content
stringlengths 35
762k
| sha1
stringlengths 40
40
| id
int64 0
3.66M
|
---|---|---|
def quasi_diagonalize(link):
"""sort clustered assets by distance"""
link = link.astype(int)
sort_idx = pd.Series([link[-1, 0], link[-1, 1]])
num_items = link[-1, 3] # idx of original items
while sort_idx.max() >= num_items:
sort_idx.index = list(range(0, sort_idx.shape[0] * 2, 2)) # make space
df0 = sort_idx[sort_idx >= num_items] # find clusters
i = df0.index
j = df0.values - num_items
sort_idx[i] = link[j, 0] # item 1
df0 = pd.Series(link[j, 1], index=i + 1)
sort_idx = sort_idx.append(df0) # item 2
sort_idx = sort_idx.sort_index() # re-sort
sort_idx.index = list(range(sort_idx.shape[0])) # re-index
return sort_idx.tolist() | 8f10f62d5f0b3dc7b8687134497dd42f183194b4 | 20,552 |
def keyword(variable):
"""
Verify that the field_name isn't part of know Python keywords
:param variable: String
:return: Boolean
"""
for backend in ADAPTERS:
if variable.upper() in ADAPTERS[backend]:
msg = (
f'Variable "{variable}" is a "{backend.upper()}" '
f"reserved SQL/NOSQL keyword"
)
raise SyntaxError(msg)
if not VALID_TABLE_FIELD.match(variable) or PYTHON_KEYWORDS.match(variable):
raise SyntaxError(f"Field: invalid field name: {variable}")
return f"{variable} isn't a known keyword" | b1c6322d3ce3c9ee4bda4eff251af44ca3e2c699 | 20,554 |
import logging
import json
def gcp_api_main(request):
"""Responds to any HTTP request.
Args:
request (flask.Request): HTTP request object.
Returns:
The response text or any set of values that can be turned into a
Response object using
`make_response <http://flask.pocoo.org/docs/1.0/api/#flask.Flask.make_response>`.
"""
logging.basicConfig(level=logging.INFO)
try:
request_json = request.get_json()
if request.args and 'message' in request.args:
return request.args.get('message')
elif request_json and 'message' in request_json:
return request_json['message']
elif request_json and 'stock_data' in request_json and 'name' in request_json:
logging.info('run_fb_prophet')
return json.dumps(
FBProphetThread.run_fb_prophet(
json.dumps(request_json['model_input']))).replace('NaN', '"-"')
else:
return f'Hello World!'
except Exception as ex:
err_msg = 'Generated an exception: {ex}'.format(ex=ex)
logging.error(err_msg)
return err_msg | 21ec4b1dba4ad6f5dac518a3907cd15579a0ba00 | 20,555 |
def box_area_3d(boxes: Tensor) -> Tensor:
"""
Computes the area of a set of bounding boxes, which are specified by its
(x1, y1, x2, y2, z1, z2) coordinates.
Arguments:
boxes (Union[Tensor, ndarray]): boxes for which the area will be computed. They
are expected to be in (x1, y1, x2, y2, z1, z2) format. [N, 6]
Returns:
area (Union[Tensor, ndarray]): area for each box [N]
"""
return (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1]) * (boxes[:, 5] - boxes[:, 4]) | be8b3c4d58d301d2044e7cfe2844516933c1247f | 20,556 |
from sqlalchemy import create_mock_engine
import re
def mock_engine(dialect_name=None):
"""Provides a mocking engine based on the current testing.db.
This is normally used to test DDL generation flow as emitted
by an Engine.
It should not be used in other cases, as assert_compile() and
assert_sql_execution() are much better choices with fewer
moving parts.
"""
if not dialect_name:
dialect_name = config.db.name
buffer = []
def executor(sql, *a, **kw):
buffer.append(sql)
def assert_sql(stmts):
recv = [re.sub(r"[\n\t]", "", str(s)) for s in buffer]
assert recv == stmts, recv
def print_sql():
d = engine.dialect
return "\n".join(str(s.compile(dialect=d)) for s in engine.mock)
engine = create_mock_engine(dialect_name + "://", executor)
assert not hasattr(engine, "mock")
engine.mock = buffer
engine.assert_sql = assert_sql
engine.print_sql = print_sql
return engine | d773a6e2cd0b2060e5dd66d5ec4e758ac7f1f504 | 20,557 |
def get_feedback_thread_reply_info_by_reply_to_id(reply_to_id):
"""Gets the domain object corresponding to the model which is fetched by
reply-to-id field.
Args:
reply_to_id: str. The reply_to_id to search for.
Returns:
FeedbackThreadReplyInfo or None. The corresponding domain object.
"""
model = email_models.GeneralFeedbackEmailReplyToIdModel.get_by_reply_to_id(
reply_to_id)
if model is None:
return None
return get_feedback_thread_reply_info_from_model(model) | e27521030717a1dc15cd9e678dabafba86007f90 | 20,558 |
def _cross_correlations(n_states):
"""Returns list of crosscorrelations
Args:
n_states: number of local states
Returns:
list of tuples for crosscorrelations
>>> l = _cross_correlations(np.arange(3))
>>> assert l == [(0, 1), (0, 2), (1, 2)]
"""
l = n_states
cross_corr = [[(l[i], l[j]) for j in l[1:][i:]] for i in l[:-1]]
return [item for sublist in cross_corr for item in sublist] | c11c5655ba655a29991421c6627a3eaca4f7681d | 20,559 |
def select_interface(worker):
"""
It gets a worker interface channel to do something.
"""
interfaces = worker.interfaces_list()
if len(interfaces) == 0:
print ' Error. Worker without interface known.'
return -1
elif len(interfaces) == 1:
return 1
option = raw_input(' Select interface -> ')
if option == '':
return -1
while not option.isdigit() or int(option) < 1 or int(option) > len(interfaces):
print ' Error. None worker interface was selected.'
option = raw_input(' Select interface -> ')
if option == '':
return -1
return int(option) | 97d90670dd69d57b4e1f85df250a0abc56106fb6 | 20,560 |
def get_middle(arr):
"""
Get middle point ????
"""
n_val = np.array(arr.shape) / 2.0
n_int = n_val.astype(np.int0)
# print(n_int)
if n_val[0] % 2 == 1 and n_val[1] % 2 == 1:
return arr[n_int[0], n_int[1]]
if n_val[0] % 2 == 0 and n_val[1] % 2 == 0:
return np.average(arr[n_int[0]:n_int[0] + 2, n_int[1]:n_int[1] + 2])
if n_val[0] % 2 == 1 and n_val[1] % 2 == 0:
return np.average(arr[n_int[0], n_int[1]:n_int[1]+2])
return np.average(arr[n_int[0]:n_int[0]+2, n_int[1]]) | 9651bcadc991bbf7a0c635a8870356f422d43e7e | 20,561 |
def annotate_segmentation(image, segmentation):
"""Return annotated segmentation."""
annotation = AnnotatedImage.from_grayscale(image)
for i in segmentation.identifiers:
region = segmentation.region_by_identifier(i)
color = pretty_color()
annotation.mask_region(region.border.dilate(), color)
props = skimage.measure.regionprops(segmentation)
for p in props:
try:
minr, minc, maxr, maxc = p.bbox
cval = int(p.centroid[1])
line = skimage.draw.line(minr, cval, maxr, cval)
annotation.mask_region(line, (0, 255, 0))
except IndexError:
# Don't draw line if it falls outside of the image.
pass
return annotation | 2fadbe8d2339e37bea0dbfe054199002a3997b20 | 20,562 |
def get_champ_data(champ: str, tier: int, rank: int):
"""
Gives Champ Information by their champname, tier, and rank.
"""
champ_info = NewChampsDB()
try:
champ_info.get_data(champ, tier, rank)
champs_dict = {
"name": f"{champ_info.name}",
"released": champ_info.released,
"class": champ_info.class_type,
"tier": champ_info.tier,
"rank": champ_info.rank,
"prestige": champ_info.prestige,
"hp": champ_info.hp,
"attack": champ_info.attack,
"crit_rate": champ_info.crit_rate,
"crit_dmge": champ_info.crit_dmge,
"armor": champ_info.armor,
"block_prof": champ_info.block_prof,
"energy_resist": champ_info.energy_resist,
"physical_resist": champ_info.physical_resist,
"crit_resist": champ_info.crit_resist,
"sig_info": champ_info.sig_info,
"abilities": champ_info.abilities,
"challenger_rating": champ_info.challenger_rating,
"find": champ_info.find,
"tags": champ_info.tags,
"abilities": champ_info.abilities,
"contact": champ_info.contact,
"url_page": f"{champ_info.url_page}",
"img_portrait": f"{champ_info.img_portrait}",
"champid": f"{champ_info.champid}",
}
champs_dict.update({"status": 200, "detail": "Successful"})
return champs_dict
except Exception as e:
if isinstance(e, FileNotFoundError):
raise HTTPException(status_code=404, detail="404: " + champ_info.error)
elif isinstance(e, KeyError):
raise HTTPException(status_code=400, detail="400: " + champ_info.error)
else:
raise e | 7d810fc5ced3d187c68533f42c2443ef8bec651b | 20,563 |
def serving_input_receiver_fn():
"""This is used to define inputs to serve the model.
Returns:
A ServingInputReciever object.
"""
csv_row = tf.placeholder(shape=[None], dtype=tf.string)
features, _ = _make_input_parser(with_target=False)(csv_row)
return tf.estimator.export.ServingInputReceiver(features,
{'csv_row': csv_row}) | bcc6f0c4050d40df114ba4e5d895524f736b463a | 20,565 |
import time
def offsetTimer():
"""
'Starts' a timer when called, returns a timer function that returns the
time in seconds elapsed since the timer was started
"""
start_time = time.monotonic()
def time_func():
return time.monotonic() - start_time
return time_func | 348105a408ccedd1fcb840b73d5a58dfd59dd8cc | 20,566 |
from typing import Callable
import functools
def find_resolution(func: Callable = None) -> Callable:
"""Decorator that gives the decorated function the image resolution."""
@functools.wraps(func)
def wrapper(self: MultiTraceChart, *args, **kwargs):
if 'width' not in kwargs:
kwargs['width'] = self.resolution[0]
if 'height' not in kwargs:
kwargs['height'] = self.resolution[1]
if 'resolution' in kwargs:
kwargs['width'] = kwargs['resolution'][0]
kwargs['height'] = kwargs['resolution'][1]
del kwargs['resolution']
if 'size' in kwargs:
kwargs['width'] = kwargs['size'][0]
kwargs['height'] = kwargs['size'][1]
del kwargs['size']
return func(self, *args, **kwargs)
return wrapper | 70edffcec5ac772bd52cb819db589d26497fda87 | 20,568 |
def transform_spikes_to_isi(self, spikes, time_epoch, last_event_is_spike=False):
"""Convert spike times to data array, which is a suitable format for optimization.
Parameters
----------
spikes : numpy array (num_neuron,N), dtype=np.ndarray
A sequence of spike times for each neuron on each trial. Each entry is 1D array of floats.
time_epoch : list of tuples
List of N tuples, where N is the number of trials. Each tuple consists of the trial's start time and end time in seconds.
Note that the end time should be an actual end time, but not the timeout in the case of last_event_is_spike is True.
last_event_is_spike : bool
If true, trial termination time will not be recorded. Otherwise, trial termination time will be recorded.
Returns
-------
data : numpy array (N,2),dtype=np.ndarray.
Spike data packed as numpy array of the size (N,2), where each elements is a 1D array of floats.
N is the number of trials, and for each trial the first column contains the interspike intervals (ISIs),
and the second column contains the corresponding neuronal indices.
