content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def build_format(name: str, pattern: str, label: bool) -> str: """Create snippet format. :param name: Instruction name :param pattern: Instruction regex pattern """ snip: str = f"{name:7s}" + pattern.format(**SNIPPET_REPLACEMENTS) snip = snip.replace("(", "") snip = snip.replace(")", "") snip = snip.replace("number?\\\\$reg\\", "number(\\$reg)") snip = snip.replace("\\$", "") replace_ct = 1 reg_ct = snip.count("reg") for i in range(0, reg_ct): f = f"${REG_ARGS[i]}" snip = snip.replace("reg", f, 1) replace_ct += 1 if not label: snip = snip.replace("number", "100") replace_ct += 1 return snip
ec25ecf4f2d46db398c389b479620e0cbcf30ee2
17,790
import torch def make_observation_mapper(claims): """Make a dictionary of observation. Parameters ---------- claims: pd.DataFrame Returns ------- observation_mapper: dict an dictionary that map rv to their observed value """ observation_mapper = dict() for c in claims.index: s = claims.iloc[c]['source_id'] observation_mapper[f'b_{s}_{c}'] = torch.tensor( claims.iloc[c]['value']) return observation_mapper
43052bd9ce5e1121f3ed144ec48acf20ad117313
17,791
def toCSV( dataset, # type: BasicDataset showHeaders=True, # type: Optional[bool] forExport=False, # type: Optional[bool] localized=False, # type: Optional[bool] ): # type: (...) -> String """Formats the contents of a dataset as CSV (comma separated values), returning the resulting CSV as a string. If the "forExport" flag is set, then the format will be appropriate for parsing using the `fromCSV` function. Args: dataset: The dataset to export to CSV. showHeaders: If set to True, a header row will be present in the CSV. Default is True. Optional. forExport: If set to True, extra header information will be present in the CSV data which is necessary for the CSV to be compatible with the fromCSV method. Overrides showHeaders. Default is False. Optional. localized: If set to True, the string representations of the values in the CSV data will be localized. Default is False. Optional. Returns: The CSV data as a string. """ print(dataset, showHeaders, forExport, localized) return ""
9d998891a9712f42af8744513c1f61540eee0e2e
17,792
def add_record(session, data): """ session - data - dictionary {"site":"Warsaw"} """ skeleton = Skeleton() skeleton.site = data["site"] skeleton.location = data["location"] skeleton.skeleton = data["skeleton"] skeleton.observer = data["observer"] skeleton.obs_date = data["obs_date"] session.add(skeleton) session.commit() return skeleton.skeleton_id
f91df4459b37b7df4d313fd01323451bf897a754
17,793
def hue_angle(C): """ Returns the *hue* angle :math:`h` in degrees from given colour difference signals :math:`C`. Parameters ---------- C : array_like Colour difference signals :math:`C`. Returns ------- numeric or ndarray *Hue* angle :math:`h` in degrees. Examples -------- >>> C = np.array([ ... -5.365865581996587e-05, ... -0.000571699383647, ... 0.000625358039467 ... ]) >>> hue_angle(C) # doctest: +ELLIPSIS 269.2737594... """ C_1, C_2, C_3 = tsplit(C) hue = (180 * np.arctan2(0.5 * (C_2 - C_3) / 4.5, C_1 - (C_2 / 11)) / np.pi) % 360 return hue
599f594eff92280df06a4c6ef88ccf286f146475
17,794
def get_submodel_list_copasi(model_name: str, model_info: pd.DataFrame): """ This function loads a list of Copasi model files, which all belong to the same benchmark model, if a string with the id of the benchmark model id is provided. It also extracts the respective sbml files from the list and returns them with the models, if any postprecessing of the Copasi results is necessary """ # get information about the model from the tsv table model_rows = model_info.loc[model_info['short_id'] == model_name] # only take accepted models model_rows = model_rows[model_rows['accepted']] submodel_paths = [path for path in model_rows['copasi_path_final']] # collect the submodels copasi_file_list = [] sbml_model_list = [] for submodel_path in submodel_paths: copasi_file, sbml_model = get_submodel_copasi(submodel_path, model_info) if copasi_file is not None: copasi_file_list.append(copasi_file) sbml_model_list.append(sbml_model) return copasi_file_list, sbml_model_list
ea889e5ea836131d8febc94dd69806b2acf47559
17,795
def GetNextBmask(enum_id, value): """ Get next bitmask in the enum (bitfield) @param enum_id: id of enum @param value: value of the current bitmask @return: value of a bitmask with value higher than the specified value. -1 if no such bitmasks exist. All bitmasks are sorted by their values as unsigned longs. """ return idaapi.get_next_bmask(enum_id, value)
d2c415e1a3ad63c651dc2df771dbe43a082613d9
17,796
def annotate_link(domain): """This function is called by the url tag. Override to disable or change behaviour. domain -- Domain parsed from url """ return u" [%s]"%_escape(domain)
26b5c8979cc8cd7f581a7ff889a907cf71844c72
17,797
def kmeans(data, k, num_iterations, num_inits=10, verbose=False): """Execute the k-means algorithm for determining the best k clusters of data points in a dataset. Parameters ---------- data : ndarray, (n,d) n data points in R^d. k : int The number of clusters to separate the data into. num_iterations : int The number of iterations of the k-means algorithm to execute. num_inits : int, optional Number of random initializations to try. Returns the best result. verbose : bool, optional Specifies whether to print info about the execution of the algorithm. Return ------ (clusters, data_point_assigment, centroids) The results of the k-means algorithm. Clusters is a list of the clusters (which are lists of ints). data_point_assigment is a (n,) numpy array of ints that indicates which cluster a data point has been assigned to. And centroids is (k,d) numpy array specifying the cluster centers. """ # Number of data points num_data_points = int(data.shape[0]) # Spatial dimension d d = int(data.shape[1]) best_results = None best_total_distance = np.inf for init in range(num_inits): # Map from data point index to cluster index. data_point_assignment = np.zeros(num_data_points, dtype=int) # list of data points in clusters clusters = [[]] * k # Initialize the centroids # using k-randomly sampled points. centroids = np.zeros((d,k)) for ind_cluster in range(k): inds_data = np.random.choice(num_data_points, k) centroid = np.mean(data[inds_data, :], axis=0) centroids[:, ind_cluster] = centroid for iteration in range(num_iterations): if verbose: print('==== Iteration {}/{} ===='.format(iteration+1, num_iterations)) print('centroids = {}'.format(centroids)) clusters = [] for ind_c in range(k): clusters.append([]) # Assignment step: # Assign each data point to the # cluster with nearest centroid. total_distance = 0.0 for ind_point in range(num_data_points): distances = np.array([nla.norm(data[ind_point, :] - centroids[:, ind_c]) for ind_c in range(k)]) ind_cluster = np.argmin(distances) total_distance += distances[ind_cluster] data_point_assignment[ind_point] = ind_cluster clusters[ind_cluster].append(ind_point) # Update step: # Update the centroids of the # new clusters. for ind_cluster in range(k): cluster = clusters[ind_cluster] cluster_data = np.array([data[ind_point, :] for ind_point in cluster]) centroid = np.mean(cluster_data, axis=0) centroids[:, ind_cluster] = centroid if total_distance < best_total_distance: best_total_distance = total_distance best_results = (clusters, data_point_assignment, centroids) return best_results
3cc3681ac0d0306fc7dce2da5757e6c162f7c457
17,798
def point_on_bezier_curve(cpw, n, u): """ Compute point on Bezier curve. :param ndarray cpw: Control points. :param int n: Degree. :param u: Parametric point (0 <= u <= 1). :return: Point on Bezier curve. :rtype: ndarray *Reference:* Algorithm A1.4 from "The NURBS Book". """ bernstein = all_bernstein(n, u) pnt = zeros(4, dtype=float64) for k in range(0, n + 1): pnt += bernstein[k] * cpw[k] return pnt
3e4a494ff9ffabf6ad0d2711beba0e55647e7071
17,799
import requests def list_with_one_dict(sort_type, url_param=None): """ Search by parameter that returns a list with one dictionary. Used for full country name and capital city. """ extra_param = "" if sort_type == 2: url_endpoint = "/name/" user_msg = "full country name" extra_param = "?fullText=true" desc = "\nSearch by full country name. Example: United States of America" elif sort_type == 6: url_endpoint = "/capital/" user_msg = "capital city" desc = "\nSearch by capital city. Example: Washington" if url_param is None: print(desc) url_param = input("\nEnter " + user_msg + ": ") res = requests.get(URL + url_endpoint + url_param.strip().lower() + extra_param) try: res.raise_for_status() except: return "\nError! Could not find information for the given input." res_json = res.json() country_name = res_json[0]["name"] info = get_info(res_json, country_name) print(info) save_to_file(info, country_name)
79f96ab76c123bfa3c3faee57e9af6c1900c3cd7
17,800
def get_form(case, action_filter=lambda a: True, form_filter=lambda f: True, reverse=False): """ returns the first form that passes through both filter functions """ gf = get_forms(case, action_filter=action_filter, form_filter=form_filter, reverse=reverse) try: return gf.next() except StopIteration: return None
b0e8caeb6fae1f56407aaf14475c5f06c9b4a3d0
17,801
from datetime import datetime def csv_to_json_generator(df, field_map: dict, id_column: str, category_column: str): """ Creates a dictionary/json structure for a `single id dataframe` extracting content using the `extract_features_by_category` function. """ id_list = find_ids(df=df, id_column=id_column) logger.info('Found {} units on \'{}\' to process'.format(len(id_list), id_column)) out = [] for f_id in id_list: f_info = {'id': str(f_id), '@timestamp': datetime.now().strftime("%Y-%m-%dT%H:%M:%SZ")} f_df = single_id_df(df=df, id_column=id_column, id_value=f_id) for key in field_map.keys(): try: data = extract_features_by_category(single_id_df=f_df, category=key, category_column=category_column, related_features=field_map[key])[key.lower()] f_info[key.lower()] = data except: logger.error('id: {} key: \'{}\''.format(f_id, key)) out.append(f_info) logger.info('Generated: {}. Delta: {}'.format(len(out), len(out)-len(id_list))) return out
40bf0657d8ca7d141af919f03b9b6e7cc6887749
17,802
def sunset_hour_angle(sinLat, cosLat, sinDec, cosDec): """ Calculate local sunset hour angle (radians) given sines and cosines of latitude and declination. """ return np.arccos(np.clip(-sinDec / cosDec * sinLat / cosLat, -1, 1))
43e9e6d5026ea16f348f6704a8226763f0d08786
17,804
def handle_enable(options): """Enable a Sopel plugin. :param options: parsed arguments :type options: :class:`argparse.Namespace` :return: 0 if everything went fine; 1 if the plugin doesn't exist """ plugin_names = options.names allow_only = options.allow_only settings = utils.load_settings(options) usable_plugins = plugins.get_usable_plugins(settings) # plugin does not exist unknown_plugins = [ name for name in plugin_names if name not in usable_plugins ] if unknown_plugins: display_unknown_plugins(unknown_plugins) return 1 # do nothing and return an error code actually_enabled = tuple( name for name in plugin_names if _handle_enable_plugin(settings, usable_plugins, name, allow_only) ) # save if required if actually_enabled: settings.save() else: return 0 # nothing to disable or save, but not an error case # display plugins actually disabled by the command print(utils.get_many_text( actually_enabled, one='Plugin {item} enabled.', two='Plugins {first} and {second} enabled.', many='Plugins {left}, and {last} enabled.' )) return 0
e3b931fcd8f90e7570f80604d7690cf8c8485cd9
17,805
