content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
from typing import Tuple def _find_clusters( data, cluster_range: Tuple[int, int] = None, metric: str = "silhouette_score", target=None, **kwargs, ): """Finds the optimal number of clusters for K-Means clustering using the selected metric. Args: data: The data. cluster_range: A tuple of the minimum and maximum cluster search range. Defaults to (2, 20). metric: The metric to optimize (from sklearn.metrics). target: (For supervised clustering) The labels, as a 1-D array. **kwargs: Keyword arguments to be passed into the K-Means estimator. Raises: ValueError: Max of cluster range greater than the min. Returns: clusters, KMeansFit """ cluster_range = cluster_range or (2, 20) if not cluster_range[0] < cluster_range[1]: raise ValueError( "cluster_range expected to be (min_cluster, max_cluster), but the min was >= the max" ) unsupervised_metrics = [ "silhouette_score", "davies_bouldin_score", "calinski_harabasz_score", ] scores = [] widgets = [] for n in range(*cluster_range): clusterwidget = _fit_kmeans(data, n, **kwargs) analysis_func = getattr(sklearn.metrics, metric) if metric in unsupervised_metrics: score = analysis_func(data, clusterwidget.clusters) else: if target is None: raise ValueError("'target' must be specified for supervised clustering") score = analysis_func(target, clusterwidget.clusters) scores.append(score) widgets.append(clusterwidget) best_idx = np.argmax(scores) clusterwidget = widgets[best_idx] clusterwidget.search = True clusterwidget.cluster_range = cluster_range clusterwidget.metric = metric clusterwidget.scores = scores if target is not None: clusterwidget.target = target return clusterwidget
a73afd74a6401799b6418e45372aee04cf353cb3
21,248
def _gate_objectives_li_pe(basis_states, gate, H, c_ops): """Objectives for two-qubit local-invariants or perfect-entangler optimizaton""" if len(basis_states) != 4: raise ValueError( "Optimization towards a two-qubit gate requires 4 basis_states" ) # Bell states as in "Theorem 1" in # Y. Makhlin, Quantum Inf. Process. 1, 243 (2002) psi1 = (basis_states[0] + basis_states[3]) / np.sqrt(2) psi2 = (1j * basis_states[1] + 1j * basis_states[2]) / np.sqrt(2) psi3 = (basis_states[1] - basis_states[2]) / np.sqrt(2) psi4 = (1j * basis_states[0] - 1j * basis_states[3]) / np.sqrt(2) return [ Objective(initial_state=psi, target=gate, H=H, c_ops=c_ops) for psi in [psi1, psi2, psi3, psi4] ]
76be659f97396384102706fe0bc101a7d85d6521
21,249
from typing import Generator import pkg_resources def get_pip_package_list(path: str) -> Generator[pkg_resources.Distribution, None, None]: """Get the Pip package list of a Python virtual environment. Must be a path like: /project/venv/lib/python3.9/site-packages """ packages = pkg_resources.find_distributions(path) return packages
9e73e27c2b50186dedeedd1240c28ef4f4d50e03
21,250
from OpenGL.GLU import gluGetString, GLU_EXTENSIONS def hasGLUExtension( specifier ): """Given a string specifier, check for extension being available""" if not AVAILABLE_GLU_EXTENSIONS: AVAILABLE_GLU_EXTENSIONS[:] = gluGetString( GLU_EXTENSIONS ) return specifier.replace(as_8_bit('.'),as_8_bit('_')) in AVAILABLE_GLU_EXTENSIONS
cf938ec4d0ec16ae96faa10c50ac5b4bc541a062
21,251
def do_slots_information(parser, token): """Calculates some context variables based on displayed slots. """ bits = token.contents.split() len_bits = len(bits) if len_bits != 1: raise TemplateSyntaxError(_('%s tag needs no argument') % bits[0]) return SlotsInformationNode()
e52d724abb435c1b8cba68c352977a1d6c1e1c12
21,252
def get_region_of_interest(img, sx=0.23, sy=0.15, delta=200, return_vertices=False): """ :param img: image to extract ROI from :param sx: X-axis factor for ROI bottom base :param sy: Y-axis factor for ROI top base :param delta: ROI top base length :param return_vertices: whether to return the ROI vertices :return: ROI (optional: vertices) """ assert len(img.shape) == 2 h, w = img.shape mask = np.zeros(img.shape) fill_color = 255 vertices = np.array( [ [0.5 * (w - delta), sy * h], [0.5 * (w + delta), sy * h], [(1 - sx) * w, h - 1], [sx * w, h - 1], ] ) cv2.fillPoly(mask, np.array([vertices], dtype=np.int32), fill_color) roi = mask.astype(np.uint8) & img.astype(np.uint8) if return_vertices: return roi, vertices else: return roi
932588f34ba9cd7e4e71b35df60cf03f40574fad
21,253
from typing import Counter import json def load_search_freq(fp=SEARCH_FREQ_JSON): """ Load the search_freq from JSON file """ try: with open(fp, encoding="utf-8") as f: return Counter(json.load(f)) except FileNotFoundError: return Counter()
5d5e1d1106a88379eab43ce1e533a7cbb5da7eb6
21,254
def _sum_of_squares(a, axis=0): """ Square each element of the input array, and return the sum(s) of that. Parameters ---------- a : array_like Input array. axis : int or None, optional Axis along which to calculate. Default is 0. If None, compute over the whole array `a`. Returns ------- sum_of_squares : ndarray The sum along the given axis for (a**2). See also -------- _square_of_sums : The square(s) of the sum(s) (the opposite of `_sum_of_squares`). """ a, axis = _chk_asarray(a, axis) return np.sum(a*a, axis)
5271d40b096e4f6f47e010bf0974bc77804a3108
21,255
import logging def get_preprocess_fn(pp_pipeline, remove_tpu_dtypes=True): """Transform an input string into the preprocessing function. The minilanguage is as follows: fn1|fn2(arg, arg2,...)|... And describes the successive application of the various `fn`s to the input, where each function can optionally have one or more arguments, which are either positional or key/value, as dictated by the `fn`. The output preprocessing function expects a dictinary as input. This dictionary should have a key "image" that corresponds to a 3D tensor (height x width x channel). Args: pp_pipeline: A string describing the pre-processing pipeline. remove_tpu_dtypes: Whether to remove TPU incompatible types of data. Returns: preprocessing function. Raises: ValueError: if preprocessing function name is unknown """ def _preprocess_fn(data): """The preprocessing function that is returned.""" # Validate input if not isinstance(data, dict): raise ValueError("Argument `data` must be a dictionary, " "not %s" % str(type(data))) # Apply all the individual steps in sequence. logging.info("Data before pre-processing:\n%s", data) for fn_name in pp_pipeline.split("|"): data = eval(fn_name)(data) # pylint: disable=eval-used if remove_tpu_dtypes: # Remove data that are TPU-incompatible (e.g. filename of type tf.string). for key in list(data.keys()): if data[key].dtype not in TPU_SUPPORTED_DTYPES: tf.logging.warning( "Removing key '{}' from data dict because its dtype {} is not in " " the supported dtypes: {}".format(key, data[key].dtype, TPU_SUPPORTED_DTYPES)) del data[key] logging.info("Data after pre-processing:\n%s", data) return data return _preprocess_fn
ef3065252b3aa67cebc6a041eba33711e7a17f82
21,256
def nodeset(v): """Convert a value to a nodeset.""" if not nodesetp(v): raise XPathTypeError, "value is not a node-set" return v
ccaada2ad8610e0b3561663aab8e90665f6c23de
21,257
import tqdm def get_char_embs(char_emb_path, char_emb_size, alphabet_size=1422): """Get pretrained character embeddings and a dictionary mapping characters to their IDs. Skips IDs 0 and 1, since these are reserved for PAD and UNK, respectively. Input: char_emb_path: path to glove.840B.{char_embedding_size}d-char.txt. If None, use random initialization. char_embedding_size: Size of character embeddings Returns: char_emb_matrix: Numpy array shape (1426, char_embedding_size) containing char embeddings. char2id: dict. Maps chars (string) to their IDs (int). """ print("Loading char embeddings from file: {}...".format(char_emb_path)) char_emb_matrix = [] char2id = {} idx = 0 with open(char_emb_path, 'r') as fh: for line in tqdm(fh, total=alphabet_size): line = line.lstrip().rstrip().split(" ") char = line[0] vector = list(map(float, line[1:])) if char_emb_size != len(vector): raise Exception("Expected vector of size {}, but got vector of size {}.".format(char_emb_size, len(vector))) char_emb_matrix.append(vector) char2id[char] = idx idx += 1 char_emb_matrix = np.array(char_emb_matrix, dtype=np.float32) print("Loaded char embedding matrix with shape {}.".format(char_emb_matrix.shape)) return char_emb_matrix, char2id
d4be3ed7780efb3ca378c18d805ff7c5550d98d7
21,258
def _get_reverse_complement(seq): """ Get the reverse compliment of a DNA sequence. Parameters: ----------- seq Returns: -------- reverse_complement_seq Notes: ------ (1) No dependencies required. Pure python. """ complement_seq = "" for i in seq: if i == "C": complement_seq += "G" elif i == "G": complement_seq += "C" elif i == "A": complement_seq += "T" elif i == "T": complement_seq += "A" elif i == "N": complement_seq += "N" reverse_complement_seq = complement_seq[::-1] return reverse_complement_seq
31408767c628ab7b0e6e63867e37f11eb6e19560
21,259
def wave_reduce_min_all(val): """ All threads get the result """ res = wave_reduce_min(val) return broadcast(res, 0)
dfac75ecd9aeb75dc37cbaa7d04ce2a2732b9ce9
21,260
def predict_class(all_headlines): """ Predict whether each headline is negative or positive. :param all_headlines: all headlines :return: headlines with predictions """ clf, v = load_classifier("SVM") headlines = [] for h in all_headlines: headlines.append(h.to_array()) df = pd.DataFrame(headlines) df.columns = \ [ 'headline', 'origin', 'semantic_value', 'pos', 'neg', 'neu', 'published_at' ] df['headline'] = df['headline'].map(lambda x: strip_punctuation(x)) df['headline'] = df['headline'].map(lambda x: x.lower()) df['headline'] = df['headline'].map(lambda x: filter_stop_words(x)) df['published_at'] = df['published_at'].map(lambda x: to_epoch(x)) df = normalise_column(df, 'published_at') tr_counts = v.transform(df['headline']) tr = pd.DataFrame(tr_counts.todense()) df.join(tr) output = clf.predict(df.drop(["headline", "origin"], axis=1)).astype(int) df['predicted_class'] = output i = 0 for h in all_headlines: h.predicted_class = df['predicted_class'].loc[i] i += 1 return all_headlines
