content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def get_trace(session, trace_uuid): """Retrieves traces given a uuid. Args: sesssion: db session trace_uuid: uuid of trace in question Returns 2-tuple of plop, flamegraph input or None if trace doesn't exist (or was garbage collected. """ trace = session.query(PerfProfile).filter(PerfProfile.uuid == trace_uuid).first() if not trace: raise InvalidUUID() return trace.plop_input, trace.flamegraph_input
0f44ebce393277a3660810ae1b359b437f733ec1
20,786
def first_kind_discrete(orientations, order=4): """ Calc orientation tensors of first kind for given discrete vectors """ # Normalize orientations orientations = [np.array(v) / np.linalg.norm(v) for v in orientations] # Symmetrize orientations # orientations_reversed = [-v for v in orientations] # orientations = orientations + orientations_reversed einsumStrings = { 1: "ij -> j", 2: "ij, ik -> jk", 3: "ij, ik, il -> jkl", 4: "ij, ik, il, im -> jklm", 5: "ij, ik, il, im, in -> jklmn", 6: "ij, ik, il, im, in, ip -> jklmnp", } ori = orientations if order == 1: N = 1.0 / len(orientations) * np.einsum(einsumStrings[order], ori,) elif order == 2: N = 1.0 / len(orientations) * np.einsum(einsumStrings[order], ori, ori) elif order == 3: N = 1.0 / len(orientations) * np.einsum(einsumStrings[order], ori, ori, ori) elif order == 4: N = ( 1.0 / len(orientations) * np.einsum(einsumStrings[order], ori, ori, ori, ori) ) elif order == 5: N = ( 1.0 / len(orientations) * np.einsum(einsumStrings[order], ori, ori, ori, ori, ori) ) elif order == 6: N = ( 1.0 / len(orientations) * np.einsum(einsumStrings[order], ori, ori, ori, ori, ori, ori) ) else: raise Exception("Not implemented") return N
4b28f426ea551d7ef6a744091a65be11d418e324
20,787
def fix_repo_url(repo_url, in_type='https', out_type='ssh', format_dict=format_dict): """ Changes the repo_url format """ for old, new in izip(format_dict[in_type], format_dict[out_type]): repo_url = repo_url.replace(old, new) return repo_url
6382136693bfce4b72e122cdc016fa9eee1fb78f
20,789
def mc(dataset): """ Modulus calculation. Calculates sqrt(real^2 + imag^2) """ return np.sqrt(dataset.real ** 2 + dataset.imag ** 2)
8c7d94ed07c7d4102b2650baef11ea470e5673ea
20,791
from typing import List def _get_fields_list(data: Data) -> List[Field]: """Extracts all nested fields from the data as a flat list.""" result = [] def map_fn(value): if isinstance(value, GraphPieceBase): # pylint: disable=protected-access tf.nest.map_structure(map_fn, value._data) else: result.append(value) tf.nest.map_structure(map_fn, data) return result
ad6a9b4c11749b085edaf639e318e84e75e58cc7
20,792
def constructAdvancedQuery(qryRoot): """ Turns a qry object into a complex Q object by calling its helper and supplying the selected format's tree. """ return constructAdvancedQueryHelper( qryRoot["searches"][qryRoot["selectedtemplate"]]["tree"] )
4a1a23c4810e7b4f30a86c620f0e949da8af4ef8
20,793
def slice_and_dice(text=text): """Strip the whitespace (newlines) off text at both ends, split the text string on newline (\n). Next check if the first char of each (stripped) line is lowercase, if so split the line into words and append the last word to the results list. Make sure the you strip off any trailing exclamation marks (!) and dots (.), Return the results list.""" results = [] for line in text.strip().split('\n'): line = line.strip() if line[0].islower(): last_word = line.split()[-1] if last_word[-1] == '.' or last_word[-1] == '!': last_word = last_word[:-1] results.append(last_word) return results
16d3bb77c60738d654a61ac40b3fc7216ee6ed52
20,794
def solution(data): """ Solution to the problem """ seats, first_visible_seats, dim_y, dim_x = preprocess(data) solver = Simulation(seats, first_visible_seats, dim_y, dim_x) return solver.solve()
6bbfa11df003b2dce24430cf50420d6d2bcf9683
20,795
from typing import Tuple def add_received_ip_tags( rows: beam.pvalue.PCollection[Row], ips_with_metadata: beam.pvalue.PCollection[Tuple[DateIpKey, Row]] ) -> beam.pvalue.PCollection[Row]: """Add tags for answer ips (field received.ip) - asnum, asname, http, cert Args: rows: PCollection of measurement rows ips_with_metadata: PCollection of dated ips with geo metadata Returns: PCollection of measurement rows with tag information added to the recieved.ip row """ # PCollection[Tuple[DateIpKey,Row]] received_keyed_by_ip_and_date = ( rows | 'key by received ips and dates' >> beam.Map( lambda row: (_make_date_received_ip_key(row), row)).with_output_types( Tuple[DateIpKey, Row])) # Iterable[PCollection[Tuple[DateIpKey,Row]]] partition_by_domain = ( received_keyed_by_ip_and_date | 'partition by domain' >> beam.Partition( _get_domain_partition, NUM_DOMAIN_PARTITIONS)) collections = [] for i in range(0, NUM_DOMAIN_PARTITIONS): elements = partition_by_domain[i] # PCollection[Tuple[Tuple[date,ip],Dict[input_name_key,List[Row]]]] grouped_received_metadata_and_rows = (({ IP_METADATA_PCOLLECTION_NAME: ips_with_metadata, ROWS_PCOLLECION_NAME: elements }) | f'group by received ip keys {i}' >> beam.CoGroupByKey()) # PCollection[Row] domain_rows_with_tags = ( grouped_received_metadata_and_rows | f'tag received ips {i}' >> beam.FlatMapTuple(lambda k, v: merge_metadata_with_rows( k, v, field='received')).with_output_types(Row)) collections.append(domain_rows_with_tags) # PCollection[Row] rows_with_tags = ( collections | 'merge domain collections' >> beam.Flatten().with_output_types(Row)) return rows_with_tags
36dcbd0ced327a1f4ed0645b7c1edfe65bdeb9f8
20,796
def set_selector(*args): """set_selector(sel_t selector, ea_t paragraph) -> int""" return _idaapi.set_selector(*args)
8c4b7119979dda3d4b21b56865d20cfa60900a3a
20,797
def other_features(tweet): """This function takes a string and returns a list of features. These include Sentiment scores, Text and Readability scores, as well as Twitter specific features""" tweet_text = tweet["text"] ##SENTIMENT sentiment = sentiment_analyzer.polarity_scores(tweet_text) words = local_tokenizer.tokenize(tweet_text) #Get text only num_chars = sum(len(w) for w in words) #num chars in words num_chars_total = len(tweet_text) num_terms = len(tweet_text.split()) num_words = len(words) num_unique_terms = len(set([x.lower() for x in words])) caps_count = sum([1 if x.isupper() else 0 for x in tweet_text]) caps_ratio = caps_count / num_chars_total twitter_objs = count_twitter_objs(tweet_text) #Count #, @, and http:// num_media = 0 if "media" in tweet["entities"]: num_media = len(tweet["entities"]["media"]) retweet = 0 if "rt" in words or "retweeted_status" in tweet: retweet = 1 has_place = 1 if "coordinates" in tweet else 0 author = tweet["user"] is_verified = 1 if author["verified"] else 0 log_followers = 0 if author["followers_count"] == 0 else np.log(author["followers_count"]) log_friends = 0 if author["friends_count"] == 0 else np.log(author["friends_count"]) features = [num_chars, num_chars_total, num_terms, num_words, num_unique_terms, sentiment['neg'], sentiment['pos'], sentiment['neu'], sentiment['compound'], twitter_objs[2], twitter_objs[1], twitter_objs[0], retweet, num_media, is_verified, # log_followers, log_friends, # has_place, caps_ratio, ] return features
d4b1e158a80b6d9502c02dc0c2380e8749bb0b6f
20,798
def template(spec_fn): """ >>> from Redy.Magic.Classic import template >>> import operator >>> class Point: >>> def __init__(self, p): >>> assert isinstance(p, tuple) and len(p) is 2 >>> self.x, self.y = p >>> def some_metrics(p: Point): >>> return p.x + 2 * p.y >>> @template >>> def comp_on_metrics(self: Point, another: Point, op): >>> if not isinstance(another, Point): >>> another = Point(another) >>> return op(*map(some_metrics, (self, another))) >>> class Space(Point): >>> @comp_on_metrics(op=operator.lt) >>> def __lt__(self, other): >>> ... >>> @comp_on_metrics(op=operator.eq) >>> def __eq__(self, other): >>> ... >>> @comp_on_metrics(op=operator.gt) >>> def __gt__(self, other): >>> ... >>> @comp_on_metrics(op=operator.le) >>> def __le__(self, other): >>> ... >>> @comp_on_metrics(op=operator.ge) >>> def __ge__(self, other): >>> ... >>> p = Space((0, 1)) >>> p > (1, 2) >>> p < (3, 4) >>> p >= (5, 6) >>> p <= (7, 8) >>> p == (9, 10) """ def specify(*spec_args, **spec_kwds): def call(_): def inner(*args, **kwds): return spec_fn(*spec_args, *args, **spec_kwds, **kwds) return inner return call return specify
a8fd64926cdbec73c1a31c20a27174c86af3405e
20,799
def list_sum(*argv, **kwargs): """ Summarise items in provided list Arguments: - argv: list of item for summarise Options: - type: list item type (int if omitted) Note: All types provided by this lib supported Returns sum number in 'type' format """ _type_name = kwargs.get('type', 'int') _type = type_factory(_type_name) _result: _type = 0 try: for _list in argv: if isinstance(_list, (list, tuple)): _result += sum([_type(_item) for _item in _list]) else: _number = _type(_list) _result += _number except (ValueError, IndexError) as e: raise FrameworkError(f"ROBOT_MATH.LIST_SUM: {e}") else: return _result
d047abe3eb99ac7c468dd8b3b1bc42ee7b98e134
20,800
def image_upload(request): """ If it's a post, then upload the image or store it locally based on config. Otherwise, return the html of the upload.html template. """ if request.method == 'POST': image_file = request.FILES['image_file'] image_type = request.POST['image_type'] if settings.USE_S3: if image_type == 'private': upload = UploadPrivate(file=image_file) else: upload = Upload(file=image_file) upload.save() image_url = upload.file.url else: filesystem_storage = FileSystemStorage() filename = filesystem_storage.save(image_file.name, image_file) image_url = filesystem_storage.url(filename) return render(request, 'upload.html', { 'image_url': image_url }) return render(request, 'upload.html')
1d5f0f111dfd9f1b7b1f29ebb8d9fb27fb210a5f
20,802
