content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
import math def gelu(input_tensor): """Gaussian Error Linear Unit. This is a smoother version of the RELU. Original paper: https://arxiv.org/abs/1606.08415 Args: input_tensor: float Tensor to perform activation. Returns: `input_tensor` with the GELU activation applied. """ # math.sqrt needed for bfloat16 compatibility cdf = 0.5 * (1.0 + tf.erf(input_tensor / math.sqrt(2.0))) return input_tensor * cdf
fd6de5888839521118c42d2e046b526f7025c70d
18,018
import torch def KPConv_ops(query_points, support_points, neighbors_indices, features, K_points, K_values, KP_extent, KP_influence, aggregation_mode): """ This function creates a graph of operations to define Kernel Point Convolution in tensorflow. See KPConv function above for a description of each parameter :param query_points: [n_points, dim] :param support_points: [n0_points, dim] :param neighbors_indices: [n_points, n_neighbors] :param features: [n_points, in_fdim] :param K_points: [n_kpoints, dim] :param K_values: [n_kpoints, in_fdim, out_fdim] :param KP_extent: float32 :param KP_influence: string :param aggregation_mode: string :return: [n_points, out_fdim] """ # Get variables n_kp = int(K_points.shape[0]) # print(support_points.shape) # Add a fake point in the last row for shadow neighbors shadow_point = torch.ones_like(support_points[:1, :]) * 1e6 support_points = torch.cat([support_points, shadow_point], axis=0) # Get neighbor points [n_points, n_neighbors, dim] # print(shadow_point.shape) # print(support_points.shape) # print(neighbors_indices.shape) neighbors = support_points[neighbors_indices] # Center every neighborhood neighbors = neighbors - query_points.unsqueeze(1) # Get all difference matrices [n_points, n_neighbors, n_kpoints, dim] neighbors = neighbors.unsqueeze(2) neighbors = neighbors.repeat([1, 1, n_kp, 1]) differences = neighbors - K_points # Get the square distances [n_points, n_neighbors, n_kpoints] sq_distances = torch.sum(differences ** 2, axis=3) # Get Kernel point influences [n_points, n_kpoints, n_neighbors] if KP_influence == 'constant': # Every point get an influence of 1. all_weights = torch.ones_like(sq_distances) all_weights = all_weights.permute(0, 2, 1) elif KP_influence == 'linear': # Influence decrease linearly with the distance, and get to zero when d = KP_extent. all_weights = torch.relu(1 - torch.sqrt(sq_distances) / KP_extent) all_weights = all_weights.permute(0, 2, 1) elif KP_influence == 'gaussian': # Influence in gaussian of the distance. sigma = KP_extent * 0.3 all_weights = radius_gaussian(sq_distances, sigma) all_weights = all_weights.permute(0, 2, 1) else: raise ValueError('Unknown influence function type (config.KP_influence)') # In case of closest mode, only the closest KP can influence each point if aggregation_mode == 'closest': neighbors_1nn = torch.argmin(sq_distances, axis=2, output_type=torch.long) # # all_weights *= tf.one_hot(neighbors_1nn, n_kp, axis=1, # dtype=torch.float32) all_weights *= torch.zeros_like(all_weights, dtype=torch.float32).scatter_( 1, neighbors_1nn, 1) elif aggregation_mode != 'sum': raise ValueError("Unknown convolution mode. Should be 'closest' or 'sum'") features = torch.cat([features, torch.zeros_like(features[:1, :])], axis=0) # Get the features of each neighborhood [n_points, n_neighbors, in_fdim] neighborhood_features = features[neighbors_indices] # Apply distance weights [n_points, n_kpoints, in_fdim] weighted_features = torch.matmul(all_weights, neighborhood_features) # Apply network weights [n_kpoints, n_points, out_fdim] weighted_features = weighted_features.permute(1, 0, 2) kernel_outputs = torch.matmul(weighted_features, K_values) # Convolution sum to get [n_points, out_fdim] output_features = torch.sum(kernel_outputs, axis=0) return output_features
29fbb193fef31cdd3bdfcf4df212c56eae32cb3e
18,019
def kerneleval(X_test, X_train, kernel): """ This function computes the pariwise distances between each row in X_test and X_train using the kernel specified in 'kernel' X_test, X_train: 2d np.arrays kernel: kernel parameters """ if kernel is None: return X_train fn = kernel['fn'] if fn == 'rbf': return rbf(X_train, X_test, gamma=kernel['gamma']) elif fn == 'poly': return poly(X_train, X_test, degree=kernel['degree']) elif fn == 'linear': return linear(X_train, X_test)
7cdba3af72dab288c9efac757905c51ed5f9a5f6
18,020
def aks_show_snapshot_table_format(result): """Format a snapshot as summary results for display with "-o table".""" return [_aks_snapshot_table_format(result)]
174deb4bdbe1da27826c89b4bd187e5aa8a00216
18,021
def poly_prem(f, g, *symbols): """Returns polynomial pseudo-remainder. """ return poly_pdiv(f, g, *symbols)[1]
4360e2bb4afc7d49f12b411aa18d2d5a1786306b
18,023
def gen_input_code(question, id): """ Returns the html code for rendering the appropriate input field for the given question. Each question is identified by name=id """ qtype = question['type'] if qtype == 'text': return """<input type="text" class="ui text" name="{0}" placeholder="your answer..." />""".format(id) elif qtype == 'code': return '<textarea class="ui text" name="{0}"></textarea>'.format(id) else: button_template = '<input type="radio" name="{0}" value="{1}"> {1}<br>' code = '' for choice in question['choices']: code = code + button_template.format(id, choice) return code
b76bea45c0ce847d664a38694732ef0b75c2a53c
18,024
def orbit_position(data, body='sun'): """calculate orbit position of sun or moon for instrument position at each time in 'data' using :class:`ephem` Args: data: :class:`xarray.Dataset`, commonly Measurement.data body (optional): name of astronomical body to calculate orbit from ('sun' or 'moon'). Defaults to 'sun' Returns: tuple containing: ele: :class:`numpy.ndarray` of elevations of the body for each time step azi: :class:`numpy.ndarray` of azimuths of the body for each time step """ obs = ephem.Observer() if body == 'sun': obj = ephem.Sun() elif body == 'moon': obj = ephem.Moon() else: raise NotImplementedError("function only implemented for 'body' in ['sun', 'moon']") ele = np.full(data['time'].shape, np.nan) azi = np.full(data['time'].shape, np.nan) for ind, time in enumerate(data['time']): # observer settings obs.lat = str(data['lat'][ind].values) # needs to be string to be interpreted as degrees obs.lon = str(data['lon'][ind].values) # needs to be string to be interpreted as degrees obs.elevation = data['altitude'][ind].values obs.date = str(time.dt.strftime('%Y/%m/%d %H:%M:%S').values) # get object's position in degrees obj.compute(obs) ele[ind] = np.rad2deg(obj.alt) azi[ind] = np.rad2deg(obj.az) return ele, azi
98ab63c20026d83010b10db7ef141d6f1c9bf55f
18,025
def list_inventory (inventory): """ :param inventory: dict - an inventory dictionary. :return: list of tuples - list of key, value pairs from the inventory dictionary. """ result = [] for element, quantity in inventory.items(): if quantity > 0: result.append ((element, quantity)) return result
264f8cde11879be8ace938c777f546974383122c
18,026
def wsd_is_duplicated_msg(msg_id): """ Check for a duplicated message. Implements SOAP-over-UDP Appendix II Item 2 """ if msg_id in wsd_known_messages: return True wsd_known_messages.append(msg_id) if len(wsd_known_messages) > WSD_MAX_KNOWN_MESSAGES: wsd_known_messages.popleft() return False
acd0c1b7de00e6e5ef2a04ff15c1906a5c543089
18,027
import json def sliding_tile_state(): """ Return the current state of the puzzle :return: JSON object representing the state of the maze puzzle """ json_state = {'sliding_tile': sliding_tile.array(), 'solver': sliding_tile_str_solver, 'steps': sliding_tile_steps, 'search_steps': sliding_tile_search_steps, 'size1': sliding_tile.size1, 'size2': sliding_tile.size2} return json.dumps(json_state)
8438ab4066e4a70b33873fee39667251da0823fc
18,029
import json def _json_to_numpy(string_like, dtype=None): # type: (str) -> np.array """Convert a JSON object to a numpy array. Args: string_like (str): JSON string. dtype (dtype, optional): Data type of the resulting array. If None, the dtypes will be determined by the contents of each column, individually. This argument can only be used to 'upcast' the array. For downcasting, use the .astype(t) method. Returns: (np.array): numpy array """ data = json.loads(string_like) return np.array(data, dtype=dtype)
accdb28572ed13e6e977d569a69e4dfe27e22e21
18,030