"""
num_neuron, num_trial = spikes.shape
# initialize data array
data = np.empty((num_trial, 2), dtype=np.ndarray)
# indices of neurons that spiked
spike_ind = np.empty(num_neuron, dtype=np.ndarray)
# transform spikes to interspike intervals format
for iTrial in range(num_trial):
for iCell in range(num_neuron):
spike_ind[iCell] = iCell * np.ones(len(spikes[iCell, iTrial]), dtype=np.int)
all_spikes = np.concatenate(spikes[:, iTrial], axis=0)
all_spike_ind = np.concatenate(spike_ind[:], axis=0)
# create data array
data[iTrial, 0] = np.zeros(len(all_spikes) + (not last_event_is_spike))
if all_spikes.shape[0] == 0:
data[iTrial, 1] = np.zeros(0)
# If no spikes emitted, set to trial beginning time
last_spike_time = time_epoch[iTrial][0]
else:
# sort spike times and neuron index arrays
ind_sort = np.argsort(all_spikes)
all_spikes = all_spikes[ind_sort]
all_spike_ind = all_spike_ind[ind_sort]
data[iTrial, 0][1:len(all_spikes)] = all_spikes[1:] - all_spikes[:-1]
data[iTrial, 0][0] = all_spikes[0] - time_epoch[iTrial][0] # handle the first ISI
last_spike_time = all_spikes[-1]
if not last_event_is_spike:
data[iTrial, 0][-1] = time_epoch[iTrial][1] - last_spike_time
# assign indicies of neurons which fired, -1 to absorption event
data[iTrial, 1] = all_spike_ind if last_event_is_spike else np.concatenate((all_spike_ind, [-1]))
return data | cc2b54e80e00b10b8cabf79093509fde1980b804 | 20,569 |
def api_github_v2(user_profile, event, payload, branches, default_stream, commit_stream, issue_stream, topic_focus = None):
"""
processes github payload with version 2 field specification
`payload` comes in unmodified from github
`default_stream` is set to what `stream` is in v1 above
`commit_stream` and `issue_stream` fall back to `default_stream` if they are empty
This and allowing alternative endpoints is what distinguishes v1 from v2 of the github configuration
"""
if not commit_stream:
commit_stream = default_stream
if not issue_stream:
issue_stream = default_stream
target_stream = commit_stream
repository = payload['repository']
if not topic_focus:
topic_focus = repository['name']
# Event Handlers
if event == 'pull_request':
pull_req = payload['pull_request']
subject = github_generic_subject('pull request', topic_focus, pull_req)
content = github_generic_content('pull request', payload, pull_req)
elif event == 'issues':
# in v1, we assume that this stream exists since it is
# deprecated and the few realms that use it already have the
# stream
target_stream = issue_stream
issue = payload['issue']
subject = github_generic_subject('issue', topic_focus, issue)
content = github_generic_content('issue', payload, issue)
elif event == 'issue_comment':
# Comments on both issues and pull requests come in as issue_comment events
issue = payload['issue']
if 'pull_request' not in issue or issue['pull_request']['diff_url'] is None:
# It's an issues comment
target_stream = issue_stream
noun = 'issue'
else:
# It's a pull request comment
noun = 'pull request'
subject = github_generic_subject(noun, topic_focus, issue)
comment = payload['comment']
content = ("%s [commented](%s) on [%s %d](%s)\n\n~~~ quote\n%s\n~~~"
% (comment['user']['login'],
comment['html_url'],
noun,
issue['number'],
issue['html_url'],
comment['body']))
elif event == 'push':
subject, content = build_message_from_gitlog(user_profile, topic_focus,
payload['ref'], payload['commits'],
payload['before'], payload['after'],
payload['compare'],
payload['pusher']['name'],
forced=payload['forced'],
created=payload['created'])
elif event == 'commit_comment':
comment = payload['comment']
subject = "%s: commit %s" % (topic_focus, comment['commit_id'])
content = ("%s [commented](%s)"
% (comment['user']['login'],
comment['html_url']))
if comment['line'] is not None:
content += " on `%s`, line %d" % (comment['path'], comment['line'])
content += "\n\n~~~ quote\n%s\n~~~" % (comment['body'],)
return (target_stream, subject, content) | bed307903d7ddcce216919d18accb3ecfd94937d | 20,570 |
from typing import Iterable
from typing import Optional
from typing import Callable
from typing import Dict
def concatenate(
iterable: Iterable[Results],
callback: Optional[Callable] = None,
modes: Iterable[str] = ("val", "test"),
reduction: str = "none",
) -> Results:
"""Returns a concatenated Results.
Args:
iterable (iterable of Results): Iterable of `Results` instance.
callback (callable, optional): Called for each `Results`. Must take
(`mode`, `index`, `output`, `target`) arguments and return a tuple
of ('index', `output`, `target`).
modes (iterable of str): Specify modes to concatenate.
reduction (str, optional): Reduction. `none` or `mean`.
"""
modes = list(modes)
indexes: Dict[str, list] = {mode: [] for mode in modes}
outputs: Dict[str, list] = {mode: [] for mode in modes}
targets: Dict[str, list] = {mode: [] for mode in modes}
for results in iterable:
for mode in modes:
if mode not in results:
continue
result = results[mode]
index, output, target = result["index"], result["output"], result["target"]
if callback:
index, output, target = callback(index, output, target)
indexes[mode].append(index)
outputs[mode].append(output)
targets[mode].append(target)
results = Results()
for mode in modes:
index = np.concatenate(indexes[mode])
output = np.concatenate(outputs[mode])
target = np.concatenate(targets[mode])
dict = ivory.core.collections.Dict()
results[mode] = dict(index=index, output=output, target=target)
if reduction != "none":
results = getattr(results, reduction)()
return results | 6833a50ddc84d44c942c6e85c1ebbdb793bd78a9 | 20,571 |
def parse_version(s: str) -> tuple[int, ...]:
"""poor man's version comparison"""
return tuple(int(p) for p in s.split('.')) | 445cd029efa3c8d4331e916f9925daddbc277ada | 20,572 |
def replay_train(DQN, train_batch):
"""
여기서 train_batch는 minibatch에서 가져온 data들입니다.
x_stack은 state들을 쌓는 용도로이고,
y_stack은 deterministic Q-learning 값을 쌓기 위한 용도입니다.
우선 쌓기전에 비어있는 배열로 만들어놓기로 하죠.
"""
x_stack = np.empty(0).reshape(0, DQN.input_size) # array(10, 4)
y_stack = np.empty(0).reshape(0, DQN.output_size) # array(10, 2)
# Get stored information from the buffer
"""for를 통해서 minibatch(train_batch)에서 가져온 값들을 하나씩 꺼냅니다."""
for state, action, reward, next_state, done in train_batch:
Q = DQN.predict(state)
# terminal
if done:
Q[0, action] = reward
else :
# Obtain the Q' values by feeding the new state through our network
Q[0, action] = reward + dis * np.max(DQN.predict(next_state))
"""
여기서 mian에 있는 action = np.argmax(mainDQN.predict(state))과
predict가 같이 쓰이고 있기 때문에 Non-stationary targets의 문제가 생깁니다.
"""
"""np.vstack는 y_stack에 쌓기 위한 numpy함수입니다."""
y_stack = np.vstack([y_stack, Q])
x_stack = np.vstack([x_stack, state])
# Train our network using target and predicted Q values on each episode
"""
쌓은 stack들을 바로 update로 돌려서 학습을 시킵니다.
학습은 위에서 만들었던 neural network(linear regression)을 통해서 학습이 되겠지요.
"""
return DQN.update(x_stack, y_stack) | 05b85aab223b82637a23853d15cd8e073ecca845 | 20,573 |
def make_reverse_macro_edge_name(macro_edge_name):
"""Autogenerate a reverse macro edge name for the given macro edge name."""
if macro_edge_name.startswith(INBOUND_EDGE_FIELD_PREFIX):
raw_edge_name = macro_edge_name[len(INBOUND_EDGE_FIELD_PREFIX) :]
prefix = OUTBOUND_EDGE_FIELD_PREFIX
elif macro_edge_name.startswith(OUTBOUND_EDGE_FIELD_PREFIX):
raw_edge_name = macro_edge_name[len(OUTBOUND_EDGE_FIELD_PREFIX) :]
prefix = INBOUND_EDGE_FIELD_PREFIX
else:
raise AssertionError("Unreachable condition reached: {}".format(macro_edge_name))
reversed_macro_edge_name = prefix + raw_edge_name
return reversed_macro_edge_name | 807efcc26fb21e553241b2de4d2c6633a24548a2 | 20,574 |
def unescaped_split(pattern,
string,
max_split=0,
remove_empty_matches=False,
use_regex=False):
"""
Splits the given string by the specified pattern. The return character (\\n)
is not a natural split pattern (if you don't specify it yourself).
This function handles escaped split-patterns (and so splits only patterns
that are unescaped).
:param pattern: A pattern that defines where to split.
:param string: The string to split by the defined pattern.
:param max_split: Defines the maximum number of splits. If 0 or
less is provided, the number of splits is not
limited.
:param remove_empty_matches: Defines whether empty entries should
be removed from the result.
:param use_regex: Specifies whether to treat the split pattern
as a regex or simple string.
:return: An iterator returning the split up strings.
"""
return _split(string,
max_split,
remove_empty_matches,
unescaped_search_for,
pattern,
string,
0,
0,
use_regex) | 5a5cec1a54b94840e13ddec3ca8796a73e908898 | 20,575 |
def citation_distance_matrix(graph):
"""
:param graph: networkx graph
:returns: distance matrix, node labels
"""
sinks = [key for key, outdegree in graph.out_degree() if outdegree==0]
paths = {s: nx.shortest_path_length(graph, target=s) for s in sinks}
paths_df = pd.DataFrame(paths)#, index=graph.nodes)
paths_nonzero_df = 1*~paths_df.isnull()
a_paths_nonzero = paths_nonzero_df.values
m = a_paths_nonzero
intersect = m.dot(m.T)
union = m.dot(np.ones(m.shape).T) + np.ones(m.shape).dot(m.T) -intersect
union[union==0] = 1
dist = 1 - intersect/union
return dist, paths_nonzero_df.index | b3c41164c2081704b3b36ce0c5b1ca55440a88be | 20,576 |
from typing import IO
def read_into_dataframe(file: IO, filename: str = "", nrows: int = 100,max_characters: int = 50) -> pd.DataFrame:
"""Reads a file into a DataFrame.
Infers the file encoding and whether a header column exists
Args:
file (IO): file buffer.
filename (str): filename. Used to infer compression.
nrows (int, optional): number of rows to peek. Default: 100.
max_characters (int, optional): max characters a column name can have to be distinguished from a real text value
Returns:
A pandas.DataFrame.
"""
detector = UniversalDetector()
for line, text in enumerate(file):
detector.feed(text)
if detector.done or line > nrows:
break
detector.close()
encoding = detector.result.get("encoding")
compression = infer_compression(filename, "infer")
file.seek(0, SEEK_SET)
contents = file.read()
with BytesIO(contents) as file:
df0 = pd.read_csv(
file,
encoding=encoding,
compression=compression,
sep=None,
engine="python",
header="infer",
nrows=nrows,
)
df0_cols = list(df0.columns)
#Check if all columns are strins and short strings(text values tend to be long)
column_names_checker = all([type(item) == str for item in df0_cols])
if column_names_checker:
column_names_checker = all([len(item) < max_characters for item in df0_cols])
#Check if any column can be turned to float
conversion_checker= True
for item in df0_cols:
try:
item = float(item)
conversion_checker = False
break
except:
pass
#Prefix and header
final_checker = True if (column_names_checker and conversion_checker) else False
header = "infer" if final_checker else None
prefix = None if header else "col"
with BytesIO(contents) as file:
df = pd.read_csv(
file,
encoding=encoding,
compression=compression,
sep=None,
engine="python",
header=header,
prefix=prefix,
)
return df | fe95c60870779353f2aa751c20ed331a2e0156bf | 20,577 |
from typing import OrderedDict
import torch
def Navigatev0_action_to_tensor(act: OrderedDict, task=1):
"""
Creates the following (batch_size, seq_len, 11) action tensor from Navigatev0 actions:
0. cam left
1. cam right
2. cam up
3. cam down
4. place + jump
5. place
6. forward + attack
7. attack
8. forward + jump
9. jump
10. forward
"""
batch_size, seq_len = act["jump"].shape
PLACE_OPTIONS = {"none": 0, "dirt": 1}
# ONE_HOT = {0: np.array([1, 0]), 1: np.array([0, 1])}
out = torch.zeros((batch_size,seq_len,11))
for b in range(batch_size):
for s in range(seq_len):
c = act["camera"]
# We don't need to check if 0, 1, and 10 are in task actions
# since they always will be
task_acts = TASK_ACTIONS[task]
# Set camera left
if c[b,s][0] < -10 and abs(c[b,s][0]) >= abs(c[b,s][1]):
out[b,s][0] = 1
# Set camera right
elif c[b,s][0] > 10 and abs(c[b,s][0]) >= abs(c[b,s][1]):
out[b,s][1] = 1
# Set camera up
elif 2 in task_acts and c[b,s][1] < -10 and abs(c[b,s][1]) >= abs(c[b,s][0]):
out[b,s][2] = 1
elif 3 in task_acts and c[b,s][1] > 10 and abs(c[b,s][1]) >= abs(c[b,s][0]):
out[b,s][3] = 1
elif PLACE_OPTIONS[act["place"][b,s]] == 1:
if 4 in task_acts and act["jump"][b,s] == 1:
out[b,s][4] = 1
elif 5 in task_acts:
out[b,s][5] = 1
elif act["attack"][b,s] == 1:
if 6 in task_acts and act["forward"][b,s] == 1:
out[b,s][6] = 1
elif 7 in task_acts:
out[b,s][7] = 1
elif act["jump"][b,s] == 1:
if 8 in task_acts and act["forward"][b,s] == 1:
out[b,s][8] = 1
elif 9 in task_acts:
out[b,s][9] = 1
else:
out[b,s][10] = 1
return out | 39d481d2e8597902b18695de97f041606f24f035 | 20,579 |
def asfarray(a, dtype=mstype.float32):
"""
Similar to asarray, converts the input to a float tensor.
