content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
from localstack.services.es import es_api def start_elasticsearch_service(port=None, asynchronous=False): """ Starts the ElasticSearch management API (not the actual elasticsearch process. """ port = port or config.PORT_ES return start_local_api("ES", port, api="es", method=es_api.serve, asynchronous=asynchronous)
0af83d283735ad1bfdd0684bf1bc1ff36e42d727
16,975
def regexp_ilike(expr, pattern): """ --------------------------------------------------------------------------- Returns true if the string contains a match for the regular expression. Parameters ---------- expr: object Expression. pattern: object A string containing the regular expression to match against the string. Returns ------- str_sql SQL expression. """ expr = format_magic(expr) pattern = format_magic(pattern) return str_sql("REGEXP_ILIKE({}, {})".format(expr, pattern))
fe8e7c9a38b5379d265651d60d80bd8804219842
16,976
def make_tree(path): """Higher level function to be used with cache.""" return _make_tree(path)
26919144c49f238c78a29ff4c2ce91d5da939484
16,978
def cmd(f): """Decorator to declare class method as a command""" f.__command__ = True return f
3bdc82f0c83b0a4c0a0dd6a9629e7e2af489f0ae
16,979
def small_prior(): """Give string format of small uniform distribution prior""" return "uniform(0, 10)"
fb636b564b238e22262b906a8e0626a5dff305d1
16,980
from typing import List from typing import Dict from typing import OrderedDict def retrieve_panelist_ranks(panelist_id: int, database_connection: mysql.connector.connect ) -> List[Dict]: """Retrieve a list of show dates and the panelist rank for the requested panelist ID""" cursor = database_connection.cursor() query = ("SELECT s.showid, s.showdate, pm.showpnlrank " "FROM ww_showpnlmap pm " "JOIN ww_shows s ON s.showid = pm.showid " "WHERE pm.panelistid = %s " "AND s.bestof = 0 AND s.repeatshowid IS NULL " "AND pm.panelistscore IS NOT NULL " "ORDER BY s.showdate ASC;") cursor.execute(query, (panelist_id,)) result = cursor.fetchall() cursor.close() if not result: return None ranks = [] for row in result: info = OrderedDict() info["show_id"] = row[0] info["show_date"] = row[1].isoformat() info["rank"] = row[2] ranks.append(info) return ranks
0560a4f0d2c11f9dbd56d25c63d70fc29ed4292d
16,981
def maxPixel(rpl): """maxPixel(rpl) Computes the max pixel spectrum for the specified ripple/raw spectrum object.""" xs = epq.ExtremumSpectrum() for r in xrange(0, rpl.getRows()): dt2.StdOut.append(".") if dt2.terminated: break for c in xrange(0, rpl.getColumns()): rpl.setPosition(r, c) xs.include(rpl) return xs
9cb40df8a02e7c861aebedb7d2e13c3fac04d024
16,982
def skip_device(name): """ Decorator to mark a test to only run on certain devices Takes single device name or list of names as argument """ def decorator(function): name_list = name if type(name) == list else [name] function.__dict__['skip_device'] = name_list return function return decorator
1bacdce5396ada5e2ba7a8ca70a8dfb273016323
16,983
def conv1d(inputs, filters, kernel_size, strides=1, padding='valid', data_format='channels_last', dilation_rate=1, activation=None, use_bias=True, kernel_initializer=None, bias_initializer=init_ops.zeros_initializer(), kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None, trainable=True, name=None, reuse=None): """Functional interface for 1D convolution layer (e.g. temporal convolution). This layer creates a convolution kernel that is convolved (actually cross-correlated) with the layer input to produce a tensor of outputs. If `use_bias` is True (and a `bias_initializer` is provided), a bias vector is created and added to the outputs. Finally, if `activation` is not `None`, it is applied to the outputs as well. Arguments: inputs: Tensor input. filters: Integer, the dimensionality of the output space (i.e. the number of filters in the convolution). kernel_size: An integer or tuple/list of a single integer, specifying the length of the 1D convolution window. strides: An integer or tuple/list of a single integer, specifying the stride length of the convolution. Specifying any stride value != 1 is incompatible with specifying any `dilation_rate` value != 1. padding: One of `"valid"` or `"same"` (case-insensitive). data_format: A string, one of `channels_last` (default) or `channels_first`. The ordering of the dimensions in the inputs. `channels_last` corresponds to inputs with shape `(batch, length, channels)` while `channels_first` corresponds to inputs with shape `(batch, channels, length)`. dilation_rate: An integer or tuple/list of a single integer, specifying the dilation rate to use for dilated convolution. Currently, specifying any `dilation_rate` value != 1 is incompatible with specifying any `strides` value != 1. activation: Activation function. Set it to None to maintain a linear activation. use_bias: Boolean, whether the layer uses a bias. kernel_initializer: An initializer for the convolution kernel. bias_initializer: An initializer for the bias vector. If None, no bias will be applied. kernel_regularizer: Optional regularizer for the convolution kernel. bias_regularizer: Optional regularizer for the bias vector. activity_regularizer: Optional regularizer function for the output. kernel_constraint: Optional projection function to be applied to the kernel after being updated by an `Optimizer` (e.g. used to implement norm constraints or value constraints for layer weights). The function must take as input the unprojected variable and must return the projected variable (which must have the same shape). Constraints are not safe to use when doing asynchronous distributed training. bias_constraint: Optional projection function to be applied to the bias after being updated by an `Optimizer`. trainable: Boolean, if `True` also add variables to the graph collection `GraphKeys.TRAINABLE_VARIABLES` (see `tf.Variable`). name: A string, the name of the layer. reuse: Boolean, whether to reuse the weights of a previous layer by the same name. Returns: Output tensor. Raises: ValueError: if eager execution is enabled. """ if context.in_eager_mode(): raise ValueError( 'Functional layers are currently not compatible with eager execution.' 'Use tf.layers.Conv1D instead.') layer = Conv1D( filters=filters, kernel_size=kernel_size, strides=strides, padding=padding, data_format=data_format, dilation_rate=dilation_rate, activation=activation, use_bias=use_bias, kernel_initializer=kernel_initializer, bias_initializer=bias_initializer, kernel_regularizer=kernel_regularizer, bias_regularizer=bias_regularizer, activity_regularizer=activity_regularizer, kernel_constraint=kernel_constraint, bias_constraint=bias_constraint, trainable=trainable, name=name, dtype=inputs.dtype.base_dtype, _reuse=reuse, _scope=name) return layer.apply(inputs)
f3e9dc40d7da6a9bc7a55ec8b13c91a4ac8ba2c3
16,984
from typing import List from typing import Union def check_constraints( df: pd.DataFrame, schema: dict ) -> List[Union[ConstraintError, ConstraintTypeError]]: """ Check table field constraints. Arguments: df: Table. schema: Table schema (https://specs.frictionlessdata.io/table-schema). Returns: A list of errors. """ errors = [] for field in schema.get("fields", []): constraints = field.get("constraints", {}) result = check_field_constraints(df[field["name"]], **constraints, field=field) if result: errors += result return errors
bd6569932b2eb6e4510b7a5e8e6b22e92ddaa1e5
16,986
from typing import Iterable from typing import Tuple from typing import Optional from typing import Mapping from typing import Any import textwrap def consolidate_fully( inputs: Iterable[Tuple[core.Key, xarray.Dataset]], *, merge_kwargs: Optional[Mapping[str, Any]] = None, combine_kwargs: Optional[Mapping[str, Any]] = None, ) -> Tuple[core.Key, xarray.Dataset]: """Consolidate chunks via merge/concat into a single (Key, Dataset) pair.""" concatenated_chunks = [] combined_offsets = {} combined_vars = set() for key, chunk in consolidate_chunks(inputs, combine_kwargs): # We expect all chunks to be fully combined in all dimensions and all chunks # to have the same offset (in each dimension). The chunks from # consolidate_chunks() should already have this property but we explicitly # check it here again in case consolidate_chunks changes. for dim, offset in key.offsets.items(): if dim in combined_offsets and combined_offsets[dim] != offset: raise ValueError('consolidating chunks fully failed because ' f'chunk\n{chunk}\n has offsets {key.offsets} ' f'that differ from {combined_offsets}') combined_offsets[dim] = offset concatenated_chunks.append(chunk) combined_vars.update(chunk.keys()) # Merge variables, but unlike consolidate_variables, we merge all chunks and # not just chunks per unique key. kwargs = dict( compat='equals', join='exact', combine_attrs='override', ) if merge_kwargs is not None: kwargs.update(merge_kwargs) try: dataset = xarray.merge(concatenated_chunks, **kwargs) except (ValueError, xarray.MergeError) as original_error: repr_string = '\n'.join(repr(ds) for ds in concatenated_chunks[:2]) if len(concatenated_chunks) > 2: repr_string += '\n...' repr_string = textwrap.indent(repr_string, prefix=' ') raise ValueError( f'merging dataset chunks with variables {combined_vars} failed.\n' + repr_string ) from original_error return core.Key(combined_offsets, combined_vars), dataset
240f2579f97ed1b2eaef2d4d7e9e35ed17dbacdf
16,987
from typing import Iterator from re import T from typing import Optional def first(items: Iterator[T]) -> Optional[T]: """Return the first item of the iterator.""" return next(items, None)
5571c8d1541ce2cb3f49da736f92e17fe6326e6d
16,988
from typing import Sequence def plot_precision_recall_curve( precisions: Sequence[float], recalls: Sequence[float], title: str = 'Precision/Recall curve' ) -> matplotlib.figure.Figure: """ Plots the precision recall curve given lists of (ordered) precision and recall values. Args: precisions: list of float, precision for corresponding recall values, should have same length as *recalls*. recalls: list of float, recall for corresponding precision values, should have same length as *precisions*. title: str, plot title Returns: matplotlib.figure.Figure, reference to the figure """ assert len(precisions) == len(recalls) fig, ax = plt.subplots(1, 1, tight_layout=True) ax.step(recalls, precisions, color='b', alpha=0.2, where='post') ax.fill_between(recalls, precisions, alpha=0.2, color='b', step='post') ax.set(x_label='Recall', y_label='Precision', title=title) ax.set(x_lim=(0.0, 1.05), y_lim=(0.0, 1.05)) return fig
d71220b71dfe26aae949676105ba643e249f1c69
16,989