import json import time def connect(**kwargs): """ A strategy to connect a bot. :param kwargs: strategy, listener, and orders_queue :return: the input strategy with a report """ strategy = kwargs['strategy'] listener = kwargs['listener'] orders_queue = kwargs['orders_queue'] assets = kwargs['assets'] logger = log.get_logger(__name__, strategy['bot']) if support_functions.get_profile(strategy['bot'])['banned']: logger.warning('{} has been banned'.format(strategy['bot'])) strategy['report'] = { 'success': False, 'details': {'Execution time': 0, 'Reason': '{} has been banned'.format(strategy['bot'])} } log.close_logger(logger) return strategy if 'connected' in listener.game_state.keys(): if listener.game_state['connected']: logger.info('Bot connected in {}s'.format(0)) strategy['report'] = { 'success': True, 'details': {'Execution time': 0} } log.close_logger(logger) return strategy bot_profile = strategies.support_functions.get_profile(strategy['bot']) order = { 'command': 'connect', 'parameters': { 'name': bot_profile['name'], 'username': bot_profile['username'], 'password': bot_profile['password'], 'serverId': assets['server_2_id'][bot_profile['server']], } } logger.info('Sending order to bot API: {}'.format(order)) orders_queue.put((json.dumps(order),)) start = time.time() timeout = 40 if 'timeout' not in strategy.keys() else strategy['timeout'] waiting = True while waiting and time.time() - start < timeout: if 'connected' in listener.game_state.keys() and 'api_outdated' in listener.game_state.keys(): if 'pos' in listener.game_state.keys() or listener.game_state['api_outdated'] or listener.game_state['banned']: # Actually wait for the map to load and not just a connection confirmation waiting = False time.sleep(0.05) execution_time = time.time() - start if waiting: logger.warn('Failed connecting in {}s'.format(execution_time)) strategy['report'] = { 'success': False, 'details': {'Execution time': execution_time, 'Reason': 'Timeout'} } log.close_logger(logger) return strategy if listener.game_state['api_outdated']: logger.warn('Your BlackFalconAPI is outdated. Try to get the latest one or contact the BlackFalcon team if you already have the latest version') strategy['report'] = { 'success': False, 'details': {'Execution time': execution_time, 'Reason': 'Your BlackFalconAPI is outdated. Try to get the latest one or contact the BlackFalcon team if you already have the latest version'} } log.close_logger(logger) return strategy if listener.game_state['banned']: logger.warn('{} has been banned'.format(strategy['bot'])) strategy['report'] = { 'success': False, 'details': {'Execution time': execution_time, 'Reason': '{} has been banned'.format(strategy['bot'])} } log.close_logger(logger) return strategy logger.info('Connected {} in {}s'.format(strategy['bot'], execution_time)) strategy['report'] = { 'success': True, 'details': {'Execution time': execution_time} } log.close_logger(logger) return strategy
fd2c2637e9eb02356e441994d214d86ec77f56f1
18,031
def create_env(env, render=False, shared=False, maddpg=False, evaluate=False): """Return, and potentially create, the environment. Parameters ---------- env : str or gym.Env the environment, or the name of a registered environment. render : bool whether to render the environment shared : bool specifies whether agents in an environment are meant to share policies. This is solely used by multi-agent Flow environments. maddpg : bool whether to use an environment variant that is compatible with the MADDPG algorithm evaluate : bool specifies whether this is a training or evaluation environment Returns ------- gym.Env or list of gym.Env or None gym-compatible environment(s). Set to None if no environment is being returned. array_like or list of array_like or None the observation(s) from the environment(s) upon reset. Set to None if no environment is being returned. """ if env is None: # No environment (for evaluation environments). return None, None elif isinstance(env, str): if env in ENV_ATTRIBUTES.keys() or env.startswith("multiagent"): # Handle multi-agent environments. multiagent = env.startswith("multiagent") if multiagent: env = env[11:] env = ENV_ATTRIBUTES[env]["env"]( evaluate, render, multiagent, shared, maddpg) elif env.startswith("flow:"): # environments in flow/examples env = import_flow_env(env, render, shared, maddpg, evaluate) else: # This is assuming the environment is registered with OpenAI gym. env = gym.make(env) # Reset the environment. if isinstance(env, list): obs = [next_env.reset() for next_env in env] else: obs = env.reset() return env, obs
8c43a177418b7b9317d2ebcd4155edf5a58b5afe
18,032
def measure_approximate_cost(structure): """ Various bits estimate the size of the structures they return. This makes that consistent. """ if isinstance(structure, (list, tuple)): return 1 + sum(map(measure_approximate_cost, structure)) elif isinstance(structure, dict): return len(structure) + sum(map(measure_approximate_cost, structure.values())) elif isinstance(structure, int) or structure is None: return 1 else: assert False, type(structure)
8adbd962e789be6549745fbb71c71918d3cc8d0c
18,033
def make3DArray(dim1, dim2, dim3, initValue): """ Return a list of lists of lists representing a 3D array with dimensions dim1, dim2, and dim3 filled with initialValue """ result = [] for i in range(dim1): result = result + [make2DArray(dim2, dim3, initValue)] return result
c4972ff72fe751d131e4d840b12905d2383299c2
18,034
import math def generate_boxes(bounds=(-1, -1, 1, 1), method='size', size=math.inf): """ Generate a stream of random bounding boxes Has two methods for generating random boxes: - *size* - generates a random central point (x0, y0) within the bounding box, and then draws widths and heights from a logN(0, 0.25) distribution. - *range* - generates random ranges in x and y by drawing points from the bounding box and ordering them. Parameters: bounds - the bounding box to generate boxes in method - the method to use to generate the boxes. One of 'range' or 'size' size - the number of boxes to generate. If `size=math.inf` then return a Returns: a generator """ methods = { 'size': size_box_stream, 'range': range_box_stream } if method not in methods.keys(): raise ValueError(f'Unknown method {method}, allowed values are {methods.keys()}') # Make the thing to return _generator = methods[method](bounds) return _generator if math.isinf(size) else islice(_generator, size)
4cb4ae7fd179b466054c21d7512a1861652476c0
18,035
def create_assets(asset_ids, asset_type, mk_parents): """Creates the specified assets if they do not exist. This is a fork of the original function in 'ee.data' module with the difference that - If the asset already exists but the type is different that the one we want, raise an error - Starts the creation of folders since 'user/username/' Will be here until I can pull requests to the original repo :param asset_ids: list of paths :type asset_ids: list :param asset_type: the type of the assets. Options: "ImageCollection" or "Folder" :type asset_type: str :param mk_parents: make the parents? :type mk_parents: bool :return: A description of the saved asset, including a generated ID """ for asset_id in asset_ids: already = ee.data.getInfo(asset_id) if already: ty = already['type'] if ty != asset_type: raise ValueError("{} is a {}. Can't create asset".format(asset_id, ty)) print('Asset %s already exists' % asset_id) continue if mk_parents: parts = asset_id.split('/') root = "/".join(parts[:2]) root += "/" for part in parts[2:-1]: root += part if ee.data.getInfo(root) is None: ee.data.createAsset({'type': 'Folder'}, root) root += '/' return ee.data.createAsset({'type': asset_type}, asset_id)
7be92642b6863f19039ed92d6652027ccd43d4ba
18,036
def decoration(markdown: str, separate: int = 0) -> str: """見出しが使われているマークダウンをDiscordで有効なものに変換します。 ただたんに`# ...`を`**#** ...`に変換して渡された数だけ後ろに改行を付け足すだけです。 Parameters ---------- markdown : str 変換するマークダウンです。 separate : int, default 1 見出しを`**`で囲んだ際に後ろに何個改行を含めるかです。""" new = "" for line in markdown.splitlines(): if line.startswith(("# ", "## ", "### ", "#### ", "##### ")): line = f"**#** {line[line.find(' ')+1:]}" if line.startswith(("\n", "**#**")): line = f"{repeate(separate)}{line}" new += f"{line}\n" return new
f76a21b093a00d04d1e95fc733a0956722737d51
18,037
import hashlib def get_fingerprint(file_path: str) -> str: """ Calculate a fingerprint for a given file. :param file_path: path to the file that should be fingerprinted :return: the file fingerprint, or an empty string """ try: block_size = 65536 hash_method = hashlib.md5() with open(file_path, 'rb') as input_file: buf = input_file.read(block_size) while buf: hash_method.update(buf) buf = input_file.read(block_size) return hash_method.hexdigest() except Exception: # if the file cannot be hashed for any reason, return an empty fingerprint return ''
b0ee4d592b890194241aaafb43ccba927d13662a
18,038
def set_publish_cluster_args(args): """Set args to publish cluster """ public_cluster = {} if args.public_cluster: public_cluster = {"private": False} if args.model_price: public_cluster.update(price=args.model_price) if args.cpp: public_cluster.update(credits_per_prediction=args.cpp) return public_cluster
a1a5842093daf4d6de9bc9cdfae0cf7f9f5a0f5c
18,039
def _get_iforest_anomaly_score_per_node(children_left, children_right, n_node_samples): """ Get anomaly score per node in isolation forest, which is node depth + _average_path_length(n_node_samples). Will be used to replace "value" in each tree. Args: children_left: left children children_right: right children n_node_samples: number of samples per node """ # Get depth per node. node_depth = np.zeros(shape=n_node_samples.shape, dtype=np.int64) stack = [(0, -1)] # seed is the root node id and its parent depth while len(stack) > 0: node_id, parent_depth = stack.pop() node_depth[node_id] = parent_depth + 1 if children_left[node_id] != children_right[node_id]: stack.append((children_left[node_id], parent_depth + 1)) stack.append((children_right[node_id], parent_depth + 1)) return _average_path_length(n_node_samples) + node_depth
d567d083d8e1914e4aee809092fd81e08e74f98d
18,041
def get_invalid_value_message(value_name: str, value: str, line_no: int, uid: str, expected_vals: "list[str]") -> str: """ Returns the formatted message template for invalid value while parsing students data! """ msg = f"Invalid {value_name} <span class=\"font-weight-bold\">{value}</span>\ on line <span class=\"text-primary\">{line_no}</span>\ of UID <span class=\"text-secondary\">{uid}</span>.\ Should be one of {expected_vals}" return msg
cb7dc84b566bb117fe53ce5956919978558ccbbf
18,042