def werbo_c(topics, word_embedding_model, weight=0.9, topk=10): """ computes Word embedding based RBO - centroid Parameters ---------- topics: a list of lists of words word_embedding_model: word embedding space in gensim word2vec format weight: p (float), default 1.0: Weight of each agreement at depth d: p**(d-1). When set to 1.0, there is no weight, the rbo returns to average overlap. topk: top k words on which the topic diversity will be computed """ if topk > len(topics[0]): raise Exception('Words in topics are less than topk') else: collect = [] for list1, list2 in combinations(topics, 2): word2index = get_word2index(list1, list2) index2word = {v: k for k, v in word2index.items()} indexed_list1 = [word2index[word] for word in list1] indexed_list2 = [word2index[word] for word in list2] rbo_val = werc(indexed_list1[:topk], indexed_list2[:topk], p=weight, index2word=index2word, word2vec=word_embedding_model, norm=False)[2] collect.append(rbo_val) return np.mean(collect)
447e3c6037196de56673a62b8841279e6f17d739
20,803
def G_t(t, G, tau, Ge = 0.0): """this function returns the relaxation modulus in time""" G_rel = np.zeros(np.size(t)) if np.size(G) == 1: #the model is the SLS for i in range(np.size(t)): G_rel[i] = Ge + G*np.exp(-t[i]/tau) else: #the model has more than one arm for i in range(np.size(t)): G_rel[i] = Ge + sum(G[:]*np.exp(-t[i]/tau[:])) return G_rel
b44cb0b49e2423ee3c5aade0c625407d54889044
20,804
def iou_set(set1, set2): """Calculate iou_set """ union = set1.union(set2) return len(set1.intersection(set2)) / len(union) if union else 0
f0087b640e8b9a87167d7e2b645aca3c565e09c1
20,805
import time def time_measured(fkt): """ Decorator to measure execution time of a function It prints out the measured time Parameters ---------- fkt : function function that shall be measured Returns ------- None """ def fkt_wrapper(*args, **kwargs): t1 = time.time() return_vals = fkt(*args, **kwargs) t2 = time.time() print("Job needed: {} seconds".format(t2-t1)) return return_vals return fkt_wrapper
43fe9fa24fdd27f15e988f5997424dd91f7d92c9
20,806
def test_find_codon(find_codon): """ A function to test another function that looks for a codon within a coding sequence. """ synapto_nuc = ("ATGGAGAACAACGAAGCCCCCTCCCCCTCGGGATCCAACAACAACGAGAACAACAATGCAGCCCAGAAGA" "AGCTGCAGCAGACCCAAGCCAAGGTGGACGAGGTGGTCGGGATTATGCGTGTGAACGTGGAGAAGGTCCT" "GGAGCGGGACCAGAAGCTATCGGAACTGGGCGAGCGTGCGGATCAGCTGGAGCAGGGAGCATCCCAGTTC" "GAGCAGCAGGCCGGCAAGCTGAAGCGCAAGCAATGGTGGGCCAACATGAAGATGATGATCATTCTGGGCG" "TGATAGCCGTTGTGCTGCTCATCATCGTTCTGGTGTCGCTTTTCAATTGA") assert find_codon('ATG', synapto_nuc) == 0 assert find_codon('AAT', synapto_nuc) == 54 assert find_codon('TGT', synapto_nuc) == -1 assert find_codon('TGC', synapto_nuc) == -1 return None
1e8906441d7812fbaefd7688a1c02876210ba8b8
20,807
def add_keys3(a, A, b, B): """ aA + bB :param a: :param A: :param b: :param B: :return: """ return tcry.xmr_add_keys3_vartime_r(a, A, b, B)
e1f8205b93b2f944da271a8e4097c9466831ad6b
20,808
def cause_state(value): """ Usage:: {{ value|cause_state}} """ try: if isinstance(value, (str, unicode)): value = eval(value) if Bushfire.CAUSE_STATE_POSSIBLE==value: return Bushfire.CAUSE_STATE_CHOICES[Bushfire.CAUSE_STATE_POSSIBLE-1][1] return Bushfire.CAUSE_STATE_CHOICES[Bushfire.CAUSE_STATE_KNOWN-1][1] except: return None
8e905921b1e7e1b498f42e70a134d21f2a146f2b
20,809
def ReadRawSAData(DataDirectory, fname_prefix): """ This function reads in the raw SA data to a pandas dataframe Args: DataDirectory: the data directory fname_prefix: the file name prefix Returns: pandas dataframe with the raw SA data Author: FJC """ # get the csv filename fname_suffix = "_SAvertical.csv" fname = fname_prefix+fname_suffix df = pd.read_csv(DataDirectory+fname) return df
d28d91131de82c0049a046231a41eb34d9f3b185
20,810
from typing import List def not_valid_score(scores: List[int]): """Checks if the set of estimations is ambiguous (all scores are different).""" return True if len(np.unique(scores)) == len(scores) else False
9077c93a6bdfe79d0fa5277f04adb8ba58053ba9
20,811
import numpy def biom_to_pandas(biom_otu): """ Convert data from biom to SparseDataFrame (pandas) for easy access :param biom_otu: Table :rtype: DataFrame """ tmp_m = biom_otu.matrix_data df = [SparseSeries(tmp_m[i].toarray().ravel()) for i in numpy.arange(tmp_m.shape[0])] return (SparseDataFrame(df, index=biom_otu.ids('observation'), columns=biom_otu.ids('sample')).to_dense())
ce865ce669dd36e60b83be00f998732abc37d6f7
20,813
def is_classmethod(method: t.Callable): """ A python method is a wrapper around a function that also holds a reference to the class it is a method of. When bound, it also holds a reference to the instance. @see https://stackoverflow.com/questions/12935241/python-call-instance-method-using-func :param method: """ # print(instance.a_method) # Bounded # print(AClass.a_method) # Unbounded bound_to: t.Type = getattr(method, '__self__', None) # Bound to: <class '__main__.AClass'>, False # If double decorated with staticmethod and classmethod # Bound to: <__main__.AClass object at 0x7ffb18699fd0>, True if not isinstance(bound_to, type): # must be bound to a class return False name: str = method.__name__ # MRO = Method resolution order # E.g. Class A: pass # A.__mro__ # Output: (<class '__main__.AClass'>, <class 'object'>) for cls in bound_to.__mro__: # Get decorator descriptor = vars(cls).get(name) if descriptor is not None: return isinstance(descriptor, classmethod) return False
6600c9a16df0dc62304a02c2bb333af07f8709f8
20,815
def masked_accuracy(y_true, y_pred): """An accuracy function that masks based on targets (value: 0.5) Args: y_true: The true training labels y_pred: The predicted labels Returns: float: the masked accuracy """ a = kb.sum(kb.cast(kb.equal(y_true, kb.round(y_pred)), kb.floatx())) c = kb.sum(kb.cast(kb.not_equal(y_true, 0.5), kb.floatx())) acc = a / c return acc
0d6007eafdf849ad495458d56b4e68a0031d35fa
20,816
def get_shap_interaction_values(x_df, explainer): """ Compute the shap interaction values for a given dataframe. Also checks if the explainer is a TreeExplainer. Parameters ---------- x_df : pd.DataFrame DataFrame for which will be computed the interaction values using the explainer. explainer : shap.TreeExplainer explainer object used to compute the interaction values. Returns ------- shap_interaction_values : np.ndarray Shap interaction values for each sample as an array of shape (# samples x # features x # features). """ if not isinstance(explainer, shap.TreeExplainer): raise ValueError(f"Explainer type ({type(explainer)}) is not a TreeExplainer. " f"Shap interaction values can only be computed for TreeExplainer types") shap_interaction_values = explainer.shap_interaction_values(x_df) # For models with vector outputs the previous function returns one array for each output. # We sum the contributions here. if isinstance(shap_interaction_values, list): shap_interaction_values = np.sum(shap_interaction_values, axis=0) return shap_interaction_values
9b84e0a262ba0d74eb2f24406ac6f41dfbab1625
20,817
from typing import Optional from typing import Union def plot_roc( y_true: np.ndarray, y_probas: np.ndarray, labels: Optional[dict] = None, classes_to_plot: Optional[list] = None, plot_micro: Optional[bool] = False, plot_macro: Optional[bool] = False, title: str = "ROC Curve", ax: Optional[matplotlib.axes.Axes] = None, figsize: Optional[tuple] = None, cmap: Union[str, matplotlib.colors.Colormap] = "Blues", title_fontsize: Union[str, int] = "large", text_fontsize: Union[str, int] = "medium", ) -> matplotlib.axes.Axes: """Plot ROC curve. Parameters ---------- y_true : numpy.ndarray, (n_samples,) Actual target values. y_probas : numpy.ndarray, (n_samples, n_classes) Predicted probabilities of each class. labels: Optional[dict] labels for y. classes_to_plot : Optional[list] Classes for which the ROC curve should be plotted. If the class doesn't exists it will be ignored. If ``None``, all classes will be plotted (the default is ``None``). plot_micro : Optional[bool] Plot micro averaged ROC curve (the default is False) plot_macro : Optional[bool] Plot macro averaged ROC curve (the default is False) title : str Title for the ROC. ax: Optional[`matplotlib.axes.Axes`] object The axes on which plot was drawn. figsize : Optional[tuple] Size of the plot. cmap : Union[str, `matplotlib.colors.Colormap`] Colormap used for plotting. https://matplotlib.org/tutorials/colors/colormaps.html title_fontsize : Union[str, int] Use 'small', 'medium', 'large' or integer-values (the default is 'large') text_fontsize : Union[str, int] Use 'small', 'medium', 'large' or integer-values (the default is 'medium') Returns ------- `matplotlib.axes.Axes` object The axes on which plot was drawn. References ---------- .. [1] https://github.com/reiinakano/scikit-plot """ classes = np.unique(y_true) if not classes_to_plot: classes_to_plot = classes if ax is None: fig, ax = plt.subplots(figsize=figsize) ax.set_title(label=title, fontsize=title_fontsize) fpr_dict = {} tpr_dict = {} indices_to_plot = np.isin(classes, classes_to_plot) for i, to_plot in enumerate(indices_to_plot): fpr_dict[i], tpr_dict[i], _ = mt.roc_curve(y_true, y_probas[:, i], pos_label=classes[i]) if to_plot: roc_auc = mt.auc(fpr_dict[i], tpr_dict[i]) color = plt.cm.get_cmap(cmap)(float(i) / len(classes)) class_name = labels[classes[i]] if labels else classes[i] ax.plot( fpr_dict[i], tpr_dict[i], lw=2, color=color, label=f"ROC curve of class {class_name} (AUC= {roc_auc:.2f})", ) if plot_micro: binarized_y_true = label_binarize(y_true, classes=classes) if len(classes) == 2: binarized_y_true = np.hstack((1 - binarized_y_true, binarized_y_true)) fpr, tpr, _ = mt.roc_curve(binarized_y_true.ravel(), y_probas.ravel()) roc_auc = mt.auc(tpr, fpr) ax.plot( fpr, tpr, label=f"micro-average ROC curve (AUC = {roc_auc:.2f})", color="deeppink", linestyle=":", linewidth=4, ) if plot_macro: # Compute macro-average ROC curve and it's area. # First aggregate all the false positive rates all_fpr = np.unique(np.concatenate([fpr_dict[i] for i, _ in enumerate(classes)])) # Then interpolate all ROC curves at this points mean_tpr = np.zeros_like(all_fpr) for i, _ in enumerate(classes): mean_tpr += interp(all_fpr, fpr_dict[i], tpr_dict[i]) # Finally average it and compute AUC mean_tpr /= len(classes) roc_auc = mt.auc(all_fpr, mean_tpr) ax.plot( all_fpr, mean_tpr, label=f"macro-average ROC curve (AUC = {roc_auc:.2f})", color="navy", linestyle=":", linewidth=4, ) ax.plot([0, 1], [0, 1], "k--", lw=2) ax.set(xlim=[0.0, 1.0], ylim=[0.0, 1.05]) ax.set_xlabel(f"False Positive Rate", fontsize=text_fontsize) ax.set_ylabel(f"True Positive Rate", fontsize=text_fontsize) ax.tick_params(labelsize=text_fontsize) ax.legend(loc="lower right", fontsize=text_fontsize) return ax
