content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
import logging def read_burris(fh): """ Read Burris formatted file, from given open file handle. Accepts comma or tab-separated files. Parameters ---------- fh : TextIOWrapper open file handle Returns ------- ChannelList """ all_survey_data = ChannelList() for i, orig_line in enumerate(fh, 1): try: line = orig_line.strip() if line.find(",") != -1: vals_temp = line.split(",") if vals_temp[0] == "Station ID" or vals_temp[0] == "Station": continue elif line.find("\t") != -1: vals_temp = line.split("\t") else: vals_temp = line.split() if vals_temp[0] == "Station ID" or vals_temp[0] == "Station": continue if len(vals_temp) == 15: # no meter operator specified ( c_station, c_meter, c_date, c_time, c_grav, c_dial, c_feedback, c_tide, c_tilt, _, _, c_height, c_elev, c_lat, c_long, ) = range( 15 ) # 0 - 15 all_survey_data.oper.append("None") else: # 16 values, includes meter operator. # Numbers are columns in the imported file ( c_station, c_oper, c_meter, c_date, c_time, c_grav, c_dial, c_feedback, c_tide, c_tilt, _, _, c_height, c_elev, c_lat, c_long, ) = range( 16 ) # 0 - 14 all_survey_data.oper.append(vals_temp[c_oper]) if line.find("/") != -1: date_temp = vals_temp[c_date].split("/") elif line.find("-") != -1: date_temp = vals_temp[c_date].split("-") else: date_temp = [] if int(date_temp[2]) > 999: date_temp = [date_temp[2], date_temp[0], date_temp[1]] elif int(date_temp[0]) > 999: date_temp = [date_temp[0], date_temp[1], date_temp[2]] # Else raise date error time_temp = vals_temp[c_time].split(":") # fill object properties: all_survey_data.station.append(vals_temp[c_station].strip()) all_survey_data.elev.append(float(vals_temp[c_elev])) all_survey_data.height.append(float(vals_temp[c_height])) all_survey_data.lat.append(float(vals_temp[c_lat])) all_survey_data.long.append(float(vals_temp[c_long])) # remove Earth tide correction; it's added in using the @grav property all_survey_data.raw_grav.append( float(vals_temp[c_grav]) * 1000.0 - float(vals_temp[c_tide]) * 1000.0 ) all_survey_data.tare.append(0) all_survey_data.etc.append(float(vals_temp[c_tide]) * 1000.0) all_survey_data.meter_etc.append(float(vals_temp[c_tide]) * 1000.0) all_survey_data.dial.append(float(vals_temp[c_dial])) all_survey_data.feedback.append(float(vals_temp[c_feedback])) all_survey_data.sd.append(-999) # Burris doesn't ouput SD, tiltx, tilty all_survey_data.meter.append(vals_temp[c_meter]) all_survey_data.tiltx.append(float(vals_temp[c_tilt]) * 1000.0) all_survey_data.tilty.append(0.0) all_survey_data.temp.append(0.0) all_survey_data.dur.append(5) all_survey_data.rej.append(5) all_survey_data.t.append( date2num( dt.datetime( int(date_temp[0]), int(date_temp[1]), int(date_temp[2]), int(time_temp[0]), int(time_temp[1]), int(time_temp[2]), ) ) ) all_survey_data.keepdata.append(1) except (IndexError, ValueError) as e: logging.exception("Error loading Burris file at line %d", i) logging.info("LINE: %s", line) e.i = i e.line = orig_line raise e all_survey_data.meter_type = "Burris" return all_survey_data
4519cf73be5663a70e76e083aa9f735f427248a6
17,211
import re def _remove_invalid_characters(file_name): """Removes invalid characters from the given file name.""" return re.sub(r'[/\x00-\x1f]', '', file_name)
49a9f668e8142855ca4411921c0180977afe0370
17,212
def load_actions( file_pointer, file_metadata, target_adim, action_mismatch, impute_autograsp_action ): """Load states from a file given metadata and hyperparameters Inputs: file_pointer : file object file_metadata : file metadata row (Pandas) target_adim : dimensionality of action vector action_mismatch : indicator variable (ACTION_MISMATCH) to handle action length mismatches impute_autograsp_action : boolean flag indicating to impute action dim if missing in primative:"autograsp" Outputs: actions : np.array((T-1, action_dims)) """ a_T, adim = file_metadata["action_T"], file_metadata["adim"] if target_adim == adim: return file_pointer["policy"]["actions"][:] elif ( target_adim == adim + 1 and impute_autograsp_action and file_metadata["primitives"] == "autograsp" ): action_append, old_actions = ( np.zeros((a_T, 1)), file_pointer["policy"]["actions"][:], ) next_state = file_pointer["env"]["state"][:][1:, -1] high_val, low_val = ( file_metadata["high_bound"][-1], file_metadata["low_bound"][-1], ) midpoint = (high_val + low_val) / 2.0 for t, s in enumerate(next_state): if s > midpoint: action_append[t, 0] = high_val else: action_append[t, 0] = low_val return np.concatenate((old_actions, action_append), axis=-1) elif adim < target_adim and (action_mismatch & ACTION_MISMATCH.PAD_ZERO): pad = np.zeros((a_T, target_adim - adim), dtype=np.float32) return np.concatenate((file_pointer["policy"]["actions"][:], pad), axis=-1) elif adim > target_adim and (action_mismatch & ACTION_MISMATCH.CLEAVE): return file_pointer["policy"]["actions"][:][:, :target_adim] else: raise ValueError( "file adim - {}, target adim - {}, pad behavior - {}".format( adim, target_adim, action_mismatch ) )
0b8b5dc259fa0645069cc57b4510355ec6897ab6
17,214
def send_message(hookurl: str, text: str) -> int: """ Send a message on the channel of the Teams. The HTTP status is returned. parameters ---------- hookurl : str URL for the hook to the Teams' channel. text : str text to send. returns ------- int HTTP status from the sent message. """ msg = pymsteams.connectorcard(hookurl) msg.text(text) msg.send() return msg.last_http_status.status_code
8ffef50d745fafd125b556e9fb1ceff2cb438a4e
17,215
def np_fft_irfftn(a, *args, **kwargs): """Numpy fft.irfftn wrapper for Quantity objects. Drop dimension, compute result and add it back.""" res = np.fft.irfftn(a.value, *args, **kwargs) return Quantity(res, a.dimension)
fbfdfe470f09106e9589709ebae5fa19ba8a2732
17,216
def get_codec_options() -> CodecOptions: """ Register all flag type registry and get the :class:`CodecOptions` to be used on ``pymongo``. :return: `CodecOptions` to be used from `pymongo` """ return CodecOptions(type_registry=TypeRegistry(type_registry))
a0acd3e719ae0a4be463c71cba5eb86914348248
17,217
def get_frame_lims(x_eye, y_eye, x_nose, y_nose, view, vertical_align='eye'): """Automatically compute the crop parameters of a view using the eye and nose and reference. Note that horizontal/vertical proportions are currently hard-coded. Parameters ---------- x_eye : float x position of the eye y_eye : float y position of the eye x_nose : float x position of the nose y_nose : float y position of the nose view : str 'left' | 'right' vertical_align : str defines which feature controls the vertical alignment 'eye' | 'nose' Returns ------- tuple - xmin (float) - xmax (float) - ymin (float) - ymax (float) """ # horizontal proportions edge2nose = 0.02 nose2eye = 0.33 eye2edge = 0.65 # vertical proportions eye2top = 0.10 eye2bot = 0.90 nose2top = 0.25 nose2bot = 0.75 # horizontal calc nose2eye_pix = np.abs(x_eye - x_nose) edge2nose_pix = edge2nose / nose2eye * nose2eye_pix eye2edge_pix = eye2edge / nose2eye * nose2eye_pix total_x_pix = np.round(nose2eye_pix + edge2nose_pix + eye2edge_pix) if view == 'left': xmin = int(x_nose - edge2nose_pix) xmax = int(x_eye + eye2edge_pix) elif view == 'right': xmin = int(x_eye - eye2edge_pix) xmax = int(x_nose + edge2nose_pix) else: raise Exception # vertical calc (assume we want a square image out) if vertical_align == 'eye': # based on eye eye2top_pix = eye2top * total_x_pix eye2bot_pix = eye2bot * total_x_pix ymin = int(y_eye - eye2top_pix) ymax = int(y_eye + eye2bot_pix) else: # based on nose nose2top_pix = nose2top * total_x_pix nose2bot_pix = nose2bot * total_x_pix ymin = int(y_nose - nose2top_pix) ymax = int(y_nose + nose2bot_pix) return xmin, xmax, ymin, ymax
20b3c5d74b7d4dd4b2b63c9d32f7325a199d3dee
17,218
def split(time: list, value: list, step, group_hours, region=None, whole_group=False): """ Split and group 'step' number of averaged values 'hours' apart :param time: time per value (hour apart) :param value: values corresponding to time :param step: number of group times set for each index :param group_hours: group times into 'hours' hours :param region: region of indices to be considered :param whole_group: include the aggregated value of whole time group for each of its members not just until that member :return: """ splits = list() # step group times per index size = len(time) if size != len(value): return -1 # direction is the sign of step direction = np.sign(step) # indices to be considered region = (0, size - 1) if region is None else region region = (max(region[0], 0), size - 1 if region[1] < 0 else region[1]) # Running group average of each index either forward (when step < 0) # or backward (when step > 0), when whole_group = False if not whole_group: run_average = running_average(time, value, group_hours=group_hours, direction=-np.sign(step), whole_group=False) else: run_average = [] group_time, average, group_lookup, _ = group_average(time, value, group_hours=group_hours) group_size = len(group_time) # init first 'steps' (for forward) # or duplication o first (for backward) [whole/partial] group average as array of step values group_time = pre_group_time = round_hour(time[region[0]], group_hours) group_index = group_lookup[group_time] last_index = group_index + step - direction if step > 0: initial_values = average[group_index:min(last_index + 1, group_size)] if len(initial_values) != abs(step): # duplicate the last group average to reach 'step' values initial_values += [[average[-1] * (group_size - last_index)]] else: initial_values = average[max(last_index, 0):group_index + 1] if len(initial_values) != abs(step): # duplicate the first group average to reach 'step' values initial_values = ([average[0]] * (-last_index)) + initial_values step_values = deque(initial_values) cur_step = 0 for i in range(region[0], region[1] + 1): group_time = round_hour(time[i], group_hours) if group_time != pre_group_time: group_index = group_lookup[group_time] last_index = group_index + step - direction cur_step = min(step, cur_step + 1) step_values.rotate(-1) # shift right to go toward end of groups # duplicate the second to last value if group size is passed # otherwise set the last value from group averages if step > 0: step_values[-1] = average[last_index] if last_index < group_size else step_values[-2] else: step_values[-1] = average[group_index] pre_group_time = group_time # replace the group average with partial average if the whole group is not required if not whole_group: if cur_step == step or step > 0: step_values[0 if step > 0 else -1] = run_average[i] elif group_index == 0: # this branch is executed only for the first group for backward (few times) step_values = deque([run_average[i]] * abs(step)) splits.append(list(step_values)) return splits
a8f8cf51d241a532e6a925d4323abb281215f543
17,220
def launch_ebs_affinity_process(instanceid, instance_infos, ebs_configs): """ Manage the ebs affinity process. :param instanceid string The instance id :param instance_infos dict Informations about the instance :param ebs_config dict The EBS parameters :return None """ if not check_if_ebs_already_attached(instanceid, ebs_configs['mount_point'], instance_infos): if manage_ebs_volume(ebs_configs, instanceid, instance_infos): logger.info("EBS: {0} has been attached on the Instance-id: {1}" .format(ebs_configs['mount_point'], instanceid)) else: logger.error("Error during the management of the EBS volume: {0}. Disk not attached to the instance: {1} " .format(ebs_configs['mount_point'], instanceid)) return False return True else: logger.info("A disk is already attached on the target mount point: {0}" .format(ebs_configs['mount_point'])) return True
ec30f4748417cee8f9fe96c2c47cf78dd10be59f
17,221
def get_all(isamAppliance, check_mode=False, force=False): """ Retrieve a list of mapping rules """ return isamAppliance.invoke_get("Retrieve a list of mapping rules", "/iam/access/v8/mapping-rules")
e48aa65f5212ea32e84c40e326633cf2971d378a
17,222
def get_oyente(test_subject=None, mutation=None): """ Run the Oyente test suite on a provided script """ is_request = False if not test_subject: test_subject = request.form.get('data') is_request = True o = Oyente(test_subject) info, errors = o.oyente(test_subject) if len(errors) > 0: errors = [{'lineno':e[0].split(':')[1],'code':"\n".join(e[1].split('\n')[1:]),'description':e[1].split('\n')[0]} for e in errors] if len(info) > 0: info = [{x[0]:x[1] for x in info}] output = {"info":info, "issues": errors, 'error':[]} if mutation: output['mutation'] = mutation if is_request: return jsonify(output) return output
