content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def bitbucketBaseIssue(): """ BitbucketIssueのベースとなるデータを生成して返します。 """ return { 'assignee': None, 'component': None, 'content': 'issue_summary', 'content_updated_on': '4000-01-01T00:00:00Z', 'created_on': '3000-01-01T00:00:00Z', 'edited_on': '4000-01-01T00:00:00Z', 'id': 1, 'kind': 'task', 'milestone': None, 'priority': 'major', 'reporter': { 'display_name': 'user_name', 'account_id': 'user_name' }, 'status': 'open', 'title': 'issue_title', 'updated_on': '4000-01-01T00:00:00Z', 'version': None, 'watchers': [], 'voters': [] }
b0a81a9442377967b0838ffe49468dd21631b1c0
17,908
def is_hour_staffed(coverage_events_for_hour, level_mappings): """ Logic for determining if a shift is correctly staffed. The required subcalendar id determines which logic to apply coverage_events_for_hour is a list of coverage events for the hour (a list of CoverageOffered JSON objects) """ return check_shift_coverage(coverage_events_for_hour, level_mappings)
7afda68593610a572f15ff791013db570b7c69a6
17,910
import json def sqliteAdminBlueprint( dbPath, bpName='sqliteAdmin', tables=[], title='标题', h1='页标题', baseLayout='flask_sqlite_admin/sqlite_base.html', extraRules=[], decorator=defaultDecorator): """ create routes for admin """ sqlite = Blueprint(bpName, __name__,template_folder='templates',static_folder='static') #@sh.wrapper() @sqlite.route('/',methods=['GET', 'POST']) @decorator def index(): sf = sqliteAdminFunctions(global_db,tables=tables,extraRules=extraRules) if request.method == 'POST': add_form = AddFieldForm() if add_form.validate_on_submit(): sf.addCol(add_form.field_name.data, add_form.field_type.data, add_form.field_table.data) res = sf.tableList(tables) #db.close() if len(res) == 0: raise ValueError('No sqlite db and/or tables found at path = %s' % dbPath) else: return render_template('flask_sqlite_admin/sqlite.html',res=res,title=title,h1=h1,baseLayout=baseLayout,bpName=bpName) #@sh.wrapper() @sqlite.route('/api',methods=['GET','POST','PUT','DELETE']) @decorator def api(): sf = sqliteAdminFunctions(global_db,tables=tables,extraRules=extraRules) # GET request if request.method == 'GET': q = request.args try: res = sf.tableContents(request.args['table'],request.args['sort'],request.args['dir'],request.args['offset']) except Exception as e: return render_template('flask_sqlite_admin/sqlite_ajax.html',table=request.args['table'],error='{}'.format(e)) add_form = AddFieldForm() add_form.field_table.default = request.args['table'] add_form.field_table.data = request.args['table'] #db.close() return render_template('flask_sqlite_admin/sqlite_ajax.html',add_form=add_form,data=res,title=title,h1=h1,baseLayout=baseLayout,bpName=bpName,q=q,qJson=json.dumps(q)) # POST request elif request.method == 'POST': try: request_data = request.get_json() if "command" in request_data: # delete column if request_data['command'] == 'del_col': del_col = request_data['data'] table = request_data['table'] sf.delCol(del_col, table) res = {'status':1, 'message':'<a href="" class="alert-link">Refresh Page</a>'} # save a row elif request_data['command'] == 'save_row': sf.saveRow(request_data['row'],request_data['table'],request_data['id']) res = {'status':1, 'message':'<a href="" class="alert-link">Refresh Page</a>'} #delete a row elif request_data['command'] == 'del_row': table = request_data['table'] id = request_data['id'] sf.delRow(table, id) res = {'status':1,'message':'<a href="" class="alert-link">Refresh Page</a>'} #create a row elif request_data['command'] == 'save_detail': table = request_data['table'] row = request_data['row'] sf.addRow(table,row) res = {'status':1,'message':'<a href="" class="alert-link">Refresh Page</a>'} except Exception as e: res = {'status':0,'error':'{}'.format(e)} return json.dumps(res) @sqlite.route('/selected', methods=['POST']) @decorator def selected(): response = make_response() return response return sqlite
6dc7f38db36f38835f2ee5274a716bde14284480
17,911
def AccountsUrl(command): """Generates the Google Accounts URL. Args: command: The command to execute. Returns: A URL for the given command. """ return '%s/%s' % (GOOGLE_ACCOUNTS_BASE_URL, command)
7c686ef8648abf3123ba1448594c333c3210331c
17,912
def iter_input_annotation_output_df_df(inspection_index, input_df, annotation_df, output_df): """ Create an efficient iterator for the inspection input """ # pylint: disable=too-many-locals # Performance tips: # https://stackoverflow.com/questions/16476924/how-to-iterate-over-rows-in-a-dataframe-in-pandas assert isinstance(input_df, DataFrame) assert isinstance(output_df, DataFrame) annotation_df_view = annotation_df.iloc[:, inspection_index:inspection_index + 1] input_rows = get_df_row_iterator(input_df) annotation_rows = get_df_row_iterator(annotation_df_view) output_rows = get_df_row_iterator(output_df) return map(lambda input_tuple: InspectionInputUnaryOperator(*input_tuple), zip(input_rows, annotation_rows, output_rows))
4e275565bfa570f48b0eacbe07029a7724305f9a
17,913
def measure_curvatures(left_fit, right_fit, ym_per_pix=1., xm_per_pix=1., y_eval=0): """ Calculate left and right lane line curvature Args: left_fit: `numpy.ndarray` second order linear regression of left lane line right_fit: `numpy.ndarray` second order linear regression of right lane line xm_per_pix: `float` [m/pix] horizontal pixel to meters relation ym_per_pix: `float` [m/pix] vertical pixel to meters relation y_eval: `int` value to evaluate curvature Returns: right_curvature: `float` [m] curvature of left lane line left_curvature: `float` [m] curvature of right lane line """ # Varibles assignation left_curvature = right_curvature = 0 # Define y-value where we want radius of curvature # We'll choose the maximum y-value, corresponding to the bottom of the image # Measure curvature for left lane line if left_fit is not None: Al = left_fit[0]*(xm_per_pix/(ym_per_pix**2)) Bl = left_fit[1]*(xm_per_pix/ym_per_pix) # Calculation of R_curve (radius of curvature) left_curvature = ((1 + (2*Al*y_eval + Bl)**2)**1.5) / np.absolute(2*Al) # Measure curvature for right lane line if right_fit is not None: Ar = right_fit[0]*(xm_per_pix/(ym_per_pix**2)) Br = right_fit[1]*(xm_per_pix/ym_per_pix) # Calculation of R_curve (radius of curvature) right_curvature = ((1 + (2*Ar*y_eval + Br)**2)**1.5) / np.absolute(2*Ar) return right_curvature, left_curvature
f602563e36cbff3e2eca00a7532c37fdb127a6c1
17,914
def ensure_present(params, check_mode): """ Ensure that the specified Hipersockets adapter exists and has the specified properties set. Raises: ParameterError: An issue with the module parameters. Error: Other errors during processing. zhmcclient.Error: Any zhmcclient exception can happen. """ # Note: Defaults specified in argument_spec will be set in params dict host = params['hmc_host'] userid, password = get_hmc_auth(params['hmc_auth']) cpc_name = params['cpc_name'] adapter_name = params['name'] _faked_session = params.get('_faked_session', None) # No default specified changed = False try: session = get_session(_faked_session, host, userid, password) client = zhmcclient.Client(session) cpc = client.cpcs.find(name=cpc_name) # The default exception handling is sufficient for the above. try: adapter = cpc.adapters.find(name=adapter_name) except zhmcclient.NotFound: adapter = None if not adapter: # It does not exist. The only possible adapter type # that can be created is a Hipersockets adapter, but before # creating one we check the 'type' input property to verify that # the intention is really Hipersockets creation, and not just a # mispelled name. input_props = params.get('properties', None) if input_props is None: adapter_type = None else: adapter_type = input_props.get('type', None) if adapter_type is None: raise ParameterError( "Input property 'type' missing when creating " "Hipersockets adapter {0!r} (must specify 'hipersockets')". format(adapter_name)) if adapter_type != 'hipersockets': raise ParameterError( "Input property 'type' specifies {0!r} when creating " "Hipersockets adapter {1!r} " "(must specify 'hipersockets').". format(adapter_type, adapter_name)) create_props, update_props, _chg_adapter_type, _chg_crypto_type = \ process_properties(adapter, params) # This is specific to Hipersockets: There are no update-only # properties, so any remaining such property is an input error invalid_update_props = {} for name in update_props: if name not in create_props: invalid_update_props[name] = update_props[name] if invalid_update_props: raise ParameterError( "Invalid input properties specified when creating " "Hipersockets adapter {0!r}: {1!r}". format(adapter_name, invalid_update_props)) # While the 'type' input property is required for verifying # the intention, it is not allowed as input for the # Create Hipersocket HMC operation. del create_props['type'] if not check_mode: adapter = cpc.adapters.create_hipersocket(create_props) adapter.pull_full_properties() result = adapter.properties # from actual values else: adapter = None result = dict() result.update(create_props) # from input values changed = True else: # It does exist. # Update its properties and change adapter and crypto type, if # needed. adapter.pull_full_properties() result = adapter.properties create_props, update_props, chg_adapter_type, chg_crypto_type = \ process_properties(adapter, params) if update_props: if not check_mode: adapter.update_properties(update_props) else: result.update(update_props) # from input values changed = True if chg_adapter_type: if not check_mode: adapter.change_adapter_type(chg_adapter_type) else: result['type'] = chg_adapter_type changed = True if chg_crypto_type: if not check_mode: adapter.change_crypto_type(chg_crypto_type) else: result['crypto-type'] = chg_crypto_type changed = True if changed and not check_mode: adapter.pull_full_properties() result = adapter.properties # from actual values if adapter: ports = adapter.ports.list() result_ports = list() for port in ports: port.pull_full_properties() result_ports.append(port.properties) result['ports'] = result_ports else: # For now, we return no ports when creating in check mode result['ports'] = dict() return changed, result finally: session.logoff()
9a574df51dd8755e0d973438ec16d7209995b26a
17,915
import requests import base64 def get_processed_image(username): """Gets the b64 strings of the processed images from the server and converts them to image files Args: username (tkinter.StringVar): user-specified username to identify each unique user Returns: JpegImageFile: the image file of the processed image """ proc_images_bytes = [] r = requests.get(URL+'/processed_image/'+username.get()) r_json = r.json() proc_b64_strings = r_json['processed_images'] for i in range(len(proc_b64_strings)): proc_image_bytes = base64.b64decode(proc_b64_strings[i]) proc_images_bytes.append(proc_image_bytes) return proc_images_bytes
6ced5ce2b8cf48a8a4ca04799ae6b61956c59bb8
17,916
def make_cse_path(raw_ticker: str, raw_industry: str) -> str: """makes slug for ticker for the cse Parameters: raw_ticker - cse ticker from xlsx sheet raw_industry - verbatim industry from ticker, not slugified Returns: description - url for cse files for download """ if pd.isna(raw_industry): return "" # verify raw_industry is in industry do later cse_industries = [ "Industry", "Mining", "Diversified Industries", "Life Sciences", "Oil and Gas", "Technology", "CleanTech", ] base_cse_url = "https://thecse.com/en/listings" industry = raw_industry.lower().replace(" ", "-") ticker = transform_name_to_slug(raw_ticker) url = f"{base_cse_url}/{industry}/{ticker}" return url
