content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
import random def new_match(request, cmd_args): """ Return a slack message with a link to a new match """ # Could potentially add arguments to allow game configuration here serializer = LiveMatchSerializer(data={"config": cmd_args}) if serializer.is_valid(): live_match = serializer.save() return { "response_type": "in_channel", "text": request.build_absolute_uri( "/matches/live/{}".format(live_match.id) ), "attachments": [{"text": random.choice(NEW_MATCH_MESSAGES)}], } else: error_str = "\n".join( f" {field}: {', '.join(errors)}" for field, errors in serializer.errors["config"].items() ) return {"response_type": "in_channel", "text": f"Error:\n{error_str}"}
fe5a1f57a23188eaf000c32623eb5ce4386e4dc0
20,902
def head(feats, anchors, num_classes): """Convert final layer features to bounding box parameters. Parameters ---------- feats : tensor Final convolutional layer features. anchors : array-like Anchor box widths and heights. num_classes : int Number of target classes. Returns ------- box_xy : tensor x, y box predictions adjusted by spatial location in conv layer. box_wh : tensor w, h box predictions adjusted by anchors and conv spatial resolution. box_conf : tensor Probability estimate for whether each box contains any object. box_class_pred : tensor Probability distribution estimate for each box over class labels. """ num_anchors = len(anchors) # Reshape to batch, height, width, num_anchors, box_params. anchors_tensor = tf.reshape( tf.Variable(anchors, dtype=tf.float32, name='anchors'), [1, 1, 1, num_anchors, 2]) # Dynamic implementation of conv dims for fully convolutional model. conv_dims = tf.shape(feats)[1:3] # assuming channels last # In YOLO the height index is the inner most iteration. conv_height_index = tf.range(0, conv_dims[0]) conv_width_index = tf.range(0, conv_dims[1]) conv_height_index = tf.tile(conv_height_index, [conv_dims[1]]) conv_width_index = tf.tile(tf.expand_dims(conv_width_index, 0), [conv_dims[0], 1]) conv_width_index = tf.reshape(tf.transpose(conv_width_index), [-1]) conv_index = tf.transpose(tf.stack([conv_height_index, conv_width_index])) conv_index = tf.reshape(conv_index, [1, conv_dims[0], conv_dims[1], 1, 2]) conv_index = tf.cast(conv_index, feats.dtype) feats = tf.reshape( feats, [-1, conv_dims[0], conv_dims[1], num_anchors, num_classes + 5]) conv_dims = tf.cast(tf.reshape(conv_dims, [1, 1, 1, 1, 2]), feats.dtype) box_xy = tf.nn.sigmoid(feats[..., :2]) box_wh = tf.exp(feats[..., 2:4]) box_confidence = tf.sigmoid(feats[..., 4:5]) box_class_probs = tf.nn.softmax(feats[..., 5:]) # Adjust preditions to each spatial grid point and anchor size. # Note: YOLO iterates over height index before width index. box_xy = (box_xy + conv_index) / conv_dims box_wh = box_wh * anchors_tensor / conv_dims return box_xy, box_wh, box_confidence, box_class_probs
d05f47f199d500bb8938396ef9052abfe6815a1f
20,903
def socfaker_azurevmtopology_get(): """ None """ if validate_request(request): return jsonify(str(socfaker.products.azure.vm.topology))
c4041c2cb3d124b1ed3a2b124292b669caba3595
20,904
import json def read_json_file(filename): """Load json object from a file.""" with open(filename, 'r') as f: content = json.load(f) return content
b575891ac4b5a5484c9dcf7966e63a7cd9ca748c
20,905
import copy def createVectorisedTargValObjFunction(functTypeStr:str, averageMethod="mean",catchOverflow=True, errorRetVal=1e30, normToErrorRetVal=False, greaterThanIsOk=False, lessThanIsOk=False, useAbsVals=False, divideErrorsByNormFactor=None): """ Creates a comparison function that operators on (iterA,iterB) and returns a single value representing their similarity Args: functTypeStr(str): Key for selecting a base function for comparing two single numbers. e.g. "absdev" means a function returning the absolute difference. All possible values can be found in OBJ_FUNCT_DICT. The function this gives has interface cmpFunct(expVal,actVal)->objVal averageMethod(str): Determines how we convert an array of errors (obtained by applying functTypeStr function to all pairs of values) to a single error value catchOverflow(bool): If True we catch overflow errors when comparing numbers, we replace the (overflowed) error value with errorRetVal errorRetVal(float): see catchOverflow normToErrorRetVal(bool): If True we ensure that all output values are between - and 1. We do this by divinding values by errorRetVal, and still setting the answer to 1 even if they go above that value greaterThanIsOk(bool): If True then the cmpFunct(expVal,actVal) returns 0 if expVal>=actVal, regardless on the actual type of cmpFunct(which is determined by functTypeStr) lessThanIsOk(bool): If True then the cmpFunct(expVal, actVal) returns 0 if expVal<=actVal, regardless on the actual type of cmpFunct(which is determined by functTypeStr) useAbsVals(bool): If True then the cmpFunct(expVal,actVal) will use abs(expVal) and abs(actVal) as inputs. Useful if you only care about the magnitude of your errors. Note: This is applied BEFORE less than/greater than functionality; so if mixed the <,> operators are appleid to abs(expVal) and abs(actVal) divideErrorsByNormFactor(float): If not None, then we divide the output error by this value. The original purpose is to get a normalised error based on target values; this is accomplished by setting this arg to the average expVal, and using the absdev cmp function. Returns outFunct(targIter,actIter)->error: Single function that works on two input iterators. Order of targIter and actIter probably wont matter. """ baseFunct = createSimpleTargValObjFunction(functTypeStr, catchOverflow=False, greaterThanIsOk=greaterThanIsOk, lessThanIsOk=lessThanIsOk, useAbsVals=useAbsVals) def vectorizedFunct(targVals,actVals): outVals = list() tVals, aVals = copy.deepcopy(targVals), copy.deepcopy(actVals) for t,a in it.zip_longest(tVals,aVals): outVals.append( baseFunct(t,a) ) return outVals outFunct = vectorizedFunct #Currently takes in lists, and returns a list if averageMethod.lower()=="mean": outFunct = applyMeanDecorator(outFunct) else: raise ValueError("{} is not a supported option for averageMethod".format(averageMethod)) if divideErrorsByNormFactor is not None: outFunct = applyDivByConstantDecorator(outFunct, divideErrorsByNormFactor) if catchOverflow: outFunct = catchOverflowDecorator(outFunct,errorRetVal) #Important this comes after catchOverflow, which essentially caps the value if normToErrorRetVal: outFunct = applyNormDecorator(outFunct, errorRetVal) return outFunct
1e9f0da8ce87c40f1dd461fd052a7c9de69ce86f
20,906
def get_nonoverlap_ra_dataset_conf(dataset_conf): """extract segments by shifting segment length""" if dataset_conf["if_rand"]: info("disabled dataset_conf if_rand") dataset_conf["if_rand"] = False if dataset_conf["seg_rand"]: info("disabled dataset_conf seg_rand") dataset_conf["seg_rand"] = False if dataset_conf["seg_shift"] != dataset_conf["seg_len"]: info("change seg_shift from %s to %s" % ( dataset_conf["seg_shift"], dataset_conf["seg_len"])) dataset_conf["seg_shift"] = dataset_conf["seg_len"] return dataset_conf
8aba162200d2f020e72a29d9d9c5676792ae0405
20,907
def _f_model_snaive_wday(a_x, a_date, params, is_mult=False, df_actuals=None): """Naive model - takes last valid weekly sample""" if df_actuals is None: raise ValueError('model_snaive_wday requires a df_actuals argument') # df_actuals_model - table with actuals samples, # adding y_out column with naive model values df_actuals_model = _fillna_wday(df_actuals.drop_duplicates('x')) # df_last_week - table with naive model values from last actuals week, # to use in extrapolation df_last_week = ( df_actuals_model # Fill null actual values with data from previous weeks .assign(y=df_actuals_model.y.fillna(df_actuals_model.y_out)) .drop_duplicates('wday', keep='last') [['wday', 'y']] .rename(columns=dict(y='y_out')) ) # Generate table with extrapolated samples df_out_tmp = pd.DataFrame({'date': a_date, 'x': a_x}) df_out_tmp['wday'] = df_out_tmp.date.dt.weekday df_out_extrapolated = ( df_out_tmp .loc[~df_out_tmp.date.isin(df_actuals_model.date)] .merge(df_last_week, how='left') .sort_values('x') ) # Filter actuals table - only samples in a_x, a_date df_out_actuals_filtered = ( # df_actuals_model.loc[df_actuals_model.x.isin(a_x)] # Using merge rather than simple filtering to account for # dates with multiple samples df_actuals_model.merge(df_out_tmp, how='inner') .sort_values('x') ) df_out = ( pd.concat( [df_out_actuals_filtered, df_out_extrapolated], sort=False, ignore_index=True) ) return df_out.y_out.values
f7668b6e73f1e985304198f1996f3374994e10cf
20,908
def union_exprs(La, Lb): """ Union two lists of Exprs. """ b_strs = set([node.unique_str() for node in Lb]) a_extra_nodes = [node for node in La if node.unique_str() not in b_strs] return a_extra_nodes + Lb
2bd634a22b27314f6d03c8e52c0b09f7f4b692db
20,910
def programs_reload(): """Reload programs from config file Parameters (default): - do_create (True) - do_update (True) - do_pause (False) """ try: result = dar.reload_programs(**request.args) except TypeError as e: log.info("Caught TypeError: %s" % (str(e))) return "Error: " + str(e), 400 return jsonify({i: list(j) for i, j in result.items()})
06beff9b2f67bb7978ddd31ff338accb90d259bf
20,911
import requests def generate_urls(): """Gathers clinical trials from clinicaltrials.gov for search term defined in build_url() function and downloads to specified file format. """ api_call = build_url(expr='Cancer', max_rnk=1, fmt='json') r = requests.get(api_call) data = r.json() n_studies = data['StudyFieldsResponse']['NStudiesFound'] print(f'{n_studies} studies found.\n') print('\nGenerating request urls...') urls = [] for i in range(1, n_studies, 1000): url = build_url(expr='Cancer', field_names=['EligibilityCriteria'], min_rnk=f'{i}', max_rnk=f'{i+999}', fmt='csv') urls.append(url) return urls
7de042ff2031d1b49e4fc02535f151d5e1dda913
20,912
def xyz2luv(xyz, illuminant="D65", observer="2"): """XYZ to CIE-Luv color space conversion. Parameters ---------- xyz : (M, N, [P,] 3) array_like The 3 or 4 dimensional image in XYZ format. Final dimension denotes channels. illuminant : {"A", "D50", "D55", "D65", "D75", "E"}, optional The name of the illuminant (the function is NOT case sensitive). observer : {"2", "10"}, optional The aperture angle of the observer. Returns ------- out : (M, N, [P,] 3) ndarray The image in CIE-Luv format. Same dimensions as input. Raises ------ ValueError If `xyz` is not a 3-D or 4-D array of shape ``(M, N, [P,] 3)``. ValueError If either the illuminant or the observer angle are not supported or unknown. Notes ----- By default XYZ conversion weights use observer=2A. Reference whitepoint for D65 Illuminant, with XYZ tristimulus values of ``(95.047, 100., 108.883)``. See function 'get_xyz_coords' for a list of supported illuminants. References ---------- .. [1] http://www.easyrgb.com/index.php?X=MATH&H=16#text16 .. [2] http://en.wikipedia.org/wiki/CIELUV Examples -------- >>> from skimage import data >>> from skimage.color import rgb2xyz, xyz2luv >>> img = data.astronaut() >>> img_xyz = rgb2xyz(img) >>> img_luv = xyz2luv(img_xyz) """ arr = _prepare_colorarray(xyz) # extract channels x, y, z = arr[..., 0], arr[..., 1], arr[..., 2] eps = np.finfo(np.float).eps # compute y_r and L xyz_ref_white = get_xyz_coords(illuminant, observer) L = y / xyz_ref_white[1] mask = L > 0.008856 L[mask] = 116. * np.power(L[mask], 1. / 3.) - 16. L[~mask] = 903.3 * L[~mask] u0 = 4 * xyz_ref_white[0] / np.dot([1, 15, 3], xyz_ref_white) v0 = 9 * xyz_ref_white[1] / np.dot([1, 15, 3], xyz_ref_white) # u' and v' helper functions def fu(X, Y, Z): return (4. * X) / (X + 15. * Y + 3. * Z + eps) def fv(X, Y, Z): return (9. * Y) / (X + 15. * Y + 3. * Z + eps) # compute u and v using helper functions u = 13. * L * (fu(x, y, z) - u0) v = 13. * L * (fv(x, y, z) - v0) return np.concatenate([q[..., np.newaxis] for q in [L, u, v]], axis=-1)