f264262c22314ac26b56369f4d7741effb4cf09e
17,223
def search_for_example(search_string: str) -> tuple: """Get the Example for a Particular Function""" function = match_string(search_string) if function: function = function.strip() sql = f"SELECT example, comment FROM example WHERE function='{function}'" data = execute(sql) return function, data else: return None, (())
16eb034369954017b1b51a206d48af40f5768ef6
17,224
def WildZumba(x,c1=20,c2=0.2,c3=2*np.pi) : """ A separable R**n==>R function, assumes a real-valued numpy vector as input """ return -c1 * np.exp(-c2*np.sqrt(np.mean(x**2))) - np.exp(np.mean(np.cos(c3*x))) + c1 + np.exp(1)
589f90f174d61269c2c019ef678f51c498c68ff8
17,225
def import_xlsx(filename, skip_variation=False): """Импортирует параметры пиков, хроматограммы и варьируемых параметров, если они указаны. Parameters ---------- filename : str Имя xlsx файла. skip_variation : bool, default = False Пропустить блок Variation даже если он есть. Returns ------- Tuple[List[Peak], Chromatogram, dict, int, np.ndarray] Если в xlsx файле есть блок Variation, то вернется кортеж, в который входит список из экземпляров класса Peak, экземпляр класса Chromatogram, словарь варьируемых параметров со списками сигм, количество файлов и массив с долями файлов в которых будут пропущенны пики. Tuple[List[Peak], Chromatogram] Если же блок Variation отсутствует, то вернется кортеж только из списка экземпляров класса Peak и экземпляра класса Chromatogram. """ wb = ox.load_workbook(filename, data_only=True) sheet_ranges = wb['input'] max_row = sheet_ranges.max_row rows = list(sheet_ranges.rows) wb.close() def get_row(row, key): return list(map(lambda x: x.value, rows[row][d_xl[key]['start_idx']: d_xl[key]['end_idx']])) def get_col(col, start_row, nn): res = [] for i_cell in range(start_row, start_row + nn): res.append(sheet_ranges.cell(i_cell, col).value) return res d_xl = {} # читаем первую строку for cell in rows[0]: cell_value = cell.value if cell_value is not None: d_xl.update({cell_value: {}}) # обработка объединенных ячеек (Chromatogram, Peaks, Variation) mcr = sheet_ranges.merged_cells.ranges for cr in mcr: name = cr.start_cell.value if name in d_xl: start_idx = cr.start_cell.col_idx - 1 cols = cr.size['columns'] end_idx = start_idx + cols d_xl[name].update({'start_idx': start_idx, 'cols': cols, 'end_idx': end_idx}) # Chromatogram names, values = map(lambda x: get_row(x, 'Chromatogram'), (1, 2)) d_xl['Chromatogram'].update(zip(names, values)) chrom = Chromatogram(**d_xl['Chromatogram']) # Peaks head_peaks = get_row(1, 'Peaks') params_peak = {} sep_mz_i = ';' sep_into_mz_i = ' ' peak_list = [] for i in range(2, max_row): params_peak.update(zip(head_peaks, get_row(i, 'Peaks'))) mz_i = np.fromstring(params_peak['mass_spect'].replace('\n', ''). replace(sep_mz_i, ''), sep=sep_into_mz_i).reshape((-1, 2)) del params_peak['mass_spect'] mz_list = mz_i[:, 0].astype(np.int16) peak_list.append(Peak(mz_list=mz_list, intensity_list=mz_i[:, 1], **params_peak)) # Variation if 'Variation' in d_xl and not skip_variation: head_variation = get_row(1, 'Variation') params_variation = {} for par in head_variation: params_variation.update({par: []}) for i in range(2, max_row): for key, value in zip(head_variation, get_row(i, 'Variation')): params_variation[key].append(value) num_files = 0 for n, i in enumerate(rows[0]): if i.value in ('Num_files', 'Num files'): num_files = rows[1][n].value break # Missing miss = np.zeros(max_row) for n, i in enumerate(rows[0]): if i.value in ('Missing', 'missing', 'miss'): miss = np.array(get_col(n + 1, 3, len(peak_list))) break return peak_list, chrom, params_variation, num_files, miss return peak_list, chrom
75b32618274fb2ab7ede9f525856fdc13e8c97ee
17,226
from typing import Union from typing import Optional def _get_dataset_builder( dataset: Union[str, tfds.core.DatasetBuilder], data_dir: Optional[str] = None) -> tfds.core.DatasetBuilder: """Returns a dataset builder.""" if isinstance(dataset, str): dataset_builder = tfds.builder(dataset, data_dir=data_dir) elif isinstance(dataset, tfds.core.DatasetBuilder): dataset_builder = dataset else: raise ValueError("`dataset` must be a string or tfds.core.DatasetBuilder. " f"Received {dataset} instead.") return dataset_builder
0f17169541604e69a614ddfeee4c8a963834ed8e
17,227
def write_bbox(scene_bbox, out_filename): """Export scene bbox to meshes Args: scene_bbox: (N x 6 numpy array): xyz pos of center and 3 lengths out_filename: (string) filename Note: To visualize the boxes in MeshLab. 1. Select the objects (the boxes) 2. Filters -> Polygon and Quad Mesh -> Turn into Quad-Dominant Mesh 3. Select Wireframe view. """ def convert_box_to_trimesh_fmt(box): ctr = box[:3] lengths = box[3:] trns = np.eye(4) trns[0:3, 3] = ctr trns[3, 3] = 1.0 box_trimesh_fmt = trimesh.creation.box(lengths, trns) return box_trimesh_fmt scene = trimesh.scene.Scene() for box in scene_bbox: scene.add_geometry(convert_box_to_trimesh_fmt(box)) mesh_list = trimesh.util.concatenate(scene.dump()) # save to ply file trimesh.io.export.export_mesh(mesh_list, out_filename, file_type="ply") return
c7504260306495e6252569a3cb83f61ca084de26
17,228
def label_rotate(annot, rotate): """ anti-clockwise rotate the occ order annotation by rotate*90 degrees :param annot: (H, W, 9) ; [-1, 0, 1] :param rotate: value in [0, 1, 2, 3] :return: """ rotate = int(rotate) if rotate == 0: return annot else: annot_rot = np.rot90(annot, rotate) orientation = annot_rot[:, :, 1:].copy() if rotate == 1: mapping = [2, 4, 7, 1, 6, 0, 3, 5] elif rotate == 2: mapping = [7, 6, 5, 4, 3, 2, 1, 0] else: mapping = [5, 3, 0, 6, 1, 7, 4, 2] annot_rot[:, :, 1:] = orientation[:, :, mapping] return annot_rot
e37a2e9dddc5f19898691fe22d02978d1954d435
17,229
def allocate_available_excess(region): """ Allocate available excess capital (if any). """ difference = region['total_revenue'] - region['total_cost'] if difference > 0: region['available_cross_subsidy'] = difference region['deficit'] = 0 else: region['available_cross_subsidy'] = 0 region['deficit'] = abs(difference) return region
19a3d7fbc776ae5b5b47ecfc32db14bf4abd949e
17,230
def items(dic): """Py 2/3 compatible way of getting the items of a dictionary.""" try: return dic.iteritems() except AttributeError: return iter(dic.items())
2664567765efe172591fafb49a0efa36ab9fcca8
17,231
import json import binascii def new_settingsresponse_message(loaded_json, origin): """ takes in a request - executes search for settings and creates a response as bytes :param loaded_json: :param origin: is this a response of drone or groundstation :return: a complete response packet as bytes """ complete_response = {} complete_response['destination'] = 4 complete_response['type'] = DBCommProt.DB_TYPE_SETTINGS_RESPONSE.value complete_response['response'] = loaded_json['request'] complete_response['origin'] = origin complete_response['id'] = loaded_json['id'] if loaded_json['request'] == DBCommProt.DB_REQUEST_TYPE_DB.value: if 'settings' in loaded_json: complete_response = read_dronebridge_settings(complete_response, origin, True, loaded_json['settings']) else: complete_response = read_dronebridge_settings(complete_response, origin, False, None) elif loaded_json['request'] == DBCommProt.DB_REQUEST_TYPE_WBC.value: if 'settings' in loaded_json: complete_response = read_wbc_settings(complete_response, True, loaded_json['settings']) else: complete_response = read_wbc_settings(complete_response, False, None) response = json.dumps(complete_response) crc32 = binascii.crc32(str.encode(response)) return response.encode() + crc32.to_bytes(4, byteorder='little', signed=False)
812444353a50ffeb468398d8681e81a74cb9d7e9
17,232
def list_icmp_block(zone, permanent=True): """ List ICMP blocks on a zone .. versionadded:: 2015.8.0 CLI Example: .. code-block:: bash salt '*' firewlld.list_icmp_block zone """ cmd = "--zone={0} --list-icmp-blocks".format(zone) if permanent: cmd += " --permanent" return __firewall_cmd(cmd).split()
9f0f8c2e7a688263ddd31c8384babba25e2300e6
17,233
def dependencies_found(analysis_id, execution_id): """ Installation data from buildbot. Requires a JSON list of objects with the following keys: * installer: The system used to install the dependency. * spec: The full specification used by the user to request the package. * source: Entity providing the artifact. * name: The real package name. * version: The installed version of the package. .. note:: Internal API """ installations = bottle.request.json if installations: # Create database objects returning a list of scanneable artifacts. artifacts = register_installations(analysis_id, execution_id, installations) analysis_needed = {a for a in artifacts if a.analysis_needed()} # Launch dependency scan and mark done when finished. analysis_task = ( providers.analyze_artifacts(analysis_needed) # <- group of tasks | tasks.mark_task_done.si(analysis_id)).delay() return {'task_id': analysis_task.id, 'scanning': len(analysis_needed)} else: return {'task_id': None, 'scanning': 0}
8983e53dd558b42272d4886412e918e7b192754e
17,234
def set_augmentor(): """ Set the augmentor. 1. Select the operations and create the config dictionary 2. Pass it to the Augmentor class with any other information that requires 3. Return the instance of the class. :return: """ config = {'blur': {'values': ('gaussian', 0.7, 1.0), 'prob': 0.3}, 'brightness': {'values': (0.6, 1.0), 'prob': 0.1}, 'brightness1': {'values': (1.0, 1.5), 'prob': 0.1}, 'flip': {'values': ('hor',), 'prob': 0.5}, 'grid_mask': {'values': (0, 0.2, 0, 0.2, 0.01, 0.1, 0.01, 0.1, 0.1, 0.2, 0.1, 0.2), 'prob': 0.4}, 'illumination': {'values': ('blob_negative', 0.1, 0.2, 100, 150), 'prob': 0.2}, 'noise': {'values': (2, 10), 'use_gray_noise': True, 'prob': 1}, 'rotate': {'values': (-45, 45), 'prob': 0.4}, 'translate': {'values': ('RANDOM', -0.2, 0.2), 'prob': 0.2, 'use_replication': True}, 'zoom': {'values': (0.5, 1.5), 'prob': 0.9, 'use_replication': True}} augmentor = Augmentor(config, no_repetition=True) return augmentor
77c64cec87af2d41a4cc6dc55600ab5eaedad247
17,235
def get_global_event_logger_instance(): """Get an event logger with prefilled fields for the collection. This returns an options configured event logger (proxy) with prefilled fields. This is almost CERTAINLY the event logger that you want to use in zaza test functions. :returns: a configured LoggerInstance with prefilled collection and unit fields. :rtype: LoggerInstance """ return get_global_events_logging_manager().get_event_logger_instance()
66228b15dd4d1ac9468834124e4ba073a846580f
17,236
def plot_market_entry(cat_entry_and_exit_df, cat_entry_and_exit_df_2): """ returns a plot with the entry and exit of firms per category """ # get the limits so everything is on the same scale df = pd.concat([cat_entry_and_exit_df, cat_entry_and_exit_df_2]) limits = [-df.exit.max() - 0.3, df.entry.max() + 0.3] fig = tools.make_subplots(rows=1, cols=2) xs = cat_entry_and_exit_df.index new_per_cat = cat_entry_and_exit_df.entry.astype(int) dead_per_cat = cat_entry_and_exit_df.exit.astype(int) fig.append_trace( go.Bar(y=xs, x=new_per_cat, orientation='h', showlegend=False, hoverinfo='text', hovertext=['{} entries in category {}'.format(x, y) for x, y in zip(new_per_cat, np.arange(len(new_per_cat)))], marker={'color': scen_colours[0]}), 1, 1) fig.append_trace( go.Bar(y=xs, x=-dead_per_cat, orientation='h', showlegend=False, hoverinfo='text', hovertext=['{} exits in category {}'.format(x, y) for x, y in zip(dead_per_cat, np.arange(len(new_per_cat)))], marker={'color': scen_colours[0]}), 1, 1) fig.append_trace( go.Bar(y=xs, x=new_per_cat - dead_per_cat, orientation='h', showlegend=False, hoverinfo='text', hovertext=['{} net entries in category {}'.format(x, y) for x, y in zip(new_per_cat - dead_per_cat, np.arange(len(new_per_cat)))], marker={'color': dark_scen_colours[0]}), 1, 1) xs = cat_entry_and_exit_df_2.index new_per_cat = cat_entry_and_exit_df_2.entry.astype(int) dead_per_cat = cat_entry_and_exit_df_2.exit.astype(int) fig.append_trace( go.Bar(y=xs, x=new_per_cat, orientation='h', showlegend=False, hoverinfo='text', hovertext=['{} entries in category {}'.format(x, y) for x, y in zip(new_per_cat, np.arange(len(new_per_cat)))], marker={'color': scen_colours[1]}), 1, 2) fig.append_trace( go.Bar(y=xs, x=-dead_per_cat, orientation='h', showlegend=False, hoverinfo='text', hovertext=['{} exits in category {}'.format(x, y) for x, y in zip(dead_per_cat, np.arange(len(new_per_cat)))], marker={'color': scen_colours[1]}), 1, 2) fig.append_trace( go.Bar(y=xs, x=new_per_cat - dead_per_cat, orientation='h', showlegend=False, hoverinfo='text', hovertext=['{} net entries in category {}'.format(x, y) for x, y in zip(new_per_cat - dead_per_cat, np.arange(len(new_per_cat)))], marker={'color': dark_scen_colours[1]}), 1, 2) fig['layout']['xaxis2'].update(title="Number of companies", range=limits) fig['layout']['xaxis1'].update(title="Number of companies", range=limits) fig['layout']['yaxis1'].update(title="Product category") fig['layout'].update(title='Market entry and exit per product category') fig['layout']['font'].update(family='HelveticaNeue') fig['layout'].update(barmode='overlay') return fig
