of the finetuned model. finetuned_model (Pytorch model): fine-tuned GPT2 model. Returns a scores np.array of corresponding to text. """ assert isinstance( text, (str, list)), f"score_text accepts type(text) = str/list, but got {type(text)}" if isinstance(text, list): text = ' '.join(text) # Keep same order as in constants.FEATURES scores = [0 for _ in range(len(constants.FEATURES))] texts_sentences = split_to_sentences(text) # scores[0] = _coherency(texts_sentences, lsa_embedder) scores[1] = _readabilty(text, texts_sentences) # Set of text words without punctuation and stop words. filtered_words = list(filter( lambda word: word not in constants.STOP_WORDS, split_words(text.lower().strip()))) filtered_words_set = set(filtered_words) # Sentiment. scores[2] = _sentiment_polarity(filtered_words) # Set based measures. scores[3], scores[4] = _simplicity(filtered_words_set), _diversity( filtered_words, filtered_words_set) # The bigger differene, the more tale-like, similar to the fine-tuned model, the text is. scores[5] = KLDIV_error_per_text( tokenizer, preset_model, finetuned_model, text) # print(" | ".join(f'{key}: {score:.2f}' for key, # score in zip(constants.FEATURES, scores))) return np.array(scores)
e304975b55c44e78f6ce92f4df9d1ba563389b8b
21,112
def parse_cards(account_page_content): """ Parse card metadata and product balances from /ClipperCard/dashboard.jsf """ begin = account_page_content.index(b'<!--YOUR CLIPPER CARDS-->') end = account_page_content.index(b'<!--END YOUR CLIPPER CARDS-->') card_soup = bs4.BeautifulSoup(account_page_content[begin:end], "html.parser") serial_numbers = find_values(card_soup, 'Serial Number:', get_next_sibling_text) nicknames = find_values(card_soup, 'Card Nickname:', get_inner_display_text) types = find_values(card_soup, 'Type:', get_next_sibling_text) statuses = find_values(card_soup, 'Status:', get_next_sibling_text) products = parse_card_products(card_soup) cards = [] for sn, nn, tp, st, pd in zip(serial_numbers, nicknames, types, statuses, products): cards.append(Card(serial_number=sn, nickname=nn, type=tp, status=st, products=pd)) return cards
6ec10941aebe88af27a75c407e6805698d5cf31c
21,116
def interaction_time_data_string(logs, title): """ times = utils.valid_values_for_enum((models.LogEntry.TIME_CHOICES)) contexts_map = dict(models.LogEntry.TIME_CHOICES) counts = {contexts_map[k]: v for k, v in _counts_by_getter(logs, lambda l: l.time_of_day).items() } plt.clf() xs = list(range(len(times))) ys = [counts.get(cont, 0) for cont in times] plt.bar(xs, ys) plt.xticks(xs, times) plt.title(title) plt.xlabel("Social Context") plt.ylabel('Num Interactions') plt.gca().xaxis.grid(False) plt.tight_layout() return pyplot_to_base64() """ contexts = utils.valid_values_for_enum((models.LogEntry.SOCIAL_CHOICES)) contexts_map = dict(models.LogEntry.SOCIAL_CHOICES) reacc_map = dict(models.LogEntry.REACTION_CHOICES) interaction_map = dict(models.LogEntry.MEDIUM_CHOICES) time_map = dict(models.LogEntry.TIME_CHOICES) first_agg = recommender.group_list_by_sel(logs, lambda l: interaction_map[l.interaction_medium]) plt.clf() keys = sorted(first_agg.keys()) sub_keys = sorted(list(time_map.keys())) xs = np.arange(len(sub_keys)) * 2 width = .35 colors = np.array([ [205,224,241], [190,26,9], [0,105,253], [255,114,0], ]) / 255.0 for i, reacc in enumerate( keys ): sub_logs = first_agg[reacc] counts = _counts_by_getter(sub_logs, lambda l: l.time_of_day) ys = [counts.get(cont, 0) for cont in sub_keys] plt.bar(xs + i * width, ys, width, label=reacc, color=colors[i]) ax = plt.gca() ax.set_xticks(xs + width * (len(keys) // 2)) ax.set_xticklabels([time_map[k] for k in sub_keys]) plt.title(title) plt.xlabel("Social Context") plt.ylabel('Num Interactions') plt.legend() ax.xaxis.grid(False) plt.tight_layout() return pyplot_to_base64()