def compute_score_for_coagulation(platelets_count: int) -> int: """ Computes score based on platelets count (unit is number per microliter). """ if platelets_count < 20_000: return 4 if platelets_count < 50_000: return 3 if platelets_count < 100_000: return 2 if platelets_count < 150_000: return 1 return 0
dc6e9935555fbb0e34868ce58a8ad8bc77be8b0c
18,043
def check_horizontal_visibility(board: list): """ Check row-wise visibility (left-right and vice versa) Return True if all horizontal hints are satisfiable, i.e., for line 412453* , hint is 4, and 1245 are the four buildings that could be observed from the hint looking to the right. >>> check_horizontal_visibility(['***21**', '412453*', '423145*', '*543215', '*35214*', '*41532*', '*2*1***']) True >>> check_horizontal_visibility(['***21**', '452453*', '423145*', '*543215', '*35214*', '*41532*', '*2*1***']) False >>> check_horizontal_visibility(['***21**', '452413*', '423145*', '*543215', '*35214*', '*41532*', '*2*1***']) False """ res_num = 0 res = 1 k = 1 for i in board: if i[0] != '*': while i[k + 1] != i[-1]: if i[k] < i[k + 1]: res += 1 k += 1 if res == int(i[0]): res_num = res_num else: res_num += 1 if i[-1] != '*': i = i[::-1] while i[k + 1] != i[-1]: if i[k] < i[k + 1]: res += 1 k += 1 if res == int(i[0]): res_num = res_num else: res_num += 1 res = 1 k = 1 if res_num == 0: return True else: return False
b84ff29fde689069ba5e92b10d54c8f0528aa321
18,044
import requests def _get_soup(header, url): """This functions simply gets the header and url, creates a session and generates the "soup" to pass to the other functions. Args: header (dict): The header parameters to be used in the session. url (string): The url address to create the session. Returns: bs4.BeautifulSoup: The BeautifoulSoup object. """ # Try to read data from URL, if it fails, return None try: session = requests.Session() session.headers["User-Agent"] = header["User-Agent"] session.headers["Accept-Language"] = header["Language"] session.headers["Content-Language"] = header["Language"] html = session.get(url) return bs(html.text, "html.parser") except: print(f"ERROR: Unable to retrieve data from {url}") return None
22ad8876bdd19d405398272cfe0d4429f4b6ac9a
18,045
import json def get_text_block(dunning_type, language, doc): """ This allows the rendering of parsed fields in the jinja template """ if isinstance(doc, string_types): doc = json.loads(doc) text_block = frappe.db.get_value('Dunning Type Text Block', {'parent': dunning_type, 'language': language}, ['top_text_block', 'bottom_text_block'], as_dict = 1) if text_block: return { 'top_text_block': frappe.render_template(text_block.top_text_block, doc), 'bottom_text_block': frappe.render_template(text_block.bottom_text_block, doc) }
31775b402a943e0c735d65a3c388503a6e03b37e
18,047
def group_create_factory(context, request): """Return a GroupCreateService instance for the passed context and request.""" user_service = request.find_service(name="user") return GroupCreateService( session=request.db, user_fetcher=user_service.fetch, publish=partial(_publish, request), )
3928a35a74d1f62e4a6f5e38087fce72e7ebbc95
18,050
def verify(params, vk, m, sig): """ verify a signature on a clear message """ (G, o, g1, hs, g2, e) = params (g2, X, Y) = vk sig1 , sig2 = sig return not sig1.isinf() and e(sig1, X + m * Y) == e(sig2, g2)
7413d9172d383c3602cbc2b8348c4ace61c40302
18,051
def generate_data(n): """ 生成训练数据 """ X, y = make_classification(n_samples=n, n_features=4) data = pd.DataFrame(X, columns=["x1", "x2", "x3", "x4"]) data["y"] = y return data
0bf9cac1cf94c6bf8c12cb605f3bfcd6cde10a0d
18,053
def blsimpv(p, s, k, rf, t, div=0, cp=1): """ Computes implied Black vol from given price, forward, strike and time. """ f = lambda x: blsprice(s, k, rf, t, x, div, cp) - p result = brentq(f, 1e-9, 1e+9) return result
30ad8274aa40f50460cc7f52095ead8ef5021c9a
18,054
def container_describe(object_id, input_params={}, always_retry=True, **kwargs): """ Invokes the /container-xxxx/describe API method. For more info, see: https://wiki.dnanexus.com/API-Specification-v1.0.0/Containers-for-Execution#API-method%3A-%2Fcontainer-xxxx%2Fdescribe """ return DXHTTPRequest('/%s/describe' % object_id, input_params, always_retry=always_retry, **kwargs)
e56126b67880a316a84ab81cbcd208844282f0f5
18,055
from typing import Union from typing import Dict def nested(fields: Union[Dict[str, Dict], DataSpec], **config) -> dict: """ Constructs a nested Field Spec Args: fields: sub field specifications config: in kwargs format Returns: the nested spec """ spec = { "type": "nested", "fields": utils.get_raw_spec(fields) } # type: Dict[str, Any] if len(config) > 0: spec['config'] = config return spec
3cba172e642b968aabbeb7ee1f2c21d217f443e2
18,056
from typing import List def objects_from_array( objects_arr: np.ndarray, default_keys=constants.DEFAULT_OBJECT_KEYS ) -> List[btypes.PyTrackObject]: """Construct PyTrackObjects from a numpy array.""" assert objects_arr.ndim == 2 n_features = objects_arr.shape[1] assert n_features >= 3 n_objects = objects_arr.shape[0] keys = default_keys[:n_features] objects_dict = {keys[i]: objects_arr[:, i] for i in range(n_features)} objects_dict["ID"] = np.arange(n_objects) return objects_from_dict(objects_dict)
eeabc05132fa04f826c65d204f2d97ded625189a
18,058
def run_policy(env, policy, scaler, logger, episodes): """ Run policy and collect data for a minimum of min_steps and min_episodes Args: env: ai gym environment policy: policy object with sample() method scaler: scaler object, used to scale/offset each observation dimension to a similar range logger: logger object, used to save stats from episodes episodes: total episodes to run Returns: list of trajectory dictionaries, list length = number of episodes 'observes' : NumPy array of states from episode 'actions' : NumPy array of actions from episode 'rewards' : NumPy array of (un-discounted) rewards from episode 'unscaled_obs' : NumPy array of (un-discounted) rewards from episode """ total_steps = 0 trajectories = [] for e in range(episodes): observes, actions, rewards, unscaled_obs = run_episode(env, policy, scaler) total_steps += observes.shape[0] trajectory = {'observes': observes, 'actions': actions, 'rewards': rewards, 'unscaled_obs': unscaled_obs} trajectories.append(trajectory) unscaled = np.concatenate([t['unscaled_obs'] for t in trajectories]) scaler.update(unscaled) # update running statistics for scaling observations logger.log({'_MeanReward': np.mean([t['rewards'].sum() for t in trajectories]), 'Steps': total_steps}) return trajectories
8d723d13d10b15fda3a2da3591b663ec3c1b81b8
18,059
def load_data(): """Load database""" db = TinyDB(DATABASE_PATH) data = db.all() return pd.DataFrame(data)
5fba31fb66f1ccb86125902e8a39fe2c0247f741
18,060
def plotcmaponaxis(ax, surf, title, point_sets=None): """Plot a Surface as 2D heatmap on a given matplotlib Axis""" surface = ax.pcolormesh(surf.X, surf.Y, surf.Z, cmap=cm.viridis) if point_sets: for x_y, z, style in point_sets: ax.scatter(x_y[:, 0], x_y[:, 1], **style) ax.set_xlabel('x') ax.set_ylabel('y') ax.set_title(title) return surface
9d462c745cc3a5f2142c29d69ddba1b4f96f6cab
18,061
def get_log_storage() -> TaskLogStorage: """Get current TaskLogStorage instance associated with the current application.""" return current_app.config.get("LOG_STORAGE")
30e4e8d6c61196ee94d519cff020d54d47b2ddbf
18,062
def test_optional_posonly_args1(a, b=10, /, c=100): """ >>> test_optional_posonly_args1(1, 2, 3) 6 >>> test_optional_posonly_args1(1, 2, c=3) 6 >>> test_optional_posonly_args1(1, b=2, c=3) # doctest: +ELLIPSIS Traceback (most recent call last): TypeError: test_optional_posonly_args1() got ... keyword argument... 'b' >>> test_optional_posonly_args1(1, 2) 103 >>> test_optional_posonly_args1(1, b=2) # doctest: +ELLIPSIS Traceback (most recent call last): TypeError: test_optional_posonly_args1() got ... keyword argument... 'b' """ return a + b + c
8986d0718e65988f109b31bf5f7ce8fdcd65c833
18,063
def _build_schema_resource(fields): """Generate a resource fragment for a schema. Args: fields (Sequence[google.cloud.bigquery.schema.SchemaField): schema to be dumped. Returns: Sequence[Dict]: Mappings describing the schema of the supplied fields. """ return [field.to_api_repr() for field in fields]
34a32c9b1707062d202a1fd9f98cdd4dc0cb11ae
18,064
def flatten_swtn(x): """ Flatten list an array. Parameters ---------- x: list of dict or ndarray the input data Returns ------- y: ndarray 1D the flatten input list of array. shape: list of dict the input list of array structure. """ # Check input if not isinstance(x, list): x = [x] elif len(x) == 0: return None, None # Flatten the dataset y = [] shape_dict = [] for i in range(len(x)): dict_lvl = {} for key in x[i].keys(): dict_lvl[key] = x[i][key].shape y = np.concatenate((y, x[i][key].flatten())) shape_dict.append(dict_lvl) return y, shape_dict
2f8e0b17c462dd97eaa3cd69104164cdcf533cdc
18,065
def crossing(series, value, **options): """Find where a function crosses a value. series: Series value: number options: passed to interp1d (default is linear interp) returns: number """ interp = interp1d(series.values, series.index, **options) return interp(value)
5318975ad28280e6aff4c0dbd944daf0dd2a24d1
18,067