c1b1ad00c1dbdde804e4d594dda4ae6525c7779f
17,237
import io def find_elements_by_image(self, filename): """ Locate all the occurence of an image in the webpage. :Args: - filename: The path to the image to search (image shall be in PNG format). :Returns: A list of ImageElement. """ template = cv2.imread(filename, cv2.IMREAD_UNCHANGED) template_height, template_width, _ = template.shape webpage_png = self.get_screenshot_as_png() webpage_img = Image.open(io.BytesIO(webpage_png)) webpage = np.asarray(webpage_img, dtype=np.float32).astype(np.uint8) webpage = cv2.cvtColor(webpage, cv2.COLOR_BGR2RGB) return [ ImageElement(self, loc[0], loc[1], template_width, template_height) for loc in match_template(webpage, template) ]
23137766b68068c8cb78bb57127bfa6040bace70
17,238
from typing import Set from typing import Sequence def compile_tf_signature_def_saved_model( saved_model_dir: str, saved_model_tags: Set[str], module_name: str, exported_name: str, input_names: Sequence[str], output_names: Sequence[str]) -> Modules: """Compiles a SignatureDef SavedModel to each backend that we test. Args: saved_model_dir: Directory of the saved model. saved_model_tags: Optional set of tags to use when loading the model. module_name: A name for this compiled module. backend_info: BackendInfo with the details for compiling the saved model. exported_name: A str representing the signature on the saved model to compile. input_names: A sequence of kwargs to feed to the saved model. output_names: A sequence of named outputs to extract from the saved model. Returns: A 'Modules' dataclass containing the reference module, target modules and artifacts directory. """ global _global_modules if _global_modules is not None: return _global_modules # Setup the directory for saving compilation artifacts and traces. artifacts_dir = _setup_artifacts_dir(module_name) # Get the backend information for this test. ref_backend_info = module_utils.BackendInfo(FLAGS.reference_backend, f"{FLAGS.reference_backend}_ref") tar_backend_infos = get_target_backends() compile_backend = ( lambda backend_info: backend_info.compile_signature_def_saved_model( saved_model_dir, saved_model_tags, module_name, exported_name, input_names, output_names, artifacts_dir)) ref_module = compile_backend(ref_backend_info) tar_modules = [ compile_backend(backend_info) for backend_info in tar_backend_infos ] _global_modules = Modules(ref_module, tar_modules, artifacts_dir) return _global_modules
ed1a1efc28c9ae473d76c700ab7781f141fc3765
17,239
def origtime2float(time): """ converts current datetime to float >>> import datetime >>> t = datetime.datetime(2010, 8, 5, 14, 45, 41, 778877) >>> origtime2float(t) 53141.778876999997 """ t3fmt = time.strftime("%H:%M:%S:%f") return time2float(t3fmt)
03cadf1f686fde1dd46cbb52fd71adcc2f06585c
17,240
def discrete_fourier_transform1(freq, tvec, dvec, log=False): """ Calculate the Discrete Fourier transform (slow scales with N^2) The DFT is normalised to have the mean value of the data at zero frequency :param freq: numpy array, frequency grid calculated from the time vector :param tvec: numpy array or list, input time(independent) vector, normalised by the mean of the time vector :param dvec: numpy array or list, input dependent vector, normalised by the mean of the data vector :return wfn: numpy array of complex numbers, spectral window function :return dft: numpy array of complex numbers, "dirty" discrete Fourier transform :param log: boolean, if True prints progress to standard output if False silent """ # deal with logging if log: print('\n\t Calculating Discrete Fourier Transform...') # ------------------------------------------------------------------------- # Code starts here # ------------------------------------------------------------------------- wfn = np.zeros(len(freq), dtype=complex) dft = np.zeros(int(len(freq)/2), dtype=complex) for i in __tqdmlog__(range(len(freq)), log): phase = -2*np.pi*freq[i]*tvec phvec = np.array(np.cos(phase) + 1j * np.sin(phase)) if i < int(len(freq)/2): wfn[i] = np.sum(phvec)/len(tvec) dft[i] = np.sum(dvec*phvec)/len(tvec) # complete the spectral window function else: wfn[i] = np.sum(phvec)/len(tvec) return wfn, dft
b5e1bafe1ba2b8863ac97bb95c204ca84877b8fd
17,241
from typing import List def ngram_overlaps(a: List[str], b: List[str], threshold: int = 3) -> List[int]: """ Compute the set over overlapping strings in each set based on n-gram overlap where 'n' is defined by the passed in threshold. """ def get_ngrams(text): """ Get a set of all the ngrams in the text """ return set(" ".join(g) for g in grouper(text.split(), threshold)) overlaps = [] remaining = set(range(len(b))) for text in a: best_idx = -1 best_overlap = 0 ngrams = get_ngrams(text) for idx in remaining: ngram_overlap = len(ngrams & get_ngrams(b[idx])) if ngram_overlap > best_overlap: best_idx = idx best_overlap = ngram_overlap if best_idx >= 0: overlaps.append(best_idx) remaining.remove(best_idx) return overlaps
87621e28a4a5d2cba5bb66c6bfa9834c711a7ecf
17,242
def ssq_cwt(x, wavelet='morlet', scales='log', nv=None, fs=None, t=None, ssq_freqs=None, padtype='symmetric', squeezing='sum', difftype='direct', difforder=None, gamma=None): """Calculates the synchrosqueezed Continuous Wavelet Transform of `x`. Implements the algorithm described in Sec. III of [1]. # Arguments: x: np.ndarray Vector of signal samples (e.g. x = np.cos(20 * np.pi * t)) wavelet: str / tuple[str, dict] / `wavelets.Wavelet` Wavelet sampled in Fourier frequency domain. - str: name of builtin wavelet. `ssqueezepy.wavs()` - tuple[str, dict]: name of builtin wavelet and its configs. E.g. `('morlet', {'mu': 5})`. - `wavelets.Wavelet` instance. Can use for custom wavelet. scales: str['log', 'linear'] / np.ndarray CWT scales. - 'log': exponentially distributed scales, as pow of 2: `[2^(1/nv), 2^(2/nv), ...]` - 'linear': linearly distributed scales. !!! EXPERIMENTAL; default scheme for len(x)>2048 performs poorly (and there may not be a good non-piecewise scheme). nv: int / None Number of voices (CWT only). Suggested >= 32 (default=32). fs: float / None Sampling frequency of `x`. Defaults to 1, which makes ssq frequencies range from 1/dT to 0.5, i.e. as fraction of reference sampling rate up to Nyquist limit; dT = total duration (N/fs). Overridden by `t`, if provided. Relevant on `t` and `dT`: https://dsp.stackexchange.com/a/71580/50076 t: np.ndarray / None Vector of times at which samples are taken (eg np.linspace(0, 1, n)). Must be uniformly-spaced. Defaults to `np.linspace(0, len(x)/fs, len(x), endpoint=False)`. Overrides `fs` if not None. ssq_freqs: str['log', 'linear'] / np.ndarray / None Frequencies to synchrosqueeze CWT scales onto. Scale-frequency mapping is only approximate and wavelet-dependent. If None, will infer from and set to same distribution as `scales`. padtype: str Pad scheme to apply on input. One of: ('zero', 'symmetric', 'replicate'). 'zero' is most naive, while 'symmetric' (default) partly mitigates boundary effects. See `padsignal`. squeezing: str['sum', 'lebesgue'] - 'sum' = standard synchrosqueezing using `Wx`. - 'lebesgue' = as in [4], setting `Wx=ones()/len(Wx)`, which is not invertible but has better robustness properties in some cases. Not recommended unless you know what you're doing. difftype: str['direct', 'phase', 'numerical'] Method by which to differentiate Wx (default='direct') to obtain instantaneous frequencies: w(a,b) = Im( (1/2pi) * (1/Wx(a,b)) * d/db[Wx(a,b)] ) - 'direct': use `dWx`, obtained via frequency-domain differentiation (see `cwt`, `phase_cwt`). - 'phase': differentiate by taking forward finite-difference of unwrapped angle of `Wx` (see `phase_cwt`). - 'numerical': first-, second-, or fourth-order (set by `difforder`) numeric differentiation (see `phase_cwt_num`). difforder: int[1, 2, 4] Order of differentiation for difftype='numerical' (default=4). gamma: float / None CWT phase threshold. Sets `w=inf` for small values of `Wx` where phase computation is unstable and inaccurate (like in DFT): w[abs(Wx) < beta] = inf This is used to zero `Wx` where `w=0` in computing `Tx` to ignore contributions from points with indeterminate phase. Default = sqrt(machine epsilon) = np.sqrt(np.finfo(np.float64).eps) # Returns: Tx: np.ndarray [nf x n] Synchrosqueezed CWT of `x`. (rows=~frequencies, cols=timeshifts) (nf = len(ssq_freqs); n = len(x)) `nf = na` by default, where `na = len(scales)`. ssq_freqs: np.ndarray [nf] Frequencies associated with rows of `Tx`. Wx: np.ndarray [na x n] Continuous Wavelet Transform of `x` L2-normed (see `cwt`); to L1-norm, `Wx /= np.sqrt(scales)` scales: np.ndarray [na] Scales associated with rows of `Wx`. w: np.ndarray [na x n] Phase transform for each element of `Wx`. # References: 1. The Synchrosqueezing algorithm for time-varying spectral analysis: robustness properties and new paleoclimate applications. G. Thakur, E. Brevdo, N.-S. Fučkar, and H.-T. Wu. https://arxiv.org/abs/1105.0010 2. A Nonlinear squeezing of the CWT Based on Auditory Nerve Models. I. Daubechies, S. Maes. https://services.math.duke.edu/%7Eingrid/publications/DM96.pdf 3. Synchrosqueezed Wavelet Transforms: a Tool for Empirical Mode Decomposition. I. Daubechies, J. Lu, H.T. Wu. https://arxiv.org/pdf/0912.2437.pdf 4. Synchrosqueezing-based Recovery of Instantaneous Frequency from Nonuniform Samples. G. Thakur and H.-T. Wu. https://arxiv.org/abs/1006.2533 5. Synchrosqueezing Toolbox, (C) 2014--present. E. Brevdo, G. Thakur. https://github.com/ebrevdo/synchrosqueezing/blob/master/synchrosqueezing/ synsq_cwt_fw.m """ def _process_args(N, fs, t, nv, difftype, difforder, squeezing): if difftype not in ('direct', 'phase', 'numerical'): raise ValueError("`difftype` must be one of: direct, phase, numerical" " (got %s)" % difftype) if difforder is not None: if difftype != 'numerical': WARN("`difforder` is ignored if `difftype != 'numerical'") elif difforder not in (1, 2, 4): raise ValueError("`difforder` must be one of: 1, 2, 4 " "(got %s)" % difforder) elif difftype == 'numerical': difforder = 4 if squeezing not in ('sum', 'lebesgue'): raise ValueError("`squeezing` must be one of: sum, lebesgue " "(got %s)" % squeezing) dt, fs, t = _process_fs_and_t(fs, t, N) nv = nv or 32 return dt, fs, difforder, nv def _phase_transform(Wx, dWx, N, dt, gamma, difftype, difforder): if difftype == 'direct': # calculate instantaneous frequency directly from the # frequency-domain derivative w = phase_cwt(Wx, dWx, difftype, gamma) elif difftype == 'phase': # !!! bad; yields negatives, and forcing abs(w) doesn't help # calculate inst. freq. from unwrapped phase of CWT w = phase_cwt(Wx, None, difftype, gamma) elif difftype == 'numerical': # !!! tested to be very inaccurate for small `a` # calculate derivative numerically _, n1, _ = p2up(N) Wx = Wx[:, (n1 - 4):(n1 + N + 4)] w = phase_cwt_num(Wx, dt, difforder, gamma) return Wx, w N = len(x) dt, fs, difforder, nv = _process_args(N, fs, t, nv, difftype, difforder, squeezing) scales, cwt_scaletype, *_ = process_scales(scales, N, nv=nv, get_params=True) # l1_norm=False to spare a multiplication; for SSWT L1 & L2 are exactly same # anyway since we're inverting CWT over time-frequency plane rpadded = (difftype == 'numerical') Wx, scales, _, dWx = cwt(x, wavelet, scales=scales, fs=fs, l1_norm=False, derivative=True, padtype=padtype, rpadded=rpadded) gamma = gamma or np.sqrt(EPS) Wx, w = _phase_transform(Wx, dWx, N, dt, gamma, difftype, difforder) if ssq_freqs is None: # default to same scheme used by `scales` ssq_freqs = cwt_scaletype Tx, ssq_freqs = ssqueeze(Wx, w, scales=scales, fs=fs, ssq_freqs=ssq_freqs, transform='cwt', squeezing=squeezing) if difftype == 'numerical': Wx = Wx[:, 4:-4] w = w[:, 4:-4] Tx = Tx[:, 4:-4] return Tx, ssq_freqs, Wx, scales, w
8af5caea64e9a861f7702f52c50681e61322658c
17,243
