content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def index(current_user=None): """ Display home page """ return render_template('homepage.html', username=current_user['name'], \ logged_in=current_user['is_authenticated'], \ display_error=request.cookies.get('last_attempt_error') == 'True', \ login_banner=APP.config['LOGIN_BANNER'])
287d8101ef318cb7ca308340e0d11ab157538450
17,555
def disable_admin_access(session, return_type=None, **kwargs): """ Disable Admin acccess :type session: zadarapy.session.Session :param session: A valid zadarapy.session.Session object. Required. :type return_type: str :param return_type: If this is set to the string 'json', this function will return a JSON string. Otherwise, it will return a Python dictionary. Optional (will return a Python dictionary by default). :rtype: dict, str :returns: A dictionary or JSON data set as a string depending on return_type parameter. """ path = "/api/users/admin_access/disable.json" return session.post_api(path=path, return_type=return_type, **kwargs)
5ac6c09ed3098f5b99baa2d5749d7b42a465e9f4
17,557
def _get_bbox_indices(x, y, bbox): """ Convert bbox values to array indices :param x, y: arrays with the X, Y coordinates :param bbox: minx, miny, maxx, maxy values :return: bbox converted to array indices """ minx, miny, maxx, maxy = bbox xindices, = np.where((x >= minx) & (x <= maxx)) yindices, = np.where((y >= miny) & (y <= maxy)) return xindices[0], xindices[-1]+1, yindices[0], yindices[-1]+1
dd71f1852971dbd2d3026c1720f9f477b3093fc8
17,558
def skill_competencies(): """ Called by S3OptionsFilter to provide the competency options for a particular Skill Type """ table = s3db.hrm_skill ttable = s3db.hrm_skill_type rtable = s3db.hrm_competency_rating query = (table.id == request.args[0]) & \ (table.skill_type_id == ttable.id) & \ (rtable.skill_type_id == table.skill_type_id) records = db(query).select(rtable.id, rtable.name, orderby = ~rtable.priority, ) response.headers["Content-Type"] = "application/json" return records.json()
7edc87d20d36d25b05337365ed903126ef02742f
17,559
def calc_field_changes(element, np_id): """ Walk up the tree of geo-locations, finding the new parents These will be set onto all the museumobjects. """ fieldname = element._meta.concrete_model.museumobject_set.\ related.field.name field_changes = {} field_changes[fieldname] = element.id if hasattr(element, 'parent'): field_changes.update( calc_field_changes(element.parent, element.parent.id)) return field_changes
cba816488dcf10a774bc18b1b3f6498e1d8dc3d8
17,560
def index(request, _): """ 路由请求 `` request `` 请求对象 """ if request.method == 'GET' or request.method == 'get': return index_page(request) elif request.method == 'POST' or request.method == 'post': return send_wxmsg(request) else: rsp = JsonResponse({'code': -1, 'errorMsg': '请求方式错误'}, json_dumps_params={'ensure_ascii': False}) logger.info('response result: {}'.format(rsp.content.decode('utf-8'))) return render(request, 'index.html')
5006cf1e5cb23e49b17e9083fca66c7731f5559b
17,561
def get_daisy_client(): """Get Daisy client instance.""" endpoint = conf.get('discoverd', 'daisy_url') return daisy_client.Client(version=1, endpoint=endpoint)
6ed0df1259672becfca3197f2d115a1c789306a1
17,562
from pathlib import Path import multiprocessing def intermediate_statistics( scores, ground_truth, audio_durations, *, segment_length=1., time_decimals=6, num_jobs=1, ): """ Args: scores (dict, str, pathlib.Path): dict of SED score DataFrames (cf. sed_scores_eval.utils.scores.create_score_dataframe) or a directory path (as str or pathlib.Path) from where the SED scores can be loaded. ground_truth (dict, str or pathlib.Path): dict of lists of ground truth event tuples (onset, offset, event label) for each audio clip or a file path from where the ground truth can be loaded. audio_durations: The duration of each audio file in the evaluation set. segment_length: the segment length of the segments that are to be evaluated. time_decimals (int): the decimal precision used for evaluation. If chosen to high detected or ground truth events that have onsets or offsets right on a segment boundary may swap over to the adjacent segment because of small deviations due to limited floating point precision. num_jobs (int): the number of processes to use. Default is 1 in which case no multiprocessing is used. Returns: """ if not isinstance(num_jobs, int) or num_jobs < 1: raise ValueError( f'num_jobs has to be an integer greater or equal to 1 but ' f'{num_jobs} was given.' ) scores, ground_truth, audio_ids = parse_inputs(scores, ground_truth) if isinstance(audio_durations, (str, Path)): audio_durations = Path(audio_durations) assert audio_durations.is_file(), audio_durations audio_durations = read_audio_durations(audio_durations) if audio_durations is not None and not audio_durations.keys() == set(audio_ids): raise ValueError( f'audio_durations audio ids do not match audio ids in scores. ' f'Missing ids: {set(audio_ids) - audio_durations.keys()}. ' f'Additional ids: {audio_durations.keys() - set(audio_ids)}.' ) _, event_classes = validate_score_dataframe(scores[audio_ids[0]]) single_label_ground_truths = multi_label_to_single_label_ground_truths( ground_truth, event_classes) def worker(audio_ids, output_queue=None): segment_scores = None segment_targets = None for audio_id in audio_ids: scores_k = scores[audio_id] timestamps, _ = validate_score_dataframe( scores_k, event_classes=event_classes) timestamps = np.round(timestamps, time_decimals) if segment_scores is None: segment_scores = {class_name: [] for class_name in event_classes} segment_targets = {class_name: [] for class_name in event_classes} scores_k = scores_k[event_classes].to_numpy() if audio_durations is None: duration = max( [timestamps[-1]] + [t_off for t_on, t_off, _ in ground_truth[audio_id]] ) else: duration = audio_durations[audio_id] n_segments = int(np.ceil(duration / segment_length)) segment_boundaries = np.round( np.arange(n_segments+1) * segment_length, time_decimals ) segment_onsets = segment_boundaries[:-1] segment_offsets = segment_boundaries[1:] for class_name in event_classes: gt = single_label_ground_truths[class_name][audio_id] if len(gt) == 0: segment_targets[class_name].append( np.zeros(n_segments, dtype=np.bool_)) else: segment_targets[class_name].append( np.any([ (segment_onsets < gt_offset) * (segment_offsets > gt_onset) * (segment_offsets > segment_onsets) for gt_onset, gt_offset in single_label_ground_truths[class_name][audio_id] ], axis=0) ) for i in range(n_segments): idx_on = get_first_index_where( timestamps, "gt", segment_onsets[i]) - 1 idx_on = max(idx_on, 0) idx_off = get_first_index_where( timestamps, "geq", segment_offsets[i]) idx_off = min(idx_off, len(timestamps)-1) if idx_off <= idx_on: scores_ki = np.zeros(scores_k.shape[-1]) else: scores_ki = np.max(scores_k[idx_on:idx_off], axis=0) for c, class_name in enumerate(event_classes): segment_scores[class_name].append(scores_ki[c]) if output_queue is not None: output_queue.put((segment_scores, segment_targets)) return segment_scores, segment_targets if num_jobs == 1: segment_scores, segment_targets = worker(audio_ids) else: queue = multiprocessing.Queue() shard_size = int(np.ceil(len(audio_ids) / num_jobs)) shards = [ audio_ids[i*shard_size:(i+1)*shard_size] for i in range(num_jobs) if i*shard_size < len(audio_ids) ] processes = [ multiprocessing.Process( target=worker, args=(shard, queue), daemon=True, ) for shard in shards ] try: for p in processes: p.start() segment_scores, segment_targets = None, None count = 0 while count < len(shards): seg_scores_i, seg_targets_i = queue.get() if segment_scores is None: segment_scores = seg_scores_i segment_targets = seg_targets_i else: for class_name in segment_scores: segment_scores[class_name].extend(seg_scores_i[class_name]) segment_targets[class_name].extend(seg_targets_i[class_name]) count += 1 finally: for p in processes: p.terminate() stats = {} for class_name in event_classes: segment_scores[class_name] = np.array(segment_scores[class_name]+[np.inf]) sort_idx = np.argsort(segment_scores[class_name]) segment_scores[class_name] = segment_scores[class_name][sort_idx] segment_targets[class_name] = np.concatenate( segment_targets[class_name]+[np.zeros(1)])[sort_idx] tps = np.cumsum(segment_targets[class_name][::-1])[::-1] n_sys = np.arange(len(tps))[::-1] segment_scores[class_name], unique_idx = np.unique(segment_scores[class_name], return_index=True) n_ref = tps[0] fns = n_ref - tps tns = n_sys[0] - n_sys - fns stats[class_name] = { 'tps': tps[unique_idx], 'fps': n_sys[unique_idx] - tps[unique_idx], 'tns': tns, 'n_ref': n_ref, } return { class_name: (segment_scores[class_name], stats[class_name]) for class_name in event_classes }
5039bec8ceafed7952833aa2f39c5d44d0909790
17,563
def vnorm(v1): """vnorm(ConstSpiceDouble [3] v1) -> SpiceDouble""" return _cspyce0.vnorm(v1)
00016eaa6a765f564ce247c4126c4a360aa2b60d
17,564
def mean_iou(y_true, y_pred): """F2 loss""" prec = [] for t in np.arange(0.5, 1.0, 0.05): y_pred_ = tf.to_int32(y_pred > t) score, up_opt = tf.metrics.mean_iou(y_true, y_pred_, 2) K.get_session().run(tf.local_variables_initializer()) with tf.control_dependencies([up_opt]): score = tf.identity(score) prec.append(score) return K.mean(K.stack(prec), axis=0)
a2503703bae7c8c83b42ac93406178bc4c52a675
17,565