If non-float dtype is defined, this function will return a float32 tensor instead.
Args:
a (Union[int, float, bool, list, tuple, numpy.ndarray]): Input data, in
any form that can be converted to a `Tensor`. This includes lists, lists of
tuples, tuples, tuples of tuples, tuples of lists and numpy.ndarray.
dtype (Union[:class:`mindspore.dtype`, str], optional): Designated tensor dtype, can
be in format of np.int32, or \'int32\'. If dtype is :class:`None`, the data type
of the new tensor will be inferred from `a`. Default is :class:`mindspore.float32`.
Returns:
Tensor, generated tensor with the specified float dtype.
Raises:
TypeError: If input arguments have types not specified above.
ValueError: If input `a` has different sizes at different dimensions.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> import mindspore.numpy as np
>>> print(np.asfarray([1,2,3]))
[1. 2. 3.]
"""
_check_input_for_asarray(a)
if dtype is None:
return asarray(a)
dtype = _check_dtype(dtype)
if dtype not in (mstype.float16, mstype.float32, mstype.float64):
dtype = mstype.float32
if isinstance(a, (list, tuple)):
# Convert all tuple/nested tuples to lists
a = _deep_list(a)
# Convert all tensor sub-elements to numpy arrays
a = _deep_tensor_to_nparray(a)
a = onp.asarray(a)
if a.dtype is onp.dtype('object'):
raise TypeError(f"For Tensor conversion, the input_data is {a} that contains unsupported element.")
if isinstance(a, onp.ndarray):
a = Tensor.from_numpy(a)
return Tensor(a, dtype) | 4da49b2bcab9686b2757cf1b9066c21876f992e6 | 20,580 |
from typing import Optional
from typing import Callable
import click
def _verify_option(value: Optional[str], value_proc: Callable) -> Optional[str]:
"""Verifies that input value via click.option matches the expected value.
This sets ``value`` to ``None`` if it is invalid so the rest of the prompt
can flow smoothly.
Args:
value (Optional[str]): Input value.
value_proc (Callable): A function to check the validity of ``value``.
Returns:
(Optional[str]): ``value`` if it is a valid value. ``None`` if it is
not.
Raises:
click.exceptions.UsageError: When ``value`` is invalid.
"""
if value is None:
return value
try:
value = value_proc(value)
except click.exceptions.UsageError as error:
click.echo(f"Error: {error.message}", err=True)
value = None
return value | 4d0f58827982924a9d027112ffa3aaeef7634fe8 | 20,581 |
def batch_jacobian(output, inp, use_pfor=True, parallel_iterations=None):
"""Computes and stacks jacobians of `output[i,...]` w.r.t. `input[i,...]`.
e.g.
x = tf.constant([[1, 2], [3, 4]], dtype=tf.float32)
y = x * x
jacobian = batch_jacobian(y, x)
# => [[[2, 0], [0, 4]], [[6, 0], [0, 8]]]
Args:
output: A tensor with shape [b, y1, ..., y_n]. `output[i,...]` should
only depend on `inp[i,...]`.
inp: A tensor with shape [b, x1, ..., x_m]
use_pfor: If true, uses pfor for computing the Jacobian. Else uses a tf.while_loop.
parallel_iterations: A knob to control how many iterations and dispatched in
parallel. This knob can be used to control the total memory usage.
Returns:
A tensor `t` with shape [b, y_1, ..., y_n, x1, ..., x_m] where `t[i, ...]`
is the jacobian of `output[i, ...]` w.r.t. `inp[i, ...]`, i.e. stacked
per-example jacobians.
Raises:
ValueError: if first dimension of `output` and `inp` do not match.
(NL) This function is taken from the following (and minimally modified to be used):
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/ops/parallel_for/gradients.py#L81
"""
output_shape = output.shape
if not output_shape[0].is_compatible_with(inp.shape[0]):
raise ValueError("Need first dimension of output shape (%s) and inp shape "
"(%s) to match." % (output.shape, inp.shape))
if output_shape.is_fully_defined():
batch_size = int(output_shape[0])
output_row_size = output_shape.num_elements() // batch_size
else:
output_shape = tf.shape(output)
batch_size = output_shape[0]
output_row_size = tf.size(output) // batch_size
inp_shape = tf.shape(inp)
# Flatten output to 2-D.
with tf.control_dependencies([tf.assert_equal(batch_size, inp_shape[0])]):
output = tf.reshape(output, [batch_size, output_row_size])
def loop_fn(i):
y = tf.gather(output, i, axis=1)
return tf.gradients(y, inp)[0]
#if use_pfor:
if False:
pfor_output = tf.pfor(loop_fn, output_row_size,
parallel_iterations=parallel_iterations)
else:
pfor_output = for_loop(
loop_fn, output.dtype,
output_row_size,
parallel_iterations=parallel_iterations)
if pfor_output is None:
return None
pfor_output = tf.reshape(pfor_output, [output_row_size, batch_size, -1])
output = tf.transpose(pfor_output, [1, 0, 2])
new_shape = tf.concat([output_shape, inp_shape[1:]], axis=0)
return tf.reshape(output, new_shape) | dd42fcc9542bba8033a1eb204bf0d3a91b192dbc | 20,582 |
def declare(baseFamily=None, baseDefault=0, derivedFamily=None, derivedDefault=""):
"""
Declare a pair of components
"""
# the declaration
class base(pyre.component, family=baseFamily):
"""a component"""
b = pyre.properties.int(default=baseDefault)
class derived(base, family=derivedFamily):
"""a derived component"""
d = pyre.properties.str(default=derivedDefault)
# return the pair to the caller
return base, derived | 30c8d8f7d264a0e908f4305198b07c3d76a3cfac | 20,583 |
from datetime import datetime
def parse_iso8601(dtstring: str) -> datetime:
"""naive parser for ISO8061 datetime strings,
Parameters
----------
dtstring
the datetime as string in one of two formats:
* ``2017-11-20T07:16:29+0000``
* ``2017-11-20T07:16:29Z``
"""
return datetime.strptime(
dtstring,
'%Y-%m-%dT%H:%M:%SZ' if len(dtstring) == 20 else '%Y-%m-%dT%H:%M:%S%z') | 415a4f3a9006109e31ea344cf99e885a3fd2738d | 20,584 |
def CalcCurvature(vertices,faces):
"""
CalcCurvature recives a list of vertices and faces
and the normal at each vertex and calculates the second fundamental
matrix and the curvature by least squares, by inverting the 3x3 Normal matrix
INPUT:
vertices -nX3 array of vertices
faces -mX3 array of faces
VertexNormals - nX3 matrix (n=number of vertices) containing the normal at each vertex
FaceNormals - mX3 matrix (m = number of faces) containing the normal of each face
OUTPUT:
FaceSFM - a list of 2x2 np arrays of (m = number of faces) second fundamental tensor at the faces
VertexSFM - a list of 2x2 np arrays (n = number of vertices) second fundamental tensor at the vertices
Other Parameters
wfp : mx3 array of vertex voronoi cell area/Mixed area weights as given in Meyer 2002
up,vp : local coordinate system at each vertex
e0,e1,e2 : edge vectors
"""
#list of 2x2 arrays for each vertex
VertexSFM = [np.zeros([2,2]) for i in vertices]
up = np.zeros(vertices.shape)
e0=vertices[faces[:,2]]-vertices[faces[:,1]]
e1=vertices[faces[:,0]]-vertices[faces[:,2]]
e2=vertices[faces[:,1]]-vertices[faces[:,0]]
e0_norm=normr(e0)
e1_norm=normr(e1)
e2_norm=normr(e2)
FaceNormals=0.5*fastcross(e1,e2) #not unit length. holds the area which is needed next
VertNormals,wfp=GetVertexNormalsExtra(vertices,faces,FaceNormals,e0,e1,e2)
FaceNormals=normr(FaceNormals)
#Calculate initial coordinate system
up[faces[:,0]]=e2_norm
up[faces[:,1]]=e0_norm
up[faces[:,2]]=e1_norm
#Calculate initial vertex coordinate system
up=fastcross(up,VertNormals)
up=normr(up)
vp=fastcross(VertNormals,up)
B=normr(fastcross(FaceNormals,e0_norm))
nfaces=faces.shape[0]
# Build a least square problem at each face to get the SFM at each face and solve it using the normal equation
scale=1.0/np.sqrt(np.sum((e0[0,:]**2+e1[0,:]**2+e2[0,:]**2)/3.0))
AT = scale*np.array([[inner1d(e0,e0_norm), inner1d(e0,B), np.zeros(nfaces)],
[np.zeros(nfaces), inner1d(e0,e0_norm), inner1d(e0,B)],
[inner1d(e1,e0_norm), inner1d(e1,B), np.zeros(nfaces)],
[np.zeros(nfaces), inner1d(e1,e0_norm), inner1d(e1,B)],
[inner1d(e2,e0_norm), inner1d(e2,B), np.zeros(nfaces)],
[np.zeros(nfaces), inner1d(e2,e0_norm), inner1d(e2,B)]]).T
A = np.transpose(AT,axes=(0,2,1)).copy()
dn0=VertNormals[faces[:,2]]-VertNormals[faces[:,1]]
dn1=VertNormals[faces[:,0]]-VertNormals[faces[:,2]]
dn2=VertNormals[faces[:,1]]-VertNormals[faces[:,0]]
b= scale*np.array([inner1d(dn0,e0_norm),
inner1d(dn0,B ),
inner1d(dn1,e0_norm),
inner1d(dn1,B ),
inner1d(dn2,e0_norm),
inner1d(dn2,B )]).T[:,:,np.newaxis]
X1=np.array([np.linalg.pinv(a,-1) for a in A])
X = np.matmul(X1,b)
#now calculate curvature per vertex as weighted sum of the face curvature
for i,f in enumerate(faces):
for j in [0,1,2]:
new_ku,new_kuv,new_kv = ProjectCurvatureTensor(e0_norm[i],B[i],FaceNormals[i],X[i][0],X[i][1],X[i][2],up[f[j]],vp[f[j]])
VertexSFM[f[j]]+=wfp[i,j]*np.array([[new_ku,new_kuv],[new_kuv,new_kv]]).squeeze()
return VertexSFM,VertNormals | b0e31073fe8aff61e60d0393098cca390bb95708 | 20,585 |
from typing import Optional
def query_abstracts(
q: Optional[str] = None,
n_results: Optional[int] = None,
index: str = "agenda-2020-1",
fields: list = ["title^2", "abstract", "fullname", "institution"],
):
"""
Query abstracts from a given Elastic index
q: str, query
n_results: int, number of results from
index: str, index of ElasticSearch
fields: list, list of fields that are included in the search
"""
responses = query(q, n_results, index, fields)
return responses | 4ed554231c863c3164c5368978da900e3647570d | 20,586 |
import typing
import pickle
def PretrainedEmbeddingIndicesDictionary() -> typing.Dict[str, int]:
"""Read and return the embeddings indices dictionary."""
with open(INST2VEC_DICITONARY_PATH, "rb") as f:
return pickle.load(f) | d4c0c8f5d7c83d99927342c5cacd8fd80a4f7d56 | 20,587 |
def color_negative_red(val):
"""
Takes a scalar and returns a string with
the css property `'color: red'` for negative
strings, black otherwise.
"""
color = 'red' if val < 0 else 'black'
return 'color: %s' % color | 1806af9c915740612a6a11df723f1439c73bde2f | 20,588 |
def get_student_discipline(person_id: str = None):
"""
Returns student discipline information for a particular person.
:param person_id: The numeric ID of the person you're interested in.
:returns: String containing xml or an lxml element.
"""
return get_anonymous('getStudentDiscipline', person_id=person_id) | 4e96fb4e9d566af7094b16b29540617bbb230f67 | 20,590 |
from re import X
def dot(p1, p2):
"""
Dot product
:param p1:
:param p2:
:return:
"""
return p1[X] * p2[X] + p1[Y] * p2[Y] | 13ba17e8757ebf9022f07d21b58a26376520f84a | 20,592 |
def logout():
"""View function which handles a logout request."""
tf_clean_session()
if current_user.is_authenticated:
logout_user()
# No body is required - so if a POST and json - return OK
if request.method == "POST" and _security._want_json(request):
return _security._render_json({}, 200, headers=None, user=None)
return redirect(get_post_logout_redirect()) | 0343be8ec063b5c215a0a019003cbf137588171a | 20,593 |
def splinter_session_scoped_browser():
"""Make it test scoped."""
return False | a7587f6edff821bab3052dca73929201e98dcf56 | 20,595 |
from typing import Counter
def sample_mask(source, freq_vocab, threshold=1e-3, min_freq=0, seed=None, name=None):
"""Generates random mask for downsampling high frequency items.