import random import logging import time def request_retry_decorator(fn_to_call, exc_handler): """A generic decorator for retrying cloud API operations with consistent repeatable failure patterns. This can be API rate limiting errors, connection timeouts, transient SSL errors, etc. Args: fn_to_call: the function to call and wrap around exc_handler: a bool return function to check if the passed in exception is retriable """ def wrapper(*args, **kwargs): MAX_ATTEMPTS = 10 SLEEP_SEC_MIN = 5 SLEEP_SEC_MAX = 15 for i in range(1, MAX_ATTEMPTS + 1): try: return fn_to_call(*args, **kwargs) except Exception as e: if i < MAX_ATTEMPTS and exc_handler(e): sleep_duration_sec = \ SLEEP_SEC_MIN + random.random() * (SLEEP_SEC_MAX - SLEEP_SEC_MIN) logging.warn( "API call failed, waiting for {} seconds before re-trying (this was attempt" " {} out of {}).".format(sleep_duration_sec, i, MAX_ATTEMPTS)) time.sleep(sleep_duration_sec) continue raise e return wrapper
0813cc19d9826275917c9eb701683a73bfe597f9
17,244
from datetime import datetime def last_day_of_month(d): """ From: https://stackoverflow.com/a/43088/6929343 """ if d.month == 12: return d.replace(day=31) return d.replace(month=d.month+1, day=1) - datetime.timedelta(days=1)
a97ce3bdbcd9d5cb707919750ecc818de04deb7e
17,248
import google def get_access_token(): """Return access token for use in API request. Raises: requests.exceptions.ConnectionError. """ credentials, _ = google.auth.default(scopes=[ 'https://www.googleapis.com/auth/cloud-platform', 'https://www.googleapis.com/auth/cloud-platform.read-only' ]) request = google.auth.transport.requests.Request() credentials.refresh(request) return credentials.token
907aacd6d9976390b2896149179c84ea9bd3d0fc
17,250
def unknown_action(player: Player, table: dynamodb.Table) -> ActionResponse: """ Do nothing because the action could not be resolved. In the message list, returns a message saying the action was bad. :return: Original inputs matching updated inputs, and a message """ message = ["Action could not be resolved, type better next time"] return player, player, {}, {}, message
ea2a03d140eea2853b77da492ea0f403fc9c6ad9
17,252
def forecast_marginal_bindglm(mod, n, k, X=None, nsamps=1, mean_only=False): """ Marginal forecast function k steps ahead for a binomial DGLM """ # Plug in the correct F values F = update_F(mod, X, F=mod.F.copy()) # F = np.copy(mod.F) # if mod.nregn > 0: # F[mod.iregn] = X.reshape(mod.nregn,1) # Evolve to the prior for time t + k a, R = forecast_aR(mod, k) # Mean and variance ft, qt = mod.get_mean_and_var(F, a, R) # Choose conjugate prior, match mean and variance param1, param2 = mod.get_conjugate_params(ft, qt, mod.param1, mod.param2) if mean_only: return mod.get_mean(n, param1, param2) # Simulate from the forecast distribution return mod.simulate(n, param1, param2, nsamps)
dc8c82fc17465c4a22e7bc5d46cf9b5abd9abd54
17,253
def import_file(isamAppliance, id, filename, check_mode=False, force=False): """ Importing a file in the runtime template files directory. """ warnings = [] check_file = _check(isamAppliance, id) if check_file != None and force == False: warnings.append("File {0} exist.".format(id)) if force is True or _check_import(isamAppliance, id, filename, check_mode=check_mode): if check_mode is True: return isamAppliance.create_return_object(changed=True) else: return isamAppliance.invoke_post_files( "Importing a file in the runtime template files directory", "/mga/template_files/{0}".format(id), [ { 'file_formfield': 'file', 'filename': filename, 'mimetype': 'application/octet-stream' } ], { 'type': 'file', 'force': force }) return isamAppliance.create_return_object(warnings=warnings)
3978e5476a7344ef4c92d2cec3852a57850380df
17,254
def get_func_from_attrdict(func_name : str, attrdict : AttrDict) -> ObjectiveFunction1D: """ Given a string func_name, attempts to find the corresponding entry from attrdict. :param func_name :param attrdict :returns Objective Function """ for key, val in attrdict.items(): if val.name == func_name: return val
bb4b03371d5fbb642864d7c9e77d4172fee92315
17,255
from fdk import runner import io def event_handle(handle_code): """ Performs HTTP request-response procedure :param handle_code: customer's code :type handle_code: fdk.customer_code.Function :return: None """ async def pure_handler(request): log.log("in pure_handler") headers = dict(request.headers) log_frame_header(headers) func_response = await runner.handle_request( handle_code, constants.HTTPSTREAM, headers=headers, data=io.BytesIO(request.body)) log.log("request execution completed") headers = func_response.context().GetResponseHeaders() status = func_response.status() if status not in constants.FN_ENFORCED_RESPONSE_CODES: status = constants.FN_DEFAULT_RESPONSE_CODE return response.HTTPResponse( headers=headers, status=status, content_type=headers.get(constants.CONTENT_TYPE), body_bytes=func_response.body_bytes(), ) return pure_handler
03ca9cff4b7993e92c146565cb697a080d40c5ef
17,256
import torch def load_precomputed_embeddings(det_df, seq_info_dict, embeddings_dir, use_cuda): """ Given a sequence's detections, it loads from disk embeddings that have already been computed and stored for its detections Args: det_df: pd.DataFrame with detection coordinates seq_info_dict: dict with sequence meta info (we need frame dims) embeddings_dir: name of the directory where embeddings are stored Returns: torch.Tensor with shape (num_detects, embeddings_dim) """ # Retrieve the embeddings we need from their corresponding locations embeddings_path = osp.join( seq_info_dict["seq_path"], "processed_data", "embeddings", seq_info_dict["det_file_name"], embeddings_dir, ) # print("EMBEDDINGS PATH IS ", embeddings_path) frames_to_retrieve = sorted(det_df.frame.unique()) embeddings_list = [ torch.load(osp.join(embeddings_path, f"{frame_num}.pt")) for frame_num in frames_to_retrieve ] embeddings = torch.cat(embeddings_list, dim=0) # First column in embeddings is the index. Drop the rows of those that are not present in det_df ixs_to_drop = list( set(embeddings[:, 0].int().numpy()) - set(det_df["detection_id"]) ) embeddings = embeddings[ ~np.isin(embeddings[:, 0], ixs_to_drop) ] # Not so clean, but faster than a join assert_str = "Problems loading embeddings. Indices between query and stored embeddings do not match. BOTH SHOULD BE SORTED!" assert (embeddings[:, 0].numpy() == det_df["detection_id"].values).all(), assert_str embeddings = embeddings[:, 1:] # Get rid of the detection index return embeddings.to( torch.device("cuda" if torch.cuda.is_available() and use_cuda else "cpu") )
685eb63ca23d634345304575a148e72a8172567e
17,257
def _model_gpt(size=0, dropout_rate=0.0, attention_dropout_rate=0.0): """Configs for a variety of Transformer model sizes.""" num_layers = [1, 3, 6, 12, 24, 36, 48][size] dim = [64, 128, 512, 768, 1024, 1280, 1600][size] num_heads = int(dim / 64) # Always dim 64 per head return _transformer( emb_dim=dim, num_heads=num_heads, num_layers=num_layers, qkv_dim=dim, mlp_dim=dim * 4, dropout_rate=dropout_rate, attention_dropout_rate=attention_dropout_rate)
7bc9eab929b8c48ca4b8ff671e9e0885c0d2bc44
17,258
def test_module(client, demisto_args: dict): """ Test the OMWS Client connection by attempting to query a common username """ d = client.query_profile_data("maneenus") if d: return 'ok' else: raise DemistoException("Incorrect or empty API response")
59e653c8fb5c40ee84a5945e5e4b0410418248ec
17,259
def as_string(raw_data): """Converts the given raw bytes to a string (removes NULL)""" return bytearray(raw_data[:-1])
6610291bb5b71ffc0be18b4505c95653bdac4c55
17,260
import math def generate_trapezoid_profile(max_v, time_to_max_v, dt, goal): """Creates a trapezoid profile with the given constraints. Returns: t_rec -- list of timestamps x_rec -- list of positions at each timestep v_rec -- list of velocities at each timestep a_rec -- list of accelerations at each timestep Keyword arguments: max_v -- maximum velocity of profile time_to_max_v -- time from rest to maximum velocity dt -- timestep goal -- final position when the profile is at rest """ t_rec = [0.0] x_rec = [0.0] v_rec = [0.0] a_rec = [0.0] a = max_v / time_to_max_v time_at_max_v = goal / max_v - time_to_max_v # If profile is short if max_v * time_to_max_v > goal: time_to_max_v = math.sqrt(goal / a) time_from_max_v = time_to_max_v time_total = 2.0 * time_to_max_v profile_max_v = a * time_to_max_v else: time_from_max_v = time_to_max_v + time_at_max_v time_total = time_from_max_v + time_to_max_v profile_max_v = max_v while t_rec[-1] < time_total: t = t_rec[-1] + dt t_rec.append(t) if t < time_to_max_v: # Accelerate up a_rec.append(a) v_rec.append(a * t) elif t < time_from_max_v: # Maintain max velocity a_rec.append(0.0) v_rec.append(profile_max_v) elif t < time_total: # Accelerate down decel_time = t - time_from_max_v a_rec.append(-a) v_rec.append(profile_max_v - a * decel_time) else: a_rec.append(0.0) v_rec.append(0.0) x_rec.append(x_rec[-1] + v_rec[-1] * dt) return t_rec, x_rec, v_rec, a_rec
5851cfab06e20a9e79c3a321bad510d33639aaca
17,262
import logging def get_logger(name: str, format_str: str = aps_logger_format, date_format: str = aps_time_format, file: bool = False) -> logging.Logger: """ Get logger instance Args: name: logger name format_str|date_format: to configure logging format file: if true, treat name as the name of the logging file """ def get_handler(handler): handler.setLevel(logging.INFO) formatter = logging.Formatter(fmt=format_str, datefmt=date_format) handler.setFormatter(formatter) return handler logger = logging.getLogger(name) logger.setLevel(logging.INFO) logger.addHandler(logging.StreamHandler()) # both stdout & file if file: logger.addHandler(get_handler(logging.FileHandler(name))) return logger
06d673473c7014d6373003bf924fdf2dc9965baf
17,265
import torch def to_tensor(args, device=None): """Convert an arg or sequence of args to torch Tensors """ singleton = not isinstance(args, (list, tuple)) if singleton: args = [args] tensor_args = [] for arg in args: if isinstance(arg, torch.Tensor): tensor_args.append(arg) elif _is_numeric(arg): if isinstance(arg, np.ndarray) and arg.dtype == np.float64: tensor_args.append( torch.tensor(arg, dtype=torch.float32, device=device) ) else: tensor_args.append(torch.tensor(arg, device=device)) else: raise ValueError("Received non-numeric argument ", arg) return tensor_args[0] if singleton else tensor_args
d85d842c095aa3c942f94e61c79d2bbeb49bc41d
17,266
def main(self): """ to run: kosmos 'j.data.bcdb.test(name="meta_test")' """ bcdb, _ = self._load_test_model() assert len(bcdb.get_all()) == 0 assert len(bcdb.meta._data["url"]) == 7 s = list(j.data.schema._url_to_md5.keys()) assert "despiegk.test" in s m = bcdb.model_get(url="despiegk.test") schema_text = """ @url = jumpscale.schema.test.a category**= "" txt = "" i = 0 """ s = bcdb.schema_get(schema=schema_text) assert s.properties_unique == [] bcdb.meta._schema_set(s) assert len(bcdb.meta._data["url"]) == 8 assert "jumpscale.schema.test.a" in j.data.schema._url_to_md5 assert "jumpscale.bcdb.circle.2" in j.data.schema._url_to_md5 schema = bcdb.model_get(url="jumpscale.schema.test.a") o = schema.new() assert "jumpscale.schema.test.a" in j.data.schema._url_to_md5 assert "jumpscale.bcdb.circle.2" in j.data.schema._url_to_md5 s0 = bcdb.schema_get(url="jumpscale.schema.test.a") s0md5 = s0._md5 + "" model = bcdb.model_get(schema=s0) assert bcdb.get_all() == [] # just to make sure its empty assert len(bcdb.meta._data["url"]) == 8 a = model.new() a.category = "acat" a.txt = "data1" a.i = 1 a.save() a2 = model.new() a2.category = "acat2" a2.txt = "data2" a2.i = 2 a2.save() assert len([i for i in model.index.model.find()]) == 2 myid = a.id + 0 assert a._model.schema._md5 == s0md5 # lets upgrade schema to float s_temp = bcdb.schema_get(schema=schema_text) assert len(bcdb.meta._data["url"]) == 8 # should be same because is same schema, should be same md5 assert s_temp._md5 == s0._md5 # lets upgrade schema to float s2 = bcdb.schema_get(schema=schema_text) model2 = bcdb.model_get(schema=s2) assert len(bcdb.meta._data["url"]) == 8 # acl, user, circle, despiegktest and the 1 new one a3 = model2.new() a3.category = "acat3" a3.txt = "data3" a3.i = 3 a3.save() assert a3.i == 3.0 assert a2.i == 2 # int assert len(model2.find()) == 3 # needs to be 3 because model is for all of them assert len(model.find()) == 3 # needs to be 3 because model is for all of them all = model2.find() print(all) a4 = model2.get(all[0].id) a4_ = model.get(all[0].id) assert a4_ == a4 a5 = model2.get(all[1].id) a6 = model.get(all[2].id) a6_ = model.get(all[2].id) assert a6_ == a6 assert a6.id == a3.id assert a6.i == a3.i self._log_info("TEST META DONE") return "OK"