import math def equilSoundSpeeds(gas, rtol=1.0e-6, maxiter=5000): """ Returns a tuple containing the equilibrium and frozen sound speeds for a gas with an equilibrium composition. The gas is first set to an equilibrium state at the temperature and pressure of the gas, since otherwise the equilibrium sound speed is not defined. """ # set the gas to equilibrium at its current T and P gas.equilibrate('TP', rtol=rtol, maxiter=maxiter) # save properties s0 = gas.s p0 = gas.P r0 = gas.density # perturb the pressure p1 = p0*1.0001 # set the gas to a state with the same entropy and composition but # the perturbed pressure gas.SP = s0, p1 # frozen sound speed afrozen = math.sqrt((p1 - p0)/(gas.density - r0)) # now equilibrate the gas holding S and P constant gas.equilibrate('SP', rtol=rtol, maxiter=maxiter) # equilibrium sound speed aequil = math.sqrt((p1 - p0)/(gas.density - r0)) # compute the frozen sound speed using the ideal gas expression as a check gamma = gas.cp/gas.cv afrozen2 = math.sqrt(gamma * ct.gas_constant * gas.T / gas.mean_molecular_weight) return aequil, afrozen, afrozen2
c2b10fe05cc2f19e50b5ed8934c463768ec16c8e
18,068
import time import click def benchmark(partitioner_list: list, item_list: list, bucket_list: list, iterations: int = 1, begin_range: int = 1, end_range: int = 10, specified_items_sizes: list = None, verbose: bool = False)\ -> pd.DataFrame: """ Args: Returns: Raises: """ r = pd.DataFrame(columns=('partitioner', 'num_items', 'buckets', 'iteration', 'variance', 'elapsed_seconds', 'dividers', 'items')) for num_items in item_list: for num_buckets in bucket_list: results = [] for i in range(1, iterations + 1): if specified_items_sizes is None: items = np.random.randint(begin_range, end_range + 1, size=num_items) else: items = specified_items_sizes[:num_items] for partitioner in partitioner_list: start = time.time() dividers, variance = partitioner.partition(items, num_buckets) end = time.time() results.append({ 'partitioner': partitioner.name, 'num_items': num_items, 'buckets': num_buckets, 'iteration': i, 'variance': variance, 'elapsed_seconds': end - start, 'dividers': dividers, 'items': items }) r = r.append(results) mean = r[(r.num_items == num_items) & (r.buckets == num_buckets)].groupby('partitioner').mean() if verbose: click.echo(f'Items: {num_items} Buckets: {num_buckets} Mean values over {iterations} iterations:') click.echo(f'Partitioner\t\tTime (ms)\t\tVariance') for partitioner, record in mean.iterrows(): click.echo(f'{partitioner}\t\t\t{record.elapsed_seconds * 1000:.2f}\t\t\t{record.variance:.4f}') return r
08e4d00fa57bada7297c509ead2a2e45f1fb5cc7
18,069
def adj_by_strand(genes): """ liste: list of hmm gene with homogenous strand Check if the gene is in tandem with another and if so store the gene inside a set obj.TA_gene.linked In parallel it clean up the list obj.TA_gene.genes by removing the genes that forme a tandem. Then TA_gene.genes has only the lonely_gene """ linked_genes = set() for gi, gene in enumerate(genes): # print obj.TA_gene.genes_plus[gi].gene_number, obj.TA_gene.genes_plus[gi].len_val for gpost in genes[gi + 1:]: if gpost.end - gene.end + 1 > obj.Gene.length_max + obj.Gene.distanceMax: """ if the distance between gene.end and gpost.end is superior to lenmax + distmax Then the two gene won't be in pair and the next postgene either because they are sorted by their start So we can break the gpost for loop and check the next gene """ break # it is a simple test that ckeck if the two gene are adjacent if gene.is_pre_adj_to(gpost): # store the information of prev and post according the strand if gene.strand == '+': gene.post.append(gpost) gpost.prev.append(gene) else: gpost.post.append(gene) gene.prev.append(gpost) # add the gene because it has a link in the set linked of class TA_gene linked_genes.add(gene) # add the gene because it has a link in the set linked of class TA_gene linked_genes.add(gpost) return linked_genes
2836375fadf46b445098ddecf3aaf1884dad8efc
18,070
def register_user(): """ register a user and take to profile page """ form = RegisterForm() if form.validate_on_submit(): username = form.username.data password = form.password.data email = form.email.data first_name = form.first_name.data last_name = form.last_name.data new_user = User.register(username, password, email, first_name, last_name) db.session.add(new_user) try: db.session.commit() except IntegrityError: form.username.errors.append('Username taken. Please pick another username') return render_template('register.html', form=form) session['username'] = new_user.username flash('Welcome! Successfully Created Your Account!', "success") return redirect(f'/users/{new_user.username}') return render_template('register.html', form=form)
2f1f875d3c35589d8efc1e069a8d050b931a5f51
18,071
def stack_init_image(init_image, num_images): """Create a list from a single image. Args: init_image: a single image to be copied and stacked num_images: number of copies to be included Returns: A list of copies of the original image (numpy ndarrays) """ init_images = [] for j in range(num_images): init_images.append(np.asarray(init_image.copy())) return init_images
2cf26723bdbf53921ff053308e408bd84ec03edb
18,072
def f5(x, eps=0.0): """The function f(x)=tanh(4x)+noise""" return np.tanh(4*x) + eps * np.random.normal(size=x.shape)
02025ed30032b1e8de9ecbca4238170e5adff4b1
18,075
def get_next_event(game, players): """ return None if a player has to move before the next event otherwise return the corresponding Event enum entry """ active_player = get_active_player(players, game.finish_time) if active_player is None: return None planet_rotation_event = ( game.planet_rotation_event_time, game.planet_rotation_event_move, Event.PLANET_ROTATION) offer_demand_event = (game.offer_demand_event_time, game.offer_demand_event_move, Event.OFFER_DEMAND) no_event = (active_player.time_spent, active_player.last_move, None) events = [planet_rotation_event, offer_demand_event, no_event] if game.midgame_scoring: midgame_scoring_event = (game.midgame_scoring_event_time, game.midgame_scoring_event_move, Event.MIDGAME_SCORING) events.append(midgame_scoring_event) result = next_turn(events) return result
955082da6a3c0ec8b0ee50e149e7251651584352
18,076
def max_width(string, cols, separator='\n'): """Returns a freshly formatted :param string: string to be formatted :type string: basestring or clint.textui.colorred.ColoredString :param cols: max width the text to be formatted :type cols: int :param separator: separator to break rows :type separator: basestring >>> formatters.max_width('123 5678', 8) '123 5678' >>> formatters.max_width('123 5678', 7) '123 \n5678' """ is_color = isinstance(string, ColoredString) if is_color: string_copy = string._new('') string = string.s stack = tsplit(string, NEWLINES) for i, substring in enumerate(stack): stack[i] = substring.split() _stack = [] for row in stack: _row = ['',] _row_i = 0 for word in row: if (len(_row[_row_i]) + len(word)) <= cols: _row[_row_i] += word _row[_row_i] += ' ' elif len(word) > cols: # ensure empty row if len(_row[_row_i]): _row[_row_i] = _row[_row_i].rstrip() _row.append('') _row_i += 1 chunks = schunk(word, cols) for i, chunk in enumerate(chunks): if not (i + 1) == len(chunks): _row[_row_i] += chunk _row[_row_i] = _row[_row_i].rstrip() _row.append('') _row_i += 1 else: _row[_row_i] += chunk _row[_row_i] += ' ' else: _row[_row_i] = _row[_row_i].rstrip() _row.append('') _row_i += 1 _row[_row_i] += word _row[_row_i] += ' ' else: _row[_row_i] = _row[_row_i].rstrip() _row = map(str, _row) _stack.append(separator.join(_row)) _s = '\n'.join(_stack) if is_color: _s = string_copy._new(_s) return _s
49521ec4521b639e71b3fc5212738cc6e4d93129
18,078
import base64 def aes_encrypt(text, sec_key): """ AES encrypt method. :param text: :param sec_key: :return: """ pad = 16 - len(text) % 16 if isinstance(text, bytes): text = text.decode('utf-8') text += pad * chr(pad) encryptor = AES.new(sec_key, 2, '0102030405060708') cipher_text = encryptor.encrypt(text) cipher_text = base64.b64encode(cipher_text) return cipher_text
55340a7f1fcf37c58daaf3a72db70344159fbf30
18,079
def get_value_at_coords(matrix, x, y): """Returns the value of the matrix at given integer coordinates. Arguments: matrix {ndarray} -- Square matrix. x {int} -- x-coordinate. y {int} -- y-coordinate. Returns: int -- Value of the matrix. """ offset = matrix_offset(matrix) return matrix[x + offset, y + offset]
92e96f276025e21bc8643eb96ce03fd191285c93
18,080
def rms(vector): """ Parameters ---------- vector Returns ------- """ return np.sqrt(np.mean(np.square(vector)))
9d4888050e7f048a8d2ca5b92fa638d5c8d24eb7
18,081
def parse(text): """Parse a tag-expression as text and return the expression tree. .. code-block:: python tags = ["foo", "bar"] tag_expression = parse("foo and bar or not baz") assert tag_expression.evaluate(tags) == True :param text: Tag expression as text to parse. :param parser_class: Optional p :return: Parsed expression """ return TagExpressionParser.parse(text)
202951a1023557e3405b8f5d4d06084e798ae12c
18,082
import itertools def average_distance(points, distance_func): """ Given a set of points and their pairwise distances, it calculates the average distances between a pair of points, averaged over all C(num_points, 2) pairs. """ for p0, p1 in itertools.combinations(points, 2): # assert symmetry assert abs(distance_func(p0, p1) - distance_func(p1, p0)) < 1e-7, \ '{} {} {} {}'.format(p0, p1, distance_func(p0, p1), distance_func(p1, p0)) for p0, p1, p2 in itertools.combinations(points, 3): # assert triangle inequality assert distance_func(p0, p1) + distance_func(p1, p2) >= distance_func(p0, p2) assert distance_func(p0, p2) + distance_func(p1, p2) >= distance_func(p0, p1) assert distance_func(p0, p1) + distance_func(p0, p2) >= distance_func( p1, p2), '{p0}-{p1}={d01} {p0}-{p2}={d02} {p1}-{p2}={d12}'.format( p0=p0, p1=p1, p2=p2, d01=distance_func(p0, p1), d02=distance_func(p0, p2), d12=distance_func(p1, p2)) # actual calculation happens below total_dist = 0.0 all_pairs = list(itertools.combinations(points, 2)) for p0, p1 in all_pairs: total_dist += distance_func(p0, p1) if all_pairs: return float(total_dist) / len(all_pairs) else: return 0.0
