content
stringlengths 35
762k
| sha1
stringlengths 40
40
| id
int64 0
3.66M
|
---|---|---|
def call_assign_job(job_id, mex_id):
""" Function to send an update to the MEx Sentinel to assign a Job to an MEx. """
try:
rospy.wait_for_service('/mex_sentinel/assign_job_to_mex', rospy.Duration(1))
try:
assign_job = rospy.ServiceProxy('mex_sentinel/assign_job_to_mex', AssignJobToMex)
req = AssignJobToMexRequest()
req.job_id = job_id
req.mex_id = mex_id
result = assign_job(req)
return result
except rospy.ServiceException as e:
print(NAME + "Service call failed: %s"%e)
except rospy.ROSException:
pass | 9c5b2aa27e8d04949fbb4c5a2c9eb2ac86ccd9a7 | 17,090 |
def full(
coords, nodata=np.nan, dtype=np.float32, name=None, attrs={}, crs=None, lazy=False
):
"""Return a full DataArray based on a geospatial coords dictionary.
Arguments
---------
coords: sequence or dict of array_like, optional
Coordinates (tick labels) to use for indexing along each dimension (max 3).
The coordinate sequence should be (dim0, y, x) of which the first is optional.
nodata: float, int, optional
Fill value for new DataArray, defaults to other.nodata or if not set np.nan
dtype: numpy.dtype, optional
Data type
name: str, optional
DataArray name
attrs : dict, optional
additional attributes
crs: int, dict, or str, optional
Coordinate Reference System. Accepts EPSG codes (int or str); proj (str or dict)
lazy: bool, optional
If True return DataArray with a dask rather than numpy array.
Returns
-------
da: DataArray
Filled DataArray
"""
f = dask.array.empty if lazy else np.full
dims = tuple([d for d in coords])
shape = tuple([coords[dim].size for dim in dims])
data = f(shape, nodata, dtype=dtype)
da = xr.DataArray(data, coords, dims, name, attrs)
da.raster.set_nodata(nodata)
da.raster.set_crs(crs)
return da | 41bb4fce22a8dd280dee0d4891ff81bd88d263b5 | 17,091 |
from typing import Union
from typing import List
from typing import Tuple
from typing import Dict
def add_weight_decay(
model: nn.Module, weight_decay: float = 1e-5, skip_list: Union[List, Tuple] = ()
) -> List[Dict]:
"""Helper function to not decay weights in BatchNorm layers
Source: https://discuss.pytorch.org/t/weight-decay-in-the-optimizers-is-a-bad-idea-especially-with-batchnorm/16994/3
"""
decay = []
no_decay = []
for name, param in model.named_parameters():
if not param.requires_grad:
continue
if len(param.shape) == 1 or name in skip_list:
no_decay.append(param)
else:
decay.append(param)
return [
{"params": no_decay, "weight_decay": 0.0},
{"params": decay, "weight_decay": weight_decay},
] | 27efae02eaaf0bdc94f3763c1069165c47e08acb | 17,093 |
def find_bands_hdu(hdu_list, hdu):
"""Discover the extension name of the BANDS HDU.
Parameters
----------
hdu_list : `~astropy.io.fits.HDUList`
hdu : `~astropy.io.fits.BinTableHDU` or `~astropy.io.fits.ImageHDU`
Returns
-------
hduname : str
Extension name of the BANDS HDU. None if no BANDS HDU was found.
"""
if "BANDSHDU" in hdu.header:
return hdu.header["BANDSHDU"]
has_cube_data = False
if (
isinstance(hdu, (fits.ImageHDU, fits.PrimaryHDU))
and hdu.header.get("NAXIS", None) == 3
):
has_cube_data = True
elif isinstance(hdu, fits.BinTableHDU):
if (
hdu.header.get("INDXSCHM", "") in ["EXPLICIT", "IMPLICIT", ""]
and len(hdu.columns) > 1
):
has_cube_data = True
if has_cube_data:
if "EBOUNDS" in hdu_list:
return "EBOUNDS"
elif "ENERGIES" in hdu_list:
return "ENERGIES"
return None | 3b170109d199482c651861764b0ec21a44aa7933 | 17,094 |
def read_raw_binary_file(file_path):
"""can actually be any file"""
with open(file_path, 'rb') as f:
return f.read() | b03bc1d4c00f9463ded0ea022023e66fd298a7ad | 17,095 |
def encode_cl_value(entity: CLValue) -> dict:
"""Encodes a CL value.
"""
def _encode_parsed(type_info: CLType) -> str:
if type_info.typeof in TYPES_NUMERIC:
return str(int(entity.parsed))
elif type_info.typeof == CLTypeKey.BYTE_ARRAY:
return entity.parsed.hex()
elif type_info.typeof == CLTypeKey.PUBLIC_KEY:
return entity.parsed.account_key.hex()
elif type_info.typeof == CLTypeKey.UREF:
return entity.parsed.as_string()
elif type_info.typeof == CLTypeKey.OPTION:
return _encode_parsed(type_info.inner_type)
else:
return str(entity.parsed)
return {
"bytes": serialisation.to_bytes(entity).hex(),
"cl_type": encode_cl_type(entity.cl_type),
"parsed": _encode_parsed(entity.cl_type),
} | 09d75f9552347e4fd121dcd1a57f26ac46756870 | 17,096 |
def escape(string):
""" Escape a passed string so that we can send it to the
regular expressions engine.
"""
ret = None
def replfunc(m):
if ( m[0] == "\\" ):
return("\\\\\\\\")
else:
return("\\\\" + m[0])
# @note - I had an issue getting replfunc to be called in
# javascript correctly when I didn't use this pragma
# not sure if I was just doing it wrong or what
__pragma__(
'js', '{}',
'''
var r = /[^A-Za-z:;\d]/g;
ret = string.replace(r, replfunc);
''')
if ( ret is not None ):
return(ret)
else:
raise Exception("Failed to escape the passed string") | c2682757fec2ddaefb32bb792fee44dd63c539fd | 17,097 |
def batch_apply(fn, inputs):
"""Folds time into the batch dimension, runs fn() and unfolds the result.
Args:
fn: Function that takes as input the n tensors of the tf.nest structure,
with shape [time*batch, <remaining shape>], and returns a tf.nest
structure of batched tensors.
inputs: tf.nest structure of n [time, batch, <remaining shape>] tensors.
Returns:
tf.nest structure of [time, batch, <fn output shape>]. Structure is
determined by the output of fn.
"""
time_to_batch_fn = lambda t: tf.reshape(t, [-1] + t.shape[2:].as_list())
batched = tf.nest.map_structure(time_to_batch_fn, inputs)
output = fn(*batched)
prefix = [int(tf.nest.flatten(inputs)[0].shape[0]), -1]
batch_to_time_fn = lambda t: tf.reshape(t, prefix + t.shape[1:].as_list())
return tf.nest.map_structure(batch_to_time_fn, output) | 4cc220a7891f236dc6741e9c203862c5ee33e978 | 17,098 |
def grab_haul_list(creep: Creep, roomName, totalStructures, add_storage=False):
"""
위에 허울러가 에너지를 채울 목록 확인.
:param creep:
:param roomName: 방이름.
:param totalStructures: 본문 all_structures 와 동일
:param add_storage: 스토리지를 포함할 것인가? priority == 0 인 상황 아니면 포함할일이 없음.
:return: 허울러의 에너지 채울 대상목록
"""
# defining structures to fill the energy on. originally above of this spot but replaced for cpu eff.
# towers only fills 80% since it's gonna repair here and there all the time.
structures = totalStructures.filter(lambda s: ((s.structureType == STRUCTURE_SPAWN
or s.structureType == STRUCTURE_EXTENSION)
and s.energy < s.energyCapacity)
or (s.structureType == STRUCTURE_TOWER
and s.energy < s.energyCapacity * 0.8)
or (s.structureType == STRUCTURE_TERMINAL
and s.store[RESOURCE_ENERGY] < 10000))
# 스토리지에 넣을 양이 있을때 추가하는거임.
# 기준: 스토리지에 남은 양이 max_energy 값 이상일 경우
# 변경: 스토리지에 남은 양이 있는 경우
if add_storage:
structures.extend(totalStructures.filter
(lambda s: s.structureType == STRUCTURE_STORAGE
# and s.storeCapacity - _.sum(s.store) >= Game.rooms[roomName].memory.structure_type[max_energy]))
and s.storeCapacity - _.sum(s.store) > 0))
# 핵에 에너지 넣는걸로 함?
if Memory.rooms[roomName].options and Memory.rooms[roomName].options.fill_nuke:
nuke_structure_add = totalStructures.filter(lambda s: s.structureType == STRUCTURE_NUKER
and s.energy < s.energyCapacity)
structures.extend(nuke_structure_add)
# 연구소에 에너지 넣는걸로 함?
if Memory.rooms[roomName].options and Memory.rooms[roomName].options.fill_labs:
structure_add = totalStructures \
.filter(lambda s: s.structureType == STRUCTURE_LAB and s.energy < s.energyCapacity)
structures.extend(structure_add)
container = []
# for_upgrade :스토리지가 컨트롤러에서 많이 떨어져 있을때 대비해 두는 컨테이너.
# 렙 8이하에 에너지가 있을때만 찾는다
if Game.rooms[roomName].controller.level < 8 and creep.store.getCapacity(RESOURCE_ENERGY):
for rcont in Game.rooms[roomName].memory[STRUCTURE_CONTAINER]:
cont_obj = Game.getObjectById(rcont.id)
if not cont_obj:
continue
# 업글용 컨테이너고 수확저장용도가 아닌가? 그러면 허울러가 넣는다. 2/3 이하로 차있을때만.
if rcont.for_upgrade and not rcont.for_harvest \
and cont_obj.store.getUsedCapacity() < cont_obj.store.getCapacity() * 2 / 3:
# 단, 스토리지를 만들 렙(4이상)이고 스토리지가 없으면 안넣는다.
# 방 내 에너지가 안 찼을때도 통과
if 4 <= creep.room.controller.level \
and not Game.getObjectById(creep.memory.upgrade_target).room.storage \
or creep.room.energyAvailable < creep.room.energyCapacityAvailable * .95:
continue
container.append(Game.getObjectById(rcont.id))
structures.extend(container)
return structures | d1d944c221089363a7e546bdc03dd51cd178fc35 | 17,099 |
def target(x, seed, instance):
"""A target function for dummy testing of TA
perform x^2 for easy result calculations in checks.
"""
# Return x[i] (with brackets) so we pass the value, not the
# np array element
return x[0] ** 2, {'key': seed, 'instance': instance} | 131560778f51ebd250a3077833859f7e5addeb6e | 17,101 |
def generate(fspec, count, _fuel=None):
"""Generate <count> number of random passwords/passphrases.
The passphrases are formated according to <fspec>.
Returned value is (list, json_data),
where list is a <count>-element sequence of
pair of (password, reading hint for password).
json_data is a dict at least containing the following keys:
key 'diag': (str) message for diagnostics,
key 'entropy': (float) estimated entropy of generated passphrases,
key 'elements': list of sequences of elements of generated passphrases.