7f88d33bd6cc2df5284201d859718a8a06e6a4e4
17,267
def snake_head_only(): """ |===========| |···········| |···········| |···········| |···········| |···········| |···········| |·······o···| |···········| |···········| |···········| |···········| |===========| """ return Snake.from_dict( **{ "body": [ {"x": 7, "y": 4}, ], } )
c08ffd0a86ec9d5a40d2649dd63a2b60019a6791
17,268
import six def str_to_bool(s): """Convert a string value to its corresponding boolean value.""" if isinstance(s, bool): return s elif not isinstance(s, six.string_types): raise TypeError('argument must be a string') true_values = ('true', 'on', '1') false_values = ('false', 'off', '0') if s.lower() in true_values: return True elif s.lower() in false_values: return False else: raise ValueError('not a recognized boolean value: %s'.format(s))
c228321872f253ce3e05c6af9284ec496dea8dcf
17,269
def id_feat_pred_mz_rt(cursor, mz, rt, ccs, tol_mz, tol_rt, tol_ccs, esi_mode, norm='l2'): """ id_feat_pred_mz_rt description: identifies a feature on the basis of predicted m/z and retention time parameters: cursor (sqlite3.Cursor) -- cursor for querying lipids.db mz (float) -- m/z to match rt (float) -- retention time to match ccs (float) -- CCS to match tol_mz (float) -- tolerance for m/z tol_rt (float) -- tolerance for retention time tol_ccs (float) -- tolerance for CCS esi_mode (str) -- filter results by ionization mode: 'neg', 'pos', or None for unspecified [norm (str)] -- specify l1 or l2 norm for computing scores [optional, default='l2'] returns: (str or list(str)), (str) -- putative identification(s) (or '' for no matches), identification level """ qry = 'SELECT name, adduct, mz, rt FROM predicted_mz JOIN predicted_rt ON ' \ + 'predicted_mz.t_id=predicted_rt.t_id WHERE mz BETWEEN ? AND ? AND rt BETWEEN ? and ?' if esi_mode == 'pos': qry += ' AND adduct LIKE "%+"' elif esi_mode == 'neg': qry += ' AND adduct LIKE "%-"' mz_min = mz - tol_mz mz_max = mz + tol_mz rt_min = rt - tol_rt rt_max = rt + tol_rt putative_ids, putative_scores = [], [] for name, adduct, mz_x, rt_x in cursor.execute(qry, (mz_min, mz_max, rt_min, rt_max)).fetchall(): putative_ids.append('{}_{}'.format(name, adduct)) putative_scores.append(get_score(tol_mz, tol_rt, tol_ccs, mz_q=mz, rt_q=rt, mz_x=mz_x, rt_x=rt_x)) if putative_ids: return putative_ids, 'pred_mz_rt', putative_scores else: return '', '', []
72818a631b155e1c50d53b26c1749bf8f68767f7
17,270
def Arrow_bg(self): """ The function that will create the background for the dropdown arrow button. For internal use only. This function is therefore also not imported by __init__.py """ #Just leave the making of the buttons background to the default function. Not gonna bother re-doing that here (because why would I?) if not self.func_data: surface = self.Make_background_surface(None) elif self.value: surface = self.Make_background_surface(self.func_data["__accent_bg"]) else: surface = self.Make_background_surface(self.func_data["__bg"]) #Draw the arrow so characteristic to dropdown boxes if not self.value: arrow_coords = ( (self.scaled(self.width * 1/6), self.scaled(self.height * 1/3)), #Top left (self.scaled(self.width * 1/2), self.scaled(self.height * 2/3)), #Bottom (self.scaled(self.width * 5/6), self.scaled(self.height * 1/3)), #Top right ) else: arrow_coords = ( (self.scaled(self.width * 1/6), self.scaled(self.height * 2/3)), #Bottom left (self.scaled(self.width * 1/2), self.scaled(self.height * 1/3)), #Top (self.scaled(self.width * 5/6), self.scaled(self.height * 2/3)), #Bottom right ) pygame.draw.polygon(surface, self.border[0] if self.border else (63, 63, 63), arrow_coords) return surface
4b09c197666aa5ea15713d98ae7c38e1b0ffa0e0
17,272
def get_bounds_5km_to_1km( itk_5km, isc_5km ) : """ return the 1km pixel indexes limits in the 5km pixel [ itk_5km, isc_5km ] footprint """ # set the (track,scan) indexes of the 5km pixel in the 5km grid itk_1km = itk_5km_to_1km ( itk_5km ) isc_1km = isc_5km_to_1km ( isc_5km ) # set the 1km indexes of pixels to interpolate along track itk_1km_min = itk_1km - 2 itk_1km_max = itk_1km + 2 # general case : 2 interpolations done along scan : [isc-1, isc] then [isc, isc+1] isc_1km_min = isc_1km - 2 isc_1km_max = isc_1km + 2 # if last 5km pixel along scan, only 4 1km pixels in the 5km footprint in this direction if ( isc_5km == sz_sc_5km - 1 ) : isc_1km_max = isc_1km + 6 return itk_1km_min, itk_1km_max, isc_1km_min, isc_1km_max
7fd175787f075d7ed9b3e8ed04565f38877de1e4
17,274
import torch def batch_hard_triplet_loss(labels, embeddings, margin, squared=False): """Build the triplet loss over a batch of embeddings. For each anchor, we get the hardest positive and hardest negative to form a triplet. Args: labels: labels of the batch, of size (batch_size,) embeddings: tensor of shape (batch_size, embed_dim) margin: margin for triplet loss squared: Boolean. If true, output is the pairwise squared euclidean distance matrix. If false, output is the pairwise euclidean distance matrix. Returns: triplet_loss: scalar tensor containing the triplet loss """ # Get the pairwise distance matrix pairwise_dist = _pairwise_distances(embeddings, squared=squared) # For each anchor, get the hardest positive # First, we need to get a mask for every valid positive (they should have same label) mask_anchor_positive = _get_anchor_positive_triplet_mask(labels).float() # We put to 0 any element where (a, p) is not valid (valid if a != p and label(a) == label(p)) anchor_positive_dist = torch.multiply(mask_anchor_positive, pairwise_dist) # shape (batch_size, 1) hardest_positive_dist = torch.max(anchor_positive_dist, dim=1, keepdim=True).values # print("hardest_positive_dist", hardest_positive_dist.mean()) # For each anchor, get the hardest negative # First, we need to get a mask for every valid negative (they should have different labels) mask_anchor_negative = _get_anchor_negative_triplet_mask(labels).float() # We add the maximum value in each row to the invalid negatives (label(a) == label(n)) max_anchor_negative_dist = torch.max(pairwise_dist, dim=1, keepdim=True).values anchor_negative_dist = pairwise_dist + max_anchor_negative_dist * (1.0 - mask_anchor_negative) # shape (batch_size,) hardest_negative_dist = torch.min(anchor_negative_dist, dim=1, keepdim=True).values # print("hardest_negative_dist", hardest_negative_dist.mean()) # Combine biggest d(a, p) and smallest d(a, n) into final triplet loss triplet_loss = torch.relu(hardest_positive_dist - hardest_negative_dist + margin) # Get final mean triplet loss triplet_loss = torch.mean(triplet_loss) return triplet_loss
37d20237580463e668cee77c96f732f2d0211aef
17,275
def categorical_sample_logits(logits): """ Samples (symbolically) from categorical distribution, where logits is a NxK matrix specifying N categorical distributions with K categories specifically, exp(logits) / sum( exp(logits), axis=1 ) is the probabilities of the different classes Cleverly uses gumbell trick, based on https://github.com/tensorflow/tensorflow/issues/456 """ U = tf.random_uniform(tf.shape(logits)) return tf.argmax(logits - tf.log(-tf.log(U)), dimension=1, name='sample_once')
f93752b11de02b1b61f60b3ff5c12dd9c15f7d8f
17,276
def sort_results(boxes): """Returns the top n boxes based on score given DenseCap results.json output Parameters ---------- boxes : dictionary output from load_output_json n : integer number of boxes to return Returns ------- sorted dictionary """ return sorted(results[k], key=lambda x : x['score'], reverse=True)
20f30e5846de4ce46073c3d32573d283576489e0
17,277
from datetime import datetime def get_date(d : str) -> datetime.datetime: """A helper function that takes a ModDB string representation of time and returns an equivalent datetime.datetime object. This can range from a datetime with the full year to second to just a year and a month. Parameters ----------- d : str String representation of a datetime Returns ------- datetime.datetime The datetime object for the given string """ try: return datetime.datetime.strptime(d[:-3] + d[-2:], '%Y-%m-%dT%H:%M:%S%z') except ValueError: pass try: return datetime.datetime.strptime(d, '%Y-%m-%d') except ValueError: pass return datetime.datetime.strptime(d, '%Y-%m')
44fb951ecb96102c631f88dc888aac11d11c8bad
17,278
def var_policer(*args): """Returns a variable policer object built from args.""" return VarPolicer(args)
a346e041118f1be2ed6b0acd2c9e3d04603031df
17,279
def winner(board): """ Returns the winner of the game, if there is one. """ #looking horizontal winner i = 0 while i < len(board): j = 1 while j <len(board): if board[i][j-1]==board[i][j] and board[i][j] == board[i][j+1]: return board[i][j] j += 2 i += 1 #looking vertical winner i = 1 while i < len(board): j = 0 while j <len(board): if board[i-1][j]==board[i][j] and board[i][j] == board[i+1][j]: return board[i][j] j += 1 i += 2 #looking diagonal winner if board[1][1] ==board[0][0] and board[1][1] == board[2][2]: return board[1][1] elif board[1][1] ==board[0][2] and board[1][1] == board[2][0]: return board[1][1] else: return None
31ab2cf04dfe269598efdd073762505643563a96
17,280
import signal def freqz_resp_list(b, a=np.array([1]), mode='dB', fs=1.0, n_pts=1024, fsize=(6, 4)): """ A method for displaying digital filter frequency response magnitude, phase, and group delay. A plot is produced using matplotlib freq_resp(self,mode = 'dB',Npts = 1024) A method for displaying the filter frequency response magnitude, phase, and group delay. A plot is produced using matplotlib freqz_resp(b,a=[1],mode = 'dB',Npts = 1024,fsize=(6,4)) Parameters ---------- b : ndarray of numerator coefficients a : ndarray of denominator coefficents mode : display mode: 'dB' magnitude, 'phase' in radians, or 'groupdelay_s' in samples and 'groupdelay_t' in sec, all versus frequency in Hz n_pts : number of points to plot; default is 1024 fsize : figure size; defult is (6,4) inches Mark Wickert, January 2015 """ if type(b) == list: # We have a list of filters N_filt = len(b) else: return None f = np.arange(0, n_pts) / (2.0 * n_pts) for n in range(N_filt): w, H = signal.freqz(b[n], a[n], 2 * np.pi * f) if n == 0: plt.figure(figsize=fsize) if mode.lower() == 'db': plt.plot(f * fs, 20 * np.log10(np.abs(H))) if n == N_filt - 1: plt.xlabel('Frequency (Hz)') plt.ylabel('Gain (dB)') plt.title('Frequency Response - Magnitude') elif mode.lower() == 'phase': plt.plot(f * fs, np.angle(H)) if n == N_filt - 1: plt.xlabel('Frequency (Hz)') plt.ylabel('Phase (rad)') plt.title('Frequency Response - Phase') elif (mode.lower() == 'groupdelay_s') or (mode.lower() == 'groupdelay_t'): """ Notes ----- Since this calculation involves finding the derivative of the phase response, care must be taken at phase wrapping points and when the phase jumps by +/-pi, which occurs when the amplitude response changes sign. Since the amplitude response is zero when the sign changes, the jumps do not alter the group delay results. """ theta = np.unwrap(np.angle(H)) # Since theta for an FIR filter is likely to have many pi phase # jumps too, we unwrap a second time 2*theta and divide by 2 theta2 = np.unwrap(2 * theta) / 2. theta_dif = np.diff(theta2) f_diff = np.diff(f) Tg = -np.diff(theta2) / np.diff(w) # For gain almost zero set groupdelay = 0 idx = pylab.find(20 * np.log10(H[:-1]) < -400) Tg[idx] = np.zeros(len(idx)) max_Tg = np.max(Tg) # print(max_Tg) if mode.lower() == 'groupdelay_t': max_Tg /= fs plt.plot(f[:-1] * fs, Tg / fs) plt.ylim([0, 1.2 * max_Tg]) else: plt.plot(f[:-1] * fs, Tg) plt.ylim([0, 1.2 * max_Tg]) if n == N_filt - 1: plt.xlabel('Frequency (Hz)') if mode.lower() == 'groupdelay_t': plt.ylabel('Group Delay (s)') else: plt.ylabel('Group Delay (samples)') plt.title('Frequency Response - Group Delay') else: s1 = 'Error, mode must be "dB", "phase, ' s2 = '"groupdelay_s", or "groupdelay_t"' log.info(s1 + s2)
207ad7ad59a3260df9d5df80c1b8e1bee4c33a3e
17,281
import socket def _nslookup(ipv4): """Lookup the hostname of an IPv4 address. Args: ipv4: IPv4 address Returns: hostname: Name of host """ # Initialize key variables hostname = None # Return result try: ip_results = socket.gethostbyaddr(ipv4) if len(ip_results) > 1: hostname = ip_results[0] except: hostname = None return (ipv4, hostname)
7771887dbfcd60e73b8fce0ce4029fcd7058a7d1
17,282