def _encode_string_parts(value, encodings): """Convert a unicode string into a byte string using the given list of encodings. This is invoked if `encode_string` failed to encode `value` with a single encoding. We try instead to use different encodings for different parts of the string, using the encoding that can encode the longest part of the rest of the string as we go along. Parameters ---------- value : text type The unicode string as presented to the user. encodings : list The encodings needed to encode the string as a list of Python encodings, converted from the encodings in Specific Character Set. Returns ------- byte string The encoded string, including the escape sequences needed to switch between different encodings. Raises ------ ValueError If `value` could not be encoded with the given encodings. """ encoded = bytearray() unencoded_part = value while unencoded_part: # find the encoding that can encode the longest part of the rest # of the string still to be encoded max_index = 0 best_encoding = None for encoding in encodings: try: unencoded_part.encode(encoding) # if we get here, the whole rest of the value can be encoded best_encoding = encoding max_index = len(unencoded_part) break except UnicodeError as e: if e.start > max_index: # e.start is the index of first character failed to encode max_index = e.start best_encoding = encoding # none of the given encodings can encode the first character - give up if best_encoding is None: raise ValueError() # encode the part that can be encoded with the found encoding encoded_part = unencoded_part[:max_index].encode(best_encoding) if best_encoding not in handled_encodings: encoded += ENCODINGS_TO_CODES.get(best_encoding, b'') encoded += encoded_part # set remaining unencoded part of the string and handle that unencoded_part = unencoded_part[max_index:] # unencoded_part is empty - we are done, return the encoded string return encoded
58f514ed7cbd9a6e2c10e6d8b22f32a32d71d6a7
17,566
def SocketHandler(qt): """ `SocketHandler` wraps a websocket connection. HTTP GET /ws """ class _handler(websocket.WebSocketHandler): def check_origin(self, origin): return True def open(self): qt.log("new socket open ...") qt.register_socket(self) def on_close(self): qt.remove_socket(self) def on_message(self, msg): qt.log("Got socket command: %s" % (msg)) qt.command(msg) return _handler
001f9dbee77560d4d5970fce731084b5a9cca7af
17,568
def extract_flow_global_roi(flow_x, flow_y, box): """ create global roi cropped flow image (for numpy image) image: numpy array image box: list of [xmin, ymin, xmax, ymax] """ flow_x_roi = extract_global_roi(flow_x, box) flow_y_roi = extract_global_roi(flow_y, box) if flow_x_roi is None or flow_y_roi is None: return None else: return (flow_x_roi, flow_y_roi)
1b6d22d413693e978dc31cfbf1708c93d9256cf1
17,570
from unittest.mock import patch def patch_shell(response=None, error=False): """Mock the `AdbDeviceTcpFake.shell` and `DeviceFake.shell` methods.""" def shell_success(self, cmd): """Mock the `AdbDeviceTcpFake.shell` and `DeviceFake.shell` methods when they are successful.""" self.shell_cmd = cmd return response def shell_fail_python(self, cmd): """Mock the `AdbDeviceTcpFake.shell` method when it fails.""" self.shell_cmd = cmd raise AttributeError def shell_fail_server(self, cmd): """Mock the `DeviceFake.shell` method when it fails.""" self.shell_cmd = cmd raise ConnectionResetError if not error: return {"python": patch("{}.AdbDeviceTcpFake.shell".format(__name__), shell_success), "server": patch("{}.DeviceFake.shell".format(__name__), shell_success)} return {"python": patch("{}.AdbDeviceTcpFake.shell".format(__name__), shell_fail_python), "server": patch("{}.DeviceFake.shell".format(__name__), shell_fail_server)}
cdf4df2bb383c4c8b49b59442550e2c73ca828aa
17,571
def __setAdjacent_square__(self, pos): """ Sets all adjacencies in the map for a map with square tiles. """ self.__checkIndices__(pos) i, j = pos; adjacent = [] # Function to filter out nonexistent cells. def filterfn(p): do_not_filter = 0 <= p[0] < self.__numrows__ and 0 <= p[1] < self.__numcols__ return do_not_filter and not self.__isdisabled__[p[0]][p[1]] for cell in filter(filterfn, ( (i+1,j), (i-1,j), (i,j+1), (i,j-1) )): adjacent += [cell] self.__adjacent__[i][j] = adjacent
ebdd3ee3d0104b5bd26cc48e07760de027615263
17,572
def model_definition_nested_events(): """Test model for state- and parameter-dependent heavisides. ODEs ---- d/dt x_1: inflow_1 - decay_1 * x1 d/dt x_2: - decay_2 * x_2 Events: ------- event_1: trigger: x_1 > inflow_1 / decay_2 bolus: [[ 0], [ -1 / time]] event_2: trigger: x_2 > 0.5 bolus: [[ bolus], [ bolus]] """ # Model components species = ['x_1', 'x_2'] initial_assignments = { 'x_1': 'k1', 'x_2': 'k2', } rate_rules = { 'x_1': 'inflow_1 - decay_1 * x_1', 'x_2': '- decay_2 * x_2', } parameters = { 'k1': 0, 'k2': 0, 'inflow_1': 4, 'decay_1': 2, 'decay_2': 5, 'bolus': 0, # for bolus != 0, nested event sensitivities are off! } events = { 'event_1': { 'trigger': 'x_1 > inflow_1 / decay_2', 'target': 'x_2', 'assignment': 'x_2 - 1 / time' }, 'event_2': { 'trigger': 'x_2 < - 0.5', 'target': ['x_1', 'x_2'], 'assignment': ['x_1 + bolus', 'x_2 + bolus'], } } timepoints = np.linspace(0, 1, 101) # Analytical solution def x_pected(t, k1, k2, inflow_1, decay_1, decay_2, bolus): # gather temporary variables # event_time = x_1 > inflow_1 / decay_2 equil = inflow_1 / decay_1 tmp1 = inflow_1 / decay_2 - inflow_1 / decay_1 tmp2 = k1 - inflow_1 / decay_1 event_time = (- 1 / decay_1) * np.log( tmp1 / tmp2) def get_early_x(t): # compute dynamics before event x_1 = equil * (1 - np.exp(-decay_1 * t)) + k1*np.exp(-decay_1 * t) x_2 = k2 * np.exp(-decay_2 * t) return np.array([[x_1], [x_2]]) if t < event_time: x = get_early_x(t).flatten() else: # compute state after event x_tau = get_early_x(event_time) tau_x1 = x_tau[0] + bolus tau_x2 = x_tau[1] - 1 / event_time + bolus # compute dynamics after event inhom = np.exp(decay_1 * event_time) * tau_x1 x_1 = equil * (1 - np.exp(decay_1 * (event_time - t))) + \ inhom * np.exp(- decay_1 * t) x_2 = tau_x2 * np.exp(decay_2 * event_time) * np.exp(-decay_2 * t) x = np.array([[x_1], [x_2]]) return x.flatten() def sx_pected(t, parameters): # get sx, w.r.t. parameters, via finite differences sx = [] for ip in parameters: eps = 1e-6 perturbed_params = deepcopy(parameters) perturbed_params[ip] += eps sx_p = x_pected(t, **perturbed_params) perturbed_params[ip] -= 2*eps sx_m = x_pected(t, **perturbed_params) sx.append((sx_p - sx_m) / (2 * eps)) return np.array(sx) return ( initial_assignments, parameters, rate_rules, species, events, timepoints, x_pected, sx_pected )
f42a5c7c01fd6f966ecec11b28c9620022dd7aaf
17,573
async def address_balance_history( request: Request, address: Address, token_id: TokenID = Query(None, description="Optional token id"), timestamps: bool = Query( False, description="Include timestamps in addition to block heights" ), flat: bool | None = Query(True, description="Return data as flat arrays."), limit: int | None = Query(50, gt=0, le=10000), offset: int | None = Query(0, ge=0), desc: bool | None = Query(True, description="Most recent first"), ): """ ERG or token balance history of an address. """ query = f""" select d.height {', h.timestamp' if timestamps else ''} , sum(d.value) over (order by d.height) as balance from bal.{'erg' if token_id is None else 'tokens'}_diffs d join core.headers h on h.height = d.height where d.address = $1 {'' if token_id is None else 'and token_id = $4'} order by 1 {'desc' if desc else ''} limit $2 offset $3; """ opt_args = [] if token_id is None else [token_id] async with request.app.state.db.acquire() as conn: rows = await conn.fetch(query, address, limit, offset, *opt_args) if not rows: raise HTTPException(status_code=404, detail=DETAIL_404) if flat: if timestamps: return { "heights": [r["height"] for r in rows], "timestamps": [r["timestamp"] for r in rows], "balances": [r["balance"] for r in rows], } else: return { "heights": [r["height"] for r in rows], "balances": [r["balance"] for r in rows], } else: return rows
2fcae2ab775611e51fd056e98928afbcb6bf1278
17,574
def load(as_pandas=None): """ Loads the Grunfeld data and returns a Dataset class. Parameters ---------- as_pandas : bool Flag indicating whether to return pandas DataFrames and Series or numpy recarrays and arrays. If True, returns pandas. Returns ------- Dataset See DATASET_PROPOSAL.txt for more information. Notes ----- raw_data has the firm variable expanded to dummy variables for each firm (ie., there is no reference dummy) """ return du.as_numpy_dataset(load_pandas(), as_pandas=as_pandas)
183c37228619b835a36dc4a1cc1e1a7649fca6ec
17,575
def rule_if_system(system_rule, non_system_rule, context): """Helper function to pick a rule based on system-ness of context. This can be used (with functools.partial) to choose between two rule names, based on whether or not the context has system scope. Specifically if we will fail the parent of a nested policy check based on scope_types=['project'], this can be used to choose the parent rule name for the error message check in common_policy_check(). """ if context.system_scope: return system_rule else: return non_system_rule
2149c2ffdd6afdd64f7d33a2de4c6a23b3143dee
17,576
def find_inactive_ranges(note_sequence): """Returns ranges where no notes are active in the note_sequence.""" start_sequence = sorted( note_sequence.notes, key=lambda note: note.start_time, reverse=True) end_sequence = sorted( note_sequence.notes, key=lambda note: note.end_time, reverse=True) notes_active = 0 time = start_sequence[-1].start_time inactive_ranges = [] if time > 0: inactive_ranges.append(0.) inactive_ranges.append(time) start_sequence.pop() notes_active += 1 # Iterate through all note on events while start_sequence or end_sequence: if start_sequence and (start_sequence[-1].start_time < end_sequence[-1].end_time): if notes_active == 0: time = start_sequence[-1].start_time inactive_ranges.append(time) notes_active += 1 start_sequence.pop() else: notes_active -= 1 if notes_active == 0: time = end_sequence[-1].end_time inactive_ranges.append(time) end_sequence.pop() # if the last note is the same time as the end, don't add it # remove the start instead of creating a sequence with 0 length if inactive_ranges[-1] < note_sequence.total_time: inactive_ranges.append(note_sequence.total_time) else: inactive_ranges.pop() assert len(inactive_ranges) % 2 == 0 inactive_ranges = [(inactive_ranges[2 * i], inactive_ranges[2 * i + 1]) for i in range(len(inactive_ranges) // 2)] return inactive_ranges