38839eba678659529b7fe83d6dc09ffd3cf87e48
21,261
def find_tickets_for_seat_manager( user_id: UserID, party_id: PartyID ) -> list[DbTicket]: """Return the tickets for that party whose respective seats the user is entitled to manage. """ return db.session \ .query(DbTicket) \ .filter(DbTicket.party_id == party_id) \ .filter(DbTicket.revoked == False) \ .filter( ( (DbTicket.seat_managed_by_id == None) & (DbTicket.owned_by_id == user_id) ) | (DbTicket.seat_managed_by_id == user_id) ) \ .options( db.joinedload(DbTicket.occupied_seat), ) \ .all()
c59af6629a402f3844e01c5dd86553b8e5d33d64
21,262
import inspect from typing import Counter def insert_features_from_iters(dataset_path, insert_features, field_names, **kwargs): """Insert features into dataset from iterables. Args: dataset_path (str): Path of the dataset. insert_features (iter of iter): Collection of iterables representing features. field_names (iter): Collection of field names to insert. These must match the order of their attributes in the insert_features items. **kwargs: Arbitrary keyword arguments. See below. Keyword Args: use_edit_session (bool): Flag to perform updates in an edit session. Default is False. log_level (str): Level to log the function at. Defaults to 'info'. Returns: str: Path of the dataset updated. """ kwargs.setdefault('use_edit_session', False) log = leveled_logger(LOG, kwargs.get('log_level', 'info')) log("Start: Insert features into %s from iterables.", dataset_path) meta = {'dataset': dataset_metadata(dataset_path)} keys = {'row': tuple(contain(field_names))} if inspect.isgeneratorfunction(insert_features): insert_features = insert_features() session = Editor(meta['dataset']['workspace_path'], kwargs['use_edit_session']) cursor = arcpy.da.InsertCursor(dataset_path, field_names=keys['row']) feature_count = Counter() with session, cursor: for row in insert_features: cursor.insertRow(tuple(row)) feature_count['inserted'] += 1 log("%s features inserted.", feature_count['inserted']) log("End: Insert.") return feature_count
d6f4547b33a09391188beb96cf408f3148ef643e
21,263
def check_table(conn, table, interconnect): """ searches if Interconnect exists in table in database :param conn: connect instance for database :param table: name of table you want to check :param interconnect: name of the Interconnect you are looking for :return: results of SQL query searching for table """ cur = conn.cursor() sql_search = "SELECT * \ FROM %s \ WHERE Interconnect='%s'" % (table, interconnect) found = cur.execute(sql_search).fetchone() return found
0888146d5dfe20e7bdfbfe078c58e86fda43d6a5
21,264
import tarfile def get_host_config_tar_response(host): """ Build the tar.gz attachment response for the GetHostConfig view. Note: This is re-used to download host config from the admin interface. :returns: HttpResponseAttachment """ filename = '{host}_v{version}.tar.gz'.format( host=host.path_str(), version=host.config_version) # Use the response as file-like object to write the tar resp = HttpResponseAttachment(filename=filename, content_type='application/gzip') with closing(tarfile.open(mode='w:gz', fileobj=resp)) as tar: config_tar.generate_host_config_tar(host, TarWriter(tar)) return resp
8a968885bb197f781faf65abf100aa40568f6354
21,265
async def update_product_remove_tag_by_id( *, product_id: int, session: Session = Depends(get_session), db_product: Product = Depends(get_product_or_404), db_tag: Tag = Depends(get_tag_or_404), ): """ Remove tag from product """ existing_product = db_product["db_product"] existing_tag = db_tag["db_tag"] try: existing_product.tags.remove(existing_tag) session.add(existing_product) session.commit() session.refresh(existing_product) profiling_api( f"Product:update:remove_tag:by_id:{product_id}", db_product["start_time"], db_product["username"], ) except Exception as message: logger.error(message) logger.exception(message) raise HTTPException( status_code=404, detail="Impossible to remove the tag: product or tag not existing", ) return existing_product
41893e64fa02f24df26ed39128657218cbc87231
21,266
def hard_sigmoid(x: tf.Tensor) -> tf.Tensor: """Hard sigmoid activation function. ```plot-activation activations.hard_sigmoid ``` # Arguments x: Input tensor. # Returns Hard sigmoid activation. """ return tf.clip_by_value(x+0.5, 0.0, 1.0)
203a41d52888b42b643df84986c5fbc8967222c6
21,268
def get_image_as_np_array(filename: str): """Returns an image as an numpy array """ img = Image.open(filename) return np.asarray(img)
8d3cc1c5311e675c6c710cbd7633a66748308e7d
21,269
def unreduced_coboundary(morse_complex, akq, cell_ix): """ Helper """ return unreduced_cells(akq, morse_complex.get_coboundary(cell_ix))
c074a9b7df35f961e66e31a88c8a7f95f48912c7
21,270
from typing import Union def __align(obj: Union[Trace, EventLog], pt: ProcessTree, max_trace_length: int = 1, max_process_tree_height: int = 1, parameters=None): """ this function approximates alignments for a given event log or trace and a process tree :param obj: event log or single trace :param pt: process tree :param max_trace_length: specifies when the recursive splitting stops based on the trace's length :param max_process_tree_height: specifies when the recursive splitting stops based on the tree's height :return: """ assert isinstance(pt, ProcessTree) if isinstance(obj, Trace): e = EventLog() e.append(obj) obj = e assert isinstance(obj, EventLog) pt = process_tree_to_binary_process_tree(pt) pt = EfficientTree(pt) parameters[Parameters.SUBTREE_ALIGN_CACHE] = {} return __approximate_alignments_for_log(obj, pt, max_trace_length, max_process_tree_height, parameters=parameters)
0f684403bb70a158c463b4babcada115e908ee88
21,271
import resource def scanProgramTransfersCount(program, transfersCount=None, address=None, args={}): """ Scan pools by active program, sort by transfersCount """ return resource.scan(**{**{ 'type': 'pool', 'index': 'activeProgram', 'indexValue': program, 'sort': 'transfersCount', 'sortValue': transfersCount, 'keyValue': address, }, **args})
b40a0ff2ea62f840a6c2fd858516dc8998aac30b
21,272
from pedal.tifa.commands import get_issues from pedal.tifa.feedbacks import initialization_problem def def_use_error(node, report=MAIN_REPORT): """ Checks if node is a name and has a def_use_error Args: node (str or AstNode or CaitNode): The Name node to look up. report (Report): The report to attach data to. Defaults to MAIN_REPORT. Returns: True if the given name has a def_use_error """ if not isinstance(node, str) and node.ast_name != "Name": raise TypeError def_use_issues = get_issues(initialization_problem) if not isinstance(node, str): node_id = node.id else: node_id = node has_error = False for issue in def_use_issues: name = issue.fields['name'] if name == node_id: has_error = True break return has_error
6e0113c451a2c09fdb84392060b672ffb3bc19d3
21,273
def get_ref_inst(ref): """ If value is part of a port on an instance, return that instance, otherwise None. """ root = ref.root() if not isinstance(root, InstRef): return None return root.inst
55f1a84131451a2032b7012b00f9336f12fee554
21,274
def not_found(error): """ Renders 404 page :returns: HTML :rtype: flask.Response """ view_args["title"] = "Not found" return render_template("404.html", args=view_args), 404
8882f171c5e68f3b24a1a7bd57dbd025a4b3a070
21,275
def xml_escape(x): """Paranoid XML escaping suitable for content and attributes.""" res = '' for i in x: o = ord(i) if ((o >= ord('a')) and (o <= ord('z'))) or \ ((o >= ord('A')) and (o <= ord('Z'))) or \ ((o >= ord('0')) and (o <= ord('9'))) or \ i in ' !#$%()*+,-./:;=?@\^_`{|}~': res += i else: res += '&#%d;' % o return res
018dc7d1ca050641b4dd7198e17911b8d17ce5fc
21,276
def read_tab(filename): """Read information from a TAB file and return a list. Parameters ---------- filename : str Full path and name for the tab file. Returns ------- list """ with open(filename) as my_file: lines = my_file.readlines() return lines
8a6a6b0ec693130da7f036f4673c89f786dfb230
21,277