194f0e76c35257fb1d87fd58f507cc11da45eab4
20,913
def today(): """ Today Page: Displays all the notifications like the word of the day, news highlights or friends who added you or shared a note with you """ return render_template('main/today.html', username=session['username'])
ada12c04456967bba1e506ca0fe27d3efe252307
20,915
import re import itertools def compile_read_regex(read_tags, file_extension): """Generate regular expressions to disern direction in paired-end reads.""" read_regex = [re.compile(r'{}\.{}$'.format(x, y))\ for x, y in itertools.product(read_tags, [file_extension])] return read_regex
e677b8ff622eb31ea5f77bc662845ba0aef91770
20,916
def filter(start=None, stop=None, **kwargs): """ Get commands with ``start`` <= date < ``stop``. Additional ``key=val`` pairs can be supplied to further filter the results. Both ``key`` and ``val`` are case insensitive. In addition to the any of the command parameters such as TLMSID, MSID, SCS, STEP, or POS, the ``key`` can be: date : Exact date of command e.g. '2013:003:22:11:45.530' type : Command type e.g. COMMAND_SW, COMMAND_HW, ACISPKT, SIMTRANS Examples:: >>> from kadi import cmds >>> cs = cmds.filter('2012:001', '2012:030') >>> cs = cmds.filter('2012:001', '2012:030', type='simtrans') >>> cs = cmds.filter(type='acispkt', tlmsid='wsvidalldn') >>> cs = cmds.filter(msid='aflcrset') >>> print(cs.table) Parameters ---------- start : DateTime format (optional) Start time, defaults to beginning of available commands (2002:001) stop : DateTime format (optional) Stop time, defaults to end of available commands **kwargs : any key=val keyword argument pairs Returns ------- cmds : CmdList object (list of commands) """ cmds = _find(start, stop, **kwargs) return CmdList(cmds)
95471d3a69f7566b7e079e04e38fc21324425e90
20,917
def _get_energy_at_time(masses, pos, vel, time_idx): """ Internal function used to calculate kinetic energy and potential energy at a give time index using a vectorized direct sum approach. This function is necessary to facilitate the parallelization of the energy calculation across multiple CPU cores. :param masses: Array of masses. :param pos: Array of positions over time. :param vel: Array of velocities over time. :param time_idx: Time index at which the energy is to be calculated. :return: Tuple of kinetic energy and potential energy at the give time index. """ # kinetic energy kin_energy = 0.5 * np.sum(masses * np.sum(vel[:, :, time_idx] ** 2, axis=1)) # potential energy # extract x & y coordinates to a (N, 1) array x = pos[:, 0:1, time_idx] y = pos[:, 1:2, time_idx] # matrices that store pairwise body distances dx = x.T - x dy = y.T - y # calculate pairwise inverse norm of distances # mask operation to avoid divide by zero norm = np.sqrt(dx ** 2 + dy ** 2) inv = np.zeros_like(norm) # ensure that diagonal of inv will only contain zeros np.divide(1, norm, where=norm != 0, out=inv) # multiply matrix element ij with the masses of bodies i and j energy_per_body = np.transpose(inv * masses) * masses # sum energies pot_energy = -0.5 * energy_per_body.sum() return kin_energy, pot_energy
76c72be399cb31e949024123c635ee76e9f4ab3a
20,918
def get_root_url_for_date(date): """ Returns the root URL of the TMCDB web I/F for the given date. The argument date should be an ISO-8601 date string (YYYY-MM-DD). The returned URL already contains the date. """ year = date[:4] mm = date[5:7] hostname = get_host_name() return "%s/index.php?dir=%s/%s/%s/" % (hostname, year, mm, date)
32a223d672e4878dfb4766ac9fc86a581826701b
20,919
def dummy_annotation_txt_one_segment(tmpdir_factory): """Create empty TXT annotations.""" content = ("# MNE-Annotations\n" "# onset, duration, description\n" "3.14, 42, AA") fname = tmpdir_factory.mktemp('data').join('one-annotations.txt') fname.write(content) return fname
4e127391b3f43fe8db7cceca54c5001697483fc9
20,920
def article_title_meets_posting_requirements(website, article_title): """ Validates that the article title meets all requirements to post the list to Reddit. The validations below check if: (1) The article contains a number (2) The article title doesn't contain certain pre-defined keywords (3) The article title is in english (BuzzFeed only) Returns True if all validations are met. Returns False otherwise. """ if website == ArticleType.BuzzFeed: try: if not detect(article_title) == 'en': return False except lang_detect_exception.LangDetectException: return False if get_article_list_count(article_title) == 0: return False if any(words in article_title.lower() for words in get_title_exclusion_words(website)): return False return True
c1a36592eff9144ab2dc9703cfdf669294dac229
20,921
import json import csv def about(): """ returns about page """ counter = json.load(open(r'filter/OXAs_dict/counter.txt')) ids = [*counter] r = csv.reader(open(r'Training_data/Training_data_IC.csv')) df = pd.DataFrame(data=list(r)) svm_table = df.to_html(index=False, header=False) return render_template('About.html', svm_table=svm_table, oxa_ids=ids)
5565fdd2616df38e223fa4e3dbc6d8963fcf285d
20,922
from typing import List def phys_mem_regions_from_elf(elf: ElfFile, alignment: int) -> List[MemoryRegion]: """Determine the physical memory regions for an ELF file with a given alignment. The returned region shall be extended (if necessary) so that the start and end are congruent with the specified alignment (usually a page size). """ assert alignment > 0 return [ MemoryRegion( round_down(segment.phys_addr, alignment), round_up(segment.phys_addr + len(segment.data), alignment) ) for segment in elf.segments ]
611b5b5d89c999ee5136f98bf5555d9c71e14048
20,923
def force_float_to_int_in_any_way(x): """This force a float to be converted to an int. Any float is fine. The result is truncated. Like PHP, if the input float is greater than 2**63, then the result is 0, even if intmask(int(f)) would return some bits.""" # magic values coming from pypy.rlib.rarithmetic.ovfcheck_float_to_int # on 64-bit. if isnan(x): return -maxint - 1 if -9223372036854776832.0 <= x < 9223372036854775296.0: x = r_longlong(x) return intmask(x) return 0
7ad932c213f4c4c3f4195383d87268ba803cc533
20,924
from typing import Union def where(condition : pdarray, A : Union[Union[int,float], pdarray], B : Union[Union[int,float], pdarray]) -> pdarray: """ Returns an array with elements chosen from A and B based upon a conditioning array. As is the case with numpy.where, the return array consists of values from the first array (A) where the conditioning array elements are True and from the second array (B) where the conditioning array elements are False. Parameters ---------- condition : pdarray Used to choose values from A or B A : scalar or pdarray Value(s) used when condition is True B : scalar or pdarray Value(s) used when condition is False Returns ------- pdarray Values chosen from A where the condition is True and B where the condition is False Raises ------ TypeError Raised if the condition object is not a pdarray, if pdarray dtypes are not supported or do not match, or if multiple condition clauses (see Notes section) are applied ValueError Raised if the shapes of the condition, A, and B pdarrays are unequal Examples -------- >>> a1 = ak.arange(1,10) >>> a2 = ak.ones(9, dtype=np.int64) >>> cond = a1 < 5 >>> ak.where(cond,a1,a2) array([1, 2, 3, 4, 1, 1, 1, 1, 1]) >>> a1 = ak.arange(1,10) >>> a2 = ak.ones(9, dtype=np.int64) >>> cond = a1 == 5 >>> ak.where(cond,a1,a2) array([1, 1, 1, 1, 5, 1, 1, 1, 1]) >>> a1 = ak.arange(1,10) >>> a2 = 10 >>> cond = a1 < 5 >>> ak.where(cond,a1,a2) array([1, 2, 3, 4, 10, 10, 10, 10, 10]) Notes ----- A and B must have the same dtype and only one conditional clause is supported e.g., n < 5, n > 1, which is supported in numpy is not currently supported in Arkouda """ if isinstance(A, pdarray) and isinstance(B, pdarray): repMsg = generic_msg("efunc3vv {} {} {} {}".\ format("where", condition.name, A.name, B.name)) # For scalars, try to convert it to the array's dtype elif isinstance(A, pdarray) and np.isscalar(B): repMsg = generic_msg("efunc3vs {} {} {} {} {}".\ format("where", condition.name, A.name, A.dtype.name, A.format_other(B))) elif isinstance(B, pdarray) and np.isscalar(A): repMsg = generic_msg("efunc3sv {} {} {} {} {}".\ format("where", condition.name, B.dtype.name, B.format_other(A), B.name)) elif np.isscalar(A) and np.isscalar(B): # Scalars must share a common dtype (or be cast) dtA = resolve_scalar_dtype(A) dtB = resolve_scalar_dtype(B) # Make sure at least one of the dtypes is supported if not (dtA in DTypes or dtB in DTypes): raise TypeError(("Not implemented for scalar types {} " + "and {}").format(dtA, dtB)) # If the dtypes are the same, do not cast if dtA == dtB: # type: ignore dt = dtA # If the dtypes are different, try casting one direction then the other elif dtB in DTypes and np.can_cast(A, dtB): A = np.dtype(dtB).type(A) dt = dtB elif dtA in DTypes and np.can_cast(B, dtA): B = np.dtype(dtA).type(B) dt = dtA # Cannot safely cast else: raise TypeError(("Cannot cast between scalars {} and {} to " + "supported dtype").format(A, B)) repMsg = generic_msg("efunc3ss {} {} {} {} {} {}".\ format("where", condition.name, dt, A, dt, B)) return create_pdarray(type_cast(str,repMsg))
26f42d3e45d81108b5fa2cdeed018f509432854e
20,925