4466cd2e5c7416266db080b7b273b41c7469c790
17,917
def interface(inp, xdata, ydata): """ splits the c function output to two variables, the RMSE and the derivative of RMSE with respect to the parameters""" p = _gauss.gaussjac(xdata,ydata,inp) return p[0],p[1:]
28707bd4781f2e19623068c01dca3cf82f8f79df
17,919
import torch def generateCoverText_BERT(mod, tok, startOfText, ranks, completeMessage): """ Function to get the cover text that is sent from Alice to Bob based on the ranks of the secret text """ inputs = tok.encode(startOfText, return_tensors="pt", add_special_tokens=False) for s in ranks: tab = inputs.numpy() pred = mod(inputs)[0] index = torch.argsort(pred[0, -1, :], descending=True)[s] tab = [np.append(tab[0],index)] inputs = torch.Tensor(tab).type(torch.long) inputs=inputs.tolist()[0] if (completeMessage): inputs=completeMessage_BERT(mod, tok, inputs) cover_text = tok.decode(inputs) return cover_text, inputs
405eb656db91eb073be580c8d10f8beb435d1bde
17,920
def Fanstatic(app, publisher_signature=fanstatic.DEFAULT_SIGNATURE, injector=None, **config): """Fanstatic WSGI framework component. :param app: The WSGI app to wrap with Fanstatic. :param publisher_signature: Optional argument to define the signature of the publisher in a URL. The default is ``fanstatic``. :param injector: A injector callable. :param ``**config``: Optional keyword arguments. These are passed to :py:class:`NeededInclusions` when it is constructed. """ # Wrap the app inside the injector middleware, inside the # delegator middleware. injector_middleware = Injector( app, publisher_signature=publisher_signature, injector=injector, **config) publisher_middleware = Publisher(LibraryRegistry.instance()) return Delegator( injector_middleware, publisher_middleware, publisher_signature=publisher_signature)
8813441736ffb05dcac7ea87d691a10ef9e582d7
17,922
def predicate_id(namespace, predicate, cursor=None): """ Get a RDF predicate ID, creating it if necessary. """ data = {'namespace': namespace, 'predicate': predicate} cursor = relations_reader.predicate_id(data, cursor=cursor) if not cursor.rowcount: relations_writer.upsert_predicate(data, cursor=cursor) return cursor.fetchone()['id']
95925711f1cf7cbf3c648a954a431e66cda31e30
17,923
import copy def _create_filter_list(user_list, request=None): """ [メソッド概要] フィルタのリストを作成する [引数] user_list :_getUserData(filters)により作成されるuser_list request :logger.logic_logでuserId sessionIDを表示するために使用する [戻り値] filter_list """ logger.logic_log('LOSI00001', 'user_list: %s' % len(user_list), request=request) filter_list = [] pulldown_list = [ {'k':u,'v':u} for u in sorted({u["user_name"] for u in user_list}) ] pulldown_list.insert(0, {'k':'','v':''}) filter_list.append( { 'colno' : 'user_name', 'caption' : 'ユーザ名', 'like' : True, 'fromto' : None, 'pulldown': copy.copy(pulldown_list), 'calendar': None, } ) pulldown_list = [ {'k':u,'v':u} for u in sorted({u["login_id"] for u in user_list}) ] pulldown_list.insert(0, {'k':'','v':''}) filter_list.append( { 'colno' : 'login_id', 'caption' : 'ログインID', 'like' : True, 'fromto' : None, 'pulldown': copy.copy(pulldown_list), 'calendar': None, } ) pulldown_list = [ {'k':u,'v':u} for u in sorted({u["mail"] for u in user_list}) ] pulldown_list.insert(0, {'k':'','v':''}) filter_list.append( { 'colno' : 'mail_address', 'caption' : 'メールアドレス', 'like' : True, 'fromto' : None, 'pulldown': copy.copy(pulldown_list), 'calendar': None, } ) # アクティブユーザが所属しているグループ名を昇順で取得する group_names = sorted({ gn for u in user_list for gn in u["group_name"]}) # グループ名のリストを作成 pulldown_list =[{'k':group_names[i], 'v':group_names[i]} for i in range(len(group_names))] pulldown_list.insert(0, {'k':'','v':''}) filter_list.append( { 'colno' : 'group_name', 'caption' : 'グループ名', 'like' : True, 'fromto' : None, 'pulldown': copy.copy(pulldown_list), 'calendar': None, } ) uuname_list = sorted({u["upd_user"] for u in user_list}) pulldown_list =[{'k':uuname_list[i], 'v':uuname_list[i]} for i in range(len(uuname_list))] pulldown_list.insert(0, {'k':'','v':''}) filter_list.append( { 'colno' : 'last_update_user', 'caption' : '最終更新者', 'like' : True, 'fromto' : None, 'pulldown': copy.copy(pulldown_list), 'calendar': None, } ) filter_list.append( { 'colno' : 'last_update_timestamp', 'caption' : '最終更新日時', 'like' : None, 'fromto' : None, 'pulldown': [], 'calendar': True, } ) logger.logic_log('LOSI00002', 'filter_list: %s' % filter_list, request=request) return filter_list
730cf9140c3c66903f4223938090e6667af4d741
17,924
from typing import List from typing import Dict def get_events() -> List[Dict]: """Represents set of sales events""" return [{ "Txid": 1, "productname": "Product 2", "qty": 2, "sales": 489.5 }, { "Txid": 2, "productname": "Product 3 XL", "qty": 2, "sales": 411.8 }, { "Txid": 3, "productname": "Product 4", "qty": 2, "sales": 56.15 }, { "Txid": 4, "productname": "Product 4 XL", "qty": 5, "sales": 197.7 }, { "Txid": 5, "productname": "Product 3", "qty": 7, "sales": 222.3 }]
22361fc66926a9adb5b10f4ad9ba04767a7d7a25
17,926
def jump_handler(s): """Handling single and double jumps""" jump = 1 if s.poG or s.ljump and not s.poG and s.fz > 0 else 0 if jump and s.ljump != s.lljump or not s.ljump: s.pitch = s.yaw = s.roll = 0 if min(0.18, s.dT + 0.05) < s.airtime and s.fz > 100: jump = not s.ljump return jump
44826e6b55ff4ceda5a78c7dc0943e5f13f5934e
17,927
def sec2hms(sec): """ Convert seconds to hours, minutes and seconds. """ hours = int(sec/3600) minutes = int((sec -3600*hours)/60) seconds = int(sec -3600*hours -60*minutes) return hours,minutes,seconds
efea3a641c5f13313adb571c201cc25d2895757e
17,928
import tokenizers def to_english_like_sentence(sentence: str, tokenizer = tokenizers.JiebaTokenizer()): """ :param sentence: :return: """ return ' '.join(tokenizer(sentence))
6f63377885c07b9dd723178f2fbe7e6245659e2a
17,929
from datetime import datetime def get_month_range(start_date): """ Get the start and end datetimes for the month :param start_date: period start_date :type start_date: datetime.datetime() :return: tuple start_datetime, end_datetime """ start_date = datetime(start_date.year, start_date.month, 1) end_date = utils.date_to_datetime( utils.add_months(start_date.date(), 1), 'max' ) return start_date, end_date
74816209024cbd382121575ba27a9dd8cf967c2b
17,930
def convert_to_rotation_fdot( gwfrequency=None, rotationfrequency=None, rotationperiod=None, gwfdot=None, rotationpdot=None, **kwargs, ): """ Convert the GW frequency (assumed to be twice the rotation frequency) or the rotation period and GW rotation frequency derivative or rotation period derivative into rotation frequency derivative. """ freq = ( gwfrequency / 2.0 if gwfrequency is not None else ( (1.0 / rotationperiod) if rotationperiod is not None else rotationfrequency ) ) if freq is not None: if gwfdot is not None: fdot = gwfdot / 2.0 elif rotationpdot is not None: fdot = -rotationpdot * freq ** 2 else: fdot = None if freq is None or fdot is None: raise ValueError("Required conversion parameters are not present") return fdot
8d2321111c7f5d13f1ee93c828b5e6d0691a4fb2
17,932
import json def send_block( cmd=None, section=None, item=None, identifier=None, zone=None, owner=None, ttl=None, rtype=None, data=None, flags=None, filter_=None, ): """Send block command to Libknot server control.""" ctl = connect_knot() resp = None try: ctl.send_block( cmd=cmd, section=section, item=item, identifier=identifier, zone=zone, owner=owner, ttl=ttl, rtype=rtype, data=data, flags="B", filter=filter_, ) resp_ = ctl.receive_block() if resp_: resp = json.dumps(resp, indent=4) except libknot.control.KnotCtlError as knot_error: # most of the time, after removing a zone # socket connection will be time out resp = str(knot_error.data) finally: ctl.send(libknot.control.KnotCtlType.END) ctl.close() return resp
b6edac27b74d432c796d759dd373a24cf6710abd
17,933
def _poisson_covariance(dist, lambda0): """ Poisson covariance model on the sphere. Parameters ---------- dist: float Great circle distance. lambda0: float Lengthscale parameter. """ cov = (1 - lambda0**2) / (1 - 2*lambda0*np.cos(dist) + lambda0**2)**(3/2) return cov
e2ebb694258d94b56a81ff44ee703871b722a0ad
17,934
def snot(N=None, target=None): """Quantum object representing the SNOT (2-qubit Hadamard) gate. Returns ------- snot_gate : qobj Quantum object representation of SNOT gate. Examples -------- >>> snot() Quantum object: dims = [[2], [2]], \ shape = [2, 2], type = oper, isHerm = True Qobj data = [[ 0.70710678+0.j 0.70710678+0.j] [ 0.70710678+0.j -0.70710678+0.j]] """ if not N is None and not target is None: return gate_expand_1toN(snot(), N, target) else: u = basis(2, 0) d = basis(2, 1) Q = 1.0 / sqrt(2.0) * (sigmax() + sigmaz()) return Q
6b0820eda38b3eba0da9bdc6ca1b2e01c1b7ddc0
17,935
from typing import Callable from typing import Dict from typing import Type from pydantic import BaseModel # noqa: E0611 from typing import Any def _do_wrapper( func: Callable, *, responses: Dict[str, Type[BaseModel]] = None, header: Type[BaseModel] = None, cookie: Type[BaseModel] = None, path: Type[BaseModel] = None, query: Type[BaseModel] = None, form: Type[BaseModel] = None, body: Type[BaseModel] = None, **kwargs: Any ) -> Response: """ Validate requests and responses :param func: view func :param responses: response model :param header: header model :param cookie: cookie model :param path: path model :param query: query model :param form: form model :param body: body model :param kwargs: path parameters :return: """ # validate header, cookie, path and query request_kwargs = dict() try: if header: _do_header(header, request_kwargs) if cookie: _do_cookie(cookie, request_kwargs) if path: _do_path(path, kwargs, request_kwargs) if query: _do_query(query, request_kwargs) if form: _do_form(form, request_kwargs) if body: _do_body(body, request_kwargs) except ValidationError as e: response = make_response(e.json()) response.headers['Content-Type'] = 'application/json' response.status_code = 422 return response # handle request response = func(**request_kwargs) VALIDATE_RESPONSE = current_app.config.get("VALIDATE_RESPONSE", False) if VALIDATE_RESPONSE and responses: validate_response(response, responses) return response
5fe2a2698d5aadcbd8f2731d06158d02aaa0df31
17,936
def make_divisible(v, divisor, min_val=None): """ This function is taken from the original tf repo. It ensures that all layers have a channel number that is divisible by 8 It can be seen here: https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py """ if min_val is None: min_val = divisor new_v = max(min_val, int(v + divisor / 2) // divisor * divisor) # Make sure that round down does not go down by more than 10%. if new_v < 0.9 * v: new_v += divisor return new_v
e843378d276518ac26a7896523da247c41437297
17,937
def mock_query_object(LCClient): """ Creating a Query Response object and prefilling it with some information """ # Creating a Query Response Object start = '2016/1/1' end = '2016/1/2' obj = { 'TimeRange': TimeRange(parse_time(start), parse_time(end)), 'Time_start': parse_time(start), 'Time_end': parse_time(end), 'source': 'Proba2', 'instrument': 'lyra', 'physobs': 'irradiance', 'provider': 'esa' } urls = ['http://proba2.oma.be/lyra/data/bsd/2016/01/01/lyra_20160101-000000_lev2_std.fits', 'http://proba2.oma.be/lyra/data/bsd/2016/01/02/lyra_20160102-000000_lev2_std.fits'] results = QueryResponse.create(obj, urls, client=LCClient) return results
cce825c17e902334db05d16f923aaa3f195bf2a8
17,938