def build_model(stage_id, batch_size, real_images, **kwargs): """Builds progressive GAN model. Args: stage_id: An integer of training stage index. batch_size: Number of training images in each minibatch. real_images: A 4D `Tensor` of NHWC format. **kwargs: A dictionary of 'start_height': An integer of start image height. 'start_width': An integer of start image width. 'scale_base': An integer of resolution multiplier. 'num_resolutions': An integer of number of progressive resolutions. 'stable_stage_num_images': An integer of number of training images in the stable stage. 'transition_stage_num_images': An integer of number of training images in the transition stage. 'total_num_images': An integer of total number of training images. 'kernel_size': Convolution kernel size. 'colors': Number of image channels. 'to_rgb_use_tanh_activation': Whether to apply tanh activation when output rgb. 'fmap_base': Base number of filters. 'fmap_decay': Decay of number of filters. 'fmap_max': Max number of filters. 'latent_vector_size': An integer of latent vector size. 'gradient_penalty_weight': A float of gradient norm target for wasserstein loss. 'gradient_penalty_target': A float of gradient penalty weight for wasserstein loss. 'real_score_penalty_weight': A float of Additional penalty to keep the scores from drifting too far from zero. 'adam_beta1': A float of Adam optimizer beta1. 'adam_beta2': A float of Adam optimizer beta2. 'generator_learning_rate': A float of generator learning rate. 'discriminator_learning_rate': A float of discriminator learning rate. Returns: An inernal object that wraps all information about the model. """ kernel_size = kwargs['kernel_size'] colors = kwargs['colors'] resolution_schedule = make_resolution_schedule(**kwargs) num_blocks, num_images = get_stage_info(stage_id, **kwargs) current_image_id = tf.train.get_or_create_global_step() current_image_id_inc_op = current_image_id.assign_add(batch_size) tf.summary.scalar('current_image_id', current_image_id) progress = networks.compute_progress( current_image_id, kwargs['stable_stage_num_images'], kwargs['transition_stage_num_images'], num_blocks) tf.summary.scalar('progress', progress) real_images = networks.blend_images( real_images, progress, resolution_schedule, num_blocks=num_blocks) def _num_filters_fn(block_id): """Computes number of filters of block `block_id`.""" return networks.num_filters(block_id, kwargs['fmap_base'], kwargs['fmap_decay'], kwargs['fmap_max']) def _generator_fn(z): """Builds generator network.""" to_rgb_act = tf.tanh if kwargs['to_rgb_use_tanh_activation'] else None return networks.generator( z, progress, _num_filters_fn, resolution_schedule, num_blocks=num_blocks, kernel_size=kernel_size, colors=colors, to_rgb_activation=to_rgb_act) def _discriminator_fn(x): """Builds discriminator network.""" return networks.discriminator( x, progress, _num_filters_fn, resolution_schedule, num_blocks=num_blocks, kernel_size=kernel_size) ########## Define model. z = make_latent_vectors(batch_size, **kwargs) gan_model = tfgan.gan_model( generator_fn=lambda z: _generator_fn(z)[0], discriminator_fn=lambda x, unused_z: _discriminator_fn(x)[0], real_data=real_images, generator_inputs=z) ########## Define loss. gan_loss = define_loss(gan_model, **kwargs) ########## Define train ops. gan_train_ops, optimizer_var_list = define_train_ops(gan_model, gan_loss, **kwargs) gan_train_ops = gan_train_ops._replace( global_step_inc_op=current_image_id_inc_op) ########## Generator smoothing. generator_ema = tf.train.ExponentialMovingAverage(decay=0.999) gan_train_ops, generator_vars_to_restore = add_generator_smoothing_ops( generator_ema, gan_model, gan_train_ops) class Model(object): pass model = Model() model.stage_id = stage_id model.batch_size = batch_size model.resolution_schedule = resolution_schedule model.num_images = num_images model.num_blocks = num_blocks model.current_image_id = current_image_id model.progress = progress model.num_filters_fn = _num_filters_fn model.generator_fn = _generator_fn model.discriminator_fn = _discriminator_fn model.gan_model = gan_model model.gan_loss = gan_loss model.gan_train_ops = gan_train_ops model.optimizer_var_list = optimizer_var_list model.generator_ema = generator_ema model.generator_vars_to_restore = generator_vars_to_restore return model
d188ef5672e928b1935a97ade3d26614eb700681
21,278
def int2(c): """ Parse a string as a binary number """ return int(c, 2)
dd1fb1f4c194e159b227c77c4246136863646707
21,279
from typing import Any from typing import Type from typing import List from typing import Dict def from_serializer( serializer: serializers.Serializer, api_type: str, *, id_field: str = "", **kwargs: Any, ) -> Type[ResourceObject]: """ Generate a schema from a DRF serializer. :param serializer: The serializer instance. :param api_type: The JSON API resource type. :param id_field: The 'id" field of the resource. If left empty, it is either "id" for non-model serializers, or for model serializers, it is looked up on the model. :param kwargs: Extra options (like links and transforms) passed to the schema. :return: The new schema class. """ # get_fields() should return them in the order of Meta.fields serializer_name = type(serializer).__name__ attrs: List[str] = [] rels: List[str] = [] if not id_field: # If this is a model serializer, we can reach in to the model # and look for the model's PK. if isinstance(serializer, serializers.ModelSerializer): model = serializer.Meta.model for db_field in model._meta.get_fields(): if getattr(db_field, "primary_key", False): id_field = db_field.attname break if not id_field: raise ValueError(f"Unable to find primary key from model: {model}") else: # Otherwise, just assume it's "id" id_field = "id" for field_name, field in serializer.get_fields().items(): if field_name != id_field: if isinstance(field, serializers.RelatedField): rels.append(field_name) else: attrs.append(field_name) values: Dict[str, Any] = { "id": id_field, "type": api_type, "attributes": attrs, "relationships": rels, } values.update(**kwargs) return type(f"{serializer_name}_AutoSchema", (ResourceObject,), values)
4fb2c0fb83c26d412de5582a8ebfeb4c72ac7add
21,280
def inv_rotate_pixpts(pixpts_rot, angle): """ Inverse rotate rotated pixel points to their original positions. Keyword arguments: pixpts_rot -- namedtuple of numpy arrays of x,y pixel points rotated angle -- rotation angle in degrees Return value: pixpts -- namedtuple of numpy arrays of pixel x,y points in original positions """ deg2rad = np.pi/180. angle_rad = angle*deg2rad xpix_pts = pixpts_rot.x*np.cos(angle_rad) + pixpts_rot.y*np.sin(angle_rad) ypix_pts = -pixpts_rot.x*np.sin(angle_rad) + pixpts_rot.y*np.cos(angle_rad) PixPoints = namedtuple('PixPoints', 'x y') pixpts = PixPoints(xpix_pts, ypix_pts) return pixpts
793b148a0c37d321065dc590343de0f4093abcff
21,281
def properties(classes): """get all property (p-*, u-*, e-*, dt-*) classnames """ return [c.partition("-")[2] for c in classes if c.startswith("p-") or c.startswith("u-") or c.startswith("e-") or c.startswith("dt-")]
417562d19043f4b98068ec38cc010061b612fef3
21,283
import array def adapt_p3_histogram(codon_usages, purge_unwanted=True): """Returns P3 from each set of codon usage for feeding to hist().""" return [array([c.positionalGC(purge_unwanted=True)[3] for c in curr])\ for curr in codon_usages]
d5b0b0b387c3a98f584ca82dad79effbb9aa7a31
21,284
def handle_logout_response(response): """ Handles saml2 logout response. :param response: Saml2 logout response """ if len(response) > 1: # Currently only one source is supported return HttpResponseServerError("Logout from several sources not supported") for entityid, logout_info in response.items(): if isinstance(logout_info, tuple): # logout_info is a tuple containing header information and a HTML message. binding, http_info = logout_info if binding == BINDING_HTTP_POST: # Display content defined in logout response body = "".join(http_info["data"]) return HttpResponse(body) elif binding == BINDING_HTTP_REDIRECT: # Redirect to address defined in logout response return HttpResponseRedirect(_get_location(http_info)) else: # Unknown binding return HttpResponseServerError("Logout binding not supported") else: # result from logout, should be OK pass return HttpResponseServerError("Failed to log out")
18d8983a3e01905e1c7c6b41b65eb7e9191a4bf5
21,285
def get_value_beginning_of_year(idx, col, validate=False): """ Devuelve el valor de la serie determinada por df[col] del primer día del año del índice de tiempo 'idx'. """ beggining_of_year_idx = date(year=idx.date().year, month=1, day=1) return get_value(beggining_of_year_idx, col, validate)
b3a267620f19cabe1492aea671d34f1142580a5d
21,286
from typing import List def doc2vec_embedder(corpus: List[str], size: int = 100, window: int = 5) -> List[float]: """ Given a corpus of texts, returns an embedding (representation of such texts) using a fine-tuned Doc2Vec embedder. ref: https://radimrehurek.com/gensim/models/doc2vec.html """ logger.info(f"Training Doc2Vec with: size={size}, window={window}") tagged_documents = [TaggedDocument(doc.split(), [i]) for i, doc in enumerate(corpus)] model = Doc2Vec(tagged_documents, vector_size=size, window=window, min_count=3, workers=16) def embedder(documents: List[str]) -> List[float]: """Generates an embedding using a Doc2Vec""" return scale_vectors([model.infer_vector(doc.split()) for doc in documents]) return embedder
e14eb3c1daca1c24f9ebeaa04f44091cc12b03ff
21,287
def PremIncome(t): """Premium income""" return SizePremium(t) * PolsIF_Beg1(t)
1673f5a18171989e15bdfd7fa3e814f8732fd732
21,288
def _setter_name(getter_name): """ Convert a getter name to a setter name. """ return 'set' + getter_name[0].upper() + getter_name[1:]
d4b55afc10c6d79a1432d2a8f3077eb308ab0f76
21,289
def get_bel_node_by_pathway_name(): """Get Reactome related eBEL nodes by pathway name.""" pathway_name = request.args.get('pathway_name') sql = f'''SELECT @rid.asString() as rid, namespace, name, bel, reactome_pathways FROM protein WHERE pure=true AND "{pathway_name}" in reactome_pathways ''' return _get_paginated_ebel_query_result(sql)
930bb79f70c050acaa052d684de389fc2eee9c36
21,290
def get_model(model_file, log=True): """Load a model from the specified model_file.""" model = load_model(model_file) if log: print('Model successfully loaded on rank ' + str(hvd.rank())) return model
ad699c409588652ac98da0f29b2cb25c53216a46
21,291
def _sample_weight(kappa, dim, num_samples): """Rejection sampling scheme for sampling distance from center on surface of the sphere. """ dim = dim - 1 # since S^{n-1} b = dim / (np.sqrt(4.0 * kappa ** 2 + dim ** 2) + 2 * kappa) x = (1.0 - b) / (1.0 + b) c = kappa * x + dim * np.log(1 - x ** 2) results = [] n = 0 while True: z = np.random.beta(dim / 2.0, dim / 2.0, size=num_samples) w = (1.0 - (1.0 + b) * z) / (1.0 - (1.0 - b) * z) u = np.random.uniform(low=0, high=1, size=num_samples) mask = kappa * w + dim * np.log(1.0 - x * w) - c >= np.log(u) results.append(w[mask]) n += sum(mask) if n >= num_samples: break results = np.concatenate(results)[:num_samples] return results