Args:
source: string `Tensor` of any shape, items to be sampled.
freq_vocab: `Counter` with frequencies vocabulary.
threshold: `float`, items occurrence threshold.
min_freq: `int`, items below that frequency will be treated as unique.
seed: `int`, used to create a random seed (optional).
See @{tf.random.set_seed} for behavior.
name: `string`, a name for the operation (optional).
Returns:
A boolean `Tensor` of same shape as source: "keep" flags.
"""
with tf.name_scope(name or 'sample_mask'):
source = tf.convert_to_tensor(source, dtype=tf.string, name='source')
seed1, seed2 = random_seed.get_seed(seed)
if not isinstance(freq_vocab, Counter):
raise ValueError('Frequency vocabulary should be a Counter instance')
keys, freqs = zip(*freq_vocab.most_common())
return tfmiss_ops.miss_sample_mask(
source=source,
keys=keys,
freqs=freqs,
threshold=threshold,
min_freq=min_freq,
seed=seed1,
seed2=seed2
) | 30fca98f95ac7a6aa2f3a3576f32abf271a693bb | 20,596 |
def _xList(l):
"""
"""
if l is None:
return []
return l | ef09d779c7ebc2beb321d90726f43603c0ac8315 | 20,597 |
def IABN2Float(module: nn.Module) -> nn.Module:
"""If `module` is IABN don't use half precision."""
if isinstance(module, InplaceAbn):
module.float()
for child in module.children():
IABN2Float(child)
return module | 587565ad78afd08d3365f637ab5b98b17e977566 | 20,598 |
from datetime import datetime
def start_of_day(val):
"""
Return a new datetime.datetime object with values that represent
a start of a day.
:param val: Date to ...
:type val: datetime.datetime | datetime.date
:rtype: datetime.datetime
"""
if type(val) == date:
val = datetime.fromordinal(val.toordinal())
return val.replace(hour=0, minute=0, second=0, microsecond=0) | 74e302513edf428f825f9e24567e23b3a5e5d4f5 | 20,599 |
def pending_mediated_transfer(app_chain, token_network_identifier, amount, identifier):
""" Nice to read shortcut to make a LockedTransfer where the secret is _not_ revealed.
While the secret is not revealed all apps will be synchronized, meaning
they are all going to receive the LockedTransfer message.
Returns:
The secret used to generate the LockedTransfer
"""
# pylint: disable=too-many-locals
if len(app_chain) < 2:
raise ValueError('Cannot make a LockedTransfer with less than two apps')
target = app_chain[-1].raiden.address
# Generate a secret
initiator_channel = views.get_channelstate_by_token_network_and_partner(
views.state_from_app(app_chain[0]),
token_network_identifier,
app_chain[1].raiden.address,
)
address = initiator_channel.identifier
nonce_int = channel.get_next_nonce(initiator_channel.our_state)
nonce_bytes = nonce_int.to_bytes(2, 'big')
secret = sha3(address + nonce_bytes)
initiator_app = app_chain[0]
init_initiator_statechange = initiator_init(
initiator_app.raiden,
identifier,
amount,
secret,
token_network_identifier,
target,
)
events = initiator_app.raiden.wal.log_and_dispatch(
init_initiator_statechange,
initiator_app.raiden.get_block_number(),
)
send_transfermessage = must_contain_entry(events, SendLockedTransfer, {})
transfermessage = LockedTransfer.from_event(send_transfermessage)
initiator_app.raiden.sign(transfermessage)
for mediator_app in app_chain[1:-1]:
mediator_init_statechange = mediator_init(mediator_app.raiden, transfermessage)
events = mediator_app.raiden.wal.log_and_dispatch(
mediator_init_statechange,
mediator_app.raiden.get_block_number(),
)
send_transfermessage = must_contain_entry(events, SendLockedTransfer, {})
transfermessage = LockedTransfer.from_event(send_transfermessage)
mediator_app.raiden.sign(transfermessage)
target_app = app_chain[-1]
mediator_init_statechange = target_init(transfermessage)
events = target_app.raiden.wal.log_and_dispatch(
mediator_init_statechange,
target_app.raiden.get_block_number(),
)
return secret | 82ae40ffa45a759f1aac132c3edc221ebd11ae9e | 20,600 |
def get_comments(post, sort_mode='hot', max_depth=5, max_breadth=5):
"""
Retrieves comments for a post.
:param post: The unique id of a Post from which Comments will be returned.
:type post: `str` or :ref:`Post`
:param str sort_mode: The order that the Posts will be sorted by. Options are: "top" (ranked by upvotes minus downvotes), "best" (similar to top, except that it uses a more complicated algorithm to have good posts jump to the top and stay there, and bad comments to work their way down, see http://blog.reddit.com/2009/10/reddits-new-comment-sorting-system.html), "hot" (similar to "top", but weighted by time so that recent, popular posts are put near the top), "new" (posts will be sorted by creation time).
:param int max_depth: The maximum depth that comments will be retrieved from (i.e., how many descendants from the topmost comment). To go down infinitely, use None.
:param int max_breadth: The maximum breadth that comments will be retrieved from (i.e., how many siblings from the topmost comment). Note that this breadth applies at every subtree - in effect, it is the branching factor. To get all siblings, use None.
:returns: list of Comment
"""
if sort_mode not in SORT_MODES:
raise RedditException("Unknown sort mode: {}".format(sort_mode))
if isinstance(post, Post):
post = post.id
elif not isinstance(post, str):
raise RedditException("The post parameter should be a String or a Post")
result = _get_comments_string(post, sort_mode, max_depth, max_breadth)
if result:
try:
json_result = _from_json(result)[1]['data']['children']
except ValueError:
raise RedditException("The response from the server didn't make any sense.")
if "error" in json_result:
raise RedditException("Error from Reddit: {}".format(json_result.get("error", "Unknown error.")))
if max_breadth is None:
return [Comment._from_json(r, post, max_depth=max_depth-1)
for r in json_result]
else:
return [Comment._from_json(r, post, max_depth=max_depth-1,
max_breadth=max_breadth)
for r in json_result[:max_breadth]]
else:
if _CONNECTED:
raise RedditException("No response from the server.")
else:
raise RedditException("No data was in the cache for this comment.") | 333009358f622560135e7e239741613356387d55 | 20,601 |
def neighbor_json(json):
"""Read neighbor game from json"""
utils.check(
json['type'].split('.', 1)[0] == 'neighbor', 'incorrect type')
return _NeighborDeviationGame(
gamereader.loadj(json['model']),
num_neighbors=json.get('neighbors', json.get('devs', None))) | 19891d59970610ad412fd4eb204477c96d1d82fd | 20,602 |
def get_b16_config():
"""Returns the ViT-B/16 configuration."""
config = ml_collections.ConfigDict()
config.name = 'ViT-B_16'
config.half_precision = True
config.encoder = ml_collections.ConfigDict()
config.encoder.patches = ml_collections.ConfigDict({'size': (16, 16)})
config.encoder.hidden_size = 768
config.encoder.mlp_dim = 3072
config.encoder.num_heads = 12
config.encoder.num_layers = 12
config.encoder.attention_dropout_rate = 0.0
config.encoder.dropout_rate = 0.0
config.encoder.drop_path_rate = 0.0
config.decoder = ml_collections.ConfigDict()
config.decoder.hidden_size = 384
config.decoder.mlp_dim = 1536
config.decoder.num_heads = 6
config.decoder.num_layers = 4
config.decoder.attention_dropout_rate = 0.0
config.decoder.dropout_rate = 0.0
config.decoder.drop_path_rate = 0.0
config.decoder.out_dim = 768
return config | 6afdb862bd07c21d569db65fbb1780492ff153f2 | 20,603 |
from typing import Container
def build_container_hierarchy(dct):
"""Create a hierarchy of Containers based on the contents of a nested dict.
There will always be a single top level scoping Container regardless of the
contents of dct.
"""
top = Container()
for key,val in dct.items():
if isinstance(val, dict): # it's a dict, so this is a Container
top.add(key, build_container_hierarchy(val))
else:
setattr(top, key, val)
return top | 7fb629d7f570e5f77b381766b5c2d909d7c0d6c1 | 20,604 |
def occ_frac(stop_rec_range, bin_size_minutes, edge_bins=1):
"""
Computes fractional occupancy in inbin and outbin.
Parameters
----------
stop_rec_range: list consisting of [intime, outtime]
bin_size_minutes: bin size in minutes
edge_bins: 1=fractional, 2=whole bin
Returns
-------
[inbin frac, outbin frac] where each is a real number in [0.0,1.0]
"""
intime = stop_rec_range[0]
outtime = stop_rec_range[1]
bin_freq_str = '{}T'.format(int(bin_size_minutes))
indtbin = intime.floor(bin_freq_str)
outdtbin = outtime.floor(bin_freq_str)
# inbin occupancy
if edge_bins == 1:
right_edge = min(indtbin + timedelta(minutes=bin_size_minutes), outtime)
inbin_occ_secs = (right_edge - intime).total_seconds()
inbin_occ_frac = inbin_occ_secs / (bin_size_minutes * 60.0)
else:
inbin_occ_frac = 1.0
# outbin occupancy
if indtbin == outdtbin:
outbin_occ_frac = 0.0 # Use inbin_occ_frac
else:
if edge_bins == 1:
left_edge = max(outdtbin, intime)
outbin_occ_secs = (outtime - left_edge).total_seconds()
outbin_occ_frac = outbin_occ_secs / (bin_size_minutes * 60.0)
else:
outbin_occ_frac = 1.0
assert 1.0 >= inbin_occ_frac >= 0.0, \
"bad inbin_occ_frac={:.3f} in={} out={}".format(inbin_occ_frac,
intime, outtime)
assert 1.0 >= outbin_occ_frac >= 0.0, \
"bad outbin_occ_frac={:.3f} in={} out={}".format(outbin_occ_frac,
intime, outtime)
return [inbin_occ_frac, outbin_occ_frac] | d3d93cd92386a98c865c61ad2b595786aa5d4837 | 20,605 |
def geomprogr_mesh(N=None, a=0, L=None, Delta0=None, ratio=None):
"""Compute a sequence of values according to a geometric progression.
Different options are possible with the input number of intervals in the
sequence N, the length of the first interval Delta0, the total length L
and the ratio of the sought geometric progression. Three of them are
requested in input to find a valid sequence. The sequence is drawn within
the points a and b."""
if list(locals().values()).count(None) > 1:
raise ValueError('Insufficient number of input data for a sequence')
if ratio is not None:
if (ratio < 0):
raise ValueError('negative ratio is not valid')
if L is not None:
if (L < 0):
raise ValueError('negative total length is not valid')
if Delta0 is not None:
if (Delta0 < 0):
raise ValueError('negative length of the 1st interval is not valid')
if N is not None:
if (N < 0):
raise ValueError('negative number of intervals is not valid')
if N is None:
if ratio < 1:
N = np.log(1 - L / Delta0 * (1 - ratio)) / np.log(ratio)
else:
N = np.log(1 + L / Delta0 * (ratio - 1)) / np.log(ratio)
elif L is None:
if ratio < 1:
L = Delta0 * (1 - ratio**N) / (1 - ratio)
else:
L = Delta0 * (ratio**N - 1) / (ratio - 1)
elif Delta0 is None:
if not np.isclose(ratio, 1):
Delta0 = L * (1 - ratio) / (1 - ratio**N)
else:
Delta0 = L / float(N)
elif ratio is None:
f = lambda q: q**N - L / Delta0 * q + L / Delta0 - 1
x = L / float(N)
if Delta0 > x:
ratio = brentq(f, 0, 1 - 1.e-6)
elif Delta0 < x:
ratio = brentq(f, 1 + 1.e-6, 20)
else:
ratio = 1
if np.isclose(ratio, 1):
r = np.linspace(0, L, N + 1)
else:
r = np.insert(np.full(N - 1, ratio), 0, 1)
r = np.cumprod(r) * Delta0
r = np.insert(np.cumsum(r), 0, 0)
return r + a | 3de67b8ee2d75b69638648316fcfad07dbabde3a | 20,606 |
def list_subclasses(package, base_class):
"""
Dynamically import all modules in a package and scan for all subclasses of a base class.
`package`: the package to import
`base_class`: the base class to scan for subclasses
return: a dictionary of possible subclasses with class name as key and class type information as value
"""
import_modules(package)
subclasses = all_subclasses(base_class)
return dict(zip(map(lambda c: c.__name__, subclasses), subclasses)) | e5570c30c89869b702c1c1015914540403be356f | 20,607 |
def maxima_in_range(r, g_r, r_min, r_max):
"""Find the maxima in a range of r, g_r values"""
idx = np.where(np.logical_and(np.greater_equal(r, r_min), np.greater_equal(r_max, r)))
g_r_slice = g_r[idx]
g_r_max = g_r_slice[g_r_slice.argmax()]
idx_max, _ = find_nearest(g_r, g_r_max)
return r[idx_max], g_r[idx_max] | 14a4e3dc65465dd2e515ac09fb74704a366368b4 | 20,608 |
def shared_fit_preprocessing(fit_class):
"""
Shared preprocessing to get X, y, class_order, and row_weights.