e1d92e9a06c3e1d677102f16401e054a7897f1b0
20,818
def _harmonize_input(data): """Harmonize different types of inputs by turning all inputs into dicts.""" if isinstance(data, (pd.DataFrame, pd.Series)) or callable(data): data = {0: data} elif isinstance(data, dict): pass else: raise ValueError( "Moments must be pandas objects or dictionaries of pandas objects." ) return data
ad09d4bbf9b120825cd12b06e8a404b51ab2d23e
20,820
def herd_closest_to_cluster( x: np.ndarray, y: np.ndarray, t: np.ndarray, features: np.ndarray, nb_per_class: np.ndarray ) -> np.ndarray: """Herd the samples whose features is the closest to their class mean. :param x: Input data (images, paths, etc.) :param y: Labels of the data. :param t: Task ids of the data. :param features: Features of shape (nb_samples, nb_dim). :param nb_per_class: Number of samples to herd per class. :return: The sampled data x, y, t. """ if len(features.shape) != 2: raise ValueError(f"Expected features to have 2 dimensions, not {len(features.shape)}d.") indexes = [] for class_id in np.unique(y): class_indexes = np.where(y == class_id)[0] class_features = features[class_indexes] class_mean = np.mean(class_features, axis=1, keepdims=True) dist_to_mean = np.linalg.norm(class_mean - class_features, axis=1) tmp_indexes = dist_to_mean.argsort()[:nb_per_class] indexes.append(class_indexes[tmp_indexes]) indexes = np.concatenate(indexes) return x[indexes], y[indexes], t[indexes]
56512598efa343a974b8694e5d157e85b2179283
20,821
from typing import List def generate_reference_config(config_entries: List[ConfigEntry]) -> {}: """ Generates a dictionary containing the expected config tree filled with default and example values :return: a dictionary containing the expected config tree """ return config_entries_to_dict(config_entries, use_examples=True)
c00da6c96935845d4fb388251e6c5bff718cbe59
20,822
def reshape_tensor2list(tensor, n_steps, n_input): """Reshape tensor [?, n_steps, n_input] to lists of n_steps items with [?, n_input] """ # Prepare data shape to match `rnn` function requirements # Current data input shape (batch_size, n_steps, n_input) # Required shape: 'n_steps' tensors list of shape (batch_size, n_input) # # Permuting batch_size and n_steps tensor = tf.transpose(tensor, perm=[1, 0, 2], name='transpose') # Reshaping to (n_steps*batch_size, n_input) tensor = tf.reshape(tensor, [-1, n_input], name='reshape') # Split to get a list of 'n_steps' tensors of shape (batch_size, n_input) tensor = tf.split(0, n_steps, tensor, name='split') return tensor
dd42869bbc6d1e97a518cd133725c66408702afa
20,823
def squeeze(xray_obj, dimensions, dimension=None): """Squeeze the dimensions of an xray object.""" if dimension is None: dimension = [d for d, s in dimensions.iteritems() if s == 1] else: if isinstance(dimension, basestring): dimension = [dimension] if any(dimensions[k] > 1 for k in dimension): raise ValueError('cannot select a dimension to squeeze out ' 'which has length greater than one') return xray_obj.indexed(**{dim: 0 for dim in dimension})
abddfe5594600d39dcaece2c0be930d97c5aea2b
20,825
def server_db(request, cp_server, api_server): """Enable database access for unit test vectors.""" db = database.get_connection(read_only=False, integrity_check=False) api_server.db = db # inject into api_server cursor = db.cursor() cursor.execute('''BEGIN''') util_test.reset_current_block_index(db) request.addfinalizer(lambda: cursor.execute('''ROLLBACK''')) request.addfinalizer(lambda: util_test.reset_current_block_index(db)) return db
40edd06d3aade01b70366cfe9f700772a1f9f2d7
20,826
import six import click def click_exception(exc, error_format): """ Return a ClickException object with the message from an input exception in a desired error message format. Parameters: exc (exception or string): The exception or the message. error_format (string): The error format (see ``--error-format`` general option). Returns: click.ClickException: The new exception. """ if error_format == 'def': if isinstance(exc, zhmcclient.Error): error_str = exc.str_def() else: assert isinstance(exc, six.string_types) error_str = "classname: None, message: {msg}".format(msg=exc) else: assert error_format == 'msg' if isinstance(exc, zhmcclient.Error): error_str = "{exc}: {msg}".format( exc=exc.__class__.__name__, msg=exc) else: assert isinstance(exc, six.string_types) error_str = exc new_exc = click.ClickException(error_str) new_exc.__cause__ = None return new_exc
8ebbaf6fc42ac5ef989c0afaac770418aca3b9b1
20,827
from typing import Optional import json import asyncio import time import re def build(program_code: str, data: Data = frozendict(), random_seed: Optional[int] = None) -> Model: """Build (compile) a Stan program. Arguments: program_code: Stan program code describing a Stan model. data: A Python dictionary or mapping providing the data for the model. Variable names are the keys and the values are their associated values. Default is an empty dictionary, suitable for Stan programs with no `data` block. random_seed: Random seed, a positive integer for random number generation. Used to make sure that results can be reproduced. Returns: Model: an instance of Model Notes: C++ reserved words and Stan reserved words may not be used for variable names; see the Stan User's Guide for a complete list. """ # `data` must be JSON-serializable in order to send to httpstan data = json.loads(DataJSONEncoder().encode(data)) async def go(): io = ConsoleIO() # hack: use stdout instead of stderr because httpstan silences stderr during compilation building_output = io.section().output if not io.supports_ansi(): building_output.write("<comment>Building...</comment>") async with stan.common.HttpstanClient() as client: # Check to see if model is in cache. model_name = httpstan.models.calculate_model_name(program_code) resp = await client.post(f"/{model_name}/params", json={"data": data}) model_in_cache = resp.status != 404 task = asyncio.create_task(client.post("/models", json={"program_code": program_code})) start = time.time() while True: done, pending = await asyncio.wait({task}, timeout=0.1) if done: break if io.supports_ansi(): building_output.clear() building_output.write(f"<comment>Building:</comment> {time.time() - start:0.1f}s") building_output.clear() if io.supports_ansi() else building_output.write("\n") # now that httpstan has released stderr, we can use error_output again building_output = io.section().error_output resp = task.result() if resp.status != 201: match = re.search(r"""ValueError\(['"](.*)['"]\)""", resp.json()["message"]) if not match: # unknown error, should not happen raise RuntimeError(resp.json()["message"]) exception_body = match.group(1).encode().decode("unicode_escape") error_type_match = re.match(r"(Semantic|Syntax) error", exception_body) if error_type_match: error_type = error_type_match.group(0) exception_body_without_first_line = exception_body.split("\n", 1)[1] building_output.write_line(f"<info>Building:</info> <error>{error_type}:</error>") building_output.write_line(f"<error>{exception_body_without_first_line}</error>") raise ValueError(error_type) else: raise RuntimeError(exception_body) building_output.clear() if io.supports_ansi() else building_output.write("\n") if model_in_cache: building_output.write("<info>Building:</info> found in cache, done.") else: building_output.write(f"<info>Building:</info> {time.time() - start:0.1f}s, done.") assert model_name == resp.json()["name"] if resp.json().get("stanc_warnings"): io.error_line("<comment>Messages from <fg=cyan;options=bold>stanc</>:</comment>") io.error_line(resp.json()["stanc_warnings"]) resp = await client.post(f"/{model_name}/params", json={"data": data}) if resp.status != 200: raise RuntimeError(resp.json()["message"]) params_list = resp.json()["params"] assert len({param["name"] for param in params_list}) == len(params_list) param_names, dims = zip(*((param["name"], param["dims"]) for param in params_list)) constrained_param_names = sum((tuple(param["constrained_names"]) for param in params_list), ()) return Model(model_name, program_code, data, param_names, constrained_param_names, dims, random_seed) try: return asyncio.run(go()) except KeyboardInterrupt: return
c00f3af45b4f4d65b056653fff865246bf0ddd22
20,828