def pre_training_configs(m): """ Before training the model, configure it """ ordering = range(m.n_visible) np.random.shuffle(ordering) trainer = Optimization.MomentumSGD(m.nade, m.nade.__getattribute__(m.loss_function)) trainer.set_datasets([m.training_dataset, m.masks_dataset]) trainer.set_learning_rate(m.options.lr) trainer.set_datapoints_as_columns(True) trainer.add_controller(TrainingController.AdaptiveLearningRate( m.options.lr, 0, epochs=m.options.epochs)) trainer.add_controller(TrainingController.MaxIterations(m.options.epochs)) if m.options.training_ll_stop < np.inf: # Assumes that we're doing minimization so negative ll trainer.add_controller( TrainingController.TrainingErrorStop(-m.options.training_ll_stop)) trainer.add_controller(TrainingController.ConfigurationSchedule( "momentum", [(2, 0), (float('inf'), m.options.momentum)])) trainer.set_updates_per_epoch(m.options.epoch_size) trainer.set_minibatch_size(m.options.batch_size) # trainer.set_weight_decay_rate(options.wd) trainer.add_controller(TrainingController.NaNBreaker()) # Instrument the training trainer.add_instrumentation(Instrumentation.Instrumentation( [m.console, m.textfile_log, m.hdf5_backend], Instrumentation.Function("training_loss", lambda ins: ins.get_training_loss()))) if not m.options.no_validation: trainer.add_instrumentation(Instrumentation.Instrumentation([m.console], m.validation_loss_measurement)) trainer.add_instrumentation(Instrumentation.Instrumentation([m.hdf5_backend], m.validation_loss_measurement, at_lowest=[Instrumentation.Parameters()])) trainer.add_instrumentation(Instrumentation.Instrumentation( [m.console, m.textfile_log, m.hdf5_backend], Instrumentation.Configuration())) # trainer.add_instrumentation(Instrumentation.Instrumentation([hdf5_backend], Instrumentation.Parameters(), every = 10)) trainer.add_instrumentation(Instrumentation.Instrumentation( [m.console, m.textfile_log, m.hdf5_backend], Instrumentation.Timestamp())) return trainer
9e726f8b9b136d0ee8f8015b533111f30e6447ce
20,926
import torch def loadClusterModule(pathCheckpoint): """ Load CPC Clustering Module from Clustering checkpoint file. """ state_dict = torch.load(pathCheckpoint, map_location=torch.device('cpu')) clusterModule = kMeanCluster(torch.zeros(1, state_dict["n_clusters"], state_dict["dim"])) clusterModule.load_state_dict(state_dict["state_dict"]) return clusterModule
e6e950c651e890a60b356b97266f3198f7e0a07d
20,928
import base64 def bash_inline_create_file(name, contents): """ Turns a file into bash command. Parameters ---------- name : str File name. contents : bytes File contents. Returns ------- result : str The resulting command that creates this file. """ return f"echo {quote(base64.b64encode(contents).decode())} | base64 -d > {quote(name)}"
6ecabcb9a35dd760d762f3c4b7e1a15502ae5637
20,929
import html def rtf_encode(unicode_string): """ Converts HTML encoding and Unicode encoding to RTF. Be sure that autoescaping is off in the template. Autoescaping converts <, >, ", ', & The unescape function used here is helpful for catching additional escape sequences used for special characters, greek letters, symbols, and accents. :param unicode_string: :return: """ result = None if unicode_string: html_parser = html.parser.HTMLParser() # Create an HTML parser unicode_string = html.unescape(unicode_string) # Convert html encodings to unicode e.g. &eacute -> \ex9 rtf_bytestring = unicode_string.encode('rtfunicode') # Convert unicode to rtf e.g. \ex9 -> \u233? rtf_string = rtf_bytestring.decode('utf-8') rtf_string = replace_tags(rtf_string) # replaces common tags with rtf encodings result = rtf_string return result
bd9cc1b8b9d736c4746a381ae6ab547af30452af
20,930
def get_P(A): """ Markov matrix. P = D^{-1}*A """ D = get_D(A) return np.linalg.inv(D).dot(A)
bea5a3f10a5e6f6d592fd6df651ce09f5f4d4939
20,931
def get_movie_and_zmw_from_name(name): """Given a string of pacbio zmw name or read name, return movie and zmw""" try: fs = name.strip().split(' ')[0].split('/') movie, zmw = fs[0], fs[1] return movie, int(zmw) except ValueError: raise ValueError("Read %r is not a PacBio read." % name)
8dfb5e8d85b9e4a8a5ecfc0115416ce7c23bb6db
20,932
def create_sp_history_copy(sp): """ Create a history copy of SP, with end_at value and new pk return: created service provider object """ admins = sp.admins.all() admin_groups = sp.admin_groups.all() nameidformat = sp.nameidformat.all() grant_types = sp.grant_types.all() response_types = sp.response_types.all() oidc_scopes = sp.oidc_scopes.all() sp.history = sp.pk sp.pk = None sp.end_at = timezone.now() sp.save() sp.admins.set(admins) sp.admin_groups.set(admin_groups) sp.nameidformat.set(nameidformat) sp.grant_types.set(grant_types) sp.response_types.set(response_types) sp.oidc_scopes.set(oidc_scopes) return sp
0508a1763c46e7f57c34647af2d5b00c2dd0f9cf
20,933
def onehot(arr, num_classes=None, safe=True): """ Function to take in a 1D label array and returns the one hot encoded transformation. """ arr = exactly_1d(arr) if num_classes is None: num_classes = np.unique(arr).shape[0] if safe: if num_classes != np.unique(arr).shape[0]: raise Exception('Number of unique values does not match num_classes argument.') return np.squeeze(np.eye(num_classes)[arr.reshape(-1)])
ddeba80964712d85a8933c748fc973577a8fe4a5
20,934
def scale_relative_sea_level_rise_rate(mmyr: float, If: float = 1) -> float: """Scale a relative sea level rise rate to model time. This function scales any relative sea level rise rate (RSLR) (e.g., sea level rise, subsidence) to a rate appropriate for the model time. This is helpful, because most discussion of RSLR uses units of mm/yr, but the model (and model configuration) require units of m/s. Additionally, the model framework needs to assume an "intermittency factor" to convert from real-world time to model time. Relative sea level rise (subsidence and/or sea level rise) are scaled from real world dimensions of mm/yr to model input as: .. math:: \\widehat{RSLR} = (RSLR / 1000) \\cdot \\dfrac{1}{I_f \\cdot 365.25 \\cdot 86400} This conversion makes it such that when one real-world year has elapsed (:math:`I_f \\cdot 365.25 \\cdot 86400` seconds in model time), the relative sea level has changed by the number of millimeters specified in the input :obj:`mmyr`. .. note:: Users should use this function to determine the value to specify in an input YAML configuration file; no scaling is performed internally. Parameters ---------- mmyr : :obj:`float` Millimeters per year, relative sea level rise rate. If : :obj:`float`, optional Intermittency factor, fraction of time represented by morphodynamic activity. Should be in interval (0, 1). Defaults to 1 if not provided, i.e., no scaling is performed. Returns ------- scaled : :obj:`float` Scaled relative sea level rise rate, in meters per second. """ return (mmyr / 1000) * (1 / (shared_tools._scale_factor( If, units='years')))
2150f1e0e9aa5f7f7c0c4c5b1d876676b6556d08
20,935
def get_covalent1_radius(Z): """ Converts array of nuclear charges to array of corresponding valence. Args: Z (numpy ndarray): array with nuclear charges Returns: numpy ndarray: array of the same size as Z with the valence of the corresponding atom """ global _elements if _elements is None: _elements=_load_elements() V=np.array([0]+[line[6] for line in _elements]) ret=V[Z]/100. #angstrom conversion # assert (ret>0).all() return ret
c655a5253a088379abdf171383ea8a2dedd52aa7
20,936
from typing import List def get_bank_sizes(num_constraints: int, beam_size: int, candidate_counts: List[int]) -> List[int]: """ Evenly distributes the beam across the banks, where each bank is a portion of the beam devoted to hypotheses having met the same number of constraints, 0..num_constraints. After the assignment, banks with more slots than candidates are adjusted. :param num_constraints: The number of constraints. :param beam_size: The beam size. :param candidate_counts: The empirical counts of number of candidates in each bank. :return: A distribution over banks. """ num_banks = num_constraints + 1 bank_size = beam_size // num_banks remainder = beam_size - bank_size * num_banks # Distribute any remainder to the end assigned = [bank_size for x in range(num_banks)] assigned[-1] += remainder # Now, moving right to left, push extra allocation to earlier buckets. # This encodes a bias for higher buckets, but if no candidates are found, space # will be made in lower buckets. This may not be the best strategy, but it is important # that you start pushing from the bucket that is assigned the remainder, for cases where # num_constraints >= beam_size. for i in reversed(range(num_banks)): overfill = assigned[i] - candidate_counts[i] if overfill > 0: assigned[i] -= overfill assigned[(i - 1) % num_banks] += overfill return assigned
7a515b1e7762d01b7f7a1405a943f03babe26520
20,937
def ssh_connect(openstack_properties): """Create a connection to a server via SSH. Args: openstack_properties (dict): OpenStack facts and variables from Ansible which can be used to manipulate OpenStack objects. Returns: def: A factory function object. """ connections = [] # Track inventory of SSH connections for teardown. def _factory(hostname, username, retries=10, key_filename=None, auth_timeout=180): """Connect to a server via SSH. Note: this function uses an exponential back-off for retries which means the more retries specified the longer the wait between each retry. The total wait time is on the fibonacci sequence. (https://bit.ly/1ee23o9) Args: hostname (str): The server to connect to. username (str): The username to authenticate as. (defaults to the current local username) retries (int): The maximum number of validation retry attempts. key_filename (str): The filename, or list of filenames, of optional private key(s) and/or certs to try for authentication. (Default is to use the 'rpc_support' key. auth_timeout (float): An optional timeout (in seconds) to wait for an authentication response. Returns: paramiko.client.SSHClient: A client already connected to the target server. Raises: paramiko.BadHostKeyException: If the server’s host key could not be verified. paramiko.AuthenticationException: If authentication failed. paramiko.SSHException: If there was any other error connecting or establishing an SSH session. paramiko.ssh_exception.NoValidConnectionsError: Connection refused by host. (SSH service is probably not running or host is not fully booted) socket.error: If a socket error occurred while connecting. """ temp_connection = SSHClient() temp_connection.set_missing_host_key_policy(AutoAddPolicy()) for attempt in range(1, retries + 1): try: temp_connection.connect( hostname=hostname, username=username, key_filename=( key_filename or openstack_properties['private_key_path'] ), auth_timeout=auth_timeout ) except NoValidConnectionsError: if attempt != retries + 1: sleep(attempt) else: raise # Re-raise connections.append(temp_connection) return temp_connection yield _factory # Teardown for connection in connections: connection.close() HostKeys().clear()
03d05c78d8ed516f581f01b4c093b05bc1ddcc1c
20,938
def prepare(args: dict, overwriting: bool): """Load config and key file,create output directories and setup log files. Args: args (dict): argparser dictionary Returns: Path: output directory path """ output_dir = make_dir(args, "results_tmp", "activity_formatting", overwriting) mapping_table_dir = make_dir(args, "mapping_table", None, overwriting) create_log_files(output_dir) return output_dir, mapping_table_dir
0da7d1e98cd1a518fd8aa33b53204dce8de63fde
20,939