def edit(photo_id): """ Edit uploaded photo information. :param photo_id: target photo id :return: HTML template for edit form or Json data """ if request.method == 'GET': photo = Photo.get(current_user.id, photo_id) return render_template('upload.html', photo=photo, gmaps_key=conf['GMAPS_KEY']) elif request.method == 'PUT': data = request.get_json() try: photo = Photo.get(current_user.id, photo_id) photo.tags = data['tags'] photo.desc = data['desc'] photo.geotag_lat = data['lat'] photo.geotag_lng = data['lng'] photo.city = data['city'] photo.nation = data['nation'] photo.address = data['address'] photo.save() return jsonify(update='success') except Exception as e: app.logger.error(e) return jsonify(update='fail') else: return redirect(url_for("/", gmaps_key=conf['GMAPS_KEY']))
2664cf584e5a303aac6afa75828fc873ea7e09ed
17,939
def crop_only(net1, net2): """ the size(net1) <= size(net2) """ net1_shape = net1.get_shape().as_list() net2_shape = net2.get_shape().as_list() # print(net1_shape) # print(net2_shape) # if net2_shape[1] >= net1_shape[1] and net2_shape[2] >= net1_shape[2]: offsets = [0, (net2_shape[1] - net1_shape[1]) // 2, (net2_shape[2] - net1_shape[2]) // 2, 0] size = [-1, net1_shape[1], net1_shape[2], -1] net2_resize = tf.slice(net2, offsets, size) # return tf.concat([net1, net2_resize], 3) return net2_resize
0cc2462244efabfd0a40eb6571adfca080906d86
17,940
def normalize(image): """ Normalize to 0-255, dtype: np.uint8 """ if np.min(image) < 0: image = image - np.min(image) if np.max(image) != 0: image = image / np.max(image) image = image * 255 image = np.uint8(image) return image
4de22a943d4db3c54b433c833cd721cb94c4c5d6
17,941
import tempfile def temp_file(contents, suffix=''): """Create a self-deleting temp file with the given content""" tmpdir = get_test_tmpdir() t = tempfile.NamedTemporaryFile(suffix=suffix, dir=tmpdir) t.write(contents) t.flush() return t
2d5c5fa07322f1d2acf6d576c43007a5f1ae6977
17,942
def string_to_charlist(string): """Return a list of characters with extra empty strings after wide chars""" if not set(string) - ASCIIONLY: return list(string) result = [] if PY3: for c in string: result.append(c) if east_asian_width(c) in WIDE_SYMBOLS: result.append('') else: try: # This raised a "UnicodeEncodeError: 'ascii' codec can't encode # character u'\xe4' in position 10: ordinal not in range(128)" # for me once. I thought errors='ignore' means IGNORE THE DAMN # ERRORS but apparently it doesn't. string = string.decode('utf-8', 'ignore') except UnicodeEncodeError: return [] for c in string: result.append(c.encode('utf-8')) if east_asian_width(c) in WIDE_SYMBOLS: result.append('') return result
dde3d72c05c1e86f3d5a795280b80934b598c0ae
17,943
def urlparams(url_, hash=None, **query): """Add a fragment and/or query paramaters to a URL. New query params will be appended to exising parameters, except duplicate names, which will be replaced. """ url = urlparse.urlparse(url_) fragment = hash if hash is not None else url.fragment # Use dict(parse_qsl) so we don't get lists of values. q = url.query query_dict = dict(urlparse.parse_qsl(smart_text(q))) if q else {} query_dict.update((k, v) for k, v in query.items()) query_string = _urlencode([(k, v) for k, v in query_dict.items() if v is not None]) new = urlparse.ParseResult(url.scheme, url.netloc, url.path, url.params, query_string, fragment) return new.geturl()
4eb1f66778540470bb710970a8db712aa3cde9a8
17,944
def get(word, cache=True): """ Load the word 'word' and return the DudenWord instance """ html_content = request_word(word, cache=cache) # pylint: disable=unexpected-keyword-arg if html_content is None: return None soup = bs4.BeautifulSoup(html_content, 'html.parser') return DudenWord(soup)
face281ce5eb2ab1b398b573afeaebbb78da47d6
17,945
def cubespace(start, stop=False, num=10, include_start=True): """ Return sequence of *num* floats between *start* and *stop*. Analogously to numpy's linspace, values in returned list are chosen so that their cubes (hence name) are spread evenly in equal distance. If the parameter *stop* is not given, the value of *start* is used as the upper limit instead. In such case the lower limit is set to 0. The values of lower limit, *start*, and upper limit, *stop*, are included in the list. The *start* value can be excluded by setting the *include_start* keyword to False. :example: >>> cubespace(10, num=3) array([ 0. , 7.93700526, 10. ]) >>> cubespace(0, -10, num=3) array([ 0. , -7.93700526, -10. ]) >>> cubespace(0, 10, num=3, include_start=False) array([ 6.93361274, 8.73580465, 10. ]) :param start: The starting value of a sequence. :type start: float :param stop: The ending value of a sequence. If False (default), *start* is used as a the ending value, while the starting value is set to 0. :type stop: float :param num: Number of samples to generate. Default is 10. :type num: int :param include_start: If False, the value of *start* is not included in returned list. Nonetheless, it is still considered as a starting point. :type include_start: bool :return: An array with *num* spaced samples in the *start*-*stop* interval. :rtype: numpy.ndarray """ (start, stop) = (0.0, start) if stop is False else (start, stop) if include_start is False: return cubespace(start, stop, num=num+1, include_start=True)[1:] cubed_start = pow(start, 3) cubed_stop = pow(stop, 3) cubed_space = linspace(cubed_start, cubed_stop, num) return sign(cubed_space) * power(abs(cubed_space), 1/3)
d011ce033895465e9cb2ed0eb86598163d035208
17,946
def to_ndarray(arr): """ Convert a list of lists to a multidimensional numpy array @param arr: @return: """ return np.array([np.array(x) for x in arr])
1bf5ac651921a631e46d8ecae50b81082f9aea6e
17,947
def spectre_avatar(avatar, size="sm", **kwargs): """ render avatar :param avatar: :param size: :param kwargs: :return: HTML """ avatar_kwargs = kwargs.copy() avatar_kwargs['avatar_url'] = avatar avatar_kwargs['size'] = size if "background" not in avatar_kwargs.keys(): avatar_kwargs['background'] = "#5755d9" return avatar_kwargs
d573336c13f63cb647d40241d2c37f78fd4cc292
17,948
def get_modules_by_appid(app_id): """ 查询业务下的所有模块信息 注意:企业版使用get_modules_by_property代替 """ cc_data = bk.cc.get_modules_by_property(app_id=app_id) return cc_data
d57277ec09433da3c03c8ece67cc994f27dfcd21
17,949
def do_json_counts(df, target_name): """ count of records where name=target_name in a dataframe with column 'name' """ return df.filter(df.name == target_name).count()
c4b0cb52f28372a7d53a92984b3212c66c1556ab
17,951
def is_a(file_name): """ Tests whether a given file_name corresponds to a ICEYE file. Returns a reader instance, if so. Parameters ---------- file_name : str|BinaryIO the file_name to check Returns ------- CSKReader|None `CSKReader` instance if Cosmo Skymed file, `None` otherwise """ if is_file_like(file_name): return None if not is_hdf5(file_name): return None if h5py is None: return None try: iceye_details = ICEYEDetails(file_name) logger.info('File {} is determined to be a ICEYE file.'.format(file_name)) return ICEYEReader(iceye_details) except SarpyIOError: return None
744d2ff8f940e220f0e41b8739a535c1afe6476e
17,952
def fetch_optimizer(args, model): """ Create the optimizer and learning rate scheduler """ optimizer = optim.AdamW(model.parameters(), lr=args.lr, weight_decay=args.wdecay, eps=args.epsilon) scheduler = optim.lr_scheduler.OneCycleLR(optimizer=optimizer, max_lr=args.lr, total_steps=args.num_steps+100, pct_start=0.05, cycle_momentum=False, anneal_strategy='linear') return optimizer, scheduler
d5fab8b0b665267c8b90eb25fe9dab3a7ce428e7
17,953
def model_fn_builder(bert_config, num_labels, init_checkpoint, learning_rate, num_train_steps, num_warmup_steps, use_tpu, use_one_hot_embeddings, freeze_bert, finetune_module, num_train_examples): """Returns `model_fn` closure for TPUEstimator.""" def model_fn(features, labels, mode, params): # pylint: disable=unused-argument """The `model_fn` for TPUEstimator.""" tf.logging.info("*** Features ***") for name in sorted(features.keys()): tf.logging.info(" name = %s, shape = %s" % (name, features[name].shape)) input_ids = features["input_ids"] input_mask = features["input_mask"] segment_ids = features["segment_ids"] label_ids = features["label_ids"] is_real_example = None label_mask = None if "is_real_example" in features: is_real_example = tf.cast(features["is_real_example"], dtype=tf.float32) else: is_real_example = tf.ones(tf.shape(label_ids)[0], dtype=tf.float32) if "label_mask" in features: label_mask = tf.cast(features["label_mask"], dtype=tf.float32) else: label_mask = tf.ones(tf.shape(label_ids), dtype=tf.float32) is_training = (mode == tf.estimator.ModeKeys.TRAIN) (total_loss, logits, probabilities, variance) = create_model( bert_config, is_training, input_ids, input_mask, segment_ids, label_ids, num_labels, use_one_hot_embeddings, freeze_bert, finetune_module, num_train_examples, is_real_example, label_mask) tvars = tf.trainable_variables() initialized_variable_names = {} scaffold_fn = None if init_checkpoint: (assignment_map, initialized_variable_names ) = modeling.get_assignment_map_from_checkpoint( tvars, init_checkpoint) if use_tpu: def tpu_scaffold(): tf.train.init_from_checkpoint(init_checkpoint, assignment_map) return tf.train.Scaffold() scaffold_fn = tpu_scaffold else: tf.train.init_from_checkpoint(init_checkpoint, assignment_map) tf.logging.info("**** Trainable Variables ****") for var in tvars: init_string = "" if var.name in initialized_variable_names: init_string = ", *INIT_FROM_CKPT*" tf.logging.info(" name = %s, shape = %s%s", var.name, var.shape, init_string) output_spec = None if mode == tf.estimator.ModeKeys.TRAIN: train_op = optimization.create_optimizer(total_loss, learning_rate, num_train_steps, num_warmup_steps, use_tpu) output_spec = tf.compat.v1.estimator.tpu.TPUEstimatorSpec( mode=mode, loss=total_loss, train_op=train_op, scaffold_fn=scaffold_fn) elif mode == tf.estimator.ModeKeys.EVAL: def metric_fn(label_ids, logits, probabilities, variance, is_real_example): def hemming_loss(labels, probabilities, weights=None, metrics_collections=None, updates_collections=None, name=None): probabilities.get_shape().assert_is_compatible_with( labels.get_shape()) prob = tf.cast(probabilities, dtype=tf.float32) lab = tf.cast(labels, dtype=tf.float32) total_error = tf.reduce_sum( tf.abs(lab - prob) * is_real_example) h_loss, update_op = tf.metrics.mean(total_error) if metrics_collections: tf.compat.v1.add_to_collections(metrics_collections, h_loss) if updates_collections: tf.compat.v1.add_to_collections(updates_collections, update_op) return h_loss, update_op predictions = tf.cast(tf.round(probabilities), dtype=tf.int32) label_ids = tf.cast(label_ids, dtype=tf.int32) pred_split = tf.split(predictions, num_labels, axis=-1) probs_split = tf.split(probabilities, num_labels, axis=-1) label_ids_split = tf.split(label_ids, num_labels, axis=-1) variance_split = tf.split(variance, num_labels, axis=-1) eval_dict = dict() for j in range(num_labels): eval_dict[LABEL_COLUMN[j] + ' variance'] = tf.metrics.mean( variance_split[j], weights=is_real_example) eval_dict[LABEL_COLUMN[j] + ' accuracy'] = tf.metrics.accuracy( label_ids_split[j], pred_split[j], weights=is_real_example) eval_dict[LABEL_COLUMN[j] + ' auc'] = tf.metrics.auc( label_ids_split[j], probs_split[j], weights=is_real_example) eval_dict[LABEL_COLUMN[j] + ' f1'] = tf.contrib.metrics.f1_score( label_ids_split[j], probs_split[j], weights=is_real_example) eval_dict[LABEL_COLUMN[j] + ' recall'] = tf.metrics.recall( label_ids_split[j], pred_split[j], weights=is_real_example) eval_dict[LABEL_COLUMN[j] + ' precision'] = tf.metrics.precision( label_ids_split[j], pred_split[j], weights=is_real_example) eval_dict[ LABEL_COLUMN[j] + ' recall_at_precision_90'] = tf.contrib.metrics.recall_at_precision( label_ids_split[j], probs_split[j], 0.9, weights=is_real_example) eval_dict[ LABEL_COLUMN[j] + ' recall_at_precision_95'] = tf.contrib.metrics.recall_at_precision( label_ids_split[j], probs_split[j], 0.95, weights=is_real_example) eval_dict[LABEL_COLUMN[j] + ' true_positives'] = tf.metrics.true_positives( label_ids_split[j], pred_split[j], weights=is_real_example) eval_dict[LABEL_COLUMN[j] + ' false_positives'] = tf.metrics.false_positives( label_ids_split[j], pred_split[j], weights=is_real_example) eval_dict[LABEL_COLUMN[j] + ' true_negatives'] = tf.metrics.true_negatives( label_ids_split[j], pred_split[j], weights=is_real_example) eval_dict[LABEL_COLUMN[j] + ' false_negatives'] = tf.metrics.false_negatives( label_ids_split[j], pred_split[j], weights=is_real_example) eval_dict['hemming_loss'] = hemming_loss( label_ids, probabilities, weights=is_real_example) eval_dict["mean_variance"] = tf.metrics.mean( values=variance, weights=is_real_example) return eval_dict eval_metrics = (metric_fn, [ label_ids, logits, probabilities, variance, is_real_example ]) output_spec = tf.compat.v1.estimator.tpu.TPUEstimatorSpec( mode=mode, loss=total_loss, eval_metrics=eval_metrics, scaffold_fn=scaffold_fn) else: output_spec = tf.compat.v1.estimator.tpu.TPUEstimatorSpec( mode=mode, predictions={ "probs": probabilities, "logits": logits, "variance": variance }, scaffold_fn=scaffold_fn) return output_spec return model_fn