def get_service_node(service): """ Returns the name of the node that is providing the given service, or empty string """ node = rosservice_get_service_node(service) if node == None: node = "" return node
7a8df548e119e8197f92340d228fdc7855494670
17,283
import warnings from io import StringIO def _download_nasdaq_symbols(timeout): """ @param timeout: the time to wait for the FTP connection """ try: ftp_session = FTP(_NASDAQ_FTP_SERVER, timeout=timeout) ftp_session.login() except all_errors as err: raise RemoteDataError('Error connecting to %r: $s' % (_NASDAQ_FTP_SERVER, err)) lines = [] try: ftp_session.retrlines('RETR ' + _NASDAQ_TICKER_LOC, lines.append) except all_errors as err: raise RemoteDataError('Error downloading from %r: $s' % (_NASDAQ_FTP_SERVER, err)) finally: ftp_session.close() # Sanity Checking if not lines[-1].startswith('File Creation Time:'): raise RemoteDataError('Missing expected footer. Found %r' % lines[-1]) # Convert Y/N to True/False. converter_map = dict((col, _bool_converter) for col, t in _TICKER_DTYPE if t is bool) # For pandas >= 0.20.0, the Python parser issues a warning if # both a converter and dtype are specified for the same column. # However, this measure is probably temporary until the read_csv # behavior is better formalized. with warnings.catch_warnings(record=True): data = read_csv(StringIO('\n'.join(lines[:-1])), '|', dtype=_TICKER_DTYPE, converters=converter_map, index_col=1) # Properly cast enumerations for cat in _CATEGORICAL: data[cat] = data[cat].astype('category') return data
9b34571086ac3e738e29b3ed130ab2d0c7303657
17,284
def sessions(request): """ Cookies prepeocessor """ context = {} return context
562f4e9da57d3871ce780dc1a0661a34b3279ec5
17,285
import logging def dynamax_mnn(src: nb.typed.Dict, trg: nb.typed.Dict, src_emb: np.ndarray, trg_emb: np.ndarray, src_k: np.ndarray, trg_k: np.ndarray) -> np.ndarray: """ Run Dynamax-Jaccard in both directions and infer mutual neighbors. :param src nb.typed.Dict: src_id2pointers dictionary :param trg nb.typed.Dict: trg_id2pointers dictionary :param src_emb np.ndarray: unnormalized word embeddings matrix for src lang :param trg_emb np.ndarray: unnormalized word embeddings matrix for trg lang :param src_k np.ndarray: preranked target candidates for source lanaguage :param trg_k np.ndarray: preranked source candidates for target lanaguage """ logging.info('DynaMax: commencing first loop') src_argmax = dynamax_loop(src, trg, src_emb, trg_emb, src_k) logging.info('DynaMax: commencing second loop') trg_argmax = dynamax_loop(trg, src, trg_emb, src_emb, trg_k) logging.info('DynaMax: inferring mutual nearest neighbors') mnn = mutual_nn(src_argmax, trg_argmax) return mnn
174f603df09cbe7a8ee91de29de48ccaf2573b31
17,286
def resnet152(pretrained=False, progress=True, **kwargs): """Constructs a ResNet-152 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ return _resnet('resnet152', DistillerBottleneck, [3, 8, 36, 3], pretrained, progress, **kwargs)
5e3435eea1a18c028d422abef57d9e88d88e609f
17,287
import torch def _load_model(featurizer_path): """Load the featurization model Parameters ---------- featurizer_path: str Path to the saved model file Returns ------- The loaded PyTorch model """ # load in saved model pth = torch.load(featurizer_path) model_args = pth['model_args'] model_state = pth['model_state'] model = UNet(**model_args) model.load_state_dict(model_state) # remove last layer and activation model.segment = layers.Identity() model.activate = layers.Identity() model.eval() return model
21c29c9320b482bb33e82f97723d04bb53364ba1
17,288
def grid0_baseline(num_runs, render=True): """Run script for the grid0 baseline. Parameters ---------- num_runs : int number of rollouts the performance of the environment is evaluated over render : bool, optional specifies whether to use the gui during execution Returns ------- flow.core.experiment.Experiment class needed to run simulations """ exp_tag = flow_params['exp_tag'] sim_params = flow_params['sim'] vehicles = flow_params['veh'] env_params = flow_params['env'] net_params = flow_params['net'] initial_config = flow_params.get('initial', InitialConfig()) # define the traffic light logic tl_logic = TrafficLightParams(baseline=False) phases = [{"duration": "31", "minDur": "8", "maxDur": "45", "state": "GrGr"}, {"duration": "6", "minDur": "3", "maxDur": "6", "state": "yryr"}, {"duration": "31", "minDur": "8", "maxDur": "45", "state": "rGrG"}, {"duration": "6", "minDur": "3", "maxDur": "6", "state": "ryry"}] for i in range(N_ROWS * N_COLUMNS): tl_logic.add('center'+str(i), tls_type='actuated', phases=phases, programID=1) # modify the rendering to match what is requested sim_params.render = render # set the evaluation flag to True env_params.evaluate = True # import the network class module = __import__('flow.networks', fromlist=[flow_params['network']]) network_class = getattr(module, flow_params['network']) # create the network object network = network_class( name=exp_tag, vehicles=vehicles, net_params=net_params, initial_config=initial_config, traffic_lights=tl_logic ) # import the environment class module = __import__('flow.envs', fromlist=[flow_params['env_name']]) env_class = getattr(module, flow_params['env_name']) # create the environment object env = env_class(env_params, sim_params, network) exp = Experiment(env) results = exp.run(num_runs, env_params.horizon) total_delay = np.mean(results['returns']) return total_delay
8cb8a01309bb8ea3aae467d8a6c8a81ce295ab94
17,289
def read_aims(filename): """Method to read FHI-aims geometry files in phonopy context.""" lines = open(filename, 'r').readlines() cell = [] is_frac = [] positions = [] symbols = [] magmoms = [] for line in lines: fields = line.split() if not len(fields): continue if fields[0] == "lattice_vector": vec = lmap(float, fields[1:4]) cell.append(vec) elif fields[0][0:4] == "atom": if fields[0] == "atom": frac = False elif fields[0] == "atom_frac": frac = True pos = lmap(float, fields[1:4]) sym = fields[4] is_frac.append(frac) positions.append(pos) symbols.append(sym) magmoms.append(None) # implicitly assuming that initial_moments line adhere to FHI-aims geometry.in specification, # i.e. two subsequent initial_moments lines do not occur # if they do, the value specified in the last line is taken here - without any warning elif fields[0] == "initial_moment": magmoms[-1] = float(fields[1]) for (n,frac) in enumerate(is_frac): if frac: pos = [ sum( [ positions[n][l] * cell[l][i] for l in range(3) ] ) for i in range(3) ] positions[n] = pos if None in magmoms: atoms = Atoms(cell=cell, symbols=symbols, positions=positions) else: atoms = Atoms(cell=cell, symbols=symbols, positions=positions, magmoms=magmoms) return atoms
bcf5f00e57ed249c10667ad0b883986cb1b36865
17,290
def test(model, issue_batches): """ return accuracy on test set """ session = tf.get_default_session() num_correct = 0 num_predict = 0 for epoch, step, eigens, labels in issue_batches: feeds = { model['eigens']: eigens, } guess = session.run(model['guess'], feed_dict=feeds) num_predict += guess.shape[0] num_correct += \ np.sum(np.argmax(labels, axis=1) == np.argmax(guess, axis=1)) return float(num_correct) / float(num_predict)
0d8ae672766567a6665089c2d7d5004e25d80755
17,291
def evaluate_sample(ResNet50_model, X_train, Y_train, X_val_b,Y_val_b,X_data,Y_data,checkpoint_path): """ A function that accepts a labeled-unlabeled data split and trains the relevant model on the labeled data, returning the model and it's accuracy on the test set. """ # shuffle the training set: perm = np.random.permutation(X_train.shape[0]) X_train = X_train[perm] Y_train = Y_train[perm] X_validation = X_val_b Y_validation=to_categorical(Y_val_b) # train and evaluate the model: model = train_disease_classification_model(ResNet50_model,X_train, Y_train, X_validation, Y_validation, checkpoint_path) acc = model.evaluate(X_data, Y_data, verbose=0) return acc, model
c5f86feede372f078e9c88bac688c790de6578d6
17,292
import six import base64 def Base64WSEncode(s): """ Return Base64 web safe encoding of s. Suppress padding characters (=). Uses URL-safe alphabet: - replaces +, _ replaces /. Will convert s of type unicode to string type first. @param s: string to encode as Base64 @type s: string @return: Base64 representation of s. @rtype: string NOTE: Taken from keyczar (Apache 2.0 license) """ if isinstance(s, six.text_type): # Make sure input string is always converted to bytes (if not already) s = s.encode("utf-8") return base64.urlsafe_b64encode(s).decode("utf-8").replace("=", "")
cb28001bddec215b763936fde4652289cf6480c0
17,293
def onlyWikipediaURLS(urls): """Some example HTML page data is from wikipedia. This function converts relative wikipedia links to full wikipedia URLs""" wikiURLs = [url for url in urls if url.startswith('/wiki/')] return ["https://en.wikipedia.org"+url for url in wikiURLs]
df9ecbb73dfc9a764e4129069a4317517830307a
17,294
def get_image_filename_index(): """ Obtain a mapping of filename -> filepath for images :return: """ index_path = osp.join(SEG_ROOT, 'privacy_filters', 'cache', 'fname_index.pkl') if osp.exists(index_path): print 'Found cached index. Loading it...' return pickle.load(open(index_path, 'rb')) else: print 'Creating filename index ...' fname_index = dict() images_dir = osp.join(SEG_ROOT, 'images') for fold in os.listdir(images_dir): for img_filename in os.listdir(osp.join(images_dir, fold)): image_path = osp.join(images_dir, fold, img_filename) fname_index[img_filename] = image_path pickle.dump(fname_index, open(index_path, 'wb')) return fname_index
002b6fd4dea1b00bb758377e71de0e67f5d979d3
17,295
def merge_coordinates(coordinates, capture_size): """Merge overlapping coordinates for MIP targets. Parameters ---------- coordinates: python dictionary Coordinates to be merged in the form {target-name: {chrom: chrx, begin: start-coordinate, end: end-coordinate}, ..} capture_size: int Anticipated MIP capture size. If two regions are as close as 2 times this value, they will be merged. Returns ------- target_coordinates: python dictionary merged coordinates dictionary target_names: python dictionary names of included targets in each merged region. """ # create target regions to cover all snps # start by getting snps on same chromosome together chroms = {} for c in coordinates: chrom = coordinates[c]["chrom"] try: chroms[chrom].append([coordinates[c]["begin"], coordinates[c]["end"]]) except KeyError: chroms[chrom] = [[coordinates[c]["begin"], coordinates[c]["end"]]] # merge snps that are too close to get separate regions # the length should be twice the capture size merged_chroms = {} for c in chroms: merged_chroms[c] = merge_overlap(chroms[c], 2 * capture_size) # create regions for alignment # create target coordinate for each region target_coordinates = {} target_names = {} for c in merged_chroms: regions = merged_chroms[c] for reg in regions: targets_in_region = [] for co in coordinates: if (coordinates[co]["chrom"] == c and reg[0] <= coordinates[co]["begin"] <= coordinates[co]["end"] <= reg[1]): targets_in_region.append(co) region_name = targets_in_region[0] target_names[region_name] = targets_in_region r_start = reg[0] r_end = reg[1] target_coordinates[region_name] = [c, r_start, r_end] return target_coordinates, target_names
8af4a34fc8ce1a01ddcd4d4f257815ef5f852911
17,296
def Emojify_V2(input_shape, word_to_vec_map, word_to_index): """ Function creating the Emojify-v2 model's graph. Arguments: input_shape -- shape of the input, usually (max_len,) word_to_vec_map -- dictionary mapping every word in a vocabulary into its 50-dimensional vector representation word_to_index -- dictionary mapping from words to their indices in the vocabulary (400,001 words) Returns: model -- a model instance in Keras """ # Define sentence_indices as the input of the graph, # it should be of shape input_shape and dtype 'int32' (as it contains indices). sentence_indices = Input(shape=input_shape, dtype=np.int32) # Create the embedding layer pretrained with GloVe Vectors (≈1 line) embedding_layer = pretrained_embedding_layer(word_to_vec_map, word_to_index) # Propagate sentence_indices through your embedding layer, you get back the embeddings embeddings = embedding_layer(sentence_indices) # Propagate the embeddings through an LSTM layer with 128-dimensional hidden state # Be careful, the returned output should be a batch of sequences. X = LSTM(128, return_sequences=True)(embeddings) # Add dropout with a probability of 0.5 X = Dropout(0.5)(X) # Propagate X trough another LSTM layer with 128-dimensional hidden state # Be careful, the returned output should be a single hidden state, not a batch of sequences. X = LSTM(128)(X) # Add dropout with a probability of 0.5 X = Dropout(0.5)(X) # Propagate X through a Dense layer with softmax activation to get back a batch of 5-dimensional vectors. X = Dense(5, activation='softmax')(X) # Add a softmax activation X = Activation('softmax')(X) # Create Model instance which converts sentence_indices into X. model = Model(sentence_indices, X) return model