import ast def parse_data(data): """Takes a string from a repr(WSGIRequest) and transliterates it This is incredibly gross "parsing" code that takes the WSGIRequest string from an error email and turns it into something that vaguely resembles the original WSGIRequest so that we can send it through the system again. """ BEGIN = '<WSGIRequest' data = data.strip() data = data[data.find(BEGIN) + len(BEGIN):] if data.endswith('>'): data = data[:-1] container = {} key = '' for line in data.splitlines(): # Lines that start with 'wsgi.' have values which are # objects. E.g. a logger. This won't fly with ast.literal_eval # so we just ignore all the wsgi. meta stuff. if not line or line.startswith(' \'wsgi.'): continue if line.startswith(' '): # If it starts with a space, then it's a continuation of # the current dict. container[key] += line else: key, val = line.split(':', 1) container[key.strip()] = val.strip() QUERYDICT = '<QueryDict: ' for key, val in container.items(): val = val.strip(',') if val.startswith(QUERYDICT): # GET and POST are both QueryDicts, so we nix the # QueryDict part and pretend they're regular dicts. # # <QueryDict: {...}> -> {...} val = val[len(QUERYDICT):-1] elif val.startswith('{'): # Regular dict that might be missing a } because we # dropped it when we were weeding out wsgi. lines. # # {... -> {...} val = val.strip() if not val.endswith('}'): val = val + '}' else: # This needs to have the string ornamentation added so it # literal_evals into a string. val = 'u"' + val + '"' # Note: We use ast.literal_eval here so that we're guaranteed # only to be getting out strings, lists, tuples, dicts, # booleans or None and not executing arbitrary Python code. val = ast.literal_eval(val) container[key] = val return container
63470f1a935ef6218c239f99228eaf7919b9f09c
20,940
from typing import List def create_slack_context_block(elements: List[SlackBlock]) -> dict: """ Creates a "context block" as described in the slack documentation here: https://api.slack.com/reference/messaging/blocks#context """ return { 'type': 'context', 'elements': [element.get_formatted_block() for element in elements], }
c2d4400f910cdc6756ec94bcd14661d76bc3dfa1
20,941
def sample_bar_report(request): """ Demonstrates a basic horizontal bar chart report. """ profile = request.get_user_profile() if not profile.super_admin: raise PermissionDenied('Only super admins can view this report.') # Run your custom report logic to build the following lists: # categories = ['Tullys', 'Tyrell', 'Lannister', 'Stark', 'Baratheon'] # values = [85, 100, 250, 75, 42] categories = [] values = [] for group in Group.objects.all(): active_servers = group.server_set.exclude(status='HISTORICAL') if active_servers: categories.append(group.name) values.append(active_servers.count()) # This sample extension renders a generic template for bar charts, # which requires this view to return just a few context variables. # # You could also define your own template that extends one of the following # and adds customizations: # 'reports/bar.html' if you want a more customized pie chart # 'reports/simple_base.html' for more advanced customization, e.g. more # than one chart or table. # 'base.html' to start from scratch from the basic CloudBolt template return render(request, 'reports/bar.html', dict( pagetitle='Server Counts by Group (Bar)', subtitle='Excludes historical servers', report_slug='Server Counts by Group', intro=""" Sample report extension draws a bar chart. """, # Chart data categories=categories, values=values, series_name='Servers', # Optionally support exporting as CSV by including this dict export=dict( csv_headings=['Group', 'Active Servers'] ) ))
ae4fcf560ca3d1ebac149b6ae3a65ea8f7db2190
20,943
def _is_ref_path(path_elements): """ Determine whether the given object path, expressed as an element list (see _element_list_to_object_path()), ends with a reference and is therefore eligible for continuation through the reference. The given object path is assumed to be "completed" down to a single STIX property value. This means that a *_ref property will be the last component, and *_refs will be second-to-last, because it requires a subsequent index step. :param path_elements: An object path, as a list :return: True if a continuable reference path; False if not """ result = False if path_elements: last_elt = path_elements[-1] if isinstance(last_elt, str) and last_elt.endswith("_ref"): result = True elif len(path_elements) > 1: # for _refs properties, the ref property itself must be # second-to-last, and the last path element must be an index step, # either "*" or an int. Maybe not necessary to check the index # step; all we need is to check the second-to-last property. second_last_elt = path_elements[-2] if isinstance(second_last_elt, str) \ and second_last_elt.endswith("_refs"): result = True return result
da8bc8eb7611ce7b5361209873e871f2a4656a03
20,944
import numpy def apply_along_axis(func1d, axis, arr, *args, **kwargs): """Apply the harmonic analysis to 1-D slices along the given axis.""" arr = dask.array.core.asarray(arr) # Validate and normalize axis. arr.shape[axis] axis = len(arr.shape[:axis]) # Rechunk so that analyze is applied over the full axis. arr = arr.rechunk(arr.chunks[:axis] + (arr.shape[axis:axis + 1], ) + arr.chunks[axis + 1:]) # Test out some data with the function. test_data = numpy.ones(args[0].shape[1], dtype=arr.dtype) test_result = numpy.array(func1d(test_data, *args, **kwargs)) # Map analyze over the data to get the result # Adds other axes as needed. result = arr.map_blocks( _apply_along_axis, name=dask.utils.funcname(func1d) + '-along-axis', dtype=test_result.dtype, chunks=(arr.chunks[:axis] + test_result.shape + arr.chunks[axis + 1:]), drop_axis=axis, new_axis=list(range(axis, axis + test_result.ndim, 1)), func1d=func1d, func1d_axis=axis, func1d_args=args, func1d_kwargs=kwargs, ) return result
09e08b00c9df157e1cf3122f34413e2c4d8e3cb3
20,945
import pytz from datetime import datetime def current_time_utc(conf): """ Get time in UTC """ UTC = pytz.utc curr_time = datetime.now(UTC) return curr_time
e4d4a76cbf04ff059b6913d632d3e2636cfa2b17
20,946
def CORe50(root=expanduser("~") + "/.avalanche/data/core50/", scenario="nicv2_391", run=0, train_transform=None, eval_transform=None): """ Creates a CL scenario for CORe50. If the dataset is not present in the computer, this method will automatically download and store it. This generator can be used to obtain the NI, NC, NIC and NICv2-* scenarios. The scenario instance returned by this method will have two fields, `train_stream` and `test_stream`, which can be iterated to obtain training and test :class:`Experience`. Each Experience contains the `dataset` and the associated task label. The task label "0" will be assigned to each experience. The scenario API is quite simple and is uniform across all scenario generators. It is recommended to check the tutorial of the "benchmark" API, which contains usage examples ranging from "basic" to "advanced". :param root: Path indicating where to store the dataset and related metadata. By default they will be stored in "~/.avalanche/datasets/core50/data/". :param scenario: CORe50 main scenario. It can be chosen between 'ni', 'nc', 'nic', 'nicv2_79', 'nicv2_196' or 'nicv2_391.' :param run: number of run for the scenario. Each run defines a different ordering. Must be a number between 0 and 9. :param train_transform: The transformation to apply to the training data, e.g. a random crop, a normalization or a concatenation of different transformations (see torchvision.transform documentation for a comprehensive list of possible transformations). Defaults to None. :param eval_transform: The transformation to apply to the test data, e.g. a random crop, a normalization or a concatenation of different transformations (see torchvision.transform documentation for a comprehensive list of possible transformations). Defaults to None. :returns: a properly initialized :class:`GenericCLScenario` instance. """ assert (0 <= run <= 9), "Pre-defined run of CORe50 are only 10. Indicate " \ "a number between 0 and 9." assert (scenario in nbatch.keys()), "The selected scenario is note " \ "recognized: it should be 'ni', 'nc'," \ "'nic', 'nicv2_79', 'nicv2_196' or " \ "'nicv2_391'." if root is None: core_data = CORE50_DATA() else: core_data = CORE50_DATA(root) root = core_data.data_folder root_img = root + "core50_128x128/" filelists_bp = scen2dirs[scenario] + "run" + str(run) + "/" train_failists_paths = [] for i in range(nbatch[scenario]): train_failists_paths.append( root + filelists_bp + "train_batch_" + str(i).zfill(2) + "_filelist.txt") scenario_obj = create_generic_benchmark_from_filelists( root_img, train_failists_paths, [root + filelists_bp + "test_filelist.txt"], task_labels=[0 for _ in range(nbatch[scenario])], complete_test_set_only=True, train_transform=train_transform, eval_transform=eval_transform) return scenario_obj
16e1772d7b9d627fdec34657041570b7f4ccfe49
20,947
def merge(line): """ Function that merges a single row or column in 2048. """ res = [] for ele in line: res.append(ele) for num in res: if num == 0: res = shift(res,res.index(num)) for inde in range(len(res)-1): if res[inde] == res[inde+1]: res[inde] = res[inde] + res[inde+1] res[inde+1] = 0 for num in res: if num == 0: res = shift(res,res.index(num)) return res
55418ab717333060455c4f9f41eeafd10e0a9940
20,948
import PIL def image_to_bytes(image: "PIL.Image.Image") -> bytes: """Convert a PIL Image object to bytes using native compression if possible, otherwise use PNG compression.""" buffer = BytesIO() format = image.format if image.format in list_image_compression_formats() else "PNG" image.save(buffer, format=format) return buffer.getvalue()
aa05f41967dd02dbb544e6d503f555d491d6891e
20,949
def add_transform(transform_type, transform_tag=None, priority=0, status=TransformStatus.New, locking=TransformLocking.Idle, retries=0, expired_at=None, transform_metadata=None, workprogress_id=None, session=None): """ Add a transform. :param transform_type: Transform type. :param transform_tag: Transform tag. :param priority: priority. :param status: Transform status. :param locking: Transform locking. :param retries: The number of retries. :param expired_at: The datetime when it expires. :param transform_metadata: The metadata as json. :raises DuplicatedObject: If a transform with the same name exists. :raises DatabaseException: If there is a database error. :returns: transform id. """ transform_id = orm_transforms.add_transform(transform_type=transform_type, transform_tag=transform_tag, priority=priority, status=status, locking=locking, retries=retries, expired_at=expired_at, transform_metadata=transform_metadata, workprogress_id=workprogress_id, session=session) return transform_id
ec6bfe98cecf14b80be5c8c08b86c3ee196b4255
20,950
import joblib def load_memmap(path): """load_memmap方法用于读取共享数据 Parameters ---------- path : str 文件路径 Returns ---------- """ memmap_data = joblib.load(path, mmap_mode='r+') return memmap_data
f17120650ecc232be6f4fd8962c8a5a97dd59e1f
20,951