a2ec1fd2a41916170ec34b1b988ce0b5c4466fd6
17,954
def load_series_spectrum_df(series_dict_channels): """ Takes a series of dictionaries generated by pd.Series.apply(load_channels) and returns a dataframe with the frequencies expanded as columns. If the frequencies are not identically overlapping across rows, the resulting set of columns will the the union of all the different frequency sets, where rows not containing a given frequency will be NaN """ dict_df = {} for i, dict_channels in series_dict_channels.items(): if dict_channels: for key, value_dict in dict_channels.items(): n_rows = len(value_dict['value_y']) x_values = np.array(value_dict['delta_x']).dot(np.arange(n_rows)) for j, freq in enumerate(x_values): try: dict_df[freq][i] = value_dict['value_y'][j] except KeyError: dict_df[freq] = {i: value_dict['value_y'][j]} else: pass return pd.DataFrame.from_dict(dict_df)
d2b398f11b3dc6d67c60f62f4e49938ce7817177
17,955
from typing import Dict def get_mujoco_features_dict( builder_config: BuilderConfig, ds_config: DatasetConfig) -> Dict[str, tfds.features.FeatureConnector]: """Builds the features dict of a Mujoco dataset. Args: builder_config: builder config of the Mujoco dataset. ds_config: config of the Mujoco dataset containing the specs. Returns: Dictionary with the features of this dataset. """ float_type = builder_config.float_type steps_dict = { 'observation': tfds.features.Tensor(shape=(ds_config.obs_len,), dtype=float_type), 'action': tfds.features.Tensor(shape=(ds_config.action_len,), dtype=float_type), 'reward': float_type, 'is_terminal': tf.bool, 'is_first': tf.bool, 'discount': float_type, } if builder_config.has_step_metadata: steps_dict['infos'] = { # Infos correspond to state information. # See https://github.com/rail-berkeley/d4rl/wiki/Tasks#gym. 'action_log_probs': float_type, 'qpos': tfds.features.Tensor(shape=(ds_config.qpos_len,), dtype=float_type), 'qvel': tfds.features.Tensor(shape=(ds_config.qvel_len,), dtype=float_type), } episode_metadata = {} if builder_config.has_episode_metadata: episode_metadata.update({ 'algorithm': tf.string, 'iteration': tf.int32, }) if builder_config.has_policy_metadata: episode_metadata.update({ # The policy dictionary contains the weights of the policy used to # generate the dataset. # See https://github.com/rail-berkeley/d4rl/wiki/Tasks#gym. 'policy': { 'fc0': { 'bias': tfds.features.Tensor(shape=(256,), dtype=float_type), 'weight': tfds.features.Tensor( shape=(256, ds_config.obs_len), dtype=float_type), }, 'fc1': { 'bias': tfds.features.Tensor(shape=(256,), dtype=float_type), 'weight': tfds.features.Tensor(shape=(256, 256), dtype=float_type), }, 'last_fc': { 'bias': tfds.features.Tensor( shape=(ds_config.action_len,), dtype=float_type), 'weight': tfds.features.Tensor( shape=(ds_config.action_len, 256), dtype=float_type), }, 'last_fc_log_std': { 'bias': tfds.features.Tensor( shape=(ds_config.action_len,), dtype=float_type), 'weight': tfds.features.Tensor( shape=(ds_config.action_len, 256), dtype=float_type), }, 'nonlinearity': tf.string, 'output_distribution': tf.string, }, }) features_dict = { 'steps': tfds.features.Dataset(steps_dict), } if episode_metadata: features_dict.update(episode_metadata) return features_dict
96f12353f880028b231d1ebe67678b0c39118f42
17,956
def weighted_cross_entropy(y_true, y_pred): """ Weighted cross entropy loss :param y_true: Ground truth :param y_pred: Prediction :return: Loss value between y_true and y_pred """ try: [seg, weight] = tf.unstack(y_true, 2, axis=3) seg = tf.expand_dims(seg, -1) weight = tf.expand_dims(weight, -1) except Exception: # test purpose seg = tf.zeros((1,128,128,1)) weight = tf.ones((1, 128, 128, 1)) epsilon = tf.convert_to_tensor(10e-8, y_pred.dtype.base_dtype) y_pred = tf.clip_by_value(y_pred, epsilon, 1 - epsilon) y_pred = tf.math.log(y_pred / (1 - y_pred)) zeros = tf.zeros_like(y_pred, dtype=y_pred.dtype) # array_ops cond = y_pred >= zeros relu_logits = tf.where(cond, y_pred, zeros) neg_abs_logits = tf.where(cond, -y_pred, y_pred) entropy = tf.math.add( relu_logits - y_pred * seg, tf.math.log1p(tf.math.exp(neg_abs_logits)), name=None, ) return K.mean(tf.multiply(weight, entropy), axis=-1)
9e91f93396975109a8f05ac56d4cc3ddc4460eb9
17,957
def union(a, b): """Find union of two lists, sequences, etc. Returns a list that includes repetitions if they occur in the input lists. """ return list(a) + list(b)
bf154b6222122aa61cf590022475dcd38eed6df4
17,959
def update_intervals(M, s, B): """ After found the s value, compute the new list of intervals """ M_new = [] for a, b in M: r_lower = ceil(a * s - 3 * B + 1, n) r_upper = ceil(b * s - 2 * B, n) for r in range(r_lower, r_upper): lower_bound = max(a, ceil(2 * B + r * n, s)) upper_bound = min(b, floor(3 * B - 1 + r * n, s)) interval = Interval(lower_bound, upper_bound) M_new = safe_interval_insert(M_new, interval) M.clear() return M_new
3056a5e957317155b6ad2da28f2d05831e77af43
17,960
def mixer_l16_224_in21k(pretrained=False, **kwargs): """ Mixer-L/16 224x224. ImageNet-21k pretrained weights. Paper: 'MLP-Mixer: An all-MLP Architecture for Vision' - https://arxiv.org/abs/2105.01601 """ model_args = dict(patch_size=16, num_blocks=24, embed_dim=1024, **kwargs) model = _create_mixer('mixer_l16_224_in21k', pretrained=pretrained, **model_args) return model
cead4a01ef964af2ee9a9509881c2e58dcba9b6f
17,961
def isoslice(var, iso_values, grid=None, iso_array=None, axis="Z"): """Interpolate var to iso_values. This wraps `xgcm` `transform` function for slice interpolation, though `transform` has additional functionality. Inputs ------ var: DataArray Variable to operate on. iso_values: list, ndarray Values to interpolate to. If calculating var at fixed depths, iso_values are the fixed depths, which should be negative if below mean sea level. If input as array, should be 1D. grid: xgcm.grid, optional Grid object associated with var. Optional because checks var attributes for grid. iso_array: DataArray, optional Array that var is interpolated onto (e.g., z coordinates or density). If calculating var on fixed depth slices, iso_array contains the depths [m] associated with var. In that case and if None, will use z coordinate attached to var. Also use this option if you want to interpolate with z depths constant in time and input the appropriate z coordinate. dim: str, optional Dimension over which to calculate isoslice. If calculating var onto fixed depths, `dim='Z'`. Options are 'Z', 'Y', and 'X'. Returns ------- DataArray of var interpolated to iso_values. Dimensionality will be the same as var except with dim dimension of size of iso_values. Notes ----- var cannot have chunks in the dimension dim. cf-xarray should still be usable after calling this function. Example usage ------------- To calculate temperature onto fixed depths: >>> xroms.isoslice(ds.temp, np.linspace(0, -30, 50)) To calculate temperature onto salinity: >>> xroms.isoslice(ds.temp, np.arange(0, 36), iso_array=ds.salt, axis='Z') Calculate lat-z slice of salinity along a constant longitude value (-91.5): >>> xroms.isoslice(ds.salt, -91.5, iso_array=ds.lon_rho, axis='X') Calculate slice of salt at 28 deg latitude >>> xroms.isoslice(ds.salt, 28, iso_array=ds.lat_rho, axis='Y') Interpolate temp to salinity values between 0 and 36 in the X direction >>> xroms.isoslice(ds.temp, np.linspace(0, 36, 50), iso_array=ds.salt, axis='X') Interpolate temp to salinity values between 0 and 36 in the Z direction >>> xroms.isoslice(ds.temp, np.linspace(0, 36, 50), iso_array=ds.salt, axis='Z') Calculate the depth of a specific isohaline (33): >>> xroms.isoslice(ds.salt, 33, iso_array=ds.z_rho, axis='Z') Calculate dye 10 meters above seabed. Either do this on the vertical rho grid, or first change to the w grid and then use `isoslice`. You may prefer to do the latter if there is a possibility that the distance above the seabed you are interpolating to (10 m) could be below the deepest rho grid depth. * on rho grid directly: >>> height_from_seabed = ds.z_rho + ds.h >>> height_from_seabed.name = 'z_rho' >>> xroms.isoslice(ds.dye_01, 10, iso_array=height_from_seabed, axis='Z') * on w grid: >>> var_w = ds.dye_01.xroms.to_grid(scoord='w').chunk({'s_w': -1}) >>> ds['dye_01_w'] = var_w # currently this is the easiest way to reattached coords xgcm variables >>> height_from_seabed = ds.z_w + ds.h >>> height_from_seabed.name = 'z_w' >>> xroms.isoslice(ds['dye_01_w'], 10, iso_array=height_from_seabed, axis='Z') """ words = "Either grid should be input or var should be DataArray with grid in attributes." assert (grid is not None) or ( isinstance(var, xr.DataArray) and "grid" in var.attrs ), words if grid is None: grid = var.attrs["grid"] assert isinstance(grid, xgcm.Grid), "grid must be `xgcm` grid object." attrs = var.attrs # save to reinstitute at end # make sure iso_values are array-like if isinstance(iso_values, (int, float)): iso_values = [iso_values] # interpolate to the z coordinates associated with var if iso_array is None: key = [coord for coord in var.coords if "z_" in coord and "0" not in coord][ 0 ] # str assert ( len(key) > 0 ), "z coordinates associated with var could not be identified." iso_array = var[key] else: if isinstance(iso_array, xr.DataArray) and iso_array.name is not None: key = iso_array.name else: key = "z" # perform interpolation transformed = grid.transform(var, axis, iso_values, target_data=iso_array) if key not in transformed.coords: transformed = transformed.assign_coords({key: iso_array}) # bring along attributes for cf-xarray transformed[key].attrs["axis"] = axis transformed.attrs["grid"] = grid # add original attributes back in transformed.attrs = {**attrs, **transformed.attrs} # save key names for later # perform interpolation for other coordinates if needed if "longitude" in var.cf.coordinates: lonkey = var.cf["longitude"].name if lonkey not in transformed.coords: # this interpolation won't work for certain combinations of var[latkey] and iso_array # without the following step if "T" in iso_array.reset_coords(drop=True).cf.axes: iso_array = iso_array.cf.isel(T=0).drop_vars( iso_array.cf["T"].name, errors="ignore" ) if "Z" in iso_array.reset_coords(drop=True).cf.axes: iso_array = iso_array.cf.isel(Z=0).drop_vars( iso_array.cf["Z"].name, errors="ignore" ) transformedlon = grid.transform( var[lonkey], axis, iso_values, target_data=iso_array ) transformed = transformed.assign_coords({lonkey: transformedlon}) transformed[lonkey].attrs["standard_name"] = "longitude" if "latitude" in var.cf.coordinates: latkey = var.cf["latitude"].name if latkey not in transformed.coords: # this interpolation won't work for certain combinations of var[latkey] and iso_array # without the following step if "T" in iso_array.reset_coords(drop=True).cf.axes: iso_array = iso_array.cf.isel(T=0).drop_vars( iso_array.cf["T"].name, errors="ignore" ) if "Z" in iso_array.reset_coords(drop=True).cf.axes: iso_array = iso_array.cf.isel(Z=0).drop_vars( iso_array.cf["Z"].name, errors="ignore" ) transformedlat = grid.transform( var[latkey], axis, iso_values, target_data=iso_array ) transformed = transformed.assign_coords({latkey: transformedlat}) transformed[latkey].attrs["standard_name"] = "latitude" if "vertical" in var.cf.coordinates: zkey = var.cf["vertical"].name if zkey not in transformed.coords: transformedZ = grid.transform( var[zkey], axis, iso_values, target_data=iso_array ) transformed = transformed.assign_coords({zkey: transformedZ}) transformed[zkey].attrs["positive"] = "up" transformed = transformed.squeeze().cf.guess_coord_axis() # reorder back to normal ordering in case changed transformed = xroms.order(transformed) return transformed