import json def Serialize(obj): """Return a binary serialized version of object. Depending on the serialization method, some complex objects or input formats may not be serializable. UTF-8 strings (by themselves or in other structures e.g. lists) are always supported. Args: obj: any object Returns: str, possibly containing ascii values >127 Raises: SerializeError: if an error occured during serialization """ try: return json.dumps(obj) except TypeError as e: raise SerializeError(e)
d9632f0104c69bfb38396f47f5813fd9a87d6361
16,990
from typing import Union def getDragObject(parent: QWidget, item: Union['SourceListWidgetItem', 'DestTreeWidgetItem']) -> QDrag: """Instantiate QDrag of type application/draggerItem with corresponding QMimeData Parameters ---------- parent: QWidget item: Union['SourceListWidgetItem', 'DestTreeWidgetItem'] Returns ------- QDrag QDrag object holding item value as QMimeData """ # construct dataStream with item value itemData = QByteArray() getData(itemData, item.value) mimeData = QMimeData() mimeData.setData(LISTBOX_W_VALUE_MIMETYPE, itemData) drag = QDrag(parent) drag.setHotSpot(QPoint(0, 0)) drag.setMimeData(mimeData) return drag
a6990e9f1a95632d25e15d993d0117cdb911cf7b
16,991
import requests from bs4 import BeautifulSoup def get_soup(url): """ Makes a request to the given url and returns a BeautifulSoup instance of Soup """ res = requests.get(url) if not res.content: return None soup = BeautifulSoup(res.content, "lxml") return soup
bc4e79f4e2313e3c3edc6f6f123b6d13f71c0075
16,992
def _grow_segment(segment, addition): """Combine two segments into one, if possible.""" if _eq(segment[-1], addition[0]): # append addition return segment + addition[1:] elif _eq(segment[-1], addition[-1]): # append reversed addition return segment + list(reversed(addition[:-1])) elif _eq(segment[0], addition[-1]): # prepend addition return addition[:-1] + segment elif _eq(segment[0], addition[0]): # prepend reversed addition return list(reversed(addition[1:])) + segment else: raise ValueError("addition doesn't fit segment")
12f48ec2efbd74ac09f9277f2769a4b35030a425
16,993
def dsmoothlist_by_deform_exp(deform_exp, ag_mode): """ Automatically extract the selected artificial generations for training and validation set: 'Resp': ['respiratory_motion', 'single_frequency', 'mixed_frequency', 'zero'], 'NoResp': ['single_frequency', 'mixed_frequency', 'zero'], 'SingleOnly': ['single_frequency'], 'MixedOnly': ['mixed_frequency'], 'SingleResp': ['single_frequency', 'respiratory_motion', 'zero'], please note that for validation set we do not need to select all of them :param deform_exp: :param ag_mode: artificial generation mode: 'Resp', 'NoResp', 'SingleOnly', 'MixedOnly', 'SingleResp', 'Visualization' :return: """ if ag_mode not in ['Resp', 'NoResp', 'SingleOnly', 'MixedOnly', 'SingleResp', 'Visualization']: raise ValueError("exp_mode should be in ['Resp', 'NoResp', 'SingleOnly', 'MixedOnly', 'SingleResp', 'Visualization']") dsmoothlist_training = [] dsmoothlist_validation = [] deform_exp_setting = load_deform_exp_setting(deform_exp) all_deform_methods = deform_exp_setting['DeformMethods'] comp_dict = {'Resp': ['respiratory_motion', 'single_frequency', 'mixed_frequency', 'zero'], 'NoResp': ['single_frequency', 'mixed_frequency', 'zero'], 'SingleOnly': ['single_frequency'], 'MixedOnly': ['mixed_frequency'], 'SingleResp': ['single_frequency', 'respiratory_motion', 'zero'], 'Visualization': [] } for i, deform_method in enumerate(all_deform_methods): if deform_method in comp_dict[ag_mode]: dsmoothlist_training.append(i) if deform_exp in ['3D_max7_D14_K', '3D_max15_D14_K', '3D_max20_D14_K', '3D_max15_SingleFrequency_Visualization']: if ag_mode == 'Resp': dsmoothlist_validation = [0, 5, 10] elif ag_mode == 'NoResp': dsmoothlist_validation = [5, 8, 10] elif ag_mode == 'SingleResp': dsmoothlist_validation = [4, 8, 10] elif ag_mode == 'SingleOnly': dsmoothlist_validation = [5, 6, 8] elif ag_mode == 'MixedOnly': dsmoothlist_validation = [9, 10, 12] else: raise ValueError('dsmoothlist_validation not found for deform_exp='+deform_exp+', please add it manually') return dsmoothlist_training, dsmoothlist_validation
965ecf7373c313dccd290fb8a7c6c2075645a16a
16,994
from typing import Callable from typing import BinaryIO from typing import Tuple def get_data_reader(header: Header) -> Callable[[BinaryIO], Tuple]: """Make a binary reader function for data.""" names = get_data_names(header) format_ = "" for name in names: if "CH" in name: format_ += "h" elif "Pulse" in name: format_ += "L" elif "Logic" in name: format_ += "H" elif "Alarm" in name: format_ += "H" elif "AlOut" in name: format_ += "H" elif "Status" in name: format_ += "H" else: raise ValueError(name) struct = Struct(BIG_ENDIAN + format_) def reader(f: BinaryIO) -> Tuple: return struct.unpack(f.read(struct.size)) return reader
c243d5d50ec8738f8f8673fd9bf40b9d26cad69b
16,995
def test_api_mediawiki(monkeypatch): """The api_mediawiki test using mocks.""" result = "OpenClassrooms est une école en ligne..." def mock_summary(*args, **kwargs): return result monkeypatch.setattr( MediawikiApi, 'search', mock_summary) wikipedia = MediawikiApi() assert wikipedia.search('openclassrooms') == result
28b22d4acf195dee3d1e7f10688610fea71fea3f
16,996
from typing import Callable def check_fnr(fnr: str, d_numbers=True, h_numbers=False, logger: Callable = lambda _x: None) -> bool: """ Check if a number is a valid fødselsnumber. Args: fnr: A string containing the fodselsnummer to check h_numbers: False (the default) if h-numbers should be accepted d_numbers: True (the default) if d-numbers should be accepted logger: A function used to log things Returns: True if it is a valid fodselsnummer, False otherwise. """ try: return validate_fnr(fnr=fnr, d_numbers=d_numbers, h_numbers=h_numbers) except ValueError as e: logger(str(e)) return False
2d5af194f1a69a093c6bf69b2cd42537d2dd32b0
16,997
import unittest def get_case_list_from_cls(test_cls_list): """ 将测试类转化为测试用例 :return: """ test_list = [] for test_cls in test_cls_list: test_cases = unittest.TestLoader().loadTestsFromTestCase(test_cls) test_list.append(test_cases) return test_list
3f7ed0c7ed0b9110a9cb11579087712321ec868e
16,998
from sklearn.metrics import r2_score from sklearn.linear_model import LinearRegression from sklearn.model_selection import train_test_split def align_times(sync_behavioral, sync_neural, score_thresh=0.9999, ignore_poor_alignment=False, return_model=False, verbose=False): """Align times across different recording systems. Parameters ---------- sync_behavioral : 1d array Sync pulse times from behavioral computer. sync_neural : 1d array Sync pulse times from neural computer. score_thresh : float, optional, default: 0.9999 R^2 threshold value to check that the fit model is better than. ignore_poor_alignment : bool, optional, default: False Whether to ignore a bad alignment score. return_model : bool, optional, default: False Whether to return the model object. If False, returns verbose : bool, optional, default: False Whether to print out model information. Returns ------- model : LinearRegression The fit model object. Only returned if `return_model` is True. model_intercept : float Intercept of the model predicting differences between sync pulses. Returned if `return_model` is False. model_coef : float Learned coefficient of the model predicting differences between sync pulses. Returned if `return_model` is False. score : float R^2 score of the model, indicating how good a fit there is between sync pulses. """ # sklearn imports are weird, so re-import here # the sub-modules here aren't available from the global namespace # Reshape to column arrays for scikit-learn sync_behavioral = sync_behavioral.reshape(-1, 1) sync_neural = sync_neural.reshape(-1, 1) # Linear model to predict alignment between time traces x_train, x_test, y_train, y_test = train_test_split(\ sync_behavioral, sync_neural, test_size=0.50, random_state=42) model = LinearRegression() model.fit(x_train, y_train) y_pred = model.predict(x_test) score = r2_score(y_test, y_pred) bad_score_msg = 'This session has bad synchronization between brain and behavior' if score < score_thresh: if not ignore_poor_alignment: raise ValueError(bad_score_msg) else: print(bad_score_msg) if verbose: print('coef', model.coef_[0], '\n intercept', model.intercept_[0]) print('score', score) if return_model: return model, score else: return model.intercept_[0], model.coef_[0][0], score
8bc8ad2a92267a0c1c5e8a4c6a71494910df8b7f
16,999
def check_media(url): """Check if something is available or has a new hash Checks if url is available, uf yes, download and hash it, then see if it has changed Args: url: A complete url to something Returns: 0 if available and no change. 1 if not available. 2 if it has changed """ media = http.download_something(url): # If failed to download if not media: return 1 # Hash media hashed_media = hashlib.sha512(media).hexdigest()
f7237207a7ff6e555533cebe4dc83fa77538886c
17,000
from typing import Iterable from typing import Any from typing import Tuple def tuple_from_iterable(val: Iterable[Any]) -> Tuple[Any, ...]: """Builds a tuple from an iterable. Workaround for https://github.com/python-attrs/attrs/issues/519 """ return tuple(val)
7880b1395f14aa690f967b9548456105b544d337
17,002
from typing import Counter def merge_vocabs(vocabs, vocab_size=None): """ Merge individual vocabularies (assumed to be generated from disjoint documents) into a larger vocabulary. Args: vocabs: `torchtext.vocab.Vocab` vocabularies to be merged vocab_size: `int` the final vocabulary size. `None` for no limit. Return: `torchtext.vocab.Vocab` """ merged = sum([vocab.freqs for vocab in vocabs], Counter()) return Vocab(merged, specials=['<pad>','<unk>','<sep>','<sos>','<eos>'], vectors = 'fasttext.en.300d')
db83e858c1a8910b382bcd485923ef6ba9a1466e
17,003
def count_nonzero(X, axis=None, sample_weight=None): """A variant of X.getnnz() with extension to weighting on axis 0 Useful in efficiently calculating multilabel metrics. Parameters ---------- X : sparse matrix of shape (n_samples, n_labels) Input data. It should be of CSR format. axis : {0, 1}, default=None The axis on which the data is aggregated. sample_weight : array-like of shape (n_samples,), default=None Weight for each row of X. """ if axis == -1: axis = 1 elif axis == -2: axis = 0 elif X.format != 'csr': raise TypeError('Expected CSR sparse format, got {0}'.format(X.format)) # We rely here on the fact that np.diff(Y.indptr) for a CSR # will return the number of nonzero entries in each row. # A bincount over Y.indices will return the number of nonzeros # in each column. See ``csr_matrix.getnnz`` in scipy >= 0.14. if axis is None: if sample_weight is None: return X.nnz else: return np.dot(np.diff(X.indptr), sample_weight) elif axis == 1: out = np.diff(X.indptr) if sample_weight is None: # astype here is for consistency with axis=0 dtype return out.astype('intp') return out * sample_weight elif axis == 0: if sample_weight is None: return np.bincount(X.indices, minlength=X.shape[1]) else: weights = np.repeat(sample_weight, np.diff(X.indptr)) return np.bincount(X.indices, minlength=X.shape[1], weights=weights) else: raise ValueError('Unsupported axis: {0}'.format(axis))