8db86584908283385958c5f710fb36d95795f7b1
17,577
def is_connected(G): """Returns True if the graph is connected, False otherwise. Parameters ---------- G : NetworkX Graph An undirected graph. Returns ------- connected : bool True if the graph is connected, false otherwise. Raises ------ NetworkXNotImplemented: If G is directed. Examples -------- >>> G = nx.path_graph(4) >>> print(nx.is_connected(G)) True See Also -------- is_strongly_connected is_weakly_connected is_semiconnected is_biconnected connected_components Notes ----- For undirected graphs only. """ if len(G) == 0: raise nx.NetworkXPointlessConcept('Connectivity is undefined ', 'for the null graph.') return sum(1 for node in _plain_bfs(G, arbitrary_element(G))) == len(G)
03a2602629db60565702bee044a1d70ba026a8aa
17,578
import math def show_result(img, result, skeleton=None, kpt_score_thr=0.3, bbox_color=None, pose_kpt_color=None, pose_limb_color=None, radius=4, thickness=1, font_scale=0.5, win_name='', show=False, show_keypoint_weight=False, wait_time=0, out_file=None): """Draw `result` over `img`. Args: img (str or Tensor): The image to be displayed. result (list[dict]): The results to draw over `img` (bbox_result, pose_result). skeleton (list[list]): The connection of keypoints. kpt_score_thr (float, optional): Minimum score of keypoints to be shown. Default: 0.3. pose_kpt_color (np.array[Nx3]`): Color of N keypoints. If None, do not draw keypoints. pose_limb_color (np.array[Mx3]): Color of M limbs. If None, do not draw limbs. radius (int): Radius of circles. thickness (int): Thickness of lines. font_scale (float): Font scales of texts. win_name (str): The window name. show (bool): Whether to show the image. Default: False. show_keypoint_weight (bool): Whether to change the transparency using the predicted confidence scores of keypoints. wait_time (int): Value of waitKey param. Default: 0. out_file (str or None): The filename to write the image. Default: None. Returns: Tensor: Visualized image only if not `show` or `out_file` """ img = cv2.imread(img) img = img[:,:,::-1] img = img.copy() img_h, img_w, _ = img.shape pose_result = [] for res in result: pose_result.append(res['keypoints']) for _, kpts in enumerate(pose_result): # draw each point on image if pose_kpt_color is not None: assert len(pose_kpt_color) == len(kpts) for kid, kpt in enumerate(kpts): x_coord, y_coord, kpt_score = int(kpt[0]), int( kpt[1]), kpt[2] if kpt_score > kpt_score_thr: if show_keypoint_weight: img_copy = img.copy() r, g, b = pose_kpt_color[kid] cv2.circle(img_copy, (int(x_coord), int(y_coord)), radius, (int(r), int(g), int(b)), -1) transparency = max(0, min(1, kpt_score)) cv2.addWeighted( img_copy, transparency, img, 1 - transparency, 0, dst=img) else: r, g, b = pose_kpt_color[kid] cv2.circle(img, (int(x_coord), int(y_coord)), radius, (int(r), int(g), int(b)), -1) # draw limbs if skeleton is not None and pose_limb_color is not None: assert len(pose_limb_color) == len(skeleton) for sk_id, sk in enumerate(skeleton): pos1 = (int(kpts[sk[0] - 1, 0]), int(kpts[sk[0] - 1, 1])) pos2 = (int(kpts[sk[1] - 1, 0]), int(kpts[sk[1] - 1, 1])) if (pos1[0] > 0 and pos1[0] < img_w and pos1[1] > 0 and pos1[1] < img_h and pos2[0] > 0 and pos2[0] < img_w and pos2[1] > 0 and pos2[1] < img_h and kpts[sk[0] - 1, 2] > kpt_score_thr and kpts[sk[1] - 1, 2] > kpt_score_thr): r, g, b = pose_limb_color[sk_id] if show_keypoint_weight: img_copy = img.copy() X = (pos1[0], pos2[0]) Y = (pos1[1], pos2[1]) mX = np.mean(X) mY = np.mean(Y) length = ((Y[0] - Y[1])**2 + (X[0] - X[1])**2)**0.5 angle = math.degrees( math.atan2(Y[0] - Y[1], X[0] - X[1])) stickwidth = 2 polygon = cv2.ellipse2Poly( (int(mX), int(mY)), (int(length / 2), int(stickwidth)), int(angle), 0, 360, 1) cv2.fillConvexPoly(img_copy, polygon, (int(r), int(g), int(b))) transparency = max( 0, min( 1, 0.5 * (kpts[sk[0] - 1, 2] + kpts[sk[1] - 1, 2]))) cv2.addWeighted( img_copy, transparency, img, 1 - transparency, 0, dst=img) else: cv2.line( img, pos1, pos2, (int(r), int(g), int(b)), thickness=thickness) if show: imshow(img, win_name, wait_time) if out_file is not None: imwrite(img, out_file) return img
af90da2b30ff9891613654d70724162ce7b4d702
17,579
def D2(X, Y, Y2=None, YT=None): """ Calculate the pointwise (squared) distance. Arguments: X: of shape (n_sample, n_feature). Y: of shape (n_center, n_feature). Y2: of shape (1, n_center). YT: of shape (n_feature, n_center). Returns: pointwise distances (n_sample, n_center). """ X2 = K.sum(K.square(X), axis = 1, keepdims=True) if Y2 is None: if X is Y: Y2 = X2 else: Y2 = K.sum(K.square(Y), axis = 1, keepdims=True) Y2 = K.reshape(Y2, (1, K.shape(Y)[0])) if YT is None: YT = K.transpose(Y) d2 = K.reshape(X2, (K.shape(X)[0], 1)) \ + Y2 - 2 * K.dot(X, YT) # x2 + y2 - 2xy return d2
daa8940e939eb2806e043f9b4521bf8cd1aefd2e
17,580
from typing import Dict from typing import Any from typing import cast def spec_from_json_dict( json_dict: Dict[str, Any] ) -> FieldSpec: """ Turns a dictionary into the appropriate FieldSpec object. :param dict json_dict: A dictionary with properties. :raises InvalidSchemaError: :returns: An initialised instance of the appropriate FieldSpec subclass. """ try: if json_dict.get('ignored', False): return Ignore(json_dict['identifier']) type_str = json_dict['format']['type'] spec_type = cast(FieldSpec, FIELD_TYPE_MAP[type_str]) except KeyError as e: raise InvalidSchemaError("the feature definition {} is incomplete. Must contain: {}".format(json_dict, e)) return spec_type.from_json_dict(json_dict)
9bf557364a7a17cea0c84c65ece5b1d0e3983b2f
17,582
import scipy def hyp_pfq(A, B, x, out=None, n=0): """ This function is decorated weirdly because its extra params are lists. """ out = np_hyp_pfq([a+n for a in A], [b+n for b in B], x, out) with np.errstate(invalid='ignore'): out *= np.prod([scipy.special.poch(a, n) for a in A]) out /= np.prod([scipy.special.poch(b, n) for b in B]) return out
f1d9e0454fa63d24b1a8a403bbae12e00b818bb2
17,583
from typing import Optional from datetime import datetime def create_new_token( data: dict, expires_delta: Optional[timedelta] = None, page_only: bool = False): """Creates a token with the given permission and expiry""" to_encode = data.copy() if page_only: expires = datetime.max elif expires_delta: expires = datetime.utcnow() + timedelta(minutes=expires_delta) else: expires = datetime.utcnow() + timedelta(minutes=TOKEN_EXPIRATION_TIME) to_encode.update({"exp": expires}) to_encode.update({"scope": "userauth:none" if page_only else "userauth:full"}) return jwt.encode(to_encode, SECRET, ALGORITHM)
3a0a2aebc6b814850333a5d4f5db72b1396cf208
17,584
from pathlib import Path from typing import Union import re def parse_json_year_date(year: Number, fullpath: Path) -> Union[Path, None]: """ Filtra os arquivos json por ano. """ if not isinstance(fullpath, Path): raise TypeError("O parâmetro path deve do tipo Path.") pattern_finder = re.search(f"_{year}\.json", fullpath.name) if pattern_finder: return fullpath else: return None
1d482bf916c3574225fdc31e700fb570c47555b1
17,585
from malaya_speech.utils import describe_availability def available_fastspeech2(): """ List available FastSpeech2, Text to Mel models. """ return describe_availability( _fastspeech2_availability, text = '`husein` and `haqkiem` combined loss from training set', )
b7fa7f6132eb478cf27068a4377688f8b3ec5c7b
17,586
def solve(A, b, method='gauss', verbose=0, eps=1e-6, max_itration_times=100000, omega=1.9375): """ Solve equations in specified method. :param A: coefficient matrix of the equations :param b: vector :param method: the way to solve equations :param verbose: whether show the running information :param eps: *epsilon* :param max_itration_times: the maximum *rounds* of iteration :param omega: *relaxation factor* for SOR method. :return: the solution x or 'None' if error occurs """ # _show_equations(A, b) # only when dim <= 10 start = dt.now() global _verbose, _eps, _max_itration_times, _omega _verbose = verbose _eps = eps _max_itration_times = max_itration_times _omega = omega func = { 'gauss': gauss, 'lu': lu, 'chase': chase, 'square_root': square_root, 'jacobi': jacobi, 'gauss_seidel': gauss_seidel, 'sor': sor, 'cg': cg, 'qr': qr }.get(method, 'other_method') if func == 'other_method': _raise_equasolerror_no_method(method) # make a copy of A and b to make sure they will not be changed. # show_equations(A, b) A0 = np.copy(A) b0 = np.copy(b) answer = func(A0, b0) if _verbose == 1: print('[%s] time cost: %.4f s.' % (method, (dt.now() - start).total_seconds())) return answer
50c7cdc5a2c8b146a062c028c4cb684c0b7efc2f
17,587
def returns_unknown(): """Tuples are a not-supported type.""" return 1, 2, 3
9fc003c890b4e053362c684b1a5f0dfca59bbe42
17,588
def get_user( cmd, app_id: str, token: str, assignee: str, api_version: str, central_dns_suffix=CENTRAL_ENDPOINT, ) -> User: """ Get information for the specified user. Args: cmd: command passed into az app_id: name of app (used for forming request URL) token: (OPTIONAL) authorization token to fetch device details from IoTC. MUST INCLUDE type (e.g. 'SharedAccessToken ...', 'Bearer ...') assignee: unique ID of the user central_dns_suffix: {centralDnsSuffixInPath} as found in docs Returns: users: dict """ result = _make_call( cmd, app_id=app_id, method="get", path=assignee, payload=None, token=token, central_dns_suffix=central_dns_suffix, api_version=api_version, ) return _utility.get_object(result, MODEL, api_version)
cc387259c97ebfecadd5d82dc6acf8f970d19478
17,589
def get(fg, bg=None, attribute = 0): """ Return string with ANSI escape code for set text colors fg: html code or color index for text color attribute: use Attribute class variables """ if type(fg) is str: bg = bg if bg else "#000000" return by_hex(fg, bg, attribute=attribute) elif type(fg) is int and 0 <= fg <= 255: bg = bg if bg else 0 return by_index(fg, bg, attribute=attribute) else: raise TypeError("You can use only string or int.")