Raises BadFormatError if fspec is either bad or not able to be satisfied.
"""
diag = []
fspec, entropy = _parse_fspec(fspec, diag=diag, _fuel=_fuel)
if count < 1:
raise BadFormatError('bad count of passwords specified')
fspec, entropy = _resolve_entropy(fspec, entropy, diag=diag, _fuel=_fuel)
elements = []
result = []
for ncount in range(count):
o = []
def elem(e, f, o, h, c=None, ct=1):
d = {'entropy': e, 'separator': f, 'password': o, 'hint': h}
if c != None:
d['corpus_source'] = str(c)
if not f:
d['repeat_count'] = ct
return d
def proc(filling, i, sep, wl, ct):
initial = not filling and i == 0
e1 = wl.entropy()
if wl.is_words:
intersep = sep if sep != None else " "
presep = "" if initial else sep if sep != None else " "
for c in range(0, ct):
w = wl.get_randomly()
s = presep if c == 0 else intersep
sh = " " if (s == "" and c != 0) else s
if sh: o.append(elem(0.0, True, s, sh, None))
o.append(elem(e1, False, w.word, w.hint, wl))
else:
if ct != 0:
intersep = ""
presep = "" if initial else sep
if presep: o.append(elem(0.0, True, presep, presep, None))
ow = []
oh = []
for c in range(0, ct):
w = wl.get_randomly()
ow.append(w.word)
oh.append(w.hint)
o.append(elem(ct * e1, False, "".join(ow), "".join(oh), wl, ct=ct))
for i, s in enumerate(fspec):
proc(False, i, *s)
o_word = "".join(x['password'] for x in o)
o_hint = "".join(x['hint'] for x in o)
elements.append(o)
result.append((o_word, o_hint))
return result, {'passwords': result, 'elements': elements, 'diag': "\n".join(diag), 'entropy': entropy} | aad44a80a648d192c696ebdd44ceefadd21d88cd | 17,102 |
def convert_to_valid_einsum_chars(einsum_str):
"""Convert the str ``einsum_str`` to contain only the alphabetic characters
valid for numpy einsum.
"""
# partition into valid and invalid sets
valid, invalid = set(), set()
for x in einsum_str:
(valid if is_valid_einsum_char(x) else invalid).add(x)
# get replacements for invalid chars that are not already used
available = gen_unused_symbols(valid, len(invalid))
# map invalid to available and replace in the inputs
replacer = dict(zip(invalid, available))
return "".join(replacer.get(x, x) for x in einsum_str) | 2cdd67bc967a12bd3dcb80f323f093cd9eff7213 | 17,103 |
def prop_GAC(csp, newVar=None):
"""
Do GAC propagation. If newVar is None we do initial GAC enforce
processing all constraints. Otherwise we do GAC enforce with
constraints containing newVar on GAC Queue
"""
constraints = csp.get_cons_with_var(newVar) if newVar else csp.get_all_cons()
pruned = []
# NOTE: although <constraints> is a list, the order is unimportant and acts like a set.
# See page 209 of RN textbook
while constraints != []:
constraint = constraints.pop(0) # grab the first constraint
for var in constraint.get_unasgn_vars(): # get_scope()?
for val in var.cur_domain():
if not constraint.has_support(var, val):
# Check if we have already pruned (var, val)
if (var, val) not in pruned:
var.prune_value(val)
pruned.append((var, val))
# We have modified var's domain, so add back all constraints
# that have var in it's scope
for c in csp.get_cons_with_var(var):
if c not in constraints:
constraints.append(c)
# Check if var's domain is empty
if var.cur_domain_size() == 0:
return False, pruned
return True, pruned | a1c576cfd9920a51eb9b9884bd49b4e8f4194d02 | 17,104 |
def submit_only_kwargs(kwargs):
"""Strip out kwargs that are not used in submit"""
kwargs = kwargs.copy()
for key in ['patience', 'min_freq', 'max_freq', 'validation',
"max_epochs", "epoch_boost", "train_size", "valid_size"]:
_ = kwargs.pop(key, None)
return kwargs | e93a4b8921c5b80bb487caa6057c1ff7c1701305 | 17,106 |
def make_simple_boundary(outline_edge_group: UniqueEdgeList, all_edges: UniqueEdgeList):
"""
Step 3 recursive
:param outline_edge_group: A list of edges, grouped by connectivity between edges.
:param all_edges:
:return: ???
"""
while len(all_edges.edge_list) > 0:
current_edge = all_edges.edge_list[0]
work = False
neighbors = all_edges.get_neighbor_indices_for_edge(current_edge)
# Loop against all neighboring edges, gobble up the neighbors.
for neighbor in neighbors:
neighbor_edge = all_edges.edge_list[neighbor]
if not Edge.same_edge(current_edge, neighbor_edge):
shared_vertex = Edge.has_shared_vertex(current_edge, neighbor_edge)
parallel = Edge.are_parallel_or_anti_parallel(current_edge, neighbor_edge)
if shared_vertex is not None and parallel:
# Case 1.
start_vertex = [neighbor_edge.x1, neighbor_edge.y1, neighbor_edge.z1]
# Case 2.
if (neighbor_edge.x1 == shared_vertex[0] and
neighbor_edge.y1 == shared_vertex[1] and
neighbor_edge.z1 == shared_vertex[2]):
start_vertex = [neighbor_edge.x2, neighbor_edge.y2, neighbor_edge.z2]
# Case 3.
end_vertex = [current_edge.x1, current_edge.y1, current_edge.z1]
# Case 4.
if (current_edge.x1 == shared_vertex[0] and
current_edge.y1 == shared_vertex[1] and
current_edge.z1 == shared_vertex[2]):
end_vertex = [current_edge.x2, current_edge.y2, current_edge.z2]
new_edge = Edge(start_vertex[0], start_vertex[1], start_vertex[2], # Edge Start
end_vertex[0], end_vertex[1], end_vertex[2]) # Edge end
all_edges.remove(current_edge)
all_edges.remove(neighbor_edge)
all_edges.add(new_edge)
work = True
break
if not work and len(all_edges.edge_list) > 0:
outline_edge_group.add(current_edge)
all_edges.remove(current_edge)
return outline_edge_group | fd3dfd40302d2f01126032c9420fd7b990d30cc6 | 17,107 |
async def async_attach_trigger(
hass: HomeAssistant,
config: ConfigType,
action: AutomationActionType,
automation_info: dict,
) -> CALLBACK_TYPE:
"""Attach a trigger."""
job = HassJob(action)
if config[CONF_TYPE] == "turn_on":
entity_id = config[CONF_ENTITY_ID]
@callback
def _handle_event(event: Event):
if event.data[ATTR_ENTITY_ID] == entity_id:
hass.async_run_hass_job(
job,
{"trigger": {**config, "description": f"{DOMAIN} - {entity_id}"}},
event.context,
)
return hass.bus.async_listen(EVENT_TURN_ON, _handle_event)
return lambda: None | 5cf362c7dc0b82f562164141ccf76f30dd1a0169 | 17,110 |
import pathlib
def imread(image_path, as_uint8=True):
"""Read an image as numpy array.
Args:
image_path (str or pathlib.Path):
File path (including extension) to read image.
as_uint8 (bool):
Read an image in uint8 format.
Returns:
:class:`numpy.ndarray`:
Image array of dtype uint8, MxNx3.
Examples:
>>> from tiatoolbox import utils
>>> img = utils.misc.imread('ImagePath.jpg')
"""
if isinstance(image_path, pathlib.Path):
image_path = str(image_path)
if pathlib.Path(image_path).suffix == ".npy":
image = np.load(image_path)
else:
image = cv2.imread(image_path)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
if as_uint8:
return image.astype(np.uint8)
return image | 30050f63e43d862cf512994f0e9d21c187b1ac0a | 17,111 |
def pk(obj):
"""
A helper that gets the primary key of a model instance if one is passed in.
If not, this returns the parameter itself.
This allows functions to have parameters that accept either a primary key
or model instance. For example:
``` python
def get_translations(target_locale):
return Translation.objects.filter(target_locale=pk(target_locale))
# Both of these would be valid calls
get_translations(Locale.objects.get(id=1))
get_translations(1)
```
Args:
obj (Model | any): A model instance or primary key value.
Returns:
any: The primary key of the model instance, or value of `obj` parameter.
"""
if isinstance(obj, models.Model):
return obj.pk
else:
return obj | 431f518fe6d53e979543e4588a1d7389d7100d69 | 17,112 |
import requests
import json
def get_dataset(id):
"""Query for existence of dataset by ID."""
uu = UrlUtils()
es_url = uu.rest_url
#es_index = "{}_{}_s1-ifg".format(uu.grq_index_prefix, version)
es_index = "grq"
# query
query = {
"query": {
"wildcard": {
"_id": id
}
}
}
logger.info(query)
if es_url.endswith('/'):
search_url = '%s%s/_search' % (es_url, es_index)
else:
search_url = '%s/%s/_search' % (es_url, es_index)
logger.info("search_url : %s" %search_url)
r = requests.post(search_url, data=json.dumps(query))
if r.status_code != 200:
logger.info("Failed to query %s:\n%s" % (es_url, r.text))
logger.info("query: %s" % json.dumps(query, indent=2))
logger.info("returned: %s" % r.text)
r.raise_for_status()
result = r.json()
logger.info(result['hits']['total'])
return result | cfb31da0e23b7e197af1919fa34fa3f2d4fa1dfe | 17,113 |
def bags_with_gold( parents_of, _ ):
"""
Starting from leaf = 'gold', find recursively its parents upto the root and add them to a set
Number of bags that could contain gold = length of the set
"""
contains_gold = set()
def find_roots( bag ):
for outer_bag in parents_of[ bag ]:
contains_gold.add( outer_bag )
find_roots( outer_bag )
find_roots('shiny gold')
return len(contains_gold) | 3fd2b1c260d41867a5787a14f0c50a9b5d1a2f08 | 17,114 |
def process_file(file_path):
"""
This function processes the submitted file
:return: A dictionary of errors found in the file. If there are no errors,
then only the error report headers will in the results.