def _exec_with_broadcasting(func, *args, **keywords): """Main function to broadcast together the shapes of the input arguments and return results with the broadcasted shape.""" # Identify arguments needing broadcasting arg_ranks = [] arg_indices = [] for k in range(len(args)) + keywords.keys(): rank = func.BROADCAST_RANKS.get(k, None) if rank is None: continue # Get argument if type(k) == int: arg = args[k] else: arg = keywords[k] # Ignore args that are not arrays if not isinstance(arg, np.ndarray): continue # Determine leading shape, if any if rank == 0: shape = arg.shape else: shape = arg.shape[:rank] if shape == (): continue if shape == (1,): continue arg_ranks.append(rank) arg_indices.append(k) # Call function now if iteration is not needed if not arg_indices: return func.__call__(*args, **keywords) # Broadcast the arrays cspyce1.chkin(func.array.__name__) (broadcasted_shape, reshaped_args) = _broadcast_arrays(arg_ranks, args) if cspyce1.failed(): cspyce1.chkout(func.array.__name__) return None # Update the argument list with flattened arrays args = list(args) for (k,reshaped_arg) in zip(arg_indices, reshaped_args): flattened_arg = np.ravel(reshaped_arg) if type(k) == int: args[k] = flattened_arg else: keywords[k] = flattened_arg # Execute the function results = func.__call__(*args, **keywords) cspyce1.chkout(func.array.__name__) if cspyce1.failed(): return results # Reshape the results if isinstance(results, np.ndarray): return np.reshape(results, broadcasted_shape) reshaped_results = [] for result in results: reshaped_results.append(np.reshape(result, broadcasted_shape)) return reshaped_results
920cdaa1aae4eeb61467e4ca53647a030181a6a4
20,829
def compose_paths(path_0, path_1): """ The binary representation of a path is a 1 (which means "stop"), followed by the path as binary digits, where 0 is "left" and 1 is "right". Look at the diagram at the top for these examples. Example: 9 = 0b1001, so right, left, left Example: 10 = 0b1010, so left, right, left How it works: we write both numbers as binary. We ignore the terminal in path_0, since it's not the terminating condition anymore. We shift path_1 enough places to OR in the rest of path_0. Example: path_0 = 9 = 0b1001, path_1 = 10 = 0b1010. Shift path_1 three places (so there is room for 0b001) to 0b1010000. Then OR in 0b001 to yield 0b1010001 = 81, which is right, left, left, left, right, left. """ mask = 1 temp_path = path_0 while temp_path > 1: path_1 <<= 1 mask <<= 1 temp_path >>= 1 mask -= 1 path = path_1 | (path_0 & mask) return path
cffb984c5bacf16691648e0910988495149087ad
20,830
def combine(img1, img2, out_path, write=True): """combine(img1, img2, out_path, write=True) Combines the data of two PyifxImages, ImageVolumes, or ImageLists to form new PyifxImages. :type img1: pyifx.misc.PyifxImage, pyifx.misc.ImageVolume, list :param img1: The first image to be added to the combination. :type img2: pyifx.misc.PyifxImage, pyifx.misc.ImageVolume, list :param img2: The second image to be added to the combination. Arguments of type ImageVolume and list can be used in conjunction, but images of type PyifxImage must be used together. :type out_path: str :param out_path: The path that the combine image(s) will be written to. :type write: bool :param write: Whether to write the image or not. :return: PyifxImage instance, ImageVolume instance, or list with elements of type PyifxImage :rtype: pyifx.misc.PyifxImage, pyifx.misc.ImageVolume, list """ INTERNAL._type_checker(img1, [PyifxImage, ImageVolume, list]) INTERNAL._type_checker(img2, [PyifxImage, ImageVolume, list]) INTERNAL._type_checker(out_path, [str]) INTERNAL._type_checker(write, [bool]) return INTERNAL._combine_handler(img1, img2, out_path, write=write)
ccdee10b6d90ea9c1274f30d3c90bbe0f9e041ce
20,831
import math def invert_index(i, window, step): """Convert truncated squareform index back into row, col, and slice index Task indexing for LD pruning is based on several optimizations that utilize a cyclic, truncated squareform pattern for pairwise comparisons (between rows). This pattern is primarily controlled by window and step parameters, where an example for window = 4 and step = 3 would look like this: row index row indexes of other rows to compare to | | 0 | 1 2 3 4 1 | 2 3 4 2 | 3 4 3 | 4 5 6 7 4 | 5 6 7 5 | 6 7 6 | 7 8 9 10 ... and so on ... The parameter (`i`) indexes these comparisons where in the above, `i` = 0 corresponds to the comparison between rows 0 and 1, `i` = 1 to rows 0 and 2, `i` = 4 to rows 1 and 2, etc. This method converts this comparison index back into the cycle number (arbitrarily called a "slice") as well as offsets within that cycle for the rows being compared. The slice number itself indexes some row in the original array and the offsets can be used to identify comparisons from that row index. Examples for the same case above for given comparison index values are: index -> (row, col, slice) 0 -> (0, 1, 0) - 1 -> (0, 2, 0) | 2 -> (0, 3, 0) | 3 -> (0, 4, 0) | 4 -> (1, 2, 0) |--> One "slice" (i.e. one cycle) 5 -> (1, 3, 0) | 6 -> (1, 4, 0) | 7 -> (2, 3, 0) | 8 -> (2, 4, 0) - 9 -> (0, 1, 1) # The pattern repeats here Parameters ---------- i : int Comparison index window : int Window size used to define pairwise comparisons step : int Step size used to define pairwise comparisons Returns ------- (i, j, s) : tuple i = offset from slice (`s`) to first row in comparison j = offset from slice (`s`) to second row in comparison s = slice number/index """ assert window >= step # Coerce to large float to avoid potential int overflow window = np.float64(window) step = np.float64(step) # Number of pairs in a "slice" = window + (window - 1) + ... + (window - step) p = _intsum(window) - _intsum(window - step) # Calculate slice number (`s`) and offset into that slice (`k`) s, k = np.int64(i // p), np.int64(i % p) # Invert squareform index # See: https://stackoverflow.com/questions/27086195/linear-index-upper-triangular-matrix n = window + 1 # The "n" in this case is the size of the window + 1 since self comparisons are ignored i = np.int64(n - 2 - math.floor(math.sqrt(-8 * k + 4 * n * (n - 1) - 7) / 2.0 - 0.5)) j = np.int64(k + i + 1 - n * (n - 1) / 2.0 + (n - i) * ((n - i) - 1) / 2.0) assert i >= 0 assert j >= 0 assert s >= 0 return i, j, s
1acb4ef02a7158e584af5231a120f0a81af33bc4
20,832
def group_masses(ip, dm: float = 0.25): """ Groups masses in an isotope pattern looking for differences in m/z greater than the specified delta. expects :param ip: a paired list of [[mz values],[intensity values]] :param dm: Delta for looking +/- within :return: blocks grouped by central mass :rtype: list """ num = 0 out = [[[], []]] for ind, val in enumerate(ip[0]): out[num][0].append(ip[0][ind]) out[num][1].append(ip[1][ind]) try: if ip[0][ind + 1] - ip[0][ind] > dm: num += 1 out.append([[], []]) except IndexError: continue return out
918fc4f20fee7c2955218e3c435f9e672dc55f7d
20,833
def save_user_labels(*args): """ save_user_labels(func_ea, user_labels) Save user defined labels into the database. @param func_ea: the entry address of the function (C++: ea_t) @param user_labels: collection of user defined labels (C++: const user_labels_t *) """ return _ida_hexrays.save_user_labels(*args)
a4a1a9ba4e37cd7f6e79efed5d9070bcdcfa8c5f
20,834
def add_play(): """Adds a new play""" if 'Logged in as: ' + flask_login.current_user.get_id(): play_json = request.json if request.json is None and request.data: play_json = request.data if play_json: try: # insert the created by information in play print('play_json is %s' % type(play_json)) play_obj = play_json if isinstance(play_json, basestring): play_obj = json.loads(play_json) play_obj['created_by'] = '%s' % flask_login.current_user.get_id() play_json = json.dumps(play_obj) # new_play = get_db().add_play_from_json(play_json) return jsonify(msg='added play %s' % new_play.id, id=new_play.id, data=new_play.to_json()), 201 except StructureError, error: return jsonify('BAD JSON %s: %s' % (error, play_json)), 400 else: return jsonify('Failed to find JSON data in your POST'), 404 return jsonify('You must be logged in to add a play'), 401
7e3e71bb007805a9c379b18c9ce1cce737ed30c9
20,835
def load_string_list(file_path, is_utf8=False): """ Load string list from mitok file """ try: with open(file_path, encoding='latin-1') as f: if f is None: return None l = [] for item in f: item = item.strip() if len(item) == 0: continue l.append(item) except IOError: print('open error %s' % file_path) return None else: return l
600c2678fdcdf6d5fa4894dd406f74c1ae4e5a96
20,837
def flash_dev( disk=None, image_path=None, copy_method="default", port=None, program_cycle_s=4 ): """Flash a firmware image to a device. Args: disk: Switch -d <disk>. image_path: Switch -f <image_path>. copy_method: Switch -c <copy_method> (default: shell). port: Switch -p <port>. program_cycle_s: Sleep time. """ if copy_method == "default": copy_method = "shell" result = False result = host_tests_plugins.call_plugin( "CopyMethod", copy_method, image_path=image_path, serial=port, destination_disk=disk, ) sleep(program_cycle_s) return result
6ee569903f3d713fff620e122b4592ca0ed42cde
20,838
def _get_bucket_and_object(gcs_blob_path): """Extract bucket and object name from a GCS blob path. Args: gcs_blob_path: path to a GCS blob Returns: The bucket and object name of the GCS blob Raises: ValueError: If gcs_blob_path parsing fails. """ if not gcs_blob_path.startswith(_GCS_PATH_PREFIX): raise ValueError( f'GCS blob paths must start with gs://, got {gcs_blob_path}') path = gcs_blob_path[len(_GCS_PATH_PREFIX):] parts = path.split('/', 1) if len(parts) < 2: raise ValueError( 'GCS blob paths must be in format gs://bucket-name/object-name, ' f'got {gcs_blob_path}') return parts[0], parts[1]
affda5501fbbc932c716d830226dec1c56271294
20,839