5760bfe205468e9d662ad0e8d8afa641fa45db2c
21,293
import torch def variable_time_collate_fn3( batch, args, device=torch.device("cpu"), data_type="train", data_min=None, data_max=None, ): """ Expects a batch of time series data in the form of (record_id, tt, vals, mask, labels) where - record_id is a patient id - tt is a 1-dimensional tensor containing T time values of observations. - vals is a (T, D) tensor containing observed values for D variables. - mask is a (T, D) tensor containing 1 where values were observed and 0 otherwise. - labels is a list of labels for the current patient, if labels are available. Otherwise None. Returns: combined_tt: The union of all time observations. combined_vals: (M, T, D) tensor containing the observed values. combined_mask: (M, T, D) tensor containing 1 where values were observed and 0 otherwise. """ D = batch[0][2].shape[1] len_tt = [ex[1].size(0) for ex in batch] maxlen = np.max(len_tt) enc_combined_tt = torch.zeros([len(batch), maxlen]).to(device) enc_combined_vals = torch.zeros([len(batch), maxlen, D]).to(device) enc_combined_mask = torch.zeros([len(batch), maxlen, D]).to(device) for b, (record_id, tt, vals, mask, labels) in enumerate(batch): currlen = tt.size(0) enc_combined_tt[b, :currlen] = tt.to(device) enc_combined_vals[b, :currlen] = vals.to(device) enc_combined_mask[b, :currlen] = mask.to(device) enc_combined_vals, _, _ = utils.normalize_masked_data( enc_combined_vals, enc_combined_mask, att_min=data_min, att_max=data_max ) if torch.max(enc_combined_tt) != 0.0: enc_combined_tt = enc_combined_tt / torch.max(enc_combined_tt) data_dict = { "observed_data": enc_combined_vals, "observed_tp": enc_combined_tt, "observed_mask": enc_combined_mask, } return data_dict
5158f7ab642ab33100ec5fc1c044e20edd90687c
21,294
import operator def run_map_reduce(files, mapper, n): """Runner to execute a map-reduce reduction of cowrie log files using mapper and files Args: files (list of files): The cowrie log files to be used for map-reduce reduction. mapper (MapReduce): The mapper processing the files using map_func and reduce_func. n (int): We want the n most commands / ips / etc. of the cowrie log files. Returns: result (list): List of map-reduced cowrie log data. """ # main work counts = mapper(files) counts.sort(key=operator.itemgetter(1)) counts.reverse() data = split_data_by_events(counts, n) result = build_json(data) return result
a46779fa5546c0e414a6dd4921f52c28cc80535e
21,295
import select def metadata_record_dictize(pkg, context): """ Based on ckan.lib.dictization.model_dictize.package_dictize """ model = context['model'] is_latest_revision = not(context.get('revision_id') or context.get('revision_date')) execute = _execute if is_latest_revision else _execute_with_revision # package if is_latest_revision: if isinstance(pkg, model.PackageRevision): pkg = model.Package.get(pkg.id) result = pkg else: package_rev = model.package_revision_table q = select([package_rev]).where(package_rev.c.id == pkg.id) result = execute(q, package_rev, context).first() if not result: raise tk.ObjectNotFound result_dict = d.table_dictize(result, context) if result_dict.get('title'): result_dict['title'] = result_dict['title'].strip() result_dict['display_name'] = result_dict['title'] or result_dict['name'] or result_dict['id'] # extras if is_latest_revision: extra = model.package_extra_table else: extra = model.extra_revision_table q = select([extra]).where(extra.c.package_id == pkg.id) result = execute(q, extra, context) result_dict['extras'] = ckan_model_dictize.extras_list_dictize(result, context) return result_dict
f049faf30322d5d4da45e2a424a6977c894db67c
21,296
def colorbar_set_label_parallel(cbar,label_list,hpos=1.2,vpos=-0.3, ha='left',va='center', force_position=None, **kwargs): """ This is to set colorbar label besie the colorbar. Parameters: ----------- cbar: the colorbar used to set. hpos: the left position of labels, used in vertical colorbar. vpos: the below position of labels, used in horizontal colorbar. force_position: 1. In case of a tuple, should be the fraction of the first small one and the number of remaining equal-length sections. Eg., (0.3,12) 2. In case of a np.ndarray or list with values in the unit of axes fraction, will be directly used to position the texts. Example: -------- /homel/ychao/python/script/set_label_parallel_colorbar.py """ def get_yloc(first,num): """ first is the fraction of the first small downward arrow; num is the number of remaining equal-length sections on the colorbar. """ first_pos = first/2. second_pos = np.arange(first + 0.5,num,1) all_pos = np.array([first_pos] + list(second_pos)) return all_pos/(first+num) cbar.set_ticklabels([]) cbar.ax.tick_params(right='off',left='off') #get the text position. yloc=(cbar.values-cbar.boundaries[0])/(cbar.boundaries[-1]-cbar.boundaries[0]) if force_position is not None: if isinstance(force_position,(tuple)) and len(force_position) == 2: yloc = get_yloc(*force_position) elif isinstance(force_position,(np.ndarray,list)): yloc = force_position else: raise ValueError("Cannot understand force_position") if len(label_list) != len(yloc): raise ValueError("the lenght of cbar segments and label list are not equal!") else: if cbar.orientation == 'vertical': for label,ypos in zip(label_list,yloc): cbar.ax.text(hpos,ypos,label,ha=ha,va=va,**kwargs) elif cbar.orientation == 'horizontal': for label,ypos in zip(label_list,yloc): cbar.ax.text(ypos,vpos,label,ha=ha,va=va,**kwargs)
811358f254b05d7fa243c96d91c94ed3cb1d1fcd
21,298
def read_csv(file, tz): """ Reads the file into a pandas dataframe, cleans data and rename columns :param file: file to be read :param tz: timezone :return: pandas dataframe """ ctc_columns = {1: 'unknown_1', 2: 'Tank upper', # temperature [deg C] 3: 'unknown_3', 4: 'Tank lower', # temperature [deg C] 5: 'unknown_5', 6: 'unknown_6', 7: 'Primary flow 1', # temperature [deg C] 8: 'Return flow', # temperature [deg C] 9: 'unknown_9', 10: 'Heater', # electric power [kW] 11: 'L1', # electric current [A] 12: 'L2', # electric current [A] 13: 'L3', # electric current [A] 14: 'unknown_14', 15: 'unknown_15', 16: 'unknown_16', 17: 'unknown_17', 18: 'unknown_18', 19: 'unknown_19', 20: 'unknown_20', 21: 'Charge pump', # speed [%] 22: 'unknown_22', 23: 'Heat pump flow', # temperature [deg C] 24: 'Heat pump return', # temperature [deg C] 25: 'unknown_25', 26: 'unknown_26', 27: 'unknown_27', 28: 'unknown_28', 29: 'unknown_29', 30: 'unknown_30', 31: 'unknown_31', 32: 'Compressor L1', # electric current [A] 33: 'Compressor' # on/off [-] } df = pd.read_csv(file, header=None, index_col=0, parse_dates=True, usecols=[i for i in range(34)]) df.index = df.index.tz_localize(tz, ambiguous='NaT') df = df.loc[df.index.notnull()] df = df.loc[~df.index.duplicated(keep='first')] df.rename(columns=ctc_columns, inplace=True) df['Compressor'] = np.where(df['Compressor'] == 'ON', 1, 0) return df
9e9ed864dcba6878562ae8686dab1d1f2650f5b3
21,299
def get_tokenizer_from_saved_model(saved_model: SavedModel) -> SentencepieceTokenizer: """ Get tokenizer from tf SavedModel. :param SavedModel saved_model: tf SavedModel. :return: tokenizer. :rtype: SentencepieceTokenizer """ # extract functions that contain SentencePiece somewhere in there functions_with_sp = [ f for f in saved_model.meta_graphs[0].graph_def.library.function if "sentencepiecetokenizeop" in str(f).lower() ] assert len(functions_with_sp) == 1 # find SentencePieceOp (contains the model) in the found function nodes_with_sp = [ n for n in functions_with_sp[0].node_def if n.op == "SentencepieceOp" ] assert len(nodes_with_sp) == 1 # we can pretty much save the model into a file since it does not change model = nodes_with_sp[0].attr["model"].s # instantiate the model tokenizer = SentencepieceTokenizer(model) return tokenizer
6b524f9f14e286aa6ef43fe77773f9ec6503cf75
21,300
import heapq def heapq_merge(*iters, **kwargs): """Drop-in replacement for heapq.merge with key support""" if kwargs.get('key') is None: return heapq.merge(*iters) def wrap(x, key=kwargs.get('key')): return key(x), x def unwrap(x): _, value = x return value iters = tuple((wrap(x) for x in it) for it in iters) return (unwrap(x) for x in heapq.merge(*iters))
0693f667fb6b495680066488347d9894e84f6f0a
21,301
def parse_archive_links(html): """Parse the HTML of an archive links page.""" parser = _ArchiveLinkHTMLParser() parser.feed(html) return parser.archive_links
7894052d602cbe0db195b6fb9a9c1252163d5266
21,303
import json def processing_requests(): """ Handles the request for what is in processing. :return: JSON """ global processing global processing_mutex rc = [] response.content_type = "application/json" with processing_mutex: if processing: rc.append(processing) return json.dumps(rc)
76334b997efb659fb9d7502ec14357e8e6660293
21,304
def detect_feature(a, b=None): """ Detect the feature used in a relay program. Parameters ---------- a : Union[tvm.relay.Expr, tvm.IRModule] The input expression or module. b : Optional[Union[tvm.relay.Expr, tvm.IRModule]] The input expression or module. The two arguments cannot both be expression or module. Returns ------- features : Set[Feature] Features used in the program. """ if isinstance(a, IRModule): a, b = b, a return {Feature(int(x)) for x in _ffi_api.detect_feature(a, b)}
2b9bf11d9b37da7b4473a6da83867911b22586ec
21,305
def get_urls_from_loaded_sitemapindex(sitemapindex): """Get all the webpage urls in a retrieved sitemap index XML""" urls = set() # for loc_elem in sitemapindex_elem.findall('/sitemap/loc'): for loc_elem in sitemapindex.findall('//{http://www.sitemaps.org/schemas/sitemap/0.9}loc'): urls.update(get_urls_from_sitemap(loc_elem.text)) for loc_elem in sitemapindex.findall('//loc'): urls.update(get_urls_from_sitemap(loc_elem.text)) return urls