236735da94e902dd7fbe062de8abb9a02208156f
18,083
def get_bin_alignment(begin, end, freq): """Generate a few values needed for checking and filling a series if need be.""" start_bin = get_expected_first_bin(begin,freq) end_bin = (end/freq)*freq expected_bins = expected_bin_count(start_bin, end_bin, freq) return start_bin, end_bin, expected_bins
0ff46d4d8df2d7fd177377621c69bac95f23eb9f
18,084
def TagAndFilterWrapper(target, dontRemoveTag=False): """\ Returns a component that wraps a target component, tagging all traffic coming from its outbox; and filtering outany traffic coming into its inbox with the same unique id. """ if dontRemoveTag: Filter = FilterButKeepTag else: Filter = FilterTag return Graphline( TAGGER = UidTagger(), FILTER = Filter(), TARGET = target, linkages = { ("TARGET", "outbox") : ("TAGGER", "inbox"), # tag data coming from target ("TAGGER", "outbox") : ("self", "outbox"), ("TAGGER", "uid") : ("FILTER", "uid"), # ensure filter uses right uid ("self", "inbox") : ("FILTER", "inbox"), # filter data going to target ("FILTER", "outbox") : ("TARGET", "inbox"), ("self", "control") : ("TARGET", "control"), # shutdown signalling path ("TARGET", "signal") : ("TAGGER", "control"), ("TAGGER", "signal") : ("FILTER", "control"), ("FILTER", "signal") : ("self", "signal"), }, )
83329d0c3f6bbf872ba65d31f7b2111c60a768e7
18,085
import requests import json def tweets(url): """tweets count""" try: twitter_url = 'http://urls.api.twitter.com/1/urls/count.json?url=' + url r = requests.get(twitter_url, headers=headers) json_data = json.loads(r.text) return json_data['count'] except: return 0
07e10d4b1ddad8cf74d79dc21fbc8dbfe1c38428
18,086
def CLJPc(S): """Compute a C/F splitting using the parallel CLJP-c algorithm. CLJP-c, or CLJP in color, improves CLJP by perturbing the initial random weights with weights determined by a vertex coloring. Parameters ---------- S : csr_matrix Strength of connection matrix indicating the strength between nodes i and j (S_ij) Returns ------- splitting : array Array of length of S of ones (coarse) and zeros (fine) Examples -------- >>> from pyamg.gallery import poisson >>> from pyamg.classical.split import CLJPc >>> S = poisson((7,), format='csr') # 1D mesh with 7 vertices >>> splitting = CLJPc(S) See Also -------- MIS, PMIS, CLJP References ---------- .. [1] David M. Alber and Luke N. Olson "Parallel coarse-grid selection" Numerical Linear Algebra with Applications 2007; 14:611-643. """ S = remove_diagonal(S) return CLJP(S, color=True)
3ef11327120a71123e51b702c5452e8036f581d5
18,087
def displayTwoDimMapPOST(): """Run displayTwoDimMap""" executionStartTime = int(time.time()) # status and message success = True message = "ok" plotUrl = '' dataUrl = '' # get model, var, start time, end time, lon1, lon2, lat1, lat2, months, scale jsonData = request.json model = jsonData['model'] var = jsonData['var'] startT = jsonData['start_time'] endT = jsonData['end_time'] lon1 = jsonData['lon1'] lon2 = jsonData['lon2'] lat1 = jsonData['lat1'] lat2 = jsonData['lat2'] months = jsonData['months'] scale = jsonData['scale'] userId = request.args.get('userid', '') print 'from url, userId: ', userId if userId != None and userId != '': userId = int(userId) else: userId = 0 #added by Chris parameters_json = {'model':model, 'var':var, 'startT':startT, 'endT':endT, 'lon1':lon1, 'lon2':lon2, 'lat1':lat1, 'lat2':lat2, 'months':months, 'scale':scale} print 'model: ', model print 'var: ', var print 'startT: ', startT print 'endT: ', endT print 'lon1: ', lon1 print 'lon2: ', lon2 print 'lat1: ', lat1 print 'lat2: ', lat2 print 'months: ', months print 'scale: ', scale # get where the input file and output file are current_dir = os.getcwd() print 'current_dir: ', current_dir try: seed_str = model+var+startT+endT+lon1+lon2+lat1+lat2+months+scale tag = md5.new(seed_str).hexdigest() output_dir = current_dir + '/svc/static/twoDimMap/' + tag print 'output_dir: ', output_dir if not os.path.exists(output_dir): os.makedirs(output_dir) # chdir to where the app is os.chdir(current_dir+'/svc/src/twoDimMap') # instantiate the app. class c1 = call_twoDimMap.call_twoDimMap(model, var, startT, endT, lon1, lon2, lat1, lat2, months, output_dir, scale) # call the app. function (message, imgFileName, dataFileName) = c1.displayTwoDimMap() # chdir back os.chdir(current_dir) hostname, port = get_host_port2("host.cfg") ### userId = 2 if hostname == 'EC2': try: req = urllib2.Request('http://169.254.169.254/latest/meta-data/public-ipv4') response = urllib2.urlopen(req) hostname = response.read() except Exception, e: print 'e: ', e """ try: req2 = urllib2.Request(' http://169.254.169.254/latest/user-data') response2 = urllib2.urlopen(req2) userId = json.loads(response2.read())['username'] except Exception, e: print 'e: ', e userId = 2 """ """ if userIdDict.has_key(userId): userId = userIdDict[userId] else : userId = 'lei' """ print 'userId: ', userId print 'hostname: ', hostname print 'port: ', port ### url = 'http://cmacws.jpl.nasa.gov:8090/static/twoDimMap/' + tag + '/' + imgFileName ### url = 'http://' + hostname + ':' + port + '/static/twoDimMap/' + tag + '/' + imgFileName ### print 'url: ', url plotUrl = 'http://' + hostname + ':' + port + '/static/twoDimMap/' + tag + '/' + imgFileName print 'plotUrl: ', plotUrl dataUrl = 'http://' + hostname + ':' + port + '/static/twoDimMap/' + tag + '/' + dataFileName print 'dataUrl: ', dataUrl failedImgUrl = 'http://' + hostname + ':' + port + '/static/plottingFailed.png' print 'failedImgUrl: ', failedImgUrl if imgFileName is '' or not os.path.exists(output_dir+'/'+imgFileName): print '****** Error: %s not exist' % imgFileName plotUrl = failedImgUrl if dataFileName is '' or not os.path.exists(output_dir+'/'+dataFileName): print '****** Error: %s not exist' % dataFileName dataUrl = failedImgUrl print 'message: ', message if len(message) == 0 or message.find('Error') >= 0 or message.find('error:') >= 0 : success = False ### url = '' plotUrl = '' dataUrl = '' except ValueError, e: # chdir to current_dir in case the dir is changed to where the app is in the try block os.chdir(current_dir) print 'change dir back to: ', current_dir success = False message = str(e) except Exception, e: # chdir to current_dir in case the dir is changed to where the app is in the try block os.chdir(current_dir) print 'change dir back to: ', current_dir success = False ### message = str("Error caught in displayTwoDimMap()") message = str(e) purpose = request.args.get('purpose')#"Test .\'\"\\purpose" executionEndTime = int(time.time()) ### urlLink = 'model1=%s&var1=%s&lon1=%s&lon2=%s&lat1=%s&lat2=%s&startT=%s&endT=%s&months=%s&scale=%s&image=%s&data_url=%s' % (model,var,lon1,lon2,lat1,lat2,startT,endT,months,scale,plotUrl,dataUrl) urlLink = request.query_string print 'urlLink: ', urlLink post_json = {'source': 'JPL', 'parameters':urlLink, 'frontend_url': frontend_url, 'backend_url': backend_url, 'userId': long(userId), 'executionStartTime':long(executionStartTime)*1000, 'executionEndTime':long(executionEndTime)*1000} post_json = json.dumps(post_json) if USE_CMU: try: print requests.post(CMU_PROVENANCE_URL, data=post_json, headers=HEADERS).text print requests.post(CMU_PROVENANCE_URL_2, data=post_json, headers=HEADERS).text ### print requests.post(VIRTUAL_EINSTEIN_URL, data=post_json, headers=HEADERS).text except: print 'Something went wrong with Wei\'s stuff' #/added by Chris return jsonify({ 'success': success, 'message': message, 'url': plotUrl, 'dataUrl': dataUrl })
7b0402b66538b7b5d987c1385d9ac12df82fac66
18,088
def encrypt(msg, hexPubkey): """Encrypts message with hex public key""" return pyelliptic.ECC(curve='secp256k1').encrypt( msg, hexToPubkey(hexPubkey))
30befcf48d0417f13a93ad6d4e9f8ccf0fdbeae5
18,089
def indexing(zDatagridLeft,zDatagridRight,zModelgridLeft,zModelgridRight): """ Searches for closest distances between actual and theorectical points. zDatagridLeft = float - tiled matrix (same values column-wise) of z coordintates of droplet on left side, size = [len(zModel),len(zActualLeft)] zDatagridRight = float - tiled matrix (same values column-wise) of z coordintates of droplet on right side, size = [len(zModel),len(zActualRight)] zModelgridLeft = float - tiled matrix (same values row-wise) of theorectical z coordintates of droplet (one side), size = [len(zModel),len(zActualLeft)] zModelgridRight = float - tiled matrix (same values row-wise) of theorectical z coordintates of droplet (one side), size = [len(zModel),len(zActualRight)] """ #indexing location of closest value indexLeft=np.argmin(np.abs((zModelgridLeft-zDatagridLeft)),axis=0) indexRight=np.argmin(np.abs((zModelgridRight-zDatagridRight)),axis=0) return indexLeft,indexRight
d14b0037a4898fc12524aba0a29231a545dfed8a
18,090
def torch2np(tensor): """ Convert from torch tensor to numpy convention. If 4D -> [b, c, h, w] to [b, h, w, c] If 3D -> [c, h, w] to [h, w, c] :param tensor: Torch tensor :return: Numpy array """ array, d = tensor.detach().cpu().numpy(), tensor.dim() perm = [0, 2, 3, 1] if d == 4 else [1, 2, 0] if d == 3 else None return array.transpose(perm) if perm else array
23acaa7b4e58d7891e77c22f29b7cbdc7a9a80d0
18,091