Used by _materialize method for both python and R fitting.
:param fit_class: PythonFit or RFit class
:return:
X: pd.DataFrame of features to use in fit
y: pd.Series of target to use in fit
class_order: array specifying class order, or None
row_weights: pd.Series of row weights, or None
"""
# read in data
if fit_class.input_filename.endswith(".mtx"):
colnames = None
if fit_class.sparse_column_file:
colnames = [column.strip() for column in open(fit_class.sparse_column_file).readlines()]
df = pd.DataFrame.sparse.from_spmatrix(mmread(fit_class.input_filename), columns=colnames)
else:
df = pd.read_csv(fit_class.input_filename)
# get num rows to use
if fit_class.num_rows == "ALL":
fit_class.num_rows = len(df)
else:
if fit_class.num_rows > len(df):
raise DrumCommonException(
"Requested number of rows greater than data length {} > {}".format(
fit_class.num_rows, len(df)
)
)
fit_class.num_rows = int(fit_class.num_rows)
# get target and features, resample and modify nrows if needed
if fit_class.target_filename or fit_class.target_name:
if fit_class.target_filename:
y_unsampled = pd.read_csv(fit_class.target_filename, index_col=False)
assert (
len(y_unsampled.columns) == 1
), "Your target dataset at path {} has {} columns named {}".format(
fit_class.target_filename, len(y_unsampled.columns), y_unsampled.columns
)
assert len(df) == len(
y_unsampled
), "Your input data has {} entries, but your target data has {} entries".format(
len(df), len(y_unsampled)
)
if y_unsampled.columns[0] in df.columns:
y_unsampled.columns = ["__target__"]
df = df.merge(y_unsampled, left_index=True, right_index=True)
assert len(y_unsampled.columns.values) == 1
fit_class.target_name = y_unsampled.columns.values[0]
df = df.dropna(subset=[fit_class.target_name])
X = df.drop(fit_class.target_name, axis=1).sample(fit_class.num_rows, random_state=1)
y = df[fit_class.target_name].sample(fit_class.num_rows, random_state=1)
else:
X = df.sample(fit_class.num_rows, random_state=1)
y = None
row_weights = extract_weights(X, fit_class)
class_order = extract_class_order(fit_class)
return X, y, class_order, row_weights | b87831540ba6fc4bc65fe0532e2af0574515c3a3 | 20,609 |
import json
def webhook():
"""
Triggers on each GET and POST request. Handles GET and POST requests using this function.
:return: Return status code acknowledge for the GET and POST request
"""
if request.method == 'POST':
data = request.get_json(force=True)
log(json.dumps(data)) # you may not want to log every incoming message in production, but it's good for testing
if data["object"] == "page":
for entry in data["entry"]:
for event in entry["messaging"]:
sender_id = event["sender"]["id"]
if 'message' in event and 'text' in event['message']:
message_text = event["message"]["text"]
if event.get("message").get("quick_reply"):
feedback_payload = event["message"]["quick_reply"]["payload"]
handle_message(feedback_payload, sender_id, message_type="feedback")
else:
handle_message(message_text, sender_id)
if 'postback' in event and 'payload' in event['postback']:
postback_payload = event['postback']['payload']
log(postback_payload)
handle_message(postback_payload, sender_id, message_type="feedback")
if event.get("delivery"):
pass
if event.get("optin"):
pass
return "ok", 200
elif request.method == 'GET': # Verification
if request.args.get("hub.verify_token") == VERIFY_TOKEN:
return request.args.get('hub.challenge'), 200
else:
return 'Error, wrong validation token', 403 | 0c9f39c1159990e6a84dc9ce0091078397a3b65e | 20,610 |
def extract_winner(state: 'TicTacToeState') -> str:
"""
Return the winner of the game, or announce if the game resulted in a
tie.
"""
winner = 'No one'
tictactoe = TicTacToeGame(True)
tictactoe.current_state = state
if tictactoe.is_winner('O'):
winner = 'O'
elif tictactoe.is_winner('X'):
winner = 'X'
return winner | c92cef3bc3214923107871d5f044df16baf63401 | 20,611 |
def _prensor_value_fetch(prensor_tree: prensor.Prensor):
"""Fetch function for PrensorValue. See the document in session_lib."""
# pylint: disable=protected-access
type_spec = prensor_tree._type_spec
components = type_spec._to_components(prensor_tree)
def _construct_prensor_value(component_values):
return _prensor_value_from_type_spec_and_component_values(
type_spec, iter(component_values))
return components, _construct_prensor_value | ccea4a94fff5f17c6e650e1ac820ec6da1be023d | 20,612 |
def request_validation_error(error):
"""Handles Value Errors from bad data"""
message = str(error)
app.logger.error(message)
return {
'status_code': status.HTTP_400_BAD_REQUEST,
'error': 'Bad Request',
'message': message
}, status.HTTP_400_BAD_REQUEST | 1d5c779286d83d756e1d73201f1274dbec7cf84b | 20,614 |
def all(request):
"""Handle places list page."""
places = Place.objects.all()
context = {'places': places}
return render(request, 'rental/list_place.html', context) | d978a4ec22004a1a863e57113639722eaf1f02cf | 20,615 |
def get_key_by_value(dictionary, search_value):
"""
searchs a value in a dicionary and returns the key of the first occurrence
:param dictionary: dictionary to search in
:param search_value: value to search for
"""
for key, value in dictionary.iteritems():
if value == search_value:
return ugettext(key) | febad38e70c973de23ce4e1a5702df92860a6c2e | 20,616 |
def _subtract_ten(x):
"""Subtracts 10 from x using control flow ops.
This function is equivalent to "x - 10" but uses a tf.while_loop, in order
to test the use of functions that involve control flow ops.
Args:
x: A tensor of integral type.
Returns:
A tensor representing x - 10.
"""
def stop_condition(counter, x_minus_counter):
del x_minus_counter # unused
return tf.less(counter, 10)
def iteration(counter, x_minus_counter):
return tf.add(counter, 1), tf.add(x_minus_counter, -1)
initial_values = [tf.constant(0), x]
return tf.while_loop(stop_condition, iteration, initial_values)[1] | f2db402e5c98251dc93036be60f02eb88a4d13d9 | 20,617 |
def load_fortune_file(f: str) -> list:
"""
load fortunes from a file and return it as list
"""
saved = []
try:
with open(f, 'r') as datfile:
text = datfile.read()
for line in text.split('%'):
if len(line.strip()) > 0:
saved.append(line)
except OSError:
app.logger.warning('fail to process file: {}'.format(f))
pass
else:
return saved | 824ddb0bcb34abf597fb317d10fa3eeab99a292e | 20,618 |
def maskStats(wins, last_win, mask, maxLen):
"""
return a three-element list with the first element being the total proportion of the window that is masked,
the second element being a list of masked positions that are relative to the windown start=0 and the window end = window length,
and the third being the last window before breaking to expidite the next loop
"""
chrom = wins[0].split(":")[0]
a = wins[1]
L = wins[2]
b = a + L
prop = [0.0,[],0]
try:
for i in range(last_win, len(mask[chrom])):
x, y = mask[chrom][i][0], mask[chrom][i][1]
if y < a:
continue
if b < x:
return prop
else: # i.e. [a--b] and [x--y] overlap
if a >= x and b <= y:
return [1.0, [[0,maxLen]], i]
elif a >= x and b > y:
win_prop = (y-a)/float(b-a)
prop[0] += win_prop
prop[1].append([0,int(win_prop * maxLen)])
prop[2] = i
elif b <= y and a < x:
win_prop = (b-x)/float(b-a)
prop[0] += win_prop
prop[1].append([int((1-win_prop)*maxLen),maxLen])
prop[2] = i
else:
win_prop = (y-x)/float(b-a)
prop[0] += win_prop
prop[1].append([int(((x-a)/float(b-a))*maxLen), int(((y-a)/float(b-a))*maxLen)])
prop[2] = i
return prop
except KeyError:
return prop | b5d75d2e86f1b21bf35cbc69d360cd1639c5527b | 20,619 |
def dsoftmax(Z):
"""Given a (m,n) matrix, returns a (m,n,n) jacobian matrix"""
m,n=np.shape(Z)
softZ=(softmax(Z))
prodtensor=np.einsum("ij,ik->ijk",softZ,softZ)
diagtensor=np.einsum('ij,jk->ijk', softZ, np.eye(n, n))
return diagtensor-prodtensor | 15296d493608dac1fc9843dd8a7d6eaaf29c4839 | 20,620 |
async def vbd_unplug(cluster_id: str, vbd_uuid: str):
"""Unplug from VBD"""
try:
session = create_session(
_id=cluster_id, get_xen_clusters=Settings.get_xen_clusters()
)
vbd: VBD = VBD.get_by_uuid(session=session, uuid=vbd_uuid)
if vbd is not None:
ret = dict(success=vbd.unplug())
else:
ret = dict(success=False)
session.xenapi.session.logout()
return ret
except Failure as xenapi_error:
raise HTTPException(
status_code=500, detail=xenapi_failure_jsonify(xenapi_error)
)
except Fault as xml_rpc_error:
raise HTTPException(
status_code=int(xml_rpc_error.faultCode),
detail=xml_rpc_error.faultString,
)
except RemoteDisconnected as rd_error:
raise HTTPException(status_code=500, detail=rd_error.strerror) | 8b36c55354b35470bceb47ef212aa183be09fad4 | 20,621 |
def calculate_age(created, now):
"""
Pprepare a Docker CLI-like output of image age.
After researching `datetime`, `dateutil` and other libraries
I decided to do this manually to get as close as possible to
Docker CLI output.
`created` and `now` are both datetime.datetime objects.
"""
age = {}
rdelta = relativedelta.relativedelta(now, created)
difference = now - created
if rdelta.years > 0:
age['number'] = rdelta.years
age['unit'] = 'years'
elif rdelta.years == 0 and difference >= timedelta(days=60):
age['number'] = rdelta.months
age['unit'] = 'months'
elif rdelta.years == 0 and difference < timedelta(days=60) and difference >= timedelta(days=14):
days = 0
if rdelta.months == 1:
days = 30
days += rdelta.days
weeks = round(days / 7)
age['number'] = weeks
age['unit'] = 'weeks'
elif rdelta.years == 0 and difference < timedelta(days=14) and difference >= timedelta(days=1):
age['number'] = rdelta.days
age['unit'] = 'days'
elif rdelta.years == 0 and difference < timedelta(days=1) and rdelta.hours >= 1:
age['number'] = rdelta.hours
age['unit'] = 'hours'
elif rdelta.years == 0 and difference < timedelta(days=1) and rdelta.hours < 1 and rdelta.minutes > 0:
age['number'] = rdelta.minutes
age['unit'] = 'minutes'
elif rdelta.years == 0 and difference < timedelta(days=1) and rdelta.hours < 1 and rdelta.minutes <= 0 and rdelta.seconds > 0:
age['number'] = rdelta.seconds
age['unit'] = 'seconds'
elif rdelta.years == 0 and difference < timedelta(days=1) and rdelta.hours < 1 and rdelta.minutes <= 0 and rdelta.seconds <= 0:
age['number'] = 1
age['unit'] = 'second'
else:
raise DkrlsError(f'Encountered age of an image which this CLI can\'t handle: {rdelta}')
return age | f2b1a6fc643a78c9a2d3cdd0f497e05c3294eb03 | 20,622 |
def Maxout(x, num_unit):
"""
Maxout as in the paper `Maxout Networks <http://arxiv.org/abs/1302.4389>`_.
Args:
x (tf.Tensor): a NHWC or NC tensor. Channel has to be known.
num_unit (int): a int. Must be divisible by C.
Returns:
tf.Tensor: of shape NHW(C/num_unit) named ``output``.
"""
input_shape = x.get_shape().as_list()
ndim = len(input_shape)
assert ndim == 4 or ndim == 2
ch = input_shape[-1]
assert ch is not None and ch % num_unit == 0
if ndim == 4:
x = tf.reshape(x, [-1, input_shape[1], input_shape[2], ch / num_unit, num_unit])
else:
x = tf.reshape(x, [-1, ch / num_unit, num_unit])
return tf.reduce_max(x, ndim, name='output') | d10294d7ad180b47c4276e3bb0f43e7ac4a9fa3b | 20,623 |
import re
def is_youtube_url(url: str) -> bool:
"""Checks if a string is a youtube url
Args:
url (str): youtube url
Returns:
bool: true of false
"""
match = re.match(r"^(https?\:\/\/)?(www\.youtube\.com|youtu\.be)\/.+$", url)
return bool(match) | 97536b8e7267fb5a72c68f242b3f5d6cbd1b9492 | 20,624 |
def time_nanosleep():
""" Delay for a number of seconds and nanoseconds"""
return NotImplementedError() | 9ec91f2ef2656b5a481425dc65dc9f81a07386c2 | 20,625 |
import jinja2
def render_series_fragment(site_config):
"""
Adds "other posts in this series" fragment to series posts.