1a94166272385768929e1db70b643293e7c325b5
21,306
def genLinesegsnp(verts, colors = [], thickness = 2.0): """ gen objmnp :param objpath: :return: """ segs = LineSegs() segs.setThickness(thickness) if len(colors) == 0: segs.setColor(Vec4(.2, .2, .2, 1)) else: segs.setColor(colors[0], colors[1], colors[2], colors[3]) for i in range(len(verts)-1): segs.moveTo(verts[i][0], verts[i][1], verts[i][2]) segs.drawTo(verts[i+1][0], verts[i+1][1], verts[i+1][2]) objmnp = NodePath('linesegs') objmnp.attachNewNode(segs.create()) objmnp.setTransparency(TransparencyAttrib.MAlpha) return objmnp
71fc5c936fbe5dfdc528fc14fd6c0dd10d15ff3c
21,307
def enhance_puncta(img, level=7): """ Removing low frequency wavelet signals to enhance puncta. Dependent on image size, try level 6~8. """ if level == 0: return img wp = pywt.WaveletPacket2D(data=img, wavelet='haar', mode='sym') back = resize(np.array(wp['d'*level].data), img.shape, order=3, mode='reflect')/(2**level) cimg = img - back cimg[cimg < 0] = 0 return cimg
7c05531bd85dd42296871f884a04cd30c187346e
21,309
def thumbnail(img, size = (1000,1000)): """Converts Pillow images to a different size without modifying the original image """ img_thumbnail = img.copy() img_thumbnail.thumbnail(size) return img_thumbnail
4eb49869a53d9ddd42ca8c184a12f0fedb8586a5
21,310
def calculate_new_ratings(P1, P2, winner, type): """ calculate and return the new rating/rating_deviation for both songs Args: P1 (tuple or float): rating data for song 1 P2 (tuple or float): rating data for song 2 winner (str): left or right type (str): elo or glicko Returns: tuple: newly calculated ratings, rating_deviations """ s1, s2 = None, None if winner == 'left': s1, s2 = 1, 0 elif winner == 'right': s1, s2 = 0, 1 if type == 'elo': return calculate_elo(P1, P2, s1), calculate_elo(P2, P1, s2) elif type == 'glicko': return calculate_glicko_rating(P1, P2, s1), calculate_glicko_rating(P2, P1, s2)
23853c6fd4d6a977e0c0f28b5665baebcab3ae86
21,311
def age(a): """age in yr - age(scale factor)""" return _cosmocalc.age(a)
7f4cb143c1b5e56f3f7b1ebc0a916a371070740d
21,312
def _read_array(raster, band, bounds): """ Read array from raster """ if bounds is None: return raster._gdal_dataset.ReadAsArray() else: x_min, y_min, x_max, y_max = bounds forward_transform = affine.Affine.from_gdal(*raster.geo_transform) reverse_transform = ~forward_transform px_min, py_max = reverse_transform * (x_min, y_min) px_max, py_min = reverse_transform * (x_max, y_max) x_size = int(px_max - px_min) + 1 y_size = int(py_max - py_min) + 1 if band is not None: return raster._gdal_dataset.GetRasterBand(band).ReadAsArray(int(px_min), int(py_min), x_size, y_size) else: return raster._gdal_dataset.ReadAsArray(int(px_min), int(py_min), x_size, y_size)
12ad55500950d89bdc84ab29157de9faac17e76a
21,314
def makePlayerInfo(pl_name): """ Recupere toutes les infos d'un player :param arg1: nom du joueur :type arg1: chaine de caracteres :return: infos du player : budget, profit & ventes (depuis le debut de la partie), boissons a vendre ce jour :rtype: Json """ info = calculeMoneyInfo(pl_name, 0) drinkInfo = makeDrinkOffered(pl_name) return ({ "cash" : info['cash'], "profit" : info['profit'], "sales" : info['sales'], "drinksOffered" : drinkInfo })
4ebc7f11397091fa3d0c62db7fcfd82720eac530
21,315
def _FinalizeHeaders(found_fields, headers, flags): """Helper to organize the final headers that show in the report. The fields discovered in the user objects are kept separate from those created in the flattening process in order to allow checking the found fields against a list of those expected. Unexpected fields are identified. If the report is a subset of all fields, the headers are trimmed. Args: found_fields: A set of the fields found in all the user objects. headers: A set of the fields created in the flattening helpers. Will return with the complete set of fields to be printed. flags: Argparse flags object with csv_fields. Returns: Sorted list of headers. """ # Track known fields to notify user if/when fields change. A few are known # but not printed (they are denormalized and replaced below): expected_fields = set(_UserDictionaryParser.GetExpectedUserFields()) if found_fields > expected_fields: unexpected_fields = ', '.join(found_fields - expected_fields) log_utils.LogWarning( 'Unexpected user fields noticed: %s.' % unexpected_fields) headers |= found_fields headers -= set(['emails', 'name', 'nonEditableAliases']) # Prune the headers reference object that is used outside this # function by using discard() if a subset of fields is desired. if flags.csv_fields: extra_csv_fields = set(flags.csv_fields) - headers if extra_csv_fields: print '** Ignoring unknown csv_fields: %s.' % ', '.join( sorted(extra_csv_fields)) for field in list(headers): if field not in flags.csv_fields: headers.discard(field) return sorted(headers)
9d44f10c4890ca48cc00f79b24e0019e346028d0
21,316
def get_outmost_points(contours): """Get the bounding rectangle of all the contours""" all_points = np.concatenate(contours) return get_bounding_rect(all_points)
173631e3397226459d0bf3a91157d2e74660e506
21,318
def dhcp_release_packet(eth_dst='ff:ff:ff:ff:ff:ff', eth_src='00:01:02:03:04:05', ip_src='0.0.0.0', ip_dst='255.255.255.255', src_port=68, dst_port=67, bootp_chaddr='00:01:02:03:04:05', bootp_ciaddr='1.2.3.4', dhcp_server_ip='1.2.3.4'): """ Return a dhcp release packet Supports a few parameters: @param eth_dst Destination MAC, should be broadcast address @param eth_src Source MAC, should be address of client @param ip_src Source IP, should be default route IP address @param ip_dst Destination IP, broadcast IP address @param src_port Source Port, 68 for DHCP client @param dst_port Destination Port, 67 for DHCP Server @param bootp_chaddr MAC Address of client @param bootp_ciaddr Client IP Address @param dhcp_server_ip IP address of DHCP server """ pkt = scapy.Ether(dst=eth_dst, src=eth_src)/ \ scapy.IP(src=ip_src, dst=ip_dst)/ \ scapy.UDP(sport=src_port, dport=dst_port)/ \ scapy.BOOTP(chaddr=bootp_chaddr, ciaddr=bootp_ciaddr)/ \ scapy.DHCP(options=[('message-type', 'release'), ('server_id', dhcp_server_ip), ('end')]) return pkt
63885cb982fbea5f5ff45c850b1bbf00e1154004
21,319
from typing import Optional from datetime import datetime def dcfc_30_e_plus_360(start: Date, asof: Date, end: Date, freq: Optional[Decimal] = None) -> Decimal: """ Computes the day count fraction for the "30E+/360" convention. :param start: The start date of the period. :param asof: The date which the day count fraction to be calculated as of. :param end: The end date of the period (a.k.a. termination date). :return: Day count fraction. >>> ex1_start, ex1_asof = datetime.date(2007, 12, 28), datetime.date(2008, 2, 28) >>> ex2_start, ex2_asof = datetime.date(2007, 12, 28), datetime.date(2008, 2, 29) >>> ex3_start, ex3_asof = datetime.date(2007, 10, 31), datetime.date(2008, 11, 30) >>> ex4_start, ex4_asof = datetime.date(2008, 2, 1), datetime.date(2009, 5, 31) >>> round(dcfc_30_e_plus_360(start=ex1_start, asof=ex1_asof, end=ex1_asof), 14) Decimal('0.16666666666667') >>> round(dcfc_30_e_plus_360(start=ex2_start, asof=ex2_asof, end=ex2_asof), 14) Decimal('0.16944444444444') >>> round(dcfc_30_e_plus_360(start=ex3_start, asof=ex3_asof, end=ex3_asof), 14) Decimal('1.08333333333333') >>> round(dcfc_30_e_plus_360(start=ex4_start, asof=ex4_asof, end=ex4_asof), 14) Decimal('1.33333333333333') """ ## Get the new start date, if required: if start.day == 31: start = datetime.date(start.year, start.month, 30) ## Get the new asof date, if required: if asof.day == 31: asof = asof + datetime.timedelta(days=1) ## Compute number of days: nod = (asof.day - start.day) + 30 * (asof.month - start.month) + 360 * (asof.year - start.year) ## Done, compute and return the day count fraction: return nod / Decimal(360)
99cc53d69eb1151056475967459be072cff4f773
21,321
def get_current_func_info_by_traceback(self=None, logger=None) -> None: """ 通过traceback获取函数执行信息并打印 use eg: class A: def a(self): def cc(): def dd(): get_current_func_info_by_traceback(self=self) dd() cc() def b(): get_current_func_info_by_traceback() aa = A() aa.a() b() # -> A.a.cc.dd in line_num: 131 invoked # -> <module>.b in line_num: 136 invoked :param self: 类的self :param logger: :return: """ try: extract_stack_info = extract_stack() # pprint(extract_stack_info) # 除类名外的函数名调用组合str detail_func_invoked_info = '' for item in extract_stack_info[1:-1]: # extract_stack_info[1:-1]不包含get_current_func_info_by_traceback tmp_str = '{}' if detail_func_invoked_info == '' else '.{}' detail_func_invoked_info += tmp_str.format(item[2]) # print(detail_func_invoked_info) # func_name = extract_stack_info[-2][2], line_num = extract_stack_info[-2][1] _print(msg='-> {}.{} in line_num: {} invoked'.format( # class name extract_stack_info[0][2] if self is None else self.__class__.__name__, detail_func_invoked_info, line_num,), logger=logger, log_level=1,) except Exception as e: _print(msg='遇到错误:', logger=logger, exception=e, log_level=2) return None
c89496eb7303acb91ef64587d10d5b7350e9a00e
21,322
def augment_timeseries_shift(x: tf.Tensor, max_shift: int = 10) -> tf.Tensor: """Randomly shift the time series. Parameters ---------- x : tf.Tensor (T, ...) The tensor to be augmented. max_shift : int The maximum shift to be randomly applied to the tensor. Returns ------- x : tf.Tensor The augmented tensor. """ # shift the data by removing a random number of later time points dt = tf.random.uniform(shape=[], minval=0, maxval=max_shift, dtype=tf.int32) return x[:-dt, ...]