16ee7ea3bd5c66c415a6466632cee1c5b337696b
17,591
def get_Qi(Q,i,const_ij,m): """ Aim: ---- Equalising two polynomials where one is obtained by a SOS decomposition in the canonical basis and the other one is expressed in the Laguerre basis. Parameters ---------- Q : matrix for the SOS decomposition i : integer degree at which we compte the coefficients. const_ij : list contains indices of Q at which coefficients i+j= const. Returns ------- Real that is a sum of coefficients """ return sum(factorial(l)*binom(l,i)*\ sum(Q[j]/sqrt(factorial(j[0])*factorial(j[1])) \ for j in const_ij[2*l]) for l in np.arange(i,m+1))
a54313c8763777840c4a018dedb2fe6363e09d55
17,592
def strToBool(s): """ Converts string s to a boolean """ assert type(s) == str or type(s) == unicode b_dict = {'true': True, 'false': False, 'yes': True, 'no': False} return b_dict[s.lower()]
84e59429523e6e59a90739b0f1b160fa9e84bdc8
17,594
import json def publish_to_sns(topic_name, message, region=None): """ Post a message to an SNS topic """ AWS = AWSCachedClient(region) # cached client object partition = None if region: partition = partition_from_region(region) else: partition = 'aws' region = 'us-east-1' topic_arn = 'arn:' + partition + ':sns:' + region + ':' + AWS.account + ':' + topic_name json_message = json.dumps({"default":json.dumps(message)}) message_id = AWS.get_connection('sns', region).publish( TopicArn=topic_arn, Message=json_message, MessageStructure='json' ).get('MessageId', 'error') return message_id
5a3c35c0367873e2c0b3c79a176b7c384d2b74ed
17,595
from typing import List from typing import Tuple def get_subset( classes: List, train_data, train_labels, val_data, val_labels, test_data, test_labels, ) -> Tuple: """ creates a binary subset of training, validation, and testing set using the specified list of classes to select :param classes: list of classes in the labels that are to be selected in the subset (only specify two) :param train_data: list or numpy array containing training data :param train_labels: list or numpy array containing training labels :param val_data: list or numpy array containing validation/training phase 2 data :param val_labels: list or numpy array containing validation/training phase 2 labels :param test_data: list or numpy array containing testing data :param test_labels: list or numpy array containing testing labels :return: tuple of training sub-set, validation/training phase 2 sub-set, testing sub-set. "sub-set" here is a tuple of training and testing numpy arrays """ train_set = np.isin(train_labels, classes) val_set = np.isin(val_labels, classes) test_set = np.isin(test_labels, classes) train_data = train_data[train_set] train_labels = train_labels[train_set] == classes[0] val_data = val_data[val_set] val_labels = val_labels[val_set] == classes[0] test_data = test_data[test_set] test_labels = test_labels[test_set] == classes[0] return (train_data, train_labels), (val_data, val_labels), (test_data, test_labels)
8857b7f5c4563692b3236b68889201bd3a28507e
17,597
def to_xyzw(matrix): """Convenience/readibility function to bring spatial (trailing) axis to start. Args: matrix (...x4 array): Input matrix. Returns: 4x... array """ return np.rollaxis(matrix, -1)
7c74b9bd6dc271db4a5dd925bbcfec4eef7ca791
17,598
import numpy def do_3d_pooling(feature_matrix, stride_length_px=2, pooling_type_string=MAX_POOLING_TYPE_STRING): """Pools 3-D feature maps. :param feature_matrix: Input feature maps (numpy array). Dimensions must be M x N x H x C or 1 x M x N x H x C. :param stride_length_px: See doc for `do_2d_pooling`. :param pooling_type_string: Pooling type (must be accepted by `_check_pooling_type`). :return: feature_matrix: Output feature maps (numpy array). Dimensions will be 1 x m x n x h x C. """ error_checking.assert_is_numpy_array_without_nan(feature_matrix) error_checking.assert_is_integer(stride_length_px) error_checking.assert_is_geq(stride_length_px, 2) _check_pooling_type(pooling_type_string) if len(feature_matrix.shape) == 4: feature_matrix = numpy.expand_dims(feature_matrix, axis=0) error_checking.assert_is_numpy_array(feature_matrix, num_dimensions=5) feature_tensor = K.pool3d( x=K.variable(feature_matrix), pool_mode=pooling_type_string, pool_size=(stride_length_px, stride_length_px, stride_length_px), strides=(stride_length_px, stride_length_px, stride_length_px), padding='valid', data_format='channels_last' ) return feature_tensor.numpy()
180ceae7364dcd1dd55d23a00389d0c3bb43cc38
17,599
def sin_wave(freq, duration=1, offset=0): """Makes a sine wave with the given parameters. freq: float cycles per second duration: float seconds offset: float radians returns: Wave """ signal = SinSignal(freq, offset=offset) wave = signal.make_wave(duration) return wave
f0f0e58d0a864a114aafa24f68b683ac4ec2f419
17,601
def assign_lpvs(lat): """ Given lattice type return 3 lattice primitive vectors""" lpv = zeros((3,3)) if lat=='FCC': lpv[0,1]=1./sqrt(2) lpv[0,2]=1./sqrt(2) lpv[1,0]=1./sqrt(2) lpv[1,2]=1./sqrt(2) lpv[2,0]=1./sqrt(2) lpv[2,1]=1./sqrt(2) elif lat=='SC': lpv[0,0]=1 lpv[1,1]=1 lpv[2,2]=1 elif lat=='SH': lpv[0,0]=1./2 lpv[0,1]=-sqrt(3)/2 lpv[1,0]=1./2 lpv[1,1]=sqrt(3)/2 lpv[2,2]=1. return lpv
ecf599a661446e19e4155f170c41b5ac8271c8cb
17,602
import torch def flatten_and_batch_shift_indices(indices: torch.LongTensor, sequence_length: int) -> torch.Tensor: """``indices`` of size ``(batch_size, d_1, ..., d_n)`` indexes into dimension 2 of a target tensor, which has size ``(batch_size, sequence_length, embedding_size)``. This function returns a vector that correctly indexes into the flattened target. The sequence length of the target must be provided to compute the appropriate offset. Args: indices (torch.LongTensor): """ if torch.max(indices) >= sequence_length or torch.min(indices) < 0: raise ValueError("All the elements should be in range (0, {}), but found ({}, {})".format( sequence_length - 1, torch.min(indices).item(), torch.max(indices).item())) offsets = get_range_vector(indices.size(0), indices.device) * sequence_length for _ in range(len(indices.size()) - 1): offsets = offsets.unsqueeze(1) # (batch_size, d_1, ..., d_n) + (batch_size, 1, ..., 1) offset_indices = indices + offsets # (batch_size * d_1 * ... * d_n) offset_indices = offset_indices.view(-1) return offset_indices
6b283f3baaa4fde17af194f996b7f2dec409fc0b
17,603
def raveled_affinity_watershed( image_raveled, marker_coords, offsets, mask, output ): """Compute affinity watershed on raveled arrays. Parameters ---------- image_raveled : 2D array of float(32), shape (npixels, ndim) The z, y, and x affinities around each pixel. marker_coords : 1D array of int The location of each marker along the pixels dimension of ``image_raveled``. offsets : 1D array of int The signed offsets to each neighboring pixel. mask : 1D array of bool, shape (npixels,) True for pixels to which the watershed should spread. output : 1D array of int The output array for markers. """ n_neighbors = offsets.shape[0] age = 0 marker_coords = marker_coords.astype(np.intp) offsets = offsets.astype(np.intp) aff_offsets = offsets.copy().astype(np.intp) aff_offsets[:int(len(offsets) / 2), 1] = 0 heap = [ Element( image_raveled[0, 0], age, marker_coords[0], marker_coords[0] ) ] _ = heappop(heap) # add each seed to the stack for i in range(marker_coords.shape[0]): index = marker_coords[i] value = np.float32(0.) source = index index = index elem = Element(value, age, index, source) heappush(heap, elem) # remove from stack until empty while len(heap) > 0: elem = heappop(heap) for i in range(n_neighbors): # get the flattened address of the neighbor # offsets are 2d (size, 2) with columns 0 and 1 corresponding to # affinities (ie axis) and image neighbour indices respectively neighbor_index = elem.index + offsets[i, 1] if not mask[neighbor_index]: # neighbor is not in mask, move on to next neighbor continue if output[neighbor_index]: # if there is a non-zero value in output, move on to next # neighbor continue # if the neighbor is in the mask and not already labeled, # label it then add it to the queue output[neighbor_index] = output[elem.index] value = image_raveled[aff_offsets[i, 0], aff_offsets[i, 1] + elem.index] age += 1 new_elem = Element(value, age, neighbor_index, elem.source) heappush(heap, new_elem) return output
bc109b59bec4389a851cfc46a8e02648e1809c60
17,604
def get_spike_times(units: pynwb.misc.Units, index, in_interval): """Use bisect methods to efficiently retrieve spikes from a given unit in a given interval Parameters ---------- units: pynwb.misc.Units index: int in_interval: start and stop times Returns ------- """ st = units['spike_times'] unit_start = 0 if index == 0 else st.data[index - 1] unit_stop = st.data[index] start_time, stop_time = in_interval ind_start = bisect_left(st.target, start_time, unit_start, unit_stop) ind_stop = bisect_right(st.target, stop_time, ind_start, unit_stop) return np.asarray(st.target[ind_start:ind_stop])
c121747deec1fcc9b5e317f6ec5e57349604ebc3
17,605
def _make_hours(store_hours): """Store hours is a dictionary that maps a DOW to different open/close times Since it's easy to represent disjoing hours, we'll do this by default Such as, if a store is open from 11am-2pm and then 5pm-10pm We'll slice the times in to a list of floats representing 30 minute intevals So for monday, let's assume we have the store hours from 10am - 3pm We represent this as monday = [10.0, 10.5, 11.0, 11.5, 12.0, 12.5, 13.0, 13.5, 14.0, 14.5] """ week_hrs = {} for dow in store_hours.keys(): dow_hours = [] for hour_set in store_hours[dow]: if len(hour_set) < 2: open_hr = 0.0 close_hr = 24.0 else: open_hr = float(hour_set[0]) close_hr = float(hour_set[1]) if close_hr < open_hr: tmp = close_hr close_hr = open_hr open_hr = tmp current_hr_it = open_hr while((close_hr - current_hr_it) >= .5): dow_hours.append(current_hr_it) current_hr_it += .5 week_hrs[dow] = dow_hours return week_hrs
4845594e59e5dba2790ac1a3c376ddb8e8290995
17,606
def mul_time(t1, factor): """Get the product of the original Time and the number time: Time factor: number returns: Time """ assert valid_time(t1) secods = time_to_int(t1) * factor return int_to_time(secods)
43d9c3a52670b8755590693fe6886748665d81ee
17,607