e6754cca480d626dd7ba2c96426e5eebf17a1fcb
17,005
def isolate_shape_axis(base, target, axis_list = ['X','Y','Z']): """ Given a base mesh, only take axis movement on the target that is specified in axis_list. Args: base (str): The base mesh that has no targets applied. target (str): The target mesh vertices moved to a different position than the base. axis_list (list): The axises of movement allowed. If axis_list = ['X'], only vertex movement on x will be present in the result. Returns: str: A new mesh with verts moving only on the isolated axis. """ verts = cmds.ls('%s.vtx[*]' % target, flatten = True) if not verts: return vert_count = len(verts) axis_name = '_'.join(axis_list) new_target = cmds.duplicate(target, n = '%s_%s' % (target, axis_name))[0] for inc in range(0, vert_count): base_pos = cmds.xform('%s.vtx[%s]' % (base, inc), q = True, t = True, ws = True) target_pos = cmds.xform('%s.vtx[%s]' % (target, inc), q = True, t = True, ws = True) if (base_pos == target_pos): continue small_x = False small_y = False small_z = False if abs(base_pos[0]-target_pos[0]) < 0.0001: small_x = True if abs(base_pos[1]-target_pos[1]) < 0.0001: small_y = True if abs(base_pos[2]-target_pos[2]) < 0.0001: small_z = True if small_x and small_y and small_z: continue if not 'X' in axis_list: target_pos[0] = base_pos[0] if not 'Y' in axis_list: target_pos[1] = base_pos[1] if not 'Z' in axis_list: target_pos[2] = base_pos[2] cmds.xform('%s.vtx[%s]' % (new_target, inc), ws = True, t = target_pos) return new_target
a097442c2c379338890e5571d0e3516553fe70f3
17,006
from typing import List def _ge(t1: 'Tensor', t2: 'Tensor', isnew: bool) -> 'Tensor': """ Also see -------- :param t1: :param t2: :param isnew: :return: """ data = t1.data >= t2.data requires_grad = t1.requires_grad or t2.requires_grad depends_on: List[Dependency] = [] if t1.requires_grad: def grad_fn1(grad: 'np.ndarray') -> 'np.ndarray': # Maually, discontinuous function just take its gradient to zero. return np.zeros_like(t1.data) depends_on.append(Dependency(t1, grad_fn1)) if t2.requires_grad: def grad_fn2(grad: 'np.ndarray') -> 'np.ndarray': return np.zeros_like(t2.data) depends_on.append(Dependency(t2, grad_fn2)) if isnew: requires_grad = False depends_on: List[Dependency] = [] return Tensor(data, requires_grad, depends_on)
02b0407c3b2bc3ed6bf65555ab62257e3f041d0e
17,007
from typing import Dict from typing import Any import logging import numpy def convert_homogeneous_graph(graph: Dict[str, Any], num_graphs: int, output_dir: str): """Process a homogeneous graph.""" # NOTE(blais): We could in theory stash the data in the same format as their # heterogeneous graphs in Python and just use convert_heterogeneous_graph(). # Gather node features. logging.info("Processing node features") num_nodes = graph.pop("num_nodes") graph["node_#id"] = numpy.arange(num_nodes).astype(bytes) node_features = extract_features(graph, "node", num_nodes) filename = write_table(output_dir, "nodes", node_features, num_nodes) node_features_dict = {} node_features_dict["nodes"] = (filename, node_features) # Gather edge features. logging.info("Processing edge features") indices = graph.pop("edge_index") assert len(indices.shape) == 2 num_edges = indices.shape[1] graph["edge_{}".format(tfgnn.SOURCE_NAME)] = indices[0].astype(bytes) graph["edge_{}".format(tfgnn.TARGET_NAME)] = indices[1].astype(bytes) # NOTE(blais): If external edge features are needed and each edge is # unique, you can use this: # graph["edge_#id"] = ["{}_{}".format(edge_index[0, i], edge_index[1, i]) # for i in range(num_edges)] edge_features = extract_features(graph, "edge", num_edges) filename = write_table(output_dir, "edges", edge_features, num_edges) edge_features_dict = {} edge_features_dict["edges"] = (filename, "nodes", "nodes", edge_features) # Gather context features. logging.info("Processing graph context features") if num_graphs > 1: graph_features = extract_features(graph, "graph", num_graphs) filename = write_table(output_dir, "graph", graph_features, num_graphs) context_features = (filename, graph_features) else: context_features = None # Make sure we processed everything. graph = remove_empty_dicts(graph) if graph: logging.error("Graph is not empty: %s", graph) # Produce a corresponding graph schema. logging.info("Producing graph schema") return create_schema(context_features, node_features_dict, edge_features_dict)
4aa0751437861af58159228c018a3f6d94b8613a
17,008
def second_deriv_log_pdf(phi, alpha, beta, eps=1e-4): """Second derivative of `log_pdf` with respect to latitude.""" return ( log_pdf(phi + eps, alpha, beta) - 2 * log_pdf(phi, alpha, beta) + log_pdf(phi - eps, alpha, beta) ) / eps ** 2
5df140d62466481997a472e260241961e872cbe3
17,009
from typing import OrderedDict def normalize_data(data, zp=25., zpsys='ab'): """Return a copy of the data with all flux and fluxerr values normalized to the given zeropoint. Assumes data has already been standardized. Parameters ---------- data : `~numpy.ndarray` Structured array. zp : float zpsys : str Returns ------- normalized_data : `~numpy.ndarray` """ warn_once('standardize_data', '1.5', '2.0', 'This function not intended for public use; open an issue at ' 'https://github.com/sncosmo/sncosmo/issues if you need this ' 'functionality.') normmagsys = get_magsystem(zpsys) factor = np.empty(len(data), dtype=np.float) for b in set(data['band'].tolist()): idx = data['band'] == b b = get_bandpass(b) bandfactor = 10.**(0.4 * (zp - data['zp'][idx])) bandzpsys = data['zpsys'][idx] for ms in set(bandzpsys): idx2 = bandzpsys == ms ms = get_magsystem(ms) bandfactor[idx2] *= (ms.zpbandflux(b) / normmagsys.zpbandflux(b)) factor[idx] = bandfactor normalized_data = OrderedDict([('time', data['time']), ('band', data['band']), ('flux', data['flux'] * factor), ('fluxerr', data['fluxerr'] * factor), ('zp', zp), ('zpsys', zpsys)]) return dict_to_array(normalized_data)
9aa3c4faf6f9a9f98afd9e11d2bafaf1b026519c
17,011
import base64 def CreateMessage(sender, to, subject, message_text): """ Creates an object containing a base64url encoded email object. """ message = MIMEText(message_text) message['to'] = to message['from'] = sender message['subject'] = subject raw_message = base64.urlsafe_b64encode(message.as_bytes()) raw_message = raw_message.decode() return {'raw': raw_message }
8d55b64ebf4801781126f244441f619201d51190
17,012
def bg_lookup(bg_name: str) -> str: """Look up ANSI escape codes based on background color name. :param bg_name: background color name to look up ANSI escape code(s) for :return: ANSI escape code(s) associated with this color :raises ValueError if the color cannot be found """ try: ansi_escape = BG_COLORS[bg_name.lower()] except KeyError: raise ValueError('Background color {!r} does not exist.'.format(bg_name)) return ansi_escape
8c520f599bc41ce847e5c602ddf8500fe366f24d
17,013
def readData(f): """ Parse taxon count table (from count-taxon.py) Parameters: ----------- f : str file name of taxon count table Returns: -------- tuple a list of taxons and a list of their counts """ taxa_lis = [] num_lis = [] for n, line in enumerate(open(f)): if line.startswith('#'): continue line = line.rstrip() if line == '': continue taxa, num = line.split('\t') skip = False for word in EXCLUDE: if word in taxa: skip = True break if skip: continue taxa = taxa.rstrip(';') lis = taxa.split(';') lis2 = [] for item in lis: item = item.strip() if item.endswith(')'): item = item.split('(')[0].strip() # remove taxon level prefix, e.g. 'p__Firmicutes' if '__' in item: item = item.split('__', 1)[1] #item = item.strip('"') item = item.lower() if 'unclassified' in item: item = 'Unclassifed' elif 'unknown' in item: item = 'Unclassifed' elif 'other' in item: item = 'Unclassifed' elif 'unassigned' in item: item = 'Unclassifed' item = item.capitalize() lis2.append(item) taxa_lis.append(lis2) num_lis.append(float(num)) return taxa_lis, num_lis
fcd10e1d7dc1db0b871c7a4802f012eec43c08a9
17,014
def detect_onsets_offsets(data, threshold, min_distance): """ detects when a when a signal jumps above zero, and when it goes back to zero """ on = (data > threshold) # when the data is greater than zero left_on = np.concatenate(([0], on), axis=0)[0:-1] onset = np.squeeze(np.where(on & (left_on != True))) offset = np.squeeze(np.where((on != True) & (left_on == True))) if data[-1] > threshold: offset = np.append(offset, len(data)) # make sure there is an offset at some point... if len(np.shape(onset)) < 1: offset = [offset] onset = [onset] new_offset = [] new_onset = [] if len(onset) > 0: new_onset.append(onset[0]) if len(onset) > 1: for i in range(len(onset)-1): if (onset[i+1] - offset[i]) > min_distance: new_onset.append(onset[i+1]) new_offset.append(offset[i]) new_offset.append(offset[-1]) return new_onset, new_offset
faa81445828b72bc7d7433a4c2c8740bb36050bb
17,016
def STEPConstruct_PointHasher_IsEqual(*args): """ * Returns True when the two keys are the same. Two same keys must have the same hashcode, the contrary is not necessary. :param Point1: :type Point1: gp_Pnt :param Point2: :type Point2: gp_Pnt :rtype: bool """ return _STEPConstruct.STEPConstruct_PointHasher_IsEqual(*args)
b3aa095d723203b05ea29ec4f5b34a70bc4c5276
17,017
def step_smooth(x) : """ Smooth polinomial rising step from 0(x=0) to 1(x=1) """ return np.select([x>1, x>0], [1, 3*np.square(x)-2*np.power(x,3)], default=0)
ccf53e2561e256d2114510598ebb7a2ec1ce7cbd
17,018
def getBitSizeOfVarInt64(value): """ Gets bit size of variable 64-bit signed integer value. :param value: Value to use for bit size calculation. :returns: Bit size of the value. """ return _getBitSizeOfVarIntImpl(value, VARINT64_MAX_VALUES, signed=True)
20c52df5ec9a00680e771f206319a02e3ba3de66
17,019