2a9265ea72478d9c860f549637ea629e4b86f4f0
21,323
def endpoint(fun): """Decorator to denote a method which returns some result to the user""" if not hasattr(fun, '_zweb_post'): fun._zweb_post = [] fun._zweb = _LEAF_METHOD fun._zweb_sig = _compile_signature(fun, partial=False) return fun
8050a6d1c6e23c1feeec4744edd45b7ae589aab8
21,324
import torch def focal_prob(attn, batch_size, queryL, sourceL): """ consider the confidence g(x) for each fragment as the sqrt of their similarity probability to the query fragment sigma_{j} (xi - xj)gj = sigma_{j} xi*gj - sigma_{j} xj*gj attn: (batch, queryL, sourceL) """ # -> (batch, queryL, sourceL, 1) xi = attn.unsqueeze(-1).contiguous() # -> (batch, queryL, 1, sourceL) xj = attn.unsqueeze(2).contiguous() # -> (batch, queryL, 1, sourceL) xj_confi = torch.sqrt(xj) xi = xi.view(batch_size*queryL, sourceL, 1) xj = xj.view(batch_size*queryL, 1, sourceL) xj_confi = xj_confi.view(batch_size*queryL, 1, sourceL) # -> (batch*queryL, sourceL, sourceL) term1 = torch.bmm(xi, xj_confi) term2 = xj * xj_confi funcF = torch.sum(term1-term2, dim=-1) # -> (batch*queryL, sourceL) funcF = funcF.view(batch_size, queryL, sourceL) fattn = torch.where(funcF > 0, torch.ones_like(attn), torch.zeros_like(attn)) return fattn
968baad0fa6f78b49eeca1056556a6c2ff3a9cef
21,325
def get_fibonacci_iterative(n: int) -> int: """ Calculate the fibonacci number at position 'n' in an iterative way :param n: position number :return: position n of Fibonacci series """ a = 0 b = 1 for i in range(n): a, b = b, a + b return a
0ece23b00d810ce1c67cf5434cf26e1e21685c20
21,326
def get_sample_content(filename): """Return sample content form file.""" with open( "tests/xml/{filename}".format( filename=filename), encoding="utf-8") as file: return file.read()
2ba60ad6473ec53f6488b42ceb7090b0f7c8f985
21,327
def create_contrasts(task): """ Create a contrasts list """ contrasts = [] contrasts += [('Go', 'T', ['GO'], [1])] contrasts += [('GoRT', 'T', ['GO_rt'], [1])] contrasts += [('StopSuccess', 'T', ['STOP_SUCCESS'], [1])] contrasts += [('StopUnsuccess', 'T', ['STOP_UNSUCCESS'], [1])] contrasts += [('StopUnsuccessRT', 'T', ['STOP_UNSUCCESS_rt'], [1])] contrasts += [('Go-StopSuccess', 'T', ['GO', 'STOP_SUCCESS'], [1, -1])] contrasts += [('Go-StopUnsuccess', 'T', ['GO', 'STOP_UNSUCCESS'], [1, -1])] contrasts += [('StopSuccess-StopUnsuccess', 'T', ['STOP_SUCCESS', 'STOP_UNSUCCESS'], [1, -1])] # add negative repl_w_neg = [] for con in contrasts: if '-' not in con[0]: newname = 'neg_%s' % con[0] else: newname = "-".join(con[0].split("-")[::-1]) new = (newname, 'T', con[2], [-x for x in con[3]]) repl_w_neg.append(con) repl_w_neg.append(new) return repl_w_neg
221b1b1ebcc6c8d0e2fcb32d004794d1b0a47522
21,328
def project(raster_path, boxes): """Project boxes into utm""" with rasterio.open(raster_path) as dataset: bounds = dataset.bounds pixelSizeX, pixelSizeY = dataset.res #subtract origin. Recall that numpy origin is top left! Not bottom left. boxes["left"] = (boxes["xmin"] * pixelSizeX) + bounds.left boxes["right"] = (boxes["xmax"] * pixelSizeX) + bounds.left boxes["top"] = bounds.top - (boxes["ymin"] * pixelSizeY) boxes["bottom"] = bounds.top - (boxes["ymax"] * pixelSizeY) # combine column to a shapely Box() object, save shapefile boxes['geometry'] = boxes.apply( lambda x: shapely.geometry.box(x.left, x.top, x.right, x.bottom), axis=1) boxes = geopandas.GeoDataFrame(boxes, geometry='geometry') #set projection, (see dataset.crs) hard coded here boxes.crs = {'init': "{}".format(dataset.crs)} #Select columns boxes = boxes[["left", "bottom", "right", "top", "score", "label", "geometry"]] return boxes
92e7bc01492b3370767ac56b18b2f937caafc6c3
21,329
def mean_relative_error(preds: Tensor, target: Tensor) -> Tensor: """ Computes mean relative error Args: preds: estimated labels target: ground truth labels Return: Tensor with mean relative error Example: >>> from torchmetrics.functional import mean_relative_error >>> x = torch.tensor([0., 1, 2, 3]) >>> y = torch.tensor([0., 1, 2, 2]) >>> mean_relative_error(x, y) tensor(0.1250) .. deprecated:: v0.4 Use :func:`torchmetrics.functional.mean_absolute_percentage_error`. Will be removed in v0.5. """ warn( "Function `mean_relative_error` was deprecated v0.4 and will be removed in v0.5." "Use `mean_absolute_percentage_error` instead.", DeprecationWarning ) sum_rltv_error, n_obs = _mean_absolute_percentage_error_update(preds, target) return _mean_absolute_percentage_error_compute(sum_rltv_error, n_obs)
23c7efe3a91179c670383b1687583dc903052a54
21,330
from typing import Dict from typing import Any def render_dendrogram(dend: Dict["str", Any], plot_width: int, plot_height: int) -> Figure: """ Render a missing dendrogram. """ # list of lists of dcoords and icoords from scipy.dendrogram xs, ys, cols = dend["icoord"], dend["dcoord"], dend["ivl"] # if the number of columns is greater than 20, make the plot wider if len(cols) > 20: plot_width = 28 * len(cols) fig = Figure( plot_width=plot_width, plot_height=plot_height, toolbar_location=None, tools="", ) # round the coordinates to integers, and plot the dendrogram xs = [[round(coord) for coord in coords] for coords in xs] ys = [[round(coord, 2) for coord in coords] for coords in ys] fig.multi_line(xs=xs, ys=ys, line_color="#8073ac") # extract the horizontal lines for the hover tooltip h_lns_x = [coords[1:3] for coords in xs] h_lns_y = [coords[1:3] for coords in ys] null_mismatch_vals = [coord[0] for coord in h_lns_y] source = ColumnDataSource(dict(x=h_lns_x, y=h_lns_y, n=null_mismatch_vals)) h_lns = fig.multi_line(xs="x", ys="y", source=source, line_color="#8073ac") hover_pts = HoverTool( renderers=[h_lns], tooltips=[("Average distance", "@n{0.1f}")], line_policy="interp", ) fig.add_tools(hover_pts) # shorten column labels if necessary, and override coordinates with column names cols = [f"{col[:16]}..." if len(col) > 18 else col for col in cols] axis_coords = list(range(5, 10 * len(cols) + 1, 10)) axis_overrides = dict(zip(axis_coords, cols)) fig.xaxis.ticker = axis_coords fig.xaxis.major_label_overrides = axis_overrides fig.xaxis.major_label_orientation = np.pi / 3 fig.yaxis.axis_label = "Average Distance Between Clusters" fig.grid.visible = False return fig
1dc61a5ddffc85e6baa9bfbb28620a3039dc8993
21,331
from typing import List import logging def sort_by_fullname(data: List[dict]) -> List[dict]: """ sort data by full name :param data: :return: """ logging.info("Sorting data by fullname...") try: data.sort(key=lambda info: info["FULL_NAME"], reverse=False) except Exception as exception: logging.exception(exception) raise logging.info("Sort data by fullname successfully!") return data
0b4ecf53893bda7d226b3c26fe51b9abc073294b
21,332
def get_vrf_interface(device, vrf): """ Gets the subinterfaces for vrf Args: device ('obj'): device to run on vrf ('str'): vrf to search under Returns: interfaces('list'): List of interfaces under specified vrf None Raises: None """ log.info("Getting the interfaces under vrf {vrf}".format(vrf=vrf)) try: out = device.parse("show vrf {vrf}".format(vrf=vrf)) except SchemaEmptyParserError: return None if out and "vrf" in out and vrf in out["vrf"]: return out["vrf"][vrf].get("interfaces", None)
57dedbd148f208038bd523c1901827ac7eca8754
21,333
def rsptext(rsp,subcode1=0,subcode2=0,erri='',cmd='',subcmd1='',subcmd2=''): """ Adabas response code to text conversion """ global rspplugins if rsp in rspplugins: plugin = rspplugins[rsp] # get the plugin function return plugin(rsp, subcode1=subcode1, subcode2=subcode2, cmd=cmd,subcmd1=subcmd1,subcmd2=subcmd2) c1=chr(subcode1 & 0xff) c2=chr( (subcode1 >> 8)& 0xff) c3=chr(subcode2 & 0xff) c4=chr( (subcode2 >> 8)& 0xff) if subcode2 == 0: if subcode1>>16: c1=chr( (subcode1 >> 24)& 0xff) c2=chr( (subcode1 >> 16)& 0xff) if c1 > '\x80' and c2 > '\x80': c1 = str2asc(c1) c2 = str2asc(c2) if c1>' ' and c2>' ': # ff = field name if both bytes > ' ' ff='"'+c1+c2+'"' elif c3>' ' and c4>' ': ff='"'+c3+c4+'"' else: ff='' if subcode2==0 and subcode1==0: ss='' else: ss=' sub=%d,%d X%04X,%04X %s' % (subcode1,subcode2,subcode1,subcode2,ff) if erri: ss+=' errinf=%08X %r' % (erri,erri) if rsp in rspdict: subx='' # subcode text rspx = rspdict[rsp] if type(rspx) == type( (1,)) : # tuple type ? subdict = rspx[1] # subcode dictionary rspx=rspx[0] # response code text sx2 = subcode2 & 0xffff sx1 = subcode1 & 0xffff subx = '' if sx2 and sx2 in subdict: subx += ' - \n\tSubcode %d: %s' % (sx2,subdict[sx2]) elif sx1 and sx1 in subdict: subx = ' - \n\tSubcode %d: %s' % (sx1,subdict[sx1]) elif rsp==132: # if LOB resp & subcode not listed subx = ' - \n\t'+rspdict.get(subcode2,'No details for subcode') return 'Adabas Response %d%s: %s%s' %\ (rsp, ss, rspx, subx) else: return 'Adabas Response %s: no explanation available' % rsp
3cc817e812ea7bba346338e09965e025639631eb
21,334
def to_dataframe(data: xr.DataArray, *args, **kwargs) -> pd.DataFrame: """ Replacement for `xr.DataArray.to_dataframe` that adds the attrs for the given DataArray into the resultant DataFrame. Parameters ---------- data : xr.DataArray the data to convert to DataFrame Returns ------- pd.DataFrame a pandas DataFrame containing the data in the given DataArray, including the global attributes """ df = data.to_dataframe(*args, **kwargs) for k, v in data.attrs.items(): df[k] = v return df
69179fc48ce9ca04e8ee99967ce44b15946f9a57
21,335
def check_position(position): """Determines if the transform is valid. That is, not off-keypad.""" if position == (0, -3) or position == (4, -3): return False if (-1 < position[0] < 5) and (-4 < position[1] < 1): return True else: return False
f95ab22ce8da386284040626ac90c908a17b53fa
21,336