"""
series_fragment = open("_includes/posts_in_series.html", "r").read()
for post_object in site_config["series_posts"]:
print("Generating 'Other posts in this series' fragment for " + post_object[1])
category, post_name, page_url = post_object
loader = jinja2.FileSystemLoader(searchpath="./")
template = jinja2.Environment(loader=loader)
rendered_series_text = template.from_string(series_fragment)
posts_to_show = site_config["categories"].get(category)
see_more_link = False
if len(posts_to_show) > 10:
see_more_link = True
category_slug = (
category.replace(" ", "-").lower().replace("(", "").replace(")", "")
)
rendered_series_text = rendered_series_text.render(
posts_in_series=posts_to_show[:10],
see_more_link=see_more_link,
site=site_config,
category_slug=category_slug,
page={"url": page_url},
)
year_month_date = "/".join(post_name.split("-")[:3]) + "/"
post_name = (
"-".join(post_name.split("-")[3:]).replace(".md", "").replace(".html", "")
)
with open(OUTPUT + year_month_date + post_name + "/index.html", "r") as file:
file_content = file.read()
file_content = file_content.replace(
"<!--- posts_in_series -->", rendered_series_text
)
with open(OUTPUT + year_month_date + post_name + "/index.html", "w") as file:
file.write(file_content)
return series_fragment | 6cf947148af2978e926d51e9007684b9580d2cb0 | 20,627 |
def get_class_by_name(name):
"""Gets a class object by its name, e.g. sklearn.linear_model.LogisticRegression"""
if name.startswith('cid.analytics'):
# We changed package names in March 2017. This preserves compatibility with old models.
name = name.replace('cid.analytics', 'analytics.core')
elif name.startswith('cid.'):
name = name.replace('cid.', 'analytics.')
module, class_name = name.rsplit('.', 1)
return getattr(import_module(module), class_name) | bf52eb8472e63cbb453183b57c5275d592665fc9 | 20,629 |
import functools
def _single_optimize(
direction,
criterion,
criterion_kwargs,
params,
algorithm,
constraints,
algo_options,
derivative,
derivative_kwargs,
criterion_and_derivative,
criterion_and_derivative_kwargs,
numdiff_options,
logging,
log_options,
error_handling,
error_penalty,
cache_size,
scaling_options,
):
"""Minimize or maximize *criterion* using *algorithm* subject to *constraints*.
See the docstring of ``_optimize`` for an explanation of all arguments.
Returns:
dict: The optimization result.
"""
# store all arguments in a dictionary to save them in the database later
problem_data = {
"direction": direction,
# "criterion"-criterion,
"criterion_kwargs": criterion_kwargs,
"algorithm": algorithm,
"constraints": constraints,
"algo_options": algo_options,
# "derivative"-derivative,
"derivative_kwargs": derivative_kwargs,
# "criterion_and_derivative"-criterion_and_derivative,
"criterion_and_derivative_kwargs": criterion_and_derivative_kwargs,
"numdiff_options": numdiff_options,
"log_options": log_options,
"error_handling": error_handling,
"error_penalty": error_penalty,
"cache_size": int(cache_size),
}
# partial the kwargs into corresponding functions
criterion = functools.partial(criterion, **criterion_kwargs)
if derivative is not None:
derivative = functools.partial(derivative, **derivative_kwargs)
if criterion_and_derivative is not None:
criterion_and_derivative = functools.partial(
criterion_and_derivative, **criterion_and_derivative_kwargs
)
# process params and constraints
params = add_default_bounds_to_params(params)
for col in ["value", "lower_bound", "upper_bound"]:
params[col] = params[col].astype(float)
check_params_are_valid(params)
# calculate scaling factor and offset
if scaling_options not in (None, {}):
scaling_factor, scaling_offset = calculate_scaling_factor_and_offset(
params=params,
constraints=constraints,
criterion=criterion,
**scaling_options,
)
else:
scaling_factor, scaling_offset = None, None
# name and group column are needed in the dashboard but could lead to problems
# if present anywhere else
params_with_name_and_group = _add_name_and_group_columns_to_params(params)
problem_data["params"] = params_with_name_and_group
params_to_internal, params_from_internal = get_reparametrize_functions(
params=params,
constraints=constraints,
scaling_factor=scaling_factor,
scaling_offset=scaling_offset,
)
# get internal parameters and bounds
x = params_to_internal(params["value"].to_numpy())
lower_bounds, upper_bounds = get_internal_bounds(
params=params,
constraints=constraints,
scaling_factor=scaling_factor,
scaling_offset=scaling_offset,
)
# process algorithm and algo_options
if isinstance(algorithm, str):
algo_name = algorithm
else:
algo_name = getattr(algorithm, "name", "your algorithm")
if isinstance(algorithm, str):
try:
algorithm = AVAILABLE_ALGORITHMS[algorithm]
except KeyError:
proposed = propose_algorithms(algorithm, list(AVAILABLE_ALGORITHMS))
raise ValueError(
f"Invalid algorithm: {algorithm}. Did you mean {proposed}?"
) from None
algo_options = _adjust_options_to_algorithms(
algo_options, lower_bounds, upper_bounds, algorithm, algo_name
)
# get convert derivative
convert_derivative = get_derivative_conversion_function(
params=params,
constraints=constraints,
scaling_factor=scaling_factor,
scaling_offset=scaling_offset,
)
# do first function evaluation
first_eval = {
"internal_params": x,
"external_params": params,
"output": criterion(params),
}
# fill numdiff_options with defaults
numdiff_options = _fill_numdiff_options_with_defaults(
numdiff_options, lower_bounds, upper_bounds
)
# create and initialize the database
if not logging:
database = False
else:
database = _create_and_initialize_database(
logging, log_options, first_eval, problem_data
)
# set default error penalty
error_penalty = _fill_error_penalty_with_defaults(
error_penalty, first_eval, direction
)
# create cache
x_hash = hash_array(x)
cache = {x_hash: {"criterion": first_eval["output"]}}
# partial the internal_criterion_and_derivative_template
internal_criterion_and_derivative = functools.partial(
internal_criterion_and_derivative_template,
direction=direction,
criterion=criterion,
params=params,
reparametrize_from_internal=params_from_internal,
convert_derivative=convert_derivative,
derivative=derivative,
criterion_and_derivative=criterion_and_derivative,
numdiff_options=numdiff_options,
database=database,
database_path=logging,
log_options=log_options,
error_handling=error_handling,
error_penalty=error_penalty,
first_criterion_evaluation=first_eval,
cache=cache,
cache_size=cache_size,
)
res = algorithm(internal_criterion_and_derivative, x, **algo_options)
p = params.copy()
p["value"] = params_from_internal(res["solution_x"])
res["solution_params"] = p
if "solution_criterion" not in res:
res["solution_criterion"] = criterion(p)
if direction == "maximize":
res["solution_criterion"] = -res["solution_criterion"]
# in the long run we can get some of those from the database if logging was used.
optional_entries = [
"solution_derivative",
"solution_hessian",
"n_criterion_evaluations",
"n_derivative_evaluations",
"n_iterations",
"success",
"reached_convergence_criterion",
"message",
]
for entry in optional_entries:
res[entry] = res.get(entry, f"Not reported by {algo_name}")
if logging:
_log_final_status(res, database, logging, log_options)
return res | 9f349f8e1124da3a2747b3880969a90e76aad52a | 20,630 |
def item_len(item):
"""return length of the string format of item"""
return len(str(item)) | 7d68629a5c2ae664d267844fc90006a7f23df1ba | 20,631 |
def get_progress_logger():
"""Returns the swift progress logger"""
return progress_logger | b1c0e8e206e2f051dcb97337dc51d4971fe0aa8b | 20,632 |
def instantiate_me(spec2d_files, spectrograph, **kwargs):
"""
Instantiate the CoAdd2d subclass appropriate for the provided
spectrograph.
The class must be subclassed from Reduce. See :class:`Reduce` for
the description of the valid keyword arguments.
Args:
spectrograph
(:class:`pypeit.spectrographs.spectrograph.Spectrograph`):
The instrument used to collect the data to be reduced.
tslits_dict: dict
dictionary containing slit/order boundary information
tilts (np.ndarray):
Returns:
:class:`PypeIt`: One of the classes with :class:`PypeIt` as its
base.
"""
indx = [ c.__name__ == (spectrograph.pypeline + 'Coadd2d') for c in Coadd2d.__subclasses__() ]
if not np.any(indx):
msgs.error('Pipeline {0} is not defined!'.format(spectrograph.pypeline))
return Coadd2d.__subclasses__()[np.where(indx)[0][0]](spec2d_files, spectrograph, **kwargs) | f9961231ead7c3ece5757e5b18dc5620a3492a40 | 20,634 |
def quoteattr(s, table=ESCAPE_ATTR_TABLE):
"""Escape and quote an attribute value.
"""
for c, r in table:
if c in s:
s = s.replace(c, r)
return '"%s"' % s | 7af3e8ed6bfc0c23a957881ca41065d24cb288d5 | 20,635 |
def is_numeric(array):
"""Return False if any value in the array or list is not numeric
Note boolean values are taken as numeric"""
for i in array:
try:
float(i)
except ValueError:
return False
else:
return True | 2ab0bb3e6c35e859e54e435671b5525c6392f66c | 20,636 |
def reductions_right(collection, callback=None, accumulator=None):
"""This method is like :func:`reductions` except that it iterates over
elements of a `collection` from right to left.
Args:
collection (list|dict): Collection to iterate over.
callback (mixed): Callback applied per iteration.
accumulator (mixed, optional): Initial value of aggregator. Default is
to use the result of the first iteration.
Returns:
list: Results of each reduction operation.
Example:
>>> reductions_right([1, 2, 3, 4], lambda total, x: total ** x)
[64, 4096, 4096]
Note:
The last element of the returned list would be the result of using
:func:`reduce_`.
.. versionadded:: 2.0.0
"""
return reductions(collection, callback, accumulator, from_right=True) | eba2de662a6386d609da8cf3011010ae822c0440 | 20,637 |
import math
def pelt_settling_time(margin=1, init=0, final=PELT_SCALE, window=PELT_WINDOW, half_life=PELT_HALF_LIFE, scale=PELT_SCALE):
"""
Compute an approximation of the PELT settling time.
:param margin: How close to the final value we want to get, in PELT units.
:type margin_pct: float
:param init: Initial PELT value.
:type init: float
:param final: Final PELT value.
:type final: float
:param window: PELT window in seconds.
:type window: float
:param half_life: PELT half life, in number of windows.
:type half_life: int
:param scale: PELT scale.
:type scale: float
.. note:: The PELT signal is approximated as a first order filter. This
does not take into account the averaging inside a window, but the
window is small enough in practice for that effect to be negligible.