"""
enc = detect_bom_encoding(file_path)
if enc is None:
with open(file_path, 'r') as f:
result = run_checks(file_path, f)
else:
with open(file_path, 'r', encoding=enc) as f:
result = run_checks(file_path, f)
print('Finished processing %s\n' % file_path)
return result | 29b25b9a1ac950b2b0d051a6748ebc78b31bad10 | 17,115 |
import requests
def get_request_body(text, api_key, *args):
"""
send a request and return the response body parsed as dictionary
@param text: target text that you want to detect its language
@type text: str
@type api_key: str
@param api_key: your private API key
"""
if not api_key:
raise Exception("you need to get an API_KEY for this to work. "
"Get one for free here: https://detectlanguage.com/documentation")
if not text:
raise Exception("Please provide an input text")
else:
try:
headers = config['headers']
headers['Authorization'] = headers['Authorization'].format(api_key)
response = requests.post(config['url'],
json={'q': text},
headers=headers)
body = response.json().get('data')
return body
except HTTPError as e:
print("Error occured while requesting from server: ", e.args)
raise e | e21e8733eec00bc78616b18a8d93c18dc2b20449 | 17,116 |
def generate_sample_task(project):
""" Generate task example for upload and check it with serializer validation
:param project: project with label config
:return: task dict
"""
task = generate_sample_task_without_check(project.label_config)
# check generated task
'''if project:
try:
TaskSerializer.check_data(project, task)
except ValidationError as e:
raise ValidationError(str(e) + ': task example = ' + json.dumps(task) +
', project config = ' + project.label_config +
', project data_types = ' + json.dumps(project.data_types))'''
return task | 1e3259b320e46a938139b0dde8ed5b999290d6cd | 17,117 |
def serializable_value(self, field_name):
"""
Returns the value of the field name for this instance. If the field is
a foreign key, returns the id value, instead of the object. If there's
no Field object with this name on the model, the model attribute's
value is returned directly.
Used to serialize a field's value (in the serializer, or form output,
for example). Normally, you would just access the attribute directly
and not use this method.
"""
try:
field = self._admin_opts.get_field_by_name(field_name)[0]
except FieldDoesNotExist:
return getattr(self, field_name)
return getattr(self, field.name) | 839d59e92c4249359367d07700bd55f80eafe98b | 17,118 |
import pandas
def fetch_fi2010(normalization=None) -> pandas.DataFrame:
"""
Load the FI2010 dataset with no auction.
Benchmark Dataset for Mid-Price Forecasting of Limit Order Book Data with Machine
Learning Methods. A Ntakaris, M Magris, J Kanniainen, M Gabbouj, A Iosifidis.
arXiv:1705.03233 [cs.CE]. https://arxiv.org/abs/1705.03233
Parameters
----------
normalization : {"zscore", None}
Normalization method.
"""
if normalization is None:
url = "https://raw.githubusercontent.com/simaki/fi2010/main/data/data.csv"
return pandas.read_csv(url, index_col=0)
if normalization == "zscore":
url1 = "https://raw.githubusercontent.com/simaki/fi2010/main/data/data_zscore1.csv"
url2 = "https://raw.githubusercontent.com/simaki/fi2010/main/data/data_zscore2.csv"
return pandas.concat([pandas.read_csv(url1, index_col=0), pandas.read_csv(url2, index_col=0)]) | bb6e6e484d6d3d3d1d831a9194fe4f629b820db8 | 17,119 |
def get_netcdf_filename(batch_idx: int) -> str:
"""Generate full filename, excluding path."""
assert 0 <= batch_idx < 1e6
return f"{batch_idx:06d}.nc" | 5d916c4969eb96653ea9f0a21ab8bec93ebcfafa | 17,120 |
def area_calc(radius, point_in, total_points):
"""Calculates the partial area of ball
:param radius: radius of ball
:param point_in: points of the total points to include
:param total_points: number of sampled points
:return: area
"""
return (4 * pi * radius ** 2) * (point_in / total_points) | a660776a4f4a1d2d04a28255b7ee0892ddc5d136 | 17,122 |
import gettext
import math
def results_framework_export(request, program):
"""Returns .XLSX containing program's results framework"""
program = Program.rf_aware_objects.get(pk=program)
wb = openpyxl.Workbook()
wb.remove(wb.active)
ws = wb.create_sheet(gettext("Results Framework"))
get_font = lambda attrs: styles.Font(**{**{'name': 'Calibri', 'size': 12}, **attrs})
ws.cell(row=2, column=2).value = gettext("Results Framework")
ws.cell(row=2, column=2).font = get_font({'size': 18, 'bold': True})
ws.cell(row=3, column=2).value = program.name
ws.cell(row=3, column=2).font = get_font({'size': 18})
level_span_style = styles.NamedStyle(name='level_span')
level_span_style.font = get_font({})
level_span_style.alignment = styles.Alignment(wrap_text=True, vertical='center', horizontal='center')
level_span_style.fill = styles.PatternFill('solid', 'E5E5E5')
wb.add_named_style(level_span_style)
level_single_style = styles.NamedStyle(name='level_no_span')
level_single_style.font = get_font({})
level_single_style.alignment = styles.Alignment(wrap_text=True, vertical='top', horizontal='left')
level_single_style.fill = styles.PatternFill('solid', 'E5E5E5')
wb.add_named_style(level_single_style)
bottom_tier = program.level_tiers.count()
def row_height_getter(cell):
lines_of_text = str(cell.value).splitlines()
row = cell.row
def get_row_height_decorated(w):
lines = sum([math.ceil(len(s)/w) or 1 for s in lines_of_text])
height = 26 + lines * 15
if lines == 1:
height = 30
return max(height, ws.row_dimensions[row].height or 0, 30)
return get_row_height_decorated
def write_level(parent, start_row, start_column):
levels = program.levels.filter(parent=parent).order_by('customsort')
column = start_column
row = start_row
if not levels:
return column + 2
for level in levels:
current_column = column
cell = ws.cell(row=row, column=column)
cell.value = level.display_name
get_row_height = row_height_getter(cell)
if level.level_depth == bottom_tier:
cell.style = 'level_no_span'
row = row + 2
ws.row_dimensions[cell.row].height = get_row_height(24)
else:
column = write_level(level, row+2, column)
if column - 2 <= current_column:
cell.style = 'level_no_span'
ws.row_dimensions[cell.row].height = get_row_height(24)
else:
cell.style = 'level_span'
ws.merge_cells(start_row=row, end_row=row, start_column=current_column, end_column=column-2)
width = 24 + 29 * ((column - 2 - current_column) / 2)
ws.row_dimensions[cell.row].height = get_row_height(width)
if parent and parent.level_depth == bottom_tier-1:
column = column + 2
if parent is None:
for column in range(column):
width = 24.5 if (column + 1) % 2 == 0 else 3
ws.column_dimensions[utils.get_column_letter(column + 1)].width = width
for r in range(3, ws.max_row+2):
if r % 2 == 0:
ws.row_dimensions[r].height = 10
return column
write_level(None, 5, 2)
filename = "Results Framework.xlsx"
response = HttpResponse(content_type='application/ms-excel')
response['Content-Disposition'] = 'attachment; filename="{}"'.format(filename)
wb.save(response)
return response | 79cf9f84243f089dd463909f9f64d13a1bb39444 | 17,123 |
import copy
def generate_subwindow(pc, sample_bb, scale, offset=2, oriented=True):
"""
generating the search area using the sample_bb
:param pc:
:param sample_bb:
:param scale:
:param offset:
:param oriented: use oriented or axis-aligned cropping
:return:
"""
rot_mat = np.transpose(sample_bb.rotation_matrix)
trans = -sample_bb.center
if oriented:
new_pc = PointCloud(pc.points.copy())
box_tmp = copy.deepcopy(sample_bb)
# transform to the coordinate system of sample_bb
new_pc.translate(trans)
box_tmp.translate(trans)
new_pc.rotate(rot_mat)
box_tmp.rotate(Quaternion(matrix=rot_mat))
new_pc = crop_pc_axis_aligned(new_pc, box_tmp, scale=scale, offset=offset)
else:
new_pc = crop_pc_axis_aligned(pc, sample_bb, scale=scale, offset=offset)
# transform to the coordinate system of sample_bb
new_pc.translate(trans)
new_pc.rotate(rot_mat)
return new_pc | af86fdd4409f98ccd503a9587a6e4b19b0763a31 | 17,124 |
def tsfigure(num=None, figsize=None, dpi=None, facecolor=None,
edgecolor=None, frameon=True, subplotpars=None,
FigureClass=TSFigure):
"""
Creates a new :class:`TimeSeriesFigure` object.
Parameters
----------
num : {None, int}, optional
Number of the figure.
If None, a new figure is created and ``num`` is incremented.
%(figsize)s
%(dpi)s
%(facecolor)s
%(edgecolor)s
%(frameon)s
%(subplotpars)s
FigureClass : FigureClass
Class of the figure to create
"""
figargs = dict(num=num, figsize=figsize, dpi=dpi, facecolor=facecolor,
frameon=frameon, FigureClass=FigureClass,
subplotpars=subplotpars)
fig = pylab.figure(**figargs)
return fig | 578b8299ea8b7b8eb05a1f0e68ce4b1f1dca4682 | 17,125 |
import zipfile
import json
def load_predict_result(predict_filename):
"""Loads the file to be predicted"""
predict_result = {}
ret_code = SUCCESS
try:
predict_file_zip = zipfile.ZipFile(predict_filename)
except:
ret_code = FILE_ERROR
return predict_result, ret_code
for predict_file in predict_file_zip.namelist():
for line in predict_file_zip.open(predict_file):
try:
line = line.decode('utf8').strip()
except:
ret_code = ENCODING_ERROR
return predict_result, ret_code
try:
json_info = json.loads(line)
except:
ret_code = JSON_ERROR
return predict_result, ret_code
if 'text' not in json_info or 'spo_list' not in json_info:
ret_code = SCHEMA_ERROR
return predict_result, ret_code
sent = json_info['text']
spo_set = set()
for spo_item in json_info['spo_list']:
if type(spo_item) is not dict or 'subject' not in spo_item \
or 'predicate' not in spo_item \
or 'object' not in spo_item or \
not isinstance(spo_item['subject'], basestring) or \
not isinstance(spo_item['object'], basestring):
ret_code = SCHEMA_ERROR
return predict_result, ret_code
s = del_bookname(spo_item['subject'].lower())
o = del_bookname(spo_item['object'].lower())
spo_set.add((s, spo_item['predicate'], o))
predict_result[sent] = spo_set
return predict_result, ret_code | c26cc24fcdcaa774d05ed6963f66cae346617f46 | 17,126 |
def convert_post_to_VERB(request, verb):
"""
Force Django to process the VERB.
"""
if request.method == verb:
if hasattr(request, '_post'):
del(request._post)
del(request._files)
try:
request.method = "POST"
request._load_post_and_files()
request.method = verb
except AttributeError:
request.META['REQUEST_METHOD'] = 'POST'
request._load_post_and_files()
request.META['REQUEST_METHOD'] = verb
setattr(request, verb, request.POST)
return request | 3c304d07ab04950ac65f58405acc3103a3b64dcf | 17,128 |
def close(x, y, rtol, atol):
"""Returns True if x and y are sufficiently close.
Parameters
----------
rtol
The relative tolerance.
atol
The absolute tolerance.
"""
# assumes finite weights
return abs(x-y) <= atol + rtol * abs(y) | bd2597c0c94f2edf686d0dc9772288312cb36d83 | 17,129 |
import warnings
def plot_precip_field(
precip,
ptype="intensity",
ax=None,
geodata=None,
units="mm/h",
bbox=None,
colorscale="pysteps",
probthr=None,
title=None,
colorbar=True,
axis="on",
cax=None,
map_kwargs=None,
**kwargs,
):
"""
Function to plot a precipitation intensity or probability field with a
colorbar.