def mobilenet_wd4_cub(num_classes=200, **kwargs): """ 0.25 MobileNet-224 model for CUB-200-2011 from 'MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications,' https://arxiv.org/abs/1704.04861. Parameters: ---------- num_classes : int, default 200 Number of classification classes. pretrained : bool, default False Whether to load the pretrained weights for model. root : str, default '~/.torch/models' Location for keeping the model parameters. """ return get_mobilenet(num_classes=num_classes, width_scale=0.25, model_name="mobilenet_wd4_cub", **kwargs)
f9e367058261da89a3714b543270628ab3941e12
21,337
import torch def base_plus_copy_indices(words, dynamic_vocabs, base_vocab, volatile=False): """Compute base + copy indices. Args: words (list[list[unicode]]) dynamic_vocabs (list[HardCopyDynamicVocab]) base_vocab (HardCopyVocab) volatile (bool) Returns: MultiVocabIndices """ unk = base_vocab.UNK copy_seqs = [] for seq, dyna_vocab in izip(words, dynamic_vocabs): word_to_copy = dyna_vocab.word_to_copy_token normal_copy_seq = [] for w in seq: normal_copy_seq.append(word_to_copy.get(w, unk)) copy_seqs.append(normal_copy_seq) # each SeqBatch.values has shape (batch_size, seq_length) base_indices = SequenceBatch.from_sequences(words, base_vocab, volatile=volatile) copy_indices = SequenceBatch.from_sequences(copy_seqs, base_vocab, volatile=volatile) assert_tensor_equal(base_indices.mask, copy_indices.mask) # has shape (batch_size, seq_length, 2) concat_values = torch.stack([base_indices.values, copy_indices.values], 2) return MultiVocabIndices(concat_values, base_indices.mask)
e6e9d42186c05d33a04c58c506e0e9b97eadac6a
21,338
def font_encoding(psname): """Return encoding name given a psname""" return LIBRARY.encoding(psname)
fd5d2b000624a4d04980c88cc78cd97bf49bca94
21,339
def shader_with_tex_offset(offset): """Returns a vertex FileShader using a texture access with the given offset.""" return FileShader(shader_source_with_tex_offset(offset), ".vert")
0df316dd97889b3b2541d6d21970768e1cb70fe6
21,340
def braycurtis(u, v): """ d = braycurtis(u, v) Computes the Bray-Curtis distance between two n-vectors u and v, \sum{|u_i-v_i|} / \sum{|u_i+v_i|}. """ u = np.asarray(u) v = np.asarray(v) return abs(u-v).sum() / abs(u+v).sum()
693b7f0108f9f99e0950d81c2be1e9dc0bd25d86
21,341
def _load_pyfunc(path): """ Load PyFunc implementation. Called by ``pyfunc.load_pyfunc``. :param path: Local filesystem path to the MLflow Model with the ``fastai`` flavor. """ return _FastaiModelWrapper(_load_model(path))
f8349d3580c5ca407a47b24f901c8f9a7f532c77
21,342
def fit_pseudo_voigt(x,y,p0=None,fit_alpha=True,alpha_guess=0.5): """Fits the data with a pseudo-voigt peak. Parameters ----------- x: np.ndarray Array with x values y: np.ndarray Array with y values p0: list (Optional) It contains a initial guess the for the pseudo-voigt variables, in the order: p0 = [x0,sigma,amplitude,constant,alpha]. If None, the code will create a guess. fit_alpha: boolean (Optional) Option to fit the alpha parameter. alpha_guess: float (Optional) If alpha is being fitted, then this will be the initial guess. Otherwise it will be the fixed parameter used. For lorenzian: alpha = 1, for gaussian: alpha = 0. Returns ----------- popt: np.ndarray Array with the optimized pseudo-voigt parameters. """ if p0 is None: width = (x.max()-x.min())/10. index = y == y.max() p0 = [x[index][0],width,y.max()*width*np.sqrt(np.pi/np.log(2)),y[0],alpha_guess] if fit_alpha is False: popt,pcov = curve_fit(lambda x,x0,sigma,amplitude,constant: pseudo_voigt(x,x0,sigma,amplitude,constant,alpha_guess), x,y,p0=p0[:-1]) popt = np.append(popt,alpha_guess) else: popt,pcov = curve_fit(pseudo_voigt,x,y,p0=p0) return popt
8abd61b44665632cc4e2ae21f52116757e00d2b9
21,343
from datetime import datetime def get_name_of_day(str_date): """ Возвращает имя дня. """ day = datetime.fromisoformat(str_date).weekday() return DAYS_NAME.get(day)
ae12d7b8ec44c2fb6edcf252ed3463a385353f30
21,345
def k_fold_split(ratings, min_num_ratings=10, k=4): """ Creates the k (training set, test_set) used for k_fold cross validation :param ratings: initial sparse matrix of shape (num_items, num_users) :param min_num_ratings: all users and items must have at least min_num_ratings per user and per item to be kept :param k: number of fold :return: a list fold of length k such that - fold[l][0] is a list of tuples (i,j) of the entries of 'ratings' that are the l-th testing set - fold[l][1] is a list of tuples (i,j) of the entries of 'ratings' that are the l-th training set """ num_items_per_user = np.array((ratings != 0).sum(axis=0)).flatten() num_users_per_item = np.array((ratings != 0).sum(axis=1).T).flatten() # set seed np.random.seed(988) # select user and item based on the condition. valid_users = np.where(num_items_per_user >= min_num_ratings)[0] valid_items = np.where(num_users_per_item >= min_num_ratings)[0] valid_ratings = ratings[valid_items, :][:, valid_users] nnz_row, nnz_col = valid_ratings.nonzero() nnz = list(zip(nnz_row, nnz_col)) nnz = np.random.permutation(nnz) len_splits = int(len(nnz) / k) splits = [] for i in range(k): splits.append(nnz[i * len_splits: (i + 1) * len_splits]) splits = [f.tolist() for f in splits] folds = [] for i in range(k): tmp = [] for j in range(k): if j != i: tmp = tmp + splits[j] folds.append([splits[i], tmp]) return folds
8b151e291e3365d7986cdc7b876ef630efcb60b4
21,346
def merge_dict(a, b, path:str=None): """ Args: a: b: path(str, optional): (Default value = None) Returns: Raises: """ "merges b into a" if path is None: path = [] for key in b: if key in a: if isinstance(a[key], dict) and isinstance(b[key], dict): merge_dict(a[key], b[key], path + [str(key)]) else: a[key] = b[key] else: a[key] = b[key] return a
cd260c005b07c9c84b14a14cae3d4dc54fe26b8c
21,347
import json def validateSignedOfferData(adat, ser, sig, tdat, method="igo"): """ Returns deserialized version of serialization ser which Offer if offer request is correctly formed. Otherwise returns None adat is thing's holder/owner agent resource ser is json encoded unicode string of request sig is base64 encoded signature from request header "signer" tag tdat is thing data resource offer request fields { "uid": offeruniqueid, "thing": thingDID, "aspirant": AgentDID, "duration": timeinsecondsofferisopen, } """ try: try: # get signing key of request from thing resource (adid, index, akey) = extractDatSignerParts(tdat) except ValueError as ex: raise ValidationError("Missing or invalid signer") # get agent key at index from signer data. assumes that resource is valid try: averkey = adat["keys"][index]["key"] except (TypeError, KeyError, IndexError) as ex: raise ValidationError("Missing or invalid signer key") if len(averkey) != 44: raise ValidationError("Invalid signer key") # invalid length for base64 encoded key # verify request using agent signer verify key if not verify64u(sig, ser, averkey): raise ValidationError("Unverifiable signatrue") # signature fails # now validate offer data try: dat = json.loads(ser, object_pairs_hook=ODict) except ValueError as ex: raise ValidationError("Invalid json") # invalid json if not dat: # offer request must not be empty raise ValidationError("Empty body") if not isinstance(dat, dict): # must be dict subclass raise ValidationError("JSON not dict") requireds = ("uid", "thing", "aspirant", "duration") for field in requireds: if field not in dat: raise ValidationError("Missing missing required field {}".format(field)) if not dat["uid"]: # uid must not be empty raise ValidationError("Empty uid") if dat["thing"] != tdat['did']: raise ValidationError("Not same thing") aspirant = dat["aspirant"] try: # correct did format pre:method:keystr pre, meth, keystr = aspirant.split(":") except ValueError as ex: raise ValidationError("Invalid aspirant") if pre != "did" or meth != method: raise ValidationError("Invalid aspirant") # did format bad try: duration = float(dat["duration"]) except ValueError as ex: raise ValidationError("Invalid duration") if duration < PROPAGATION_DELAY * 2.0: raise ValidationError("Duration too short") except ValidationError: raise except Exception as ex: # unknown problem raise ValidationError("Unexpected error") return dat
4aebe14b8a90dc1c3e47763ce49e142d77f99bd9
21,348
def get_relevant_phrases(obj=None): """ Get all phrases to be searched for. This includes all SensitivePhrases, and any RelatedSensitivePhrases that refer to the given object. :param obj: A model instance to check for sensitive phrases made specifically for that instance. :return: a dictionary of replacement phrases keyed by the phrases being replaced. """ replacements = [] content_type = ContentType.objects.get_for_model(obj) related_sensitive_phrases = RelatedSensitivePhrase.objects.filter( content_type__pk=content_type.id, object_id=obj.id ).extra(select={'length': 'Length(phrase)'}).order_by('-length', 'phrase') for phrase in related_sensitive_phrases: replacements.append({ 'phrase': phrase.phrase, 'replacement': phrase.replace_phrase, 'start_boundary': phrase.check_for_word_boundary_start, 'end_boundary': phrase.check_for_word_boundary_end }) sensitive_phrases = SensitivePhrase.objects.all() \ .extra(select={'length': 'Length(phrase)'}).order_by('-length', 'phrase') for phrase in sensitive_phrases: replacements.append({ 'phrase': phrase.phrase, 'replacement': phrase.replace_phrase, 'start_boundary': phrase.check_for_word_boundary_start, 'end_boundary': phrase.check_for_word_boundary_end }) return replacements
951166c89dc8e257bce512d13cee592e1266efae
21,349