2bd475623b5862f5325250bd6b27d771c55e7e99
17,963
def user_prompt(msg: str, sound: bool = False, timeout: int = -1): """Open user prompt.""" return f'B;UserPrompt("{msg}",{sound:d},{timeout});'.encode()
25e2941c212c487f9a319159a3eab66d3ff38050
17,964
def ComputeWk(X, labels, classes): """ X - (d x n) data matrix, where n is samples and d is dimentionality lables - n dimentional vector which are class labels """ Wk = 0 for i in range(classes): mask = (labels == i) Wk = Wk + np.sum(np.sum((X[:, mask] - np.mean(X[:, mask], axis=1, keepdims=True))**2, axis=0)) return Wk
3d68a2e6635194827e39762df566d24cc86a5e30
17,965
def vad_split(audio, rate, frame_duration, aggressiveness=1): """Splits the audio into audio segments on non-speech frames. params: audio: A numpy ndarray, which has 1 dimension and values within -1.0 to 1.0 (inclusive) rate: An integer, which is the rate at which samples are taken frame_duration: A float, which is the duration of each frame to check return: A list of numpy ndarray, which are 1 dimension each and have values within -1.0 to 1.0 (inclusive) """ assert rate in (8000, 16000, 32000, 48000), ( 'Invalid Rate, use 8000, 16000, 32000, or 48000' ) assert frame_duration in (.01, .02, .03), ( 'Invalid frame_dur, use .01, .02, .03' ) assert 0 <= aggressiveness <= 3, ( 'Invalid aggressiveness, must be between 0 and 3' ) vad = webrtcvad.Vad(aggressiveness) frame_size = int(rate * frame_duration) offset = 0 off = True voiced_frames = [] while offset + frame_size < len(audio): frame = audio[offset:offset + frame_size] frame_bytes = np.int16(frame * np.iinfo('int16').max).tobytes() if vad.is_speech(frame_bytes, rate): if off is True: off = False voiced_frames.append([frame]) else: voiced_frames[-1].append(frame) else: off = True offset += frame_size if len(voiced_frames) == 0: return np.array([audio]) for ndx in range(len(voiced_frames)): voiced_frames[ndx] = np.hstack(voiced_frames[ndx]) return voiced_frames
e75ae1bd4681936922cbf53076da5bb10c0306c5
17,966
def is_extant_string(string): """Check if the string exists in the database""" return HyperlinkModel.objects.filter(internal=string).exists()
e87b1dc88359301a5bdd7a22b2ac47e65fd3559f
17,967
def time_to_convergence(T,P0,final_beliefs=False,tolerance=0,max_iter=10000): """ This function calculates the number of periods that it takes for opinions to stop changing in the DeGroot Model. Optionally, one can also get the final belief profile. """ T = np.asarray(T) P0 = np.transpose(np.asarray(P0)) n, m = T.shape N = P0.size if (n!=m) or (m!=N): print("Trust matrix should be squared and number of agents should be consistent in T and P0.") return t = 1 N = P0.size P1 = P0 P0 = T.dot(P1) while (t<max_iter) and (np.linalg.norm(P0-P1)>tolerance): P1 = P0 P0 = T.dot(P1) t = t+1 if final_beliefs == True: return t, P0 else: return t
b2cd345cfe573b11689a67108d9205a558ac2485
17,968
def count_subset_sum_recur(arr, total, n): """Count subsets given sum by recusrion. Time complexity: O(2^n), where n is length of array. Space complexity: O(1). """ if total < 0: return 0 if total == 0: return 1 if n < 0: return 0 if total < arr[n]: return count_subset_sum_recur(arr, total, n - 1) else: n_subsets_in = count_subset_sum_recur(arr, total - arr[n], n - 1) n_subsets_out = count_subset_sum_recur(arr, total, n - 1) return n_subsets_in + n_subsets_out
981b83014e75122dea814ace5b34b18f9803c3ad
17,969
def monthcalendar(year, month): """Return a matrix representing a month's calendar. Each row represents a week; days outside this month are zero.""" day1, ndays = monthrange(year, month) rows = [] r7 = range(7) day = (_firstweekday - day1 + 6) % 7 - 5 # for leading 0's in first week while day <= ndays: row = [0, 0, 0, 0, 0, 0, 0] for i in r7: if 1 <= day <= ndays: row[i] = day day = day + 1 rows.append(row) return rows
e5d9f370c0c3937d102f24aa342d0a755b234ca4
17,970
def Contap_HCurve2dTool_Bezier(*args): """ :param C: :type C: Handle_Adaptor2d_HCurve2d & :rtype: Handle_Geom2d_BezierCurve """ return _Contap.Contap_HCurve2dTool_Bezier(*args)
02e4c876c304383003b8cabe55cb233a59b9fdd9
17,971
def api_view_issue(repo, issueid, username=None, namespace=None): """ Issue information ----------------- Retrieve information of a specific issue. :: GET /api/0/<repo>/issue/<issue id> GET /api/0/<namespace>/<repo>/issue/<issue id> :: GET /api/0/fork/<username>/<repo>/issue/<issue id> GET /api/0/fork/<username>/<namespace>/<repo>/issue/<issue id> The identifier provided can be either the unique identifier or the regular identifier used in the UI (for example ``24`` in ``/forks/user/test/issue/24``) Sample response ^^^^^^^^^^^^^^^ :: { "assignee": null, "blocks": [], "comments": [], "content": "This issue needs attention", "date_created": "1431414800", "depends": ["4"], "id": 1, "private": false, "status": "Open", "tags": [], "title": "test issue", "user": { "fullname": "PY C", "name": "pingou" } } """ comments = is_true(flask.request.args.get("comments", True)) repo = _get_repo(repo, username, namespace) _check_issue_tracker(repo) _check_token(repo, project_token=False) issue_id = issue_uid = None try: issue_id = int(issueid) except (ValueError, TypeError): issue_uid = issueid issue = _get_issue(repo, issue_id, issueuid=issue_uid) _check_private_issue_access(issue) jsonout = flask.jsonify(issue.to_json(public=True, with_comments=comments)) return jsonout
3094d788a08c5547092fecab85bec08676ef323b
17,972
import torch def mcc_class_loss( predictions: torch.tensor, targets: torch.tensor, data_weights: torch.tensor, mask: torch.tensor, ) -> torch.tensor: """ A classification loss using a soft version of the Matthews Correlation Coefficient. :param predictions: Model predictions with shape(batch_size, tasks). :param targets: Target values with shape(batch_size, tasks). :param data_weights: A tensor with float values indicating how heavily to weight each datapoint in training with shape(batch_size, 1) :param mask: A tensor with boolean values indicating whether the loss for this prediction is considered in the gradient descent with shape(batch_size, tasks). :return: A tensor containing loss values of shape(tasks). """ # shape(batch, tasks) # (TP*TN-FP*FN)/sqrt((TP+FP)*(TP+FN)*(TN+FP)*(TN+FN)) TP = torch.sum(targets * predictions * data_weights * mask, axis=0) FP = torch.sum((1 - targets) * predictions * data_weights * mask, axis=0) FN = torch.sum(targets * (1 - predictions) * data_weights * mask, axis=0) TN = torch.sum((1 - targets) * (1 - predictions) * data_weights * mask, axis=0) loss = 1 - ( (TP * TN - FP * FN) / torch.sqrt((TP + FP) * (TP + FN) * (TN + FP) * (TN + FN)) ) return loss
501d21791d88d4aacfc799f1bb8b64bf49da5bc7
17,973
def inverse(fun, value): """Calculate argument of f given its value""" epsilon = 1e-09 start = middle = 1e-09 end = 1e9 while abs(end - start) > epsilon: middle = (start + end) / 2 if isclose(fun(middle) - value, 0.0): break elif fun(middle) - value > 0 and fun(start) < value: end = middle else: start = middle return middle
fe9eb8b4e90cb8c6216620b6518bbf92404fd3c6
17,974
from backend.caffe.path_loader import PathLoader def getCaffemodelFromSolverstate(solverstate): """ Parse the filename of the caffemodel file from the solverstate file. """ proto = PathLoader().importProto() try: state = proto.SolverState() with open(solverstate, 'rb') as f: state.ParseFromString(f.read()) return state.learned_net except Exception as e: print(str(e))
ffdc936eed5e0dfe4b5a7c5321ed60cf67166b81
17,976
import re def get_L_from_D(line): """ Assume line contains one or more <Dn> Return list of all n """ a = [] for m in re.finditer(r'<D([0-9]+)>',line): a.append(m.group(1)) return a
2cd5c710709c38ea7a2b1890e084116a7fd5ee43
17,977
def per_pixel_mean_stddev(dataset, image_size): """ Compute the mean of each pixel over the entire dataset. """ #NOTE: Replace "3" by the number of channels initial_state = tf.constant(0., dtype=tf.float32, shape=[image_size, image_size, 3]) dataset = dataset.map(lambda x: resize(x, image_size)) count = dataset.reduce(0, lambda x, _: x+1) pixel_sum = dataset.reduce(initial_state, lambda x, y: tf.add(x, y)) pixel_mean = tf.divide(pixel_sum, tf.to_float(count)) return pixel_mean, count
38f479d7f1b1d422f15a5e5a6363552edb07fe69
17,978
def get_indexes_from_list(lst, find, exact=True): """ Helper function that search for element in a list and returns a list of indexes for element match E.g. get_indexes_from_list([1,2,3,1,5,1], 1) returns [0,3,5] get_indexes_from_list(['apple','banana','orange','lemon'], 'orange') -> returns [2] get_indexes_from_list(['apple','banana','lemon',['orange', 'peach']], 'orange') -> returns [] get_indexes_from_list(['apple','banana','lemon',['orange', 'peach']], ['orange'], False) -> returns [3] Parameters ---------- lst: list The list to look in find: any the element to find, can be a list exact: bool If False then index are returned if find in lst-item otherwise only if find = lst-item Returns ------- list of int """ if exact == True: return [index for index, value in enumerate(lst) if value == find] else: if isinstance(find,list): return [index for index, value in enumerate(lst) if set(find).intersection(set(value))] else: return [index for index, value in enumerate(lst) if find in value]
416d94de975603a60bf41974b8564cd868e503c0
17,979
def simplify_polygon(polygon, tolerance=0.01): """Remove doubles coords from a polygon.""" assert isinstance(polygon, Polygon) or isinstance(polygon, MultiPolygon) # Get the coordinates coords = [] if isinstance(polygon, Polygon): coords = polygon.exterior.coords elif isinstance(polygon, MultiPolygon): for geom in polygon.geoms: coords += geom.exterior.coords else: return None # remove the doubled coordinates newCoords = [] v0 = Vector2D(float('inf'), float('inf')) for coord in coords: v = Vector2D(coord[0], coord[1]) if (v0 - v).norm() > tolerance: v0 = v newCoords += [[coord[0], coord[1]]] return Polygon(newCoords)
73fe9d950e5aa908e99c8fe21e28837852f7f3c6
17,980
def looks_like_PEM(text): """ Guess whether text looks like a PEM encoding. """ i = text.find("-----BEGIN ") return i >= 0 and text.find("\n-----END ", i) > i