"""
tau = _pelt_tau(half_life, window)
# Response of a first order low pass filter:
# y(t) = u(t) * (1 - exp(-t/tau))
# We want to find `t` such as the output y(t) is as close as we want from
# the input u(t):
# A * u(t) = u(t) * (1 - exp(-t/tau))
# A is how close from u(t) we want the output to get after a time `t`
# From which follows:
# A = (1 - exp(-t/tau))
# t = -tau * log(1-A)
# Since the equation we have is for a step response, i.e. from 0 to a final
# value
delta = abs(final - init)
# Since margin and delta are in the same unit, we don't have to normalize
# them to `scale` first.
relative_margin = (margin / delta)
A = 1 - relative_margin
settling_time = - tau * math.log(1 - A)
return settling_time | c8d53d1132bc45278f2c127ed95ce10cfea0498b | 20,638 |
def InstancesOverlap(instanceList,instance):
"""Returns True if instance contains a vertex that is contained in an instance of the given instanceList."""
for instance2 in instanceList:
if InstanceOverlap(instance,instance2):
return True
return False | 634312b7e8d2ce4e36826410fcd1f6c3c06a40ce | 20,640 |
def calc_qm_lea(p_zone_ref, temp_zone, temp_ext, u_wind_site, dict_props_nat_vent):
"""
Calculation of leakage infiltration and exfiltration air mass flow as a function of zone indoor reference pressure
:param p_zone_ref: zone reference pressure (Pa)
:param temp_zone: air temperature in ventilation zone (°C)
:param temp_ext: exterior air temperature (°C)
:param u_wind_site: wind velocity (m/s)
:param dict_props_nat_vent: dictionary containing natural ventilation properties of zone
:returns: - qm_lea_in : air mass flow rate into zone through leakages (kg/h)
- qm_lea_out : air mass flow rate out of zone through leakages (kg/h)
"""
# get default leakage paths from locals
coeff_lea_path = dict_props_nat_vent['coeff_lea_path']
height_lea_path = dict_props_nat_vent['height_lea_path']
# lookup wind pressure coefficients for leakage paths from locals
coeff_wind_pressure_path = dict_props_nat_vent['coeff_wind_pressure_path_lea']
# calculation of pressure difference at leakage path
delta_p_path = calc_delta_p_path(p_zone_ref, height_lea_path, temp_zone, coeff_wind_pressure_path, u_wind_site,
temp_ext)
# calculation of leakage air volume flow at path
qv_lea_path = calc_qv_lea_path(coeff_lea_path, delta_p_path)
# Eq. (65) in [1], infiltration is sum of air flows greater zero
qv_lea_in = qv_lea_path[np.where(qv_lea_path > 0)].sum()
# Eq. (66) in [1], exfiltration is sum of air flows smaller zero
qv_lea_out = qv_lea_path[np.where(qv_lea_path < 0)].sum()
# conversion to air mass flows according to 6.4.3.8 in [1]
# Eq. (67) in [1]
qm_lea_in = qv_lea_in * calc_rho_air(temp_ext)
# Eq. (68) in [1]
qm_lea_out = qv_lea_out * calc_rho_air(temp_zone)
return qm_lea_in, qm_lea_out | 4d3f4789b3faedf68b9de3b3e6c8f17bcb478a51 | 20,641 |
async def ban(bon):
""" For .ban command, bans the replied/tagged person """
# Here laying the sanity check
chat = await bon.get_chat()
admin = chat.admin_rights
creator = chat.creator
# Well
if not (admin or creator):
return await bon.edit(NO_ADMIN)
user, reason = await get_user_from_event(bon)
if not user:
return
# Announce that we're going to whack the pest
await bon.edit("**Banindo...**")
try:
await bon.client(EditBannedRequest(bon.chat_id, user.id, BANNED_RIGHTS))
except BadRequestError:
return await bon.edit(NO_PERM)
# Helps ban group join spammers more easily
try:
reply = await bon.get_reply_message()
if reply:
await reply.delete()
except BadRequestError:
return await bon.edit(
"**Não tenho direitos de excluir mensagens, mas o usuário foi banido!**"
)
# Delete message and then tell that the command
# is done gracefully
# Shout out the ID, so that fedadmins can fban later
if reason:
await bon.edit(f"**{str(user.id)}** foi banido!\nMotivo: {reason}")
else:
await bon.edit(f"**{str(user.id)}** foi banido!")
# Announce to the logging group if we have banned the person
# successfully!
if BOTLOG:
await bon.client.send_message(
BOTLOG_CHATID,
"#BAN\n"
f"USUÁRIO: [{user.first_name}](tg://user?id={user.id})\n"
f"CHAT: {bon.chat.title}(`{bon.chat_id}`)",
) | f79f16c5e2722f576511a528f546a7f87f7e5236 | 20,642 |
def read_offset(rt_info):
"""
获取所有分区的offset
:param rt_info: rt的详细信息
:return: offset_msgs 和 offset_info
"""
rt_id = rt_info[RESULT_TABLE_ID]
task_config = get_task_base_conf_by_name(f"{HDFS}-table_{rt_id}")
if not task_config:
return {}
try:
partition_num = task_config[TASKS_MAX]
webhdfs_addr = _get_webhdfs_addr_by_rt(rt_info)
offset_dir = get_offset_dir(
webhdfs_addr, task_config[GROUP_ID], task_config[NAME], task_config[TOPICS_DIR], partition_num
)
offset_msgs = {}
if offset_dir:
for p in range(partition_num):
files = _get_hdfs_dir_files(webhdfs_addr, f"{offset_dir}/{p}")
offset = get_max_offset(files) if files else "-1"
topic_partition = f"table_{rt_id}-{p}"
offset_msgs[topic_partition] = offset
logger.info(f"rt {rt_id} get offset_msgs from hdfs offset dir: {offset_msgs}")
return offset_msgs
except Exception:
logger.warning(f"failed to get offset_msgs for rt {rt_id}", exc_info=True)
return {} | cc890301d4403a7815480ad0b414e16e26283fa7 | 20,643 |
def _CalculateElementMaxNCharge(mol,AtomicNum=6):
"""
#################################################################
**Internal used only**
Most negative charge on atom with atomic number equal to n
#################################################################
"""
Hmol=Chem.AddHs(mol)
GMCharge.ComputeGasteigerCharges(Hmol,iter_step)
res=[]
for atom in Hmol.GetAtoms():
if atom.GetAtomicNum()==AtomicNum:
res.append(float(atom.GetProp('_GasteigerCharge')))
if res==[]:
return 0
else:
return min(res) | f7bd9957c6e958f31cccc2bc20d6651baaf2f5fa | 20,644 |
def check_stability(lambda0, W, mu, tau, dt_max):
"""Check if the model is stable for given parameter estimates."""
N, _ = W.shape
model = NetworkPoisson(N=N, dt_max=dt_max)
model.lamb = lambda0
model.W = W
model.mu = mu
model.tau = tau
return model.check_stability(return_value=True) | d417bdba0f236edf5f5c9e17c09e2d2a93bf2b4a | 20,646 |
import re
def pid2id(pid):
"""convert pid to slurm jobid"""
with open('/proc/%s/cgroup' % pid) as f:
for line in f:
m = re.search('.*slurm\/uid_.*\/job_(\d+)\/.*', line)
if m:
return m.group(1)
return None | e7d0ee60d5a8930b8a6f761d5c27451a28b6ec2a | 20,647 |
import copy
def multiaxis_scatterplot(xdata,
ydata,
*,
axes_loc,
xlabel='',
ylabel='',
title='',
num_cols=1,
num_rows=1,
saveas='mscatterplot',
**kwargs):
"""
Create a scatter plot with multiple axes.
:param xdata: list of arraylikes, passed on to the plotting functions for each axis (x-axis)
:param ydata: list of arraylikes, passed on to the plotting functions for each axis (y-axis)
:param axes_loc: list of tuples of two integers, location of each axis
:param xlabel: str or list of str, labels for the x axis
:param ylabel: str or list of str, labels for the y-axis
:param title: str or list of str, titles for the subplots
:param num_rows: int, how many rows of axis are created
:param num_cols: int, how many columns of axis are created
:param saveas: str filename of the saved file
Special Kwargs:
:param subplot_params: dict with integer keys, can contain all valid kwargs for :py:func:`multiple_scatterplots()`
with the integer key denoting to which subplot the changes are applied
:param axes_kwargs: dict with integer keys, additional arguments to pass on to `subplot2grid` for the creation
of each axis (e.g colspan, rowspan)
Other Kwargs will be passed on to all :py:func:`multiple_scatterplots()` calls
(If they are not overwritten by parameters in `subplot_params`).
"""
#convert parameters to list of parameters for subplots
subplot_params = kwargs.pop('subplot_params', {})
axes_kwargs = kwargs.pop('axes_kwargs', {})
param_list = [None] * len(axes_loc)
for indx, val in enumerate(param_list):
if indx in subplot_params:
param_list[indx] = subplot_params[indx]
else:
param_list[indx] = {}
if indx in axes_kwargs:
param_list[indx]['axes_kwargs'] = axes_kwargs[indx]
if not isinstance(xlabel, list):
param_list[indx]['xlabel'] = xlabel
else:
param_list[indx]['xlabel'] = xlabel[indx]
if not isinstance(ylabel, list):
param_list[indx]['ylabel'] = ylabel
else:
param_list[indx]['ylabel'] = ylabel[indx]
if not isinstance(title, list):
param_list[indx]['title'] = title
else:
param_list[indx]['title'] = title[indx]
general_keys = {'figure_kwargs', 'show', 'save_plots'}
general_info = {key: val for key, val in kwargs.items() if key in general_keys}
kwargs = {key: val for key, val in kwargs.items() if key not in general_keys}
plot_params.set_parameters(**general_info)
#figsize is automatically scaled with the shape of the plot
plot_shape = (num_cols, num_rows)
plot_params['figure_kwargs'] = {
'figsize': ([plot_shape[indx] * size for indx, size in enumerate(plot_params['figure_kwargs']['figsize'])])
}
plot_shape = tuple(reversed(plot_shape))
fig = plt.figure(**plot_params['figure_kwargs'])
axis = []
for indx, subplot_data in enumerate(zip(axes_loc, xdata, ydata, param_list)):
location, x, y, params = subplot_data
subplot_kwargs = copy.deepcopy(kwargs)
subplot_kwargs.update(params)
ax = plt.subplot2grid(plot_shape, location, fig=fig, **subplot_kwargs.pop('axes_kwargs', {}))
with NestedPlotParameters(plot_params):
ax = multiple_scatterplots(x, y, axis=ax, **subplot_kwargs, save_plots=False, show=False)
axis.append(ax)
plot_params.save_plot(saveas)
return axis | 22d9aa3b0de496c498535b2b4bf663be429b8f48 | 20,649 |
import torch
def log1p_mse_loss(estimate: torch.Tensor, target: torch.Tensor,
reduce: str = 'sum'):
"""
Computes the log1p-mse loss between `x` and `y` as defined in [1], eq. 4.
The `reduction` only affects the speaker dimension; the time dimension is
always reduced by a mean operation as in [1]. It has the advantage of not
going to negative infinity in case of perfect reconstruction while keeping
the logarithmic nature.
The log1p-mse loss is defined as [1]:
.. math::
L^{\\text{T-L1PMSE}} = \\log_10 (1 + \sum_t |x(t) - y(t)|^2)
Args:
estimate (... x T): The estimated signal
target (... x T, same as estimate): The target signal
reduce:
Returns:
The log1p-mse error between `estimate` and `target`
References:
[1] Thilo von Neumann, Christoph Boeddeker, Lukas Drude, Keisuke
Kinoshita, Marc Delcroix, Tomohiro Nakatani, and Reinhold
Haeb-Umbach. „Multi-talker ASR for an unknown number of sources:
Joint training of source counting, separation and ASR“.
http://arxiv.org/abs/2006.02786.
"""
# Use the PyTorch implementation for MSE, should be the fastest
return _reduce(
torch.log10(
1 + F.mse_loss(estimate, target, reduce='none').mean(dim=-1)),
reduce=reduce
) | 7c67a67dcf6f6d14bb712d5a92b54ea979f7a73c | 20,650 |
def quaternion_inverse(quaternion: np.ndarray) -> np.ndarray:
"""Return inverse of quaternion."""
return quaternion_conjugate(quaternion) / np.dot(quaternion, quaternion) | b71c5b544199b02a76362bc42db900b157ea80ec | 20,651 |
def _make_indexable(iterable):
"""Ensure iterable supports indexing or convert to an indexable variant.
Convert sparse matrices to csr and other non-indexable iterable to arrays.
Let `None` and indexable objects (e.g. pandas dataframes) pass unchanged.
Parameters
----------
iterable : {list, dataframe, array, sparse} or None
Object to be converted to an indexable iterable.
"""
if issparse(iterable):
return mt.tensor(iterable)
elif hasattr(iterable, "iloc"):
if iterable.ndim == 1:
return md.Series(iterable)
else:
return md.DataFrame(iterable)
elif hasattr(iterable, "__getitem__"):
return mt.tensor(iterable)
elif iterable is None:
return iterable
return mt.tensor(iterable) | 29d067826e0a863b06b1fb0295b12d57ecaea00d | 20,652 |
def batchnorm_forward(x, gamma, beta, bn_param):
"""
Forward pass for batch normalization.
During training the sample mean and (uncorrected) sample variance are
computed from minibatch statistics and used to normalize the incoming data.
During training we also keep an exponentially decaying running mean of the mean
and variance of each feature, and these averages are used to normalize data
at test-time.
At each timestep we update the running averages for mean and variance using
an exponential decay based on the momentum parameter:
running_mean = momentum * running_mean + (1 - momentum) * sample_mean
running_var = momentum * running_var + (1 - momentum) * sample_var
Note that the batch normalization paper suggests a different test-time
behavior: they compute sample mean and variance for each feature using a
large number of training images rather than using a running average. For
this implementation we have chosen to use running averages instead since
they do not require an additional estimation step; the torch7 implementation
of batch normalization also uses running averages.
Input:
- x: Data of shape (N, D)
- gamma: Scale parameter of shape (D,)
- beta: Shift paremeter of shape (D,)
- bn_param: Dictionary with the following keys:
- mode: 'train' or 'test'; required
- eps: Constant for numeric stability
- momentum: Constant for running mean / variance.