def create_pmf_from_samples( t_samples_list, t_trunc=None, bin_width=None, num_bins=None): """ Compute the probability distribution of the waiting time from the sampled data. Parameters ---------- t_samples_list : array-like 1-D Samples of the waiting time. t_trunc: int The truncation time. bin_width: int The width of the bins for the histogram. num_binms: int The number of bins for the histogram. If num_bins and bin_width are both given, bin_width has priority. Returns ------- pmf: array-like 1-D The probability distribution also the normalized histogram of waiting time. bin_edges: array-like 1-D The edge of each bins from ``numpy.histogram``. """ if t_trunc is None: t_trunc = max(t_samples_list) if bin_width is None: if num_bins is None: bin_width = int(np.ceil(t_trunc/200)) else: bin_width = int(np.ceil(t_trunc/num_bins)) start = np.min(t_samples_list) pmf, bin_edges = np.histogram( t_samples_list, bins=np.arange(start, t_trunc+1, bin_width)) return pmf/len(t_samples_list), bin_edges
ce14c169ee719979284b01584b7e0523b19f256a
17,608
def box_corner_to_center(boxes): """从(左上,右下)转换到(中间,宽度,高度)""" x1, y1, x2, y2 = boxes[:, 0], boxes[:, 1], boxes[:, 2], boxes[:, 3] cx = (x1 + x2) / 2 cy = (y1 + y2) / 2 w = x2 - x1 h = y2 - y1 boxes = paddle.stack((cx, cy, w, h), axis=-1) return boxes
c07ef637576e5b9ebd8ba43795535e630ccf8b09
17,609
def irrelevant(condition=None, library=None, weblog_variant=None, reason=None): """ decorator, allow to mark a test function/class as not relevant """ skip = _should_skip(library=library, weblog_variant=weblog_variant, condition=condition) def decorator(function_or_class): if not skip: return function_or_class full_reason = "not relevant" if reason is None else f"not relevant: {reason}" return _get_skipped_item(function_or_class, full_reason) return decorator
7d2633247569c4ca5bc20d5249e0b49991ae1047
17,610
def get_all_approved(self) -> list: """Get all appliances currently approved .. list-table:: :header-rows: 1 * - Swagger Section - Method - Endpoint * - appliance - GET - /appliance/approved :return: Returns approved appliances :rtype: list """ return self._get("/appliance/discovered")
4c8c00cce144cf73b2a7b63d1e82a13f28de383c
17,611
def bokeh_hover_tooltip( label=False, text=False, image=False, audio=False, coords=True, index=True, custom=None, ): """ ???+ note "Create a Bokeh hover tooltip from a template." - param label: whether to expect and show a "label" field. - param text: whether to expect and show a "text" field. - param image: whether to expect and show an "image" (url/path) field. - param audio: whether to expect and show an "audio" (url/path) field. - param coords: whether to show xy-coordinates. - param index: whether to show indices in the dataset. - param custom: {display: column} mapping of additional (text) tooltips. """ # initialize mutable default value custom = custom or dict() # prepare encapsulation of a div box and an associated script divbox_prefix = """<div class="out tooltip">\n""" divbox_suffix = """</div>\n""" script_prefix = """<script>\n""" script_suffix = """</script>\n""" # dynamically add contents to the div box and the script divbox = divbox_prefix script = script_prefix if label: divbox += """ <div> <span style="font-size: 16px; color: #966;"> Label: @label </span> </div> """ if text: divbox += """ <div style="word-wrap: break-word; width: 95%; text-overflow: ellipsis; line-height: 90%"> <span style="font-size: 11px;"> Text: @text </span> </div> """ if image: divbox += """ <div> <span style="font-size: 10px;"> Image: @image </span> <img src="@image" height="60" alt="@image" width="60" style="float: left; margin: 0px 0px 0px 0px;" border="2" ></img> </div> """ if audio: divbox += """ <div> <span style="font-size: 10px;"> Audio: @audio </span> <audio autoplay preload="auto" src="@audio"> </audio> </div> """ if coords: divbox += """ <div> <span style="font-size: 12px; color: #060;"> Coordinates: ($x, $y) </span> </div> """ if index: divbox += """ <div> <span style="font-size: 12px; color: #066;"> Index: [$index] </span> </div> """ for _key, _field in custom.items(): divbox += f""" <div> <span style="font-size: 12px; color: #606;"> {_key}: @{_field} </span> </div> """ divbox += divbox_suffix script += script_suffix return divbox + script
198e76e29d62c12c891c0fe51e947d16f39d65bb
17,613
import math def constant_xavier_initializer(shape, dtype=tf.float32, uniform=True): """Initializer function.""" if not dtype.is_floating: raise TypeError('Cannot create initializer for non-floating point type.') # Estimating fan_in and fan_out is not possible to do perfectly, but we try. # This is the right thing for matrix multiply and convolutions. if shape: fan_in = float(shape[-2]) if len(shape) > 1 else float(shape[-1]) fan_out = float(shape[-1]) else: fan_in = 1.0 fan_out = 1.0 for dim in shape[:-2]: fan_in *= float(dim) fan_out *= float(dim) # Average number of inputs and output connections. n = (fan_in + fan_out) / 2.0 if uniform: # To get stddev = math.sqrt(factor / n) need to adjust for uniform. limit = math.sqrt(3.0 * 1.0 / n) return tf.random_uniform(shape, -limit, limit, dtype, seed=None) else: # To get stddev = math.sqrt(factor / n) need to adjust for truncated. trunc_stddev = math.sqrt(1.3 * 1.0 / n) return tf.truncated_normal(shape, 0.0, trunc_stddev, dtype, seed=None)
f11403932f04327b77f38930a8a7a235633449da
17,614
from typing import Dict from typing import Tuple from typing import Any def upload_script(name: str, permission_type: str, content: str, entry_id: str) -> Dict: """ Uploads a script by either given content or file :param name: Script name to upload :param permission_type: Permissions type of script to upload :param content: PowerShell script content :param entry_id: Script file to upload :return: Response JSON which contains errors (if exist) and how many resources were affected """ endpoint_url = '/real-time-response/entities/scripts/v1' body: Dict[str, Tuple[Any, Any]] = { 'name': (None, name), 'permission_type': (None, permission_type) } temp_file = None try: if content: body['content'] = (None, content) else: # entry_id was provided file_ = demisto.getFilePath(entry_id) file_name = file_.get('name') # pylint: disable=E1101 temp_file = open(file_.get('path'), 'rb') # pylint: disable=E1101 body['file'] = (file_name, temp_file) headers = { 'Authorization': HEADERS['Authorization'], 'Accept': 'application/json' } response = http_request('POST', endpoint_url, files=body, headers=headers) return response finally: if temp_file: temp_file.close()
d33aa3a4f19cfac08d8ee5cb559c0088c6f577bb
17,615
def create_orthogonal(left, right, bottom, top, znear, zfar): """Create a Mat4 orthographic projection matrix.""" width = right - left height = top - bottom depth = zfar - znear sx = 2.0 / width sy = 2.0 / height sz = 2.0 / -depth tx = -(right + left) / width ty = -(top + bottom) / height tz = -(zfar + znear) / depth return Mat4((sx, 0.0, 0.0, 0.0, 0.0, sy, 0.0, 0.0, 0.0, 0.0, sz, 0.0, tx, ty, tz, 1.0))
3f10bcabe0d95a9832956a7edcef1719c7db0d15
17,616
def update_image_version(name: str, new_version: str): """returns the passed image name modified with the specified version""" parts = name.rsplit(':', 1) return f'{parts[0]}:{new_version}'
cde798361a6c74d22f979fe013e963c46028a7e6
17,617
def compute_entanglement(theta): """Computes the second Renyi entropy of circuits with and without a tardigrade present. Args: - theta (float): the angle that defines the state psi_ABT Returns: - (float): The entanglement entropy of qubit B with no tardigrade initially present - (float): The entanglement entropy of qubit B where the tardigrade was initially present """ dev = qml.device("default.qubit", wires=3) # QHACK # @qml.qnode(dev) def circuits(theta, tartigrade): if not tartigrade: qml.Hadamard(wires=0) qml.CNOT(wires=[0, 1]) qml.PauliX(wires=0) return qml.density_matrix(wires=[0]) def partial_trace(rho, qubit_2_keep): # Credits: GitHub @neversakura. num_qubit = int(np.log2(rho.shape[0])) qubit_axis = [(i, num_qubit + i) for i in range(num_qubit) if i not in qubit_2_keep] minus_factor = [(i, 2 * i) for i in range(len(qubit_axis))] minus_qubit_axis = [(q[0] - m[0], q[1] - m[1]) for q, m in zip(qubit_axis, minus_factor)] rho_res = np.reshape(rho, [2, 2] * num_qubit) qubit_left = num_qubit - len(qubit_axis) for i, j in minus_qubit_axis: rho_res = np.trace(rho_res, axis1=i, axis2=j) if qubit_left > 1: rho_res = np.reshape(rho_res, [2 ** qubit_left] * 2) return rho_res psi_0 = np.array([1, 0]) psi_1 = np.array([0, 1]) g_bt = np.kron(psi_0, psi_0) e_bt=np.cos(theta/2)*np.kron(psi_1,psi_0)+np.sin(theta/2)*np.kron(psi_0,psi_1) psi_abt = 1/np.sqrt(2)*(np.kron(psi_0, e_bt)+np.kron(psi_1, g_bt)) rho_abt = np.outer(psi_abt, np.conj(psi_abt)) rho_b = partial_trace(rho_abt, [1]) mu_b = circuits(theta, 0) s_mub = second_renyi_entropy(mu_b) s_rhob = second_renyi_entropy(rho_b) return s_mub, s_rhob # QHACK #
bc6d70f1ef76666fa3b4d753f13dc04a8a368374
17,618
import logging def parse_CDS_info(CDS_info): """ Args: CDS_info (python d): 'aliases' (list<alias_list (multiple)>): alias_list list<'locus_tag', str> AND/OR list<'old_locus_tag', str> AND/OR list<'protein_id', str> 'dna_sequence' (str): The actual DNA sequence 'functions' (list<str>): First object of list is the function 'location' (list<scaffold (str), bp (int), strand ("+/-"), length (nt)>) Returns: gene_table_list_d (dict): "locusId":str "sysName": ?str "type": 1 "scaffoldId": str "begin": int "end": int "strand": str ("+"/"-") "name": str (always "unknown" in this case) "desc": str "GC": float "nTA": int "AA_seq": Amino Acid sequence of gene """ gene_table_list_d = {} #Getting locusId aliases_l = CDS_info["aliases"] locusId_obj = aliases_l[0] if locusId_obj[0] != "locus_tag": locus_tag_found = False for i in range(1, len(aliases_l)): if aliases_l[i][0] == "locus_tag": locus_tag_found = True locusId_obj = aliases_l[i] break logging.critical(f"Found locus_tag at different loc of list: {i}") else: locus_tag_found = True if not locus_tag_found: raise Exception("Expecting locus_tag from genome object, did not find it.") else: gene_table_list_d["locusId"] = locusId_obj[1] gene_table_list_d["sysName"] = locusId_obj[1] # Getting scaffold, location, strand scaffold, bp_loc, strand, nt_len = get_location_info(CDS_info["location"][0]) gene_table_list_d["scaffoldId"] = scaffold gene_table_list_d["begin"] = bp_loc gene_table_list_d["end"] = bp_loc + nt_len gene_table_list_d["strand"] = strand # Getting description gene_table_list_d["desc"] = CDS_info["functions"][0] # Getting GC and nTA DNA_seq = CDS_info["dna_sequence"].upper() gene_table_list_d["GC"] = (DNA_seq.count("G") + DNA_seq.count("C"))/float(len(DNA_seq)) gene_table_list_d["nTA"] = DNA_seq.count("TA") # Undecidable parts (from the data object) gene_table_list_d["type"] = 1 gene_table_list_d["name"] = "unknown" # Adding protein sequence gene_table_list_d["AA_seq"] = CDS_info["protein_translation"].upper() return gene_table_list_d
d55e5b2c56b42c89c9abeba63cb7c68213688945
17,619