ff310d6ffcf6d4ebd63331fdae66774009ef2b39
17,981
from typing import Counter def find_duplicates(list_to_check): """ This finds duplicates in a list of values of any type and then returns the values that are duplicates. Given Counter only works with hashable types, ie it can't work with lists, create a tuple of the lists and then count if the list_to_check contains un-hashable items :param list_to_check: A list of values with potential duplicates within it :type list_to_check: list :return:The values that where duplicates :rtype: list """ try: counted_list = Counter(list_to_check) except TypeError: counted_list = Counter([tuple(x) for x in list_to_check]) return [key for key in counted_list if counted_list[key] > 1]
1d608a70e7fb9be2001c73b72d3c1b62047539b5
17,982
from typing import Any def none_to_default(field: Any, default: Any) -> Any: """Convert None values into default values. :param field: the original value that may be None. :param default: the new, default, value. :return: field; the new value if field is None, the old value otherwise. :rtype: any """ return default if field is None else field
894d71c2cc89b02dc14fd7ddcd3a949bdc336692
17,983
def fetch_pauli2018(data_dir=None, url=None, resume=True, verbose=1): """ Downloads files for Pauli et al., 2018 subcortical parcellation Parameters ---------- data_dir : str, optional Path to use as data directory. If not specified, will check for environmental variable 'NNT_DATA'; if that is not set, will use `~/nnt-data` instead. Default: None url : str, optional URL from which to download data. Default: None resume : bool, optional Whether to attempt to resume partial download, if possible. Default: True verbose : int, optional Modifies verbosity of download, where higher numbers mean more updates. Default: 1 Returns ------- filenames : :class:`sklearn.utils.Bunch` Dictionary-like object with keys ['probabilistic', 'deterministic'], where corresponding values are filepaths to downloaded atlas files. References ---------- Pauli, W. M., Nili, A. N., & Tyszka, J. M. (2018). A high-resolution probabilistic in vivo atlas of human subcortical brain nuclei. Scientific Data, 5, 180063. Notes ----- License: CC-BY Attribution 4.0 International """ dataset_name = 'atl-pauli2018' keys = ['probabilistic', 'deterministic', 'info'] data_dir = _get_data_dir(data_dir=data_dir) info = _get_dataset_info(dataset_name) # format the query how _fetch_files() wants things and then download data files = [ (i['name'], i['url'], dict(md5sum=i['md5'], move=i['name'])) for i in info ] data = _fetch_files(data_dir, files=files, resume=resume, verbose=verbose) return Bunch(**dict(zip(keys, data)))
3b81073509b8e7986f28bde38e9c19fe73e616b4
17,984
def lambda_to_ent(la): """ entanglement from a schmidt coeff lambda ent = - [la * log(la) + (1 - la) * log(1 - la)] where la (lambda) is the Schmidt coefficient """ return - np.nan_to_num((1-la)*np.log(1-la) + la*np.log(la))
7f3e128931100f23897d1a36fce6994e95f58bef
17,985
from typing import Dict from typing import Callable import logging def parse_states( value_field: str, selected_values: selected_values_type, selected_fields: selected_fields_type, *, field_cleaners: Dict[str, Callable[[pd.DataFrame, str], pd.DataFrame]] = None, ) -> parsed_data_type: """ Outputs CSVs of state data after parsing a large CSV of U.S. county-level census data for selected states. Args: value_field (str): Field that will be used to filter data by. selected_values (selected_values_type): A list of dictionaries relating to the state's selected for data extraction. Each dict has a key-value pairs for the full name of the state and it's two-letter abbreviation. selected_fields (selected_fields_type): A list of dictionaries that represent the fields that will be selected from the U.S. Census CSV, and how the field will be represented in the final CSV. field_cleaners (Dict[Callable[[pd.DataFrame, str], pd.DataFrame]]): (Optional) function that cleans a specified field Returns: parsed_data_type - A list of dictionaries with parsed data """ # read df = pd.read_csv(PATH_USA_POP, encoding="ISO-8859-1") # filter - remove statewide population counts df = df[df["COUNTY"] != 0] # filter - include only selected values selected_values_names = [x["name"] for x in selected_values] df = df[df[value_field].isin(selected_values_names)] # option - clean value field if field_cleaners: for field in field_cleaners.keys(): cleaner_func = field_cleaners[field] df = cleaner_func(df, field) # rename field lookuptable rename_schema = {} for field in selected_fields: input_name = field["input_name"] output_name = field["output_name"] rename_schema[input_name] = output_name # group by by_state = df.groupby(value_field) payload = [] for name, group in by_state: logging.info(f"Processing: {name}") # get selected state dict for processing instructions selected_state = list(filter(lambda x: x["name"] == name, selected_values))[0] # generate FIPS code # Temporarily disabling SettingWithCopy warning pd.reset_option("mode.chained_assignment") with pd.option_context("mode.chained_assignment", None): group["STATE"] = group["STATE"].astype(str).str.zfill(2) group["COUNTY"] = group["COUNTY"].astype(str).str.zfill(3) group["FIPS"] = group["STATE"] + group["COUNTY"] # truncate cols in df selected_fields_input = [x["input_name"] for x in selected_fields] group = group[selected_fields_input] # rename group = group.rename(columns=rename_schema) # option - special processor (special funcs for doing extra stuff to df) special_processors = selected_state.get("special_processors") if special_processors: for processor in special_processors: group = processor(group) # produce csv abbrv = selected_state["abbrv"] payload.append({"name": abbrv, "data": group}) return payload
79060844d0c5c555881458b20a70a0589780e027
17,986
def is_diagonal_segment(vector_start, vector_end): """Diagonal as defined by a slope of 1 or -1""" return slope(vector_start, vector_end) in (1, -1)
fbd56b3cbecf907b0e0a5fdd533b99472d532387
17,987
def properties_table(segment_props, columns=None, exclude_columns=None): """ Construct a `~astropy.table.Table` of properties from a list of `SegmentProperties` objects. If ``columns`` or ``exclude_columns`` are not input, then the `~astropy.table.Table` will include all scalar-valued properties. Multi-dimensional properties, e.g. `~photutils.SegmentProperties.data_cutout`, can be included in the ``columns`` input. Parameters ---------- segment_props : `SegmentProperties` or list of `SegmentProperties` A `SegmentProperties` object or list of `SegmentProperties` objects, one for each source segment. columns : str or list of str, optional Names of columns, in order, to include in the output `~astropy.table.Table`. The allowed column names are any of the attributes of `SegmentProperties`. exclude_columns : str or list of str, optional Names of columns to exclude from the default properties list in the output `~astropy.table.Table`. The default properties are those with scalar values. Returns ------- table : `~astropy.table.Table` A table of properties of the segmented sources, one row per source segment. See Also -------- :class:`photutils.detection.detect_sources`, segment_properties Examples -------- >>> import numpy as np >>> from photutils import segment_properties, properties_table >>> image = np.arange(16.).reshape(4, 4) >>> print(image) [[ 0. 1. 2. 3.] [ 4. 5. 6. 7.] [ 8. 9. 10. 11.] [ 12. 13. 14. 15.]] >>> segm_image = np.array([[1, 1, 0, 0], ... [1, 0, 0, 2], ... [0, 0, 2, 2], ... [0, 2, 2, 0]]) >>> segm_props = segment_properties(image, segm_image) >>> columns = ['id', 'xcentroid', 'ycentroid', 'segment_sum'] >>> t = properties_table(segm_props, columns=columns) >>> print(t) id xcentroid ycentroid segment_sum pix pix --- ------------- ------------- ----------- 1 0.2 0.8 5.0 2 2.09090909091 2.36363636364 55.0 """ if isinstance(segment_props, list) and len(segment_props) == 0: raise ValueError('segment_props is an empty list') segment_props = np.atleast_1d(segment_props) props_table = Table() # all scalar-valued properties columns_all = ['id', 'xcentroid', 'ycentroid', 'ra_icrs_centroid', 'dec_icrs_centroid', 'segment_sum', 'segment_sum_err', 'background_sum', 'background_mean', 'background_atcentroid', 'xmin', 'xmax', 'ymin', 'ymax', 'min_value', 'max_value', 'minval_xpos', 'minval_ypos', 'maxval_xpos', 'maxval_ypos', 'area', 'equivalent_radius', 'perimeter', 'semimajor_axis_sigma', 'semiminor_axis_sigma', 'eccentricity', 'orientation', 'ellipticity', 'elongation', 'covar_sigx2', 'covar_sigxy', 'covar_sigy2', 'cxx', 'cxy', 'cyy'] table_columns = None if exclude_columns is not None: table_columns = [s for s in columns_all if s not in exclude_columns] if columns is not None: table_columns = np.atleast_1d(columns) if table_columns is None: table_columns = columns_all # it's *much* faster to calculate world coordinates using the # complete list of (x, y) instead of from the individual (x, y). # The assumption here is that the wcs is the same for each # element of segment_props. if ('ra_icrs_centroid' in table_columns or 'dec_icrs_centroid' in table_columns): xcentroid = [props.xcentroid.value for props in segment_props] ycentroid = [props.ycentroid.value for props in segment_props] if segment_props[0]._wcs is not None: skycoord = pixel_to_skycoord( xcentroid, ycentroid, segment_props[0]._wcs, origin=1).icrs ra = skycoord.ra.degree * u.deg dec = skycoord.dec.degree * u.deg else: nprops = len(segment_props) ra, dec = [None] * nprops, [None] * nprops for column in table_columns: if column == 'ra_icrs_centroid': props_table[column] = ra elif column == 'dec_icrs_centroid': props_table[column] = dec else: values = [getattr(props, column) for props in segment_props] if isinstance(values[0], u.Quantity): # turn list of Quantities into a Quantity array values = u.Quantity(values) props_table[column] = values return props_table
82f2b69a9c6289a62200e4e3cead83d9a1fb3fd9
17,988