def dq_data(request): """Main home method and view.""" try: cases = [] sdate, edate = None, None sts = {0: 'Pending', 1: 'Open', 2: 'Closed'} # Conditions qa = request.GET.get('q_aspect') va = request.GET.get('variance') age = request.GET.get('age') from_date = request.GET.get('from_date') to_date = request.GET.get('to_date') org_unit = request.GET.get('org_unit') if from_date and to_date: sdate = convert_date(from_date) edate = convert_date(to_date) cage = int(age) if age else 0 vid = int(va) if va else 0 qid = int(qa) if qa else 0 q2 = Q(case_category_id__in=('CTRF', 'CCCT'), age__lt=6) q3 = Q(case_category_id__in=('CSAB', 'CSHV', 'CCCM', 'CORP'), age__lt=11) if qa: acases = RPTCaseLoad.objects.filter(is_void=False) if qid == 1: acases = acases.filter( Q(age__gte=25) | Q(dob__isnull=True) | Q(age__lt=0)) elif qid == 2: acases = acases.filter( Q(case_category_id='CDIS', age__gt=15) | Q(case_category_id='CSIC', age__gt=18) | q2 | q3) elif qid == 3: acases = acases.filter( case_category_id__in=('CSHV', 'CSCS'), sex_id='SMAL') elif qid == 4: acases = acases.filter( case_status=1, intervention__isnull=True) else: acases = RPTCaseLoad.objects.filter( Q(age__gte=25) | Q(dob__isnull=True)) if vid == 1: acases = acases.filter(age=cage) elif vid == 2: acases = acases.filter(age__gt=cage) elif vid == 3: acases = acases.filter(age__lt=cage) if edate and sdate: acases = acases.filter(case_date__range=(sdate, edate)) if org_unit: acases = acases.filter(org_unit_id=org_unit) else: if not request.user.is_superuser: acases = acases.filter(org_unit_id=org_unit) for case in acases[:1000]: cs = case.case_status fname = case.case.person.first_name sname = case.case.person.surname[0] o_name = case.case.person.other_names oname = o_name[0] if o_name else '' dt = {"cpims_id": case.case.person_id} dt['age'] = case.age dt['case_category'] = case.case_category dt['case_date'] = case.case_date dt['sex'] = case.sex dt['case_status'] = sts[cs] if cs in sts else 'Open' dt['dob'] = case.dob dt['org_unit'] = case.org_unit_name dt['intervention'] = case.intervention dt['org_unit'] = case.org_unit_name dt['names'] = '%s %s%s' % (fname, sname, oname) cases.append(dt) result = {"data": cases} return JsonResponse(result, content_type='application/json', safe=False) except Exception as e: print('error - %s' % (e)) raise e else: pass
f1270dc0ae1b2a589d3995fe6bc0a9bb2199d5ed
20,840
from typing import Protocol def create_round_model( protocol: Protocol, ber: float, n_tags: int) -> 'RoundModel': """ Factory function for creating round model. This routine is cached, so calling it multiple time won't add much overhead. Parameters ---------- protocol : Protocol ber : float n_tags : int Returns ------- model : SlotModel """ return RoundModel(protocol, ber=ber, n_tags=n_tags)
2df6387abd189e5364559bb93547c789cf57f8fa
20,841
def local_maxima(a_list): """ Takes a NoteList object. Returns a list of tuples of the form returned by note_onsets(). Each of these (int: bar #, float: beat #) tuples will represent the onset of a note that is a local maximum in the melody in a_list. """ return local_extremities(a_list, maxima=True)
c239d91c341ee6a22cf621b13fb1cdafbe8b7b54
20,842
def get_fitted_model(data: pd.DataFrame, dataframe: pd.DataFrame) -> CTGAN: """ The function get_fitted_model uses a CTGAN Checkpoint (see chapter about checkpoints), to load a trained CTGAN model if one is available with the desired hyperparameters, or train a new one if none is available. The function then returns the trained CTGAN model. The CTGAN model created here uses a 'Positive' constraint for the dataframe column 'duration', which contains the duration of each activity. The 'reject_sampling' strategy is used as handling strategy for this constraint. The function logs wether a pre-trained model was loaded or a new one was generated. """ cp = CTGANCheckpoint( config.get_dataset_basename(), config.EPOCHS_CTGAN, config.ENABLED_DP_CTGAN, "{:.1f}".format(config.EPSILON_CTGAN)) return cp.load_if_exists_else_generate(config.RETRAIN_CTGAN, _fit_ctgan, data, dataframe)
c95c8b913f6411e0d0003ae5c2e126305306082b
20,843
import math def point_based_matching(point_pairs): """ This function is based on the paper "Robot Pose Estimation in Unknown Environments by Matching 2D Range Scans" by F. Lu and E. Milios. :param point_pairs: the matched point pairs [((x1, y1), (x1', y1')), ..., ((xi, yi), (xi', yi')), ...] :return: the rotation angle and the 2D translation (x, y) to be applied for matching the given pairs of points """ x_mean = 0 y_mean = 0 xp_mean = 0 yp_mean = 0 n = len(point_pairs) if n == 0: return None, None, None for pair in point_pairs: (x, y), (xp, yp) = pair x_mean += x y_mean += y xp_mean += xp yp_mean += yp x_mean /= n y_mean /= n xp_mean /= n yp_mean /= n s_x_xp = 0 s_y_yp = 0 s_x_yp = 0 s_y_xp = 0 for pair in point_pairs: (x, y), (xp, yp) = pair s_x_xp += (x - x_mean)*(xp - xp_mean) s_y_yp += (y - y_mean)*(yp - yp_mean) s_x_yp += (x - x_mean)*(yp - yp_mean) s_y_xp += (y - y_mean)*(xp - xp_mean) rot_angle = math.atan2(s_x_yp - s_y_xp, s_x_xp + s_y_yp) translation_x = xp_mean - (x_mean*math.cos(rot_angle) - y_mean*math.sin(rot_angle)) translation_y = yp_mean - (x_mean*math.sin(rot_angle) + y_mean*math.cos(rot_angle)) return rot_angle, translation_x, translation_y
2d691bbf04d14e3e5b0f9273a7501d934bd0eef4
20,844
def kb_ids2known_facts(kb_ids): """Creates list of all known facts from kb dict""" facts = set() for struct in kb_ids: arrays = kb_ids[struct][0] num_facts = len(arrays[0]) for i in range(num_facts): fact = [x[i] for x in arrays] facts.add(tuple(fact)) return facts
8dd7f86c8b983f4dffa79a8229c4700a4182c710
20,845
def PUtilAvgT (inUV, outUV, err, scratch=False, timeAvg=1.0): """ Average A UV data set in Time returns Averaged UV data object inUV = Python UV object to copy Any selection editing and calibration applied before average. outUV = Predefined UV data if scratch is False, ignored if scratch is True. err = Python Obit Error/message stack scratch = True if this is to be a scratch file (same type as inUV) timeAvg = Averaging time in min """ ################################################################ if inUV.myClass=='AIPSUVData': raise TypeError("Function unavailable for "+inUV.myClass) # Checks if not inUV.UVIsA(): raise TypeError("inUV MUST be a Python Obit UV") if ((not scratch) and (not outUV.UVIsA())): raise TypeError("outUV MUST be a Python Obit UV") if not OErr.OErrIsA(err): raise TypeError("err MUST be an OErr") # # Save parameter dim = [1,1,1,1,1] inInfo = PGetList(inUV) # InfoList.PAlwaysPutFloat (inInfo, "timeAvg", dim, [timeAvg]) # Create output for scratch if scratch: outUV = UV("None") outUV.me = Obit.UVUtilAvgT(inUV.me, scratch, outUV.me, err.me) if err.isErr: OErr.printErrMsg(err, "Error averaging UV data") # Get scratch file info if scratch: PUVInfo (outUV, err) return outUV # end PUtilAvgT
a1e5931a9d0e7340394e3a6227aa1a3f31e624ab
20,847
def get_table_from_alter_table(line, alter_expr): """ Parse the content and return full qualified schema.table from the line if schema provided, else return the table name. Fact: if schema name or table name contains any special chars, each should be double quoted already in dump file. """ dot_separator_idx = line.find('.') last_double_quote_idx = line.rfind('"') has_schema_table_fmt = True if dot_separator_idx != -1 else False has_special_chars = True if last_double_quote_idx != -1 else False if not has_schema_table_fmt and not has_special_chars: return line[len(alter_expr):].split()[0] elif has_schema_table_fmt and not has_special_chars: full_table_name = line[len(alter_expr):].split()[0] _, table = split_fqn(full_table_name) return table elif not has_schema_table_fmt and has_special_chars: return line[len(alter_expr) + 1 : last_double_quote_idx + 1] else: if dot_separator_idx < last_double_quote_idx: # table name is double quoted full_table_name = line[len(alter_expr) : last_double_quote_idx + 1] else: # only schema name double quoted ending_space_idx = line.find(' ', dot_separator_idx) full_table_name = line[len(alter_expr) : ending_space_idx] _, table = split_fqn(full_table_name) return table
af2bb25f240b2f9b1a171e4b7e2983000ca0d545
20,848
def bind_port(socket, ip, port): """ Binds the specified ZMQ socket. If the port is zero, a random port is chosen. Returns the port that was bound. """ connection = 'tcp://%s' % ip if port <= 0: port = socket.bind_to_random_port(connection) else: connection += ':%i' % port socket.bind(connection) return port
5613bae6726e2f006706b104463917e48d7ab7ca
20,850
def update_target_graph(actor_tvars, target_tvars, tau): """ Updates the variables of the target graph using the variable values from the actor, following the DDQN update equation. """ op_holder = list() # .assign() is performed on target graph variables with discounted actor graph variable values for idx, variable in enumerate(target_tvars): op_holder.append( target_tvars[idx].assign( (variable.value() * tau) + ((1 - tau) * actor_tvars[idx].value()) ) ) return op_holder
15f0d192ff150c0a39495b0dec53f18a8ae01664
20,851
from typing import Callable from re import T def safe(function: Callable[..., T]) -> Callable[..., Result[T, Exception]]: """Wraps a function that may raise an exception. e.g.: @safe def bad() -> int: raise Exception("oops") """ def wrapped(*args, **kwargs) -> Result[T, Exception]: try: return Ok(function(*args, **kwargs)) except Exception as e: return Err(e) return wrapped
f33ce73ef9eed48e0585037f655075d78f9f6a09
20,852
def strtime(millsec, form="%i:%02i:%06.3f"): """ Time formating function Args: millsec(int): Number of milliseconds to format Returns: (string)Formated string """ fc = form.count("%") days, milliseconds = divmod(millsec, 86400000) hours, milliseconds = divmod(millsec, 3600000) minutes, milliseconds = divmod(millsec, 60000) seconds = float(milliseconds) / 1000 var = {1: (seconds), 2: (minutes, seconds), 3: (hours, minutes, seconds), 4: (days, hours, minutes, seconds)} return form % var[fc]
9a1cff92086491941d8b27857169bf7744da8324
20,853
def parallel_categories(): """Parallel Categories Plot.""" mean_neighborhood_sfo = sfo_data.groupby(["neighborhood"]).mean() mean_sale_price_sfo = mean_neighborhood_sfo.sort_values("sale_price_sqr_foot", ascending=False) sfo = mean_sale_price_sfo.head(10) a = sfo.reset_index() parallel_categories_top_10 = px.parallel_categories(a, color="sale_price_sqr_foot", color_continuous_scale=px.colors.sequential.Inferno, title='Average House Value/Neighborhood', labels={'neighborhood': "Neighborhood", 'sale_price_sqr_foot':'Sales Price/Square Foot', 'housing_units':'Housing Units', 'gross_rent':'Gross Rent'}) return parallel_categories_top_10