import functools def nan_if_exception(func): """Wrap func such that np.nan is returned if func raises an exception. KeyboardInterrupt and SystemExit are still raised. Examples: >>> @nan_if_exception ... def f(x, y): ... assert x + y >= 5 >>> f(1, 2) nan >>> def f(x, y): ... assert x + y >= 5 >>> g = nan_if_exception(f) >>> g(1, 2) nan """ @functools.wraps(func) def wrapper_nan_if_exception(params, *args, **kwargs): try: out = func(params, *args, **kwargs) except (KeyboardInterrupt, SystemExit): raise except Exception: out = np.nan return out return wrapper_nan_if_exception
f03c314741c47805d767fc62fbce49cda9be35fe
17,020
def get_client_public_key(patient_id, study_id): """Grabs a user's public key file from s3.""" key_pair_paths = construct_s3_key_paths(study_id, patient_id) key = s3_retrieve(key_pair_paths['public'], study_id, raw_path=True) return encryption.import_RSA_key( key )
d6e6560c49f925a8f87a84829d632f67957f3c79
17,021
from typing import List from typing import Tuple def plot_offset_direction( dsaimage: Image, coords: SkyCoord, ra_offsets: List[float], dec_offsets: List[float] ) -> Tuple["matplotlib.fig", "matplotlib.axes.Axes"]: """Plot measured offsets on an image.""" fig, ax = dsaimage.show() dsaimage.add_arrows(coords, ra_offsets, dec_offsets) return fig, ax
24416863b795538ee8c86fa1949f6d701b66f28d
17,022
def sensitivity_metric(event_id_1, event_id_2): """Determine similarity between two epochs, given their event ids.""" if event_id_1 == 1 and event_id_2 == 1: return 0 # Completely similar if event_id_1 == 2 and event_id_2 == 2: return 0.5 # Somewhat similar elif event_id_1 == 1 and event_id_2 == 2: return 0.5 # Somewhat similar elif event_id_1 == 2 and event_id_1 == 1: return 0.5 # Somewhat similar else: return 1
b04c5fa27ef655dd3f371c3ce6ef0410c55dd05b
17,024
def duracion_promedio_peliculas(p1: dict, p2: dict, p3: dict, p4: dict, p5: dict) -> str: """Calcula la duracion promedio de las peliculas que entran por parametro. Esto es, la duración total de todas las peliculas dividida sobre el numero de peliculas. Retorna la duracion promedio en una cadena de formato 'HH:MM' ignorando los posibles decimales. Parametros: p1 (dict): Diccionario que contiene la informacion de la pelicula 1. p2 (dict): Diccionario que contiene la informacion de la pelicula 2. p3 (dict): Diccionario que contiene la informacion de la pelicula 3. p4 (dict): Diccionario que contiene la informacion de la pelicula 4. p5 (dict): Diccionario que contiene la informacion de la pelicula 5. Retorna: str: la duracion promedio de las peliculas en formato 'HH:MM'. """ # Se extraen las duraciones de las películas. duracion1 = p1["duracion"] duracion2 = p2["duracion"] duracion3 = p3["duracion"] duracion4 = p4["duracion"] duracion5 = p5["duracion"] # Promedio de duraciones de las películas. promedio = (duracion1 + duracion2 + duracion3 + duracion4 + duracion5) / 5 # Conversión a formato 'HH:MM'. horas = promedio // 60 minutos = promedio % 60 if horas < 10: horas = '0' + str(int(horas)) else: horas = str(int(horas)) if minutos < 10: minutos = '0' + str(int(minutos)) else: minutos = str(int(minutos)) return horas + ":" + minutos
a8cfcc96a43480ee6830cc212343a33148036c5d
17,025
def _to_test_data(text): """ Lines should be of this format: <word> <normal_form> <tag>. Lines that starts with "#" and blank lines are skipped. """ return [l.split(None, 2) for l in text.splitlines() if l.strip() and not l.startswith("#")]
8f0bae9f81d2d14b5654622f1493b23abd88424d
17,026
import copy def append(motion1, motion2): """ Combines two motion sequences into one. motion2 is appended to motion1. The operation is not done in place. Note that the operation places the sequences next to each other without attempting to blend between the poses. To interpolate between the end of motion1 and start of motion2, use the `append_and_blend` operation. Args: motion1, motion2: Motion sequences to be combined. """ assert isinstance(motion1, motion_class.Motion) assert isinstance(motion2, motion_class.Motion) assert motion1.skel.num_joints() == motion2.skel.num_joints() combined_motion = copy.deepcopy(motion1) combined_motion.name = f"{motion1.name}+{motion2.name}" combined_motion.poses.extend(motion2.poses) return combined_motion
dc51812f450a072ad283173a15fb2c07ae978e5b
17,027
from datetime import datetime from typing import List def service( fmt: SupportedFormats, begints: datetime = Query( ..., description="Inclusive UTC timestamp window start for issuance." ), endts: datetime = Query( ..., description="Exclusive UTC timestamp window end for issuance." ), wfo: List[str] = Query( None, description="WFO 3-letter codes for filter.", max_length=3 ), only_new: bool = Query(True, description="Only include issuance events."), ph: List[str] = Query( None, description="VTEC Phenomena 2-letter codes.", max_length=2 ), ): """Replaced above.""" df = handler(begints, endts, wfo, only_new, ph) return deliver_df(df, fmt)
eeb0a8b1187ff2386401440b6ddd812b81cd0fdd
17,028
def cols_shuffled(expr_df, dist_df=None, algo="agno", seed=0): """ Return a copy of the expr_df DataFrame with columns shuffled randomly. :param pandas.DataFrame expr_df: the DataFrame to copy and shuffle :param pandas.DataFrame dist_df: the distance DataFrame to inform us about distances between columns :param str algo: Agnostic to distance ('agno') or distance aware ('dist')? :param int seed: set numpy's random seed if desired :returns: A copy of the expr_df DataFrame with columns shuffled. """ shuffled_df = expr_df.copy(deep=True) np.random.seed(seed) if algo == "agno": shuffled_df.columns = np.random.permutation(expr_df.columns) elif algo == "dist": # Make a distance-similarity matrix, allowing us to characterize one well_id's distance-similarity to another. diss = pd.DataFrame(data=np.corrcoef(dist_df.values), columns=dist_df.columns, index=dist_df.index) # Old and new well_id indices available_ids = list(expr_df.columns) shuffled_well_ids = [] # For each well_id in the original list, replace it with another one as distance-similar as possible. for well_id in list(expr_df.columns): # Do we want to avoid same tissue-class? # This algo allows for keeping the same well_id and doesn't even look at tissue-class. # sort the distance-similarity by THIS well_id's column, but use corresponding index of well_ids candidates = diss.sort_values(by=well_id, ascending=False).index candidates = [x for x in candidates if x in available_ids] if len(candidates) == 1: candidate = candidates[0] elif len(candidates) < 20: candidate = np.random.permutation(candidates)[0] else: n_candidates = min(20, int(len(candidates) / 5.0)) candidate = np.random.permutation(candidates[:n_candidates])[0] # We have our winner, save it to our new list and remove it from what's available. shuffled_well_ids.append(candidate) available_ids.remove(candidate) shuffled_df.columns = shuffled_well_ids else: shuffled_df = pd.DataFrame() # Column labels have been shuffled; return a dataframe with identically ordered labels and moved data. return shuffled_df.loc[:, expr_df.columns], dict(zip(expr_df.columns, shuffled_df.columns))
37773c5219ecc92925c155e9d911c42ddbebc8ea
17,029
from typing import Dict from typing import Any from re import L def build_model(task_description: Dict[str, Any]) -> Dict[str, Any]: """Build the predinet model.""" # --------------------------- # Setup and process inputs processors = {"image": process_image, "task_id": process_task_id} mlp_inputs = utils.factory.create_input_layers(task_description, processors) # --------------------------- # Concatenate processed inputs concat_in = next(iter(mlp_inputs["processed"].values())) if len(mlp_inputs["processed"]) > 1: concat_in = L.Concatenate()(list(mlp_inputs["processed"].values())) # --------------------------- for size, activation in zip(C["mlp_hidden_sizes"], C["mlp_hidden_activations"]): concat_in = L.Dense(size, activation=activation)(concat_in) predictions = L.Dense(task_description["output"]["num_categories"])(concat_in) # --------------------------- # Create model instance model = tf.keras.Model( inputs=mlp_inputs["input_layers"], outputs=predictions, name="mlp_image_classifier", ) # --------------------------- # Compile model for training dataset_type = task_description["output"]["type"] assert ( dataset_type == "binary" ), f"MLP image classifier requires a binary classification dataset, got {dataset_type}" loss = tf.keras.losses.BinaryCrossentropy(from_logits=True) metrics = tf.keras.metrics.BinaryAccuracy(name="acc") # --------------------------- return {"model": model, "loss": loss, "metrics": metrics}
03c7951d3fb0fddbfb1e4bad3b4e5ce54253f994
17,031
def create_unet_model(N_classes, input_shape=(None, None, 1), dropout_rate=0.24, learning_rate=1e-5): """ Implementation of Unet mode for multiclass semantic segmentation :param N_classes: Number of classes of segmentation map :param input_shape: input image shape :param dropout_rate: dropout rate :return: a tuple of two models, first element is model to train and second is model to save """ # make sure the sizes are divisible by 16 if(input_shape[0] is not None): assert 16 * (input_shape[0] // 16) == input_shape[0], 'invalid dimension 0' if( input_shape[1] is not None): assert 16 * (input_shape[1] // 16) == input_shape[1], 'invalid dimension 1' in_image = Input(shape=input_shape) conv0 = Conv2D(32, (3, 3), activation='relu', name='conv1_0', padding='same')(in_image) conv1, x = conv_block_down(32, dropout_rate=dropout_rate ) (conv0) conv2, x = conv_block_down(64, dropout_rate=dropout_rate ) (x) conv3, x = conv_block_down(128, dropout_rate=dropout_rate )(x) conv4, x = conv_block_down(256, dropout_rate=dropout_rate )(x) x = conv_block(512, dropout_rate=dropout_rate ) (x) x = deconv_block(512, skip_layer=conv4, dropout_rate=dropout_rate ) (x) x = deconv_block(256, skip_layer=conv3, dropout_rate=dropout_rate ) (x) x = deconv_block(128, skip_layer=conv2, dropout_rate=dropout_rate ) (x) x = deconv_block(64, skip_layer=conv1, dropout_rate=dropout_rate ) (x) outp_logit = Conv2D(N_classes, (1, 1), activation='linear', padding='same', name='logit')(x) outp_softmax = Softmax4D(axis=3, name='segmap')(outp_logit) model_train = Model(inputs=in_image, outputs=[outp_logit,outp_softmax]) model_save = Model(inputs=in_image, outputs=[outp_softmax]) #if last channel is background if(N_classes <=5): class_indices = list(range(N_classes))[:-1] #except last one which is background metrics_classwise=[] for c in class_indices: fc = multiclass_dice_coef_metric(from_logits=True, class_index=c) fc.__name__='dmc'+str(c) metrics_classwise.append(fc) metrics = {'logit': metrics_classwise} else: metrics = {'logit': [multiclass_dice_coef_metric(from_logits=True)]} #all classes model_train.compile(optimizer=Adam(lr=learning_rate), loss={'logit': multiclass_balanced_cross_entropy(from_logits=True, P=5)}, metrics=metrics) return Models(model_train, model_save)