from typing import Tuple import enum from typing import Optional def _classical_routine_on_result( N: int, t: int, x: int, measurement ) -> Tuple[enum.Enum, Optional[Tuple[int, ...]]]: """Try to find factors, given x,N,t and the result of a single quantum measurement. :param N: number to factorise :param t: number of qubits :param x: random integer between 0 < x < N :param measurement: a single measurement of the first measurement after the quantum part of Shor's algorithm :return: Tuple of exit status and a tuple of any factors found """ try: continued_fraction_ints = classical.continued_fraction(measurement, 2 ** t) convergents_vals = classical._convergents(continued_fraction_ints) rs = classical.possible_orders(convergents_vals) r = classical.first_order(N, x, rs) factor = classical.find_factor_from_order(N, x, r) except util.ShorError as e: if e.fail_reason == util.ExitStatus.FAILED_FACTOR: return (util.ExitStatus.FAILED_FACTOR, e.failed_factors) return e.fail_reason, None return (util.ExitStatus.SUCCESS, factor)
c9a7c9fedfc95cffc766fee0814e43487bb374ad
20,952
def get_rst_cls_file_header(collection_name, class_name): """produce the rst content to begin an attribute-level *.rst file""" # use :doc:`class_name<index>` syntax to create reference back to the index.rst file title = ":doc:`%s<../index>` %s" % (collection_name.capitalize(), class_name) return get_rst_file_header(title)
e914ed9d18c2f248e928f2e6482eee6e0461cfd5
20,953
def is_leap(year): """ Simply returns true or false depending on if it's leap or not. """ return not year%400 or not (year%4 and year%100)
5cb40664b2e8aa9aea647a356b63708f00891a2c
20,954
def ForwardDynamics(thetalist, dthetalist, taulist, g, Ftip, Mlist, \ Glist, Slist): """Computes forward dynamics in the space frame for an open chain robot :param thetalist: A list of joint variables :param dthetalist: A list of joint rates :param taulist: An n-vector of joint forces/torques :param g: Gravity vector g :param Ftip: Spatial force applied by the end-effector expressed in frame {n+1} :param Mlist: List of link frames i relative to i-1 at the home position :param Glist: Spatial inertia matrices Gi of the links :param Slist: Screw axes Si of the joints in a space frame, in the format of a matrix with axes as the columns :return: The resulting joint accelerations This function computes ddthetalist by solving: Mlist(thetalist) * ddthetalist = taulist - c(thetalist, dthetalist) \ - g(thetalist) - Jtr(thetalist) * Ftip Example Input (3 Link Robot): thetalist = np.array([0.1, 0.1, 0.1]) dthetalist = np.array([0.1, 0.2, 0.3]) taulist = np.array([0.5, 0.6, 0.7]) g = np.array([0, 0, -9.8]) Ftip = np.array([1, 1, 1, 1, 1, 1]) M01 = np.array([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0.089159], [0, 0, 0, 1]]) M12 = np.array([[ 0, 0, 1, 0.28], [ 0, 1, 0, 0.13585], [-1, 0, 0, 0], [ 0, 0, 0, 1]]) M23 = np.array([[1, 0, 0, 0], [0, 1, 0, -0.1197], [0, 0, 1, 0.395], [0, 0, 0, 1]]) M34 = np.array([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0.14225], [0, 0, 0, 1]]) G1 = np.diag([0.010267, 0.010267, 0.00666, 3.7, 3.7, 3.7]) G2 = np.diag([0.22689, 0.22689, 0.0151074, 8.393, 8.393, 8.393]) G3 = np.diag([0.0494433, 0.0494433, 0.004095, 2.275, 2.275, 2.275]) Glist = np.array([G1, G2, G3]) Mlist = np.array([M01, M12, M23, M34]) Slist = np.array([[1, 0, 1, 0, 1, 0], [0, 1, 0, -0.089, 0, 0], [0, 1, 0, -0.089, 0, 0.425]]).T Output: np.array([-0.97392907, 25.58466784, -32.91499212]) """ return np.dot(np.linalg.inv(MassMatrix(thetalist, Mlist, Glist, \ Slist)), \ np.array(taulist) \ - VelQuadraticForces(thetalist, dthetalist, Mlist, \ Glist, Slist) \ - GravityForces(thetalist, g, Mlist, Glist, Slist) \ - EndEffectorForces(thetalist, Ftip, Mlist, Glist, \ Slist))
3b6e23e301db5c81ed6b19109c203f177d2a3f82
20,955
def union(dataframe1, dataframe2) -> pd.DataFrame: """The set union between dataframe1 (S) and dataframe2 (T), i.e. it returns the elements that are both in dataframe1 and dataframe2. Formally S ∩ T = {s|s ∈ S and s ∈ T}. If duplicates exists in either dataframe they are dropped and a UserWarning is issued. Does not alter the original DataFrame. Syntactic sugar for the pandas dataframe append method. Parameters ---------- dataframe1 : pd.DataFrame\n dataframe2 : pd.DataFrame\n Returns ------- pandas DataFrame\n The set difference between dataframe1 and dataframe2 Raises ------ ValueError\n Raises ValueError if the columns in datframe1 and dataframe2 are not identical. Example ------- ```python import panda as pd import neat_panda print(df1) country continent year actual 0 Sweden Europe 2018 1 1 Denmark Not known 2018 3 2 Iceleand Europe 2019 0 print(df2) country continent year actual 0 Sweden Europe 2020 1 1 Denmark Not known 2020 3 df3 = df1.union(df2) print(df3) country continent year actual 0 Sweden Europe 2018 1 1 Denmark Not known 2018 3 2 Iceleand Europe 2019 0 3 Sweden Europe 2020 1 4 Denmark Not known 2020 3 ``` """ return SetOperations(dataframe1, dataframe2).union()
8f0f9a86bcb75efdc31615f2e1a9e568c58af3ee
20,956
def get_axis_periodic(self, Nper, is_antiperiod=False): """Returns the vector 'axis' taking symmetries into account. Parameters ---------- self: Data1D a Data1D object Nper: int number of periods is_antiperiod: bool return values on a semi period (only for antiperiodic signals) Returns ------- New Data1D """ # Dynamic import to avoid loop module = __import__("SciDataTool.Classes.Data1D", fromlist=["Data1D"]) Data1D = getattr(module, "Data1D") values = self.values N = self.get_length() if N % Nper != 0: raise AxisError( "ERROR: length of axis is not divisible by the number of periods" ) values_per = values[: int(N / Nper)] if is_antiperiod: sym = "antiperiod" else: sym = "period" New_axis = Data1D( values=values_per, name=self.name, unit=self.unit, symmetries={sym: Nper}, normalizations=self.normalizations, is_components=self.is_components, symbol=self.symbol, ) return New_axis
aa9c9b14cbe27b2f3b64ca2a1c3fe606ba921686
20,957
def knapsack_fractional(weights,values,capacity): """ takes weights and values of items and capacity of knapsack as input and returns the maximum profit possible for the given capacity of knapsack using the fractional knapsack algorithm""" #initialisaing the value of max_profit variable max_profit=0 for pair in sorted(zip(weights,values),key=lambda x:-x[1]/x[0]): # sorting the pair of values in descending order #if weight of highest pair is greater than capacity, the amount is added in fractions if pair[0]>capacity: # while((pair[1]/(pair[0]/capacity))!=0) max_profit+=int(pair[1]/(pair[0]/capacity)) capacity=0 #if highest pair is lesser than capacity then the next pair is also added in fractions elif pair[0]<= capacity: max_profit+=pair[1] capacity-=pair[0] #returns nearest possible integer value of profit return int(max_profit)
8cb05c199baf65c24512fa97882085e7bb66a98d
20,958
def invert(values: np.array, inversion: int) -> np.array: """Return the specified musical inversion of the values.""" if np.abs(inversion) > (len(values) - 1): raise ValueError("Inversion out of range") return np.hstack([values[inversion:], values[:inversion]]).astype(int)
625d60633efdb44b99c93194f5bdc6dd159df9e7
20,959
from typing import Any def engine_factory(database_url: str) -> Engine: """Construct database connection pool.""" url = make_url(database_url) engine_kwargs: dict[str, Any] = {} if url.host == "localhost": engine_kwargs = { **engine_kwargs, "connect_args": {"connect_timeout": 1}, "echo": True, } return create_engine( database_url, future=True, poolclass=NullPool, executemany_mode="values", **engine_kwargs, )
e2eec7c7cfa20426708d02429aee565b070df760
20,961
import torch def _shear_x(video: torch.Tensor, factor: float, **kwargs): """ Shear the video along the horizontal axis. Args: video (torch.Tensor): Video tensor with shape (T, C, H, W). factor (float): How much to shear along the horizontal axis using the affine matrix. """ _check_fill_arg(kwargs) translation_offset = video.size(-2) * factor / 2 return F_t.affine( video, [1, factor, translation_offset, 0, 1, 0], fill=kwargs["fill"], interpolation="bilinear", )
e09d539bd8f8481bff3376f7b6dd5a21849fb6cd
20,962
from typing import Optional from typing import Sequence def get_smtp_credentials(filters: Optional[Sequence[pulumi.InputType['GetSmtpCredentialsFilterArgs']]] = None, user_id: Optional[str] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetSmtpCredentialsResult: """ This data source provides the list of Smtp Credentials in Oracle Cloud Infrastructure Identity service. Lists the SMTP credentials for the specified user. The returned object contains the credential's OCID, the SMTP user name but not the SMTP password. The SMTP password is returned only upon creation. ## Example Usage ```python import pulumi import pulumi_oci as oci test_smtp_credentials = oci.identity.get_smtp_credentials(user_id=oci_identity_user["test_user"]["id"]) ``` :param str user_id: The OCID of the user. """ __args__ = dict() __args__['filters'] = filters __args__['userId'] = user_id if opts is None: opts = pulumi.InvokeOptions() if opts.version is None: opts.version = _utilities.get_version() __ret__ = pulumi.runtime.invoke('oci:identity/getSmtpCredentials:getSmtpCredentials', __args__, opts=opts, typ=GetSmtpCredentialsResult).value return AwaitableGetSmtpCredentialsResult( filters=__ret__.filters, id=__ret__.id, smtp_credentials=__ret__.smtp_credentials, user_id=__ret__.user_id)
3ce0fbd2ce03d072d1b0903018901ef30f360b1f
20,963
def coord(row, col): """ returns coordinate values of specific cell within Sudoku Puzzle""" return row*9+col
14cda1489215a2b36d61ac6eac56c14981290b16
20,964
def post_authn_parse(request, client_id, endpoint_context, **kwargs): """ :param request: :param client_id: :param endpoint_context: :param kwargs: :return: """ if endpoint_context.args["pkce"]["essential"] is True: if not "code_challenge" in request: raise ValueError("Missing required code_challenge") if not "code_challenge_method" in request: if "plain" not in endpoint_context.args["pkce"]["code_challenge_method"]: raise ValueError("No support for code_challenge_method=plain") request["code_challenge_method"] = "plain" else: # May or may not if "code_challenge" in request: if not "code_challenge_method" in request: if ( "plain" not in endpoint_context.args["pkce"]["code_challenge_method"] ): raise ValueError("No support for code_challenge_method=plain") request["code_challenge_method"] = "plain" return request
6e9e00a5d073a57cf0245b2506abfd822b5f6ff5
20,965
import torch def token2hot(seq, max_length, n_features): """ takes in tokenized sequences and returns 1-hot encoded [1 2 2] -> [1 0 0 0], [0 1 0 0 ], [0 1 0 0] """ N = max_length - len(seq) x = np.pad(seq, (0, N), 'constant') x = F.one_hot(torch.tensor(x),num_classes=n_features) return x
8a662703448b4cf8f4e1fddc853436c9677cc664
20,967
import re def is_repo_on_known_branch(path): """Check if we're on the most recent commit in a well known branch, 'master' or a version branch.""" remote = find_upstream_remote(None, path) branches = execute_git( None, path, [ "for-each-ref", "--format=%(refname:short)", "--points-at", "HEAD", "refs/remotes/%s/*" % remote, "refs/tags/*", ], capture=True, ).split() return any( [re.search(r"([0-9]+\.[0-9]+\.[0-9x]+|master)$", branch) for branch in branches] )
34f96c625c4864d303be84ec6c78f1c3b45761a0
20,968