from typing import Any import array import numpy def message_to_csv(msg: Any, truncate_length: int = None, no_arr: bool = False, no_str: bool = False) -> str: """ Convert a ROS message to string of comma-separated values. :param msg: The ROS message to convert. :param truncate_length: Truncate values for all message fields to this length. This does not truncate the list of message fields. :param no_arr: Exclude array fields of the message. :param no_str: Exclude string fields of the message. :returns: A string of comma-separated values representing the input message. """ def to_string(val, field_type=None): nonlocal truncate_length, no_arr, no_str r = '' if any(isinstance(val, t) for t in [list, tuple, array.array, numpy.ndarray]): if no_arr is True and field_type is not None: r = __abbreviate_array_info(val, field_type) else: for i, v in enumerate(val): if r: r += ',' if truncate_length is not None and i >= truncate_length: r += '...' break r += to_string(v) elif any(isinstance(val, t) for t in [bool, bytes, float, int, str, numpy.number]): if no_str is True and isinstance(val, str): val = '<string length: <{0}>>'.format(len(val)) elif any(isinstance(val, t) for t in [bytes, str]): if truncate_length is not None and len(val) > truncate_length: val = val[:truncate_length] if isinstance(val, bytes): val += b'...' else: val += '...' r = str(val) else: r = message_to_csv(val, truncate_length, no_arr, no_str) return r result = '' # We rely on __slots__ retaining the order of the fields in the .msg file. for field_name, field_type in zip(msg.__slots__, msg.SLOT_TYPES): value = getattr(msg, field_name) if result: result += ',' result += to_string(value, field_type) return result
10ab4c7482c2fbf6e4335daaf0359390ed215152
18,093
def create_message(username, message): """ Creates a standard message from a given user with the message Replaces newline with html break """ message = message.replace('\n', '<br/>') return '{{"service":1, "data":{{"message":"{mes}", "username":"{user}"}} }}'.format(mes=message, user=username)
d12807789d5e30d1a4a39c0368ebe4cf8fbde99e
18,094
def overlaps(sdf, other): """ Indicates if the intersection of the two geometries has the same shape type as one of the input geometries and is not equivalent to either of the input geometries. ========================= ========================================================= **Argument** **Description** ------------------------- --------------------------------------------------------- sdf Required Spatially Enabled DataFrame. The dataframe to have the operation performed on. ------------------------- --------------------------------------------------------- other Required Spatially Enabled DataFrame or arcgis.Geometry. This is the selecting data. ========================= ========================================================= :returns: pd.DataFrame (Spatially enabled DataFrame) """ global _HASARCPY, _HASSHAPELY if _HASARCPY == False and _HASSHAPELY == False: return None ud = pd.Series([False] * len(sdf)) if isinstance(other, (Point, Polygon, Polyline, MultiPoint)): sindex = sdf.spatial.sindex() q1 = sindex.intersect(bbox=other.extent) sub = sdf.iloc[q1] dj = sub[sdf.spatial.name].geom.overlaps(other) dj.index = sub.index ud = ud | dj return sdf[ud] elif _is_geoenabled(other): sindex = sdf.spatial.sindex() name = other.spatial.name for index, seg in other.iterrows(): g = seg[name] q1 = sindex.intersect(bbox=g.extent) sub = sdf.iloc[q1] if len(sub) > 0: dj = sub[sdf.spatial.name].geom.overlaps(g) dj.index = sub.index ud = ud | dj return sdf[ud] else: raise ValueError(("Invalid input, please verify that `other` " "is a Point, Polygon, Polyline, MultiPoint, " "or Spatially enabled DataFrame")) return None
14cad072b3b11efe4c4f14d7fc14e053a262f904
18,095
from django.contrib.auth.views import redirect_to_login def render_page(request, page): """Рендер страницы""" if page.registration_required and not request.user.is_authenticated: return redirect_to_login(request.path) # if page.template: # template = loader.get_template(page.template) # print(template) # # else: # # template = loader.get_template(DEFAULT_TEMPLATE) # # t = Template(template) # # p = Template(template).render(RequestContext(request, {'page': page})) # print(p) # # page.title = mark_safe(page.title) # # page.text = mark_safe(page.text) # return HttpResponse(p) # # return HttpResponse(template.render({'page': page}, request)) return render(request, page.template, {"page": page})
6e11ea24ee9dc9cf7e1cf8df3bfc192715202044
18,096
def _whctrs(anchor): """ Return width, height, x center, and y center for an anchor (window). """ w = anchor[2] - anchor[0] + 1 h = anchor[3] - anchor[1] + 1 x_ctr = anchor[0] + 0.5 * (w - 1) y_ctr = anchor[1] + 0.5 * (h - 1) # 16,16, 7.5, 7.5 return w, h, x_ctr, y_ctr
ae3f3d7c486b1698f31ecce301f0e2c2f8af5e84
18,097
def obtener_atletas_pais(atletas: list, pais_interes: str) -> list: """ Función que genera una lista con la información de los atletas del país dado, sin importar el año en que participaron los atletas. Parámetros: atletas: list de diccionarios con la información de cada atleta. pais_interes: str. Retorna: atletas_pais: list con los diccionarios de los atletas del país. diccionario de cada atleta: {'nombre': str, 'evento': str, 'anio': int}. """ # Inicializar lista de atletas del país. atletas_pais = list() # Inicio de recorrido por la lista de atletas. for cada_atleta in atletas: # Definición de variables del atleta actual. anio_actual = cada_atleta['anio'] nombre_actual = cada_atleta['nombre'] evento_actual = cada_atleta['evento'] pais_actual = cada_atleta['pais'] # Verificación de nombre y rango de tiempo. if pais_actual == pais_interes: # Se añade el diccionario de atleta a la lista de atletas. atletas_pais.append({'nombre': nombre_actual, 'evento': evento_actual, 'anio': anio_actual}) return atletas_pais
4b03364a76af4e7818f977731b259fdfee6817ee
18,098
def kl_div_mixture_app(m1, v1, m2, v2, return_approximations=False, return_upper_bound=False): """Approximate KL divergence between Gaussian and mixture of Gaussians See Durrieu et al, 2012: "Lower and upper bounds for approximation of the Kullback-Leibler divergence between Gaussian Mixture Models" https://serval.unil.ch/resource/serval:BIB_513DF4E21898.P001/REF Both the variational and the product approximation are simplified here compared to the paper, as we assume to have a single Gaussian as the first argument. m1: ([batch_dims], data_dims) v1: ([batch_dims], data_dims) m2: ([batch_dims], mixtures, data_dims) v2: ([batch_dims], mixtures, data_dims) """ assert m1.ndim + 1 == m2.ndim if return_upper_bound: res = _kl_div_mixture_app_with_upper_bound(m1, v1, m2, v2) if return_approximations: return res else: return res[0], res[3] else: kls_app, kls_var, kls_prod = _kl_div_mixture_app(m1, v1, m2, v2) if return_approximations: return kls_app, kls_var, kls_prod else: return kls_app
e90fbf8596a06513d68c1eca17a35857d75eea70
18,099
def wilson_primality_test(n: int) -> bool: """ https://en.wikipedia.org/wiki/Wilson%27s_theorem >>> assert all(wilson_primality_test(i) for i in [2, 3, 5, 7, 11]) >>> assert not all(wilson_primality_test(i) for i in [4, 6, 8, 9, 10]) """ return ((factorial_lru(n - 1) + 1) % n) == 0
809415a5bd5a4ee4c19cc41a4616e91e17574a09
18,100
def project_from_id(request): """ Given a request returns a project instance or throws APIUnauthorized. """ try: pm = ProjectMember.objects.get( user=request.user, project=request.GET['project_id'], ) except ProjectMember.DoesNotExist: raise APIUnauthorized() return pm.project
d23daddfacf736b835bdd10594d99dd4d4e5a0fe
18,101
def make_beampipe_from_end(pipe_aperture, pipe_length, loc=(0, 0, 0), rotation_angles=(0, 0, 0)): """Takes an aperture and creates a pipe. The centre of the face of aperture1 will be at loc and rotations will happen about that point. Assumes the aperture is initially centred on (0,0,0) Args: pipe_aperture (FreeCad wire): Outline of aperture. pipe_length (float): Length of pipe. loc (tuple): The co ordinates of the final location of the centre of the pipe. rotation_angles (tuple) : The angles to rotate about in the three cartesian directions. Returns: p (FreeCad shape): A model of the pipe. """ p = pipe_aperture.extrude(Base.Vector(pipe_length, 0, 0)) p.rotate( Base.Vector(0, 0, 0), Base.Vector(0, 0, 1), rotation_angles[2] ) # Rotate around Z p.rotate( Base.Vector(0, 0, 0), Base.Vector(1, 0, 0), rotation_angles[0] ) # Rotate around X p.rotate( Base.Vector(0, 0, 0), Base.Vector(0, 1, 0), rotation_angles[1] ) # Rotate around Y p.translate(Base.Vector(loc[0], loc[1], loc[2])) # Move to be centred on loc return p
a3b85995165ac2b11d9d6d0014b68356996e97b9
18,103
import urllib def encode_string(value): """Replace and encode all special characters in the passed string. Single quotation marks need to be doubled. Therefore, if the string contains a single quotation mark, it is going to be replaced by a pair of such quotation marks. """ value = value.replace('\'', '\'\'') return urllib.parse.quote(value, safe='')
a6e30e834eb9b4d1d5882b7b24eec0da28ed5f4c
18,104
async def make_json_photo(): """Photo from web camera in base64. """ img, _ = get_png_photo() if img: result = {"image": png_img_to_base64(img)} else: result = {"error": "Camera not available"} return result
d498d8d47a995125f0480c069b1459156875f2b7
18,105