def compare_img_hist(img_path_1, img_path_2): """ Get the comparison result of the similarity by the histogram of the two images. This is suitable for checking whether the image is close in color. Conversely, it is not suitable for checking whether shapes are similar. Parameters ---------- img_path_1 : str The path of the first image for comparison. img_path_2 : str The path of the second image for comparison. Returns ------- similarity : float Similarity between two images. The maximum is set to 1.0, and the closer to 1.0, the higher the similarity. It is set by the mean value of the histogram of RGB channels. """ assert_img_exists(img_path=img_path_1) assert_img_exists(img_path=img_path_2) img_1 = cv2.imread(img_path_1) img_2 = cv2.imread(img_path_2) channels_list = [[0], [1], [2]] similarity_list = [] for channels in channels_list: img_1_hist = cv2.calcHist( images=[img_1], channels=channels, mask=None, histSize=[256], ranges=[0, 256] ) img_2_hist = cv2.calcHist( images=[img_2], channels=channels, mask=None, histSize=[256], ranges=[0, 256] ) similarity_unit = cv2.compareHist( H1=img_1_hist, H2=img_2_hist, method=cv2.HISTCMP_CORREL) similarity_list.append(similarity_unit) similarity = np.mean(similarity_list) return similarity
4fa34b3186b69464be15052a9427bb274f95d28f
17,806
import json def recombinant_example(resource_name, doc_type, indent=2, lang='json'): """ Return example data formatted for use in API documentation """ chromo = recombinant_get_chromo(resource_name) if chromo and doc_type in chromo.get('examples', {}): data = chromo['examples'][doc_type] elif doc_type == 'sort': data = "request_date desc, file_number asc" elif doc_type == 'filters': data = {"resource": "doc", "priority": "high"} elif doc_type == 'filter_one': data = {"file_number": "86086"} else: data = { "request_date": "2016-01-01", "file_number": "42042", "resource": "doc", "prioroty": "low", } if not isinstance(data, (list, dict)): return json.dumps(data) left = ' ' * indent if lang == 'pythonargs': return ',\n'.join( "%s%s=%s" % (left, k, json.dumps(data[k])) for k in sorted(data)) out = json.dumps(data, indent=2, sort_keys=True, ensure_ascii=False) return left[2:] + ('\n' + left[2:]).join(out.split('\n')[1:-1])
1a6cfe474425ba4d62472f571ca0eae0d3cfbff0
17,807
def _integral_diff(x, pdf, a, q): """Return difference between q and the integral of the function `pdf` between a and x. This is used for solving for the ppf.""" return integrate.quad(pdf, a, x)[0] - q
616cfba7361c92f7cbdf8bac55f9a65a60c2c32f
17,808
def Fcomplete(t,y,k0m,k1,k2m,k2p,k3,k4,k5m,k6m,k7,Kr0,Kr1,Kr2,Kr2p,Km5,Km6,Km7,Gt,Rt,Mt,k_Gp,Gpt,n): """ Right hand side of ODE y'(t) = f(t,y,...) It receives parameters as f_args, as given py param_array (see param.py) 3 components: G, R, M """ k0=k0m*Kr0 # kmi =ki/Kri or ki/Kmi k2=k2m*Kr2 k5=k5m*Km5 k6=k6m*Km6 G=y[0] R=y[1] M=y[2] if len(y) > 3: Gp=y[3] # GEF perturbation (what's given in the data) Gpvis=y[4] # GEF perturbation (what's given in the data) else: Gp = 0. Gpvis = 0 return np.array( [ k3*R*(Gt-G) - k4*M*G, (k0*G+Gpt*Gp)*(Rt-R)/(Kr0+(Rt-R)) + k1*(Rt-R)/(Kr1+(Rt-R)) - k2*R/(Kr2+R), k5*R*(Mt-M)**n/(Km5**n+(Mt-M)**n) - k6*M/(Km6+M) + k7*(Mt-M)/(Km7+(Mt-M)),k_Gp-k_Gp*Gp-k4*Gp*M, k_Gp-k_Gp*Gpvis] )
a6b614a34fb0c2dcaf29107c05eb397312825568
17,809
def lu_solve(l: np.ndarray, u: np.ndarray, b: np.ndarray) -> np.ndarray: """Решение СЛАУ, прошедшей через LU-разложение. Требуется предварительно умножить вектор правых частей на матрицу перестановки. :param l: нижняя треугольная матрица :param u: верхняя треугольная матрица :param b: вектор правых частей СЛАУ :return: вектор-решение СЛАУ """ n = l.shape[0] z = np.zeros_like(b) z[0] = b[0] for i in range(1, n): s = 0 for j in range(i): s += l[i, j] * z[j] z[i] = b[i] - s x = np.zeros_like(b) x[-1] = z[-1] / u[-1, -1] for i in range(n - 2, -1, -1): s = 0 for j in range(i + 1, n): s += u[i, j] * x[j] x[i] = (z[i] - s) / u[i, i] return x
5429fe91dfb15a5cf306871d07f0204f8f23a405
17,810
def zr_bfr_tj(): """ Real Name: b'Zr bfr Tj' Original Eqn: b'Zr aftr Dam-Wr sup aftr Zr Dam+(Wr sup aftr Zr Dam*0.2)' Units: b'' Limits: (None, None) Type: component b'' """ return zr_aftr_dam() - wr_sup_aftr_zr_dam() + (wr_sup_aftr_zr_dam() * 0.2)
aae58ac349a7039afd0f3f3f12166a39de8afe31
17,812
def simplify(n): """Remove decimal places.""" return int(round(n))
9856c8f5c0448634956d1d05e44027da2f4ebe6a
17,813
def resnet_qc_18(**kwargs): """Constructs a ResNet-18 model.""" model = ResNetQC(BasicBlock, [2, 2, 2, 2], **kwargs) return model
a1554e044dd69e96474602c88e8e73d4d697c861
17,814
import scipy.sparse def sparse_from_npz(file, **_kw): """ Possible dispatch function for ``from_path_impl``'s ``from_npz``. Reads a scipy sparse matrix. """ return scipy.sparse.load_npz(file)
9909975ff0309cde98117e64718fe292de574987
17,815
import copy def get_config(): """ Read the configuration :returns: current configuration """ global config return copy.deepcopy(config)
3e9b064123ed9165c04cbc7e1c2b0d646703cb7a
17,816
def resnext20_2x64d_cifar100(classes=100, **kwargs): """ ResNeXt-20 (2x64d) model for CIFAR-100 from 'Aggregated Residual Transformations for Deep Neural Networks,' http://arxiv.org/abs/1611.05431. Parameters: ---------- classes : int, default 100 Number of classification classes. pretrained : bool, default False Whether to load the pretrained weights for model. root : str, default '~/.tensorflow/models' Location for keeping the model parameters. """ return get_resnext_cifar(classes=classes, blocks=20, cardinality=2, bottleneck_width=64, model_name="resnext20_2x64d_cifar100", **kwargs)
147b9ff5565fdbbcaab68d66fbfa3e8a5a4b6062
17,817
def test_target(target): """Returns the label for the corresponding target in the test tree.""" label = to_label(target) test_package = label.package.replace("src/main/", "src/test/", 1) return Label("@{workspace}//{package}:{target_name}".format( workspace = label.workspace_name, package = test_package, target_name = label.name, ))
8b4391a5acdea7b851ef6606ad3dfa0b21132ae1
17,818
def pred_fwd_rc(model, input_npy, output_fwd, output_rc, replicates=1, batch_size=512): """Predict pathogenic potentials from a preprocessed numpy array and its reverse-complement.""" y_fwd, _ = predict_npy(model, input_npy, output_fwd, rc=False, replicates=replicates, batch_size=batch_size) y_rc, _ = predict_npy(model, input_npy, output_rc, rc=True, replicates=replicates, batch_size=batch_size) return y_fwd, y_rc
90ed6c3a29dd3e24cef45415ec51381bf32a8b37
17,819
def get_api_version(version_string): """Returns checked APIVersion object""" version_string = str(version_string) api_version = APIVersion(version_string) check_major_version(api_version) return api_version
9bbc88c3aee2139dc39367d4788d6c382f711903
17,821
def evaluate_g9( tau7, tau8, tau9, tau10, tau11, s9 ): """ Evaluate the ninth constraint equation and also return the Jacobian :param float tau7: The seventh tau parameter :param float tau8: The eighth tau parameter :param float tau9: The ninth tau parameter :param float tau10: The tenth tau parameter :param float tau11: The eleventh tau parameter :param float s9: The value of the constraint """ return tau7 + 2 * tau8 - abs( tau9 + tau10 + tau11 ) - s9**2,\ { 'tau7':1., 'tau8':2., 'tau9':float( -np.sign( tau9 ) ),\ 'tau10':float( -np.sign( tau10 ) ),\ 'tau11':( -np.sign( tau11 ) ), 's9':-2*s9 }
9f8181e4d6abac9207eec721d6b347a560778ecf
17,822
def iterable(value, allow_empty = False, forbid_literals = (str, bytes), minimum_length = None, maximum_length = None, **kwargs): """Validate that ``value`` is a valid iterable. .. hint:: This validator checks to ensure that ``value`` supports iteration using any of Python's three iteration protocols: the ``__getitem__`` protocol, the ``__iter__`` / ``next()`` protocol, or the inheritance from Python's `Iterable` abstract base class. If ``value`` supports any of these three iteration protocols, it will be validated. However, if iteration across ``value`` raises an unsupported exception, this function will raise an :exc:`IterationFailedError <validator_collection.errors.IterationFailedError>` :param value: The value to validate. :param allow_empty: If ``True``, returns :obj:`None <python:None>` if ``value`` is empty. If ``False``, raises a :class:`EmptyValueError <validator_collection.errors.EmptyValueError>` if ``value`` is empty. Defaults to ``False``. :type allow_empty: :class:`bool <python:bool>` :param forbid_literals: A collection of literals that will be considered invalid even if they are (actually) iterable. Defaults to :class:`str <python:str>` and :class:`bytes <python:bytes>`. :type forbid_literals: iterable :param minimum_length: If supplied, indicates the minimum number of members needed to be valid. :type minimum_length: :class:`int <python:int>` :param maximum_length: If supplied, indicates the minimum number of members needed to be valid. :type maximum_length: :class:`int <python:int>` :returns: ``value`` / :obj:`None <python:None>` :rtype: iterable / :obj:`None <python:None>` :raises EmptyValueError: if ``value`` is empty and ``allow_empty`` is ``False`` :raises NotAnIterableError: if ``value`` is not a valid iterable or :obj:`None <python:None>` :raises IterationFailedError: if ``value`` is a valid iterable, but iteration fails for some unexpected exception :raises MinimumLengthError: if ``minimum_length`` is supplied and the length of ``value`` is less than ``minimum_length`` and ``whitespace_padding`` is ``False`` :raises MaximumLengthError: if ``maximum_length`` is supplied and the length of ``value`` is more than the ``maximum_length`` """ if not value and not allow_empty: raise errors.EmptyValueError('value (%s) was empty' % value) elif value is None: return None minimum_length = integer(minimum_length, allow_empty = True, force_run = True) # pylint: disable=E1123 maximum_length = integer(maximum_length, allow_empty = True, force_run = True) # pylint: disable=E1123 if isinstance(value, forbid_literals): raise errors.NotAnIterableError('value type (%s) not iterable' % type(value)) try: iter(value) except TypeError: raise errors.NotAnIterableError('value type (%s) not iterable' % type(value)) except Exception as error: raise errors.IterationFailedError('iterating across value raised an unexpected Exception: "%s"' % error) if value and minimum_length is not None and len(value) < minimum_length: raise errors.MinimumLengthError( 'value has fewer items than the minimum length %s' % minimum_length ) if value and maximum_length is not None and len(value) > maximum_length: raise errors.MaximumLengthError( 'value has more items than the maximum length %s' % maximum_length ) return value
57de6a43243d9c611725f1e9987e881cf1485b63
17,824
from typing import List def settings_notification(color: bool, messages: List[ExitMessage]) -> Form: """Generate a warning notification for settings errors. :param messages: List of messages to display :param color: Bool to reflect if color is transferred or not :returns: The form to display """ # Take the initial warning if there is one if messages[0].prefix is ExitPrefix.WARNING: title = messages.pop(0).to_lines(color=False, width=console_width(), with_prefix=True)[0] else: title = "Warning" formatted = ExitMessages(messages).to_strings(color=color, width=console_width()) formatted_curses = CursesLines( tuple(ansi_to_curses(line) for line in formatted), ) form = Form( FormType.NOTIFICATION, title=title, title_color=Color.YELLOW, fields=[ FieldCursesInformation( name="settings_warning", information=formatted_curses, ), ], ) return form
a1ff085c76e84e01ba293f17b662626a39fda26f
17,825
def message_type(ctx: 'Context', *types): """Filters massage_type with one of selected types. Assumes update_type one of message, edited_message, channel_post, edited_channel_post. :param ctx: :param types: :return: True or False """ m = None if ctx.update.update_type is UpdateType.message: m = ctx.update.message elif ctx.update.update_type is UpdateType.edited_message: m = ctx.update.edited_message elif ctx.update.update_type is UpdateType.channel_post: m = ctx.update.channel_post elif ctx.update.update_type is UpdateType.edited_channel_post: m = ctx.update.edited_channel_post else: return False if m.message_type not in types: return False return True
231bbb3b802d6f6dcf4a22af7704fae3ce24e783
17,826
import math def VSphere(R): """ Volume of a sphere or radius R. """ return 4. * math.pi * R * R * R / 3.