111a0c97e9a8c75aa6a7191ee89cbda69a84794c
17,297
def de_parser(lines): """return a dict of {OfficalName: str, Synonyms: str, Fragment: bool, Contains: [itemdict,], Includes: [itemdict,]} from DE lines The DE (DEscription) lines contain general descriptive information about the sequence stored. This information is generally sufficient to identify the protein precisely. The description always starts with the proposed official name of the protein. Synonyms are indicated between brackets. Examples below If a protein is known to be cleaved into multiple functional components, the description starts with the name of the precursor protein, followed by a section delimited by '[Contains: ...]'. All the individual components are listed in that section and are separated by semi-colons (';'). Synonyms are allowed at the level of the precursor and for each individual component. If a protein is known to include multiple functional domains each of which is described by a different name, the description starts with the name of the overall protein, followed by a section delimited by '[Includes: ]'. All the domains are listed in that section and are separated by semi-colons (';'). Synonyms are allowed at the level of the protein and for each individual domain. In rare cases, the functional domains of an enzyme are cleaved, but the catalytic activity can only be observed, when the individual chains reorganize in a complex. Such proteins are described in the DE line by a combination of both '[Includes:...]' and '[Contains:...]', in the order given in the following example: If the complete sequence is not determined, the last information given on the DE lines is '(Fragment)' or '(Fragments)'. Example: DE Dihydrodipicolinate reductase (EC 1.3.1.26) (DHPR) (Fragment). DE Arginine biosynthesis bifunctional protein argJ [Includes: Glutamate DE N-acetyltransferase (EC 2.3.1.35) (Ornithine acetyltransferase) DE (Ornithine transacetylase) (OATase); Amino-acid acetyltransferase DE (EC 2.3.1.1) (N-acetylglutamate synthase) (AGS)] [Contains: Arginine DE biosynthesis bifunctional protein argJ alpha chain; Arginine DE biosynthesis bifunctional protein argJ beta chain] (Fragment). Trouble maker: DE Amiloride-sensitive amine oxidase [copper-containing] precursor(EC DE 1.4.3.6) (Diamine oxidase) (DAO). """ labeloff_lines = labeloff(lines) joined = join_parser(labeloff_lines, chars_to_strip="). ") keys = ["Includes", "Contains", "Fragment"] fragment_label = "(Fragment" contains_label = "[Contains:" includes_label = "[Includes:" # Process Fragment fragment = False if joined.endswith(fragment_label): fragment = True joined = joined.rsplit("(", 1)[0] # Process Contains contains = [] if contains_label in joined: joined, contains_str = joined.split(contains_label) contains_str = contains_str.strip(" ]") contains = list(map(de_itemparser, contains_str.split("; "))) # Process Includes includes = [] if includes_label in joined: joined, includes_str = joined.split(includes_label) includes_str = includes_str.strip(" ]") includes = list(map(de_itemparser, includes_str.split("; "))) # Process Primary primary = de_itemparser(joined) result = dict(list(zip(keys, (includes, contains, fragment)))) result.update(primary) return result
d22158e365c52976ed638c27a0a85d8a047d743d
17,299
def roundPrecision(number, precision=4): """ Rounds the given floating point number to a certain precision, for output.""" return float(('{:.' + str(precision) + 'E}').format(number))
3bac0b54f1f8320c158ce0ddc14db7bbd092d2ff
17,300
def stringToNumbers(string, separators=[","], commentSymbol="#"): """ Return a list of splitted string and numbers from string "string". Numbers will be converted into floats. Text after "#" will be skipped. --- string: the string to be converted. --- separators: a list of additional separators other than whitespace to be used. --- commentSymbol: text after which will be ignored. """ if "#" in string: string = string[:string.index("#")].strip(); # take everything before "#" symbol, then strip splitted = [string]; for separator in flatten(separators): splitted = FLI([x.split(separator) for x in splitted]); splitted = FLI([x.split() for x in splitted]); # clean up empty strings if splitted == []: return []; lineData = []; for piece in splitted: if isFloat(piece): lineData.append(float(piece)); else: lineData.append(piece); return lineData;
dea1fb1d3257d00eaa637e1b80f23ad0e6475c38
17,302
import json def friend_invitation_by_facebook_send_view(request): # friendInvitationByFacebookSend """ :param request: :return: """ voter_device_id = get_voter_device_id(request) # We standardize how we take in the voter_device_id recipients_facebook_id_array = request.GET.getlist('recipients_facebook_id_array[]', "") recipients_facebook_name_array = request.GET.getlist('recipients_facebook_name_array[]', "") facebook_request_id = request.GET.get('facebook_request_id', "") results = friend_invitation_by_facebook_send_for_api(voter_device_id, recipients_facebook_id_array, recipients_facebook_name_array, facebook_request_id) json_data = { 'status': results['status'], 'success': results['success'], 'voter_device_id': voter_device_id, 'all_friends_facebook_link_created_results': results['all_friends_facebook_link_created_results'], } return HttpResponse(json.dumps(json_data), content_type='application/json')
6aeb2852b9e299bc8ddd5d03fbff2d0200e5c4a0
17,303
import json def inv_send_received(r, **attr): """ Confirm a Shipment has been Received - called via POST from inv_send_rheader - called via JSON method to reduce request overheads """ if r.http != "POST": r.error(405, current.ERROR.BAD_METHOD, next = URL(), ) T = current.T send_id = r.id if not send_id: r.error(405, "Can only confirm a single shipment.") auth = current.auth s3db = current.s3db stable = s3db.inv_send if not auth.s3_has_permission("update", stable, record_id = send_id, ): r.unauthorised() db = current.db tracktable = s3db.inv_track_item db(stable.id == send_id).update(status = SHIP_STATUS_RECEIVED) db(tracktable.send_id == send_id).update(status = TRACK_STATUS_ARRIVED) if current.deployment_settings.get_inv_send_req(): rtable = s3db.inv_req srtable = s3db.inv_send_req reqs = db(srtable.send_id == send_id).select(srtable.req_id) if reqs: req_ids = [row.req_id for row in reqs] # Get the full list of items in the request(s) ritable = s3db.inv_req_item for req_id in req_ids: query = (ritable.req_id == req_id) ritems = db(query).select(ritable.id, ritable.item_pack_id, ritable.quantity, # Virtual Field #ritable.pack_quantity, ) # Get all Received Shipments in-system for this request query = (stable.status == SHIP_STATUS_RECEIVED) & \ (tracktable.send_id == send_id) & \ (stable.id == srtable.send_id) & \ (srtable.req_id == req_id) sitems = db(query).select(tracktable.item_pack_id, tracktable.quantity, # Virtual Field #tracktable.pack_quantity, ) fulfil_qty = {} for item in sitems: item_pack_id = item.item_pack_id if item_pack_id in fulfil_qty: fulfil_qty[item_pack_id] += (item.quantity * item.pack_quantity()) else: fulfil_qty[item_pack_id] = (item.quantity * item.pack_quantity()) complete = False for item in ritems: if item.item_pack_id in fulfil_qty: quantity_fulfil = fulfil_qty[item.item_pack_id] db(ritable.id == item.id).update(quantity_fulfil = quantity_fulfil) req_quantity = item.quantity * item.pack_quantity() complete = quantity_fulfil >= req_quantity # Update overall Request Status if complete: # REQ_STATUS_COMPLETE db(rtable.id == req_id).update(fulfil_status = 2) else: # REQ_STATUS_PARTIAL db(rtable.id == req_id).update(fulfil_status = 1) message = T("Shipment received") current.session.confirmation = message current.response.headers["Content-Type"] = "application/json" return json.dumps({"message": s3_str(message), "tree": URL(args = [send_id, "track_item"]), }, separators=SEPARATORS)
645281e0e2023bd454021058e0c0ed79a61223b2
17,304
import numbers def filter_table(table, filter_series, ignore=None): """ Filter a table based on a set of restrictions given in Series of column name / filter parameter pairs. The column names can have suffixes `_min` and `_max` to indicate "less than" and "greater than" constraints. Parameters ---------- table : pandas.DataFrame Table to filter. filter_series : pandas.Series Series of column name / value pairs of filter constraints. Columns that ends with '_max' will be used to create a "less than" filters, columns that end with '_min' will be used to create "greater than or equal to" filters. A column with no suffix will be used to make an 'equal to' filter. ignore : sequence of str, optional List of column names that should not be used for filtering. Returns ------- filtered : pandas.DataFrame """ with log_start_finish('filter table', logger): ignore = ignore if ignore else set() filters = [_filterize(name, val) for name, val in filter_series.iteritems() if not (name in ignore or (isinstance(val, numbers.Number) and np.isnan(val)))] return apply_filter_query(table, filters)
5e5692c46e2dd207eca8d752912dff2b712cce18
17,305
def analogy_computation_2d(f_first_enc, f_first_frame, f_current_enc, first_depth): """Implements the deep analogy computation.""" with tf.variable_scope('analogy_computation'): frame_enc_diff = f_first_frame - f_first_enc frame_enc_diff_enc = tf.layers.conv2d( frame_enc_diff, first_depth * 4, 3, padding='same', activation=tf.nn.relu, strides=1) f_current_enc_enc = tf.layers.conv2d( f_current_enc, first_depth * 4, 3, padding='same', activation=tf.nn.relu, strides=1) analogy = tf.concat([frame_enc_diff_enc, f_current_enc_enc], 3) analogy = tf.layers.conv2d( analogy, first_depth * 4, 3, padding='same', activation=tf.nn.relu, strides=1) analogy = tf.contrib.layers.layer_norm(analogy) analogy = tf.layers.conv2d( analogy, first_depth * 4, 3, padding='same', activation=tf.nn.relu, strides=1) return tf.layers.conv2d( analogy, first_depth * 4, 3, padding='same', activation=tf.nn.relu, strides=1)
376176b8c17cf9e2f9611943b1fb18da4359748d
17,306
def format_to_TeX(elements): """returns BeautifulSoup elements in LaTeX. """ accum = [] for el in elements: if isinstance(el, NavigableString): accum.append(escape_LaTeX(el.string)) else: accum.append(format_el(el)) return "".join(accum)
2df2c4979fc65656b8ef7f4b514a9c4e036b3fa1
17,307
from typing import OrderedDict def namedlist(typename, field_names, verbose=False, rename=False): """Returns a new subclass of list with named fields. >>> Point = namedlist('Point', ['x', 'y']) >>> Point.__doc__ # docstring for the new class 'Point(x, y)' >>> p = Point(11, y=22) # instantiate with pos args or keywords >>> p[0] + p[1] # indexable like a plain list 33 >>> x, y = p # unpack like a regular list >>> x, y (11, 22) >>> p.x + p.y # fields also accessible by name 33 >>> d = p._asdict() # convert to a dictionary >>> d['x'] 11 >>> Point(**d) # convert from a dictionary Point(x=11, y=22) >>> p._replace(x=100) # _replace() is like str.replace() but targets named fields Point(x=100, y=22) """ # Validate the field names. At the user's option, either generate an error # message or automatically replace the field name with a valid name. if isinstance(field_names, basestring): field_names = field_names.replace(',', ' ').split() field_names = [str(x) for x in field_names] if rename: seen = set() for index, name in enumerate(field_names): if (not all(c.isalnum() or c == '_' for c in name) or _iskeyword(name) or not name or name[0].isdigit() or name.startswith('_') or name in seen): field_names[index] = '_%d' % index seen.add(name) for name in [typename] + field_names: if not all(c.isalnum() or c == '_' for c in name): raise ValueError('Type names and field names can only contain ' 'alphanumeric characters and underscores: %r' % name) if _iskeyword(name): raise ValueError('Type names and field names cannot be a ' 'keyword: %r' % name) if name[0].isdigit(): raise ValueError('Type names and field names cannot start with ' 'a number: %r' % name) seen = set() for name in field_names: if name.startswith('_') and not rename: raise ValueError('Field names cannot start with an underscore: ' '%r' % name) if name in seen: raise ValueError('Encountered duplicate field name: %r' % name) seen.add(name) # Fill-in the class template fmt_kw = {'typename': typename} fmt_kw['field_names'] = tuple(field_names) fmt_kw['num_fields'] = len(field_names) fmt_kw['arg_list'] = repr(tuple(field_names)).replace("'", "")[1:-1] fmt_kw['repr_fmt'] = ', '.join(_repr_tmpl.format(name=name) for name in field_names) fmt_kw['field_defs'] = '\n'.join(_m_field_tmpl.format(index=index, name=name) for index, name in enumerate(field_names)) class_definition = _namedlist_tmpl.format(**fmt_kw) if verbose: print(class_definition) def _itemsetter(key): def _itemsetter(obj, value): obj[key] = value return _itemsetter # Execute the template string in a temporary namespace and support # tracing utilities by setting a value for frame.f_globals['__name__'] namespace = dict(_itemgetter=_itemgetter, _itemsetter=_itemsetter, __name__='namedlist_%s' % typename, OrderedDict=OrderedDict, _property=property, _list=list) try: exec_(class_definition, namespace) except SyntaxError as e: raise SyntaxError(e.message + ':\n' + class_definition) result = namespace[typename] # For pickling to work, the __module__ variable needs to be set to # the frame where the named list is created. Bypass this step in # environments where sys._getframe is not defined (Jython for # example) or sys._getframe is not defined for arguments greater # than 0 (IronPython). try: frame = _sys._getframe(1) result.__module__ = frame.f_globals.get('__name__', '__main__') except (AttributeError, ValueError): pass return result