93c15376eed0c5cf1abe689ef1daca6c8877e61a
17,032
from uutils.torch_uu.models.learner_from_opt_as_few_shot_paper import get_default_learner from typing import Optional def get_5cnn_model(image_size: int = 84, bn_eps: float = 1e-3, bn_momentum: float = 0.95, n_classes: int = 5, filter_size: int = 32, levels: Optional = None, spp: bool = False) -> nn.Module: """ Gets a 5CNN that does not change the spatial dimension [H,W] as it processes the image. :return: """ mdl: nn.Module = get_default_learner(image_size, bn_eps, bn_momentum, n_classes, filter_size, levels, spp) return mdl
6b3e21e33433102b16b70c88dd5d033e1f069b86
17,034
def valid_extract_input_specification(instance_of_property, depth, language_code, named_entity_label): """ Checks if the input for the extraction is valid. Both to help the user get correct input and to sanitize it to avoid attacks as the values are used to generate filenames. """ pattern_match = valid_instance_of_property_pattern.match(instance_of_property) if instance_of_property != "manual_entry" and instance_of_property != "stopwords" and( pattern_match is None or pattern_match.span()[1] != len(instance_of_property) ): flash(f"The value of the instance of property must start with Q and then be followed by one or more digits (e.g. Q123). Currently, it is '{instance_of_property}'.", "danger") return False if len(language_code) != 2 or language_code.lower() != language_code: flash(f"The language code must consist of two lowercase letters (e.g. en). Currently, it is '{language_code}'.", "danger") return False pattern_match = valid_named_entity_label_pattern.match(named_entity_label) if pattern_match is None or pattern_match.span()[1] != len(named_entity_label): flash(f"The label must only consist of the characters a-z (upper or lowercased) or the special characters - or _ (e.g. LOC or feature_film). Currently it is '{named_entity_label}'.", "danger") return False try: depth_as_int = int(depth) if depth_as_int < 0: flash(f"The depth must be an integer >= 0. Currently it is '{depth}'.", "danger") return False except: flash(f"The depth must be an integer >= 0. Currently it is '{depth}'.", "danger") return False return True
c71f744fef82e54ca2fad0ea64c8637692256299
17,035
def get_company_data(mid): """Looks up stock ticker information for a company via its Freebase ID.""" query = MID_TO_TICKER_QUERY % mid bindings = make_wikidata_request(query) if not bindings: if mid: print("%s No company data found for MID: %s" % (WARNING, mid)) return None # Collect the data from the response. companies = [] for binding in bindings: try: name = binding["companyLabel"]["value"] except KeyError: name = None try: root = binding["rootLabel"]["value"] except KeyError: root = None try: symbol = binding["tickerLabel"]["value"] except KeyError: symbol = None try: exchange = binding["exchangeNameLabel"]["value"] except KeyError: exchange = None company = {"name": name, "symbol": symbol, "exchange": exchange} # Add the root if there is one. if root and root != name: company["root"] = root # Add to the list unless we already have the same entry. if company not in companies: print("%s Adding company data: %s" % (OK, company)) companies.append(company) else: print("%s Skipping duplicate company data: %s" % (WARNING, company)) return companies
464b9ef795938b2d83fd6a629b9af09ff165a922
17,036
def embed_data_into_square_lattice(data): """Insert MR image into square 2D array.""" dims = np.array(data.shape) offset_x = int((dims.max() - dims[0]) / 2.) offset_y = int((dims.max() - dims[1]) / 2.) temp = np.zeros((dims.max(), dims.max())) temp[offset_x:offset_x+dims[0], offset_y:offset_y+dims[1]] = data return temp
e701e871b4df9f4085b2548ad1e10f93ce33bf38
17,037
def is_partial_link_text_selector(selector): """ A basic method to determine if a selector is a partial link text selector. """ if ( selector.startswith("partial_link=") or selector.startswith("partial_link_text=") or selector.startswith("partial_text=") or selector.startswith("p_link=") or selector.startswith("p_link_text=") or selector.startswith("p_text=") ): return True return False
4f21143173e46ed273ca719ea1aac8489afa2395
17,038
def scell(obj, dims, method=1, **kwds): """Build supercell based on `dims`. Uses coords_frac and cell. Parameters ---------- obj : Structure or Trajectory dims : tuple (nx, ny, nz) for a N = nx * ny * nz supercell method : int, optional Switch between numpy-ish (1) or loop (2) implementation. (2) should always produce correct results but is sublty slower. Only for Structure. **kwds : see :func:`scell_mask` Notes ----- The mask for the supercell is created by :func:`scell_mask` and applied to each atom in `obj` one after another, i.e. each atom is repeated nx*ny*nz times according to the mask pattern, independently of how the pattern looks like (e.g. the `direc` parameter in :func:`scell_mask`). So, just as rows in np.repeat(), we have: | original: symbols=[A,B,C,D] | 2 x 1 x 1: symbols=[A,A,B,B,C,C,D,D] | nx x ny x nz: symbols=[(nx*ny*nz) x A, (nx*ny*nz) x B, ...] Returns ------- scell : Structure """ # Place each atom N = nx*ny*nz times in the supercell, i.e. copy unit cell # N times. Actually, N-1, since ix=iy=iz=0 is the unit cell itself. # # Let k = {x,y,z}. # # mask[j,:] = [ix, iy, iz], ik = integers (floats actually, but # mod(ik, floor(ik)) == 0.0) # # original cell: # coords_frac[i,:] = position vect of atom i in the unit cell in *crystal* # coords!! # # super cell: # sc_coords_frac[i,:] = coords_frac[i,:] + [ix, iy, iz] # for all permutations (see scell_mask()) of ix, iy, iz. # ik = 0, ..., nk - 1 # # sc_coords_frac : crystal coords w.r.t the *old* cell, i.e. the entries are in # [0,(max(dims))], not [0,1], is scaled below # if 'direc' not in kwds: kwds['direc'] = 1 mask = scell_mask(*tuple(dims), **kwds) nmask = mask.shape[0] if obj.is_struct: sc_cell = obj.cell * np.asarray(dims)[:,None] container = Structure elif obj.is_traj: # (nstep,3,3) * (1,3,1) -> (nstep, 3,3) sc_cell = obj.cell * np.asarray(dims)[None,:,None] container = Trajectory else: raise Exception("unknown input type") if method == 1: sc_symbols = np.array(obj.symbols).repeat(nmask).tolist() if (obj.symbols is not None) else None if obj.is_struct: # (natoms, 1, 3) + (1, nmask, 3) -> (natoms, nmask, 3) sc_coords_frac = (obj.coords_frac[:,None,:] + mask[None,...]).reshape(obj.natoms*nmask,3) elif obj.is_traj: # cool, eh? # (nstep, natoms, 1, 3) + (1, 1, nmask, 3) -> (nstep, natoms, nmask, 3) sc_coords_frac = (obj.coords_frac[...,None,:] + mask[None,None,...]).reshape(obj.nstep,obj.natoms*nmask,3) else: raise Exception("huh!?") # explicit loop version for testing, this is the reference implementation, # only for Structure elif method == 2: if obj.is_struct: sc_symbols = [] sc_coords_frac = np.empty((nmask*obj.natoms, 3), dtype=float) k = 0 for iatom in range(obj.natoms): for j in range(nmask): if obj.symbols is not None: sc_symbols.append(obj.symbols[iatom]) sc_coords_frac[k,:] = obj.coords_frac[iatom,:] + mask[j,:] k += 1 else: raise Exception("method=2 only implemented for Structure") else: raise Exception("unknown method: %s" %repr(method)) sc_coords_frac[...,0] /= dims[0] sc_coords_frac[...,1] /= dims[1] sc_coords_frac[...,2] /= dims[2] return container(coords_frac=sc_coords_frac, cell=sc_cell, symbols=sc_symbols)
e0cf7e03323c5994d0c56ba171d168aed105cfda
17,039
def create_config(device: str = 'CPU', *, per_process_gpu_memory_fraction: float = 0.0, log_device_placement: bool = False) -> tf.ConfigProto: """Creates tf.ConfigProto for specifi device""" config = tf.ConfigProto(log_device_placement=log_device_placement) if is_gpu(device): if per_process_gpu_memory_fraction > 0.0: config.gpu_options.per_process_gpu_memory_fraction = per_process_gpu_memory_fraction else: config.gpu_options.allow_growth = True else: config.device_count['GPU'] = 0 return config
0b6f351bcad2d816d6c03896ed60223cf2bb90c9
17,040
from typing import Union from typing import Dict def format_childproc(cp: Union[Event, Dict]): """Format childproc event into single line.""" return f" @{as_configured_timezone(cp.get('event_timestamp'))}: {cp.get('childproc_cmdline')} - {cp.get('childproc_process_guid')}"
f233a0fca52fdbef8d7ed0177772c9a8d196ec0d
17,041
def format_maven_jar_dep_name(group_id, artifact_id, repository = DEFAULT_REPOSITORY_NAME): """ group_id: str artifact_id: str repository: str = "maven" """ return "@%s//:%s" % (repository, format_maven_jar_name(group_id, artifact_id))
a331ce788a510c09c32a1d2c7d1f8d4fbeaba975
17,043
import ctypes def PCO_GetCameraName(handle): """ This function retrieves the name of the camera. """ f = pixelfly_dll.PCO_GetCameraName f.argtypes = (ctypes.wintypes.HANDLE, ctypes.c_char_p, ctypes.wintypes.WORD) f.restype = ctypes.c_int cameraName = ctypes.create_string_buffer(41) ret_code = f(handle, cameraName, 41) PCO_manage_error(ret_code) return cameraName.raw.decode("ascii")
f704f2a875f29f0876553c631de032d25b5166f4
17,044
def issingleton(var): """ If isunitset(var) is True, this function returns True, otherwise isscalar(var) is returned. """ # Here we define singleton as a unit set or scalar if isunitset(var): return True return isscalar(var)
cd1808ad99647486e81e0f903047db9327b77fb8
17,046
def satisfiesF(L): """ Assumes L is a list of strings Assume function f is already defined for you and it maps a string to a Boolean Mutates L such that it contains all of the strings, s, originally in L such that f(s) returns True, and no other elements. Remaining elements in L should be in the same order. Returns the length of L after mutation """ idx =0 while idx < len(L): if f(L[idx]): # do nothing if f true idx += 1 else: # remove the element if false L.pop(idx) return len(L)
429c385f51ba254fff7170f4e69725cc98c8b337
17,047
def calc_circle_radius(area: float) -> float: """ Calculate radius from area. >>> calc_circle_radius(10.0) 1.7841241161527712 """ assert not area < 0 radius = numpy_to_python_type(np.sqrt(area / np.pi)) assert isinstance(radius, float) return radius
06086e1b130bef960fad200b350cba01b647466e
17,048
import tqdm def load_imgs(paths, target_size): """Load images from `paths`.""" pairs = np.empty((len(paths), 2, *target_size), dtype=np.float32) for i, row in tqdm(paths.iterrows(), total=len(pairs)): img1 = img_to_array(load_img(row.p1, target_size=target_size)) / 255 img2 = img_to_array(load_img(row.p2, target_size=target_size)) / 255 pair = np.stack([img1, img2], axis=0) pairs[i, :] = pair y = paths.target.values.astype(np.uint8) return pairs, y
b91b86bcae29a6bf2d1227a25a2b8297c6be1734
17,049