9e99d19683d9e86c2db79189809d24badccc197b
17,827
from typing import Optional from typing import Any def resolve_variable( var_name: str, var_def: BlueprintVariableTypeDef, provided_variable: Optional[Variable], blueprint_name: str, ) -> Any: """Resolve a provided variable value against the variable definition. Args: var_name: The name of the defined variable on a blueprint. var_def: A dictionary representing the defined variables attributes. provided_variable: The variable value provided to the blueprint. blueprint_name: The name of the blueprint that the variable is being applied to. Returns: The resolved variable value, could be any python object. Raises: MissingVariable: Raised when a variable with no default is not provided a value. UnresolvedBlueprintVariable: Raised when the provided variable is not already resolved. ValueError: Raised when the value is not the right type and cannot be cast as the correct type. Raised by :func:`runway.cfngin.blueprints.base.validate_variable_type` ValidatorError: Raised when a validator raises an exception. Wraps the original exception. """ try: var_type = var_def["type"] except KeyError: raise VariableTypeRequired(blueprint_name, var_name) from None if provided_variable: if not provided_variable.resolved: raise UnresolvedBlueprintVariable(blueprint_name, provided_variable) value = provided_variable.value else: # Variable value not provided, try using the default, if it exists # in the definition try: value = var_def["default"] except KeyError: raise MissingVariable(blueprint_name, var_name) from None # If no validator, return the value as is, otherwise apply validator validator = var_def.get("validator", lambda v: v) try: value = validator(value) except Exception as exc: raise ValidatorError(var_name, validator.__name__, value, exc) from exc # Ensure that the resulting value is the correct type value = validate_variable_type(var_name, var_type, value) allowed_values = var_def.get("allowed_values") if not validate_allowed_values(allowed_values, value): raise ValueError( f"Invalid value passed to {var_name} in Blueprint {blueprint_name}. " f"Got '{value}', expected one of {allowed_values}." ) return value
1df7d4804f104c8f746999aaaad5f91ca96b5f78
17,828
def additional_args(**kwargs): """ Additional command-line arguments. Provides additional command-line arguments that are unique to the extraction process. Returns ------- additional_args : dict Dictionary of tuples in the form (fixed,keyword) that can be passed to an argument parser to create a new command-line option """ module_name = kwargs.get('module_name', __name__) base_defaults = get_defaults(module_name) additional_args = {} table_help = "The input metadata table to use." table_args = ['table'] table_kwargs = {'help': table_help} additional_args['table'] = (table_args, table_kwargs) bkg_help = "Whether to subtract background before or after applying " bkg_help += "flatfield. Default is 'flat_first'. Available options are " bkg_help += "'flat_first', 'bkg_first' and 'bkg_only'." bkg_args = ['-b', '--bkg_flat_order'] bkg_kwargs = {'dest': 'bkg_flat_order', 'default': base_defaults['bkg_flat_order'], 'help': bkg_help} additional_args['bkg_flat_order'] = (bkg_args, bkg_kwargs) plots_help = "Include result plots while running (default False)." plots_args = ["-p", "--plots"] plots_kwargs = {'dest': 'plots', 'action': 'store_true', 'default': base_defaults['plots'], 'help': trace_help} additional_args['plots'] = (plots_args, plots_kwargs) return additional_args
1b0f10f7f9c60077de9c580163b5e3893da63a83
17,830
import html def extract_images_url(url, source): """ Extract image url for a chapter """ r = s.get(url) tree = html.fromstring(r.text) if source == 'blogtruyen': return tree.xpath('//*[@id="content"]/img/@src') elif source == 'nettruyen': return tree.xpath('//*[@class="reading-detail box_doc"]/div/img/@src') elif source == 'image-container-manga': return tree.xpath('//*[@class="image-container-manga"]/div/img/@src')
f2299d3e1dde38fc7ac2d3789e8145f5a71a1299
17,831
from typing import Dict from typing import Any from typing import Optional from typing import Literal from typing import List import pathlib def _ntuple_paths( general_path: str, region: Dict[str, Any], sample: Dict[str, Any], systematic: Dict[str, Any], template: Optional[Literal["Up", "Down"]], ) -> List[pathlib.Path]: """Returns the paths to ntuples for a region-sample-systematic-template. A path is built starting from the path specified in the general options in the configuration file. This path can contain placeholders for region- and sample- specific overrides, via ``{Region}`` and ``{Sample}``. For non-nominal templates, it is possible to override the sample path if the ``SamplePaths`` option is specified for the template. If ``SamplePaths`` is a list, return a list of paths (one per entry in the list). Args: general_path (str): path specified in general settings, with sections that can be overridden by region / sample settings region (Dict[str, Any]): containing all region information sample (Dict[str, Any]): containing all sample information systematic (Dict[str, Any]): containing all systematic information template (Optional[Literal["Up", "Down"]]): template considered: "Up", "Down", or None for nominal Returns: List[pathlib.Path]: list of paths to ntuples """ # obtain region and sample paths, if they are defined region_path = region.get("RegionPath", None) sample_paths = sample.get("SamplePaths", None) # check whether a systematic is being processed, and whether overrides exist if template is not None: # determine whether the template has an override for RegionPath specified region_override = _check_for_override(systematic, template, "RegionPath") if region_override is not None: region_path = region_override # check for SamplePaths override sample_override = _check_for_override(systematic, template, "SamplePaths") if sample_override is not None: sample_paths = sample_override region_template_exists = "{RegionPath}" in general_path if region_path is not None: if not region_template_exists: log.warning( "region override specified, but {RegionPath} not found in default path" ) general_path = general_path.replace("{RegionPath}", region_path) elif region_template_exists: raise ValueError(f"no path setting found for region {region['Name']}") sample_template_exists = "{SamplePaths}" in general_path if sample_paths is not None: if not sample_template_exists: log.warning( "sample override specified, but {SamplePaths} not found in default path" ) # SamplePaths can be a list, so need to construct all possible paths sample_paths = configuration._setting_to_list(sample_paths) path_list = [] for sample_path in sample_paths: path_list.append(general_path.replace("{SamplePaths}", sample_path)) elif sample_template_exists: raise ValueError(f"no path setting found for sample {sample['Name']}") else: # no need for multiple paths, and no SamplePaths are present, so turn # the existing path into a list path_list = [general_path] # convert the contents of path_lists to paths and return them paths = [pathlib.Path(path) for path in path_list] return paths
efb96f1b977c30c83890c2030f312c0066eed4d8
17,832
def svn_ra_do_diff2(*args): """ svn_ra_do_diff2(svn_ra_session_t session, svn_revnum_t revision, char diff_target, svn_boolean_t recurse, svn_boolean_t ignore_ancestry, svn_boolean_t text_deltas, char versus_url, svn_delta_editor_t diff_editor, void diff_baton, apr_pool_t pool) -> svn_error_t """ return _ra.svn_ra_do_diff2(*args)
8964a6304582daf5631e8e26c8cf7ff9167837dd
17,833
def ntuple_dict_length(ntuple_dict): """Returns a dictionary from track types to the number of tracks of that type. Raises an exception of any value lists within one of its track properties dicts are different lengths.""" return dict(map(lambda track_type, track_prop_dict: (track_type, track_prop_dict_length(track_prop_dict)), ntuple_dict.keys(), ntuple_dict.values()))
e5f7805dfb4a641268792e4e8982e21a05298f9e
17,834
def range_ngram_distrib(text, n, top_most=-1): """ List n-grams with theis probabilities from the most popular to the smaller ones :param text: text :param n: n of n-gram :param top_most: count of most popular n-grams to be returned, or -1 to return all :return: list of ngrams, list of probs """ ngram_counts = count_ngrams(text, n) if top_most >= 0: ngrams = np.asarray(ngram_counts.most_common(top_most))[:, 0] counts = np.asarray(np.asarray(ngram_counts.most_common(top_most))[:, 1], dtype=int) else: ngrams = np.asarray(ngram_counts.most_common())[:, 0] counts = np.asarray(np.asarray(ngram_counts.most_common())[:, 1], dtype=int) return ngrams, counts
0822b2e7824aee6cc28e2a734dea5d9aff0df1ac
17,835
import functools def require_methods(*methods): """Returns a decorator which produces an error unless request.method is one of |methods|. """ def decorator(func): @functools.wraps(func) def wrapped(request, *args, **kwds): if request.method not in methods: allowed = ', '.join(methods) rsp = HttpTextResponse('This requires a specific method: %s' % allowed, status=405) rsp['Allow'] = allowed return func(request, *args, **kwds) return wrapped return decorator
6c02675836c95f9ee7bab124cc1287bc6d3dfb95
17,837
def getUnit3d(prompt, default=None): """ Read a Unit3d for the termial with checking. This will accapt and directon in any format accepted by Unit3d().parseAngle() Allowed formats * x,y,z or [x,y,z] three floats * theta,psi or [theta,psi], in radians (quoted in "" for degrees) * theta in radians (or quotes in "" for degrees) :param prompt: the promp to be displayed :type prompt: str :param default: the default Unit3d :type: Unit3d """ while True: val = __getInput(prompt, default) try: if isinstance(val, str): # Its a string val = eval(val) # Eval list u = Unit3d().parseAngle(val) return u except (ValueError, NameError, ZeroDivisionError, SyntaxError): logger.error("Conversion of '{0:s}' to Unit3d failed.".format(str(val)))
dd39a706114c72ce9059686e342e8a1db1e3464b
17,838
def checkOverlap(ra, rb): """ check the overlap of two anchors,ra=[chr,left_start,left_end,chr,right_start,right_end] """ if checkOneEndOverlap(ra[1], ra[2], rb[1], rb[2]) and checkOneEndOverlap( ra[4], ra[5], rb[4], rb[5]): return True return False
9644ed7e2de9d9091e21a64c7c4cd43a0e0e1210
17,839
import typing def saveable(item: praw.models.reddit.base.RedditBase) -> dict[str, typing.Any]: """Generate a saveable dict from an instance""" result = {k: legalize(v) for k, v in item.__dict__.items() if not k.startswith("_")} return _parent_ids_interpreted(result)
6e9e7092045e321de2beeba7debbd6dc2a2b2e61
17,840
import re def decode_Tex_accents(in_str): """Converts a string containing LaTex accents (i.e. "{\\`{O}}") to ASCII (i.e. "O"). Useful for correcting author names when bib entries were queried from web via doi :param in_str: input str to decode :type in_str: str :return: corrected string :rtype: str """ # replaces latex accents with ascii letter (no accent) pat = "\{\\\\'\{(\w)\}\}" out = in_str for x in re.finditer(pat, in_str): out = out.replace(x.group(), x.groups()[0]) # replace latex {\textsinglequote} with underscore out = out.replace('{\\textquotesingle}', "_") # replace actual single quotes with underscore for bibtex compatibility out = out.replace("'", '_') return out
2a4bd71b53cdab047a1ddd1e0e6fd6e9c81b0e0a
17,841
from typing import Mapping def tensor_dict_eq(dict1: Mapping, dict2: Mapping) -> bool: """Checks the equivalence between 2 dictionaries, that can contain torch Tensors as value. The dictionary can be nested with other dictionaries or lists, they will be checked recursively. :param dict1: Dictionary to compare. :param dict2: Dictionary to compare. :return: True, if dict1 and dict2 are equal, false otherwise. """ if len(dict1) != len(dict2): return False for (key1, value1), (key2, value2) in zip(dict1.items(), dict2.items()): key_equal = key1 == key2 value_equal = tensor_container_element_eq(value1, value2) if (not key_equal) or (not value_equal): return False return True
db3d7d23e633f5a240d0d0d13f6836494dc44e20
17,842
def calculate_stability(derivatives): """ Calculate the stability-axis derivatives with the body-axis derivatives. """ d = derivatives if 'stability' not in d: d['stability'] = {} slat = calculate_stability_lateral(d['body'], np.deg2rad(d['alpha0'])) slong = calculate_stability_longitudinal(d['body'], np.deg2rad(d['alpha0'])) d['stability'].update(slat) d['stability'].update(slong) return d
888f63454265b3811751ae91654a9de083f25fec
17,843