.. _Axes: https://matplotlib.org/api/axes_api.html#matplotlib.axes.Axes
.. _SubplotSpec: https://matplotlib.org/api/_as_gen/matplotlib.gridspec.SubplotSpec.html
Parameters
----------
precip: array-like
Two-dimensional array containing the input precipitation field or an
exceedance probability map.
ptype: {'intensity', 'depth', 'prob'}, optional
Type of the map to plot: 'intensity' = precipitation intensity field,
'depth' = precipitation depth (accumulation) field,
'prob' = exceedance probability field.
geodata: dictionary or None, optional
Optional dictionary containing geographical information about
the field. Required is map is not None.
If geodata is not None, it must contain the following key-value pairs:
.. tabularcolumns:: |p{1.5cm}|L|
+-----------------+---------------------------------------------------+
| Key | Value |
+=================+===================================================+
| projection | PROJ.4-compatible projection definition |
+-----------------+---------------------------------------------------+
| x1 | x-coordinate of the lower-left corner of the data |
| | raster |
+-----------------+---------------------------------------------------+
| y1 | y-coordinate of the lower-left corner of the data |
| | raster |
+-----------------+---------------------------------------------------+
| x2 | x-coordinate of the upper-right corner of the |
| | data raster |
+-----------------+---------------------------------------------------+
| y2 | y-coordinate of the upper-right corner of the |
| | data raster |
+-----------------+---------------------------------------------------+
| yorigin | a string specifying the location of the first |
| | element in the data raster w.r.t. y-axis: |
| | 'upper' = upper border, 'lower' = lower border |
+-----------------+---------------------------------------------------+
units : {'mm/h', 'mm', 'dBZ'}, optional
Units of the input array. If ptype is 'prob', this specifies the unit of
the intensity threshold.
bbox : tuple, optional
Four-element tuple specifying the coordinates of the bounding box. Use
this for plotting a subdomain inside the input grid. The coordinates are
of the form (lower left x, lower left y ,upper right x, upper right y).
If 'geodata' is not None, the bbox is in map coordinates, otherwise
it represents image pixels.
colorscale : {'pysteps', 'STEPS-BE', 'BOM-RF3'}, optional
Which colorscale to use. Applicable if units is 'mm/h', 'mm' or 'dBZ'.
probthr : float, optional
Intensity threshold to show in the color bar of the exceedance
probability map.
Required if ptype is "prob" and colorbar is True.
title : str, optional
If not None, print the title on top of the plot.
colorbar : bool, optional
If set to True, add a colorbar on the right side of the plot.
axis : {'off','on'}, optional
Whether to turn off or on the x and y axis.
cax : Axes_ object, optional
Axes into which the colorbar will be drawn. If no axes is provided
the colorbar axes are created next to the plot.
Other parameters
----------------
map_kwargs: dict
Optional parameters that need to be passed to
:py:func:`pysteps.visualization.basemaps.plot_geography`.
Returns
-------
ax : fig Axes_
Figure axes. Needed if one wants to add e.g. text inside the plot.
"""
if map_kwargs is None:
map_kwargs = {}
if "type" in kwargs:
warnings.warn(
"The 'type' keyword use to indicate the type of plot will be "
"deprecated in version 1.6. Use 'ptype' instead."
)
ptype = kwargs.get("type")
if ptype not in PRECIP_VALID_TYPES:
raise ValueError(
f"Invalid precipitation type '{ptype}'."
f"Supported: {str(PRECIP_VALID_TYPES)}"
)
if units not in PRECIP_VALID_UNITS:
raise ValueError(
f"Invalid precipitation units '{units}."
f"Supported: {str(PRECIP_VALID_UNITS)}"
)
if ptype == "prob" and colorbar and probthr is None:
raise ValueError("ptype='prob' but probthr not specified")
if len(precip.shape) != 2:
raise ValueError("The input is not two-dimensional array")
# Assumes the input dimensions are lat/lon
nlat, nlon = precip.shape
x_grid, y_grid, extent, regular_grid, origin = get_geogrid(
nlat, nlon, geodata=geodata
)
ax = get_basemap_axis(extent, ax=ax, geodata=geodata, map_kwargs=map_kwargs)
precip = np.ma.masked_invalid(precip)
# plot rainfield
if regular_grid:
im = _plot_field(precip, ax, ptype, units, colorscale, extent, origin=origin)
else:
im = _plot_field(
precip, ax, ptype, units, colorscale, extent, x_grid=x_grid, y_grid=y_grid
)
plt.title(title)
# add colorbar
if colorbar:
# get colormap and color levels
_, _, clevs, clevs_str = get_colormap(ptype, units, colorscale)
if ptype in ["intensity", "depth"]:
extend = "max"
else:
extend = "neither"
cbar = plt.colorbar(
im, ticks=clevs, spacing="uniform", extend=extend, shrink=0.8, cax=cax
)
if clevs_str is not None:
cbar.ax.set_yticklabels(clevs_str)
if ptype == "intensity":
cbar.set_label(f"Precipitation intensity [{units}]")
elif ptype == "depth":
cbar.set_label(f"Precipitation depth [{units}]")
else:
cbar.set_label(f"P(R > {probthr:.1f} {units})")
if geodata is None or axis == "off":
ax.xaxis.set_ticks([])
ax.xaxis.set_ticklabels([])
ax.yaxis.set_ticks([])
ax.yaxis.set_ticklabels([])
if bbox is not None:
ax.set_xlim(bbox[0], bbox[2])
ax.set_ylim(bbox[1], bbox[3])
return ax | 7e9429310ffdfdb38ac2b6e03b4c846d017060f5 | 17,130 |
def get_for_repo(repo, name, default=None):
"""Gets a configuration setting for a particular repository. Looks for a
setting specific to the repository, then falls back to a global setting."""
NOT_FOUND = [] # a unique sentinel distinct from None
value = get(name, NOT_FOUND, repo)
if value is NOT_FOUND:
value = get(name, default, '*')
return value | 5848e4da859f26788ab02b733bc61135c1ea3b80 | 17,131 |
from typing import AnyStr
def new_user(tenant: AnyStr, password: AnyStr) -> bool:
"""Return a boolean containing weither a new tenant is created or no."""
if not query.get_tenant_id(tenant):
return True
return False | ac1bc45213c76712d1ec3553a8545fac5ab67f3a | 17,132 |
def home():
"""
Home page control code
:return Rendered page:
"""
error = request.args.get("error", None)
state, code = request.args.get("state", None), request.args.get("code", None)
if code and not has_user() and 'state' in session and session['state'] == state:
tok = reddit_get_access_token(code)
username = reddit_get_username(tok)
session['user'] = username
session['token'] = tok
session.modified = True
session['state'] = str(uuid4())
session.modified = True
return render_template('home.html', user=get_user(),
error=False, redirect=whisky_recommender.config.REDDIT_REDIRECT,
client_id=whisky_recommender.config.REDDIT_CLIENT, state=session['state']) | 280f17feff363fa73decfa15bc615aa0c320d3d9 | 17,133 |
def is_even(val):
"""
Confirms if a value if even.
:param val: Value to be tested.
:type val: int, float
:return: True if the number is even, otherwise false.
:rtype: bool
Examples:
--------------------------
.. code-block:: python
>>> even_numbers = list(filter(is_even, range(20)))
>>> print(even_numbers)
[0, 2, 4, 6, 8, 10, 12, 14, 16, 18]
>>> print(is_even(9))
False
>>> print(is_even(-2))
True
>>> print([value for value in range(20) if is_even(value)])
[0, 2, 4, 6, 8, 10, 12, 14, 16, 18]
>>> print([is_even(value) for value in range(4)])
[True, False, True, False]
"""
return (val % 2) == 0 | 1ef0716e1e86ff77b3234bbd664c6b973352c3ea | 17,135 |
def min_spacing(mylist):
"""
Find the minimum spacing in the list.
Args:
mylist (list): A list of integer/float.
Returns:
int/float: Minimum spacing within the list.
"""
# Set the maximum of the minimum spacing.
min_space = max(mylist) - min(mylist)
# Iteratively find a smaller spacing.
for item in mylist:
spaces = [abs(item - item2) for item2 in mylist if item != item2]
min_space = min(min_space, min(spaces))
# Return the answer.
return min_space | b8ce0a46bacb7015c9e59b6573bc2fec0252505d | 17,137 |
def sign(x):
"""Return the mathematical sign of the particle."""
if x.imag:
return x / sqrt(x.imag ** 2 + x.real ** 2)
return 0 if x == 0 else -1 if x < 0 else 1 | 0dca727afbc9c805a858c027a8a4e38d59d9d218 | 17,139 |
def wrap_strings(lines: [str], line_width: int):
"""Return a list of strings, wrapped to the specified length."""
i = 0
while i < len(lines):
# if a line is over the limit
if len(lines[i]) > line_width:
# (try to) find the rightmost occurrence of a space in the first 80 chars
try:
split_index = lines[i][:line_width].rindex(" ")
except ValueError:
return None
# split the line by the found space and add it to the next one
lines.insert(i + 1, lines[i][split_index + 1 :])
lines[i] = lines[i][:split_index]
i += 1
return lines | 0a6fa989fd6d27276d2e7d8c91cf8be37f6a3aff | 17,140 |
def has_even_parity(message: int) -> bool:
""" Return true if message has even parity."""
parity_is_even: bool = True
while message:
parity_is_even = not parity_is_even
message = message & (message - 1)
return parity_is_even | 8982302840318f223e9c1ab08c407d585a725f97 | 17,141 |
def is_primitive(structure):
"""
Checks if a structure is primitive or not,
:param structure: AiiDA StructureData
:return: True if the structure can not be anymore refined.
prints False if the structure can be futher refined.
"""
refined_cell = find_primitive_cell(structure)
prim = False
if all(x in structure.cell for x in refined_cell.cell):
prim = True
return prim | 9f7034bb92d3fdd0505a56bc7d53d1528846ef76 | 17,142 |
def mock_mkdir(monkeypatch):
"""Mock the mkdir function."""
def mocked_mkdir(path, mode=0o755):
return True
monkeypatch.setattr("charms.layer.git_deploy.os.mkdir", mocked_mkdir) | e4e78ece1b8e60719fe11eb6808f0f2b99a933c3 | 17,143 |
def saferepr(obj, maxsize=240):
"""return a size-limited safe repr-string for the given object.
Failing __repr__ functions of user instances will be represented
with a short exception info and 'saferepr' generally takes
care to never raise exceptions itself. This function is a wrapper
around the Repr/reprlib functionality of the standard 2.6 lib.
"""
# review exception handling
srepr = SafeRepr()
srepr.maxstring = maxsize
srepr.maxsize = maxsize
srepr.maxother = 160
return srepr.repr(obj) | d02f68581867e64a6586548ab627b6893328c42a | 17,145 |
from typing import Callable
from re import A
def filter(pred : Callable[[A], bool], stream : Stream[A]) -> Stream[A]:
"""Filter a stream of type `A`.
:param pred: A predicate on type `A`.
:type pred: `A -> bool`
:param stream: A stream of type `A` to be filtered.