fc03f4902f62a2e123e33012d58c58b4d7e55ddc
20,854
def close_project(id_, **kwargs): """Close a project :param id_: The ID of the project object to be updated :type id_: str :rtype: ProjectSerializer """ proj = get_project_object(id_) check_project_permission(proj, kwargs["token_info"]) if proj.owner != kwargs["user"]: raise connexion.ProblemException(status=403, title="Permission Denied", detail="Doesn't have enough permissions to take this action") proj.state = project_pb2.STATE.CLOSED stub = get_projects_services_stub() response = stub.Update(proj) return ProjectSerializer.from_dict(util.deserialize_protobuf(response))
7607e9627bc9a8eddc629e0deb4a4d1c1cd3fac9
20,856
import string def int2base(x, base): """ Method to convert an int to a base Source: http://stackoverflow.com/questions/2267362 """ digs = string.digits + string.ascii_uppercase if x < 0: sign = -1 elif x == 0: return digs[0] else: sign = 1 x *= sign digits = [] while x: digits.append(digs[x % base]) x = int(x / base) if sign < 0: digits.append('-') digits.reverse() return ''.join(digits)
f9277608cddea0d5590d294621afdb3b7af0fb34
20,859
def geometric(X): """ If x1,x2,...xn ~iid~ GEO(p) then the MLE is 1 / X-bar Parameters ---------- X : array_like Returns: ---------- geo_mle : MLE calculation for p-hat for GEO(p) References ---------- [1] Casella, G., Berger, R. L., "Statistical Inference" Belmont (California): Brooks/Cole Cengage Learning (2017) [2] Tone, MAT 562: Mathematical Statistics notes, U of L """ _input = np.array(X) n = len(_input) discrete_bool = discrete_check(_input) geo_mle = 1 / np.mean(X) if discrete_bool == True: return geo_mle else: raise ValueError("X must be a discrete data set (only integers)")
014072a4c63f9f3d3fe067367b65689a21aa3799
20,860
def calc_dH( e_per_atom, stoich=None, num_H_atoms=0, ): """ The original method is located in: F:\Dropbox\01_norskov\00_git_repos\PROJ_IrOx_Active_Learning_OER\data\proj_data_irox.py Based on a E_DFT/atom of -7.047516 for rutile-IrO2 See the following dir for derivation: PROJ_IrOx_Active_Learning_OER/workflow/energy_treatment_deriv/calc_references """ # | - calc_dH o_ref = -4.64915959 ir_metal_fit = -9.32910211636731 h_ref = -3.20624595 if stoich == "AB2": dH = (2 + 1) * e_per_atom - 2 * o_ref - ir_metal_fit dH_per_atom = dH / 3. elif stoich == "AB3": dH = (3 + 1) * e_per_atom - 3 * o_ref - ir_metal_fit dH_per_atom = dH / 4. elif stoich == "IrHO3" or stoich == "IrO3H" or stoich == "iro3h" or stoich == "iroh3": dH = (3 + 1 + 1) * e_per_atom - 3 * o_ref - ir_metal_fit - h_ref dH_per_atom = dH / 5. return(dH_per_atom) #__|
1d6a6d3ed0581662d718fa0342fca76408d0a2d8
20,862
def _make_asset_build_reqs(asset): """ Prepare requirements and inputs lists and display it :params str asset: name of the asset """ def _format_reqs(req_list): """ :param list[dict] req_list: :return list[str]: """ templ = "\t{} ({})" return [templ.format(req[KEY], req[DESC]) if DEFAULT not in req else (templ + "; default: {}").format(req[KEY], req[DESC], req[DEFAULT]) for req in req_list] reqs_list = [] if asset_build_packages[asset][REQ_FILES]: reqs_list.append("- files:\n{}".format("\n".join(_format_reqs(asset_build_packages[asset][REQ_FILES])))) if asset_build_packages[asset][REQ_ASSETS]: reqs_list.append("- assets:\n{}".format("\n".join(_format_reqs(asset_build_packages[asset][REQ_ASSETS])))) if asset_build_packages[asset][REQ_PARAMS]: reqs_list.append("- params:\n{}".format("\n".join(_format_reqs(asset_build_packages[asset][REQ_PARAMS])))) _LOGGER.info("\n".join(reqs_list))
53b586aa00e596854ffd6292da9209c144701126
20,863
def gsl_eigen_herm_alloc(*args, **kwargs): """gsl_eigen_herm_alloc(size_t const n) -> gsl_eigen_herm_workspace""" return _gslwrap.gsl_eigen_herm_alloc(*args, **kwargs)
24884e2da582d28ad87ffba91ea9218b5f6f44f6
20,864
def cosine_similarity(array1, array2): """ Calcula la similitud coseno entre dos arrays """ # -sum(l2_norm(y_true) * l2_norm(y_pred)) return -dot(array1, array2)/(norm(array1)*norm(array2))
975dd0e25b70c93eff3c49ecc83def2bab2f84dd
20,865
def DEW_T(Y, P, all_params): """ Y = list of mollar fractions of vapor like [0.2 ,0.8] or [0.1 0.2 0.7] Sumation of X list must be 1.0 P = Pressure in kPa all_params = list of parameters for Antonie equations example for all params: all_params = [[A1, B1, C1], [A2, B2, C2], [A3, B3, C3]] """ # creating root finding function def func(T): return (P - DEW_P(Y, T, all_params)[0]) # solving and finding Temprature solve = root(func, 20, method='lm') T = solve['x'][0] # Computing X mollar fractions of liqui X = DEW_P(Y, T, all_params)[1] return T, X
3185d9b65d8c29c3df7f28e317e8a0d349db0ce5
20,866
def plugin_last(): """This function should sort after other plug-in functions""" return "last"
d2d6c00bc8d987363bd4db0013950d9b3f524c2f
20,867
def init_seg_table(metadata, tablename, segid_colname=cn.seg_id, chunked=True): """ Specifies a table for tracking info about a segment. """ columns = [Column("id", BigInteger, primary_key=True), Column(cn.seg_id, Integer, index=True), Column(cn.size, Integer), # Centroid coordinates Column(cn.centroid_x, Float), Column(cn.centroid_y, Float), Column(cn.centroid_z, Float), # Bounding box Column(cn.bbox_bx, Integer), Column(cn.bbox_by, Integer), Column(cn.bbox_bz, Integer), Column(cn.bbox_ex, Integer), Column(cn.bbox_ey, Integer), Column(cn.bbox_ez, Integer)] if chunked: # Chunk id - None if merged across chunks columns.append(Column(cn.chunk_tag, Text, index=True)) return Table(tablename, metadata, *columns)
f82a5285506d87d0d977661fcd45a336dc185c00
20,868
def extract_shebang_command(handle): """ Extract the shebang_ command line from an executable script. :param handle: A file-like object (assumed to contain an executable). :returns: The command in the shebang_ line (a string). The seek position is expected to be at the start of the file and will be reset afterwards, before this function returns. It is not an error if the executable contains binary data. .. _shebang: https://en.wikipedia.org/wiki/Shebang_(Unix) """ try: if handle.read(2) == b'#!': data = handle.readline() text = data.decode('UTF-8') return text.strip() else: return '' finally: handle.seek(0)
27174f96f2da3167cf7a7e28c4a2f1cec72c773c
20,869
import re def split_abstracts(ftm_df): """ Split the mail abstract (item content) into different mails. This is required to find the 'novel' email, and the rest of the threat. We create a new row for each email in the threat, but it keeps the ID of the 'novel email'. We add two boolean flags for is_novel, and is_threat_starter. Parameters ---------- ftm_df : pandas.DataFrame FTM dataset with prettified abstracts. Returns ------- pandas.DataFrame FTM dataset with a new row for each email, and flags for is_novel and is_threat_starter. """ # Create a list of strings from novel email and its forwards or reactions ftm_df['new_abstract'] = ftm_df[ftm_df.title.str.contains('RE ') | ftm_df.title.str.contains( 'FW ')].abstract.apply(lambda row: re.split(FILTER_SENDER, row)) # Create a list of is_novel. First email is novel (1), the rest is # forwards or reactions (0). Similar for is_threat_starter ftm_df['is_novel'] = ftm_df[ftm_df.title.str.contains('RE ') | ftm_df.title.str.contains( 'FW ')].new_abstract.apply(lambda row: [1] + [0] * (len(row) - 1)) ftm_df['is_threat_starter'] = ftm_df[ftm_df.title.str.contains('RE ') | ftm_df.title.str.contains('FW ') ].new_abstract.apply( lambda row: [0] * (len(row) - 1) + [1]) # explode the lists ftm_df = ftm_df.explode(['is_novel', 'new_abstract', 'is_threat_starter']) ftm_df = ftm_df.reset_index() ftm_df.abstract = ftm_df.new_abstract.fillna(ftm_df.abstract) return ftm_df.drop(columns=['new_abstract'])
5725dda53a53e049fbcc7b42ac4fd3a51ec6c38a
20,870
def get_weight_from_alias(blend_shape, alias): """ Given a blend shape node and an aliased weight attribute, return the index in .weight to the alias. """ # aliasAttr lets us get the alias from an attribute, but it doesn't let us get the attribute # from the alias. existing_indexes = blend_shape.attr('weight').get(mi=True) or [] for idx in existing_indexes: aliasName = pm.aliasAttr(blend_shape.attr('weight').elementByLogicalIndex(idx), q=True) if aliasName == alias: return idx raise Exception('Couldn\'t find the weight index for blend shape target %s.%s' % (blend_shape, alias))
56c870c32ee2ec05af1580fac985e09ffd5e129c
20,871
from typing import List from typing import Tuple from typing import Any def __check_dependences_and_predecessors(pet: PETGraphX, out_dep_edges: List[Tuple[Any, Any, Any]], parent_task: CUNode, cur_cu: CUNode): """Checks if only dependences to self, parent omittable node or path to target task exists. Checks if node is a direct successor of an omittable node or a task node. :param pet: PET Graph :param out_dep_edges: list of outgoing edges :param parent_task: parent cu of cur_cu :param cur_cu: current cu node :return True, if a violation has been found. False, otherwise. """ violation = False # check if only dependencies to self, parent omittable node or path to target task exists for e in out_dep_edges: if pet.node_at(e[1]) == cur_cu: continue elif pet.node_at(e[1]).tp_omittable is True: continue elif check_reachability(pet, parent_task, cur_cu, [EdgeType.DATA]): continue else: violation = True # check if node is a direct successor of an omittable node or a task node in_succ_edges = [(s, t, e) for (s, t, e) in pet.in_edges(cur_cu.id) if e.etype == EdgeType.SUCCESSOR] is_successor = False for e in in_succ_edges: if pet.node_at(e[0]).tp_omittable is True: is_successor = True elif pet.node_at(e[0]).tp_contains_task is True: is_successor = True if not is_successor: violation = True return violation
1abdb9604fec48073b536fb7cf1e45a29dfea095
20,872