from datetime import datetime def read_malmipsdetect(file_detect): """ This function is used to read the MALMI detection file which contains detection information, that is for each detected event how many stations are triggered, how many phases are triggered. Those information can be used for quality control. Parameters ---------- file_detect : str The filename including path of the input file. Raises ------ ValueError datetime format is not consistent with defined one. Returns ------- detect_info : dic detect_info['starttime'] : list of datetime starttime and folder name of the detected event; detect_info['endtime'] : list of datetime endtime of the detected event; detect_info['station'] : list of float number of stations triggered of the detected event; detect_info['phase'] : list of float number of phase triggered of the detected event; """ format_f = ['starttime', 'endtime', 'station', 'phase'] datetime_format_26 = '%Y-%m-%dT%H:%M:%S.%f' # datetime format in the input file datetime_format_19 = '%Y-%m-%dT%H:%M:%S' # datetime format in the input file # read file df = pd.read_csv(file_detect, delimiter=' ', header=None, names=format_f, skipinitialspace=True, encoding='utf-8', comment='#') # format output data detect_info = {} detect_info['starttime'] = [] detect_info['endtime'] = [] for ii in range(len(df)): if len(df.loc[ii,'starttime']) == 19: detect_info['starttime'].append(datetime.datetime.strptime(df.loc[ii,'starttime'], datetime_format_19)) # origin time elif len(df.loc[ii,'starttime']) == 26: detect_info['starttime'].append(datetime.datetime.strptime(df.loc[ii,'starttime'], datetime_format_26)) # origin time else: raise ValueError('Error! Input datetime format not recoginzed!') if len(df.loc[ii,'endtime']) == 19: detect_info['endtime'].append(datetime.datetime.strptime(df.loc[ii,'endtime'], datetime_format_19)) # origin time elif len(df.loc[ii,'endtime']) == 26: detect_info['endtime'].append(datetime.datetime.strptime(df.loc[ii,'endtime'], datetime_format_26)) # origin time else: raise ValueError('Error! Input datetime format not recoginzed!') detect_info['station'] = list(df['station']) detect_info['phase'] = list(df['phase']) return detect_info
cf42172e9f286254f31b2e57361c25360ed73d10
17,846
def GeneratePermissionUrl(client_id, scope='https://mail.google.com/'): """Generates the URL for authorizing access. This uses the "OAuth2 for Installed Applications" flow described at https://developers.google.com/accounts/docs/OAuth2InstalledApp Args: client_id: Client ID obtained by registering your app. scope: scope for access token, e.g. 'https://mail.google.com' Returns: A URL that the user should visit in their browser. """ params = {} params['client_id'] = client_id params['redirect_uri'] = REDIRECT_URI params['scope'] = scope params['response_type'] = 'code' return '%s?%s' % (AccountsUrl('o/oauth2/auth'), FormatUrlParams(params))
b4471e78eab772a57be8d3073451050fd78d904c
17,847
def get_scorekeeper_details(): """Retrieve a list of scorekeeper and their corresponding appearances""" return scorekeepers.get_scorekeeper_details(database_connection)
78092d0ae6bcb21ee86a1fddfc678472c81eb55f
17,849
def layer_norm(input_tensor, axis): """Run layer normalization on the axis dimension of the tensor.""" layer_norma = tf.keras.layers.LayerNormalization(axis = axis) return layer_norma(input_tensor)
9687dedf8c3a624013c5188401e86d7ef6d73969
17,850
def compute_depth(disparity, focal_length, distance_between_cameras): """ Computes depth in meters Input: -Disparity in pixels -Focal Length in pixels -Distance between cameras in meters Output: -Depth in meters """ with np.errstate(divide='ignore'): #ignore division by 0 # standard depth and disparity formula depth = (focal_length * distance_between_cameras) / disparity return depth
5ea475dae1d4aa0c429a7f6766293a39d403904d
17,851
def lecture(source=None,target=None,fseed=100,fpercent=100): """ Create conversion of the source file and the target file Shuffle method is used, base on the seed (default 100) """ seed(fseed) try: copysource = [] copytarget = [] if(source!=None and target!=None): source = create_inter_without(source) target = create_inter_without(target) shuffle(source) shuffle(target) for i in range(0,(int(len(source)*fpercent/100))): copysource.append(source[i]) if(len(copysource)==0): copysource.append(source[0]) for i in range(0,(int(len(target)*fpercent/100))): copytarget.append(target[i]) if(len(copytarget)==0): copytarget.append(target[0]) return copysource,copytarget except Exception as e: print(e)
b0878ab2b3d888db984aa0644080578a85e9e554
17,852
def getScale(im, scale, max_scale=None): """ 获得图片的放缩比例 :param im: :param scale: :param max_scale: :return: """ f = float(scale) / min(im.shape[0], im.shape[1]) if max_scale != None and f * max(im.shape[0], im.shape[1]) > max_scale: f = float(max_scale) / max(im.shape[0], im.shape[1]) return f
52ae195714c1d39bccec553797bf6dbf2c6c2795
17,853
def load_swc(path): """Load swc morphology from file Used for sKCSD Parameters ---------- path : str Returns ------- morphology : np.array """ morphology = np.loadtxt(path) return morphology
0b0a4f82344b6c16180b4a52b1077a0f28966fde
17,854
def quintic_extrap((y1,y2,y3,y4,y5,y6), (x1,x2,x3,x4,x5,x6)): """ Quintic extrapolate from three x,y pairs to x = 0. y1,y2...: y values from x,y pairs. Note that these can be arrays of values. x1,x2...: x values from x,y pairs. These should be scalars. Returns extrapolated y at x=0. """ # This horrid implementation came from using CForm in Mathematica. Power = numpy.power return (-(x1*(x1 - x3)*x3*(x1 - x4)*(x3 - x4)*x4*(x1 - x5)* (x3 - x5)*(x4 - x5)*x5*(x1 - x6)*(x3 - x6)* (x4 - x6)*(x5 - x6)*x6*y2) + Power(x2,5)*(-(x1*(x1 - x4)*x4*(x1 - x5)* (x4 - x5)*x5*(x1 - x6)*(x4 - x6)*(x5 - x6)* x6*y3) + Power(x3,4)* (-(x1*(x1 - x5)*x5*(x1 - x6)*(x5 - x6)*x6* y4) + Power(x4,3)* (x1*x6*(-x1 + x6)*y5 + Power(x5,2)*(x6*y1 - x1*y6) + x5*(-(Power(x6,2)*y1) + Power(x1,2)*y6)) + Power(x4,2)* (x1*x6*(Power(x1,2) - Power(x6,2))*y5 + Power(x5,3)*(-(x6*y1) + x1*y6) + x5*(Power(x6,3)*y1 - Power(x1,3)*y6)) + x4*(Power(x1,2)*Power(x6,2)*(-x1 + x6)* y5 + Power(x5,3)* (Power(x6,2)*y1 - Power(x1,2)*y6) + Power(x5,2)* (-(Power(x6,3)*y1) + Power(x1,3)*y6))) + Power(x3,3)* (x1*x5*x6*(Power(x1,3)*(x5 - x6) + x5*x6*(Power(x5,2) - Power(x6,2)) + x1*(-Power(x5,3) + Power(x6,3)))*y4 + Power(x4,4)* (x1*(x1 - x6)*x6*y5 + Power(x5,2)*(-(x6*y1) + x1*y6) + x5*(Power(x6,2)*y1 - Power(x1,2)*y6)) + x4*(Power(x1,2)*Power(x6,2)* (Power(x1,2) - Power(x6,2))*y5 + Power(x5,4)* (-(Power(x6,2)*y1) + Power(x1,2)*y6) + Power(x5,2)* (Power(x6,4)*y1 - Power(x1,4)*y6)) + Power(x4,2)* (x1*x6*(-Power(x1,3) + Power(x6,3))*y5 + Power(x5,4)*(x6*y1 - x1*y6) + x5*(-(Power(x6,4)*y1) + Power(x1,4)*y6))) + x3*(Power(x1,2)*(x1 - x5)*Power(x5,2)* (x1 - x6)*(x5 - x6)*Power(x6,2)*y4 + Power(x4,4)* (Power(x1,2)*(x1 - x6)*Power(x6,2)*y5 + Power(x5,3)* (-(Power(x6,2)*y1) + Power(x1,2)*y6) + Power(x5,2)* (Power(x6,3)*y1 - Power(x1,3)*y6)) + Power(x4,2)* (Power(x1,3)*(x1 - x6)*Power(x6,3)*y5 + Power(x5,4)* (-(Power(x6,3)*y1) + Power(x1,3)*y6) + Power(x5,3)* (Power(x6,4)*y1 - Power(x1,4)*y6)) + Power(x4,3)* (Power(x1,2)*Power(x6,2)* (-Power(x1,2) + Power(x6,2))*y5 + Power(x5,4)* (Power(x6,2)*y1 - Power(x1,2)*y6) + Power(x5,2)* (-(Power(x6,4)*y1) + Power(x1,4)*y6))) + Power(x3,2)* (x1*x5*x6*(Power(x5,2)*Power(x6,2)* (-x5 + x6) + Power(x1,3)* (-Power(x5,2) + Power(x6,2)) + Power(x1,2)*(Power(x5,3) - Power(x6,3))) *y4 + Power(x4,4)* (x1*x6*(-Power(x1,2) + Power(x6,2))*y5 + Power(x5,3)*(x6*y1 - x1*y6) + x5*(-(Power(x6,3)*y1) + Power(x1,3)*y6)) + Power(x4,3)* (x1*x6*(Power(x1,3) - Power(x6,3))*y5 + Power(x5,4)*(-(x6*y1) + x1*y6) + x5*(Power(x6,4)*y1 - Power(x1,4)*y6)) + x4*(Power(x1,3)*Power(x6,3)*(-x1 + x6)* y5 + Power(x5,4)* (Power(x6,3)*y1 - Power(x1,3)*y6) + Power(x5,3)* (-(Power(x6,4)*y1) + Power(x1,4)*y6)))) + Power(x2,4)*(x1*(x1 - x4)*x4*(x1 - x5)* (x4 - x5)*x5*(x1 - x6)*(x4 - x6)*(x5 - x6)* x6*(x1 + x4 + x5 + x6)*y3 + Power(x3,5)*(x1*(x1 - x5)*x5*(x1 - x6)* (x5 - x6)*x6*y4 + Power(x4,3)* (x1*(x1 - x6)*x6*y5 + Power(x5,2)*(-(x6*y1) + x1*y6) + x5*(Power(x6,2)*y1 - Power(x1,2)*y6)) + x4*(Power(x1,2)*(x1 - x6)*Power(x6,2)*y5 + Power(x5,3)* (-(Power(x6,2)*y1) + Power(x1,2)*y6) + Power(x5,2)* (Power(x6,3)*y1 - Power(x1,3)*y6)) + Power(x4,2)* (x1*x6*(-Power(x1,2) + Power(x6,2))*y5 + Power(x5,3)*(x6*y1 - x1*y6) + x5*(-(Power(x6,3)*y1) + Power(x1,3)*y6))) + Power(x3,2)* (x1*x5*(Power(x1,2) - Power(x5,2))*x6* (Power(x1,2) - Power(x6,2))* (Power(x5,2) - Power(x6,2))*y4 + Power(x4,5)* (x1*x6*(Power(x1,2) - Power(x6,2))*y5 + Power(x5,3)*(-(x6*y1) + x1*y6) + x5*(Power(x6,3)*y1 - Power(x1,3)*y6)) + x4*(Power(x1,3)*Power(x6,3)* (Power(x1,2) - Power(x6,2))*y5 + Power(x5,5)* (-(Power(x6,3)*y1) + Power(x1,3)*y6) + Power(x5,3)* (Power(x6,5)*y1 - Power(x1,5)*y6)) + Power(x4,3)* (x1*x6*(-Power(x1,4) + Power(x6,4))*y5 + Power(x5,5)*(x6*y1 - x1*y6) + x5*(-(Power(x6,5)*y1) + Power(x1,5)*y6))) + Power(x3,3)* (x1*x5*x6*(-(Power(x5,4)*x6) + x5*Power(x6,4) + Power(x1,4)*(-x5 + x6) + x1*(Power(x5,4) - Power(x6,4)))*y4 + Power(x4,5)* (x1*x6*(-x1 + x6)*y5 + Power(x5,2)*(x6*y1 - x1*y6) + x5*(-(Power(x6,2)*y1) + Power(x1,2)*y6)) + Power(x4,2)* (x1*x6*(Power(x1,4) - Power(x6,4))*y5 + Power(x5,5)*(-(x6*y1) + x1*y6) + x5*(Power(x6,5)*y1 - Power(x1,5)*y6)) + x4*(Power(x1,2)*Power(x6,2)* (-Power(x1,3) + Power(x6,3))*y5 + Power(x5,5)* (Power(x6,2)*y1 - Power(x1,2)*y6) + Power(x5,2)* (-(Power(x6,5)*y1) + Power(x1,5)*y6))) + x3*(Power(x1,2)*Power(x5,2)*Power(x6,2)* (-(Power(x5,3)*x6) + x5*Power(x6,3) + Power(x1,3)*(-x5 + x6) + x1*(Power(x5,3) - Power(x6,3)))*y4 + Power(x4,5)* (Power(x1,2)*Power(x6,2)*(-x1 + x6)*y5 + Power(x5,3)* (Power(x6,2)*y1 - Power(x1,2)*y6) + Power(x5,2)* (-(Power(x6,3)*y1) + Power(x1,3)*y6)) + Power(x4,3)* (Power(x1,2)*Power(x6,2)* (Power(x1,3) - Power(x6,3))*y5 + Power(x5,5)* (-(Power(x6,2)*y1) + Power(x1,2)*y6) + Power(x5,2)* (Power(x6,5)*y1 - Power(x1,5)*y6)) + Power(x4,2)* (Power(x1,3)*Power(x6,3)* (-Power(x1,2) + Power(x6,2))*y5 + Power(x5,5)* (Power(x6,3)*y1 - Power(x1,3)*y6) + Power(x5,3)* (-(Power(x6,5)*y1) + Power(x1,5)*y6)))) + Power(x2,3)*(-(x1*(x1 - x4)*x4*(x1 - x5)* (x4 - x5)*x5*(x1 - x6)*(x4 - x6)*(x5 - x6)* x6*(x5*x6 + x4*(x5 + x6) + x1*(x4 + x5 + x6))*y3) + Power(x3,5)*(x1*x5*x6* (-(Power(x5,3)*x6) + x5*Power(x6,3) + Power(x1,3)*(-x5 + x6) + x1*(Power(x5,3) - Power(x6,3)))*y4 + Power(x4,4)* (x1*x6*(-x1 + x6)*y5 + Power(x5,2)*(x6*y1 - x1*y6) + x5*(-(Power(x6,2)*y1) + Power(x1,2)*y6)) + Power(x4,2)* (x1*x6*(Power(x1,3) - Power(x6,3))*y5 + Power(x5,4)*(-(x6*y1) + x1*y6) + x5*(Power(x6,4)*y1 - Power(x1,4)*y6)) + x4*(Power(x1,2)*Power(x6,2)* (-Power(x1,2) + Power(x6,2))*y5 + Power(x5,4)* (Power(x6,2)*y1 - Power(x1,2)*y6) + Power(x5,2)* (-(Power(x6,4)*y1) + Power(x1,4)*y6))) + Power(x3,4)* (x1*x5*x6*(Power(x1,4)*(x5 - x6) + x5*x6*(Power(x5,3) - Power(x6,3)) + x1*(-Power(x5,4) + Power(x6,4)))*y4 + Power(x4,5)* (x1*(x1 - x6)*x6*y5 + Power(x5,2)*(-(x6*y1) + x1*y6) + x5*(Power(x6,2)*y1 - Power(x1,2)*y6)) + x4*(Power(x1,2)*Power(x6,2)* (Power(x1,3) - Power(x6,3))*y5 + Power(x5,5)* (-(Power(x6,2)*y1) + Power(x1,2)*y6) + Power(x5,2)* (Power(x6,5)*y1 - Power(x1,5)*y6)) + Power(x4,2)* (x1*x6*(-Power(x1,4) + Power(x6,4))*y5 + Power(x5,5)*(x6*y1 - x1*y6) + x5*(-(Power(x6,5)*y1) + Power(x1,5)*y6))) + x3*(Power(x1,2)*Power(x5,2)* Power(x6,2)* (Power(x5,2)*(x5 - x6)*Power(x6,2) + Power(x1,3)* (Power(x5,2) - Power(x6,2)) + Power(x1,2)*(-Power(x5,3) + Power(x6,3)))*y4 + Power(x4,5)* (Power(x1,2)*Power(x6,2)* (Power(x1,2) - Power(x6,2))*y5 + Power(x5,4)* (-(Power(x6,2)*y1) + Power(x1,2)*y6) + Power(x5,2)* (Power(x6,4)*y1 - Power(x1,4)*y6)) + Power(x4,2)* (Power(x1,4)*(x1 - x6)*Power(x6,4)*y5 + Power(x5,5)* (-(Power(x6,4)*y1) + Power(x1,4)*y6) + Power(x5,4)* (Power(x6,5)*y1 - Power(x1,5)*y6)) + Power(x4,4)* (Power(x1,2)*Power(x6,2)* (-Power(x1,3) + Power(x6,3))*y5 + Power(x5,5)* (Power(x6,2)*y1 - Power(x1,2)*y6) + Power(x5,2)* (-(Power(x6,5)*y1) + Power(x1,5)*y6))) + Power(x3,2)* (x1*x5*x6*(Power(x5,3)*Power(x6,3)* (-x5 + x6) + Power(x1,4)* (-Power(x5,3) + Power(x6,3)) + Power(x1,3)*(Power(x5,4) - Power(x6,4))) *y4 + Power(x4,5)* (x1*x6*(-Power(x1,3) + Power(x6,3))*y5 + Power(x5,4)*(x6*y1 - x1*y6) + x5*(-(Power(x6,4)*y1) + Power(x1,4)*y6)) + Power(x4,4)* (x1*x6*(Power(x1,4) - Power(x6,4))*y5 + Power(x5,5)*(-(x6*y1) + x1*y6) + x5*(Power(x6,5)*y1 - Power(x1,5)*y6)) + x4*(Power(x1,4)*Power(x6,4)*(-x1 + x6)* y5 + Power(x5,5)* (Power(x6,4)*y1 - Power(x1,4)*y6) + Power(x5,4)* (-(Power(x6,5)*y1) + Power(x1,5)*y6)))) + x2*(-(Power(x1,2)*(x1 - x4)*Power(x4,2)* (x1 - x5)*(x4 - x5)*Power(x5,2)*(x1 - x6)* (x4 - x6)*(x5 - x6)*Power(x6,2)*y3) + Power(x3,5)*(-(Power(x1,2)*(x1 - x5)* Power(x5,2)*(x1 - x6)*(x5 - x6)* Power(x6,2)*y4) + Power(x4,4)* (Power(x1,2)*Power(x6,2)*(-x1 + x6)*y5 + Power(x5,3)* (Power(x6,2)*y1 - Power(x1,2)*y6) + Power(x5,2)* (-(Power(x6,3)*y1) + Power(x1,3)*y6)) + Power(x4,3)* (Power(x1,2)*Power(x6,2)* (Power(x1,2) - Power(x6,2))*y5 + Power(x5,4)* (-(Power(x6,2)*y1) + Power(x1,2)*y6) + Power(x5,2)* (Power(x6,4)*y1 - Power(x1,4)*y6)) + Power(x4,2)* (Power(x1,3)*Power(x6,3)*(-x1 + x6)*y5 + Power(x5,4)* (Power(x6,3)*y1 - Power(x1,3)*y6) + Power(x5,3)* (-(Power(x6,4)*y1) + Power(x1,4)*y6))) + Power(x3,4)* (Power(x1,2)*Power(x5,2)*Power(x6,2)* (Power(x1,3)*(x5 - x6) + x5*x6*(Power(x5,2) - Power(x6,2)) + x1*(-Power(x5,3) + Power(x6,3)))*y4 + Power(x4,5)* (Power(x1,2)*(x1 - x6)*Power(x6,2)*y5 + Power(x5,3)* (-(Power(x6,2)*y1) + Power(x1,2)*y6) + Power(x5,2)* (Power(x6,3)*y1 - Power(x1,3)*y6)) + Power(x4,2)* (Power(x1,3)*Power(x6,3)* (Power(x1,2) - Power(x6,2))*y5 + Power(x5,5)* (-(Power(x6,3)*y1) + Power(x1,3)*y6) + Power(x5,3)* (Power(x6,5)*y1 - Power(x1,5)*y6)) + Power(x4,3)* (Power(x1,2)*Power(x6,2)* (-Power(x1,3) + Power(x6,3))*y5 + Power(x5,5)* (Power(x6,2)*y1 - Power(x1,2)*y6) + Power(x5,2)* (-(Power(x6,5)*y1) + Power(x1,5)*y6))) + Power(x3,2)* (Power(x1,3)*(x1 - x5)*Power(x5,3)*(x1 - x6)* (x5 - x6)*Power(x6,3)*y4 + Power(x4,5)* (Power(x1,3)*(x1 - x6)*Power(x6,3)*y5 + Power(x5,4)* (-(Power(x6,3)*y1) + Power(x1,3)*y6) + Power(x5,3)* (Power(x6,4)*y1 - Power(x1,4)*y6)) + Power(x4,3)* (Power(x1,4)*(x1 - x6)*Power(x6,4)*y5 + Power(x5,5)* (-(Power(x6,4)*y1) + Power(x1,4)*y6) + Power(x5,4)* (Power(x6,5)*y1 - Power(x1,5)*y6)) + Power(x4,4)* (Power(x1,3)*Power(x6,3)* (-Power(x1,2) + Power(x6,2))*y5 + Power(x5,5)* (Power(x6,3)*y1 - Power(x1,3)*y6) + Power(x5,3)* (-(Power(x6,5)*y1) + Power(x1,5)*y6))) + Power(x3,3)* (Power(x1,2)*Power(x5,2)*Power(x6,2)* (Power(x5,2)*Power(x6,2)*(-x5 + x6) + Power(x1,3)* (-Power(x5,2) + Power(x6,2)) + Power(x1,2)*(Power(x5,3) - Power(x6,3))) *y4 + Power(x4,5)* (Power(x1,2)*Power(x6,2)* (-Power(x1,2) + Power(x6,2))*y5 + Power(x5,4)* (Power(x6,2)*y1 - Power(x1,2)*y6) + Power(x5,2)* (-(Power(x6,4)*y1) + Power(x1,4)*y6)) + Power(x4,4)* (Power(x1,2)*Power(x6,2)* (Power(x1,3) - Power(x6,3))*y5 + Power(x5,5)* (-(Power(x6,2)*y1) + Power(x1,2)*y6) + Power(x5,2)* (Power(x6,5)*y1 - Power(x1,5)*y6)) + Power(x4,2)* (Power(x1,4)*Power(x6,4)*(-x1 + x6)*y5 + Power(x5,5)* (Power(x6,4)*y1 - Power(x1,4)*y6) + Power(x5,4)* (-(Power(x6,5)*y1) + Power(x1,5)*y6)))) + Power(x2,2)*(x1*(x1 - x4)*x4*(x1 - x5)* (x4 - x5)*x5*(x1 - x6)*(x4 - x6)*(x5 - x6)* x6*(x4*x5*x6 + x1*(x5*x6 + x4*(x5 + x6)))*y3 + Power(x3,5)* (x1*x5*x6*(Power(x5,2)*(x5 - x6)* Power(x6,2) + Power(x1,3)* (Power(x5,2) - Power(x6,2)) + Power(x1,2)*(-Power(x5,3) + Power(x6,3)))*y4 + Power(x4,4)* (x1*x6*(Power(x1,2) - Power(x6,2))*y5 + Power(x5,3)*(-(x6*y1) + x1*y6) + x5*(Power(x6,3)*y1 - Power(x1,3)*y6)) + x4*(Power(x1,3)*(x1 - x6)*Power(x6,3)*y5 + Power(x5,4)* (-(Power(x6,3)*y1) + Power(x1,3)*y6) + Power(x5,3)* (Power(x6,4)*y1 - Power(x1,4)*y6)) + Power(x4,3)* (x1*x6*(-Power(x1,3) + Power(x6,3))*y5 + Power(x5,4)*(x6*y1 - x1*y6) + x5*(-(Power(x6,4)*y1) + Power(x1,4)*y6))) + Power(x3,3)* (x1*x5*x6*(Power(x5,3)*(x5 - x6)* Power(x6,3) + Power(x1,4)* (Power(x5,3) - Power(x6,3)) + Power(x1,3)*(-Power(x5,4) + Power(x6,4)))*y4 + Power(x4,5)* (x1*x6*(Power(x1,3) - Power(x6,3))*y5 + Power(x5,4)*(-(x6*y1) + x1*y6) + x5*(Power(x6,4)*y1 - Power(x1,4)*y6)) + x4*(Power(x1,4)*(x1 - x6)*Power(x6,4)*y5 + Power(x5,5)* (-(Power(x6,4)*y1) + Power(x1,4)*y6) + Power(x5,4)* (Power(x6,5)*y1 - Power(x1,5)*y6)) + Power(x4,4)* (x1*x6*(-Power(x1,4) + Power(x6,4))*y5 + Power(x5,5)*(x6*y1 - x1*y6) + x5*(-(Power(x6,5)*y1) + Power(x1,5)*y6))) + Power(x3,4)* (-(x1*x5*(Power(x1,2) - Power(x5,2))*x6* (Power(x1,2) - Power(x6,2))* (Power(x5,2) - Power(x6,2))*y4) + Power(x4,5)* (x1*x6*(-Power(x1,2) + Power(x6,2))*y5 + Power(x5,3)*(x6*y1 - x1*y6) + x5*(-(Power(x6,3)*y1) + Power(x1,3)*y6)) + Power(x4,3)* (x1*x6*(Power(x1,4) - Power(x6,4))*y5 + Power(x5,5)*(-(x6*y1) + x1*y6) + x5*(Power(x6,5)*y1 - Power(x1,5)*y6)) + x4*(Power(x1,3)*Power(x6,3)* (-Power(x1,2) + Power(x6,2))*y5 + Power(x5,5)* (Power(x6,3)*y1 - Power(x1,3)*y6) + Power(x5,3)* (-(Power(x6,5)*y1) + Power(x1,5)*y6))) + x3*(-(Power(x1,3)*(x1 - x5)*Power(x5,3)* (x1 - x6)*(x5 - x6)*Power(x6,3)*y4) + Power(x4,5)* (Power(x1,3)*Power(x6,3)*(-x1 + x6)*y5 + Power(x5,4)* (Power(x6,3)*y1 - Power(x1,3)*y6) + Power(x5,3)* (-(Power(x6,4)*y1) + Power(x1,4)*y6)) + Power(x4,4)* (Power(x1,3)*Power(x6,3)* (Power(x1,2) - Power(x6,2))*y5 + Power(x5,5)* (-(Power(x6,3)*y1) + Power(x1,3)*y6) + Power(x5,3)* (Power(x6,5)*y1 - Power(x1,5)*y6)) + Power(x4,3)* (Power(x1,4)*Power(x6,4)*(-x1 + x6)*y5 + Power(x5,5)* (Power(x6,4)*y1 - Power(x1,4)*y6) + Power(x5,4)* (-(Power(x6,5)*y1) + Power(x1,5)*y6)))))/((x1 - x2)*(x1 - x3)*(-x2 + x3)*(x1 - x4)* (-x2 + x4)*(-x3 + x4)*(x1 - x5)*(x2 - x5)* (x3 - x5)*(x4 - x5)*(x1 - x6)*(x2 - x6)* (x3 - x6)*(x4 - x6)*(x5 - x6))
41090e09f2b7f58e98fa9fc91ea6000d70594046
17,856
def answer_question_interactively(question): """Returns True or False for t yes/no question to the user""" while True: answer = input(question + '? [Y or N]: ') if answer.lower() == 'y': return True elif answer.lower() == 'n': return False
52a123cc2237441de3b0243da268e53b7cc0d807
17,857
def connect( instance_id, database_id, project=None, credentials=None, pool=None, user_agent=None, ): """Creates a connection to a Google Cloud Spanner database. :type instance_id: str :param instance_id: The ID of the instance to connect to. :type database_id: str :param database_id: The ID of the database to connect to. :type project: str :param project: (Optional) The ID of the project which owns the instances, tables and data. If not provided, will attempt to determine from the environment. :type credentials: Union[:class:`~google.auth.credentials.Credentials`, str] :param credentials: (Optional) The authorization credentials to attach to requests. These credentials identify this application to the service. These credentials may be specified as a file path indicating where to retrieve the service account JSON for the credentials to connect to Cloud Spanner. If none are specified, the client will attempt to ascertain the credentials from the environment. :type pool: Concrete subclass of :class:`~google.cloud.spanner_v1.pool.AbstractSessionPool`. :param pool: (Optional). Session pool to be used by database. :type user_agent: str :param user_agent: (Optional) User agent to be used with this connection's requests. :rtype: :class:`google.cloud.spanner_dbapi.connection.Connection` :returns: Connection object associated with the given Google Cloud Spanner resource. :raises: :class:`ValueError` in case of given instance/database doesn't exist. """ client_info = ClientInfo( user_agent=user_agent or DEFAULT_USER_AGENT, python_version=PY_VERSION ) if isinstance(credentials, str): client = spanner.Client.from_service_account_json( credentials, project=project, client_info=client_info ) else: client = spanner.Client( project=project, credentials=credentials, client_info=client_info ) instance = client.instance(instance_id) if not instance.exists(): raise ValueError("instance '%s' does not exist." % instance_id) database = instance.database(database_id, pool=pool) if not database.exists(): raise ValueError("database '%s' does not exist." % database_id) conn = Connection(instance, database) if pool is not None: conn._own_pool = False return conn
7cff910615df346a5a503dec5e1938476cb701e6
17,858
from typing import List def intersect(linked_list_1: List, linked_list_2: List): """Intersection point of two linked list.""" length_diff = len(linked_list_1) - len(linked_list_2) enum1 = list(enumerate(linked_list_1)) enum2 = list(enumerate(linked_list_2)) if length_diff < 0: enum2 = _helper(length_diff=length_diff, linked_list=enum2) else: enum1 = _helper(length_diff=length_diff, linked_list=enum1) for (i, j,) in zip(enum1, enum2): if i[1] == j[1]: return (i[0], j[0],) return None
dea64a6618ab3bda421250036e4eea8fa316a6ec
17,859
import torch def content_loss(sharp_images, deblur_images, cont_net): """ Computes the Content Loss to compare the reconstructed (deblurred) and the original(sharp) images Takes the output feature maps of the relu4_3 layer of pretrained VGG19 to compare the content between images as proposed in : Johnson et. al. "Perceptual losses for real-time style transfer and super-resolution." (ECCV 2016) """ # Torchvision models documentation: # All pre-trained models expect input images normalized in the same way, The images have to be loaded in # to a range of [0, 1] and then normalized using mean = [0.485, 0.456, 0.406] and std = [0.229, 0.224, 0.225]. deblur_images = (deblur_images + 1) * 0.5 sharp_images = (sharp_images + 1) * 0.5 normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) deblur_images = normalize(deblur_images) sharp_images= normalize(sharp_images) content_deblur = cont_net(deblur_images) content_sharp = cont_net(sharp_images) content_sharp = content_sharp.detach() loss = nn.MSELoss() lossC = torch.mean(loss(content_deblur,content_sharp)) return lossC
f55b4c22391d6e562afb927251fb6af267f9da08
17,861
def generate_cashflow_diagram( cashflows, d=None, net=False, scale=None, color=None, title=None, **kwargs): """ Generates a barplot showing cashflows over time Given a set of cashflows, produces a stacked barplot with bars at each period. The height of each bar is set by the amount of cash produced by a cashflow at the specified period. Note that this function does not display the produced plot; call matplotlib.pyplot.show() to view the plot. Args: cashflows: A sequence of cashflows to plot d: Optional; A two-integer list whose elements represent the first and final periods to be plotted net: Optional; When true, only the net cashflows are shown, and the individual cashflow information is omitted. scale: Optional; The y-axis scale; must be a member or key of Scales kwargs: A list of keyword arguments to be passed to Dataframe.plot() Returns: A Figure and Axis for the plot """ # Parse Args cashflows = (cashflows,) if isinstance(cashflows, Cashflow) else cashflows d = parse_d(d or get_final_period(cashflows, finite=True) or 5) net = bool(net) if color: color = color.colors if isinstance(color, ListedColormap) else color else: color = default_colormap.colors if scale: scale = ( scale if isinstance(scale, Scales) else Scales[scale.upper()]) # Extract information periods = list(range(d[0], d[1] + 1)) titles = [cashflow.get_title() for cashflow in cashflows] cashflows = [ [cashflow[n].amount for cashflow in cashflows] for n in periods ] # Format information if net: cashflows = [[sum(cashflows[n])] for n in periods] if scale: cashflows = [ [cashflow * scale.value for cashflow in cashflows[n]] for n in periods ] # Plot the Cashflow Diagram with matplotlib plotdata = pd.DataFrame(cashflows, index=periods, columns=titles) fig, ax = plt.subplots() plotdata.plot(kind="bar", stacked="true", ax=ax, color=color, **kwargs) ax.set_title(title) ax.set_ylabel("Cashflows" + (f" [{scale.name.title()}]" if scale else "")) ax.set_xlabel("Period") ax.axhline() return fig, ax
88afbd975a20041dccd24b8dc25899347a0b44ae
17,862
import collections def is_iterable(obj): # type: (Any) -> bool """ Returns True if obj is a non-string iterable """ if is_str(obj) is True or isinstance(obj, collections.Iterable) is False: return False else: return True
92db9be57250a53cf27118c9a4c91344a9d14fcb
17,863
def other_players(me, r): """Return a list of all players but me, in turn order starting after me""" return list(range(me+1, r.nPlayers)) + list(range(0, me))
5c2d2b03bfb3b99eb4c347319ccaaa3fc495b6c4
17,864
def mock_dd_slo_history(*args, **kwargs): """Mock Datadog response for datadog.api.ServiceLevelObjective.history.""" return load_fixture('dd_slo_history.json')
963fbbe20373e4e207852be82b88e33ca2c24e9a
17,865
import torch def check_joints2d_visibility_torch(joints2d, img_wh): """ Checks if 2D joints are within the image dimensions. """ vis = torch.ones(joints2d.shape[:2], device=joints2d.device, dtype=torch.bool) vis[joints2d[:, :, 0] > img_wh] = 0 vis[joints2d[:, :, 1] > img_wh] = 0 vis[joints2d[:, :, 0] < 0] = 0 vis[joints2d[:, :, 1] < 0] = 0 return vis
a276d93a66dfd5bca15a684f652a0eede3094868
17,866
def getIntervalIntersectionLength(aa, bb, wrapAt=360): """Returns the length of the intersection between two intervals.""" intersection = getIntervalIntersection(aa, bb, wrapAt=wrapAt) if intersection is False: return 0.0 else: if wrapAt is None: return (intersection[1] - intersection[0]) else: return (intersection[1] - intersection[0]) % wrapAt