def make_key(ns_sep, namespace, *names): """Make a redis namespaced key. >>> make_key(":", "YOO:HOO", "a", "b", "c") == "YOO:HOO:a:b:c" True """ return ns_sep.join(chain((namespace,), names))
2b73b00819f888c31c4b21a7ba21536b98a9ab26
20,971
from typing import Counter def directly_follows(logs_traces, all_activs, noise_threshold=0): """ Gets the allowed directly-follows relations given the traces of the log Parameters ------------- logs_traces Traces of the log all_activs All the activities noise_threshold Noise threshold Returns -------------- rel List of relations in the log """ ret0 = Counter() for trace in logs_traces: rs = Counter(trace_skel.directly_follows(list(trace))) for k in rs: rs[k] = rs[k] * logs_traces[trace] ret0 += rs ret = set(x for x, y in ret0.items() if y >= all_activs[x[0]] * (1.0 - noise_threshold)) return ret
6b0922113f0774eb7ac074ce65fd29b81ecf946f
20,973
def hfc(x, framesize=1024, hopsize=512, fs=44100): """ Calculate HFC (High Frequency Content) Parameters: inData: ndarray input signal framesize: int framesize hopsize: int hopsize fs: int samplingrate Returns: result: ndarray HFC Notes: Spectral Centroidとの違いはスペクトログラムのエネルギーで正規化するか否か,のみ. """ S,F,T = stft(x, framesize, hopsize, fs, 'hann') S = sp.absolute(S) n_frames = S.shape[1] hfc_data = sp.zeros(n_frames) hfc_data = (F * S.T).T.sum(0) return hfc_data
dc28cfd8376b585bf26d85ceaf12777c0f81c471
20,975
from functools import reduce def acronym_buster(message): """ Find the first group of words that is in all caps check if it is in the ACRONYMS dict if it is, return the first occurrence of the acronym else return [acronym] is an acronym. I do not like acronyms. Please remove them from your email. :param message: The message to check :return: new string with the acronyms replaced with full words :rtype:str """ message = reduce(lambda msg, item: msg.replace(*item), ACRONYMS.items(), message) try: # find all matching groups with .finditer using next and get the first acronym that is not allows acronym = next(ACRONYM_PATTERN.finditer(message)).group(0) return "{} is an acronym. I do not like acronyms. Please remove them from your email.".format( acronym ) except StopIteration: return CAPITAL_PATTERN.sub(CAPITAL_FIX, message)
0867462af314be01d68e4764f2d4462f12ec1c1f
20,976
import logging def get_backup_temp_2(): """ This is the third way to get the temperature """ try: temp = RFM69.temperature logging.warning("Got second backup temperature") return temp except RuntimeError: logging.error("RFM69 not connected") return 2222 except Exception as error: logging.error(error) return 9999
cc22a21cf319d30330e32cb70ff54b9117be87b6
20,977
def constructed(function): """A decorator function for calling when a class is constructed.""" def store_constructed(class_reference): """Store the key map.""" setattr(class_reference, "__deserialize_constructed__", function) return class_reference return store_constructed
29101fe6deb1112b5e69291377a3d8ab12082268
20,978
def generate_functions( function, parameters, name, name_func, tag_dict, tag_func, docstring_func, summarize, num_passing, num_failing, key_combs_limit, execution_group, timeout, ): """ Generate test cases using the given parameter context, use the name_func to generate the name. If parameters is of type ``tuple`` / ``list`` then a new testcase method will be created for each item. If parameters is of type ``dict`` (of ``tuple``/``list``), then a new method will be created for each item in the Cartesian product of all combinations of values. :param function: A testcase method, with extra arguments for parametrization. :type function: ``callable`` :param parameters: Parametrization context for the test case method. :type parameters: ``list`` or ``tuple`` of ``dict`` or ``tuple`` / ``list`` OR a ``dict`` of ``tuple`` / ``list``. :param name: Customized readable name for testcase. :type name: ``str`` :param name_func: Function for generating names of parametrized testcases, should accept ``func_name`` and ``kwargs`` as parameters. :type name_func: ``callable`` :param docstring_func: Function that will generate docstring, should accept ``docstring`` and ``kwargs`` as parameters. :type docstring_func: ``callable`` :param tag_func: Function that will be used for generating tags via parametrization kwargs. Should accept ``kwargs`` as parameter. :type tag_func: ``callable`` :param tag_dict: Tag annotations to be used for each generated testcase. :type tag_dict: ``dict`` of ``set`` :param summarize: Flag for enabling testcase level summarization of all assertions. :type summarize: ``bool`` :param num_passing: Max number of passing assertions for testcase level assertion summary. :type num_passing: ``int`` :param num_failing: Max number of failing assertions for testcase level assertion summary. :type num_failing: ``int`` :param key_combs_limit: Max number of failed key combinations on fix/dict summaries that contain assertion details. :type key_combs_limit: ``int`` :param execution_group: Name of execution group in which the testcases can be executed in parallel. :type execution_group: ``str`` or ``NoneType`` :param timeout: Timeout in seconds to wait for testcase to be finished. :type timeout: ``int`` :return: List of functions that is testcase compliant (accepts ``self``, ``env``, ``result`` as arguments) and have unique names. :rtype: ``list`` """ if not parameters: raise ParametrizationError('"parameters" cannot be a empty.') _check_name_func(name_func) argspec = callable_utils.getargspec(function) args = argspec.args[3:] # get rid of self, env, result defaults = argspec.defaults or [] required_args = args[: -len(defaults)] if defaults else args default_args = dict(zip(args[len(required_args) :], defaults)) kwarg_list = _generate_kwarg_list( parameters, args, required_args, default_args ) functions = [ _generate_func( function=function, name=name, name_func=name_func, tag_func=tag_func, docstring_func=docstring_func, tag_dict=tag_dict, kwargs=kwargs, ) for kwargs in kwarg_list ] for idx, func in enumerate(functions): # Users request the feature that when `name_func` set to `None`, # then simply append integer suffixes to the names of testcases if name_func is None: func.name = "{} {}".format(func.name, idx) func.summarize = summarize func.summarize_num_passing = num_passing func.summarize_num_failing = num_failing func.summarize_key_combs_limit = key_combs_limit func.execution_group = execution_group func.timeout = timeout return functions
16c8dbabb94e377b034445213a18e379f3bc58ea
20,979
from typing import List def post_multi_tag_datapoints(timeseries_with_datapoints: List[TimeseriesWithDatapoints], **kwargs): """Insert data into multiple timeseries. Args: timeseries_with_datapoints (List[v04.dto.TimeseriesWithDatapoints]): The timeseries with data to insert. Keyword Args: api_key (str): Your api-key. project (str): Project name. Returns: An empty response. """ api_key, project = config.get_config_variables(kwargs.get("api_key"), kwargs.get("project")) url = config.get_base_url(api_version=0.4) + "/projects/{}/timeseries/data".format(project) headers = {"api-key": api_key, "content-type": "application/json", "accept": "application/json"} ul_dps_limit = 100000 # Make sure we only work with TimeseriesWithDatapoints objects that has a max number of datapoints timeseries_with_datapoints_limited = [] for entry in timeseries_with_datapoints: timeseries_with_datapoints_limited.extend(_split_TimeseriesWithDatapoints_if_over_limit(entry, ul_dps_limit)) # Group these TimeseriesWithDatapoints if possible so that we upload as much as possible in each call to the API timeseries_to_upload_binned = _utils.first_fit( list_items=timeseries_with_datapoints_limited, max_size=ul_dps_limit, get_count=lambda x: len(x.datapoints) ) for bin in timeseries_to_upload_binned: body = { "items": [ {"tagId": ts_with_data.tagId, "datapoints": [dp.__dict__ for dp in ts_with_data.datapoints]} for ts_with_data in bin ] } res = _utils.post_request(url, body=body, headers=headers) return res.json()
6bb73c3896fbad250574dfd5c5ea5c74f6059521
20,981
def get_version(pname: str, url: str) -> str: """Extract the package version from the url returned by `get_url`.""" match = search(r"/(\d+\.\d+\.\d+)/(\w+(?:-\w+)?)-(\d+\.\d+\.\d+)\.tar\.gz$", url) # Assert that the package name matches. assert match[2] == pname # As a sanity check, also assert that the versions match. assert match[1] == match[3] # Return the version. return match[1]
dc51ad64f4c47f35b5e6944754ccf4225829047f
20,982
import numpy def SmoothMu(trimset, smoothing): """ Smooth mu or P(mu>thresh). """ Stot = trimset[0] newmu = trimset[1] maxflux = Stot.max() xfine = numpy.exp(numpy.linspace(0, numpy.log(maxflux), 300)) #tck = interpolate.splrep(Stot, newmu, s=1, k=5) #yfine = interpolate.splev(xfine, tck, der=0) yfine = griddata(Stot, newmu, xfine, method='nearest') bad = yfine * 0 != 0 good = yfine * 0 == 0 replacement = yfine[good][0] yfine[bad] = replacement if newmu.max() == 1: buffmax = 1. else: buffmax = 10. buff0 = numpy.zeros(100) + newmu.min() buff1 = numpy.zeros(100) + buffmax yfinebig = numpy.append(buff0, yfine) yfinebig = numpy.append(yfinebig, buff1) yfinebig = numpy.log10(yfinebig) smoothedyfine = gaussian_filter(yfinebig, smoothing) smoothedyfine = 10 ** (smoothedyfine) buff0 = numpy.arange(100) - 100 buff1 = numpy.arange(100) + xfine.max() xfinebig = numpy.append(buff0, xfine) xfinebig = numpy.append(xfinebig, buff1) #plt.clf() #plt.plot(Stot, newmu, 'o') #plt.plot(xfine, yfine, '.') #plt.plot(xfinebig, smoothedyfine, '.') #plt.loglog() return xfinebig, smoothedyfine
47dfdcb6b2db607fec65708f03cecaf56b6e3836
20,983
def spdiags(data, diags, m, n, format=None): """ Return a sparse matrix from diagonals. Parameters ---------- data : array_like matrix diagonals stored row-wise diags : diagonals to set - k = 0 the main diagonal - k > 0 the k-th upper diagonal - k < 0 the k-th lower diagonal m, n : int shape of the result format : format of the result (e.g. "csr") By default (format=None) an appropriate sparse matrix format is returned. This choice is subject to change. See Also -------- dia_matrix : the sparse DIAgonal format. Examples -------- >>> data = array([[1,2,3,4],[1,2,3,4],[1,2,3,4]]) >>> diags = array([0,-1,2]) >>> spdiags(data, diags, 4, 4).todense() matrix([[1, 0, 3, 0], [1, 2, 0, 4], [0, 2, 3, 0], [0, 0, 3, 4]]) """ return dia_matrix((data, diags), shape=(m,n)).asformat(format)
ba0301389ab8ca2ef85cdf32aca7851464386ff7
20,984
def precision_with_fixed_recall(y_true, y_pred_proba, fixed_recall): """ Compute precision with a fixed recall, for class 1. The chosen threshold for this couple precision is also returned. Parameters ---------- y_true : 1d array-like, or label indicator array / sparse matrix Ground truth (correct) labels. y_pred_proba : 1d array-like, or label indicator array / sparse matrix Predicted labels, as returned by a classifier, should be probabilities fixed_recall : float Fixed recall, recall will be calculated with respect to this precision Returns ------- precision_score : float threshold : float """ if is_valid_y_true(y_true): _, recall, threshold = precision_recall_curve(y_true, y_pred_proba) threshold = max([threshold[i] for i in range(len(threshold)) if recall[i] >= fixed_recall]) y_pred_binary = binarize(y_pred_proba, threshold) return precision_score(y_true, y_pred_binary), threshold else: raise ValueError('y_true should not contain only zeros')