:type stream: `Stream[A]`
:return: A stream of type `A`.
:rtype: `Stream[A]`
"""
def _thunk() -> StreamResult[A]:
next_stream : Stream[A] = stream
while True:
next_value, next_stream = next_stream()
if not pred(next_value): continue
return next_value, filter(pred, next_stream)
return _thunk | 93b3d4c30d4295b2be73200451436c6a4e9ab5cd | 17,146 |
def _get_kernel_size_numel(kernel_size):
"""Determine number of pixels/voxels. ``kernel_size`` must be an ``N``-tuple."""
if not isinstance(kernel_size, tuple):
raise ValueError(f"kernel_size must be a tuple. Got {kernel_size}.")
return _get_numel_from_shape(kernel_size) | fb004817950ece275fc10b4824ee83a1d1b9a6a9 | 17,147 |
import uuid
def random():
"""Get a random UUID."""
return str(uuid.uuid4()) | 411aeb5254775473b43d3ac4153a27a2f15014cb | 17,148 |
def reautorank(reaumur):
""" This function converts Reaumur to rankine, with Reaumur as parameter."""
rankine = (reaumur * 2.25) + 491.67
return rankine | aec2299999e9798530272939125cb42476f095c3 | 17,149 |
def list_pets():
"""Shows list of all pets in db"""
pets = Pet.query.all()
return render_template('list.html', pets=pets) | 60df575932d98ab04e949d6ef6f1fdfa6734ba92 | 17,150 |
import glob
def get_lif_list(path):
"""
Returns a list of files ending in *.lif in provided folder
:param: path
:return: list -- filenames
"""
path += '/*.lif'
return glob.glob(path) | 8a26d65fc2c69b1007a40ded82225038ead67783 | 17,152 |
def compute_distance_matrix(users, basestations):
"""Distances between all users and basestations is calculated.
Args:
users: (obj) list of users!
basestations: (obj) list of basestations!
Returns:
(list of) numpy arrays containing the distance between a user and all basestations in km!.
"""
coords_list_ue = [getattr(ele, 'coordinates') for ele in users]
coords_list_bs = [getattr(ele, 'coordinates') for ele in basestations]
distance_matrix = []
count = 0
for _ in coords_list_ue:
element = [coords_list_ue[count]]
coords = element + coords_list_bs
dist = distance.cdist(coords, coords, 'euclidean')
new_dist = np.delete(dist[0], 0)
distance_matrix.append(new_dist)
count += 1
return np.array(distance_matrix) | 07b6175047d7602288436d163f838077e54054fc | 17,154 |
from .core import resolver
def __getattr__(name):
"""Lazy load the global resolver to avoid circular dependencies with plugins."""
if name in _SPECIAL_ATTRS:
res = resolver.Resolver()
res.load_plugins_from_environment()
_set_default_resolver(res)
return globals()[name]
else:
raise AttributeError(f"module {__name__!r} has no attribute {name!r}") | 20dd678be2b9d3f08513912a40098dc8b436ac81 | 17,155 |
def img_newt(N, xran=(-3, 3), yran=(-3, 3), tol=1e-5, niter=100):
"""
Add colors to a matrix according to the fixed point
of the given equation.
"""
sol = [-(np.sqrt(3.0)*1j - 1.0)/2.0,
(np.sqrt(3.0)*1j + 1.0)/2.0,
-1.0]
col_newt = np.zeros((N, N, 3))
Y, X = np.mgrid[yran[0]:yran[1]:N*1j,
xran[0]:xran[1]:N*1j]
for row in range(N):
for col in range(N):
x = X[row, col]
y = Y[row, col]
xf = newt(x + y*1j, fun, der, tol=tol, niter=niter)
if abs(xf - sol[0])<1e-6:
col_newt[row, col, :] = colors[0]
if abs(xf - sol[1])<1e-6:
col_newt[row, col, :] = colors[1]
if abs(xf - sol[2])<1e-6:
col_newt[row, col, :] = colors[2]
if abs(xf - 1000) < 1e-6:
col_newt[row, col, :] = colors[3]
return col_newt | 166aa3c5e144972f7ec825f973885f9b528047f0 | 17,156 |
def pack_block_header(hdr: block.BlockHeader,
abbrev: bool = False,
pretty: bool = False,
) -> str:
"""Pack blockchain to JSON string with b64 for bytes."""
f = get_b2s(abbrev)
hdr_ = {'timestamp': f(hdr['timestamp']),
'previous_hash': f(hdr['previous_hash']),
'nonce': f(hdr['nonce']),
'merkle_root': f(hdr['merkle_root']),
'this_hash': f(hdr['this_hash'])
}
return json_dumps(hdr_, pretty) | a6df547918ab82bc990ca915d956730cb6a62b87 | 17,157 |
def get_datasets(recipe):
"""Get dataset instances from the recipe.
Parameters
----------
recipe : dict of dict
The specifications of the core datasets.
Returns
-------
datasets : dict of datasets
A dictionary of dataset instances, compatible with torch's
DataLoader objects.
"""
# "datasets"
return {dataset: get_instance(**par) for dataset, par in recipe.items()} | f525cf379f13069a1f5255798d963af3389dd5ed | 17,158 |
import re
def is_sedol(value):
"""Checks whether a string is a valid SEDOL identifier.
Regex from here: https://en.wikipedia.org/wiki/SEDOL
:param value: A string to evaluate.
:returns: True if string is in the form of a valid SEDOL identifier."""
return re.match(r'^[0-9BCDFGHJKLMNPQRSTVWXYZ]{6}\d$', value) | 207ff94a4df99e7a546440cef1242f9a48435118 | 17,159 |
def create_substrate(dim):
"""
The function to create two-sheets substrate configuration with specified
dimensions of each sheet.
Arguments:
dim: The dimensions accross X, Y axis of the sheet
"""
# Building sheet configurations of inputs and outputs
inputs = create_sheet_space(-1, 1, dim, -1)
outputs = create_sheet_space(-1, 1, dim, 0)
substrate = NEAT.Substrate( inputs,
[], # hidden
outputs)
substrate.m_allow_input_output_links = True
substrate.m_allow_input_hidden_links = False
substrate.m_allow_hidden_hidden_links = False
substrate.m_allow_hidden_output_links = False
substrate.m_allow_output_hidden_links = False
substrate.m_allow_output_output_links = False
substrate.m_allow_looped_hidden_links = False
substrate.m_allow_looped_output_links = False
substrate.m_hidden_nodes_activation = NEAT.ActivationFunction.SIGNED_SIGMOID
substrate.m_output_nodes_activation = NEAT.ActivationFunction.UNSIGNED_SIGMOID
substrate.m_with_distance = True
substrate.m_max_weight_and_bias = 3.0
return substrate | 9a47bf213d796aecec4b6f630ae30b04dc035d63 | 17,160 |
def remove_artefacts(signal: np.array, low_limit: int = 40, high_limit: int = 210) -> np.array:
"""
Replace artefacts [ultra-low and ultra-high values] with zero
Args:
signal: (np.array) 1D signal
low_limit: (int) filter values below it
high_limit: (int) filter values above it
Output: (np.array) filtered signal
"""
# replace artefacts with zero
signal_new = signal.astype('float')
signal_new[signal < low_limit] = 0 #replace ultra-zmall values with 0
signal_new[signal > high_limit] = 0 #replace ultra-large values with 0
return signal_new | 0b85e929588bd5895a9a84c5d03fce88c4f9f7cb | 17,161 |
def normalizedBGR(im, display=True):
""" Generate Opponent color space. O3 is just the intensity """
im = img.norm(im)
B, G, R = np.dsplit(im, 3)
b = (B - np.mean(B)) / np.std(B)
g = (G - np.mean(G)) / np.std(G)
r = (R - np.mean(R)) / np.std(R)
out = cv2.merge((np.uint8(img.normUnity(b) * 255),
np.uint8(img.normUnity(g) * 255),
np.uint8(img.normUnity(r) * 255)))
if display:
cv2.imshow('norm bgr', np.hstack((np.uint8(img.normUnity(b) * 255),
np.uint8(img.normUnity(g) * 255),
np.uint8(img.normUnity(r) * 255))))
cv2.waitKey(0)
return out, b, g, r | 810b4a1ee4d9b5d7f68072c72379fa182b7f34fe | 17,162 |
def feeds(url):
"""
Tries to find feeds
for a given URL.
"""
url = _full_url(url)
data = _get(url)
# Check if the url is a feed.
if _is_feed(url):
return [url]
# Try to get feed links from markup.
try:
feed_links = [link for link in _get_feed_links(data, url) if _is_feed(link)]
except:
feed_links = []
if feed_links:
return feed_links
# Try 'a' links.
try:
links = _get_a_links(data)
except:
links = []
if links:
# Filter to only local links.
local_links = [link for link in links if link.startswith(url)]
# Try to find feed links.
feed_links.extend(_filter_feed_links(local_links))
# If still nothing has been found...
if not feed_links:
# Try to find feed-looking links.
feed_links.extend(_filter_feedish_links(local_links))
# If still nothing has been found...
if not feed_links:
# BRUTE FORCE IT!
guesses = [
'atom.xml', # Blogger, TypePad
'index.atom', # MoveableType
'index.rdf', # MoveableType
'rss.xml', # Dave Winer/Manila
'index.xml', # MoveableType
'index.rss', # Slash
'feed' # WordPress
]
tries = [parse.urljoin(url, g) for g in guesses]
feed_links.extend([link for link in tries if _is_feed(link)])
# If *still* nothing has been found,
# just try all the links.
if links and not feed_links:
feed_links.extend(_filter_feed_links(links))
feed_links.extend(_filter_feedish_links(links))
# Filter out duplicates.
return list(set(feed_links)) | dd16dc751f34fbbf496c9b0142fa5d58372538b2 | 17,163 |
def getlog(name):
"""Create logger object with predefined stream handler & formatting
Parameters
----------
name : str
module __name__
Returns
-------
logging.logger
Examples
--------
>>> from smseventlog import getlog
>>> log = getlog(__name__)
"""
name = '.'.join(str(name).split('.')[1:])
# cant set name to nothing or that calls the ROOT logger
if name == '':
name = 'base'
return Logger(name) | cd5e0dd4589757e3c8d05614f117b7ce46fe4fb9 | 17,164 |
import numpy as np
def replace_nan(x):
"""
Replaces NaNs in 1D array with nearest finite value.
Usage: y = replace_nan(x)
Returns filled array y without altering input array x.
Assumes input is numpy array.