fc6f6a32d39f3bd87c3b7b816e333aef462fb0f3
21,117
import math def _label_boost(boost_form, label): """Returns the label boost. Args: boost_form: Either NDCG or PRECISION. label: The example label. Returns: A list of per list weight. """ boost = { 'NDCG': math.pow(2.0, label) - 1.0, 'PRECISION': 1.0 if label >= 1.0 else 0.0, } return boost[boost_form]
811e87949b0bbe7dc98f63814b343ffd90fe129a
21,118
def has_matching_ts_templates(reactant, bond_rearr): """ See if there are any templates suitable to get a TS guess from a template Arguments: reactant (autode.complex.ReactantComplex): bond_rearr (autode.bond_rearrangement.BondRearrangement): Returns: bool: """ mol_graph = get_truncated_active_mol_graph(graph=reactant.graph, active_bonds=bond_rearr.all) ts_guess_templates = get_ts_templates() for ts_template in ts_guess_templates: if template_matches(reactant=reactant, ts_template=ts_template, truncated_graph=mol_graph): return True return False
10061734d2831668099f3e85d99366dda9f51157
21,119
def get_commands(xml: objectify.ObjectifiedElement): """ Returns an action and the room from the xml string. :param xml: :return: """ return xml.body.attrib["action"]
3724e00c626814e792911ae094a5b200d8593f4c
21,120
def compression_point(w_db, slope = 1, compression = 1, extrapolation_point = None, axis = -1): """Return input referred compression point""" interpol_line = calc_extrapolation_line(w_db, slope, extrapolation_point, axis) return cross(interpol_line - w_db, compression)
4c8793c5796d1359aa1fc00f226ecafda98c3f61
21,121
from typing import List import logging def pattern_remove_incomplete_region_or_spatial_path( perception_graph: PerceptionGraphPattern ) -> PerceptionGraphPattern: """ Helper function to return a `PerceptionGraphPattern` verifying that region and spatial path perceptions contain a reference object. """ graph = perception_graph.copy_as_digraph() region_and_path_nodes: ImmutableSet[NodePredicate] = immutableset( node for node in graph.nodes if isinstance(node, IsPathPredicate) or isinstance(node, RegionPredicate) ) nodes_without_reference: List[NodePredicate] = [] for node in region_and_path_nodes: has_reference_edge: bool = False for successor in graph.successors(node): predicate = graph.edges[node, successor]["predicate"] if isinstance(predicate, RelationTypeIsPredicate): if predicate.relation_type in [ REFERENCE_OBJECT_LABEL, REFERENCE_OBJECT_DESTINATION_LABEL, REFERENCE_OBJECT_SOURCE_LABEL, ]: has_reference_edge = True break if not has_reference_edge: nodes_without_reference.append(node) logging.info( f"Removing incomplete regions and paths. " f"Removing nodes: {nodes_without_reference}" ) graph.remove_nodes_from(nodes_without_reference) def sort_by_num_nodes(g: DiGraph) -> int: return len(g.nodes) # We should maybe consider doing this a different way # As this approach just brute force solves the problem rather than being methodical about it if number_weakly_connected_components(graph) > 1: components = [ component for component in [ subgraph(graph, comp) for comp in weakly_connected_components(graph) ] ] components.sort(key=sort_by_num_nodes, reverse=True) computed_graph = subgraph(graph, components[0].nodes) removed_nodes: List[NodePredicate] = [] for i in range(1, len(components)): removed_nodes.extend(components[i].nodes) logging.info(f"Cleanup disconnected elements. Removing: {removed_nodes}") else: computed_graph = graph return PerceptionGraphPattern(computed_graph, dynamic=perception_graph.dynamic)