import struct def _prepare_cabal_inputs( hs, cc, posix, dep_info, cc_info, direct_cc_info, component, package_id, tool_inputs, tool_input_manifests, cabal, setup, setup_deps, setup_dep_info, srcs, compiler_flags, flags, generate_haddock, cabal_wrapper, package_database, verbose, transitive_haddocks, dynamic_binary = None): """Compute Cabal wrapper, arguments, inputs.""" with_profiling = is_profiling_enabled(hs) # Haskell library dependencies or indirect C library dependencies are # already covered by their corresponding package-db entries. We only need # to add libraries and headers for direct C library dependencies to the # command line. direct_libs = get_ghci_library_files(hs, cc.cc_libraries_info, cc.cc_libraries) # The regular Haskell rules perform mostly static linking, i.e. where # possible all C library dependencies are linked statically. Cabal has no # such mode, and since we have to provide dynamic C libraries for # compilation, they will also be used for linking. Hence, we need to add # RUNPATH flags for all dynamic C library dependencies. Cabal also produces # a dynamic and a static Haskell library in one go. The dynamic library # will link other Haskell libraries dynamically. For those we need to also # provide RUNPATH flags for dynamic Haskell libraries. (_, dynamic_libs) = get_library_files( hs, cc.cc_libraries_info, cc.transitive_libraries, dynamic = True, ) # Executables build by Cabal will link Haskell libraries statically, so we # only need to include dynamic C libraries in the runfiles tree. (_, runfiles_libs) = get_library_files( hs, cc.cc_libraries_info, get_cc_libraries(cc.cc_libraries_info, cc.transitive_libraries), dynamic = True, ) # Setup dependencies are loaded by runghc. setup_libs = get_ghci_library_files(hs, cc.cc_libraries_info, cc.setup_libraries) # The regular Haskell rules have separate actions for linking and # compilation to which we pass different sets of libraries as inputs. The # Cabal rules, in contrast, only have a single action for compilation and # linking, so we must provide both sets of libraries as inputs to the same # action. transitive_compile_libs = get_ghci_library_files(hs, cc.cc_libraries_info, cc.transitive_libraries) transitive_link_libs = _concat(get_library_files(hs, cc.cc_libraries_info, cc.transitive_libraries)) env = dict(hs.env) env["PATH"] = join_path_list(hs, _binary_paths(tool_inputs) + posix.paths) if hs.toolchain.is_darwin: env["SDKROOT"] = "macosx" # See haskell/private/actions/link.bzl if verbose: env["CABAL_VERBOSE"] = "True" args = hs.actions.args() package_databases = dep_info.package_databases transitive_headers = cc_info.compilation_context.headers direct_include_dirs = depset(transitive = [ direct_cc_info.compilation_context.includes, direct_cc_info.compilation_context.quote_includes, direct_cc_info.compilation_context.system_includes, ]) direct_lib_dirs = [file.dirname for file in direct_libs] args.add_all([component, package_id, generate_haddock, setup, cabal.dirname, package_database.dirname]) args.add_joined([ arg for package_id in setup_deps for arg in ["-package-id", package_id] ] + [ arg for package_db in setup_dep_info.package_databases.to_list() for arg in ["-package-db", "./" + _dirname(package_db)] ], join_with = " ", format_each = "--ghc-arg=%s", omit_if_empty = False) args.add("--flags=" + " ".join(flags)) args.add_all(compiler_flags, format_each = "--ghc-option=%s") if dynamic_binary: args.add_all( [ "--ghc-option=-optl-Wl,-rpath," + create_rpath_entry( binary = dynamic_binary, dependency = lib, keep_filename = False, prefix = relative_rpath_prefix(hs.toolchain.is_darwin), ) for lib in dynamic_libs ], uniquify = True, ) args.add("--") args.add_all(package_databases, map_each = _dirname, format_each = "--package-db=%s") args.add_all(direct_include_dirs, format_each = "--extra-include-dirs=%s") args.add_all(direct_lib_dirs, format_each = "--extra-lib-dirs=%s", uniquify = True) if with_profiling: args.add("--enable-profiling") # Redundant with _binary_paths() above, but better be explicit when we can. args.add_all(tool_inputs, map_each = _cabal_tool_flag) inputs = depset( [setup, hs.tools.ghc, hs.tools.ghc_pkg, hs.tools.runghc], transitive = [ depset(srcs), depset(cc.files), package_databases, setup_dep_info.package_databases, transitive_headers, depset(setup_libs), depset(transitive_compile_libs), depset(transitive_link_libs), depset(transitive_haddocks), setup_dep_info.interface_dirs, setup_dep_info.hs_libraries, dep_info.interface_dirs, dep_info.hs_libraries, tool_inputs, ], ) input_manifests = tool_input_manifests + hs.toolchain.cc_wrapper.manifests return struct( cabal_wrapper = cabal_wrapper, args = args, inputs = inputs, input_manifests = input_manifests, env = env, runfiles = depset(direct = runfiles_libs), )
4d42e6b772a64bc721e30907417dd8c734ce79e6
21,350
def split_kp(kp_joined, detach=False): """ Split the given keypoints into two sets(one for driving video frames, and the other for source image) """ if detach: kp_video = {k: v[:, 1:].detach() for k, v in kp_joined.items()} kp_appearance = {k: v[:, :1].detach() for k, v in kp_joined.items()} else: kp_video = {k: v[:, 1:] for k, v in kp_joined.items()} kp_appearance = {k: v[:, :1] for k, v in kp_joined.items()} return {'kp_driving': kp_video, 'kp_source': kp_appearance}
0396003a17172a75b121ddb43c9b9cf14ee3e458
21,351
def low_shelve(signal, frequency, gain, order, shelve_type='I', sampling_rate=None): """ Create and apply first or second order low shelve filter. Uses the implementation of [#]_. Parameters ---------- signal : Signal, None The Signal to be filtered. Pass None to create the filter without applying it. frequency : number Characteristic frequency of the shelve in Hz gain : number Gain of the shelve in dB order : number The shelve order. Must be ``1`` or ``2``. shelve_type : str Defines the characteristic frequency. The default is ``'I'`` ``'I'`` defines the characteristic frequency 3 dB below the gain value if the gain is positive and 3 dB above the gain value otherwise ``'II'`` defines the characteristic frequency at 3 dB if the gain is positive and at -3 dB if the gain is negative. ``'III'`` defines the characteristic frequency at gain/2 dB sampling_rate : None, number The sampling rate in Hz. Only required if signal is ``None``. The default is ``None``. Returns ------- signal : Signal The filtered signal. Only returned if ``sampling_rate = None``. filter : FilterIIR Filter object. Only returned if ``signal = None``. References ---------- .. [#] https://github.com/spatialaudio/digital-signal-processing-lecture/\ blob/master/filter_design/audiofilter.py """ output = _shelve( signal, frequency, gain, order, shelve_type, sampling_rate, 'low') return output
130fd593988d1fd0b85795389dab554d59fedb97
21,352
from typing import Union def get_breast_zone(mask: np.ndarray, convex_contour: bool = False) -> Union[np.ndarray, tuple]: """ Función de obtener la zona del seno de una imagen a partir del area mayor contenido en una mascara. :param mask: mascara sobre la cual se realizará la búsqueda de contornos y de las zonas más largas. :param convex_contour: boleano para aplicar contornos convexos. :return: Máscara que contiene el contorno con mayor area juntamente con el vértice x e y con la anchura y la altura del cuadrado que contienen la zona de mayor area de la mascara- """ # Se obtienen los contornos de las zonas de la imagen de color blanco. contours = get_contours(img=mask) # Se obtiene el contorno más grande a partir del area que contiene largest_countour = sorted(contours, key=cv2.contourArea, reverse=True)[0] # Se modifican los contornos si se decide obtener contornos convexos. if convex_contour: largest_countour = cv2.convexHull(largest_countour) # Se crea la máscara con el area y el contorno obtenidos. breast_zone = cv2.drawContours( image=np.zeros(mask.shape, np.uint8), contours=[largest_countour], contourIdx=-1, color=(255, 255, 255), thickness=-1 ) # Se obtiene el rectangulo que contiene el pecho x, y, w, h = cv2.boundingRect(largest_countour) return breast_zone, (x, y, w, h)
429344c0645fa7bcfa49abcaf9b022f61c48bc35
21,353
def replace(temporaryans, enterword, answer): """ :param temporaryans: str, temporary answer. :param enterword: str, the character that user guesses. :param answer: str, the answer for this hangman game. :return: str, the temporary answer after hyphens replacement. """ # s = replace('-----', 'A', answer) while True: i = answer.find(enterword) if i >= 0: y = temporaryans[:i] # --- y += enterword # ---A y += temporaryans[i+1:] # ---A- temporaryans = y answer = answer[:i] + '-' + answer[i+1:] else: ans = y break return ans
80d8625dca573744e9945190ee169438754b1829
21,354
def extract_timestamp(line): """Extract timestamp and convert to a form that gives the expected result in a comparison """ # return unixtime value return line.split('\t')[6]
84618f02e4116c70d9f6a1518aafb0691a29ef07
21,355
def svn_stream_from_stringbuf(*args): """svn_stream_from_stringbuf(svn_stringbuf_t str, apr_pool_t pool) -> svn_stream_t""" return _core.svn_stream_from_stringbuf(*args)
9710061adb6d80527a3f3afa84bf41e0fa6406c6
21,356
def get_autoencoder_model(hidden_units, target_predictor_fn, activation, add_noise=None, dropout=None): """Returns a function that creates a Autoencoder TensorFlow subgraph. Args: hidden_units: List of values of hidden units for layers. target_predictor_fn: Function that will predict target from input features. This can be logistic regression, linear regression or any other model, that takes x, y and returns predictions and loss tensors. activation: activation function used to map inner latent layer onto reconstruction layer. add_noise: a function that adds noise to tensor_in, e.g. def add_noise(x): return(x + np.random.normal(0, 0.1, (len(x), len(x[0])))) dropout: When not none, causes dropout regularization to be used, with the specified probability of removing a given coordinate. Returns: A function that creates the subgraph. """ def dnn_autoencoder_estimator(x): """Autoencoder estimator with target predictor function on top.""" encoder, decoder = autoencoder_ops.dnn_autoencoder( x, hidden_units, activation, add_noise=add_noise, dropout=dropout) return encoder, decoder, target_predictor_fn(x, decoder) return dnn_autoencoder_estimator
88c58b2c43c26aa8e71baf684688d27db251cdb6
21,357