3/2015 BWB
"""
#
x2 = np.zeros(len(x))
np.copyto(x2,x)
#
bads = find(np.isnan(x)) # indices of NaNs
if bads.size == 0:
return x2
else:
fins = find(np.isfinite(x)) # indices for all finites
for ii in np.arange(0,bads.size): # for all NaNs
# locate index of nearest finite
diffs = np.abs(fins-bads[ii])
idx = diffs.argmin()
# replace NaN with nearest finite
x2[bads[ii]] = x[fins[idx]]
return x2 | 9100a33dcb7d00b38e7a6a53132db8d13682e499 | 17,166 |
def handson_table(request, query_sets, fields):
"""function to render the scoresheets as part of the template"""
return excel.make_response_from_query_sets(query_sets, fields, 'handsontable.html')
# content = excel.pe.save_as(source=query_sets,
# dest_file_type='handsontable.html',
# dest_embed=True)
# content.seek(0)
# return render(
# request,
# 'custom-handson-table.html',
# {
# 'handsontable_content': content.read()
# })
# return Response({'handsontable_content': render(content)}, template_name='custom-handson-table.html') | 93c1471c142917f5b0492ddb27fdd6c278e9976d | 17,167 |
from functools import reduce
def is_periodic(G):
"""
https://stackoverflow.com/questions/54030163/periodic-and-aperiodic-directed-graphs
Own function to test, whether a given Graph is aperiodic:
"""
if not nx.is_strongly_connected(G):
print("G is not strongly connected, periodicity not defined.")
return False
cycles = list(nx.algorithms.cycles.simple_cycles(G))
cycles_sizes = [len(c) for c in cycles] # Find all cycle sizes
cycles_gcd = reduce(gcd, cycles_sizes) # Find greatest common divisor of all cycle sizes
is_periodic = cycles_gcd > 1
return is_periodic | 6671a1bf57ef6ec973c7d283cb447d890cbd93e2 | 17,168 |
def Sphere(individual):
"""Sphere test objective function.
F(x) = sum_{i=1}^d xi^2
d=1,2,3,...
Range: [-100,100]
Minima: 0
"""
#print(individual)
return sum(x**2 for x in individual) | 349b732e931fc5acf8a52213d9ddf88335479b90 | 17,169 |
def find_names_for_google(df_birth_names):
"""
:param df_birth_names: 所有的birth data from the data given by Lu
:return 1: df_country_found,
返回一个dataframe 里面有国家了
先通过country list过滤,有些国家可能有问题(如有好几个名字的(e.g. 荷兰),有些含有特殊符号,如刚果布,刚果金,朝鲜,南朝鲜北朝鲜是三个“国家”,
再比如说南奥塞梯,一些太平洋岛国归属有问题,还就是香港台湾这样的。。。。暂时算是国家)
而后看看是不是美国的一个州。
而后看城市,city在city list里面,citylist 参考 worldcities 数据库。 城市重名了就取人口多的那个城市。如Valencia
:return 2: df_need_google_search,
返回一个dataframe 里面都是不在“国家列表”里面的,也不是美国的州,并且“worldcities database”里面找不到的
"""
whitelist = set('abcdefghijklmnopqrstuvwxyz ABCDEFGHIJKLMNOPQRSTUVWXYZ')
# teststr = " happy t00o go 129.129$%^&*("
# answer = ''.join(filter(whitelist.__contains__, teststr))
dirty_list = []
need_searching_list = []
for index, row in df_birth_names.head(30).iterrows():
item = ''.join(filter(whitelist.__contains__, row['birth'])).strip()
# item = row['birth'].replace("'","").strip()
if item is "":# null
dirty_list.append(np.nan)
print(item, " is null")
continue
if item in COUNTRY_LIST: # known countries
dirty_list.append(item)
print(item, " is a country")
continue
if item in US_STATES_LIST: # add us states as United States
dirty_list.append("United States")
print(item, " is a state in the US")
continue
if item in NATIONALITY_LIST: # add national from nationality information e.g. Chinese -> China
nation_from_nationality = NATIONALITY_TO_COUNTRY.loc[item]["Country/entity name"]
dirty_list.append(nation_from_nationality)
print(item, " is a national of a certain country")
continue
if item in CITY_LIST: # known city to country e.g. London -> UK
country_from_city = CITY_TO_COUNTRY.loc[item]["country"]
dirty_list.append(country_from_city)
print(item, " is a city and it has been transformed")
continue
flag1=0 # known city to country e.g. London -> UK
for i in COUNTRY_LIST:
if i in item:
dirty_list.append(i)
print(i, " maybe a country")
flag1 = 1
break
if flag1 == 1:
continue
flag2 = 0
for i in US_STATES_LIST:
if i in item:
dirty_list.append("United States")
print(i, "maybe a state in the US")
flag2 = 1
break
if flag2 == 1:
continue
flag3 = 0
for i in CITY_LIST:
if i in item:
country_from_city = CITY_TO_COUNTRY.loc[i]["country"]
dirty_list.append(country_from_city)
print(i, " maybe a city, and we are attempting to transform it")
flag3 = 1
break
if flag3 == 1:
continue
need_searching_list.append(item)
print("this item: ", item, " is not added")
need_searching_list = list(dict.fromkeys(need_searching_list))# remove duplicates
df_country_found = pd.DataFrame(dirty_list)
df_need_google_search = pd.DataFrame(need_searching_list)
return df_country_found, df_need_google_search | 6358fd692784389530ebf4c3a2059c3923104d2f | 17,170 |
def make_address_mask(universe, sub=0, net=0, is_simplified=True):
"""Returns the address bytes for a given universe, subnet and net.
Args:
universe - Universe to listen
sub - Subnet to listen
net - Net to listen
is_simplified - Whether to use nets and subnet or universe only,
see User Guide page 5 (Universe Addressing)
Returns:
bytes - byte mask for given address
"""
address_mask = bytearray()
if is_simplified:
# Ensure data is in right range
universe = clamp(universe, 0, 32767)
# Make mask
msb, lsb = shift_this(universe) # convert to MSB / LSB
address_mask.append(lsb)
address_mask.append(msb)
else:
# Ensure data is in right range
universe = clamp(universe, 0, 15)
sub = clamp(sub, 0, 15)
net = clamp(net, 0, 127)
# Make mask
address_mask.append(sub << 4 | universe)
address_mask.append(net & 0xFF)
return address_mask | d360dde7ecc4ecc99e32df53f2f0806d5d396f1f | 17,171 |
def get_img_size(src_size, dest_size):
"""
Возвращает размеры изображения в пропорции с оригиналом исходя из того,
как направлено изображение (вертикально или горизонтально)
:param src_size: размер оригинала
:type src_size: list / tuple
:param dest_size: конечные размеры
:type dest_size: list / tuple
:rtype: tuple
"""
width, height = dest_size
src_width, src_height = src_size
if height >= width:
return (int(float(width) / height * src_height), src_height)
return (src_width, int(float(height) / width * src_width)) | 133dab529cd528373a1c7c6456a34cf8fd22dac9 | 17,173 |
def laxnodeset(v):
"""\
Return a nodeset with elements from the argument. If the argument is
already a nodeset, it self will be returned. Otherwise it will be
converted to a nodeset, that can be mutable or immutable depending on
what happens to be most effectively implemented."""
if not isinstance(v, NodeSet):
v = immnodeset(v)
return v | 3210f8d1c1d47c8871d0ba82c793b6cd85069566 | 17,174 |
def load_config():
"""
Loads the configuration file.
Returns:
- (json) : The configuration file.
"""
return load_json_file('config.json') | 05099118414d371ebc521e498503be1798c39066 | 17,175 |
from bs4 import BeautifulSoup
def text_from_html(body):
"""
Gets all raw text from html, removing all tags.
:param body: html
:return: str
"""
soup = BeautifulSoup(body, "html.parser")
texts = soup.findAll(text=True)
visible_texts = filter(tag_visible, texts)
return " ".join(t.strip() for t in visible_texts) | 313a5f404120c17290b726cb00b05e2276a07895 | 17,178 |
def alert_history():
"""
Alert History: RESTful CRUD controller
"""
return s3_rest_controller(rheader = s3db.cap_history_rheader) | 34a2b6bf90ab0b73eae3b64c83ffebc918e2f1a3 | 17,179 |
def chat():
"""
Chat room. The user's name and room must be stored in
the session.
"""
if 'avatar' not in session:
session['avatar'] = avatars.get_avatar()
data = {
'user_name': session.get('user_name', ''),
'avatar': session.get('avatar'),
'room_key': session.get('room_key', ''),
'password': session.get('password', '')
}
if data['user_name'] == '' or data['room_key'] == '':
return redirect(url_for('.index'))
return render_template('chat.html', **data) | d7024960ac8a03082deb696e0c0e6009dfe8e349 | 17,180 |
def _get_split_idx(N, blocksize, pad=0):
"""
Returns a list of indexes dividing an array into blocks of size blocksize
with optional padding. Padding takes into account that the resultant block
must fit within the original array.
Parameters
----------
N : Nonnegative integer
Total array length
blocksize : Nonnegative integer
Size of each block
pad : Nonnegative integer
Pad to add on either side of each index
Returns
-------
split_idx : List of 2-tuples
Indices to create splits
pads_used : List of 2-tuples
Pads that were actually used on either side
Examples
--------
>>> split_idx, pads_used = _get_split_idx(5, 2)
>>> print split_idx
[(0, 2), (2, 4), (4, 5)]
>>> print pads_used
[(0, 0), (0, 0), (0, 0)]
>>> _get_split_idx(5, 2, pad=1)
>>> print split_idx
[(0, 3), (1, 5), (3, 5)]
>>> print pads_used
[(0, 1), (1, 1), (1, 0)]
"""
num_fullsplits = N // blocksize
remainder = N % blocksize
split_idx = []
pads_used = []
for i in range(num_fullsplits):
start = max(0, i * blocksize - pad)
end = min(N, (i + 1) * blocksize + pad)
split_idx.append((start, end))
leftpad = i * blocksize - start
rightpad = end - (i + 1) * blocksize
pads_used.append((leftpad, rightpad))
# Append the last split if there is a remainder
if remainder:
start = max(0, num_fullsplits * blocksize - pad)
split_idx.append((start, N))
leftpad = num_fullsplits * blocksize - start
pads_used.append((leftpad, 0))
return split_idx, pads_used | 21935190de4c42fa5d7854f6608387dd2f004fbc | 17,181 |
def buydown_loan(amount, nrate, grace=0, dispoints=0, orgpoints=0, prepmt=None):
"""
In this loan, the periodic payments are recalculated when there are changes
in the value of the interest rate.
Args:
amount (float): Loan amount.
nrate (float, pandas.Series): nominal interest rate per year.
grace (int): numner of grace periods without paying the principal.
dispoints (float): Discount points of the loan.
orgpoints (float): Origination points of the loan.
prepmt (pandas.Series): generic cashflow representing prepayments.
Returns:
A object of the class ``Loan``.