46924c149e8b5b802fc83e489417850f3a8dbd18
17,867
def test_jvp_construct_single_input_single_output_default_v_graph(): """ Features: Function jvp Description: Test jvp with Cell construct, single input, single output and default v in graph mode. Expectation: No exception. """ x = Tensor(np.array([[1, 2], [3, 4]]).astype(np.float32)) v = Tensor(np.array([[1, 1], [1, 1]]).astype(np.float32)) class Net(nn.Cell): def __init__(self, network): super(Net, self).__init__() self.net = network def construct(self, inputs, vectors): net_out, jvp_out = jvp(self.net, inputs, vectors) return net_out, jvp_out test_net = Net(SingleInputSingleOutputNet()) primal, grad = test_net(x, v) expect_primal = Tensor(np.array([[1, 8], [27, 64]]).astype(np.float32)) expect_grad = Tensor(np.array([[3, 12], [27, 48]]).astype(np.float32)) assert np.allclose(primal.asnumpy(), expect_primal.asnumpy()) assert np.allclose(grad.asnumpy(), expect_grad.asnumpy())
edd6b1c93dc880310fc0af2012d3fbfca328b64c
17,868
def get_environment() -> Environment: """ Parses environment variables and sets their defaults if they do not exist. """ return Environment( permission_url=get_endpoint("PERMISSION"), media_url=get_endpoint("MEDIA"), datastore_reader_url=get_endpoint("DATASTORE_READER"), datastore_writer_url=get_endpoint("DATASTORE_WRITER"), )
2ce9b56c76fadcd19a861f00e8d880a181b676ed
17,869
from typing import Optional def get_kubernetes_cluster(name: Optional[str] = None, resource_group_name: Optional[str] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetKubernetesClusterResult: """ Use this data source to access information about an existing Managed Kubernetes Cluster (AKS). ## Example Usage ```python import pulumi import pulumi_azure as azure example = azure.containerservice.get_kubernetes_cluster(name="myakscluster", resource_group_name="my-example-resource-group") ``` :param str name: The name of the managed Kubernetes Cluster. :param str resource_group_name: The name of the Resource Group in which the managed Kubernetes Cluster exists. """ __args__ = dict() __args__['name'] = name __args__['resourceGroupName'] = resource_group_name if opts is None: opts = pulumi.InvokeOptions() if opts.version is None: opts.version = _utilities.get_version() __ret__ = pulumi.runtime.invoke('azure:containerservice/getKubernetesCluster:getKubernetesCluster', __args__, opts=opts, typ=GetKubernetesClusterResult).value return AwaitableGetKubernetesClusterResult( addon_profiles=__ret__.addon_profiles, agent_pool_profiles=__ret__.agent_pool_profiles, api_server_authorized_ip_ranges=__ret__.api_server_authorized_ip_ranges, disk_encryption_set_id=__ret__.disk_encryption_set_id, dns_prefix=__ret__.dns_prefix, fqdn=__ret__.fqdn, id=__ret__.id, identities=__ret__.identities, kube_admin_config_raw=__ret__.kube_admin_config_raw, kube_admin_configs=__ret__.kube_admin_configs, kube_config_raw=__ret__.kube_config_raw, kube_configs=__ret__.kube_configs, kubelet_identities=__ret__.kubelet_identities, kubernetes_version=__ret__.kubernetes_version, linux_profiles=__ret__.linux_profiles, location=__ret__.location, name=__ret__.name, network_profiles=__ret__.network_profiles, node_resource_group=__ret__.node_resource_group, private_cluster_enabled=__ret__.private_cluster_enabled, private_fqdn=__ret__.private_fqdn, private_link_enabled=__ret__.private_link_enabled, resource_group_name=__ret__.resource_group_name, role_based_access_controls=__ret__.role_based_access_controls, service_principals=__ret__.service_principals, tags=__ret__.tags, windows_profiles=__ret__.windows_profiles)
38beb9a7a96e51364f35c658d85428991e0686a8
17,870
def gene_expression_conv_base(): """Hparams for GeneExpressionConv model.""" hparams = common_hparams.basic_params1() batch_size = 10 output_length = 2048 inputs_per_output = 128 chunk_size = 4 input_length = output_length * inputs_per_output // chunk_size hparams.batch_size = input_length * batch_size hparams.dropout = 0.1 hparams.add_hparam("num_conv_layers", 4) hparams.add_hparam("num_dconv_layers", 7) # The product of these pooling windows should match # input_length/target_length. hparams.add_hparam("pooling_windows", [2, 2, 2, 4]) hparams.hidden_size = 256 hparams.kernel_width = 20 hparams.add_hparam("stride", 1) return hparams
7bd239fb511a7f72837a139f236557278f0c1dab
17,871
import typing from typing import _GenericAlias import collections def is_callable(type_def, allow_callable_class: bool = False) -> bool: """ Checks whether the ``type_def`` is a callable according to the following rules: 1. Functions are callable. 2. ``typing.Callable`` types are callable. 3. Generic aliases of types which are ``is_callable`` are callable. 4. If ``allow_callable_class`` is set to ``True``, then classes which have a ``__call__`` method are callable. :param type_def: the type to check. :param allow_callable_class: set to ``True`` to consider classes which have a ``__call__`` method callable. :return: ``True`` if ``type_def`` is a callable type, ``False`` otherwise. """ if isinstance(type_def, type(_check_callable_signature)): return True if isinstance(type_def, typing._SpecialForm): return False if isinstance(type_def, _GenericAlias): if type_def.__origin__ == typing.Callable or type_def.__origin__ == collections.abc.Callable: return True if type_def._special: return False return is_callable(type_def.__origin__, allow_callable_class=allow_callable_class) if allow_callable_class and hasattr(type_def, "__call__"): return True return False
68c51cfc4da4891c90c376e8ff1b26dc630a96de
17,872
def vgg19(pretrained=False, **kwargs): """VGG 19-layer model (configuration "E") Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = VGG(make_layers(cfg['E']), **kwargs) if pretrained: model.load_pretrained_model(model_zoo.load_url(model_urls['vgg19'])) return model
7c7e43eb46ffeb20fd5901d5761e11f701650727
17,873
def get_formats(input_f, input_case="cased", is_default=True): """ Adds various abbreviation format options to the list of acceptable input forms """ multiple_formats = load_labels(input_f) additional_options = [] for x, y in multiple_formats: if input_case == "lower_cased": x = x.lower() additional_options.append((f"{x}.", y)) # default "dr" -> doctor, this includes period "dr." -> doctor additional_options.append((f"{x[0].upper() + x[1:]}", f"{y[0].upper() + y[1:]}")) # "Dr" -> Doctor additional_options.append((f"{x[0].upper() + x[1:]}.", f"{y[0].upper() + y[1:]}")) # "Dr." -> Doctor multiple_formats.extend(additional_options) if not is_default: multiple_formats = [(x, f"|raw_start|{x}|raw_end||norm_start|{y}|norm_end|") for (x, y) in multiple_formats] multiple_formats = pynini.string_map(multiple_formats) return multiple_formats
a20a02a7e85c1711d8b9d779e5804ed8e1dec83a
17,874
def db_select_entry(c, bibkey): """ Select entry from database :argument c: sqlite3 cursor :returns entry_dict: dict """ fields = ['bibkey', 'author', 'genre', 'thesis', 'hypothesis', 'method', 'finding', 'comment', 'img_linkstr'] sql = "SELECT {:s} FROM note WHERE bibkey = (?)".format(','.join(fields)) c.execute(sql, (bibkey,)) result = c.fetchall()[0] a_dict = {} for field, value in zip(fields, result): a_dict[field] = value c.execute("SELECT tag FROM tags WHERE bibkey = (?) ORDER BY tag ASC", (a_dict['bibkey'],)) tags = tuple(r[0] for r in c.fetchall()) return a_dict, tags
a93425aa2487f28bc3215a65ad1f963ea1173fcd
17,875
def to_bytes(obj, encoding='utf-8', errors='strict'): """Makes sure that a string is a byte string. Args: obj: An object to make sure is a byte string. encoding: The encoding to use to transform from a text string to a byte string. Defaults to using 'utf-8'. errors: The error handler to use if the text string is not encodable using the specified encoding. Any valid codecs error handler may be specified. Returns: Typically this returns a byte string. """ if isinstance(obj, bytes): return obj return bytes(obj, encoding=encoding, errors=errors)
4f8a0dcfdcfd3e2a77b5cbeedea4cb2a11acd4c1
17,876
def compact(number, strip_check_digit=True): """Convert the MEID number to the minimal (hexadecimal) representation. This strips grouping information, removes surrounding whitespace and converts to hexadecimal if needed. If the check digit is to be preserved and conversion is done a new check digit is recalculated.""" # first parse the number number, cd = _parse(number) # strip check digit if needed if strip_check_digit: cd = '' # convert to hex if needed if len(number) == 18: number = '%08X%06X' % (int(number[0:10]), int(number[10:18])) if cd: cd = calc_check_digit(number) # put parts back together again return number + cd
ced106ed8c97d432a8059d8654cfb437620deb64
17,878
from typing import List def hashtag_getter(doc: Doc) -> List[str]: """ Extract hashtags from text Args: doc (Doc): A SpaCy document Returns: List[str]: A list of hashtags Example: >>> from spacy.tokens import Doc >>> Doc.set_extension("hashtag", getter=dacy.utilities.twitter.hashtags) >>> doc = nlp("Fuck hvor fedt! #yolo #life") >>> doc._.hashtag # extrac the hashtags from your document ["#yolo", "#life"] """ def find_hashtags( text, valid_tags={"#", "#"}, valid_chars={"_", "-"}, invalid_tag_suffix={b"\xe2\x83\xa3", b"\xef\xb8\x8f"}, ): def is_letter(t): if ( t.isalnum() or t in valid_chars or str.encode(t).startswith(b"\xcc") or str.encode(t).startswith(b"\xe0") ): return True return False start = None for i, char in enumerate(text): if ( char in valid_tags and not ( i + 1 != len(text) and str.encode(text[i + 1]) in invalid_tag_suffix ) and (i == 0 or not (is_letter(text[i - 1]) or text[i - 1] == "&")) ): start = i continue if start is not None and not is_letter(char): if char in valid_tags: start = None continue print(start, i) if not text[start + 1 : i].isnumeric(): yield "#" + text[start + 1 : i] start = None if start is not None and not text[start + 1 : i + 1].isnumeric(): print(start, i) yield "#" + text[start + 1 : i + 1] return list(find_hashtags(doc.text))
a85c5cf9bd2fec2ec74e70bf2dadfb1df688c128
17,879
def options(): """Stub version of the parsed command line options.""" class StubOptions(object): profile = None return StubOptions()
dea85d2956eb6cbf97f870a74b122896915c8c19
17,880
def plot_bootstrap_delta_grp(dfboot, df, grp, force_xlim=None, title_add=''): """Plot delta between boostrap results, grouped""" count_txt_h_kws, mean_txt_kws, pest_mean_point_kws, mean_point_kws = _get_kws_styling() if dfboot[grp].dtypes != 'object': dfboot = dfboot.copy() dfboot[grp] = dfboot[grp].map(lambda x: f's{x}') mn = dfboot.groupby(grp).size() f = plt.figure(figsize=(14, 2+(len(mn)*.2))) #, constrained_layout=True) gs = gridspec.GridSpec(1, 2, width_ratios=[11, 1], figure=f) ax0 = f.add_subplot(gs[0]) ax1 = f.add_subplot(gs[1], sharey=ax0) _ = sns.boxplot(x='lr_delta', y=grp, data=dfboot, palette='cubehelix_r', sym='', whis=[3, 97], showmeans=True, notch=True, ax=ax0) _ = ax0.axvline(0, ls='--', lw=2, c='#555555', zorder=-1) if force_xlim is not None: _ = ax0.set(xlim=force_xlim) _ = sns.countplot(y=grp, data=df, ax=ax1, palette='cubehelix_r') ct = df.groupby(grp).size().tolist() _ = [ax1.annotate(f'{v}', xy=(v, i%len(ct)), **count_txt_h_kws) for i, v in enumerate(ct)] ypos = 1.02 if title_add != '': ypos = 1.05 title_add = f'\n{title_add}' title = (f'2-sample bootstrap test - grouped by {grp}') _ = f.suptitle(f'{title}{title_add}', y=ypos) f.tight_layout() # prefer over constrained_layout return gs
1d9d25604392433bc9cc10d645f0a8f2122a2a38
17,882