cbcc79602bf87e1ea88f8a0027d6cd19b74fb81c
21,122
def other_shifted_bottleneck_distance(A, B, fudge=default_fudge, analysis=False): """Compute the shifted bottleneck distance between two diagrams, A and B (multisets)""" A = pu.SaneCounter(A) B = pu.SaneCounter(B) if not A and not B: return 0 radius = fudge(upper_bound_on_radius(A, B)) events = event_queue.EventQueue(A, B) matching = GeometricBipartiteMatching(A, B) # these counters are for performance monitoring only - they don't affect the logic ctr, R_ctr, L_ctr, fail_ctr, win_ctr = 0, 0, 0, 0, 0 while events and radius > epsilon: ctr += 1 event = events.next_event(radius) if isinstance(event, event_queue.ExitEvent): R_ctr += 1 matching.remove_all(event.edge) else: L_ctr += 1 if birth(event.edge, radius) >= death(event.edge, radius): win_ctr += 1 continue # relies on ties being broken with the highest-radius edge # assert not matching.diagonal_perfect() if matching.diagonal_perfect(): fail_ctr += 1 radius = fudge(max( events.next_diagonal_height(), radius - (events.next_exit_shift(radius) - birth(event.edge, radius)) / 2)) events.push(event) continue matching.maximize_matching( shift=event.shift_to_check, radius=radius) if matching.diagonal_perfect(): # radius = fudge(matching.value()) events.push(event) if analysis: print("other:", len(A) + len(B), "total", ctr, "R", R_ctr, "L", L_ctr, "fail", fail_ctr, "win", win_ctr) return radius
51455945743bfc5f262711e826d1097122309f83
21,123
def getCountdown(c): """ Parse into a Friendly Readable format for Humans """ days = c.days c = c.total_seconds() hours = round(c//3600) minutes = round(c // 60 - hours * 60) seconds = round(c - hours * 3600 - minutes * 60) return days, hours, minutes, seconds
f49225ae2680192340720c8958aa19b9e9369f5f
21,124
def fromPSK(valstr): """A special version of fromStr that assumes the user is trying to set a PSK. In that case we also allow "none", "default" or "random" (to have python generate one), or simpleN """ if valstr == "random": return genPSK256() elif valstr == "none": return bytes([0]) # Use the 'no encryption' PSK elif valstr == "default": return bytes([1]) # Use default channel psk elif valstr.startswith("simple"): # Use one of the single byte encodings return bytes([int(valstr[6:]) + 1]) else: return fromStr(valstr)
73fa661458601ec33d2b839aeea060f7a26b530f
21,125
def list_hierarchy(class_name, bases): """ Creates a list of the class hierarchy Args: ----- class_name: name of the current class bases: list/tuple of bases for the current class """ class_list = [Uri(class_name)] for base in bases: if base.__name__ not in IGNORE_CLASSES: class_list.append(Uri(base.__name__)) return list([i for i in set(class_list)])
1b82dfe6576a472c04bb7cb53f8eed94a83a1ac1
21,127
def rss(): """Return ps -o rss (resident) memory in kB.""" return float(mem("rss")) / 1024
92580a4873f2afca3f419a7f661e5cd39ec28b96
21,129
def compare_words( word1_features, word2_features, count=10, exclude=set(), similarity_degree=0.5, separate=False, min_feature_value=0.3 ): """ Сравнение двух слов на основе списка похожих (или вообще каких-либо фич слова). Возвращает 3 списка: характерные для первого слова, второго и общие :param dict[int, float] word1_features: фичи первого слова: словарь {feature: value} :param dict[int, float] word2_features: фичи второго слова: словарь {feature: value} :param in count: число слов в результах :param float similarity_degree: число 0..1. 