def create_mutation(model, app): """Create Class-Mutation.""" app_name_lower = app.name.lower() type_name = f"{ app_name_lower }{ app.model.name }Type" mutation_name = f"{ app_name_lower }{ app.model.name }Mutation" form_name = f"{ app_name_lower }{ app.model.name }Form" api_uri = f"{ app_name_lower }_{ app.model.one }_editor" model_uri = f"{ app_name_lower }.{ app.model.one }" # Setup Form Configurations meta_form = dict() meta_form["model"] = model meta_form["fields"] = "__all__" # Setup Type Configurations meta_type = dict() meta_type["model"] = model meta_type["interfaces"] = (graphene.relay.Node,) # Create ModelForm create_class_form = type( form_name, (ModelForm,), create_class_meta(meta_form), ) # Create ModelType create_class_type = type( type_name, (DjangoObjectType,), create_class_meta(meta_type), ) # Create Real Mutation @classmethod def mutate_and_get_payload(cls, root, info, **kwargs): user_base = get_role(info.context.user) user_base.model = model_uri user_base.form = create_class_form instance = None ids = None if "id" in kwargs: kwargs["id"] = from_global_id(kwargs["id"])[1] ids = [kwargs["id"]] del kwargs["id"] if "ids" in kwargs: kwargs["ids"] = [from_global_id(xid)[1] for xid in kwargs["ids"]] ids = kwargs["ids"] del kwargs["ids"] # Do => <UPDATE> if ids and not kwargs.get("del"): """ .##..##..#####...#####....####...######..######. .##..##..##..##..##..##..##..##....##....##..... .##..##..#####...##..##..######....##....####... .##..##..##......##..##..##..##....##....##..... ..####...##......#####...##..##....##....######. """ user = get_access(user_base, app.perm.update) user.crud = "update" user.is_allowed = check_request(user, kwargs) user.update = update_many if info.context.user.is_superuser: kwargs = get_related_superuser(model, kwargs) else: kwargs = get_related(user, kwargs) instance = ModelGraphQL.update( user, model, info, ids, kwargs, ) # Do => <DELETE> elif ids and kwargs.get("del"): """ .#####...######..##......######..######..######. .##..##..##......##......##........##....##..... .##..##..####....##......####......##....####... .##..##..##......##......##........##....##..... .#####...######..######..######....##....######. """ user = get_access(user_base, app.perm.delete) user.crud = "delete" user.is_allowed = check_request(user, kwargs) objects = ModelGraphQL.delete( user, model, info, ids, ) if objects: objects.delete() # Do => <CREATE> else: """ ..####...#####...######...####...######..######. .##..##..##..##..##......##..##....##....##..... .##......#####...####....######....##....####... .##..##..##..##..##......##..##....##....##..... ..####...##..##..######..##..##....##....######. """ user = get_access(user_base, app.perm.create) user.crud = "create" user.is_allowed = check_request(user, kwargs) user.create = model.objects.create if info.context.user.is_superuser: kwargs = get_related_superuser(model, kwargs) else: kwargs = get_related(user, kwargs) instance = ModelGraphQL.create( user, model, info, kwargs, ) dict_out = {app.model.one: instance} return class_mutation(**dict_out) # Create Description model_description = description(app, model, model_uri) # Setup Mutation setup_mutation = create_class_meta( {"form_class": create_class_form, "description": model_description} ) setup_mutation[app.model.one] = graphene.Field(create_class_type) setup_mutation["mutate_and_get_payload"] = mutate_and_get_payload setup_mutation["Input"] = type( "Input", (object,), { "ids": graphene.List( graphene.ID, description="List of IDs to UPDATE or DELETE." ), "del": graphene.Boolean(description="Use (del: true) to DELETE."), }, ) class_mutation = type( mutation_name, (DjangoModelFormMutation,), setup_mutation, ) # Return: class Mutation(graphene.ObjectType) return type( "Mutation", (graphene.ObjectType,), {api_uri: class_mutation.Field()}, )
6a4837e0369bc2e0f1967edabc97edf8eba9fac1
17,989
def read_players_info(): """Get players info - [player 1 name, player 1 sign]""" first_player_name = input("Player one name: ") second_player_name = input("Player two name: ") first_player_sign = read_first_player_sign(first_player_name) second_player_sign = "O" if first_player_sign == "X" else "X" return ([first_player_name, first_player_sign], [second_player_name, second_player_sign])
ceff930373ae4abd2c7605297ea9b0259282110a
17,990
def z_gate_circuits_deterministic(final_measure=True): """Z-gate test circuits with deterministic counts.""" circuits = [] qr = QuantumRegister(1) if final_measure: cr = ClassicalRegister(1) regs = (qr, cr) else: regs = (qr, ) # Z alone circuit = QuantumCircuit(*regs) circuit.z(qr) if final_measure: circuit.barrier(qr) circuit.measure(qr, cr) circuits.append(circuit) # HZH = X circuit = QuantumCircuit(*regs) circuit.h(qr) circuit.barrier(qr) circuit.z(qr) circuit.barrier(qr) circuit.h(qr) if final_measure: circuit.barrier(qr) circuit.measure(qr, cr) circuits.append(circuit) # HZZH = I circuit = QuantumCircuit(*regs) circuit.h(qr) circuit.barrier(qr) circuit.z(qr) circuit.barrier(qr) circuit.z(qr) circuit.barrier(qr) circuit.h(qr) if final_measure: circuit.barrier(qr) circuit.measure(qr, cr) circuits.append(circuit) return circuits
7137b04a351ecca99bf0c6e59058cd1ef49e2ba7
17,991
from sympy import Add import sympy def symbol_sum(variables): """ ``` python a = symbols('a0:100') %timeit Add(*a) # >>> 10000 loops, best of 3: 34.1 µs per loop b = symbols('b0:1000') %timeit Add(*b) # >>> 1000 loops, best of 3: 343 µs per loop c = symbols('c0:3000') %timeit Add(*c) # >>> 1 loops, best of 3: 1.03 ms per loop ``` See the `github thread <https://github.com/sympy/sympy/issues/13945>`_ :param variables: :return: """ k=0 # If we encounter a zero, which is a special type, increase k while isinstance(variables[k], Zero) and k<len(variables): k+=1 if k == len(variables): # everything is 0 return 0 if k>len(variables): #it's only zeroes return 0 if isinstance(variables[k], GenericVariable): return Add(*[x.variable for x in variables]) elif isinstance(variables[k], optlang.interface.Variable) or \ isinstance(variables[k], sympy.Mul) or \ isinstance(variables[k], sympy.Add) or \ isinstance(variables[k], Number): return Add(*variables) else: raise ValueError('Arguments should be of type Number, sympy.Add, or sympy.Mul, ' 'or optlang.Variable, or GenericVariable')
f923d504760858d3cc7c4dc77ce50fe9fd4036f6
17,992
from typing import Optional def any_specified_encoding(sequence: bytes, search_zone: int = 4096) -> Optional[str]: """ Extract using ASCII-only decoder any specified encoding in the first n-bytes. """ if not isinstance(sequence, bytes): raise TypeError seq_len = len(sequence) # type: int results = findall( RE_POSSIBLE_ENCODING_INDICATION, sequence[: seq_len if seq_len <= search_zone else search_zone].decode( "ascii", errors="ignore" ), ) # type: List[str] if len(results) == 0: return None for specified_encoding in results: specified_encoding = specified_encoding.lower().replace("-", "_") for encoding_alias, encoding_iana in aliases.items(): if encoding_alias == specified_encoding: return encoding_iana if encoding_iana == specified_encoding: return encoding_iana return None
f8cfe1bcb2b4fc4f2b498b252c0f946ff4773c04
17,993
import warnings def maf(genotypes): """Computes the MAF and returns a boolean indicating if the minor allele is currently the coded allele. """ warnings.warn("deprecated: use 'Genotypes.maf'", DeprecationWarning) g = genotypes.genotypes maf = np.nansum(g) / (2 * np.sum(~np.isnan(g))) if maf > 0.5: maf = 1 - maf return maf, False return maf, True
192d43b46cd8028245e4df45bdda5d3227495e18
17,994
def lower_bound_jensen_shannon(logu, joint_sample_mask=None, validate_args=False, name=None): """Lower bound on Jensen-Shannon (JS) divergence. This lower bound on JS divergence is proposed in [Goodfellow et al. (2014)][1] and [Nowozin et al. (2016)][2]. When estimating lower bounds on mutual information, one can also use different approaches for training the critic w.r.t. estimating mutual information [(Poole et al., 2018)][3]. The JS lower bound is used to train the critic with the standard lower bound on the Jensen-Shannon divergence as used in GANs, and then evaluates the critic using the NWJ lower bound on KL divergence, i.e. mutual information. As Eq.7 and Eq.8 of [Nowozin et al. (2016)][2], the bound is given by ```none I_JS = E_p(x,y)[log( D(x,y) )] + E_p(x)p(y)[log( 1 - D(x,y) )] ``` where the first term is the expectation over the samples from joint distribution (positive samples), and the second is for the samples from marginal distributions (negative samples), with ```none D(x, y) = sigmoid(f(x, y)), log(D(x, y)) = softplus(-f(x, y)). ``` `f(x, y)` is a critic function that scores all pairs of samples. Example: `X`, `Y` are samples from a joint Gaussian distribution, with correlation `0.8` and both of dimension `1`. ```python batch_size, rho, dim = 10000, 0.8, 1 y, eps = tf.split( value=tf.random.normal(shape=(2 * batch_size, dim), seed=7), num_or_size_splits=2, axis=0) mean, conditional_stddev = rho * y, tf.sqrt(1. - tf.square(rho)) x = mean + conditional_stddev * eps # Scores/unnormalized likelihood of pairs of samples `x[i], y[j]` # (For JS lower bound, the optimal critic is of the form `f(x, y) = 1 + # log(p(x | y) / p(x))` [(Poole et al., 2018)][3].) conditional_dist = tfd.MultivariateNormalDiag( mean, scale_identity_multiplier=conditional_stddev) conditional_scores = conditional_dist.log_prob(y[:, tf.newaxis, :]) marginal_dist = tfd.MultivariateNormalDiag(tf.zeros(dim), tf.ones(dim)) marginal_scores = marginal_dist.log_prob(y)[:, tf.newaxis] scores = 1 + conditional_scores - marginal_scores # Mask for joint samples in the score tensor # (The `scores` has its shape [x_batch_size, y_batch_size], i.e. # `scores[i, j] = f(x[i], y[j]) = log p(x[i] | y[j])`.) joint_sample_mask = tf.eye(batch_size, dtype=bool) # Lower bound on Jensen Shannon divergence lower_bound_jensen_shannon(logu=scores, joint_sample_mask=joint_sample_mask) ``` Args: logu: `float`-like `Tensor` of size `[batch_size_1, batch_size_2]` representing critic scores (scores) for pairs of points (x, y) with `logu[i, j] = f(x[i], y[j])`. joint_sample_mask: `bool`-like `Tensor` of the same size as `logu` masking the positive samples by `True`, i.e. samples from joint distribution `p(x, y)`. Default value: `None`. By default, an identity matrix is constructed as the mask. validate_args: Python `bool`, default `False`. Whether to validate input with asserts. If `validate_args` is `False`, and the inputs are invalid, correct behavior is not guaranteed. name: Python `str` name prefixed to Ops created by this function. Default value: `None` (i.e., 'lower_bound_jensen_shannon'). Returns: lower_bound: `float`-like `scalar` for lower bound on JS divergence. #### References: [1]: Ian J. Goodfellow, et al. Generative Adversarial Nets. In _Conference on Neural Information Processing Systems_, 2014. https://arxiv.org/abs/1406.2661. [2]: Sebastian Nowozin, Botond Cseke, Ryota Tomioka. f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization. In _Conference on Neural Information Processing Systems_, 2016. https://arxiv.org/abs/1606.00709. [3]: Ben Poole, Sherjil Ozair, Aaron van den Oord, Alexander A. Alemi, George Tucker. On Variational Bounds of Mutual Information. In _International Conference on Machine Learning_, 2019. https://arxiv.org/abs/1905.06922. """ with tf.name_scope(name or 'lower_bound_jensen_shannon'): with tf.control_dependencies( _maybe_assert_float_matrix(logu, validate_args)): if joint_sample_mask is None: logu = tf.convert_to_tensor( logu, dtype_hint=tf.float32, name='logu') logu_diag = tf.linalg.diag_part(logu) joint_samples_nll = -tf.reduce_mean( tf.nn.softplus(-logu_diag), axis=[-1]) n, m = tf.unstack(tf.cast(tf.shape(logu)[-2:], dtype=logu.dtype)) marginal_samples_nll = ( (tf.reduce_sum(tf.nn.softplus(logu), axis=[-2, -1]) - tf.reduce_sum(tf.nn.softplus(logu_diag), axis=[-1])) / (n * (m - 1.))) return joint_samples_nll - marginal_samples_nll logu, joint_sample_mask = _check_and_get_mask( logu, joint_sample_mask, validate_args=validate_args) joint_samples = tf.boolean_mask(logu, joint_sample_mask) lower_bound = -tf.reduce_mean(tf.math.softplus(-joint_samples), axis=[-1]) marginal_samples = tf.boolean_mask( logu, ~joint_sample_mask) # pylint: disable=invalid-unary-operand-type lower_bound -= tf.reduce_mean(tf.math.softplus(marginal_samples), axis=[-1]) return lower_bound
4cdf48b5a018e33cca4a7f4aeab55d649664c5c5
17,995
import numpy import scipy def competition_ranking(data, dtype="int32"): """ Ranks the given data in increasing order and resolving duplicates using the lowest common rank and skipping as many ranks as there are duplicates, i.e., [0.5, 1.2, 3.4, 1.2, 1.2] -> [1, 2, 5, 2, 2]. Parameters ---------- data: numpy.array data to be ranked, should behave like a numpy.array dtype: str (optional) string desciribing the data type of the numpy.array storing the ranks Returns ------- numpy.array: ranks of the data as explained above Notes ----- The given data should be one-dimensional. This can be achieved using numpy.ravel and then reshaping the result as necessary. If the data contains `nan` or other undesirable values, masked arrays may be your solution. """ ranks = numpy.zeros(data.size, dtype=dtype) order = data.argsort() ranks[order] = numpy.arange(1, data.size + 1) # returns repeats and their count repeats = scipy.stats.mstats.find_repeats(data)[0] for r in repeats: condition = data == r # all repeats have the same minimal rank # using the first element works iff sorting was stable # ranks[condition] = ranks[condition][0] ranks[condition] = ranks[condition].min() return ranks