8ff70df3a01a2403735ce68e1158d700b5dd3e6f
20,987
def sample_kollege(user, name='Miguel', crm='222'): """Create and return a sample tag""" return Kollege.objects.create(user=user, name=name, crm=crm)
6d663e06a33ec576d9d2d96e29abb1522629f11b
20,988
from course_lib.Base.Evaluation.metrics import average_precision, precision, recall def get_singular_user_metrics(URM_test, recommender_object: BaseRecommender, cutoff=10): """ Return a pandas.DataFrame containing the precision, recall and average precision of all the users :param URM_test: URM to be tested on :param recommender_object: recommender system to be tested :param cutoff: the cutoff to be evaluated on :return: pandas.DataFrame containing the precision, recall and average precision of all the users """ URM_test = sps.csr_matrix(URM_test) n_users = URM_test.shape[0] average_precision_list = [] precision_list = [] recall_list = [] user_list = [] for user_id in range(n_users): if user_id % 10000 == 0: print("Evaluated user {} of {}".format(user_id, n_users)) start_pos = URM_test.indptr[user_id] end_pos = URM_test.indptr[user_id + 1] if end_pos - start_pos > 0: relevant_items = URM_test.indices[start_pos: end_pos] recommended_items = recommender_object.recommend(user_id, cutoff=cutoff) is_relevant = np.in1d(recommended_items, relevant_items, assume_unique=True) user_list.append(user_id) average_precision_list.append(average_precision(is_relevant, relevant_items)) precision_list.append(precision(is_relevant)) recall_list.append(recall(is_relevant, relevant_items)) return pd.DataFrame(data={'user_id': user_list, 'precision': precision_list, 'recall': recall_list, 'AP': average_precision_list})
ed2e4c8cfa79967b6423f2af214aac4d0b817dd9
20,989
def detect_license(document, cleaned=False): """ Finds a license that is most similar to the provided `document`. / :document: a license, whose name should be identified :type document: string / :cleaned: shows whether a `document` is prepared for vectorization. / Returns the name of the license document in string. """ vectorizer = TfidfVectorizer(stop_words='english', strip_accents='unicode', use_idf=True, smooth_idf=True, norm='l2') names, licenses = load_license_templates() # `tfidf` is a docXvocab matrix, where each row is a document and each # column is a token in vocabulary cleaned_doc = document if cleaned else clean(document) tfidf = vectorizer.fit_transform(licenses + [cleaned_doc]) # Last row in this matrix is our `document` vectorized_document = tfidf[-1] index_of_most_similar_license = 0 max_similarity = -1 # Searching for most similar license for i in range(0, len(licenses)): next_license = tfidf[i] cos = cosine_similarity(vectorized_document, next_license) if cos > max_similarity: max_similarity = cos index_of_most_similar_license = i return names[index_of_most_similar_license]
66ae25e7d1d29ed2d0541e7e8136aa9c6d53f6a6
20,990
from models import Participant def user_profile(request): """ Puts user_profile into context if available. """ profile = None if request.user.is_authenticated(): try: profile = Participant.objects.get(user__id=request.user.id) except ObjectDoesNotExist: pass return {'user_profile': profile}
3ffdd2a851caebc865901fa118b19c813b4bffed
20,991
import torch def get_reduced_model(model: torch.nn.Module, x_sample: torch.Tensor, bias: bool = True, activation: bool = True) -> torch.nn.Module: """ Get 1-layer model corresponding to the firing path of the model for a specific sample. :param model: pytorch model :param x_sample: input sample :param device: cpu or cuda device :param bias: True if model has bias :param activation: True if you want to add a sigmoid activation on top :return: reduced model """ x_sample_copy = deepcopy(x_sample) n_linear_layers = 0 for i, module in enumerate(model.children()): if isinstance(module, torch.nn.Linear): n_linear_layers += 1 # compute firing path count_linear_layers = 0 weights_reduced = None bias_reduced = None b = None for i, module in enumerate(model.children()): if isinstance(module, torch.nn.Linear): weight = deepcopy(module.weight.detach()) if bias: b = deepcopy(module.bias.detach()) # linear layer hi = module(x_sample_copy) # relu activation ai = torch.relu(hi) # prune nodes that are not firing # (except for last layer where we don't have a relu!) if count_linear_layers != n_linear_layers - 1: weight[hi <= 0] = 0 if bias: b[hi <= 0] = 0 # compute reduced weight matrix if i == 0: weights_reduced = weight if bias: bias_reduced = b else: weights_reduced = torch.matmul(weight, weights_reduced) if bias: bias_reduced = torch.matmul(weight, bias_reduced) + bias # the next layer will have the output of the current layer as input x_sample_copy = ai count_linear_layers += 1 # build reduced network linear = torch.nn.Linear(weights_reduced.shape[1], weights_reduced.shape[0]) state_dict = linear.state_dict() state_dict['weight'].copy_(weights_reduced.clone().detach()) if bias: state_dict['bias'].copy_(bias_reduced.clone().detach()) layers = [linear] if activation: layers.append(torch.nn.Sigmoid()) model_reduced = torch.nn.Sequential(*layers) model_reduced.eval() return model_reduced
d46c4d6194b77b689618f3980d56ec459247f033
20,992
def cosine_sim(a: np.ndarray, b: np.ndarray) -> float: """ Computes the cosine similarity between two vectors Parameters ---------- a: np.ndarray the first vector b: np.ndarray the second vector Returns ------- float: the cosine similarity of the two vectors """ a_norm = norm(a) b_norm = norm(b) if a_norm == 0 or b_norm == 0: return 0 else: return inner(a, b) / (a_norm * b_norm)
bc8bd6c156f11e3ea16fb3ad20e1a4740ad2e22d
20,993
def datetime_to_hours(dt): """Converts datetime.timedelta to hours Parameters: ----------- dt: datetime.timedelta Returns: -------- float """ return dt.days * 24 + dt.seconds / 3600
e7373cbb49e21340fef1590a655059fd39c6ce88
20,994
def create_data_element(ds: "Dataset") -> "DataElement": """Return a ``gdcm.DataElement`` for the *Pixel Data*. Parameters ---------- ds : dataset.Dataset The :class:`~pydicom.dataset.Dataset` containing the *Pixel Data*. Returns ------- gdcm.DataElement The converted *Pixel Data* element. """ tsyntax = ds.file_meta.TransferSyntaxUID data_element = gdcm.DataElement(gdcm.Tag(0x7fe0, 0x0010)) if tsyntax.is_compressed: if getattr(ds, 'NumberOfFrames', 1) > 1: pixel_data_sequence = ( pydicom.encaps.decode_data_sequence(ds.PixelData) ) else: pixel_data_sequence = [ pydicom.encaps.defragment_data(ds.PixelData) ] fragments = gdcm.SequenceOfFragments.New() for pixel_data in pixel_data_sequence: fragment = gdcm.Fragment() fragment.SetByteStringValue(pixel_data) fragments.AddFragment(fragment) data_element.SetValue(fragments.__ref__()) else: data_element.SetByteStringValue(ds.PixelData) return data_element
c45370201de36b7a5ea41613bc1387185ce80567
20,995
def thermo_paths(spc_dct, spc_locs_dct, spc_mods, run_prefix): """ Set up the path for saving the pf input and output. Placed in a MESSPF, NASA dirs high in run filesys. """ thm_path_dct = {} for spc_name in spc_locs_dct: spc_thm_path_dct = {} spc_info = sinfo.from_dct(spc_dct[spc_name]) spc_formula = automol.inchi.formula_string(spc_info[0]) thm_prefix = [spc_formula, automol.inchi.inchi_key(spc_info[0])] spc_locs_lst = spc_locs_dct[spc_name] for sidx, spc_locs in enumerate(spc_locs_lst, start=1): spc_mod_thm_path_dct = {} for midx, mod in enumerate(spc_mods): idx = sidx * 10 + midx spc_mod_thm_path_dct[mod] = ( job_path( run_prefix, 'MESS', 'PF', thm_prefix, locs_idx=idx), job_path( run_prefix, 'THERM', 'NASA', thm_prefix, locs_idx=idx) ) spc_mod_thm_path_dct['mod_total'] = ( job_path( run_prefix, 'MESS', 'PF', thm_prefix, locs_idx=sidx), job_path( run_prefix, 'THERM', 'NASA', thm_prefix, locs_idx=sidx) ) spc_thm_path_dct[tuple(spc_locs)] = spc_mod_thm_path_dct spc_thm_path_dct['spc_total'] = ( job_path( run_prefix, 'MESS', 'PF', thm_prefix, locs_idx=0), job_path( run_prefix, 'THERM', 'NASA', thm_prefix, locs_idx=0) ) thm_path_dct[spc_name] = spc_thm_path_dct return thm_path_dct
43e7746e38cd7617c0f4168afa59fe557d67316e
20,996
def create_da_model_std(filename, eta_rho=10, xi_rho=10, s_rho=1, reftime=default_epoch, clobber=False, cdl=None, title="My Model STD"): """ Create an time varying model standard deviation file Parameters ---------- filename : string name and path of file to create eta_rho: int, optional number of rows in the eta direction xi_rho: int, optional number of columns in the xi direction s_rho: int, optional number of s-levels reftime: datetime, optional date of epoch for time origin in netcdf clobber: bool, optional If True, clobber any existing files and recreate. If False, use the existing file definition cdl: string, optional, Use the specified CDL file as the definition for the new netCDF file. title: string, optional netcdf attribute title Returns ------- nc, netCDF4 object """ # Generate the Structure dims, vars, attr = cdl_parser( _cdl_dir + "s4dvar_std_m.cdl" if cdl is None else cdl) # Fill in the appropriate dimension values dims = _set_grid_dimensions(dims, eta_rho, xi_rho, s_rho) vars = _set_time_ref(vars, "ocean_time", reftime) # Create the file _nc = ncgen(filename, dims=dims, vars=vars, attr=attr, clobber=clobber, title=title) # Return the new file return _nc
c22f3c023d266a5b53cff2f64afe10975c08464d
20,997
from rmgpy.chemkin import writeThermoEntry def thermoEntry(request, section, subsection, index): """ A view for showing an entry in a thermodynamics database. """ # Load the thermo database if necessary loadDatabase('thermo', section) # Determine the entry we wish to view try: database = getThermoDatabase(section, subsection) except ValueError: raise Http404 index = int(index) if index != 0 and index != -1: for entry in database.entries.values(): if entry.index == index: break else: raise Http404 else: if index == 0: index = min(entry.index for entry in database.entries.values() if entry.index > 0) else: index = max(entry.index for entry in database.entries.values() if entry.index > 0) return HttpResponseRedirect(reverse(thermoEntry, kwargs={'section': section, 'subsection': subsection, 'index': index, })) # Get the structure of the item we are viewing structure = getStructureInfo(entry.item) # Prepare the thermo data for passing to the template # This includes all string formatting, since we can't do that in the template if isinstance(entry.data, str): thermo = ['Link', database.entries[entry.data].index] else: thermo = entry.data # Get the thermo data for the molecule nasa_string = None if isinstance(entry.item, Molecule): species = Species(molecule=[entry.item]) species.generateResonanceIsomers() ThermoDatabase().findCp0andCpInf(species, thermo) nasa_string = '' try: if isinstance(thermo,NASA): nasa = thermo else: nasa = thermo.toNASA(Tmin=100.0, Tmax=5000.0, Tint=1000.0) species.thermo = nasa nasa_string = writeThermoEntry(species) except: pass referenceType = '' reference = entry.reference return render_to_response('thermoEntry.html', {'section': section, 'subsection': subsection, 'databaseName': database.name, 'entry': entry, 'structure': structure, 'reference': reference, 'referenceType': referenceType, 'thermo': thermo, 'nasa_string':nasa_string}, context_instance=RequestContext(request))