import json def clone_master_track(obj, stdata, stindex, stduration): """ ghetto-clone ('deep copy') an object using JSON populate subtrack info from CUE sheet """ newsong = json.loads(json.dumps(obj)) newsong['subsong'] = {'index': stindex, 'start_time': stdata['index'][1][0], 'duration': stduration} newsong['tags']['artist'] = stdata.get('PERFORMER', newsong['tags'].get('artist')) newsong['tags']['title'] = stdata.get('TITLE', newsong['tags'].get('title')) newsong['tags']['tracknum'] = stindex newsong['tags']['trackstr'] = stindex return newsong
6721a87abfc88d9dd75f597ff24caf5857be594a
20,873
def create_graph(num_islands, bridge_config): """ Helper function to create graph using adjacency list implementation """ adjacency_list = [list() for _ in range(num_islands + 1)] for config in bridge_config: source = config[0] destination = config[1] cost = config[2] adjacency_list[source].append((destination, cost)) adjacency_list[destination].append((source, cost)) #print("adjacency_list",adjacency_list) return adjacency_list
b961f5ee2955f4b8de640152981a7cede8ca80b0
20,874
def distinct_extractors(count=True, active=True): """ Tool to count unique number of predictors for each Dataset/Task """ active_datasets = ms.Dataset.query.filter_by(active=active) superset = set([v for (v, ) in ms.Predictor.query.filter_by(active=True).filter( ms.Predictor.dataset_id.in_( active_datasets.with_entities('id'))).join( ms.ExtractedFeature).distinct( 'extractor_name').values('extractor_name')]) res = {} for en in superset: for ds in active_datasets: for t in ds.tasks: name = f"{ds.name}_{t.name}" if name not in res: res[name] = {} preds = ms.Predictor.query.filter_by( dataset_id=ds.id, active=True).join( ms.ExtractedFeature).filter_by( extractor_name=en).distinct('feature_name') if count: r = preds.count() else: r = list(preds.values('name')) res[name][en] = r return res
232c10cdb69f5499d927473a6ee6d99c940870c5
20,875
def get_timepoint( data, tp=0 ): """Returns the timepoint (3D data volume, lowest is 0) from 4D input. You can save memory by using [1]: nifti.dataobj[..., tp] instead: see get_nifti_timepoint() Works with loop_and_save(). Call directly, or with niftify(). Ref: [1]: http://nipy.org/nibabel/images_and_memory.html """ # Replicating seg_maths -tp tp = int(tp) if len(data.shape) < 4: print("Data has fewer than 4 dimensions. Doing nothing...") output = data else: if data.shape[3] < tp: print("Data has fewer than {0} timepoints in its 4th dimension.".format(tp)) output = data else: output = data[:,:,:,tp] return output # elif len(data.shape) > 4: # print("Data has more than 4 dimensions! Assuming the 4th is time ...") # End get_timepoint() definition
f5a718e5d9f60d1b389839fc0c637bee32b500bf
20,876
def method_from_name(klass, method_name: str): """ Given an imported class, return the given method pointer. :param klass: An imported class containing the method. :param method_name: The method name to find. :return: The method pointer """ try: return getattr(klass, method_name) except AttributeError: raise NotImplementedError()
97274754bd89ede62ee5940fca6c4763efdbb95c
20,877
def get_querypage(site: Site, page: str, limit: int = 500): """ :type site Site :type page str :type limit int :rtype: list[str] """ # http://poznan.wikia.com/api.php?action=query&list=querypage&qppage=Nonportableinfoboxes # http://poznan.wikia.com/api.php?action=query&list=querypage&qppage=Mostlinkedtemplates # http://poznan.wikia.com/api.php?action=query&list=querypage&qppage=AllInfoboxes res = site.get(action='query', list='querypage', qppage=page, qplimit=limit) return [ # (u'value', u'69'), (u'ns', 10), (u'title', u'Template:Crew TV') entry['title'] for entry in res['query']['querypage']['results'] ]
e4d05e4fb82697867261cc680a8497b8f80c97d4
20,878
import re def parse_value(string: str) -> str: """Check if value is a normal string or an arrow function Args: string (str): Value Returns: str: Value if it's normal string else Function Content """ content, success = re.subn(r'^\(\s*\)\s*=>\s*{(.*)}$', r'\1', string) if not success: return string return content
ead42d7f300c68b6978699473de8506794bb1ab4
20,879
def uniqify(seq, idfun=None): """Return only unique values in a sequence""" # order preserving if idfun is None: def idfun(x): return x seen = {} result = [] for item in seq: marker = idfun(item) if marker in seen: continue seen[marker] = 1 result.append(item) return result
aaa6de6f3e28b0de9d23b921196591bea97a67d1
20,880
def inside(Sv, r, r0, r1): """ Mask data inside a given range. Args: Sv (float): 2D array with data to be masked. r (float): 1D array with range data. r0 (int): Upper range limit. r1 (int): Lower range limit. Returns: bool: 2D array mask (inside range = True). """ masku = np.ma.masked_greater_equal(r, r0).mask maskl = np.ma.masked_less(r, r1).mask idx = np.where(masku & maskl)[0] mask = np.zeros((Sv.shape), dtype=bool) mask[idx,:] = True return mask
8a953b30a3dbd1bda2ce8f37475088705492e0f2
20,881
from resistics.common import fs_to_string from typing import Optional def get_solution_name( fs: float, tf_name: str, tf_var: str, postfix: Optional[str] = None ) -> str: """Get the name of a solution file""" solution_name = f"{fs_to_string(fs)}_{tf_name.lower()}" if tf_var != "": tf_var = tf_var.replace(" ", "_") solution_name = solution_name + f"_{tf_var}" if postfix is None: return solution_name + ".json" return solution_name + "_" + postfix + ".json"
bbf11abaad0878462c10d8ab95af13edd900982c
20,883
import re def escape(message: str) -> str: """Escape tags which might be interpreted by the theme tokenizer. Should be used when passing text from external sources to `theme.echo`. """ return re.sub( rf"<(/?{TAG_RE})>", r"\<\1>", message, )
daf91638c8e763489d2fa529e9f1b2ebfda48cfa
20,884
async def normalize_message(app: FastAPI, message: Message) -> Message: """ Given a TRAPI message, updates the message to include a normalized qgraph, kgraph, and results """ try: merged_qgraph = await normalize_qgraph(app, message.query_graph) merged_kgraph, node_id_map, edge_id_map = await normalize_kgraph(app, message.knowledge_graph) merged_results = await normalize_results(message.results, node_id_map, edge_id_map) return Message.parse_obj({ 'query_graph': merged_qgraph, 'knowledge_graph': merged_kgraph, 'results': merged_results }) except Exception as e: logger.error(f'normalize_message Exception: {e}')
a6e0d3d4ab0590cfbdf643ec25c7bb23c7aaa8c4
20,885
def ec_elgamal_encrypt(msg, pk, symmalg): """ Computes a random b, derives a key from b*g and ab*g, then encrypts it using symmalg. Input: msg Plaintext message string. pk Public key: a tuple (EC, ECPt, ECPt), that is (ec, generator g, a*g) symmalg A callable that accepts two arguments, the key and the message. symmalg(key, msg) should output a symmetric-enciphered ciphertext. Output: A tuple (ECPt, str), where the first element is actually b*g. """ ec, g, ag=pk b=random_with_bytes(log2(ec._p)//4) abg=b*ag bg=b*g k=ec_elgamal_derive_symm_key(bg, abg) return (bg, symmalg(k, msg))
bc2447377f45a756e325fbed47bc28c17f4a5707
20,886
def plot_confusion_matrix(cm, classes, normalize=False, cmap=plt.cm.YlGnBu): """ This function prints and plots the confusion matrix. Normalization can be applied by setting `normalize=True`. """ np.set_printoptions(precision=2) fig, ax = plt.subplots() im = ax.imshow(cm, interpolation='nearest', cmap=cmap) ax.figure.colorbar(im, ax=ax) # We want to show all ticks... ax.set(xticks=np.arange(cm.shape[1]), yticks=np.arange(cm.shape[0]), # ... and label them with the respective list entries xticklabels=classes, yticklabels=classes, ylabel='True', # fontsize=16, xlabel='Predicted') # Loop over data dimensions and create text annotations. fmt = '.2f' thresh = cm.max() / 2. for i in range(cm.shape[0]): for j in range(cm.shape[1]): ax.text(j, i, format(cm[i, j], fmt), ha="center", va="center", fontsize=14, color="white" if cm[i, j] > thresh else "black") plt.xlim(-0.5, len(np.unique(classes))-0.5) plt.ylim(len(np.unique(classes))-0.5, -0.5) plt.xlabel("Predicted", fontsize=16) plt.ylabel('True', fontsize=16) plt.xticks(fontsize=14) plt.yticks(fontsize=14) plt.tight_layout() return ax
6dcd9dc8d832f28035e25025705a4d13600087d0
20,887
from pylab import linspace def meshgrid(params): """Returns meshgrid X that can be used for 1D plotting. params is what is returned by finess.params.util.read_params.""" assert(params['finess', 'ndims'] == 1) mx = params['grid', 'mx'] xlow = params['grid', 'xlow'] xhigh = params['grid', 'xhigh'] dx = (xhigh-xlow) / float(mx) X = linspace(xlow + 0.5*dx, xhigh - 0.5*dx, mx) return X
3320d8e1eab5b202152f1d90610e2f0d24adda1c
20,888
def _pbe_p12(params, passphrase, hash_alg, cipher, key_size): """PKCS#12 cipher selection function for password-based encryption This function implements the PKCS#12 algorithm for password-based encryption. It returns a cipher object which can be used to encrypt or decrypt data based on the specified encryption parameters, passphrase, and salt. """ if (not isinstance(params, tuple) or len(params) != 2 or not isinstance(params[0], bytes) or not params[0] or not isinstance(params[1], int) or params[1] == 0): raise KeyEncryptionError('Invalid PBES1 PKCS#12 encryption parameters') salt, count = params key = _pbkdf_p12(hash_alg, passphrase, salt, count, key_size, 1) if cipher.block_size == 1: cipher = cipher.new(key) else: iv = _pbkdf_p12(hash_alg, passphrase, salt, count, cipher.block_size, 2) cipher = _RFC1423Pad(cipher, key, iv) return cipher
711376c5f653bd0888b3c35e6885942cad0c4268
20,889