from typing import Any from typing import Union from typing import List from typing import Dict from typing import Type def Option( default: Any = MISSING, *, name: str = MISSING, description: str = MISSING, required: bool = MISSING, choices: Union[List[Union[str, int, float]], Dict[str, Union[str, int, float]]] = MISSING, min: int = MISSING, max: int = MISSING, type: Type[Any] = MISSING, cls: Type[Any] = __option.OptionClass ) -> Any: """Interaction option, should be set as a default to a parameter. The `cls` parameter can be used if you want to use a custom Option class, you can use `functools.partial()` as to not repeat the kwarg. Parameters: default: Default value when the option is not passed, makes the option optional so that it can be omitted. name: Name of the option in the Discord client. By default it uses the name of the parameter. description: Description of the option. required: Whether the option can be omitted. If a default is passed this is automatically set implicitly. choices: Set choices that the user can pick from in the Discord client. min: Smallest number that can be entered for number types. max: Biggest number that can be entered for number types. type: The type of the option, overriding the annotation. This can be a `ApplicationCommandOption` value or any type. cls: The class to use, defaults to `OptionClass`. Returns: The `cls` parameter (`OptionClass` by default) disguised as `typing.Any`. This way this function can be used as a default without violating static type checkers. """ return cls( default, name=name, description=description, required=required, choices=choices, min=min, max=max, type=type )
a344edbcdbc4211adebd072f0daaf20a6abc657e
18,107
def inverse(f, a, b, num_iters=64): """ For a function f that is monotonically increasing on the interval (a, b), returns the function f^{-1} """ if a >= b: raise ValueError(f"Invalid interval ({a}, {b})") def g(y): if y > f(b) or y < f(a): raise ValueError(f"Invalid image ({y})") lower = a upper = b for _ in range(num_iters): mid = average(lower, upper) if f(mid) < y: lower = mid elif f(mid) > y: upper = mid else: return mid return mid return g
5d0b3c990d20d486f70bff2a5569920134d71ea1
18,108
def gmof(x, sigma): """ Geman-McClure error function """ x_squared = x ** 2 sigma_squared = sigma ** 2 return (sigma_squared * x_squared) / (sigma_squared + x_squared)
63448c03e826874df1c6c10f053e1b1e917b6a98
18,109
import tqdm def download_data(vars): """ function to download data from the ACS website :param: geo_level (geoLevel object): which geophical granularity to obtain for the data vars (string): a file name that holds 3-tuples of the variables, (in the format returned by censusdata.search()), where first is the variable id, and second is the variable header. :return: a pandas.DataFrame object """ gl = geoLevel(geo_level_name) print(f"Getting {gl.name} level geographies...") geographies = get_censusgeos(gl) vars, headers = get_variables(vars) data = [] print("Downloading selected variables for these geographies...") for geo in tqdm(geographies): local_data = censusdata.download(data_source, year, geo, vars, tabletype=tabletype, key=API_KEY) data.append(local_data) data = pd.concat(data) data.columns = headers data = fix_index(data) return data
a333eb2565736a6509cc3760de35fae8bc020c5e
18,110
def oddify(n): """Ensure number is odd by incrementing if even """ return n if n % 2 else n + 1
dee98063cb904cf462792d15129bd90a4b50bd28
18,111
from typing import List import re def method_matching(pattern: str) -> List[str]: """Find all methods matching the given regular expression.""" _assert_loaded() regex = re.compile(pattern) return sorted(filter(lambda name: re.search(regex, name), __index.keys()))
b4a4b1effcd2359e88022b28254ed247724df184
18,112
def update_binwise_positions(cnarr, segments=None, variants=None): """Convert start/end positions from genomic to bin-wise coordinates. Instead of chromosomal basepairs, the positions indicate enumerated bins. Revise the start and end values for all GenomicArray instances at once, where the `cnarr` bins are mapped to corresponding `segments`, and `variants` are grouped into `cnarr` bins as well -- if multiple `variants` rows fall within a single bin, equally-spaced fractional positions are used. Returns copies of the 3 input objects with revised `start` and `end` arrays. """ cnarr = cnarr.copy() if segments: segments = segments.copy() seg_chroms = set(segments.chromosome.unique()) if variants: variants = variants.copy() var_chroms = set(variants.chromosome.unique()) # ENH: look into pandas groupby innards to get group indices for chrom in cnarr.chromosome.unique(): # Enumerate bins, starting from 0 # NB: plotted points will be at +0.5 offsets c_idx = (cnarr.chromosome == chrom) c_bins = cnarr[c_idx]#.copy() if segments and chrom in seg_chroms: # Match segment boundaries to enumerated bins c_seg_idx = (segments.chromosome == chrom).values seg_starts = np.searchsorted(c_bins.start.values, segments.start.values[c_seg_idx]) seg_ends = np.r_[seg_starts[1:], len(c_bins)] segments.data.loc[c_seg_idx, "start"] = seg_starts segments.data.loc[c_seg_idx, "end"] = seg_ends if variants and chrom in var_chroms: # Match variant positions to enumerated bins, and # add fractional increments to multiple variants within 1 bin c_varr_idx = (variants.chromosome == chrom).values c_varr_df = variants.data[c_varr_idx] # Get binwise start indices of the variants v_starts = np.searchsorted(c_bins.start.values, c_varr_df.start.values) # Overwrite runs of repeats with fractional increments, # adding the cumulative fraction to each repeat for idx, size in list(get_repeat_slices(v_starts)): v_starts[idx] += np.arange(size) / size variant_sizes = c_varr_df.end - c_varr_df.start variants.data.loc[c_varr_idx, "start"] = v_starts variants.data.loc[c_varr_idx, "end"] = v_starts + variant_sizes c_starts = np.arange(len(c_bins)) # c_idx.sum()) c_ends = np.arange(1, len(c_bins) + 1) cnarr.data.loc[c_idx, "start"] = c_starts cnarr.data.loc[c_idx, "end"] = c_ends return cnarr, segments, variants
f42780517cde35d2297620dcaf046ea0a111a7b9
18,113
async def respond_wrong_author( ctx: InteractionContext, author_must_be: Member | SnakeBotUser, hidden: bool = True ) -> bool: """Respond to the given context""" if not ctx.responded: await ctx.send( ephemeral=hidden, embeds=embed_message( "Error", f"The author of the message must be {author_must_be.mention}\nPlease try again", ), ) return True return False
a39e3672dd639e0183beb30c6ebfec324dfc96de
18,114
def ParseFloatingIPTable(output): """Returns a list of dicts with floating IPs.""" keys = ('id', 'ip', 'instance_id', 'fixed_ip', 'pool',) floating_ip_list = ParseNovaTable(output, FIVE_COLUMNS_PATTERN, keys) for floating_ip in floating_ip_list: if floating_ip['instance_id'] == '-': floating_ip['instance_id'] = None if floating_ip['fixed_ip'] == '-': floating_ip['fixed_ip'] = None return floating_ip_list
691d9c0525cee5f4b6b9c56c4e21728c24e46f48
18,115
def test_logging_to_progress_bar_with_reserved_key(tmpdir): """ Test that logging a metric with a reserved name to the progress bar raises a warning. """ class TestModel(BoringModel): def training_step(self, *args, **kwargs): output = super().training_step(*args, **kwargs) self.log("loss", output["loss"], prog_bar=True) return output model = TestModel() trainer = Trainer( default_root_dir=tmpdir, max_steps=2, ) with pytest.warns(UserWarning, match="The progress bar already tracks a metric with the .* 'loss'"): trainer.fit(model)
827719942bed424def0753af9c4b6757b5f6cdf0
18,117
def cdf_inverse(m, alpha, capacity, f, subint): """ This function computes the inverse value of a specific probability for a given distribution. Args: m (mesh): The initial mesh. alpha (float): The probability for which the inverse value is computed. capacity (float): The capacity of the power generation for each hour of interest. f (pdf): The distribution of the random variable (X1+...+Xn), which has to be a pdf. subint (int): The number of subintervalls, which are used to interpolate the cdf. Returns: inverse_bound (float): The computed inverse value of alpha. """ x = np.linspace(0, capacity, subint) y = [] for i in x: yi = multi_cdf(m, i, capacity, f) j = int(np.argwhere(x==i)) y.append(yi) if (j == 0) and (yi > alpha): inverse_alpha = 0 break elif (j != 0): if y[j-1] <= alpha <= y[j]: lin = interp1d([y[j-1], y[j]], [x[j-1], x[j]]) inverse_alpha = lin(alpha) break else: inverse_alpha = capacity return inverse_alpha
cb0609a1f5049a910aaec63b9d6ed311a1fdc263
18,118
def concatenation(clean_list): """ Concatenation example. Takes the processed list for your emails and concatenates any elements that are currently separate that you may wish to have as one element, such as dates. E.g. ['19', 'Feb', '2018'] becomes ['19 Feb 2018] Works best if the lists are similar as it works by using the index of an element and joining it to other elements using a positive or negative index. """ index_of_item = clean_list.index("your chosen item") clean_list[:index_of_item] = [' '.join(clean_list[:index_of_item])] # joins together every element from start to the index of the item # to join elements mid-list: another_index = clean_list.index("another item") # date concatenation date_start = another_index - 3 date_end = another_index clean_list[date_start:date_end] = [' '.join(clean_list[date_start:date_end])] # joins the 3 elements before 'another item' index return clean_list
59b727f21e663f2836f6fe939f4979e9f7484f62
18,119