1 — полное разделение слов, 0 — максимальный поиск сходства :param bool separate: «срогое разделение» — запрет попадания одного слова в несколько колонок :param float min_feature_value: минимальное значение """ diff1, diff2, common = {}, {}, {} # Характерное для первого слова, для второго и общее features = set(word1_features.keys()).union(word2_features.keys()) for feature in features: if feature in exclude: continue feature1 = word1_features.get(feature, 0) feature2 = word2_features.get(feature, 0) if feature1 < min_feature_value and feature2 < min_feature_value: continue diff1_value = feature1 * (1 - feature2) diff2_value = feature2 * (1 - feature1) common_value = (feature1 * feature2) ** similarity_degree max_value = max(diff1_value, diff2_value, common_value) if diff1_value == max_value or not separate: diff1[feature] = diff1_value if diff2_value == max_value or not separate: diff2[feature] = diff2_value if common_value == max_value or not separate: common[feature] = common_value return ( sorted(diff1.items(), key=itemgetter(1), reverse=True)[:count], sorted(diff2.items(), key=itemgetter(1), reverse=True)[:count], sorted(common.items(), key=itemgetter(1), reverse=True)[:count], )
4a04292e48911e6a4152cb03c19cda8de51802fb
21,130
def dispatch_for_binary_elementwise_apis(x_type, y_type): """Decorator to override default implementation for binary elementwise APIs. The decorated function (known as the "elementwise api handler") overrides the default implementation for any binary elementwise API whenever the value for the first two arguments (typically named `x` and `y`) match the specified type annotations. The elementwise api handler is called with two arguments: `elementwise_api_handler(api_func, x, y)` Where `x` and `y` are the first two arguments to the elementwise api, and `api_func` is a TensorFlow function that takes two parameters and performs the elementwise operation (e.g., `tf.add`). The following example shows how this decorator can be used to update all binary elementwise operations to handle a `MaskedTensor` type: >>> class MaskedTensor(tf.experimental.ExtensionType): ... values: tf.Tensor ... mask: tf.Tensor >>> @dispatch_for_binary_elementwise_apis(MaskedTensor, MaskedTensor) ... def binary_elementwise_api_handler(api_func, x, y): ... return MaskedTensor(api_func(x.values, y.values), x.mask & y.mask) >>> a = MaskedTensor([1, 2, 3, 4, 5], [True, True, True, True, False]) >>> b = MaskedTensor([2, 4, 6, 8, 0], [True, True, True, False, True]) >>> c = tf.add(a, b) >>> print(f"values={c.values.numpy()}, mask={c.mask.numpy()}") values=[ 3 6 9 12 5], mask=[ True True True False False] Args: x_type: A type annotation indicating when the api handler should be called. y_type: A type annotation indicating when the api handler should be called. Returns: A decorator. #### Registered APIs The binary elementwise APIs are: <<API_LIST>> """ def decorator(handler): if (x_type, y_type) in _ELEMENTWISE_API_HANDLERS: raise ValueError("A binary elementwise dispatch handler " f"({_ELEMENTWISE_API_HANDLERS[x_type, y_type]}) " f"has already been registered for ({x_type}, {y_type}).") _ELEMENTWISE_API_HANDLERS[x_type, y_type] = handler for api in _BINARY_ELEMENTWISE_APIS: _add_dispatch_for_binary_elementwise_api(api, x_type, y_type, handler) return handler return decorator
743d6f85b843f6200cf8b6c6361fc81154c37936
21,131
def grid(mat, i, j, k): """Returns true if the specified grid contains k""" return lookup(k, [ mat[i + p][j + q] for p in range(3) for q in range(3) ])
b2df3a905ada922011fc344f555a908aa03d5f64
21,132