def add_settings_routes(app): """ Create routes related to settings """ @app.route('/v1/rule_settings/', methods=['GET']) @requires_login @use_kwargs({ 'agency_code': webargs_fields.String(required=True), 'file': webargs_fields.String(validate=webargs_validate. OneOf(FILE_TYPES, error='Must be {}, or {}'.format(', '.join(FILE_TYPES[:-1]), FILE_TYPES[-1])), required=True) }) def get_rule_settings(**kwargs): """ Returns the rule settings based on the filters provided """ agency_code = kwargs.get('agency_code') file = kwargs.get('file') return list_rule_settings(agency_code, file) @app.route('/v1/save_rule_settings/', methods=['POST']) @requires_login @use_kwargs({ 'agency_code': webargs_fields.String(required=True), 'file': webargs_fields.String(validate=webargs_validate. OneOf(FILE_TYPES, error='Must be {}, or {}'.format(', '.join(FILE_TYPES[:-1]), FILE_TYPES[-1])), required=True), 'errors': webargs_fields.List(webargs_fields.Dict), 'warnings': webargs_fields.List(webargs_fields.Dict) }) def post_save_rule_settings(**kwargs): """ Set the rule settings based on the rules provided """ agency_code = kwargs.get('agency_code') file = kwargs.get('file') errors = kwargs.get('errors', []) warnings = kwargs.get('warnings', []) return save_rule_settings(agency_code, file, errors, warnings)
6a199d67e40232e72dc4dcafa42a155f2257b687
20,890
def delete_by_date_paste(date): """ Deletes the paste entries older than a certain date. Note that it will delete any document/index type entered into it for elasticsearch, the paste restriction is due to postgreql :return: True once """ # Create a connection to the database (seemd to want it in this case) db = SQLAlchemy(app) # Add the start of the day to ensure anything older gets deleted date += " 00:00:00.000000" # Make the query to get the pastes to be deleted old_pastes = db.session.query(Paste).filter(Paste.datetime < date) # Attempt to delete old pastes for item in old_pastes: try: delete_from_es(item) db.session.delete(item) db.session.commit() except: logger.error("Did not delete item from one or more databases: %s", item) return True
aeb346d89f58d7894b36f633b90c608f635522f1
20,891
def convert(origDict, initialSpecies): """ Convert the original dictionary with species labels as keys into a new dictionary with species objects as keys, using the given dictionary of species. """ new_dict = {} for label, value in origDict.items(): new_dict[initialSpecies[label]] = value return new_dict
5143f31acd1efdf1790e68bade3a1f8d8977bcde
20,893
def Vector(point, direction, simple=None): """ Easy to use Vector type constructor. If three arguments are passed, the first two are the x components of the point and the third is the direction component of the Vector. """ if simple is not None: point = Point(point, direction) direction = simple return { 'point': point, 'direction': direction, }
58407760ee540fa88dbc49100a5216522bd5de94
20,894
def createGrid(nx, ny): """ Create a grid position array. """ direction = 0 positions = [] if (nx > 1) or (ny > 1): half_x = int(nx/2) half_y = int(ny/2) for i in range(-half_y, half_y+1): for j in range(-half_x, half_x+1): if not ((i==0) and (j==0)): if ((direction%2)==0): positions.append([j,i]) else: positions.append([-j,i]) direction += 1 return positions
fe74af508e1bc7185d21f9c86b4eab64a66a52f5
20,895
from typing import Optional from typing import Sequence def get_private_network(filters: Optional[Sequence[pulumi.InputType['GetPrivateNetworkFilterArgs']]] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetPrivateNetworkResult: """ Get information about a Vultr private network. ## Example Usage Get the information for a private network by `description`: ```python import pulumi import pulumi_vultr as vultr my_network = vultr.get_private_network(filters=[vultr.GetPrivateNetworkFilterArgs( name="description", values=["my-network-description"], )]) ``` :param Sequence[pulumi.InputType['GetPrivateNetworkFilterArgs']] filters: Query parameters for finding private networks. """ __args__ = dict() __args__['filters'] = filters if opts is None: opts = pulumi.InvokeOptions() if opts.version is None: opts.version = _utilities.get_version() __ret__ = pulumi.runtime.invoke('vultr:index/getPrivateNetwork:getPrivateNetwork', __args__, opts=opts, typ=GetPrivateNetworkResult).value return AwaitableGetPrivateNetworkResult( date_created=__ret__.date_created, description=__ret__.description, filters=__ret__.filters, id=__ret__.id, region=__ret__.region, v4_subnet=__ret__.v4_subnet, v4_subnet_mask=__ret__.v4_subnet_mask)
37b409eb5f0fc5a6ddf7110ee26bfec44e56ee17
20,896
import types import pandas def sdc_pandas_series_operator_le(self, other): """ Pandas Series operator :attr:`pandas.Series.le` implementation .. only:: developer **Test**: python -m sdc.runtests -k sdc.tests.test_series.TestSeries.test_series_op7* python -m sdc.runtests -k sdc.tests.test_series.TestSeries.test_series_operator_le* Parameters ---------- series: :obj:`pandas.Series` Input series other: :obj:`pandas.Series` or :obj:`scalar` Series or scalar value to be used as a second argument of binary operation Returns ------- :obj:`pandas.Series` The result of the operation """ _func_name = 'Operator le().' ty_checker = TypeChecker('Operator le().') self_is_series, other_is_series = isinstance(self, SeriesType), isinstance(other, SeriesType) if not (self_is_series or other_is_series): return None if not isinstance(self, (SeriesType, types.Number, types.UnicodeType)): ty_checker.raise_exc(self, 'pandas.series or scalar', 'self') if not isinstance(other, (SeriesType, types.Number, types.UnicodeType)): ty_checker.raise_exc(other, 'pandas.series or scalar', 'other') operands_are_series = self_is_series and other_is_series if operands_are_series: none_or_numeric_indexes = ((isinstance(self.index, types.NoneType) or check_index_is_numeric(self)) and (isinstance(other.index, types.NoneType) or check_index_is_numeric(other))) series_indexes_comparable = check_types_comparable(self.index, other.index) or none_or_numeric_indexes if not series_indexes_comparable: raise TypingError('{} Not implemented for series with not-comparable indexes. \ Given: self.index={}, other.index={}'.format(_func_name, self.index, other.index)) series_data_comparable = check_types_comparable(self, other) if not series_data_comparable: raise TypingError('{} Not supported for not-comparable operands. \ Given: self={}, other={}'.format(_func_name, self, other)) if not operands_are_series: def _series_operator_le_scalar_impl(self, other): if self_is_series == True: # noqa return pandas.Series(self._data <= other, index=self._index, name=self._name) else: return pandas.Series(self <= other._data, index=other._index, name=other._name) return _series_operator_le_scalar_impl else: # optimization for series with default indexes, that can be aligned differently if (isinstance(self.index, types.NoneType) and isinstance(other.index, types.NoneType)): def _series_operator_le_none_indexes_impl(self, other): left_size, right_size = len(self._data), len(other._data) if (left_size == right_size): return pandas.Series(self._data <= other._data) else: raise ValueError("Can only compare identically-labeled Series objects") return _series_operator_le_none_indexes_impl else: if none_or_numeric_indexes: ty_left_index_dtype = types.int64 if isinstance(self.index, types.NoneType) else self.index.dtype ty_right_index_dtype = types.int64 if isinstance(other.index, types.NoneType) else other.index.dtype numba_index_common_dtype = find_common_dtype_from_numpy_dtypes( [ty_left_index_dtype, ty_right_index_dtype], []) def _series_operator_le_common_impl(self, other): left_index, right_index = self.index, other.index if sdc_check_indexes_equal(left_index, right_index): if none_or_numeric_indexes == True: # noqa new_index = astype(left_index, numba_index_common_dtype) else: new_index = self._index return pandas.Series(self._data <= other._data, new_index) else: raise ValueError("Can only compare identically-labeled Series objects") return _series_operator_le_common_impl return None
101e2cf36208f76acebd06be56b1222f1e07b41e
20,897
import numpy def getArrFromFile(path = fromPath): """ 读取原始csv文件,返回numpy数组 :param path: 原始csv文件路径 string类型 default:fromPath :return: X: 由原始文件生成的数组 二维numpy数组类型 """ X = numpy.genfromtxt(path,dtype=float,delimiter=',')[1:,:-2] return X
8c5c053391b305354ed398311fad6fdd988c153d
20,898
import torch def erode(binary_image, erosion=1): """ Sets 1s at boundaries of binary_image to 0 """ batch_array = binary_image.data.cpu().numpy() return torch.tensor( np.stack([ binary_erosion( array, iterations=erosion, border_value=1, # so that we don't get border of zeros ).astype(array.dtype) for array in batch_array]) ).to(binary_image.device)
60cea284d90e891e7f234174c673bd2a3a3f49dc
20,899
def plot_chirpam_fit(cell_mean, param_d, QI=None, fit_f=sinexp_sigm, start=420, stop=960, ax=None): """ Helper function to visualize the fit of a cell response to a chirp_am stimulus. params: - cell_mean: Cell's mean response to the stimulus - param_d: Parameter dictionary of the fit for fit_f - QI: Quality index of the fit - fit_f: Function used for the fit - start: Where the fit started in index of cell_mean - stop: Where the fit stopped in index of cell_mean - ax: Axis where to plot the figure. If None, a new figure of size (50,2) is created return: - The axis of the figure """ if ax is None: fig, ax = plt.subplots(figsize=(50,2)) ax.plot(np.linspace(0, len(cell_mean)/60, len(cell_mean), endpoint=False), cell_mean) if param_d is not None: ax.plot(np.linspace(start/60, stop/60, stop-start, endpoint=False), fit_f(np.linspace(0, (stop-start)/60, stop-start, endpoint=False), **param_d)) if QI is not None: ax.text((start/60), max(cell_mean)*80/100, str(round(QI,3)), fontdict={'size':22}) ax.set_xlim(0, len(cell_mean)/60) if param_d is not None: param_d = {k: round(v,2) for k, v in param_d.items()} ax.set_title(str(param_d)) return ax
3b55e45ac69772ed17fc154050e3714066335fbf
20,900
def command_ltc(bot, user, channel, args): """Display current LRC exchange rates from BTC-E""" r = bot.get_url("https://btc-e.com/api/2/ltc_usd/ticker") j = r.json()['ticker'] return bot.say(channel, "BTC-E: avg:$%s last:$%s low:$%s high:$%s vol:%s" % (j['avg'], j['last'], j['low'], j['high'], j['vol']))
7aa411b6708e54b09cf2b9aef9c8b01899b95298
20,901