- running_mean: Array of shape (D,) giving running mean of features
- running_var Array of shape (D,) giving running variance of features
Returns a tuple of:
- out: of shape (N, D)
- cache: A tuple of values needed in the backward pass
"""
mode = bn_param['mode']
eps = bn_param.get('eps', 1e-5)
momentum = bn_param.get('momentum', 0.9)
N, D = x.shape
running_mean = bn_param.get('running_mean', np.zeros(D, dtype=x.dtype))
running_var = bn_param.get('running_var', np.zeros(D, dtype=x.dtype))
out, cache = None, None
if mode == 'train':
# Forward pass
# Step 1 - shape of mu (D,)
mu = 1 / float(N) * np.sum(x, axis=0)
# Step 2 - shape of var (N,D)
xmu = x - mu
# Step 3 - shape of carre (N,D)
carre = xmu**2
# Step 4 - shape of var (D,)
var = 1 / float(N) * np.sum(carre, axis=0)
# Step 5 - Shape sqrtvar (D,)
sqrtvar = np.sqrt(var + eps)
# Step 6 - Shape invvar (D,)
invvar = 1. / sqrtvar
# Step 7 - Shape va2 (N,D)
va2 = xmu * invvar
# Step 8 - Shape va3 (N,D)
va3 = gamma * va2
# Step 9 - Shape out (N,D)
out = va3 + beta
running_mean = momentum * running_mean + (1.0 - momentum) * mu
running_var = momentum * running_var + (1.0 - momentum) * var
cache = (mu, xmu, carre, var, sqrtvar, invvar,
va2, va3, gamma, beta, x, bn_param)
elif mode == 'test':
mu = running_mean
var = running_var
xhat = (x - mu) / np.sqrt(var + eps)
out = gamma * xhat + beta
cache = (mu, var, gamma, beta, bn_param)
else:
raise ValueError('Invalid forward batchnorm mode "%s"' % mode)
# Store the updated running means back into bn_param
bn_param['running_mean'] = running_mean
bn_param['running_var'] = running_var
return out, cache | b36ea808c5865eb92a81464c3efe14ab9325d01e | 20,653 |
def chunking():
"""
transforms dataframe of full texts into a list of chunked texts of 2000 tokens each
"""
word_list = []
chunk_list = []
text_chunks = []
# comma separating every word in a book
for entry in range(len(df)):
word_list.append(df.text[entry].split())
# create a chunk of 2000 words
for entry in word_list:
chunk_list.append(list(divide_chunks(entry, 2000)))
# flatten chunk list from a nested list to a list
text_chunks = [item for l in chunk_list for item in l]
print("Texts have been divided into cunks of 2000 tokens each for easier preprocessing")
return(text_chunks) | 66e1976b3bd9e88420fab370f1eee9053986bd56 | 20,654 |
def generate_random_string():
"""Create a random string with 8 letters for users."""
letters = ascii_lowercase + digits
return ''.join(choice(letters) for i in range(8)) | 027a9d50e2ff5b80b7344d35e492ace7c65366e8 | 20,655 |
def contains_message(response, message):
"""
Inspired by django's self.assertRaisesMessage
Useful for confirming the response contains the provided message,
"""
if len(response.context['messages']) != 1:
return False
full_message = str(list(response.context['messages'])[0])
return message in full_message | 4afcdba84603b8b53095a52e769d0a8e3f7bbb17 | 20,656 |
def definition():
"""To be used by UI."""
sql = f"""
SELECT c.course_id,
c.curriculum_id,
cs.course_session_id,
description + ' year ' +CAST(session as varchar(2)) as description,
CASE WHEN conf.course_id IS NULL THEN 0 ELSE 1 END as linked,
0 as changed
FROM ({select_all_and_default(Course)}) as c
LEFT JOIN c_course_session cs ON cs.curriculum_id = c.curriculum_id
LEFT JOIN c_course_config conf ON conf.course_id = c.course_id
AND conf.course_session_id = cs.course_session_id"""
return sql | ac67783943604e0e83bd4ccfc2b704737e427edd | 20,657 |
def exec_psql_cmd(command, host, port, db="template1", tuples_only=True):
"""
Sets up execution environment and runs the HAWQ queries
"""
src_cmd = "export PGPORT={0} && source {1}".format(port, hawq_constants.hawq_greenplum_path_file)
if tuples_only:
cmd = src_cmd + " && psql -d {0} -c \\\\\\\"{1};\\\\\\\"".format(db, command)
else:
cmd = src_cmd + " && psql -t -d {0} -c \\\\\\\"{1};\\\\\\\"".format(db, command)
retcode, out, err = exec_ssh_cmd(host, cmd)
if retcode:
Logger.error("SQL command executed failed: {0}\nReturncode: {1}\nStdout: {2}\nStderr: {3}".format(cmd, retcode, out, err))
raise Fail("SQL command executed failed.")
Logger.info("Output:\n{0}".format(out))
return retcode, out, err | 453f0c2ef0dfdf2a5d03b22d4a6fbd03282dd72a | 20,658 |
def carla_cityscapes_image_to_ndarray(image: carla.Image) -> np.ndarray: # pylint: disable=no-member
"""Returns a `NumPy` array from a `CARLA` semantic segmentation image.
Args:
image: The `CARLA` semantic segmented image.
Returns:
A `NumPy` array representation of the image.
"""
image.convert(carla.ColorConverter.CityScapesPalette) # pylint: disable=no-member
array = np.frombuffer(image.raw_data, dtype=np.dtype("uint8"))
array = array.astype(np.float32) / 255
array = np.reshape(array, (image.height, image.width, 4))
array = array[:, :, :3]
array = array[:, :, ::-1]
return array | f191d3f9700b281178f395726d649e90dfc57bb7 | 20,659 |
import re
def since(version):
"""A decorator that annotates a function to append the version
of skutil the function was added. This decorator is an adaptation of PySpark's.
Parameters
----------
version : str, float or int
The version the specified method was added to skutil.
Examples
--------
>>> @since('0.1.5')
... def some_fun():
... '''Some docstring'''
... return None
...
>>>
>>> some_fun.__doc__ # doctest: +SKIP
'Some docstring\n\n.. versionadded:: 0.1.5'
.. versionadded:: 0.1.5
"""
indent_p = re.compile(r'\n( +)')
def deco(f):
indents = indent_p.findall(f.__doc__)
indent = ' ' * (min(len(m) for m in indents) if indents else 0)
f.__doc__ = f.__doc__.rstrip() + "\n\n%s.. versionadded:: %s" % (indent, version)
return f
return deco | e6b29b5e4c67ba4a213b183a0b79a1f16a85d81c | 20,660 |
def get_dMdU():
"""Compute dMdU"""
dMdC = form_nd_array("dMdC", [3,3,3,3,3])
dMdPsi = form_nd_array("dMdPsi", [3,3,3,3,3])
dMdGamma = form_nd_array("dMdGamma",[3,3,3,3,3,3])
dCdU = form_symb_dCdU()
dPsidU = form_symb_dPhidU()
dGammadU = form_symb_dGammadU()
dMdU = form_nd_array("dMdU",[3,3,3,8*12])
for I in range(3):
for J in range(3):
for K in range(3):
for L in range(8*12):
dMdU[I,J,K,L] = 0
for O in range(3):
for P in range(3):
dMdU[I,J,K,L] += dMdC[I,J,K,O,P]*dCdU[O,P,L] + dMdPsi[I,J,K,O,P]*dPsidU[O,P,L]
for Q in range(3):
dMdU[I,J,K,L] += dMdGamma[I,J,K,O,P,Q]*dGammadU[O,P,Q,L]
tmp = [get_matrix_form_TOT(dCdU)[:,:12], get_matrix_form_TOT(dPsidU)[:,:12],\
get_matrix_form_FOT(dGammadU)[:,:12], get_matrix_form_VOT(dMdC),\
get_matrix_form_VOT(dMdPsi), get_matrix_form_VIOT(dMdGamma)]
symb = ["dCdU","dPsidU","dGammadU","dMdC","dMdPsi","dMdGamma"]
[implementation_extract_matrix(t,s,"I","I") for t,s in zip(tmp,symb)]
implementation_print_matrix(get_matrix_form_FOT(dMdU)[:,:12],"dMdU","I","I")
return dMdU | 55d6dedc5311c8a2a30c44569508bd7687400cb5 | 20,661 |
def get_group_value_ctx_nb(sc_oc):
"""Get group value from context.
Accepts `vectorbt.portfolio.enums.SegmentContext` and `vectorbt.portfolio.enums.OrderContext`.
Best called once from `segment_prep_func_nb`.
To set the valuation price, change `last_val_price` of the context in-place.
!!! note
Cash sharing must be enabled."""
if not sc_oc.cash_sharing:
raise ValueError("Cash sharing must be enabled")
return get_group_value_nb(
sc_oc.from_col,
sc_oc.to_col,
sc_oc.last_cash[sc_oc.group],
sc_oc.last_shares,
sc_oc.last_val_price
) | 0646e7a26b36af42ee38196e0ee60e3684da2d16 | 20,662 |
import math
import torch
import scipy
def motion_blur_generate_kernel(radius, angle, sigma):
"""
Args:
radius
angle (float): Radians clockwise from the (x=1, y=0) vector. This
is how ImageMagick's -motion-blur filter accepts angles, as far
as I can tell.
>>> mb_1_0_inf_expected = torch.ones(3) / 3
>>> mb_1_0_inf = motion_blur_generate_kernel(1, 0, np.inf)[0]
>>> assert torch.all(torch.isclose(mb_1_0_inf[0], mb_1_0_inf_expected))
>>> g_3_1 = torch.from_numpy(scipy.signal.gaussian(5, 1)[2:]).float()
>>> g_3_1 /= g_3_1.sum()
>>> mb_1_0_1 = motion_blur_generate_kernel(1, 0, 1)[0]
>>> assert torch.all(mb_1_0_1[0] == g_3_1), (mb_1_0_1[0], g_3_1)
>>> assert torch.all(mb_1_0_1[1] == 0)
>>> assert torch.all(mb_1_0_1[2] == 0)
"""
# Make angles be counterclockwise from (x=1, y=0) vector to maintain sanity.
angle = 2 * np.pi - angle
# Make all angles lie in [0, 2*pi]
if angle < 0:
angle += math.ceil(angle / (2 * np.pi)) * 2*np.pi
if angle > 2 * np.pi:
angle = angle % (2 * np.pi)
size = 2 * radius + 1
kernel = torch.zeros((size, size))
# Gaussian centered at 0th element.
kernel_1d = scipy.signal.gaussian(size * 2 - 1, sigma)[size-1:]
direction_up = 0 <= angle <= np.pi
direction_right = (angle < np.pi / 2) or (angle > 3 / 2 * np.pi)
cy = size - 1 if direction_up else 0
cx = 0 if direction_right else size - 1
# dy is relative to matrix coordinates, so, e.g., angle of np.pi/4 should
# be a line going up => dy should be negative.
dx, dy = np.cos(angle).item(), -np.sin(angle).item()
for i in range(size):
# *o*ffset_*x*, *o*ffset_*y*
ox, oy = dx * i, dy * i
x = min(cx + round(ox), size)
y = min(cy + round(oy), size)
assert x >= 0, f'x={x} should be >= 0!'
assert y >= 0, f'y={y} should be >= 0!'
kernel[y, x] = kernel_1d[i]
kernel /= kernel.sum()
return kernel, cy, cx | ff4e939d2ffbc91b6ef6af2ca11aceb1d32df594 | 20,663 |
def substitute_crypto_to_req(req):
"""Replace crypto requirements if customized."""
crypto_backend = get_crypto_req()
if crypto_backend is None:
return req
def is_not_crypto(r):
CRYPTO_LIBS = PYCRYPTO_DIST, "cryptography"
return not any(r.lower().startswith(c) for c in CRYPTO_LIBS)
return [r for r in req if is_not_crypto(r)] + [crypto_backend] | 0e1836120f52981c3ff126038c0c74b9da94aa7f | 20,664 |
def remove_att(doc_id, doc_rev, att_id, **kwargs):
"""Delete an attachment.
http://docs.couchdb.org/en/stable/api/document/attachments.html#delete--db-docid-attname
:param str doc_id: The attachment document.
:param str doc_rev: The document revision.
:param str att_id: The attachment to remove.
:param kwargs: (optional) Arguments that :meth:`requests.Session.request` takes.
:rtype: (str, str, dict)
"""
if ("params" not in kwargs) or (not isinstance(kwargs["params"], dict)):
kwargs["params"] = {}
path = urljoin(utils.encode_document_id(doc_id), utils.encode_attachment_id(att_id))
kwargs["params"]["rev"] = doc_rev
return "DELETE", path, kwargs | 2b9361468baf4dc2e358b2fa2f4c43403556cd40 | 20,665 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.