import re def recover_original_schema_name(sql: str, schema_name: str) -> str: """Postgres truncates identifiers to 63 characters at parse time and, as pglast uses bits of PG to parse queries, image names like noaa/climate:64_chars_of_hash get truncated which can cause ambiguities and issues in provenance. We can't get pglast to give us back the full identifier, but we can try and figure out what it used to be and patch the AST to have it again. """ if len(schema_name) < POSTGRES_MAX_IDENTIFIER: return schema_name candidates = list(set(re.findall(r"(" + re.escape(schema_name) + r"[^.\"]*)[.\"]", sql))) # Us finding more than one candidate schema is pretty unlikely to happen: # we'd have to have a truncated schema name that's 63 characters long # (of kind some_namespace/some_repo:abcdef1234567890....) # which also somehow features in this query as a non-identifier. Raise an error here if # this does happen. assert len(candidates) == 1 return str(candidates[0])
041c747e8722dc1e81a94b29b76ee0eded88992c
17,620
def on_method_not_allowed(error): """Override the HTML 405 default.""" content = {"msg": "Method not allowed"} return jsonify(content), 405
a174592834952beca21c683890ab94c9583544f9
17,621
def dir_name(dir_path): """ 转换零时文件夹、输入文件夹路径 :param dir_path: 主目录路径 :return:[tmp_dir, input_dir, res_dir] """ tmp_dir = dir_path + "tmp\\" input_dir = dir_path + "input\\" res_dir = dir_path + "result\\" return tmp_dir, input_dir, res_dir
9f775b4ace14b178fd7bc0dfa94e5df13e583557
17,622
def profile_binning( r, z, bins, z_name="pm", z_clip=None, z_quantile=None, return_bin=True, plot=True, ): """Bin the given quantity z in r. Parameters ---------- r: 1d array, binned x values z: 1d array, binned y values bins: 1d array, bins Returns -------- r_rbin : 1d array, mean r in bins z_rbin : 1d array, mean z in bins z_bins : dict, numbers for bins """ if z_clip is None: clip = clip_quantile_1d(z, z_quantile, return_func=True) else: clip = lambda z_: (z_ > z_clip[0]) & (z_ < z_clip[1]) z_bins = {} if plot: fig, ax = plt.subplots(1, 1, figsize=(8, 6)) # Clip by bins for k, b in enumerate(bins[:-1]): in_bin = (bins[k] <= r) & (r < bins[k + 1]) clipped = clip(z[in_bin]) z_in_bin = z[in_bin][clipped] r_in_bin = r[in_bin][clipped] z_bin = {z_name: z_in_bin, "r": r_in_bin} z_bins[k] = z_bin if plot: lab = "{0:.2f}<r<{1:.2f}".format(bins[k], bins[k + 1]) sns.distplot( z_in_bin, hist=False, kde_kws={"lw": 2, "alpha": 0.9}, label=lab, ) r_rbin, z_rbin = get_mean_rbins(z_bins, z_name=z_name) z_bins = z_bins if return_bin else None return r_rbin, z_rbin, z_bins
f040fe7c7505e628978faf733a91578cb1a04709
17,623
def sequence_to_synergy_sims(inputs, params): """same as sequence to synergy, but prep some other tensors first """ # set up orig seq tensor inputs[DataKeys.ORIG_SEQ] = inputs[DataKeys.FEATURES] # set up thresholds tensor num_interpretation_tasks = len(params["importance_task_indices"]) thresholds_shape = [ inputs[DataKeys.FEATURES].get_shape().as_list()[0], num_interpretation_tasks, 1, 1] inputs[DataKeys.WEIGHTED_SEQ_THRESHOLDS] = tf.zeros(thresholds_shape) # move inputs to outputs outputs = dict(inputs) # and then run sequence to synergy outputs, params = sequence_to_synergy(outputs, params) return outputs, params
6abb659be6d1977e7d8a3c7b47f2f60997faf951
17,624
def _gen_roi_func_constant(constant_roi): """ Return a RoI function which returns a constant radius. See :py:func:`map_to_grid` for a description of the parameters. """ def roi(zg, yg, xg): """ constant radius of influence function. """ return constant_roi return roi
c7c69cf32fb289d5e9c9497474989aa873a231ba
17,626
def less_important_function(num: int) -> str: """ Example which is documented in the module documentation but not highlighted on the main page. :param num: A thing to pass :return: A return value """ return f'{num}'
d6ba0644fc8f4582fb63ceb722b05e824d63312a
17,627
def weth_asset_data(): # pylint: disable=redefined-outer-name """Get 0x asset data for Wrapped Ether (WETH) token.""" return asset_data_utils.encode_erc20( NETWORK_TO_ADDRESSES[NetworkId.GANACHE].ether_token )
0341c1f5c46e05a316c99154be82399145ae9d1a
17,628
def match_known_module_name(pattern): """ Matching with know module name. Args: pattern (Pattern): To be replaced pattern. Returns: str, matched module name, return None if not matched. """ matched_result = [] for ptn, module_name in BUILT_IN_MODULE_NAME.items(): if pattern.in_degree == ptn.in_degree and pattern.out_degree == ptn.out_degree and \ ptn.head == pattern.head and ptn.tail == pattern.tail: is_matched, score = pattern_fuzzy_matching(pattern.ptn_items, ptn.ptn_items) if is_matched: matched_result.append((module_name, score)) if matched_result: module_name = (matched_result if len(matched_result) == 1 else sorted(matched_result, key=lambda x: x[1], reverse=True))[0][0] if pattern.pattern not in used_module_name: used_module_name[pattern.pattern] = 1 else: module_name = f"{module_name}{used_module_name[pattern.pattern]}" used_module_name[pattern.pattern] += 1 return module_name return None
0d76e22517d4fc435101702591e095a96cc5faf7
17,629
def _get_jones_types(name, numba_ndarray_type, corr_1_dims, corr_2_dims): """ Determine which of the following three cases are valid: 1. The array is not present (None) and therefore no Jones Matrices 2. single (1,) or (2,) dual correlation 3. (2, 2) full correlation Parameters ---------- name: str Array name numba_ndarray_type: numba.type Array numba type corr_1_dims: int Number of `numba_ndarray_type` dimensions, including correlations (first option) corr_2_dims: int Number of `numba_ndarray_type` dimensions, including correlations (second option) Returns ------- int Enumeration describing the Jones Matrix Type - 0 -- Not Present - 1 -- (1,) or (2,) - 2 -- (2, 2) """ if is_numba_type_none(numba_ndarray_type): return JONES_NOT_PRESENT if numba_ndarray_type.ndim == corr_1_dims: return JONES_1_OR_2 elif numba_ndarray_type.ndim == corr_2_dims: return JONES_2X2 else: raise ValueError("%s.ndim not in (%d, %d)" % (name, corr_1_dims, corr_2_dims))
8a9d6f3441c488e2bf1059dd6fcb506a2285d291
17,630
def editing_passport_serial_handler(update: Update, context: CallbackContext) -> int: """Get and save passport serial.""" new_state = editing_pd(update, context, validator=validators.passport_serial_validator, attribute='passport_serial', state=PASSPORT_SERIAL, ) return new_state
81c86bffa07376f17dd2c013f5eab42856fa4cea
17,631
import requests def get_overview(ticker: str) -> pd.DataFrame: """Get alpha vantage company overview Parameters ---------- ticker : str Stock ticker Returns ------- pd.DataFrame Dataframe of fundamentals """ # Request OVERVIEW data from Alpha Vantage API s_req = f"https://www.alphavantage.co/query?function=OVERVIEW&symbol={ticker}&apikey={cfg.API_KEY_ALPHAVANTAGE}" result = requests.get(s_req, stream=True) # If the returned data was successful if result.status_code == 200: # Parse json data to dataframe if "Note" in result.json(): console.print(result.json()["Note"], "\n") return pd.DataFrame() df_fa = pd.json_normalize(result.json()) # Keep json data sorting in dataframe df_fa = df_fa[list(result.json().keys())].T df_fa.iloc[5:] = df_fa.iloc[5:].applymap(lambda x: long_number_format(x)) clean_df_index(df_fa) df_fa = df_fa.rename( index={ "E b i t d a": "EBITDA", "P e ratio": "PE ratio", "P e g ratio": "PEG ratio", "E p s": "EPS", "Revenue per share t t m": "Revenue per share TTM", "Operating margin t t m": "Operating margin TTM", "Return on assets t t m": "Return on assets TTM", "Return on equity t t m": "Return on equity TTM", "Revenue t t m": "Revenue TTM", "Gross profit t t m": "Gross profit TTM", "Diluted e p s t t m": "Diluted EPS TTM", "Quarterly earnings growth y o y": "Quarterly earnings growth YOY", "Quarterly revenue growth y o y": "Quarterly revenue growth YOY", "Trailing p e": "Trailing PE", "Forward p e": "Forward PE", "Price to sales ratio t t m": "Price to sales ratio TTM", "E v to revenue": "EV to revenue", "E v to e b i t d a": "EV to EBITDA", } ) return df_fa return pd.DataFrame()
ddc87f05c8e67f84f2327cf0f06aded0e31e5e8c
17,632
def effective_sample_size(samples): """ Calculates ESS for a matrix of samples. """ try: n_samples, n_params = samples.shape except (ValueError, IndexError): raise ValueError('Samples must be given as a 2d array.') if n_samples < 2: raise ValueError('At least two samples must be given.') return [ess_single_param(samples[:, i]) for i in range(0, n_params)]
7a31d4a2c2bee133ab264dc793f16d0d6bd866f2
17,633
def get_credentials(credentials_path): """ Gets valid user credentials from storage. If nothing has been stored, or if the stored credentials are invalid it returns None. Returns: Credentials, the obtained credential or None """ store = Storage(credentials_path) credentials = store.get() if not credentials or credentials.invalid: return None return credentials
b6a6fcd20f8def88c554d276e8f07aae3dc1f536
17,634
def setup(hass, config): """Set up this component.""" conf_track = config[DOMAIN][CONF_TRACK] _LOGGER.info('version %s is starting, if you have ANY issues with this, please report' ' them here: https://github.com/custom-components/custom_updater', __version__) ha_conf_dir = str(hass.config.path()) card_controller = CustomCards(hass, ha_conf_dir) components_controller = CustomComponents(hass, ha_conf_dir) def check_all_service(call): """Set up service for manual trigger.""" if not conf_track: card_controller.cache_versions(call) components_controller.cache_versions(call) elif 'cards' in conf_track and 'components' in conf_track: card_controller.cache_versions(call) components_controller.cache_versions(call) elif 'cards' in conf_track: card_controller.cache_versions(call) elif 'components' in conf_track: components_controller.cache_versions(call) def update_all_service(call): """Set up service for manual trigger.""" if not conf_track: card_controller.update_all() components_controller.update_all() elif 'cards' in conf_track and 'components' in conf_track: card_controller.update_all() components_controller.update_all() elif 'cards' in conf_track: card_controller.update_all() elif 'components' in conf_track: components_controller.update_all() if not conf_track or 'cards' in conf_track: def upgrade_card_service(call): """Set up service for manual trigger.""" card_controller.upgrade_single(call.data.get(ATTR_CARD)) hass.services.register(DOMAIN, 'upgrade_single_card', upgrade_card_service) if not conf_track or 'components' in conf_track: def upgrade_component_service(call): """Set up service for manual trigger.""" components_controller.upgrade_single(call.data.get(ATTR_COMPONENT)) hass.services.register(DOMAIN, 'upgrade_single_component', upgrade_component_service) track_time_interval(hass, card_controller.cache_versions, INTERVAL) track_time_interval(hass, components_controller.cache_versions, INTERVAL) hass.services.register(DOMAIN, 'check_all', check_all_service) hass.services.register(DOMAIN, 'update_all', update_all_service) return True