def load_dict_from_hdf5(h5_filepath): """ Load h5 file as a dict """ def recursively_load_dict_contents_from_group(h5_obj, path): """ Recursively load a dict from h5 file """ ans = {} for key, item in h5_obj[path].items(): if isinstance(item, h5py._hl.dataset.Dataset): ans[key] = item.value elif isinstance(item, h5py._hl.group.Group): ans[key] = recursively_load_dict_contents_from_group(h5_obj, path + key + '/') return ans with h5py.File(h5_filepath, 'r') as h5_obj: return recursively_load_dict_contents_from_group(h5_obj, '/')
2339cc6edb83ed59fb43ec49503d86758d37d83e
17,050
def interactive_grid_shape(grid, max_n=200, plotfxn=None, **kwargs): """ Interactive ipywidgets for select the shape of a grid Parameters ---------- grid : pygridgen.Gridgen The base grid from which the grids of new shapes (resolutions) will be generated. max_n : int (default = 200) The maximum number of possible cells in each dimension. plotfxn : callable, optional Function that plots the grid to provide user feedback. The call signature of this function must accept to positional parameters for the x- and y-arrays of node locations, and then accept any remaining keyword arguments. If not provided, *pygridtools.viz.plot_cells* is used. Additional Parameters --------------------- All remaining keyword arguments are passed to *plotfxn* Returns ------- newgrid : pygridgen.Gridgen The reshaped grid widget : ipywidgets.interactive Collection of IntSliders for changing the number cells along each axis in the grid. Examples -------- >>> from pygridgen import grid >>> from pygridtools import viz, iotools >>> def make_fake_bathy(shape): ... j_cells, i_cells = shape ... y, x = numpy.mgrid[:j_cells, :i_cells] ... z = (y - (j_cells // 2))** 2 - x ... return z >>> def plot_grid(x, y, ax=None): ... shape = x[1:, 1:].shape ... bathy = make_fake_bathy(shape) ... if not ax: ... fig, ax = pyplot.subplots(figsize=(8, 8)) ... ax.set_aspect('equal') ... return viz.plot_cells(x, y, ax=ax, cmap='Blues', colors=bathy, lw=0.5, ec='0.3') >>> d = numpy.array([ ... (13, 16, 1.00), (18, 13, 1.00), (12, 7, 0.50), ... (10, 10, -0.25), ( 5, 10, -0.25), ( 5, 0, 1.00), ... ( 0, 0, 1.00), ( 0, 15, 0.50), ( 8, 15, -0.25), ... (11, 13, -0.25)]) >>> g = grid.Gridgen(d[:, 0], d[:, 1], d[:, 2], (75, 75), ul_idx=1, focus=None) >>> new_grid, widget = iotools.interactive_grid_shape(g, plotfxn=plot_grid) """ if not plotfxn: plotfxn = viz.plot_cells common_opts = dict(min=2, max=max_n, continuous_update=False) return grid, ipywidgets.interactive( _change_shape, g=ipywidgets.fixed(grid), irows=ipywidgets.IntSlider(value=grid.ny, **common_opts), jcols=ipywidgets.IntSlider(value=grid.nx, **common_opts), plotfxn=ipywidgets.fixed(plotfxn), plotopts=ipywidgets.fixed(kwargs) )
ef126f39f8433a65deb22e09ea825f342a38bea1
17,051
from lgsvl.utils import transform_to_forward from typing import Optional def generate_initial_state(initial_pos: Transform, initial_speed: Optional[float] = None) -> AgentState: """ :param initial_speed: Initial speed in km/h """ movement = AgentState() movement.transform = initial_pos if initial_speed is not None: movement.velocity = (initial_speed / 3.6) * transform_to_forward(movement.transform) return movement
30906410d3fe92b84f3d2c93a49db24f90a8ec8b
17,052
def resolve_ami(ami=None, arch="x86_64", tags=frozenset(), tag_keys=frozenset()): """ Find an AMI by ID, name, or tags. - If an ID is given, it is returned with no validation; otherwise, selects the most recent AMI from: - All available AMIs in this account with the Owner tag equal to this user's IAM username (filtered by tags given); - If no AMIs found, all available AMIs in this account with the AegeaVersion tag present (filtered by tags given); - If no AMIs found, all available AMIs in this account (filtered by tags given). Return the AMI with the most recent creation date. """ assert arch in {"x86_64", "arm64"} if ami is None or not ami.startswith("ami-"): if ami is None: filters = dict(Owners=["self"], Filters=[dict(Name="state", Values=["available"]), dict(Name="architecture", Values=[arch])]) else: filters = dict(Owners=["self"], Filters=[dict(Name="name", Values=[ami])]) all_amis = resources.ec2.images.filter(**filters) if tags: all_amis = filter_by_tags(all_amis, **tags) if tag_keys: all_amis = filter_by_tag_keys(all_amis, *tag_keys) current_user_amis = all_amis.filter(Filters=[dict(Name="tag:Owner", Values=[ARN.get_iam_username()])]) amis = sorted(current_user_amis, key=lambda x: x.creation_date) if len(amis) == 0: aegea_amis = all_amis.filter(Filters=[dict(Name="tag-key", Values=["AegeaVersion"])]) amis = sorted(aegea_amis, key=lambda x: x.creation_date) if len(amis) == 0: amis = sorted(all_amis, key=lambda x: x.creation_date) if not amis: raise AegeaException("Could not resolve AMI {}".format(dict(tags, ami=ami))) ami = amis[-1].id return ami
32495fb78a611f57b0e025b0ff68b51a190c7297
17,053
def _filter_colors(hcl, ihue, nhues, minsat): """ Filter colors into categories. Parameters ---------- hcl : tuple The data. ihue : int The hue column. nhues : int The total number of hues. minsat : float The minimum saturation used for the "grays" column. """ breakpoints = np.linspace(0, 360, nhues) gray = hcl[1] <= minsat if ihue == 0: return gray color = breakpoints[ihue - 1] <= hcl[0] < breakpoints[ihue] if ihue == nhues - 1: color = color or color == breakpoints[ihue] # endpoint inclusive return not gray and color
f7ca00bdd17766c859b5262c1b9ae12187c23222
17,054
def SWO( directed = False, preprocess = "auto", load_nodes = True, load_node_types = True, load_edge_weights = True, auto_enable_tradeoffs = True, sort_tmp_dir = None, verbose = 2, cache = True, cache_path = None, cache_sys_var = "GRAPH_CACHE_DIR", version = "swo.owl", **kwargs ) -> Graph: """Return SWO graph Parameters ---------- directed = False preprocess = "auto" Preprocess for optimal load time & memory peak. Will preprocess in Linux/macOS but not Windows. load_nodes = True Load node names or use numeric range auto_enable_tradeoffs = True Enable when graph has < 50M edges cache_path = None Path to store graphs Defaults either to `GRAPH_CACHE_DIR` sys var or `graphs` cache_sys_var = "GRAPH_CACHE_DIR" version = "swo.owl" Version to retrieve The available versions are: - swo.owl """ return AutomaticallyRetrievedGraph( "SWO", version, "kgobo", directed, preprocess, load_nodes, load_node_types, load_edge_weights, auto_enable_tradeoffs, sort_tmp_dir, verbose, cache, cache_path, cache_sys_var, kwargs )()
39936ffcd272e0d6c6c7e5510699bac68a465eb9
17,055
def upload_needed_files (handle, bucket, prefix, dir_path, kind, iter): """ upload the needed local files of a particular kind """ extension = f".{kind}" count = 0 for uuid in iter: file_name = uuid + extension local_path = dir_path / file_name grid_path = prefix + "/pub/" + kind + "/" #print("uploading {} to {}".format(local_path, grid_path)) upload_file(handle, local_path.as_posix(), grid_path + file_name) count += 1 return count
9357e991eb14eaf9de54beda3ec86defc3e1ecaf
17,056
def detect_tag(filename): """Return type and position of ID3v2 tag in filename. Returns (tag_class, offset, length), where tag_class is either Tag22, Tag23, or Tag24, and (offset, length) is the position of the tag in the file. """ with fileutil.opened(filename, "rb") as file: file.seek(0) header = file.read(10) file.seek(0) if len(header) < 10: raise NoTagError("File too short") if header[0:3] != b"ID3": raise NoTagError("ID3v2 tag not found") if header[3] not in _tag_versions or header[4] != 0: raise TagError("Unknown ID3 version: 2.{0}.{1}" .format(*header[3:5])) cls = _tag_versions[header[3]] offset = 0 length = Syncsafe.decode(header[6:10]) + 10 if header[3] == 4 and header[5] & _TAG24_FOOTER: length += 10 return (cls, offset, length)
5b32c122d804aa5def21c59e73e4369c64b7cbbe
17,057
def merge_peaks(peaks, start_merge_at, end_merge_at, max_buffer=int(1e5)): """Merge specified peaks with their neighbors, return merged peaks :param peaks: Record array of strax peak dtype. :param start_merge_at: Indices to start merge at :param end_merge_at: EXCLUSIVE indices to end merge at :param max_buffer: Maximum number of samples in the sum_waveforms of the resulting peaks (after merging). Peaks must be constructed based on the properties of constituent peaks, it being too time-consuming to revert to records/hits. """ assert len(start_merge_at) == len(end_merge_at) new_peaks = np.zeros(len(start_merge_at), dtype=peaks.dtype) # Do the merging. Could numbafy this to optimize, probably... buffer = np.zeros(max_buffer, dtype=np.float32) for new_i, new_p in enumerate(new_peaks): old_peaks = peaks[start_merge_at[new_i]:end_merge_at[new_i]] common_dt = np.gcd.reduce(old_peaks['dt']) first_peak, last_peak = old_peaks[0], old_peaks[-1] new_p['channel'] = first_peak['channel'] # The new endtime must be at or before the last peak endtime # to avoid possibly overlapping peaks new_p['time'] = first_peak['time'] new_p['dt'] = common_dt new_p['length'] = \ (strax.endtime(last_peak) - new_p['time']) // common_dt # re-zero relevant part of buffer (overkill? not sure if # this saves much time) buffer[:min( int( ( last_peak['time'] + (last_peak['length'] * old_peaks['dt'].max()) - first_peak['time']) / common_dt ), len(buffer) )] = 0 for p in old_peaks: # Upsample the sum waveform into the buffer upsample = p['dt'] // common_dt n_after = p['length'] * upsample i0 = (p['time'] - new_p['time']) // common_dt buffer[i0: i0 + n_after] = \ np.repeat(p['data'][:p['length']], upsample) / upsample # Handle the other peak attributes new_p['area'] += p['area'] new_p['area_per_channel'] += p['area_per_channel'] new_p['n_hits'] += p['n_hits'] new_p['saturated_channel'][p['saturated_channel'] == 1] = 1 # Downsample the buffer into new_p['data'] strax.store_downsampled_waveform(new_p, buffer) new_p['n_saturated_channels'] = new_p['saturated_channel'].sum() # Use the tight coincidence of the peak with the highest amplitude i_max_subpeak = old_peaks['data'].max(axis=1).argmax() new_p['tight_coincidence'] = old_peaks['tight_coincidence'][i_max_subpeak] # If the endtime was in the peaks we have to recompute it here # because otherwise it will stay set to zero due to the buffer if 'endtime' in new_p.dtype.names: new_p['endtime'] = strax.endtime(last_peak) return new_peaks
75f86b0c27cb2cac145234cfd9254105048be9a8
17,058