d4e05b9f35a0706faa2f09840391ee45d12062ce
17,996
def fmt_dashes(name: str) -> str: """ Converts name to words separated by dashes. Words are identified by capitalization, dashes, and underscores. """ return '-'.join([word.lower() for word in split_words(name)])
b58bba1beee9870fcc46d0abeba5f33a54066afe
17,997
def stringify_dict_key(_dict): """ 保证_dict中所有key为str类型 :param _dict: :return: """ for key, value in _dict.copy().items(): if isinstance(value, dict): value = stringify_dict_key(value) if not isinstance(key, str): del _dict[key] _dict[str(key)] = value return _dict
e83df720772aa4122d9a435da20279d4a800e074
17,998
def bestIndividual(hof, X, y): """ Get the best individual """ maxAccurcy = 0.0 for individual in hof: if(individual.fitness.values > maxAccurcy): maxAccurcy = individual.fitness.values _individual = individual _individualHeader = [list(X)[i] for i in range( len(_individual)) if _individual[i] == 1] return _individual.fitness.values, _individual, _individualHeader
7643001710ba644b2d5886d6a2e86b3ae1c79018
17,999
import requests def make_new_paste(devkey, paste_text, user_key=None, paste_title=None, paste_format=None, paste_type=None, paste_expiry: int=None): """This function creates a new paste on pastebin with the given arguments.""" data = {'api_dev_key': devkey, 'api_option': 'paste', 'api_paste_code': paste_text, 'api_paste_expire_date': f'{paste_expiry}M', 'api_paste_format': paste_format, 'api_user_key': user_key} r = requests.post('https://pastebin.com/api/api_post.php', data=data) return r.text
59b5be916c007e778ac0cf7a22b49b094f68dfaa
18,000
def not_none(value): """ This function ensures that passed value is not None: >>> schema = Schema(not_none) >>> assert 1 == schema(1) >>> try: ... schema(None) ... assert False, "an exception should've been raised" ... except MultipleInvalid: ... pass """ if value is None: raise NoneInvalid('value is None') else: return value
d3381c51d2d25edfbd56f6e1008d39056b0a0bda
18,001
def j1c_dblprime(amplitudes): """Calculate j''1c angular observable""" [_, _, _, _, a_0_l, a_0_r, a_00_l, a_00_r] = amplitudes return (2 / tf.sqrt(3.0)) * ( tf.math.real(a_00_l * tf.math.conj(a_0_l) * bw_k700_k892) + tf.math.real(a_00_r * tf.math.conj(a_0_r) * bw_k700_k892) )
eead7c64e7033262aa98ccb966fd83a51419a065
18,002
def preprocess(img): """Changes RGB [0,1] valued image to BGR [0,255] with mean subtracted.""" mean_bgr = load_mean_bgr() print 'mean blue', np.mean(mean_bgr[:, :, 0]) print 'mean green', np.mean(mean_bgr[:, :, 1]) print 'mean red', np.mean(mean_bgr[:, :, 2]) out = np.copy(img) * 255.0 out = out[:, :, [2, 1, 0]] # swap channel from RGB to BGR out -= mean_bgr return out
759110f2004315ab45aed1b18dbe5a1132366dd5
18,003
def profile_detail(request, username, template_name='userena/profile_detail.html', extra_context=None, **kwargs): """ Detailed view of an user. :param username: String of the username of which the profile should be viewed. :param template_name: String representing the template name that should be used to display the profile. :param extra_context: Dictionary of variables which should be supplied to the template. The ``profile`` key is always the current profile. **Context** ``profile`` Instance of the currently viewed ``Profile``. """ user = get_object_or_404(User, username__iexact=username) profile = user.get_profile() if not profile.can_view_profile(request.user): return HttpResponseForbidden(_("You don't have permission to view this profile.")) if not extra_context: extra_context = dict() extra_context['profile'] = user.get_profile() return direct_to_template(request, template_name, extra_context=extra_context, **kwargs)
c81d3cb2910e6358760c742c7b4081df4ed95a45
18,004
def prepare_ternary(figsize, scale): """Help function to ternary plot""" fig, ax = plt.subplots(figsize=figsize) tax = ternary.TernaryAxesSubplot(ax=ax, scale=scale) ax.axis('off') gm = 0.1 * scale blw = 1 tlw = 1 # Draw Boundary and Gridlines tax.boundary(linewidth=blw) tax.gridlines(color='grey', multiple=gm, alpha=0.8) # Set Axis labels and Title tax.bottom_axis_label( r"Retweets $\rightarrow$", offset=-0.08, fontsize='small') tax.right_axis_label(r"$\leftarrow$Replies", offset=0.2, fontsize='small') tax.left_axis_label(r"$\leftarrow$Tweets", offset=0.2, fontsize='small') # ticks locations = range(0, scale + 1, 4) ticks = ['{}'.format(x * 10) for x in range(0, 11, 2)] tax.ticks( axis='lbr', ticks=ticks, locations=locations, linewidth=tlw, offset=0.03, fsize=9, clockwise=False) return tax
67b40d55d2296957cbe152bce69a5afcd22c2624
18,005
from typing import Dict def parse_spreadsheet(hca_spreadsheet: Workbook, entity_dictionary: Dict): """ Parse the spreadsheet and fill the metadata with accessions. :param hca_spreadsheet: Workbook object of the spreadsheet :param entity_dictionary: Dictionary mapping by entity UUID to the proper archiveEntity :return: Accessioned spreadsheet """ # Parse each sheet for the UUIDs for sheet in hca_spreadsheet.sheetnames: for row in hca_spreadsheet[sheet].rows: if row[0].value in entity_dictionary: # Get fqk, search for it, add accession based on the entity dictionary fqk = (accession_mapping[entity_dictionary[row[0].value]['type']]['fqk'] .replace("{}", sheet.lower().replace(" ", "_"))) coordinate_column = search_fqk_in_sheet(hca_spreadsheet[sheet], fqk, 4) coordinate_row = row[0].coordinate[1:] cell_coordinate = f'{coordinate_column}{coordinate_row}' hca_spreadsheet[sheet][cell_coordinate].value = entity_dictionary[row[0].value]['accession'] return hca_spreadsheet
83607766eda5b0f9d5a6fc09035a12d29fb8b44c
18,006
def decode(data): """Decode JSON serialized string, with possible embedded Python objects. """ return _decoder.decode(data)
b82d55eb7e704f9396aab3642314f172c2205a04
18,007
def p_correction(p_values): """ Corrects p_values for multiple testing. :param p_values: Dictionary storing p_values with corresponding feature names as keys. :return: DataFrame which shows the results of the analysis; p-value, corrected p-value and boolean indicating \ significance. """ p_trans = _transform_p_dict(p_values) # get and drop features which are NaN to skip them in multitest correction nan_features = p_trans[pd.isnull(p_trans[0])] p_trans = p_trans.dropna(axis=0, subset=[0]) # extract p_value column to pass into multiple testing correction p_val_col = p_trans[0].sort_values() # add NaN features back to p_trans to include them into result table later on p_trans = pd.concat([p_trans, nan_features]) # raise Error if no p_values where calculated that can be passed into multiple test correction if p_val_col.values.size == 0: # unpack the p_values which are stored in 2 layer nested dicts. nested_values = [] for value in p_values.values(): nested_values.append(*value.values()) # if all p_values are nan, return an all nan result table if pd.isnull(nested_values).all(): result_table = _create_result_table(None, p_val_col, p_trans, conf_invs, counts) return result_table.sort_index() raise ValueError("No p_values have been submitted into multiple test correction.") # correct p-values result = multipletests(p_val_col.values) return result, p_val_col, p_trans
f1e7faa35176cdf41aca273413d7eb9d784dfdb1
18,008
def GetFlippedPoints3(paths, array): """same as first version, but doesnt flip locations: just sets to -1 used for random walks with self intersections - err type 6""" # this may not work for double ups? for i in paths: for j in i: # for the rest of the steps... array[j[0]][j[1]][j[2]] = -1 # flip initial position return(array)
ad0bc7a03e293beb2542ee555a341bdfc8706408
18,009
from typing import Callable async def _silent_except(f: Callable, *args, **kwargs): """ Helper Function that calls a function or coroutine and returns its result excepting all errors """ try: called = f(*args, **kwargs) except: return if isawaitable(called): try: result = await called except: return else: return result else: return called
adaaf3e4a35dfed86d8fa83f8254396e0fa5245b
18,010
def get_concat_h(im1, im2): """Concatenate two images horizontally.""" dst = Image.new("RGB", (im1.width + im2.width, im1.height)) dst.paste(im1, (0, 0)) dst.paste(im2, (im1.width, 0)) return dst
60c67011c25ace5e0491bc365256364a9b677798
18,011
def get_taxname(taxid): """Return scientific name for NCBI Taxonomy ID.""" if get_taxname.id_name_map is None: get_taxname.id_name_map = load_taxid_name_map('data/taxnames.tsv') if get_taxname.id_name_map is None: # assume fail, fallback get_taxname.id_name_map = TAXID_NAME_MAP return get_taxname.id_name_map.get(taxid, '<UNKNOWN>')
8a42b542fef9a003e7f40542513d8d4a9d5d8e88
18,012
def lrfn(epoch): """ lrfn(epoch) This function creates a custom piecewise linear-exponential learning rate function for a custom learning rate scheduler. It is linear to a max, then exponentially decays * INPUTS: current `epoch` number * OPTIONAL INPUTS: None * GLOBAL INPUTS:`START_LR`, `MIN_LR`, `MAX_LR`, `RAMPUP_EPOCHS`, `SUSTAIN_EPOCHS`, `EXP_DECAY` * OUTPUTS: the function lr with all arguments passed """ def lr(epoch, START_LR, MIN_LR, MAX_LR, RAMPUP_EPOCHS, SUSTAIN_EPOCHS, EXP_DECAY): if epoch < RAMPUP_EPOCHS: lr = (MAX_LR - START_LR)/RAMPUP_EPOCHS * epoch + START_LR elif epoch < RAMPUP_EPOCHS + SUSTAIN_EPOCHS: lr = MAX_LR else: lr = (MAX_LR - MIN_LR) * EXP_DECAY**(epoch-RAMPUP_EPOCHS-SUSTAIN_EPOCHS) + MIN_LR return lr return lr(epoch, START_LR, MIN_LR, MAX_LR, RAMPUP_EPOCHS, SUSTAIN_EPOCHS, EXP_DECAY)
f71e776e07ac9f4be5802127e8c9ca84e864de58
18,014
import numbers def get_balances(): """ Get the balances of the configured validator (if possible) """ balances = account.get_balance_on_all_shards(validator_config['validator-addr'], endpoint=node_config['endpoint']) for bal in balances: bal['balance'] = float(numbers.convert_atto_to_one(bal['balance'])) return balances
ed79137e7eb8482f86246174b1bf107229c59b90
18,015
import collections def _make_ordered_node_map( pipeline: pipeline_pb2.Pipeline ) -> 'collections.OrderedDict[str, pipeline_pb2.PipelineNode]': """Prepares the Pipeline proto for DAG traversal. Args: pipeline: The input Pipeline proto, which must already be topologically sorted. Returns: An OrderedDict that maps node_ids to PipelineNodes. """ result = collections.OrderedDict() for pipeline_or_node in pipeline.nodes: node_id = pipeline_or_node.pipeline_node.node_info.id result[node_id] = pipeline_or_node.pipeline_node return result
04d766081bffe000509a70a43208b6998b764a49
18,016
def energy(_x, _params): """Kinetic and Potential Energy of point mass pendulum. _x is an array/list in the following order: q1: Angle of first pendulum link relative to vertical (0 downwards) u1: A[1] measure number of the inertial angular velocity of the first link. _params is an array/list in the following order: m: Mass of first pendulum point mass. l: Length of first pendulum link. g: Gravitational constant. Returns a list/array of kinetic energy and potential energy, respectively. """ # Unpack function arguments q1, u1 = _x # Unpack function parameters m, g, l, b = _params # Trigonometric functions c1 = cos(q1) # Calculate return values ke = m*l**2*u1**2/2 pe = g*l*m*(1 - c1) # Return calculated values return [ke, pe]
0796149bab5a5a36717a67477661633eaf3a29c2
18,017