a13fb8236ef9778b65d29358452234a32ba53a14
20,998
import io def read_template(filename): """[summary] This function is for reading a template from a file [description] Arguments: filename {[type]} -- [description] Returns: [type] -- [description] """ with io.open(filename, encoding = 'utf-8') as template_file: content = template_file.read() return Template(content)
f4eceb6d2b9075d0cf61d31842b754d6f3c01ce4
21,000
def S(a): """ Return the 3x3 cross product matrix such that S(a)*b = a x b. """ assert a.shape == (3,) , "Input vector is not a numpy array of size (3,)" S = np.asarray([[ 0.0 ,-a[2], a[1] ], [ a[2], 0.0 ,-a[0] ], [-a[1], a[0], 0.0 ]]) return S
b71f2529ccdafcc2b27f28c030ec2e3be9bf43ea
21,001
from typing import Collection from typing import Mapping from typing import Any from typing import Set from typing import Dict from typing import List import itertools def bulk_get_subscriber_user_ids( stream_dicts: Collection[Mapping[str, Any]], user_profile: UserProfile, subscribed_stream_ids: Set[int], ) -> Dict[int, List[int]]: """sub_dict maps stream_id => whether the user is subscribed to that stream.""" target_stream_dicts = [] for stream_dict in stream_dicts: stream_id = stream_dict["id"] is_subscribed = stream_id in subscribed_stream_ids try: validate_user_access_to_subscribers_helper( user_profile, stream_dict, lambda user_profile: is_subscribed, ) except JsonableError: continue target_stream_dicts.append(stream_dict) recip_to_stream_id = {stream["recipient_id"]: stream["id"] for stream in target_stream_dicts} recipient_ids = sorted(stream["recipient_id"] for stream in target_stream_dicts) result: Dict[int, List[int]] = {stream["id"]: [] for stream in stream_dicts} if not recipient_ids: return result """ The raw SQL below leads to more than a 2x speedup when tested with 20k+ total subscribers. (For large realms with lots of default streams, this function deals with LOTS of data, so it is important to optimize.) """ query = SQL( """ SELECT zerver_subscription.recipient_id, zerver_subscription.user_profile_id FROM zerver_subscription WHERE zerver_subscription.recipient_id in %(recipient_ids)s AND zerver_subscription.active AND zerver_subscription.is_user_active ORDER BY zerver_subscription.recipient_id, zerver_subscription.user_profile_id """ ) cursor = connection.cursor() cursor.execute(query, {"recipient_ids": tuple(recipient_ids)}) rows = cursor.fetchall() cursor.close() """ Using groupby/itemgetter here is important for performance, at scale. It makes it so that all interpreter overhead is just O(N) in nature. """ for recip_id, recip_rows in itertools.groupby(rows, itemgetter(0)): user_profile_ids = [r[1] for r in recip_rows] stream_id = recip_to_stream_id[recip_id] result[stream_id] = list(user_profile_ids) return result
49c6fc717340523ef4bdc1d66de111c4c86ce777
21,002
def adjust_learning_rate(optimizer, step): """Sets the learning rate to the initial LR decayed by 10 every 30 epochs""" if step == 500000: for param_group in optimizer.param_groups: param_group['lr'] = 0.0005 elif step == 1000000: for param_group in optimizer.param_groups: param_group['lr'] = 0.0003 elif step == 2000000: for param_group in optimizer.param_groups: param_group['lr'] = 0.0001 return optimizer
729c6650eb9b88102b68ba5e8d356e1cfa8b6632
21,003
def get_menu_permissions(obj): """ 接收request中user对象的id :param obj: :return: 通过表级联得到user或者user所属group对应的菜单信息 """ menu_obj = Menu.objects # 菜单对象 umids = [x.id for x in UserMenu.objects.get(user=obj).menu.all()] isgroups = [x.id for x in User.objects.get(id=obj).groups.all()] # 用户所属组 if isgroups: gmids = [[m.id for m in x.menu.all()] for x in GroupMenu.objects.filter(group__in=isgroups) if x.menu.all()][0] # 获取组被授权的菜单 menus = menu_obj.filter(Q(id__in=gmids) | Q(id__in=umids)) else: menus = menu_obj.filter(id__in=umids) # 获取用户被授权的菜单 return menus
45b68b8f39b5507aa1aa1a58c3cc16eb5a1a983a
21,004
import typing def process_package( package_path: str, include_patterns: typing.Optional[typing.List[str]] = None, exclude_patterns: typing.Optional[typing.List[str]] = None, ) -> SchemaMap: """ Recursively process a package source folder and return all json schemas from the top level functions it can find. You can use optional include/exclude patterns to filter the functions you want to process. These patterns are also applied to the file names that are processed, with the exception of __init__.py, which is always processed. :param package_path: The path to the your python package :param include_patterns: A list of wildcard patterns to match the function names you want to include :param exclude_patterns: A list of wildcard patterns to match the function names you want to exclude :return: A dictionary containing your function names and their json schemas """ function_schema_map = {} for package_chain, package_file_path in package_iterator(package_path, include_patterns, exclude_patterns): function_schema_map.update( **{ f"{package_chain}.{func_name}": func_schema for func_name, func_schema in process_file( package_file_path, include_patterns, exclude_patterns ).items() } ) return function_schema_map
f0297d8d93161dc481f8d2aca81a4618ced603fe
21,005
def remove_suffix(input_string, suffix): """From the python docs, earlier versions of python does not have this.""" if suffix and input_string.endswith(suffix): return input_string[: -len(suffix)] return input_string
af4af2442f42121540de00dfaece13831a27cc57
21,008
def ais_TranslatePointToBound(*args): """ :param aPoint: :type aPoint: gp_Pnt :param aDir: :type aDir: gp_Dir :param aBndBox: :type aBndBox: Bnd_Box & :rtype: gp_Pnt """ return _AIS.ais_TranslatePointToBound(*args)
a45701c8a35fdd07e870ec850467a49145acd644
21,009
def unet_deepflash2(pretrained=None, **kwargs): """ U-Net model optimized for deepflash2 pretrained (str): specifies the dataset for pretrained weights """ model = _unet_deepflash2(pretrained=pretrained, **kwargs) return model
40b11641e3e2c418458c7e1d7e6180d4015ab2b9
21,010
import requests def get_bga_game_list(): """Gets a geeklist containing all games currently on Board Game Arena.""" result = requests.get("https://www.boardgamegeek.com/xmlapi2/geeklist/252354") return result.text
61418d5c0e0ad12c3f7af8a7831d02f94153ac84
21,011
def artifact(name: str, path: str): """Decorate a step to create a KFP HTML artifact. Apply this decorator to a step to create a Kubeflow Pipelines artifact (https://www.kubeflow.org/docs/pipelines/sdk/output-viewer/). In case the path does not point to a valid file, the step will fail with an error. To generate more than one artifact per step, apply the same decorator multiple time, as shown in the example below. ```python @artifact(name="artifact1", path="./figure.html") @artifact(name="artifact2", path="./plot.html") @step(name="artifact-generator") def foo(): # ... # save something to plot.html and figure.html # ... ``` **Note**: Currently the only supported format is HTML. Args: name: Artifact name path: Absolute path to an HTML file """ def _(step: Step): if not isinstance(step, Step): raise ValueError("You should decorate functions that are decorated" " with the @step decorator!") step.artifacts.append(Artifact(name, path)) return step return _
b5033a66612d0f2aa5b138b368ca0f1acb7c2b21
21,012
import http def build_status(code: int) -> str: """ Builds a string with HTTP status code and reason for given code. :param code: integer HTTP code :return: string with code and reason """ status = http.HTTPStatus(code) def _process_word(_word: str) -> str: if _word == "OK": return _word return _word.capitalize() reason = " ".join(_process_word(word) for word in status.name.split("_")) text = f"{code} {reason}" return text
9730abf472ddc3d5e852181c9d60f8c42fee687d
21,013
def pretty_picks_players(picks): """Formats a table of players picked for the gameweek, with live score information""" fields = ["Team", "Position", "Player", "Gameweek score", "Chance of playing next game", "Player news", "Sub position", "Id"] table = PrettyTable(field_names=fields) table.title = "GW points: " + str(picks.score) \ + " - Average GW points: " + str(picks.event.average_entry_score) \ + " - Overall arrow: " + picks.entry.overall_arrow["unicode"] \ + " - GW rank: " + str(picks.entry.summary_event_rank) \ + " - Overall rank: " + str(picks.entry.summary_overall_rank) for p in picks.picks: if picks.player_fielded[p.pick_position]: table.add_row([p.team_name, p.position, p.displayname, p.gw_points, p.chance_of_playing_next_round, p.news, p.pick_position, p.id_]) table.add_row(["===", "===", "=======", "==", "", "", "==", "==="]) for p in picks.picks: if not picks.player_fielded[p.pick_position]: table.add_row([p.team_name, p.position, p.displayname, p.gw_points, p.chance_of_playing_next_round, p.news, p.pick_position, p.id_]) table.align = "l" table.align["Gameweek score"] = "r" table.align["Sub position"] = "r" table.align["Chance of playing next game"] = "c" return table
f4269fedad07b3302f724ba38f3afc1d8d9afc9f
21,014
def open_path(request): """ handles paths authors/ """ if(request.method == "POST"): json_data = request.data new_author = Author(is_active=False) # Creating new user login information if "password" in json_data: password = json_data["password"] json_data.pop("password") new_author.set_password(password) new_author.username = json_data["username"] for k, v in json_data.items(): setattr(new_author, k, v) new_author.host = HOST_URL url = new_author.host + "author/" + str(new_author.id) new_author.url = url # Try creating user, # if duplicate user, return Bad Request try: new_author.save() except IntegrityError: return HttpResponseBadRequest("username taken") return HttpResponse(str(new_author.id), status=status.HTTP_200_OK) if(request.method == "GET"): data = Author.objects.all() ser = AuthorSerializer(data, many=True) return JsonResponse(ser.data, safe=False)
3c6a8d8fa6ac03a0bdd2b805fa348c43cf088f35
21,015
def encode_task(task): """ Encodes a syllogistic task. Parameters ---------- task : list(list(str)) List representation of the syllogism (e.g., [['All', 'A', 'B'], ['Some', 'B', 'C']]). Returns ------- str Syllogistic task encoding (e.g., 'AI1'). """ return SyllogisticTaskEncoder.encode_task(task)
b05b9e691d045bcc4877e1d9b9875902b9201bf7
21,016
def resize_small(image, resolution): """Shrink an image to the given resolution.""" h, w = image.shape[0], image.shape[1] ratio = resolution / min(h, w) h = tf.round(h * ratio, tf.int32) w = tf.round(w * ratio, tf.int32) return tf.image.resize(image, [h, w], antialias=True)
c44f615c788f300c62eef617f47b81c761ce63bc
21,017