from typing import Tuple from typing import Optional from typing import Dict from typing import Any def inception_inspired_reservoir_model( input_shape: Tuple[int, int, int], reservoir_weight: np.ndarray, num_output_channels: int, seed: Optional[int] = None, num_filters: int = 32, reservoir_base: str = 'DenseReservoir', reservoir_params: Optional[Dict[str, Any]] = None, final_activation: Optional[str] = 'sigmoid', task: str = 'segmentation', ) -> tf.keras.Model: """Builds a simple recurrent reservoir model with inception-style head. The model is an SRN in the sense that a copy of the output of a first reservoir is passed through a set of trainable weights and then through a second identical reservoir. Args: input_shape: (image_height, image_width, num_channels) of the input image. reservoir_weight: Weight matrix to be assigned to the fixed layers. num_output_channels: how many output channels to use. seed: int seed to use to get a deterministic set of "random" weights. num_filters: how many filters to include in each layer of the inception block. reservoir_base: the reservoir base to use. Default is 'DenseReservoir'. reservoir_params: the parameters to initialize the reservoir_base. (Any field provided MUST be a Correct argument for the reservoir base, e.g. common options include { 'recurrence_degree': 3, 'keep_memory': True, 'trainable_reservoir': True, 'use_bias': True, 'activation_within_recurrence': True, 'kernel_local_learning': 'hebbian', 'kernel_local_learning_params': {'eta': 0.1}, 'recurrent_kernel_local_learning': 'hebbian', 'recurrent_kernel_local_learning_params': {'eta': 0.1}, 'state_discount': 1.0, }. If variable not included in the params, the default values are used.) final_activation: 'sigmoid', 'softmax', 'tanh', or None. task: which task this model is used for (options includes: 'segmentation', 'classification') Returns: A simple recurrent reservoir model with convolutional head Raises: ValueError: if task not in accepted tasks (segmentation, classification). """ if task not in ['segmentation', 'classification']: raise ValueError( f'Task not defined in accepted tasks (segmentation, classification). Got {task}' ) # Create a sequential keras model if reservoir_params is None: reservoir_params = {} reservoir_params['weight'] = reservoir_weight inputs = tf.keras.layers.Input(input_shape) if seed: kernel_initializer = initializers.FixedRandomInitializer(seed=seed) else: kernel_initializer = tf.keras.initializers.RandomNormal() # Inception 'stem' x = tf.keras.layers.Conv2D( num_filters, 8, padding='same', input_shape=input_shape, activation='elu')( inputs) x = tf.keras.layers.MaxPooling2D( pool_size=(3, 3), strides=(1, 1), padding='same')( x) x = tf.keras.layers.Conv2D( num_filters, 1, activation='elu', padding='same')( x) x = tf.keras.layers.Conv2D( num_filters, 3, activation='elu', padding='same')( x) x = tf.keras.layers.MaxPooling2D( pool_size=(3, 3), strides=(1, 1), padding='same')( x) x = tf.keras.layers.Conv2D( num_filters, 1, activation='elu', padding='same')( x) x = tf.keras.layers.Conv2D( num_filters, 3, activation='elu', padding='same')( x) # Inception block incepta = tf.keras.layers.Conv2D( num_filters, [1, 1], strides=(1, 1), activation='elu', padding='same')( x) incepta = tf.keras.layers.Conv2D( num_filters, [5, 5], strides=(1, 1), activation='elu', padding='same')( incepta) inceptb = tf.keras.layers.Conv2D( num_filters, [1, 1], strides=(1, 1), activation='elu', padding='same')( x) inceptb = tf.keras.layers.Conv2D( num_filters, [3, 3], strides=(1, 1), activation='elu', padding='same')( inceptb) inceptc = tf.keras.layers.MaxPooling2D( pool_size=(3, 3), strides=(1, 1), padding='same')( x) inceptc = tf.keras.layers.Conv2D( num_filters, [1, 1], strides=(1, 1), activation='elu', padding='same')( inceptc) inceptd = tf.keras.layers.Conv2D( num_filters, [1, 1], strides=(1, 1), activation='elu', padding='same')( x) y = tf.concat([incepta, inceptb, inceptc, inceptd], -1) # Dense layer y = tf.keras.layers.Dense(reservoir_weight.shape[0], activation='elu')(y) # The first reservoir layer y = reservoir_registry.get_reservoir(reservoir_base)(**reservoir_params)(y) # Trainable layer in between reservoirs y = tf.keras.layers.Dense(reservoir_weight.shape[0], activation='elu')(y) # The second fixed reservoir layer y = reservoir_registry.get_reservoir(reservoir_base)(**reservoir_params)(y) # Create outputs. if task == 'classification': y = tf.keras.layers.Flatten()(y) outputs = tf.keras.layers.Dense( units=num_output_channels, activation=final_activation, kernel_initializer=kernel_initializer)( y) model = tf.keras.models.Model(inputs, outputs) return model
221c0c17035d44178ca460c011c92d37f26b4ed4
17,883
def midnight(date): """Returns a copy of a date with the hour, minute, second, and millisecond fields set to zero. Args: date (Date): The starting date. Returns: Date: A new date, set to midnight of the day provided. """ return date.replace(hour=0, minute=0, second=0, microsecond=0)
b92086dd9d99a4cea6657d37f40e68696ad41f7c
17,884
from typing import Callable from typing import Any from typing import Sequence def foldr(fun: Callable[[Any, Any], Any], acc: Any, seq: Sequence[Any]) -> Any: """Implementation of foldr in Python3. This is an implementation of the right-handed fold function from functional programming. If the list is empty, we return the accumulator value. Otherwise, we recurse by applying the function which was passed to the foldr to the head of the iterable collection and the foldr called with fun, acc, and the tail of the iterable collection. Below are the implementations of the len and sum functions using foldr to demonstrate how foldr function works. >>> foldr((lambda _, y: y + 1), 0, [0, 1, 2, 3, 4]) 5 >>> foldr((lambda x, y: x + y), 0, [0, 1, 2, 3, 4]) 10 foldr takes the second argument and the last item of the list and applies the function, then it takes the penultimate item from the end and the result, and so on. """ return acc if not seq else fun(seq[0], foldr(fun, acc, seq[1:]))
5648d8ce8a2807270163ebcddad3f523f527986e
17,886
def tj_dom_dem(x): """ Real Name: b'Tj Dom Dem' Original Eqn: b'( [(1,0.08)-(365,0.09)],(1,0.08333),(2,0.08333),(3,0.08333),(4,0.08333),(5,0.08333),(6\\\\ ,0.08333),(7,0.08333),(8,0.08333),(9,0.08333),(10,0.08333),(11,0.08333),(12,0.08333\\\\ ),(13,0.08333),(14,0.08333),(15,0.08333),(16,0.08333),(17,0.08333),(18,0.08333),(19\\\\ ,0.08333),(20,0.08333),(21,0.08333),(22,0.08333),(23,0.08333),(24,0.08333),(25,0.08333\\\\ ),(26,0.08333),(27,0.08333),(28,0.08333),(29,0.08333),(30,0.08333),(31,0.08333),(32\\\\ ,0.08333),(33,0.08333),(34,0.08333),(35,0.08333),(36,0.08333),(37,0.08333),(38,0.08333\\\\ ),(39,0.08333),(40,0.08333),(41,0.08333),(42,0.08333),(43,0.08333),(44,0.08333),(45\\\\ ,0.08333),(46,0.08333),(47,0.08333),(48,0.08333),(49,0.08333),(50,0.08333),(51,0.08333\\\\ ),(52,0.08333),(53,0.08333),(54,0.08333),(55,0.08333),(56,0.08333),(57,0.08333),(58\\\\ ,0.08333),(59,0.08333),(60,0.08333),(61,0.08333),(62,0.08333),(63,0.08333),(64,0.08333\\\\ ),(65,0.08333),(66,0.08333),(67,0.08333),(68,0.08333),(69,0.08333),(70,0.08333),(71\\\\ ,0.08333),(72,0.08333),(73,0.08333),(74,0.08333),(75,0.08333),(76,0.08333),(77,0.08333\\\\ ),(78,0.08333),(79,0.08333),(80,0.08333),(81,0.08333),(82,0.08333),(83,0.08333),(84\\\\ ,0.08333),(85,0.08333),(86,0.08333),(87,0.08333),(88,0.08333),(89,0.08333),(90,0.08333\\\\ ),(91,0.08333),(92,0.08333),(93,0.08333),(94,0.08333),(95,0.08333),(96,0.08333),(97\\\\ ,0.08333),(98,0.08333),(99,0.08333),(100,0.08333),(101,0.08333),(102,0.08333),(103,\\\\ 0.08333),(104,0.08333),(105,0.08333),(106,0.08333),(107,0.08333),(108,0.08333),(109\\\\ ,0.08333),(110,0.08333),(111,0.08333),(112,0.08333),(113,0.08333),(114,0.08333),(115\\\\ ,0.08333),(116,0.08333),(117,0.08333),(118,0.08333),(119,0.08333),(120,0.08333),(121\\\\ ,0.08333),(122,0.08333),(123,0.08333),(124,0.08333),(125,0.08333),(126,0.08333),(127\\\\ ,0.08333),(128,0.08333),(129,0.08333),(130,0.08333),(131,0.08333),(132,0.08333),(133\\\\ ,0.08333),(134,0.08333),(135,0.08333),(136,0.08333),(137,0.08333),(138,0.08333),(139\\\\ ,0.08333),(140,0.08333),(141,0.08333),(142,0.08333),(143,0.08333),(144,0.08333),(145\\\\ ,0.08333),(146,0.08333),(147,0.08333),(148,0.08333),(149,0.08333),(150,0.08333),(151\\\\ ,0.08333),(152,0.08333),(153,0.08333),(154,0.08333),(155,0.08333),(156,0.08333),(157\\\\ ,0.08333),(158,0.08333),(159,0.08333),(160,0.08333),(161,0.08333),(162,0.08333),(163\\\\ ,0.08333),(164,0.08333),(165,0.08333),(166,0.08333),(167,0.08333),(168,0.08333),(169\\\\ ,0.08333),(170,0.08333),(171,0.08333),(172,0.08333),(173,0.08333),(174,0.08333),(175\\\\ ,0.08333),(176,0.08333),(177,0.08333),(178,0.08333),(179,0.08333),(180,0.08333),(181\\\\ ,0.08333),(182,0.08333),(183,0.08333),(184,0.08333),(185,0.08333),(186,0.08333),(187\\\\ ,0.08333),(188,0.08333),(189,0.08333),(190,0.08333),(191,0.08333),(192,0.08333),(193\\\\ ,0.08333),(194,0.08333),(195,0.08333),(196,0.08333),(197,0.08333),(198,0.08333),(199\\\\ ,0.08333),(200,0.08333),(201,0.08333),(202,0.08333),(203,0.08333),(204,0.08333),(205\\\\ ,0.08333),(206,0.08333),(207,0.08333),(208,0.08333),(209,0.08333),(210,0.08333),(211\\\\ ,0.08333),(212,0.08333),(213,0.08333),(214,0.08333),(215,0.08333),(216,0.08333),(217\\\\ ,0.08333),(218,0.08333),(219,0.08333),(220,0.08333),(221,0.08333),(222,0.08333),(223\\\\ ,0.08333),(224,0.08333),(225,0.08333),(226,0.08333),(227,0.08333),(228,0.08333),(229\\\\ ,0.08333),(230,0.08333),(231,0.08333),(232,0.08333),(233,0.08333),(234,0.08333),(235\\\\ ,0.08333),(236,0.08333),(237,0.08333),(238,0.08333),(239,0.08333),(240,0.08333),(241\\\\ ,0.08333),(242,0.08333),(243,0.08333),(244,0.08333),(245,0.08333),(246,0.08333),(247\\\\ ,0.08333),(248,0.08333),(249,0.08333),(250,0.08333),(251,0.08333),(252,0.08333),(253\\\\ ,0.08333),(254,0.08333),(255,0.08333),(256,0.08333),(257,0.08333),(258,0.08333),(259\\\\ ,0.08333),(260,0.08333),(261,0.08333),(262,0.08333),(263,0.08333),(264,0.08333),(265\\\\ ,0.08333),(266,0.08333),(267,0.08333),(268,0.08333),(269,0.08333),(270,0.08333),(271\\\\ ,0.08333),(272,0.08333),(273,0.08333),(274,0.08333),(275,0.08333),(276,0.08333),(277\\\\ ,0.08333),(278,0.08333),(279,0.08333),(280,0.08333),(281,0.08333),(282,0.08333),(283\\\\ ,0.08333),(284,0.08333),(285,0.08333),(286,0.08333),(287,0.08333),(288,0.08333),(289\\\\ ,0.08333),(290,0.08333),(291,0.08333),(292,0.08333),(293,0.08333),(294,0.08333),(295\\\\ ,0.08333),(296,0.08333),(297,0.08333),(298,0.08333),(299,0.08333),(300,0.08333),(301\\\\ ,0.08333),(302,0.08333),(303,0.08333),(304,0.08333),(305,0.08333),(306,0.08333),(307\\\\ ,0.08333),(308,0.08333),(309,0.08333),(310,0.08333),(311,0.08333),(312,0.08333),(313\\\\ ,0.08333),(314,0.08333),(315,0.08333),(316,0.08333),(317,0.08333),(318,0.08333),(319\\\\ ,0.08333),(320,0.08333),(321,0.08333),(322,0.08333),(323,0.08333),(324,0.08333),(325\\\\ ,0.08333),(326,0.08333),(327,0.08333),(328,0.08333),(329,0.08333),(330,0.08333),(331\\\\ ,0.08333),(332,0.08333),(333,0.08333),(334,0.08333),(335,0.08333),(336,0.08333),(337\\\\ ,0.08333),(338,0.08333),(339,0.08333),(340,0.08333),(341,0.08333),(342,0.08333),(343\\\\ ,0.08333),(344,0.08333),(345,0.08333),(346,0.08333),(347,0.08333),(348,0.08333),(349\\\\ ,0.08333),(350,0.08333),(351,0.08333),(352,0.08333),(353,0.08333),(354,0.08333),(355\\\\ ,0.08333),(356,0.08333),(357,0.08333),(358,0.08333),(359,0.08333),(360,0.08333),(361\\\\ ,0.08333),(362,0.08333),(363,0.08333),(364,0.08333),(365,0.08333))' Units: b'Dmnl' Limits: (None, None) Type: lookup b'' """ return functions.lookup(x, [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365 ], [ 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333, 0.08333 ])
df670af98362fd67bece677aa85bf37d31a75389
17,887
def filter_chants_without_volpiano(chants, logger=None): """Exclude all chants with an empty volpiano field""" has_volpiano = chants.volpiano.isnull() == False return chants[has_volpiano]
3f03bbf3f247afd3a115442e8121a773aa90fb56
17,888
def sample_input(): """Return the puzzle input and expected result for the part 1 example problem. """ lines = split_nonblank_lines(""" position=< 9, 1> velocity=< 0, 2> position=< 7, 0> velocity=<-1, 0> position=< 3, -2> velocity=<-1, 1> position=< 6, 10> velocity=<-2, -1> position=< 2, -4> velocity=< 2, 2> position=<-6, 10> velocity=< 2, -2> position=< 1, 8> velocity=< 1, -1> position=< 1, 7> velocity=< 1, 0> position=<-3, 11> velocity=< 1, -2> position=< 7, 6> velocity=<-1, -1> position=<-2, 3> velocity=< 1, 0> position=<-4, 3> velocity=< 2, 0> position=<10, -3> velocity=<-1, 1> position=< 5, 11> velocity=< 1, -2> position=< 4, 7> velocity=< 0, -1> position=< 8, -2> velocity=< 0, 1> position=<15, 0> velocity=<-2, 0> position=< 1, 6> velocity=< 1, 0> position=< 8, 9> velocity=< 0, -1> position=< 3, 3> velocity=<-1, 1> position=< 0, 5> velocity=< 0, -1> position=<-2, 2> velocity=< 2, 0> position=< 5, -2> velocity=< 1, 2> position=< 1, 4> velocity=< 2, 1> position=<-2, 7> velocity=< 2, -2> position=< 3, 6> velocity=<-1, -1> position=< 5, 0> velocity=< 1, 0> position=<-6, 0> velocity=< 2, 0> position=< 5, 9> velocity=< 1, -2> position=<14, 7> velocity=<-2, 0> position=<-3, 6> velocity=< 2, -1>""") sky_lines = split_nonblank_lines(""" ...................... ...................... ...................... ...................... ......#...#..###...... ......#...#...#....... ......#...#...#....... ......#####...#....... ......#...#...#....... ......#...#...#....... ......#...#...#....... ......#...#..###...... ...................... ...................... ...................... ......................""") expected = trim_sky(sky_lines) return lines, expected