>>> nrate = interest_rate(const_value=10, start='2016Q1', periods=11, freq='Q', chgpts={'2017Q2':20})
>>> buydown_loan(amount=1000, nrate=nrate, dispoints=0, orgpoints=0, prepmt=None) # doctest: +NORMALIZE_WHITESPACE
Amount: 1000.00
Total interest: 200.99
Total payment: 1200.99
Discount points: 0.00
Origination points: 0.00
<BLANKLINE>
Beg_Ppal_Amount Nom_Rate Tot_Payment Int_Payment Ppal_Payment \\
2016Q1 1000.000000 10.0 0.000000 0.000000 0.000000
2016Q2 1000.000000 10.0 114.258763 25.000000 89.258763
2016Q3 910.741237 10.0 114.258763 22.768531 91.490232
2016Q4 819.251005 10.0 114.258763 20.481275 93.777488
2017Q1 725.473517 10.0 114.258763 18.136838 96.121925
2017Q2 629.351591 20.0 123.993257 31.467580 92.525677
2017Q3 536.825914 20.0 123.993257 26.841296 97.151961
2017Q4 439.673952 20.0 123.993257 21.983698 102.009559
2018Q1 337.664393 20.0 123.993257 16.883220 107.110037
2018Q2 230.554356 20.0 123.993257 11.527718 112.465539
2018Q3 118.088816 20.0 123.993257 5.904441 118.088816
<BLANKLINE>
End_Ppal_Amount
2016Q1 1.000000e+03
2016Q2 9.107412e+02
2016Q3 8.192510e+02
2016Q4 7.254735e+02
2017Q1 6.293516e+02
2017Q2 5.368259e+02
2017Q3 4.396740e+02
2017Q4 3.376644e+02
2018Q1 2.305544e+02
2018Q2 1.180888e+02
2018Q3 1.136868e-13
>>> pmt = cashflow(const_value=0, start='2016Q1', periods=11, freq='Q')
>>> pmt['2017Q4'] = 200
>>> buydown_loan(amount=1000, nrate=nrate, dispoints=0, orgpoints=0, prepmt=pmt) # doctest: +NORMALIZE_WHITESPACE
Amount: 1000.00
Total interest: 180.67
Total payment: 1180.67
Discount points: 0.00
Origination points: 0.00
<BLANKLINE>
Beg_Ppal_Amount Nom_Rate Tot_Payment Int_Payment Ppal_Payment \\
2016Q1 1000.000000 10.0 0.000000 0.000000 0.000000
2016Q2 1000.000000 10.0 114.258763 25.000000 89.258763
2016Q3 910.741237 10.0 114.258763 22.768531 91.490232
2016Q4 819.251005 10.0 114.258763 20.481275 93.777488
2017Q1 725.473517 10.0 114.258763 18.136838 96.121925
2017Q2 629.351591 20.0 123.993257 31.467580 92.525677
2017Q3 536.825914 20.0 123.993257 26.841296 97.151961
2017Q4 439.673952 20.0 323.993257 21.983698 302.009559
2018Q1 137.664393 20.0 50.551544 6.883220 43.668324
2018Q2 93.996068 20.0 50.551544 4.699803 45.851741
2018Q3 48.144328 20.0 50.551544 2.407216 48.144328
<BLANKLINE>
End_Ppal_Amount
2016Q1 1.000000e+03
2016Q2 9.107412e+02
2016Q3 8.192510e+02
2016Q4 7.254735e+02
2017Q1 6.293516e+02
2017Q2 5.368259e+02
2017Q3 4.396740e+02
2017Q4 1.376644e+02
2018Q1 9.399607e+01
2018Q2 4.814433e+01
2018Q3 4.263256e-14
"""
if not isinstance(nrate, pd.Series):
TypeError('nrate must be a pandas.Series object.')
if prepmt is None:
prepmt = nrate.copy()
prepmt[:] = 0
else:
verify_period_range([nrate, prepmt])
life = len(nrate) - grace - 1
begppalbal = nrate.copy()
intpmt = nrate.copy()
ppalpmt = nrate.copy()
totpmt = nrate.copy()
endppalbal = nrate.copy()
begppalbal[:] = 0
intpmt[:] = 0
ppalpmt[:] = 0
totpmt[:] = 0
endppalbal[:] = 0
##
## balance calculation
##
pyr = getpyr(nrate)
for time in range(grace + life + 1):
if time == 0:
#
begppalbal[time] = amount
endppalbal[time] = amount
totpmt[time] = amount * (dispoints + orgpoints) / 100
### intpmt[time] = amount * dispoints / 100
#
else:
#
# periodic payment per period
#
if time <= grace:
begppalbal[time] = endppalbal[time - 1]
intpmt[time] = begppalbal[time] * nrate[time] / pyr / 100
totpmt[time] = intpmt[time]
endppalbal[time] = begppalbal[time]
else:
pmt = -pvpmt(nrate=nrate[time], nper=grace+life-time+1,
pval=endppalbal[time-1], pmt=None, pyr=pyr)
totpmt[time] = pmt + prepmt[time]
# balance
begppalbal[time] = endppalbal[time - 1]
intpmt[time] = begppalbal[time] * nrate[time] / pyr / 100
ppalpmt[time] = totpmt[time] - intpmt[time]
endppalbal[time] = begppalbal[time] - ppalpmt[time]
data = {'Beg_Ppal_Amount':begppalbal}
result = Loan(life=life, amount=amount, grace=grace, nrate=nrate,
dispoints=dispoints, orgpoints=orgpoints,
data=data)
result['Nom_Rate'] = nrate
result['Tot_Payment'] = totpmt
result['Int_Payment'] = intpmt
result['Ppal_Payment'] = ppalpmt
result['End_Ppal_Amount'] = endppalbal
return result | 46eb6bbaaa940b5cf1abd702ee5d9e2e20c6dab3 | 17,182 |
from typing import Optional
def ffill(array: np.ndarray, value: Optional[int] = 0) -> np.ndarray:
"""Forward fills an array.
Args:
array: 1-D or 2-D array.
value: Value to be filled. Default is 0.
Returns:
ndarray: Forward-filled array.
Examples:
>>> x = np.array([0, 5, 0, 0, 2, 0])
>>> ffill(x)
[0, 5, 5, 5, 2, 2]
Notes:
Works only in axis=1 direction.
"""
ndims = len(array.shape)
ran = np.arange(array.shape[ndims - 1])
idx = np.where((array != value), ran, 0)
idx = np.maximum.accumulate(idx, axis=ndims-1) # pylint: disable=E1101
if ndims == 2:
return array[np.arange(idx.shape[0])[:, None], idx]
return array[idx] | f5774c3e50ddbf2ffa9cf84df5cb57b135d1549a | 17,183 |
def svn_stringbuf_from_file(*args):
"""svn_stringbuf_from_file(char const * filename, apr_pool_t pool) -> svn_error_t"""
return _core.svn_stringbuf_from_file(*args) | b375a43bf8e050aa5191f387d930077680e9b019 | 17,184 |
def poly4(x, b, b0):
"""
Defines a function with polynom 4 to fit the curve
Parameters
----------
x: numpy.ndarray:
x of f(x)
b: float
Parameter to fit
b0 : int
y-intercept of the curve
Returns
-------
f : numpy.ndarray
Result of f(x)
"""
return b * np.array(x) ** 4 + b0 | aed3603640400488219f2cca82e57268f32de000 | 17,185 |
from teospy.tests.tester import Tester
def chkiapws06table6(printresult=True,chktol=_CHKTOL):
"""Check accuracy against IAPWS 2006 table 6.
Evaluate the functions in this module and compare to reference
values of thermodynamic properties (e.g. heat capacity, lapse rate)
in IAPWS 2006, table 6.
:arg bool printresult: If True (default) and any results are outside
of the given tolerance, then the function name, reference value,
result value, and relative error are printed.
:arg float chktol: Tolerance to use when choosing to print results
(default _CHKTOL).
:returns: :class:`~teospy.tests.tester.Tester` instances containing
the functions, arguments, reference values, results, and
relative errors from the tests. The first instance involves
derivatives of ice_g whereas the second tests the other
thermodynamic functions.
"""
fargs0 = (273.16,611.657)
fargs1 = (273.152519,101325.)
fargs2 = (100.,1e8)
propfargs = [fargs0,fargs1,fargs2]
ders = [(0,0), (1,0), (0,1), (2,0), (1,1), (0,2)]
# Tester instance for derivatives of ice_g
derfuns = _ice_g
derfnames = 'ice_g'
# Derivatives change before arguments do here
derfargs = [(der+fargs) for fargs in propfargs for der in ders]
derargfmt = '({0:1g},{1:1g},{2:7.3f},{3:7g})'
derrefs = [0.611784135,0.122069433940e+4,0.109085812737e-2,
-0.767602985875e+1,0.174387964700e-6,-0.128495941571e-12,
0.10134274069e+3,0.122076932550e+4,0.109084388214e-2,-0.767598233365e+1,
0.174362219972e-6,-0.128485364928e-12,-0.222296513088e+6,
0.261195122589e+4,0.106193389260e-2,-0.866333195517e+1,
0.274505162488e-7,-0.941807981761e-13]
header = 'Ice Gibbs energy derivatives'
dertest = Tester(derfuns,derfargs,derrefs,derfnames,derargfmt,header=header)
# Tester instance for other ice properties
propfuns = [enthalpy,helmholtzenergy,internalenergy,entropy,cp,density,
expansion,pcoefficient,kappa_t,kappa_s]
propfnames = ['enthalpy','helmholtzenergy','internalenergy','entropy','cp',
'density','expansion','pcoefficient','kappa_t','kappa_s']
propargfmt = '({0:7.3f},{1:7g})'
proprefs = [
[-0.333444253966e+6,-0.333354873637e+6,-0.483491635676e+6],
[-0.55446875e-1,-0.918701567e+1,-0.328489902347e+6],
[-0.333444921197e+6,-0.333465403393e+6,-0.589685024936e+6],
[-0.122069433940e+4,-0.122076932550e+4,-0.261195122589e+4],
[0.209678431622e+4,0.209671391024e+4,0.866333195517e+3],
[0.916709492200e+3,0.916721463419e+3,0.941678203297e+3],
[0.159863102566e-3,0.159841589458e-3,0.258495528207e-4],
[0.135714764659e+7,0.135705899321e+7,0.291466166994e+6],
[0.117793449348e-9,0.117785291765e-9,0.886880048115e-10],
[0.114161597779e-9,0.114154442556e-9,0.886060982687e-10]
]
header = 'Ice thermodynamic properties'
proptest = Tester(propfuns,propfargs,proprefs,propfnames,propargfmt,
header=header)
# Run Tester instances and print results
dertest.run()
proptest.run()
if printresult:
dertest.printresults(chktol=chktol)
proptest.printresults(chktol=chktol)
return dertest, proptest | c0fce67d3a268ec0b67ff845f5671c67aa394846 | 17,186 |
def flat(arr):
"""
Finds flat things (could be zeros)
___________________________
"""
arr = np.array(arr)
if arr.size == 0:
return False
mean = np.repeat(np.mean(arr), arr.size)
nonzero_residuals = np.nonzero(arr - mean)[0]
return nonzero_residuals.size < arr.size/100 | ce2697d95165b46cec477265df6ccb337cb89af1 | 17,187 |
def sensitive_fields(*paths, **typed_paths):
"""
paths must be a path like "password" or "vmInfo.password"
"""
def ret(old_init):
def __init__(self, *args, **kwargs):
if paths:
ps = ["obj['" + p.replace(".", "']['") + "']" for p in paths]
setattr(self, SENSITIVE_FIELD_NAME, ps)
old_init(self)
return __init__
return ret | e174519c253d4676ae7c07c1b11eb18e532d5f61 | 17,188 |
from datetime import datetime
import time
def get_timestamp_diff(diff):
"""获取前后diff天对应的时间戳(毫秒)"""
tmp_str = (datetime.today() + timedelta(diff)).strftime("%Y-%m-%d %H:%M:%S")
tmp_array = time.strptime(tmp_str, "%Y-%m-%d %H:%M:%S")
return int(time.mktime(tmp_array)) * 1000 | 61ca093471103376ee44d940552db6337a4e65f5 | 17,189 |
def can_delete(account, bike):
""" Check if an account can delete a bike.