def batchedpatternsgenerator(generatorfunction): """Decorator that assumes patterns (X,y) and stacks them in batches This can be thought of a specialized version of the batchedgenerator that assumes the base generator returns instances of data patterns, as tuples of numpy arrays (X,y). When grouping them in batches the numpy arrays are stacked so that each returned batch has a pattern per row. A "batchsize" parameter is added to the generator, that if specified groups the data in batches of such size. """ def modgenerator(*args, **kwargs): for batch in batchedgenerator(generatorfunction)(*args, **kwargs): Xb, yb = zip(*batch) yield np.stack(Xb), np.stack(yb) return modgenerator
19a8e8d5c2872c38d469c41e163a947f208fc806
17,059
def reduce_min(raw_tensor, axis, keepdims=False): """ calculate reduce_min of raw_tensor, only support float16 Args: raw_tensor (tvm.tensor.Tensor): input tensor axis (Union[int, list]): reduce axis (range : [-len(raw_tensor.shape), len(raw_tensor.shape) - 1]) keepdims (bool): if true, retains reduced dimensions with length 1, default value is None Returns: tvm.tensor.Tensor, res """ return single_reduce_op(raw_tensor, axis, "reduce_min", keepdims)
b4473ca577a939f3c149758fd73a59c79b1f0db0
17,060
def align2local(seq): """ Returns list such that 'ATG---CTG-CG' ==> [0,1,2,2,2,3,4,5,5,6,7] Used to go from align -> local space """ i = -1 lookup = [] for c in seq: if c != "-": i += 1 lookup.append(i) return lookup
aa914a60d5db7801a3cf1f40e713e95c98cd647e
17,061
def load_nodegraph(filename): """Load a nodegraph object from the given filename and return it. Keyword argument: filename -- the name of the nodegraph file """ nodegraph = _Nodegraph(1, [1]) nodegraph.load(filename) return nodegraph
cd552fda874f1e8667bd09e95bdf43e6c5bd75c1
17,062
def get_bprop_sqrt(self): """Grad definition for `Sqrt` operation.""" mul_func = P.Mul() fill_func = P.Fill() div_op = P.RealDiv() sqrt = P.Sqrt() dtype = P.DType() def bprop(x, out, dout): temp = div_op(fill_func(dtype(x), shape_op(x), 0.5), sqrt(x)) dx = mul_func(dout, temp) return (dx,) return bprop
b297695effd9d063384b3343337d1647050b5f1a
17,063
def classify_top1_batch(image): """Define method `classify_top1` for servable `resnet50`. The input is `image` and the output is `lable`.""" x = register.add_stage(preprocess_batch, image, outputs_count=1, batch_size=1024) x = register.add_stage(resnet_model, x, outputs_count=1) x = register.add_stage(postprocess_top1, x, outputs_count=1) return x
ff4ae67619f29e0e22e275845709ab73daabe2f0
17,064
def ngram_word(max_features=2_000): """Word count vectorizer. Args: max_features: number of features to consider. """ return CountVectorizer( ngram_range=(1, 3), analyzer='word', max_features=max_features, )
2b8935b72a836ff6ab3cdb0b17939806d9f7ce02
17,065
def func_dispatcher(intent): """ Simple effect dispatcher that takes callables taking a box, and calls them with the given box. """ def performer(dispatcher, intent, box): intent(box) return performer
48dc23a8124569d5537c38b8f704fdea282853e8
17,066
import multiprocessing import tqdm def encode(x, bps_arrangement='random', n_bps_points=512, radius=1.5, bps_cell_type='dists', verbose=1, random_seed=13, x_features=None, custom_basis=None, n_jobs=-1): """Converts point clouds to basis point set (BPS) representation, multi-processing version Parameters ---------- x: numpy array [n_clouds, n_points, n_dims] batch of point clouds to be converted bps_arrangement: str supported BPS arrangements: "random", "grid", "custom" n_bps_points: int number of basis points radius: float radius for BPS sampling area bps_cell_type: str type of information stored in every BPS cell. Supported: 'dists': Euclidean distance to the nearest point in cloud 'deltas': delta vector from basis point to the nearest point 'closest': closest point itself 'features': return features of the closest point supplied by x_features. e.g. RGB values of points, surface normals, etc. verbose: boolean whether to show conversion progress x_features: numpy array [n_clouds, n_points, n_features] point features that will be stored in BPS cells if return_values=='features' custom_basis: numpy array [n_basis_points, n_dims] custom basis to use n_jobs: int number of parallel jobs used for encoding. If -1, use all available CPUs Returns ------- x_bps: [n_clouds, n_points, n_bps_features] point clouds converted to BPS representation. """ if n_jobs == -1: n_jobs = multiprocessing.cpu_count() if n_jobs == 1: n_clouds, n_points, n_dims = x.shape if bps_arrangement == 'random': basis_set = generate_random_basis(n_bps_points, n_dims=n_dims, radius=radius, random_seed=random_seed) elif bps_arrangement == 'grid': # in case of a grid basis, we need to find the nearest possible grid size grid_size = int(np.round(np.power(n_bps_points, 1 / n_dims))) basis_set = generate_grid_basis(grid_size=grid_size, minv=-radius, maxv=radius) elif bps_arrangement == 'custom': # in case of a grid basis, we need to find the nearest possible grid size if custom_basis is not None: basis_set = custom_basis else: raise ValueError("Custom BPS arrangement selected, but no custom_basis provided.") else: raise ValueError("Invalid basis type. Supported types: \'random\', \'grid\', \'custom\'") n_bps_points = basis_set.shape[0] if bps_cell_type == 'dists': x_bps = np.zeros([n_clouds, n_bps_points]) elif bps_cell_type == 'deltas': x_bps = np.zeros([n_clouds, n_bps_points, n_dims]) elif bps_cell_type == 'closest': x_bps = np.zeros([n_clouds, n_bps_points, n_dims]) elif bps_cell_type == 'features': n_features = x_features.shape[2] x_bps = np.zeros([n_clouds, n_bps_points, n_features]) else: raise ValueError("Invalid cell type. Supported types: \'dists\', \'deltas\', \'closest\', \'features\'") fid_lst = range(0, n_clouds) if verbose: fid_lst = tqdm(fid_lst) for fid in fid_lst: nbrs = NearestNeighbors(n_neighbors=1, leaf_size=1, algorithm="ball_tree").fit(x[fid]) fid_dist, npts_ix = nbrs.kneighbors(basis_set) if bps_cell_type == 'dists': x_bps[fid] = fid_dist.squeeze() elif bps_cell_type == 'deltas': x_bps[fid] = x[fid][npts_ix].squeeze() - basis_set elif bps_cell_type == 'closest': x_bps[fid] = x[fid][npts_ix].squeeze() elif bps_cell_type == 'features': x_bps[fid] = x_features[fid][npts_ix].squeeze() return x_bps else: if verbose: print("using %d available CPUs for BPS encoding.." % n_jobs) bps_encode_func = partial(encode, bps_arrangement=bps_arrangement, n_bps_points=n_bps_points, radius=radius, bps_cell_type=bps_cell_type, verbose=verbose, random_seed=random_seed, x_features=x_features, custom_basis=custom_basis, n_jobs=1) pool = multiprocessing.Pool(n_jobs) x_chunks = np.array_split(x, n_jobs) x_bps = np.concatenate(pool.map(bps_encode_func, x_chunks), 0) pool.close() return x_bps
66edc2dd5d42fe53e55f2e5b95e2069123510006
17,068
def parsec_params_list_to_dict(var): """ convert parsec parameter array to dictionary :param var: :return: """ parsec_params = dict() parsec_params["rle"] = var[0] parsec_params["x_pre"] = var[1] parsec_params["y_pre"] = var[2] parsec_params["d2ydx2_pre"] = var[3] parsec_params["th_pre"] = var[4] parsec_params["x_suc"] = var[5] parsec_params["y_suc"] = var[6] parsec_params["d2ydx2_suc"] = var[7] parsec_params["th_suc"] = var[8] return parsec_params
4ea4b4d2c0cbcb8fb49619e103b09f354c80de6a
17,069
def parse_msiinfo_suminfo_output(output_string): """ Return a dictionary containing information from the output of `msiinfo suminfo` """ # Split lines by newline and place lines into a list output_list = output_string.splitlines() results = {} # Partition lines by the leftmost ":", use the string to the left of ":" as # the key and use the string to the right of ":" as the value for output in output_list: key, _, value = output.partition(':') if key: results[key] = value.strip() return results
6883e8fba9a37b9f877bdf879ebd14d1120eb88a
17,070
from typing import Dict from typing import Any import json from datetime import datetime def create_indicators_fields(tag_details: Dict[str, Any]) -> Dict[str, Any]: """ Returns the indicator fields Args: tag_details: a dictionary containing the tag details. Returns: A dictionary represents the indicator fields. """ fields: Dict[str, Any] = {} tag = tag_details.get('tag', {}) refs = json.loads(tag.get('refs', '[]')) fields['publications'] = create_publications(refs) fields['aliases'] = tag_details.get('aliases', []) fields['description'] = tag.get('description', '') last_hit = tag.get('lasthit', '') fields['lastseenbysource'] = datetime.strptime(last_hit, AF_TAGS_DATE_FORMAT).strftime( DATE_FORMAT) if last_hit else None updated_at = tag.get('updated_at', '') fields['updateddate'] = datetime.strptime(updated_at, AF_TAGS_DATE_FORMAT).strftime( DATE_FORMAT) if updated_at else None fields['reportedby'] = tag.get('source', '') remove_nulls_from_dictionary(fields) return fields
349ab542d2c25cb24fe40aeb98c16a9bfccc871f
17,071
def spatial_difference(gdf1: GeoDataFrame, gdf2: GeoDataFrame) -> GeoDataFrame: """Removes polygons from the first GeoDataFrame that intersect with polygons from the second GeoDataFrame :param gdf1: First input data frame :param gdf2: Second input data frame :return: Resulting data frame """ gdf2 = gdf2[["geometry"]] intersections = gpd.sjoin(gdf1, gdf2, how="left") result_gdf = intersections[intersections["index_right"].isna()] result_gdf = result_gdf.drop(columns=["index_right"]) return result_gdf
2713376f45ed574399f9f406a06a60a47f002579
17,072
def frustumShellIxx(rb, rt, t, h, diamFlag=False): """This function returns a frustum's mass-moment of inertia (divided by density) about the transverse x/y-axis passing through the center of mass with radii or diameter inputs. NOTE: This is for a frustum SHELL, not a solid INPUTS: Parameters ---------- rb : float (scalar/vector), base radius rt : float (scalar/vector), top radius t : float (scalar/vector), thickness h : float (scalar/vector), height diamFlag : boolean, True if rb and rt are entered as diameters OUTPUTs: ------- Ixx=Iyy : float (scalar/vector), Moment of inertia about x/y-axis through center of mass (principle axes) """ if diamFlag: # Convert diameters to radii rb *= 0.5 rt *= 0.5 # Integrate 2*pi*r*dr*dz from r=ri(z) to ro(z), z=0 to h rb_o = rb rb_i = rb-t rt_o = rt rt_i = rt-t return (frustumIxx(rb_o, rt_o, h) - frustumIxx(rb_i, rt_i, h))
3d23805d4f7ed952b50752ac4ab8158c2826137f
17,073
def default_shaders(): """ Returns a list with all thte default shadres of the current DCC :return: str """ return shader_utils.get_default_shaders()
795ca337c9ba163bb70ce4ff226c04d1034ec542
17,074
def get_domains_and_slugs(): """ returns all the domain names and slugs as dictionary {domain_name: slug} """ return_data = {} domain_slugs = Domain.objects.filter(active=1).order_by('name') if domain_slugs: for domain in domain_slugs: return_data[domain.name] = domain.slug return return_data
d19af879fe96895808f1c1815d3cc563499d358d