def add_pattern_bd(x, distance=2, pixel_value=1): """ Augments a matrix by setting a checkboard-like pattern of values some `distance` away from the bottom-right edge to 1. Works for single images or a batch of images. :param x: N X W X H matrix or W X H matrix. will apply to last 2 :type x: `np.ndarray` :param distance: distance from bottom-right walls. defaults to 2 :type distance: `int` :param pixel_value: Value used to replace the entries of the image matrix :type pixel_value: `int` :return: augmented matrix :rtype: np.ndarray """ x = np.array(x) shape = x.shape if len(shape) == 3: width, height = x.shape[1:] x[:, width - distance, height - distance] = pixel_value x[:, width - distance - 1, height - distance - 1] = pixel_value x[:, width - distance, height - distance - 2] = pixel_value x[:, width - distance - 2, height - distance] = pixel_value elif len(shape) == 2: width, height = x.shape x[width - distance, height - distance] = pixel_value x[width - distance - 1, height - distance - 1] = pixel_value x[width - distance, height - distance - 2] = pixel_value x[width - distance - 2, height - distance] = pixel_value else: raise RuntimeError('Do not support numpy arrays of shape ' + str(shape)) return x
1f545a472d6d25f23922c133fb0ef0d11307cca1
18,120
def tokenize(string): """ Scans the entire message to find all Content-Types and boundaries. """ tokens = deque() for m in _RE_TOKENIZER.finditer(string): if m.group(_CTYPE): name, token = parsing.parse_header(m.group(_CTYPE)) elif m.group(_BOUNDARY): token = Boundary(m.group(_BOUNDARY).strip("\t\r\n"), _grab_newline(m.start(), string, -1), _grab_newline(m.end(), string, 1)) else: token = _EMPTY_LINE tokens.append(token) return _filter_false_tokens(tokens)
0121f9242a5af4611edc2fd28b8af65c5b09078d
18,122
def query(obj,desc=None): """create a response to 'describe' cmd from k8s pod desc and optional custom properties desc """ # this is a simplified version compared to what the k8s servo has (single container only); if we change it to multiple containers, they will be the app's components (here the app is a single pod, unlike servo-k8s where 'app = k8s deployment' if not desc: desc = {"application":{}} elif not desc.get("application"): desc["application"] = {} comps = desc["application"].setdefault("components", {}) c = obj["spec"]["containers"][0] cn = c["name"] comp=comps.setdefault(cn, {}) settings = comp.setdefault("settings", {}) r = c.get("resources") if r: settings["mem"] = numval(memunits(r.get("limits",{}).get("memory","0")), 0, MAX_MEM, MEM_STEP) # (value,min,max,step) settings["cpu"] = numval(cpuunits(r.get("limits",{}).get("cpu","0")), 0, MAX_CPU, CPU_STEP) # (value,min,max,step) for ev in c.get("env",[]): # skip env vars that match the pre-defined setting names above if ev["name"] in ("mem","cpu","replicas"): continue if ev["name"] in settings: s = settings[ev["name"]] if s.get("type", "linear") == "linear": try: s["value"] = float(ev["value"]) except ValueError: raise ConfigError("invalid value found in environment {}={}, it was expected to be numeric".format(ev["name"],ev["value"])) else: s["value"] = ev["value"] return desc
bce425c503c3c779c6f397020061ccee3150b562
18,123
def binary_cross_entropy(preds, targets, name=None): """Computes binary cross entropy given `preds`. For brevity, let `x = `, `z = targets`. The logistic loss is loss(x, z) = - sum_i (x[i] * log(z[i]) + (1 - x[i]) * log(1 - z[i])) Args: preds: A `Tensor` of type `float32` or `float64`. targets: A `Tensor` of the same type and shape as `preds`. name: A name """ eps = 1e-12 with ops.op_scope([preds, targets], name, "bce_loss"): preds = ops.convert_to_tensor(preds, name="preds") targets = ops.convert_to_tensor(targets, name="targets") return tf.reduce_mean(-(targets * tf.log(preds + eps) + (1. - targets) * tf.log(1. - preds + eps)))
f16441fe921b550986604c2c7513d9737fc230b3
18,124
def weld_standard_deviation(array, weld_type): """Returns the *sample* standard deviation of the array. Parameters ---------- array : numpy.ndarray or WeldObject Input array. weld_type : WeldType Type of each element in the input array. Returns ------- WeldObject Representation of this computation. """ weld_obj_var = weld_variance(array, weld_type) obj_id, weld_obj = create_weld_object(weld_obj_var) weld_obj_var_id = get_weld_obj_id(weld_obj, weld_obj_var) weld_template = _weld_std_code weld_obj.weld_code = weld_template.format(var=weld_obj_var_id) return weld_obj
763b96ef9efa36f7911e50b313bbc29489a5d5bd
18,126
def dev_to_abs_pos(dev_pos): """ When device position is 30000000, absolute position from home is 25mm factor = 30000000/25 """ global CONVFACTOR abs_pos = dev_pos*(1/CONVFACTOR) return abs_pos
74800f07cdb92b7fdf2ec84dfc606195fceef86b
18,127
import torch def model_predict(model, test_loader, device): """ Predict data in dataloader using model """ # Set model to eval mode model.eval() # Predict without computing gradients with torch.no_grad(): y_preds = [] y_true = [] for inputs, labels in test_loader: inputs = inputs.to(device) labels = labels.to(device) outputs = model(inputs) _, preds = torch.max(outputs, 1) y_preds.append(preds) y_true.append(labels) y_preds = torch.cat(y_preds).tolist() y_true = torch.cat(y_true).tolist() return y_preds, y_true
0b43a28046c1de85711f7db1b3e64dfd95f11905
18,128
def calc_precision_recall(frame_results): """Calculates precision and recall from the set of frames by summing the true positives, false positives, and false negatives for each frame. Args: frame_results (dict): dictionary formatted like: { 'frame1': {'true_pos': int, 'false_pos': int, 'false_neg': int}, 'frame2': ... ... } Returns: tuple: of floats of (precision, recall) """ true_pos = 0 false_pos = 0 false_neg = 0 for _, res in frame_results.items(): true_pos += res["true_pos"] false_pos += res["false_pos"] false_neg += res["false_neg"] try: precision = true_pos / (true_pos + false_pos) except ZeroDivisionError: precision = 0.0 try: recall = true_pos / (true_pos + false_neg) except ZeroDivisionError: recall = 0.0 return precision, recall
7389050a73a1e368222941090991883f6c6a89b7
18,129
def euler_to_quat(e, order='zyx'): """ Converts from an euler representation to a quaternion representation :param e: euler tensor :param order: order of euler rotations :return: quaternion tensor """ axis = { 'x': np.asarray([1, 0, 0], dtype=np.float32), 'y': np.asarray([0, 1, 0], dtype=np.float32), 'z': np.asarray([0, 0, 1], dtype=np.float32)} q0 = angle_axis_to_quat(e[..., 0], axis[order[0]]) q1 = angle_axis_to_quat(e[..., 1], axis[order[1]]) q2 = angle_axis_to_quat(e[..., 2], axis[order[2]]) return quat_mul(q0, quat_mul(q1, q2))
ff5a848433d3cb9b878222b21fc79f06e42ea03f
18,131
def setnumber(update,context): """ Bot '/setnumber' command: starter of the conversation to set the emergency number """ update.message.reply_text('Please insert the number of a person you trust. It can be your life saver!') return EMERGENCY
5faa4d9a9719d0b1f113f5912de728d24aee2814
18,132
def mean_ale(covmats, tol=10e-7, maxiter=50, sample_weight=None): """Return the mean covariance matrix according using the AJD-based log-Euclidean Mean (ALE). See [1]. :param covmats: Covariance matrices set, (n_trials, n_channels, n_channels) :param tol: the tolerance to stop the gradient descent :param maxiter: The maximum number of iteration, default 50 :param sample_weight: the weight of each sample :returns: the mean covariance matrix Notes ----- .. versionadded:: 0.2.4 References ---------- [1] M. Congedo, B. Afsari, A. Barachant, M. Moakher, 'Approximate Joint Diagonalization and Geometric Mean of Symmetric Positive Definite Matrices', PLoS ONE, 2015 """ sample_weight = _get_sample_weight(sample_weight, covmats) n_trials, n_channels, _ = covmats.shape crit = np.inf k = 0 # init with AJD B, _ = ajd_pham(covmats) while (crit > tol) and (k < maxiter): k += 1 J = np.zeros((n_channels, n_channels)) for index, Ci in enumerate(covmats): tmp = logm(np.dot(np.dot(B.T, Ci), B)) J += sample_weight[index] * tmp update = np.diag(np.diag(expm(J))) B = np.dot(B, invsqrtm(update)) crit = distance_riemann(np.eye(n_channels), update) A = np.linalg.inv(B) J = np.zeros((n_channels, n_channels)) for index, Ci in enumerate(covmats): tmp = logm(np.dot(np.dot(B.T, Ci), B)) J += sample_weight[index] * tmp C = np.dot(np.dot(A.T, expm(J)), A) return C
0df7add370bda62e596abead471f3d393691f62c
18,133
def get_affiliate_code_from_qstring(request): """ Gets the affiliate code from the querystring if one exists Args: request (django.http.request.HttpRequest): A request Returns: Optional[str]: The affiliate code (or None) """ if request.method != "GET": return None affiliate_code = request.GET.get(AFFILIATE_QS_PARAM) return affiliate_code
173b8f7ed3d202e0427d45609fcb8e9332cde15b
18,134
def get_gifti_labels(gifti): """Returns labels from gifti object (*.label.gii) Args: gifti (gifti image): Nibabel Gifti image Returns: labels (list): labels from gifti object """ # labels = img.labeltable.get_labels_as_dict().values() label_dict = gifti.labeltable.get_labels_as_dict() labels = list(label_dict.values()) return labels
3a4915ed50132a022e29cfed4e90905d05209484
18,135
def get_temporal_info(data): """Generates the temporal information related power consumption :param data: a list of temporal information :type data: list(DatetimeIndex) :return: Temporal contextual information of the energy data :rtype: np.array """ out_info =[] for d in data: seconds = (d - d.iloc[0]).dt.total_seconds().values / np.max((d - d.iloc[0]).dt.total_seconds().values) minutes = d.dt.minute.values / 60 hod = d.dt.hour.values / 24 dow = d.dt.dayofweek.values / 7 out_info.append([seconds, minutes, hod, dow]) return np.transpose(np.array(out_info)).reshape((-1,4))
308640fec7545409bfad0ec55cd1cc8c941434d2
18,136