d0a18b4c2c3e2c94f19afb66e2e9d2a3d18fea07
17,635
def get_model(**kwargs): """ Returns the model. """ model = ShuffleNetV2(**kwargs) return model
6b226b56fe603a0b703267bc35e2b92f2c6dda7c
17,637
import torch def absolute_filter_change(baseline_state_dict, target_state_dict): """ Calculate sum(abs(K2 - K1) / sum(K1)) Args: baseline_state_dict (dict): state_dict of ori_net target_state_dict (dict): state_dict of finetune_net Returns: sorted_diff (list): sorted values sorted_index (list): sorted index of kernel """ # save all weight to list baseline_weight_list = [] for key, value in baseline_state_dict.items(): if key.find('weight') != -1: weight = value.reshape(-1, 3, 3) baseline_weight_list.append(weight) # [-1, 3, 3] baseline_weight_list = torch.cat(baseline_weight_list, dim=0) target_weight_list = [] for key, value in target_state_dict.items(): if key.find('weight') != -1: weight = value.reshape(-1, 3, 3) target_weight_list.append(weight) # [-1, 3, 3] target_weight_list = torch.cat(target_weight_list, dim=0) sum_baseline_weight = torch.sum(torch.sum(abs(baseline_weight_list), dim=1), dim=1) sum_baseline_weight = sum_baseline_weight.unsqueeze(1).unsqueeze(1) diff = torch.sum(torch.sum(abs(target_weight_list - baseline_weight_list) / sum_baseline_weight, dim=1), dim=1) return diff.cpu().numpy()
ad4616a03ef80f5a5430a87fd07d70d6bb10f7b7
17,638
import torch def load_checkpoints(checkpoint_name): """ Load a pretrained checkpoint. :param checkpoint_name: checkpoint filename :return: model.state_dict, source_vocabulary, target_vocabulary, """ # Get checkpoint from file checkpoint = torch.load(checkpoint_name, map_location=torch.device('cpu')) # The epoch when training has been left epoch = checkpoint['epoch'] # The time elapsed during training time_elapsed = checkpoint['time_elapsed'] # Get state_dict of the model model_state_dict = checkpoint['model_state_dict'] # Get the state_dict of the optimizer optimizer_state_dict = checkpoint['optimizer_state_dict'] # Get source language vocabulary src_vocabulary = checkpoint['src_vocabulary'] tgt_vocabulary = checkpoint['tgt_vocabulary'] return model_state_dict, optimizer_state_dict, epoch, time_elapsed, src_vocabulary, tgt_vocabulary
e81f094c811d497504fd1f93a8ee537e6b122bd6
17,640
def _extract_data(prices, n_markets): """ Extract the open, close, high and low prices from the price matrix. """ os = prices[:, :, :n_markets] cs = prices[:, :, n_markets:2*n_markets] hs = prices[:, :, 2*n_markets:3*n_markets] ls = prices[:, :, 3*n_markets:4*n_markets] return os, cs, hs, ls
154af0c8270fbe664b3dd5d07a724b753ff02040
17,641
def make_screen(): """creates the code for a new screen""" return pygame.display.set_mode((800,600))
ca0e23f5583e652207f0297e7363dacaa5a7f085
17,642
def flip_vert(r, c, row, col, reversed): """1번 연산""" if reversed: row, col = col, row return row - 1 - r, c, reversed
053f6a354e5f6387a528af4ce07290cba370830c
17,644
def get_orders(self, **kwargs): """ | | **Current All Open Orders (USER_DATA)** | *Get all open orders on a symbol. Careful when accessing this with no symbol.* | *If the symbol is not sent, orders for all symbols will be returned in an array.* :API endpoint: ``GET /dapi/v1/openOrders`` :API doc: https://binance-docs.github.io/apidocs/delivery/en/#current-all-open-orders-user_data :parameter symbol: string :parameter recvWindow: optional int, the value cannot be greater than 60000 | """ url_path = "/dapi/v1/openOrders" params = { **kwargs } return self.sign_request("GET", url_path, params)
0561fdeb4863ea08b1644a7695ca7f4ed0622fd9
17,645
def en_13757(data: bytes) -> int: """ Compute a CRC-16 checksum of data with the en_13757 algorithm. :param bytes data: The data to be computed :return: The checksum :rtype: int :raises TypeError: if the data is not a bytes-like object """ _ensure_bytes(data) return _crc_16_en_13757(data)
85a7793f475f04cca2d7dcf92eeba523fde9b1c2
17,647
def get_agent_supported_features_list_for_extensions(): """ List of features that the GuestAgent currently supports (like Extension Telemetry Pipeline, etc) needed by Extensions. We need to send this list as environment variables when calling extension commands to inform Extensions of all the features the agent supports. :return: Dict containing all Extension supported features with the key as their names and the AgentFeature object as the value if the feature is supported by the Agent. Eg: { CRPSupportedFeatureNames.ExtensionTelemetryPipeline: _ETPFeature() } """ return dict((name, feature) for name, feature in __EXTENSION_ADVERTISED_FEATURES.items() if feature.is_supported)
8a453286c433b3ecaed2fc402c5d557b335f3935
17,648
def GCMV(image, mask=None): """ :param image: input image, color (3 channels) or gray (1 channel); :param mask: calc gamma value in the mask area, default is the whole image; :return: gamma, and output """ # Step 1. Check the inputs: image if np.ndim(image) == 3 and image.shape[-1] == 3: # color image hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV) img = hsv[:, :, 2] color_flag = True elif np.ndim(image) == 2: # gray image img = image color_flag = False else: print("ERROR:check the input image of AGT function...") return 1, None if mask is not None: mask = mask<255 else: mask = np.ones_like(img) # Step 2. Main steps of GCMV n_img = img/255.0 mean = np.mean(n_img) gamma_list = np.arange(0.01,1.01,0.01) if mean<=0.5 else np.arange(1.1,10.1,0.1) score = np.zeros_like(gamma_list) for k, gamma in enumerate(gamma_list): t_img = np.power(n_img, gamma) m1, v1 = np.mean(t_img, axis=0), np.var(t_img, axis=0) m2, v2 = np.mean(t_img, axis=1), np.var(t_img, axis=1) score[k] = np.mean(np.power(m1-0.5077,2)) + np.mean(np.power(m2-0.5077,2))+np.mean(np.power(v1-0.0268,2)) + np.mean(np.power(v2-0.0268,2)) # grid search for the optimal gamma ind = np.argmin(score) best_gamma =gamma_list[ind] # print(best_gamma) # Step 2.4 apply gamma transformation n_img = (img+0.5)/256 output = np.power(n_img, best_gamma) # Step 3.0 stretch back and post-process # if mask is not None: # output = (output * 256 - 0.5) * mask / 255.0 # else: output = (output * 256 - 0.5) output = output.round().astype(np.uint8) if color_flag: hsv[:, :, 2] = output output = cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR) return best_gamma, output
47070fdda8dcb2507fefd6a5aa922d21481c0896
17,649
from typing import Union def downloadStaffFile(request: HttpRequest, filename: str) -> Union[HttpResponse, FileResponse]: """Serves the specified 'filename' validating the user is logged in and a staff user""" return _downloadFileFromStorage(storages.StaffStorage(), filename)
0e0137f5b5e4140c2d9ff300ed97b7a3e3c37602
17,650
def get_view_renderer_type(*args): """ get_view_renderer_type(v) -> tcc_renderer_type_t Get the type of renderer currently in use in the given view ( 'ui_get_renderer_type' ) @param v (C++: TWidget *) """ return _ida_kernwin.get_view_renderer_type(*args)
e35269d7b77196ebd8ea325db3d6301ffdb63908
17,651
async def create(req): """ Add a new label to the labels database. """ data = req["data"] async with AsyncSession(req.app["pg"]) as session: label = Label( name=data["name"], color=data["color"], description=data["description"] ) session.add(label) try: await session.flush() document = label.to_dict() await session.commit() except IntegrityError: raise HTTPBadRequest(text="Label name already exists") document = await apply_transforms(document, [SampleCountTransform(req.app["db"])]) headers = {"Location": f"/labels/{document['id']}"} return json_response(document, status=201, headers=headers)
1d7de257f0a3bc1259168821e1fcd6358d4c31c6
17,652
def process_radial_velocity(procstatus, dscfg, radar_list=None): """ Estimates the radial velocity respect to the radar from the wind velocity Parameters ---------- procstatus : int Processing status: 0 initializing, 1 processing volume, 2 post-processing dscfg : dictionary of dictionaries data set configuration. Accepted Configuration Keywords:: datatype : string. Dataset keyword The input data type latitude, longitude : float arbitrary coordinates [deg] from where to compute the radial velocity. If any of them is None it will be the radar position altitude : float arbitrary altitude [m MSL] from where to compute the radial velocity. If None it will be the radar altitude radar_list : list of Radar objects Optional. list of radar objects Returns ------- new_dataset : dict dictionary containing the output ind_rad : int radar index """ if procstatus != 1: return None, None v_speed_field = None h_speed_field = None h_dir_field = None for datatypedescr in dscfg['datatype']: radarnr, _, datatype, _, _ = get_datatype_fields(datatypedescr) if datatype == 'wind_vel_v': v_speed_field = get_fieldname_pyart(datatype) if datatype == 'WIND_SPEED': h_speed_field = get_fieldname_pyart(datatype) if datatype == 'WIND_DIRECTION': h_dir_field = get_fieldname_pyart(datatype) if h_speed_field is None or h_dir_field is None: warn('Horizontal wind speed and direction fields required' ' to estimate radial velocity') return None, None ind_rad = int(radarnr[5:8])-1 if radar_list[ind_rad] is None: warn('No valid radar') return None, None radar = radar_list[ind_rad] if h_speed_field not in radar.fields or h_dir_field not in radar.fields: warn('Unable to estimate radial velocity. ' 'Missing horizontal wind') return None, None h_speed = radar.fields[h_speed_field]['data'] h_dir = radar.fields[h_dir_field]['data'] if v_speed_field is None or v_speed_field not in radar.fields: warn('Unknown vertical wind speed. Assumed 0') if v_speed_field is None: v_speed_field == 'vertical_wind_component' v_speed = np.ma.zeros((radar.nrays, radar.ngates)) else: v_speed = radar.fields[v_speed_field]['data'] # user defined parameters lat = dscfg.get('latitude', None) lon = dscfg.get('longitude', None) alt = dscfg.get('altitude', None) # get u and v wind components h_dir_rad = np.deg2rad(h_dir) speed_h_u = h_speed*np.sin(h_dir_rad) # eastward component speed_h_v = h_speed*np.cos(h_dir_rad) # northward component if lat is not None or lon is not None or alt is not None: # get antenna coordinates respect to new radar location if lat is None: lat = radar.latitude['data'][0] if lon is None: lon = radar.longitude['data'][0] if alt is None: alt = radar.altitude['data'][0] x, y = pyart.core.geographic_to_cartesian_aeqd( radar.gate_longitude['data'], radar.gate_latitude['data'], lon, lat) z = radar.gate_altitude['data'] - alt _, azimuths, elevations = pyart.core.cartesian_to_antenna( x, y, z) azi_2D_rad = np.deg2rad(azimuths) ele_2D_rad = np.deg2rad(elevations) else: azi_2D_rad = np.broadcast_to( np.deg2rad(radar.azimuth['data'])[:, np.newaxis], (radar.nrays, radar.ngates)) ele_2D_rad = np.broadcast_to( np.deg2rad(radar.elevation['data'])[:, np.newaxis], (radar.nrays, radar.ngates)) r_speed = pyart.config.get_metadata('velocity') # assuming no vertical velocity # r_speed['data'] = h_speed*np.cos(h_dir_rad-azi_2D_rad)*np.cos(ele_2D_rad) # with vertical velocity included r_speed['data'] = ( (speed_h_u*np.sin(azi_2D_rad)+speed_h_v*np.cos(azi_2D_rad)) * np.cos(ele_2D_rad)+np.sin(ele_2D_rad)*v_speed) # prepare for exit new_dataset = {'radar_out': deepcopy(radar)} new_dataset['radar_out'].fields = dict() new_dataset['radar_out'].add_field('velocity', r_speed) return new_dataset, ind_rad