17,075
def has_video_ads() -> bool: """has_video_ads() -> bool (internal) """ return bool()
6b4822bb18171df5bfc5b4f3797e574557cd65dd
17,076
from typing import Iterable def compile_sites(inp: NetInput, y_true: Iterable[np.ndarray], y_pred: Iterable[np.ndarray], masks: Iterable[np.ndarray]): """ Prepares sites to be dumped in tsv file :param inp: NetInput :param y_true: True known classes mapped on templates :param y_pred: True predicted classes mapped on templates :param masks: boolean numpy arrays with True placed at positions of any class that could be positive :return: Iterable over Sites """ positions = (np.where(y > 0)[0] + 1 for y in masks) def comp_site(id_, pos, cls_pred, cls_true): site = [id_, pos, 0, 0] if cls_pred: site[2] = 1 if cls_true: site[3] = 1 return Site(*site) sites = chain.from_iterable( ((id_, pos, p, t) for pos, p, t in zip(pp, yp, yt)) for id_, pp, yp, yt in zip(inp.ids, positions, y_pred, y_true)) return starmap(comp_site, sites)
14f655e18b5651c22373d4c23b51f55704cd63c8
17,078
def femda_estimator(X, labels, eps = 1e-5, max_iter = 20): """ Estimates the matrix of means and the tensor of scatter matrix of the dataset using MLE estimator. To tackle singular matrix issues, we use regularization. Parameters ---------- X : 2-d array of size n*m matrix of all the samples generated labels : 1-d array of size n vector of the label of each sample eps : float > 0 criterion of termination when solving the fixed-point equation max_iter : integer > 1 number of maximum iterations to solve the fixed-point equation Returns ------- means : 2-d array of size K*m matrix of the robust estimation of the mean of the K clusters shapes : 3-d array of size K*m*m tensor of the robust estimation of shape matrix of the K clusters """ n, m = X.shape K = int(max(set(labels)) + 1) n_clusters = np.zeros(K) + 1e-5 for i in range(n): n_clusters[int(labels[i])] = n_clusters[int(labels[i])] + 1 means, shapes = classic_estimator(X, labels) for k in range(K): convergence = False ite = 1 while (not convergence) and ite<max_iter: ite = ite + 1 mean = np.zeros(m) shape = np.zeros([m,m]) sum_mean_weights = 1e-5 for i in range(n): if labels[i] == k: mean_weight = min([[0.5]], 1 / np.dot(np.array([X[i]-means[k]]), np.dot(np.linalg.inv(regularize(shapes[k])), np.array([X[i]-means[k]]).T)))[0][0] #print(mean_weight) mean = mean + mean_weight * X[i] sum_mean_weights = sum_mean_weights + mean_weight shape = shape + np.dot(np.array([X[i]-means[k]]).T, np.array([X[i]-means[k]])) * mean_weight delta_mean = mean / sum_mean_weights - means[k] delta_shape = shape * m / n_clusters[k] - shapes[k] means[k] = means[k] + delta_mean shapes[k] = shapes[k] + delta_shape print("trace at", ite, np.trace(shapes[k])) convergence = sum(abs(delta_mean)) + sum(sum(abs(delta_shape))) < eps shapes[k] = regularize(shapes[k]) return means, shapes
639532f9307e023561d6193730473533b240fb28
17,079
def get_collections(): """read .db file, return raw collection""" col = {} f = open(collection_db, "rb") version = nextint(f) ncol = nextint(f) for i in range(ncol): colname = nextstr(f) col[colname] = [] for j in range(nextint(f)): f.read(2) col[colname].append(f.read(32).decode("utf-8")) f.close() return (col, version)
b134e7e970fa7f5486226d2c2cab3c63ab9f67c3
17,080
def ot_has_small_bandgap(cp2k_input, cp2k_output, bandgap_thr_ev): """ Returns True if the calculation used OT and had a smaller bandgap then the guess needed for the OT. (NOTE: It has been observed also negative bandgap with OT in CP2K!) cp2k_input: dict cp2k_output: dict bandgap_thr_ev: float [eV] """ list_true = [True, 'T', 't', '.TRUE.', 'True', 'true'] #add more? try: ot_settings = cp2k_input['FORCE_EVAL']['DFT']['SCF']['OT'] if '_' not in ot_settings.keys() or ot_settings['_'] in list_true: #pylint: disable=simplifiable-if-statement using_ot = True else: using_ot = False except KeyError: using_ot = False min_bandgap_ev = min(cp2k_output["bandgap_spin1_au"], cp2k_output["bandgap_spin2_au"]) * HARTREE2EV is_bandgap_small = (min_bandgap_ev < bandgap_thr_ev) return using_ot and is_bandgap_small
fbc63c373d052111932ea0fd2cd458d59b486d10
17,081
def profile(): """Checking if user is already logged_in""" if 'logged_in' in session: '''getting all the account info for the user for displaying it on the profile page''' cursor = mysql.connection.cursor(MySQLdb.cursors.DictCursor) cursor.execute('SELECT * FROM accounts WHERE username = %s', (session['employee_uname'],)) account = cursor.fetchone() '''Showing profile page with account info to the employee''' return render_template('profile.html', acc=account) '''if User is not logged_in redirect to login page''' return redirect(url_for('login'))
4796058d3bbc911cc0610b7a5458be80fa330d67
17,082
import time import json async def ping(ws): """Send a ping request on an established websocket connection. :param ws: an established websocket connection :return: the ping response """ ping_request = { 'emit': "ping", 'payload': { 'timestamp': int(time.time()) } } await ws.send(json.dumps(ping_request)) return json.loads(await ws.recv())
587d2a72cbc5f50f0ffb0bda63668a0ddaf4c9c3
17,084
def split_files_each_proc(file_arr,nprocs): """ Returns array that distributes samples across all processors. """ ntot = len(file_arr) post_proc_file_arr = [] for i in range(0,nprocs): each_proc_arr = [] ib,ie = split_array_old(ntot,nprocs,i) if i == 0: max_no = (ie-ib)+1 for j in range(ib,ie+1): each_proc_arr.append(j) if len(each_proc_arr) > max_no: max_no = len(each_proc_arr) elif len(each_proc_arr) < max_no : for k in range(0,max_no-(len(each_proc_arr))): each_proc_arr.append("no file") max_no = len(each_proc_arr) post_proc_file_arr.append(each_proc_arr) return post_proc_file_arr
0c5c481d1b9a9e0d5c6efdfb7abf6669f5a05ecf
17,085
def get_data_generators_for_output(output): """ Get the data generators involved in an output Args: output (:obj:`Output`): report or plot Returns: :obj:`set` of :obj:`DataGenerator`: data generators involved in the output """ data_generators = set() if isinstance(output, Report): for data_set in output.data_sets: data_generators.add(data_set.data_generator) elif isinstance(output, Plot2D): for curve in output.curves: data_generators.add(curve.x_data_generator) data_generators.add(curve.y_data_generator) elif isinstance(output, Plot3D): for surface in output.surfaces: data_generators.add(surface.x_data_generator) data_generators.add(surface.y_data_generator) data_generators.add(surface.z_data_generator) else: raise NotImplementedError('Output of type {} is not supported.'.format(output.__class__.__name__)) if None in data_generators: data_generators.remove(None) return data_generators
d05fde5b5ce25504b53d8ca4491235d3ab3b8680
17,086
from re import M def clustering_report(y_true, y_pred) -> pd.DataFrame: """ Generate cluster evaluation metrics. Args: y_true: Array of actual labels y_pred: Array of predicted clusters Returns: Pandas DataFrame with metrics. """ return pd.DataFrame( { "Homogeneity": M.homogeneity_score(y_true, y_pred), "Completeness": M.completeness_score(y_true, y_pred), "V-Measure": M.v_measure_score(y_true, y_pred), "Adjusted Rand Index": M.adjusted_rand_score(y_true, y_pred), "Adjusted Mutual Information": M.adjusted_mutual_info_score(y_true, y_pred), }, index=["value"], ).T
dc124dc4f248a2acedfd6201a205f285adc6ec1c
17,088
from typing import List from typing import Sequence from typing import Set from typing import Tuple def _create_sampler_data( datastores: List[Datastore], variables: Sequence[Variable], preconditions: Set[LiftedAtom], add_effects: Set[LiftedAtom], delete_effects: Set[LiftedAtom], param_option: ParameterizedOption, datastore_idx: int ) -> Tuple[List[SamplerDatapoint], List[SamplerDatapoint]]: """Generate positive and negative data for training a sampler.""" # Populate all positive data. positive_data: List[SamplerDatapoint] = [] for (segment, var_to_obj) in datastores[datastore_idx]: option = segment.get_option() state = segment.states[0] if CFG.sampler_learning_use_goals: # Right now, we're making the assumption that all data is # demonstration data when we're learning samplers with goals. # In the future, we may weaken this assumption. goal = segment.get_goal() else: goal = None assert all( pre.predicate.holds(state, [var_to_obj[v] for v in pre.variables]) for pre in preconditions) positive_data.append((state, var_to_obj, option, goal)) # Populate all negative data. negative_data: List[SamplerDatapoint] = [] if CFG.sampler_disable_classifier: # If we disable the classifier, then we never provide # negative examples, so that it always outputs 1. return positive_data, negative_data for idx, datastore in enumerate(datastores): for (segment, var_to_obj) in datastore: option = segment.get_option() state = segment.states[0] if CFG.sampler_learning_use_goals: # Right now, we're making the assumption that all data is # demonstration data when we're learning samplers with goals. # In the future, we may weaken this assumption. goal = segment.get_goal() else: goal = None trans_add_effects = segment.add_effects trans_delete_effects = segment.delete_effects if option.parent != param_option: continue var_types = [var.type for var in variables] objects = list(state) for grounding in utils.get_object_combinations(objects, var_types): if len(negative_data ) >= CFG.sampler_learning_max_negative_data: # If we already have more negative examples # than the maximum specified in the config, # we don't add any more negative examples. return positive_data, negative_data # If we are currently at the datastore that we're learning a # sampler for, and this datapoint matches the positive # grounding, this was already added to the positive data, so # we can continue. if idx == datastore_idx: positive_grounding = [var_to_obj[var] for var in variables] if grounding == positive_grounding: continue sub = dict(zip(variables, grounding)) # When building data for a datastore with effects X, if we # encounter a transition with effects Y, and if Y is a superset # of X, then we do not want to include the transition as a # negative example, because if Y was achieved, then X was also # achieved. So for now, we just filter out such examples. ground_add_effects = {e.ground(sub) for e in add_effects} ground_delete_effects = {e.ground(sub) for e in delete_effects} if ground_add_effects.issubset(trans_add_effects) and \ ground_delete_effects.issubset(trans_delete_effects): continue # Add this datapoint to the negative data. negative_data.append((state, sub, option, goal)) return positive_data, negative_data
ecf7ed06183264722df5d6e2d645bb899cb8358b
17,089