0d7e567e69c9d5c0038f4258b37f17ff1e6fb5b1
17,308
from typing import List def has_good_frames(frames: List[MonitoredFrame]) -> bool: """ Find a frame with a score larger than X """ return any([frame.score and frame.score > 3 for frame in frames])
16e9e2bce53ae957254121438c2c4e4f8add2142
17,309
def updateHistory(conn, author, message_id, backer): """ Updates the history Returns success """ c = conn.cursor() c.execute(prepareQuery("INSERT INTO votes_history (user_id, message_id, backer) VALUES (?,?,?)"), (int(author), int(message_id), int(backer), )) conn.commit() return c.rowcount > 0
6e0f06ace0e3600c307fe3f5848da583c930bbe8
17,310
import six def pyc_loads(data): """ Load a .pyc file from a bytestring. Arguments: data(bytes): The content of the .pyc file. Returns: PycFile: The parsed representation of the .pyc file. """ return pyc_load(six.BytesIO(data))
99b4b7d07d00a0c5098f1a3ded7c1929e2a4b231
17,311
import numpy def time_series_figure(time_series, polynomial, drift, snr): """ Return a matplotlib figure containing the time series and its polynomial model. """ figure = plt.figure() plot = figure.add_subplot(111) plot.grid() plt.title("Drift: {0: .1f}% - SNR: {1: .1f}dB".format( drift * 100, 10 * numpy.log10(snr))) x = numpy.arange(2, 2 + len(time_series)) model = numpy.polyval(polynomial, x) plot.plot(x, time_series, "k-") plot.plot(x, model, "k-") plot.axes.set_xlabel("Volume number") plot.axes.set_ylabel("Intensity") return figure
132aaf22108999e75ec6ca797753724d3198b2c8
17,312
def with_metaclass(meta, *bases): """Create a base class with a metaclass.""" class metaclass(type): def __new__(cls, name, this_bases, d): return meta(name, bases, d) return type.__new__(metaclass, 'temporary_class', (), {})
0f20f8414adf1d324fbe8541a27cad2219e87794
17,313
def log(cm_uuid: UUID): """ :GET: returns the most recent logs for the specified control module. accepts the following url parameters - limit: the number of logs that should be returned - offset: offset the number of logs that should be returned - log_type: the type of log that should be returned :POST: inserts log with data into the database """ if request.method == 'GET': limit = 20 offset = 0 log_type = "%" if limit_arg := request.args.get('limit'): limit = limit_arg if offset_arg := request.args.get('offset'): offset = offset_arg if log_type_arg := request.args.get('log_type'): log_type = log_type_arg logs = CMLog.query.filter_by(cm_uuid=cm_uuid, log_type=log_type)\ .order_by(CMLog.timestamp.desc())\ .limit(limit)\ .offset(offset*limit)\ .all() returnval = dict() returnval['cm_uuid'] = logs[0].cm_uuid returnval['status'] = 'success' returnval['data'] = [] for current_log in logs: log_data = { 'id': current_log.id, 'log_type': current_log.log_type, 'timestamp': current_log.timestamp, 'data': current_log.data } returnval['data'].append(log_data) return jsonify(returnval), 200 if request.method == 'POST': if not request.is_json: return jsonify({ "status": "error", "message": "missing json" }), 415 if not CMMeta.query.filter_by(uuid=cm_uuid).first(): return jsonify({ 'status': 'error', 'message': 'invalid control module uuid' }), 404 log_type = request.json.get('log_type') data = request.json.get('data') error = False missing = None if not log_type: error = True missing = "log_type" if not data: error = True missing = "data" if error: return jsonify({ "status": "error", "message": "missing " + missing }), 422 if not CMLogTypes.query.filter_by(cm_uuid=cm_uuid, log_type=log_type).first(): CMLogTypes.create(cm_uuid, log_type) return jsonify(CMLog.create(cm_uuid, log_type, request.json.get("data"))), 201
fa129b78497f44a4781e5fa2103abbb232294a7a
17,314
def RetrieveResiduesNumbers(ResiduesInfo): """Retrieve residue numbers.""" # Setup residue IDs sorted by residue numbers... ResNumMap = {} for ResName in ResiduesInfo["ResNames"]: for ResNum in ResiduesInfo["ResNum"][ResName]: ResNumMap[ResNum] = ResName ResNumsList = [] if len(ResNumMap): ResNumsList = sorted(ResNumMap, key = int) return ResNumsList
e9f522af368a8a058792b26f9cf53b1114e241ef
17,315
def get_data_with_station(station_id): """ *** Returns Pandas DataFrame *** Please Input Station ID: (String)""" print("\nGETTING DATA FOR STATION: ",station_id) ftp = FTP('ftp.ncdc.noaa.gov') ftp.login() ftp.cwd('pub/data/ghcn/daily/all') ftp.retrbinary('RETR '+station_id+'.dly', open(station_id+'.dly', 'wb').write) ftp.quit() outfile=station_id+".dly" dt = read_ghcn_data_file(filename=outfile) dt = dt.rename_axis("DATE", axis="columns") print('{} STATION DATA IS TAKEN'.format(station_id)) return dt
093b6f7d88335e3ef591cedee7c362bf3b1468d6
17,316
def _canonicalize(path): """Makes all paths start at top left, and go clockwise first.""" # convert args to floats path = [[x[0]] + list(map(float, x[1:])) for x in path] # _canonicalize each subpath separately new_substructures = [] for subpath in _separate_substructures(path): leftmost_point, leftmost_idx = _get_leftmost_point(subpath) reordered = ([['M', leftmost_point[0], leftmost_point[1]]] + subpath[leftmost_idx + 1:] + subpath[1:leftmost_idx + 1]) new_substructures.append((reordered, leftmost_point)) new_path = [] first_substructure_done = False should_flip_cardinality = False for sp, _ in sorted(new_substructures, key=lambda x: (x[1][1], x[1][0])): if not first_substructure_done: # we're looking at the first substructure now, we can determine whether we # will flip the cardniality of the whole icon or not should_flip_cardinality = not _is_clockwise(sp) first_substructure_done = True if should_flip_cardinality: sp = _make_clockwise(sp) new_path.extend(sp) # convert args to strs path = [[x[0]] + list(map(str, x[1:])) for x in new_path] return path
3f5aa9a4ac75417935415b5dcc561a1057b465e5
17,317
from typing import Tuple def extract_meta(src: bytes) -> Tuple[int, int]: """ Return a 2-tuple: - the length of the decoded block - the number of bytes that the length header occupied. """ v, n = uvarint(src) if n <= 0 or v > 0xFFFFFFFF: raise CorruptError if v > 0x7FFFFFFF: raise TooLargeError return v, n
4bb02fd1c8b9870b450fcbca790fa94870a82cf2
17,318
def metric_source_configuration_table(data_model, metric_key, source_key) -> str: """Return the metric source combination's configuration as Markdown table.""" configurations = data_model["sources"][source_key].get("configuration", {}).values() relevant_configurations = [config for config in configurations if metric_key in config["metrics"]] if not relevant_configurations: return "" markdown = markdown_table_header("Configuration", "Value") for configuration in sorted(relevant_configurations, key=lambda config: str(config["name"])): name = configuration["name"] values = ", ".join(sorted(configuration["value"], key=lambda value: value.lower())) markdown += markdown_table_row(name, values) markdown += "\n" return markdown
718a69df60272b7cdfafdbfeff3136a1aac49707
17,319
import requests import json def search(keyword, limit=20): """ Search is the iTunes podcast directory for the given keywords. Parameter: keyword = A string containing the keyword to search. limit: the maximum results to return, The default is 20 results. returns: A JSON object. """ keyword = keyword.replace(' ', '+') # Replace white space with +. # Set user agent. user_agent = 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_3) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/35.0.1916.47 Safari/537.36' headers = {'User-Agent': user_agent} # ITunes podcast search URL. itunesurl = 'https://itunes.apple.com/search?term=%s&country=us&limit=%d&entity=podcast' % (keyword, limit) req = requests.get(itunesurl, headers=headers) return json.loads(req.text)
922cd7dfaea30e7254c459588d28c33673281dac
17,320
def job_checks(name: str): """ Check if the job has parameters and ask to insert them printing the default value """ p = job_parameters(name) new_param = {} if p: ask = Confirm.ask( f"Job [bold green] {name} [/bold green] has parameters, do you want to insert them?", default=True ) if ask: for k, v in p.items(): t = Prompt.ask(f"{k}", default=f"{v}") new_param[k] = t return new_param else: ask = Confirm.ask( f"Job [bold green] {name} [/bold green] has no parameters, do you want to proceed?", default=True ) if ask: return new_param else: exit(0)
2f64820ec6b180cc6c626fab0616774d7e9086b2
17,321
import re def post(): """Post new message""" error = None if request.method == 'POST'\ and request.form['message'] != '' and request.form['message'] is not None: user_zid = session['logged_in'] post_message = request.form['message'] post_privacy = request.form['post_privacy'] # print('post_privacy: "{}"'.format(post_privacy)) cur_time_txt = time_date2txt() db = get_db() db.execute('INSERT INTO POST (zid, time, message, privacy) values (?, ?, ?, ?)', [user_zid, cur_time_txt, post_message, post_privacy]) db.commit() for m_zid in set(re.findall(r'z[0-9]{7}', post_message)): m_user = get_user(zid=m_zid) if m_user and m_user['email']: email_subj = '{} Mentioned you in his post!!'.format(g.user['full_name']) path = url_for('search', _external=True)+'?suggestion={}'.format(m_zid) print(path) email_body = 'Check the link to check the post: <a href="{0}">{0}</a>'.format(path) send_email(m_user['email'], email_subj, email_body) elif request.form['message'] == '' or request.form['message'] is None: error = "Post cannot be empty" return redirect(url_for('index', new_post_error=error))
b59c5fb30d4b6ce499d0199fb794be38c5c2dfdf
17,322
def data_context_connectivity_context_connectivity_serviceuuid_end_pointlocal_id_connection_end_pointtopology_uuidnode_uuidnode_edge_point_uuidconnection_end_point_uuid_get(uuid, local_id, topology_uuid, node_uuid, node_edge_point_uuid, connection_end_point_uuid): # noqa: E501 """data_context_connectivity_context_connectivity_serviceuuid_end_pointlocal_id_connection_end_pointtopology_uuidnode_uuidnode_edge_point_uuidconnection_end_point_uuid_get returns tapi.connectivity.ConnectionEndPointRef # noqa: E501 :param uuid: Id of connectivity-service :type uuid: str :param local_id: Id of end-point :type local_id: str :param topology_uuid: Id of connection-end-point :type topology_uuid: str :param node_uuid: Id of connection-end-point :type node_uuid: str :param node_edge_point_uuid: Id of connection-end-point :type node_edge_point_uuid: str :param connection_end_point_uuid: Id of connection-end-point :type connection_end_point_uuid: str :rtype: TapiConnectivityConnectionEndPointRef """ return 'do some magic!'
24fe9a977542f52d8bc8cc765c63ce32882d9f76
17,323
def softmax(logits): """Take the softmax over a set of logit scores. Args: logits (np.array): a 1D numpy array Returns: a 1D numpy array of probabilities, of the same shape. """ if not isinstance(logits, np.ndarray): logits = np.array(logits) # 1D array logits = logits - np.max(logits) # re-center exp_logits = np.exp(logits) probs = exp_logits / np.sum(exp_logits) return probs
7e1897748172e095ac58ce7111bed73caa4e2cb6
17,324