e027d2831ef5d16776b5c5f7bb8e759042056e2f
17,891
def vector_angle(v): """Angle between v and the positive x axis. Only works with 2-D vectors. returns: angle in radians """ assert len(v) == 2 x, y = v return np.arctan2(y, x)
4402795a27ca20269dbfa5a5823c4e2768681ed0
17,892
def get_user_record_tuple(param) -> (): """ Internal method for retrieving the user registration record from the DB. :return: """ conn = mariadb.connect(host=DB_URI, user=DB_USERNAME, password=DB_PASSWORD, database=DB_NAME) db = conn.cursor() # discord_id provided if isinstance(param, int): cmd = '''SELECT last_updated, token, discord_id, discord_name, is_verified, callsign FROM registration WHERE discord_id=%s''' # token provided # else: elif isinstance(param, str): cmd = '''SELECT last_updated, token, discord_id, discord_name, is_verified, callsign FROM registration WHERE token=%s''' else: return None db.execute(cmd, (param,)) result = db.fetchone() return result
d35468b7b2141f6c19f0c5669f80c103a7499221
17,893
def A_weighting(x, Fs): """A-weighting filter represented as polynomial transfer function. :returns: Tuple of `num` and `den`. See equation E.6 of the standard. """ f1 = _POLE_FREQUENCIES[1] f2 = _POLE_FREQUENCIES[2] f3 = _POLE_FREQUENCIES[3] f4 = _POLE_FREQUENCIES[4] offset = _NORMALIZATION_CONSTANTS['A'] numerator = np.array([(2.0 * np.pi * f4)**2.0 * (10**(-offset / 20.0)), 0.0, 0.0, 0.0, 0.0]) part1 = [1.0, 4.0 * np.pi * f4, (2.0 * np.pi * f4)**2.0] part2 = [1.0, 4.0 * np.pi * f1, (2.0 * np.pi * f1)**2.0] part3 = [1.0, 2.0 * np.pi * f3] part4 = [1.0, 2.0 * np.pi * f2] denomenator = np.convolve(np.convolve(np.convolve(part1, part2), part3), part4) B, A = bilinear(numerator, denomenator, Fs) return lfilter(B, A, x)
a4592939d3809da292c4f05f47ca69e41ad9d27a
17,894
import inspect def register(class_=None, **kwargs): """Registers a dataset with segment specific hyperparameters. When passing keyword arguments to `register`, they are checked to be valid keyword arguments for the registered Dataset class constructor and are saved in the registry. Registered keyword arguments can be retrieved with the `list_datasets` function. All arguments that result in creation of separate datasets should be registered. Examples are datasets divided in different segments or categories, or datasets containing multiple languages. Once registered, an instance can be created by calling :func:`~gluonnlp.data.create` with the class name. Parameters ---------- **kwargs : list or tuple of allowed argument values For each keyword argument, it's value must be a list or tuple of the allowed argument values. Examples -------- >>> @gluonnlp.data.register(segment=['train', 'test', 'dev']) ... class MyDataset(gluon.data.Dataset): ... def __init__(self, segment='train'): ... pass >>> my_dataset = gluonnlp.data.create('MyDataset') >>> print(type(my_dataset)) <class 'MyDataset'> """ def _real_register(class_): # Assert that the passed kwargs are meaningful for kwarg_name, values in kwargs.items(): try: real_args = inspect.getfullargspec(class_).args except AttributeError: # pylint: disable=deprecated-method real_args = inspect.getargspec(class_.__init__).args if not kwarg_name in real_args: raise RuntimeError( ('{} is not a valid argument for {}. ' 'Only valid arguments can be registered.').format( kwarg_name, class_.__name__)) if not isinstance(values, (list, tuple)): raise RuntimeError(('{} should be a list of ' 'valid arguments for {}. ').format( values, kwarg_name)) # Save the kwargs associated with this class_ _REGSITRY_NAME_KWARGS[class_] = kwargs register_ = registry.get_register_func(Dataset, 'dataset') return register_(class_) if class_ is not None: # Decorator was called without arguments return _real_register(class_) return _real_register
f1ce9a7abc8224fcd4bd80cddbf0d46e11ee997a
17,895
import random def random_population(pop_size, tune_params, tuning_options, max_threads): """create a random population of pop_size unique members""" population = [] option_space = np.prod([len(v) for v in tune_params.values()]) assert pop_size < option_space while len(population) < pop_size: dna = [random.choice(v) for v in tune_params.values()] if not dna in population and util.config_valid(dna, tuning_options, max_threads): population.append(dna) return population
b5f2fa518e29bdd6ccb5d10213080f9c594f01b0
17,896
def check_genome(genome): """Check if genome is a valid FASTA file or genomepy genome genome. Parameters ---------- genome : str Genome name or file to check. Returns ------- is_genome : bool """ try: Genome(genome) return True except Exception: pass return False
5f51d74203b77f39b0c8054d36fa6b68399540dd
17,897
def extract_row_loaded(): """extract_row as it should appear in memory""" result = {} result['classification_id'] = '91178981' result['user_name'] = 'MikeWalmsley' result['user_id'] = '290475' result['user_ip'] = '2c61707e96c97a759840' result['workflow_id'] = '6122' result['workflow_name'] = 'DECaLS DR5' result['workflow_version'] = '28.30' result['created_at'] = '2018-02-20 10:44:42 UTC' result['gold_standard'] = '' result['expert'] = '' result['metadata'] = { 'session': 'e69d40c94873e2e4e2868226d5567e0e997bf58e8800eef4def679ff3e69f97f', 'viewport': { 'width': 1081, 'height': 1049 }, 'started_at':'2018-02-20T10:41:13.381Z', 'user_agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10.12; rv:58.0) Gecko/20100101 Firefox/58.0', 'utc_offset': '0', 'finished_at': '2018-02-20T10:44:42.480Z', 'live_project': True, 'user_language': 'en', 'user_group_ids':[], 'subject_dimensions': [{ 'clientWidth': 424, 'clientHeight': 424, 'naturalWidth': 424, 'naturalHeight': 424 }]} result['annotations'] = [ { 'task': 'T0', 'task_label': 'Is the galaxy simply smooth and rounded, with no sign of a disk?', 'value':'![feature_or_disk.png](https://panoptes-uploads.zooniverse.org/production/project_attached_image/f353f2f1-a47e-439d-b9ca-020199162a79.png) Features or Disk' }, { 'task': 'T2', 'task_label': 'Could this be a disk viewed edge-on?', 'value':'![feature_or_disk.png](https://panoptes-uploads.zooniverse.org/production/project_attached_image/f353f2f1-a47e-439d-b9ca-020199162a79.png) No' }, { 'task': 'T4', 'task_label': 'Is there a bar feature through the centre of the galaxy?', 'value': 'No Bar' }, { 'task': 'T5', 'task_label': 'Is there any sign of a spiral arm pattern?', 'value': 'Yes' }, { 'task': 'T6', 'task_label': 'How tightly wound do the spiral arms appear?', 'value': '![tight_arms.png](https://panoptes-uploads.zooniverse.org/production/project_attached_image/0726dfdd-72fa-49e8-a112-439294937d5e.png) Tight' }, { 'task': 'T7', 'task_label':'How many spiral arms are there?', 'value':'![cant_tell_arms.png](https://panoptes-uploads.zooniverse.org/production/project_attached_image/e40e428f-3e73-4d40-9eff-1616a7399819.png) Cant tell' }, { 'task':'T8', 'task_label':'How prominent is the central bulge, compared with the rest of the galaxy?', 'value':'![no_bulge.png](https://panoptes-uploads.zooniverse.org/production/project_attached_image/75c872f6-7198-4b15-b663-8b88cb5c4d4b.png) No bulge' }, { 'task':'T11', 'task_label':'Is the galaxy currently merging, or is there any sign of tidal debris?', 'value':'Neither' }, { 'task':'T10', 'task_label':'Do you see any of these rare features in the image?', 'value':[] } ] result['subject_data'] = { '15715879': { 'retired': None, 'ra': 319.11521779916546, 'dec': -0.826509379829966, 'mag.g': 13.674222230911255, 'mag.i': 12.560198307037354, 'mag.r': 12.938228249549866, 'mag.u': 15.10558009147644, 'mag.z':12.32387661933899, 'nsa_id':189862.0, 'redshift':0.019291512668132782, 'mag.abs_r':-20.916738510131836, 'mag.faruv':16.92647397518158, 'petroflux':5388.59814453125, 'petroth50':13.936717987060547, 'mag.nearuv':16.298240423202515, 'petrotheta':28.682878494262695, 'absolute_size':11.334824080956198 } } result['subject_ids'] = '15715879' return result
c5fd87149ab7dff6e9980a898013053ce309c259
17,898
def getb_reginsn(*args): """ getb_reginsn(ins) -> minsn_t Skip assertions backward. @param ins (C++: const minsn_t *) """ return _ida_hexrays.getb_reginsn(*args)
04f0141c0053e74981264b90b3bb0be1fbea8c08
17,899
from solith.li_nofk.int_nofk import calc_jp1d, calc_nk1d def convolve_nk(myk, nkm, gfunc, klim, nk, kmin=0.02, kmax=1.5): """Convolve n(k) by going to J(p); apply resolution; and back. Args: myk (np.array): k nkm (np.array): n(k) gfunc (callable): resolution function klim (float): maxmimum kvalue to include in convolution nk (nk): number of points on linear grid kmin (float, optional): minimum n(k) to keep after conv., default 0.02 kmax (float, optional): maximum n(k) to keep after conv., default 1.50 Return: (np.array, np.array): (myk1, mynk1), convolved n(k) Example: >>> gfunc = lambda x:lorentz(x, 0.026) >>> klim = 40. # need large number for lorentzian tail >>> nk = 1024**2 >>> myk1, nkm1 = convolve_nk(myk, nkm, gfunc, klim, nk) """ # first integrate n(k) to J(p) jpm = calc_jp1d(myk, nkm) # second convolve J(p) fjp = flip_and_clamp(myk, jpm) finep = np.linspace(-klim, klim, nk) jp1 = fft_convolve(fjp, gfunc, finep) # third differentiate J(p) to n(k) sel = (finep > kmin) & (finep < kmax) myk1, nk1 = calc_nk1d(finep[sel], jp1[sel]) return myk1, nk1
7b7c782b35e1a58c104d4e5fef38f867f85ba014
17,900
def label_connected_components(label_images, start_label=1, is_3d=False): """Label connected components in a label image. Create new label images where labels are changed so that each \ connected componnent has a diffetent label. \ To find the connected components, it is used a 8-neighborhood. Parameters ---------- label_images : ndarray Label images with size :math:`(N, H, W)`. start_labeel: int First label, by default 1. Returns ------- ndarray Label images with new labels. """ # label_image = label_image.squeeze() if label_images.ndim == 2: label_images = np.expand_dims(label_images, 0) if is_3d and label_images.ndim == 3: label_images = np.expand_dims(label_images, 0) new_label_images = np.zeros_like(label_images).astype(np.int) _c = start_label for label_image, new_label_image in zip(label_images, new_label_images): num_labels = label_image.astype(np.int32).max() #new_label_image = np.zeros_like(label_image).astype(np.int) if is_3d: structure = np.ones((3, 3, 3), dtype=np.uint8) else: structure = np.ones((3, 3), dtype=np.uint8) for _l in range(1, num_labels + 1): _label_image = label(label_image == _l, structure=structure)[0] for new_l in range(1, _label_image.max() + 1): mask = _label_image == new_l new_label_image[mask] = _c _c += 1 return new_label_images
670a90421237718e263de23987c4d646e0669ae1
17,901
def metadataAbstractElementEmptyValuesTest1(): """ No empty values. >>> doctestMetadataAbstractElementFunction( ... testMetadataAbstractElementEmptyValue, ... metadataAbstractElementEmptyValuesTest1(), ... requiredAttributes=["required1"], ... optionalAttributes=["optional1"]) [] """ metadata = """<?xml version="1.0" encoding="UTF-8"?> <test required1="foo" optional1="foo" /> """ return ElementTree.fromstring(metadata)
6504b570a49876dfdbb84be4b56bd87978aef22c
17,904
def broadcast_dynamic_shape(shape_x, shape_y): """Computes the shape of a broadcast given symbolic shapes. When shape_x and shape_y are Tensors representing shapes (i.e. the result of calling tf.shape on another Tensor) this computes a Tensor which is the shape of the result of a broadcasting op applied in tensors of shapes shape_x and shape_y. For example, if shape_x is [1, 2, 3] and shape_y is [5, 1, 3], the result is a Tensor whose value is [5, 2, 3]. This is useful when validating the result of a broadcasting operation when the tensors do not have statically known shapes. Args: shape_x: A rank 1 integer `Tensor`, representing the shape of x. shape_y: A rank 1 integer `Tensor`, representing the shape of y. Returns: A rank 1 integer `Tensor` representing the broadcasted shape. """ return gen_array_ops.broadcast_args(shape_x, shape_y)
3716b11f62712d4fedd4f1c997e2ad022178848b
17,905
def extract_args_for_httpie_main(context, method=None): """Transform a Context object to a list of arguments that can be passed to HTTPie main function. """ args = _extract_httpie_options(context) if method: args.append(method.upper()) args.append(context.url) args += _extract_httpie_request_items(context) return args
7e6b4f9ff3bc5bc9d44d3a7537063f4dc0965ab3
17,906
def apply_configuration(dist: "Distribution", filepath: _Path) -> "Distribution": """Apply the configuration from a ``setup.cfg`` file into an existing distribution object. """ _apply(dist, filepath) dist._finalize_requires() return dist
0c5f8c3a8d41faacaa1c8a5c13fafbb67e561f64
17,907