2114cf4f5524662f80cac69dab45a00729053192
17,653
def brute_force_diagonalize(answers, wordlist=WORDS, quiet=False): """ Find the most cromulent diagonalization for a set of answers, trying all possible orders. See README.md for a cool example of this with 10 answers. As a somewhat artificial example, let's suppose we have these seven answers from the 2000 metas, but don't remember their order: >>> metas = ['benjamins', 'billgates', 'donors', 'luxor', 'mansion', 'miserly', 'realty'] >>> brute_force_diagonalize(metas)[0] # doctest: +NORMALIZE_WHITESPACE, +ELLIPSIS Cromulence Text Info 9.5 RUN EAST 9.2 MIX LAST 9.1 MAX LAST 9.1 BE NOISY 8.8 LINE TO I ... (9.5, 'RUN EAST', None) Of course we were looking for the famous red herring "BE NOISY", but "RUN EAST" sounds like a good way to find the coin also. """ results = [] seen = set() answers = [parse_cell(word) for word in answers] for i, permutation in enumerate(permutations(answers)): if not quiet and i > 0 and i % 10000 == 0: print("Tried %d permutations" % i) try: diag = diagonalize(permutation) except IndexError: continue found = wordlist.search(diag, count=1, use_cromulence=True) if found: logprob, text = found[0] slug = slugify(text) if slug not in seen: results.append((logprob, text, None)) seen.add(slug) return wordlist.show_best_results(results)
25725e34dc328cc605cc5dc147547c84de803873
17,654
def train(): """ MNIST training set creator. It returns a reader creator, each sample in the reader is image pixels in [-1, 1] and label in [0, 9]. :return: Training reader creator :rtype: callable """ return reader_creator( paddle.dataset.common.download(TRAIN_IMAGE_URL, 'mnist', TRAIN_IMAGE_MD5), paddle.dataset.common.download(TRAIN_LABEL_URL, 'mnist', TRAIN_LABEL_MD5), 100)
b7008aa61ce49822838c4b30709537396a93f453
17,655
import base64 import hmac import hashlib def sign_v2(key, msg): """ AWS version 2 signing by sha1 hashing and base64 encode. """ return base64.b64encode(hmac.new(key, msg.encode("utf-8"), hashlib.sha1).digest())
1aa54cc2cd3ce20ad5222a889754efda2f4632c3
17,656
def graph_apply(fun, *args): """Currying wrapper around APP(-,-).""" result = fun for arg in args: arg = as_graph(arg) result = APP(result, arg) return result
709306884b37b41c9a7289ad6a372d2b43ede6a9
17,657
def find_hcf(a, b) : """ Finds the Highest Common Factor among two numbers """ #print('HCF : ', a, b) if b == 0 : return a return find_hcf(b, a%b)
818bbc05ab9262e8fd1e8975daf68ca3e0fa6a8b
17,658
def GAU_pdf(x: np.ndarray, mu: float, var: float) -> np.ndarray: """ Probability function of Guassian distribution :param x: ndarray input parameters :param mu: float mean of the distribution :param var: float variance of the distribution :return: ndarray probability of each sample """ k = (1 / (np.sqrt(2 * np.pi * var))) up = -np.power(x - mu, 2) / (2 * var) return k * np.exp(up)
9810da4a05d86ac7895a2947a1890fe111faeae4
17,659
def version_compare(a, b): # real signature unknown; restored from __doc__ """ version_compare(a: str, b: str) -> int Compare the given versions; return a strictly negative value if 'a' is smaller than 'b', 0 if they are equal, and a strictly positive value if 'a' is larger than 'b'. """ return 0
97b3fd3bbd542d776b75327c88f9e80d776ba248
17,660
def line_status(): """ 设备线路详情 :return: """ device_id = request.args.get("device_id") lines = Line.objects(device_id=device_id).all() result = Monitor.device_status(device_id, lines) result.pop(0) return Success(result)
47ca3cfef469c346ad85b701339941707e2084ea
17,661
def _hist_fig(df, pred, c): """ """ bins = np.linspace(0, 1, 15) unlabeled = pred[c][pd.isnull(df[c])].values fig, (ax1, ax2) = plt.subplots(2,1) # top plot: training data pos_labeled = pred[c][(df[c] == 1)&(df["validation"] == False)].values neg_labeled = pred[c][(df[c] == 0)&(df["validation"] == False)].values train_auc = _auc(pos_labeled, neg_labeled) if len(pos_labeled) > 0: ax1.hist(pos_labeled, bins=bins, alpha=0.5, label="labeled positive (train)", density=True) if len(neg_labeled) > 0: ax1.hist(neg_labeled, bins=bins, alpha=0.5, label="labeled negative (train)", density=True) if len(unlabeled) > 0: ax1.hist(unlabeled, bins=bins, alpha=1., label="unlabeled", density=True, histtype="step", lw=2) # bottom plot: validation data pos_labeled = pred[c][(df[c] == 1)&(df["validation"] == True)].values neg_labeled = pred[c][(df[c] == 0)&(df["validation"] == True)].values test_auc = _auc(pos_labeled, neg_labeled) if len(pos_labeled) > 0: ax2.hist(pos_labeled, bins=bins, alpha=0.5, label="labeled positive (val)", density=True) if len(neg_labeled) > 0: ax2.hist(neg_labeled, bins=bins, alpha=0.5, label="labeled negative (val)", density=True) if len(unlabeled) > 0: ax2.hist(unlabeled, bins=bins, alpha=1., label="unlabeled", density=True, histtype="step", lw=2) for a in [ax1, ax2]: a.legend(loc="upper left") a.set_xlabel("assessed probability", fontsize=14) a.set_ylabel("frequency", fontsize=14) title = "model outputs for '%s'\nAUC train %s, test AUC %s"%(c, train_auc, test_auc) ax1.set_title(title, fontsize=14) plt.close(fig) return fig
6836c0228f2db705642e5f5fa4da6d318674fd55
17,663
import requests def is_responsive(url, code=200): """Check if something responds to ``url`` syncronously""" try: response = requests.get(url) if response.status_code == code: return True except requests.exceptions.RequestException as _e: pass return False
1ed307d7be468157c880bf7e481f255bac449c34
17,664
def fit_and_report(model, X, y, X_valid, y_valid): """ It fits a model and returns train and validation scores. Parameters: model (sklearn classifier model): The sklearn model X (numpy.ndarray): The X part of the train set y (numpy.ndarray): The y part of the train set X_valid (numpy.ndarray): The X part of the validation set y_valid (numpy.ndarray): The y part of the validation set Returns: scores (list): The list of scores of train and validation """ model.fit(X, y) lr_probs = model.predict_proba(X) lr_probs = lr_probs[:, 1] lr_probs_val = model.predict_proba(X_valid) lr_probs_val = lr_probs_val[:, 1] # calculate scores lr_auc = roc_auc_score(y, lr_probs) lr_auc_val = roc_auc_score(y_valid, lr_probs_val) scores = [lr_auc, lr_auc_val] return scores
f993a5410248e5303995f37b5464cb4a57928bcf
17,665
def move_all_generation_to_high_voltage(data): """Move all generation sources to the high voltage market. Uses the relative shares in the low voltage market, **ignoring transmission losses**. In theory, using the production volumes would be more correct, but these numbers are no longer updated since ecoinvent 3.2. Empties out the medium and low voltage mixes.""" MIXES = {low_voltage_mix, medium_voltage_mix, high_voltage_mix} mix_filter = lambda ds: ds['name'] in MIXES for group in toolz.groupby("location", filter(mix_filter, data)).values(): assert len(group) == 3 high, low, medium = sorted(group, key=lambda x: x['name']) medium_in_low = [ex for ex in low['exchanges'] if ex['name'] == medium_voltage_transformation][0]['amount'] high_in_low = [ex for ex in medium['exchanges'] if ex['name'] == high_voltage_transformation][0]['amount'] * \ medium_in_low for exc in high['exchanges']: if (exc['name'] in high_voltage_providers or ( "electricity" in exc['name'] and "import from" in exc['name'])): rescale_exchange(exc, high_in_low) high['exchanges'].extend([rescale_exchange(exc, medium_in_low) for exc in medium['exchanges'] if exc['name'] in medium_voltage_providers]) high['exchanges'].extend([exc for exc in low['exchanges'] if exc['name'] in low_voltage_providers]) data = empty_medium_voltage_markets(data) data = empty_low_voltage_markets(data) return data
ed9b1fcf60bb1b5645dbd6946fe2e98e6e73ccf3
17,666
from typing import Union def parser_first_text_or_content_if_could(html: etree._Element, query_path: str) -> Union[str, None]: """ 如果解析出的内容是一个数组,默认取的第一个 """ nodes = html.xpath(query_path) if not nodes: return None if len(nodes) > 0: desc = nodes[0] if hasattr(desc, 'text'): return str(desc.text) return str(desc) return None
8410280ca71083986af0aa89a312d5082ff36d8d
17,667
def get_all_quantity(results, q_func=None): """ """ quantities = [] for res_name in results: if q_func is not None: # We change the quantity function results[res_name].q_func = q_func min_quantity = results[res_name].min_quantity quantities.append(min_quantity) return quantities
56d50cacab2dcd7cb1554798a11bb1937436c73e
17,669
import random def generate_example_type_2a(problem, one_step_inferences): """Generates a type 2a training example. Args: problem: a lib.InferenceProblem instance. one_step_inferences: the list of one step inferences that can be reahced form the premises. Returns: An instance of "Example", or None if any issue was found. """ premises = problem.premises example_type = "2a" name_rule = random.choice([True, False]) inputs = ("What can be inferred from the following premises in a single " "inference step (ignoring inferences that add new predicates or " "constants)? ") if name_rule: inputs += "Name the inference rule being used: " inputs += (". ".join([rules.render_logic_clause(x) for x in premises])) + "." inferences_str = [] for [rule_inference, rule] in one_step_inferences: rule_name = rule.rule_name inference_str = rules.render_logic_clause(rule_inference) if name_rule: inference_str += f" can be inferred via the {rule_name} rule" inferences_str.append(inference_str) targets = (". ".join(inferences_str)) + "." if not inferences_str: example_type = "2a-empty" targets = "Nothing can be inferred from these premises." elif problem.contains_contradiction: example_type = "2a-cont" targets = ("Since the premises are contradictory, we can infer anything " "from them.") return lib.Example(inputs, targets, example_type, problem)
fafc05b70c7b2a84a2c1476e51fa783f240f2bd5
17,670