Account must be a team member and bike not borrowed in the future.
"""
return (team_control.is_member(account, bike.team)
and not has_future_borrows(bike)) | f962e465b6a5eb62feea2683cdd8328b5591fb43 | 17,190 |
def get_node_types(nodes, return_shape_type = True):
"""
Get the maya node types for the nodes supplied.
Returns:
dict: dict[node_type_name] node dict of matching nodes
"""
found_type = {}
for node in nodes:
node_type = cmds.nodeType(node)
if node_type == 'transform':
if return_shape_type:
shapes = get_shapes(node)
if shapes:
node_type = cmds.nodeType(shapes[0])
if not node_type in found_type:
found_type[node_type] = []
found_type[node_type].append(node)
return found_type | 7867f97f7228ac77ae44fda04672a8224aa7c1f4 | 17,192 |
import csv
from typing import OrderedDict
def updateDistances(fileName):
"""
Calculate and update the distance on the given CSV file.
Parameters
----------
fileName: str
Path and name of the CSV file to process.
Returns
-------
ret: bool
Response indicating if the update was successful or not.
"""
# Read the face data from the CSV file
try:
file = open(fileName, 'r+', newline='')
except:
return False
reader = csv.reader(file, delimiter=',', quotechar='"',
quoting=csv.QUOTE_MINIMAL)
writer = csv.writer(file, delimiter=',', quotechar='"',
quoting=csv.QUOTE_MINIMAL)
# Read the face data from the CSV file and recalculate the distances,
# also building a list to later recalculate the distance gradients
frames = []
distances = []
faces = OrderedDict()
prevDist = 0
for row in reader:
if row[0] != 'frame':
# Read the face data from the CSV file
frameNum = int(row[0])
face = FaceData()
face.fromList(row[1:])
face.gradient = 0.0
face.calculateDistance()
faces[frameNum] = face
# In case the face has been detected but the distance calculation
# failed, assume the same distance as the previous detected face
if not face.isEmpty():
if face.distance == 0:
face.distance = prevDist
prevDist = face.distance
# Consider for the calculation of the gradients only the non-empty
# faces (i.e. the frames where a face was detected)
if not face.isEmpty():
frames.append(frameNum)
distances.append(face.distance)
# Calculate the gradients from the helper list of distances
gradients = np.gradient(distances)
for i, frameNum in enumerate(frames):
faces[frameNum].gradient = gradients[i]
# Save the face data back to the CSV file
file.truncate(0)
file.seek(0)
writer.writerow(['frame'] + FaceData.header())
for frameNum, face in faces.items():
writer.writerow([frameNum] + face.toList())
file.close()
return True | c19e0adcf731f9fd1af87f5dfe3a61889d395457 | 17,193 |
def hr(*args, **kwargs):
"""
The HTML <hr> element represents a thematic break between
paragraph-level elements (for example, a change of scene in a
story, or a shift of topic with a section). In previous versions
of HTML, it represented a horizontal rule. It may still be
displayed as a horizontal rule in visual browsers, but is now
defined in semantic terms, rather than presentational terms.
"""
return void_el('hr', *args, **kwargs) | 959106dc2c71334b5a88045f8a26a9f42a2d2fdb | 17,194 |
def as_linker_option(p):
"""Return as an ld library path argument"""
if p:
return '-Wl,' + p
return '' | 452c06034be5c3c2525eb2bfad011e468daef02b | 17,195 |
def split_backbone(options):
"""
Split backbone fasta file into chunks.
Returns dictionary of backbone -> id.
"""
backbone_to_id = {}
id_counter = 0
# Write all backbone files to their own fasta file.
pf = ParseFasta(options.backbone_filename)
tuple = pf.getRecord()
while tuple is not None:
print tuple[0]
split_backbone = open(options.output_dir + '/' + options.prefix + '-' + str(id_counter) + '.fasta', 'w')
split_backbone.write('>' + tuple[0] + '\n' + tuple[1])
split_backbone.close()
backbone_to_id[tuple[0]] = options.prefix + '-' + str(id_counter)
id_counter += 1
tuple = pf.getRecord()
return backbone_to_id | 6446e90a1aa2e38ca01ebb8a86b8cd1dbd3abd75 | 17,196 |
import pkg_resources
def _get_highest_tag(tags):
"""Find the highest tag from a list.
Pass in a list of tag strings and this will return the highest
(latest) as sorted by the pkg_resources version parser.
"""
return max(tags, key=pkg_resources.parse_version) | 8d2580f6f6fbb54108ee14d6d4834d376a65c501 | 17,197 |
def add_comment(request, pk):
"""
Adds comment to the image - POST.
Checks the user and assigns it to the comment.posted_by
"""
form = PhotoCommentForm(request.POST)
if form.is_valid():
comment = form.save(commit=False)
comment.user = request.user
comment.save()
else:
text = 'You have used forbidden word!'
messages.warning(request, text)
return redirect('photo comments', pk) | 4488a183ca7786c65d355991cec38fed01864ab1 | 17,198 |
import warnings
def disable_warnings_temporarily(func):
"""Helper to disable warnings for specific functions (used mainly during testing of old functions)."""
def inner(*args, **kwargs):
warnings.filterwarnings("ignore")
func(*args, **kwargs)
warnings.filterwarnings("default")
return inner | 5e19b8f51ca092709a1e1a5d6ff0b2543a41e5e1 | 17,200 |
def progress_bar(progress):
"""
Generates a light bar matrix to display volume / brightness level.
:param progress: value between 0..1
"""
dots = list(" " * 81)
num_dots = ceil(round(progress, 3) * 9)
while num_dots > 0:
dots[81 - ((num_dots - 1) * 9 + 5)] = "*"
num_dots -= 1
return "".join(dots) | 88986ecc505cf786e197d8ad55cd70b21fa3aa27 | 17,201 |
def get_context_command_parameter_converters(func):
"""
Parses the given `func`'s parameters.
Parameters
----------
func : `async-callable`
The function used by a ``SlasherApplicationCommand``.
Returns
-------
func : `async-callable`
The converted function.
parameter_converters : `tuple` of ``ParameterConverter``
Parameter converters for the given `func` in order.
Raises
------
TypeError
- If `func` is not async callable, neither cannot be instanced to async.
- If `func` accepts keyword only parameters.
- If `func` accepts `*args`.
- If `func` accepts `**kwargs`.
ValueError
- If any parameter is not internal.
"""
analyzer, real_analyzer, should_instance = check_command_coroutine(func)
parameters = real_analyzer.get_non_reserved_positional_parameters()
parameter_converters = []
target_converter_detected = False
for parameter in parameters:
parameter_converter = create_internal_parameter_converter(parameter)
if (parameter_converter is None):
if target_converter_detected:
raise TypeError(f'`{real_analyzer.real_function!r}`\'s `{parameter.name}` do not refers to any of the '
f'expected internal parameters. Context commands do not accept any additional parameters.')
else:
parameter_converter = create_target_parameter_converter(parameter)
target_converter_detected = True
parameter_converters.append(parameter_converter)
parameter_converters = tuple(parameter_converters)
if should_instance:
func = analyzer.instance()
return func, parameter_converters | 294706230f95745dbd50681cafc066a5d226880d | 17,202 |
def norm(x):
"""Normalize 1D tensor to unit norm"""
mu = x.mean()
std = x.std()
y = (x - mu)/std
return y | ea8546da2ea478edb0727614323bba69f6af288d | 17,203 |
def honest_propose(validator, known_items):
"""
Returns an honest `SignedBeaconBlock` as soon as the slot where
the validator is supposed to propose starts.
Checks whether a block was proposed for the same slot to avoid slashing.
Args:
validator: Validator
known_items (Dict): Known blocks and attestations received over-the-wire (but perhaps not included yet in `validator.store`)
Returns:
Optional[SignedBeaconBlock]: Either `None` if the validator decides not to propose,
otherwise a `SignedBeaconBlock` containing attestations
"""
# Not supposed to propose for current slot
if not validator.data.current_proposer_duties[validator.data.slot % SLOTS_PER_EPOCH]:
return None
# Already proposed for this slot
if validator.data.last_slot_proposed == validator.data.slot:
return None
# honest propose
return honest_propose_base(validator, known_items) | c6b0403b15154e3e3b19547770a162e2ac05501b | 17,204 |
import re
def formatKwargsKey(key):
"""
'fooBar_baz' -> 'foo-bar-baz'
"""
key = re.sub(r'_', '-', key)
return key | 24c79b37fdd1cd6d73ab41b0d2234b1ed2ffb448 | 17,205 |
import dateutil
def mktimestamp(dt):
"""
Prepares a datetime for sending to HipChat.
"""
if dt.tzinfo is None:
dt = dt.replace(tzinfo=dateutil.tz.tzutc())
return dt.isoformat(), dt.tzinfo.tzname(dt) | 2f444d0ea27a3afbed68742bade8833a49e191e4 | 17,206 |
def build_accuracy(logits, labels, name_scope='accuracy'):
"""
Builds a graph node to compute accuracy given 'logits' a probability distribution over the output and 'labels' a
one-hot vector.
"""
with tf.name_scope(name_scope):
correct_prediction = tf.equal(tf.argmax(logits, 1), tf.argmax(labels, 1))
correct_prediction = tf.cast(correct_prediction, tf.float32)
return tf.reduce_mean(correct_prediction) | 53f5f78a8c07c691e20d14c416c1fe21a2547bc6 | 17,208 |
def compute_mp_av(mp, index, m, df, k):
"""
Given a matrix profile, a matrix profile index, the window size and the DataFrame that contains the timeseries.
Create a matrix profile object and add the corrected matrix profile after applying the complexity av.
Uses an extended version of the apply_av function from matrixprofile foundation that is compatible with
multi-dimensional timeseries. The implementation can be found here
(https://github.com/MORE-EU/matrixprofile/blob/master/matrixprofile/transform.py)
Args:
mp: A matrix profile.
index: The matrix profile index that accompanies the matrix profile.
window: The subsequence window size.
df: The timeseries that was used to calculate the matrix profile.
Return:
Updated profile with an annotation vector
"""
# Apply the annotation vector
m = m # window size
mp = np.nan_to_num(mp, np.nanmax(mp)) # remove nan values
profile = to_mpf(mp, index, m, df)
av_type = 'complexity'
profile = mpf.transform.apply_av(profile, av_type)
return profile | cc89d34dd145339c99d1ded8ced9af853c061124 | 17,210 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.