content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
from tvm.relay.testing import mlp def mlp_net(): """The MLP test from Relay. """ return mlp.get_net(1)
4e48dfb04bab1434bd581b7fc6cd5e2257c88022
16,862
def groupByX(grp_fn, messages): """ Returns a dictionary keyed by the requested group. """ m_grp = {} for msg in getIterable(messages): # Ignore messages that we don't have all the timing for. if msg.isComplete() or not ignore_incomplete: m_type = grp_fn(msg) if m_type in m_grp: m_grp[m_type].append(msg) else: m_grp[m_type] = [msg] return m_grp
9ebf63cfe81e8c8b6f19d90c725415cafdbcd636
16,864
import math def regular_poly_circ_rad_to_side_length(n_sides, rad): """Find side length that gives regular polygon with `n_sides` sides an equivalent area to a circle with radius `rad`.""" p_n = math.pi / n_sides return 2 * rad * math.sqrt(p_n * math.tan(p_n))
939ff5de399d7f0a31750aa03562791ee83ee744
16,865
def dbl_colour(days): """ Return a colour corresponding to the number of days to double :param days: int :return: str """ if days >= 28: return "orange" elif 0 < days < 28: return "red" elif days < -28: return "green" else: return "yellow"
46af7d57487f17b937ad5b7332879878cbf84220
16,866
def create_model(data_format): """Model to recognize digits in the MNIST data set. Network structure is equivalent to: https://github.com/tensorflow/tensorflow/blob/r1.5/tensorflow/examples/tutorials/mnist/mnist_deep.py and https://github.com/tensorflow/models/blob/master/tutorials/image/mnist/convolutional.py But uses the tf.keras API. Args: data_format: Either 'channels_first' or 'channels_last'. 'channels_first' is typically faster on GPUs while 'channels_last' is typically faster on CPUs. See https://www.tensorflow.org/performance/performance_guide#data_formats Returns: A tf.keras.Model. """ # pylint: disable=no-member if data_format == 'channels_first': input_shape = [1, 28, 28] else: assert data_format == 'channels_last' input_shape = [28, 28, 1] return Sequential( [ Reshape(target_shape=input_shape, input_shape=(28 * 28,)), Conv2D(32, 5, padding='same', data_format=data_format, activation=tf.nn.relu, kernel_initializer='random_uniform'), MaxPool2D((2, 2), (2, 2), padding='same', data_format=data_format), Conv2D(64, 5, padding='same', data_format=data_format, activation=tf.nn.relu, kernel_initializer='random_uniform'), MaxPool2D((2, 2), (2, 2), padding='same', data_format=data_format), Flatten(), Dense(1024, activation=tf.nn.relu, kernel_initializer='random_uniform'), Dropout(0.4), Dense(10, kernel_initializer='random_uniform') ])
d6fe45e5cfef5246a220600b67e24cddceeebd3a
16,867
def run_noncentered_hmc(model_config, num_samples=2000, burnin=1000, num_leapfrog_steps=4, num_adaptation_steps=500, num_optimization_steps=2000): """Given a (centred) model, this function transforms it to a fully non-centred one, and runs HMC on the reparametrised model. """ tf.reset_default_graph() return run_parametrised_hmc( model_config=model_config, interceptor=ed_transforms.ncp, num_samples=num_samples, burnin=burnin, num_leapfrog_steps=num_leapfrog_steps, num_adaptation_steps=num_adaptation_steps, num_optimization_steps=num_optimization_steps)
95065fb8c8ee778f0d300b46f285f8f3bb026aed
16,868
import collections def get_project_apps(in_app_list): """ Application definitions for app name. Args: in_app_list: (list) - names of applications Returns: tuple (list, dictionary) - list of dictionaries with apps definitions dictionary of warnings """ apps = [] warnings = collections.defaultdict(list) if not in_app_list: return apps, warnings missing_app_msg = "Missing definition of application" application_manager = ApplicationManager() for app_name in in_app_list: if application_manager.applications.get(app_name): apps.append({"name": app_name}) else: warnings[missing_app_msg].append(app_name) return apps, warnings
4e9be8ffddf44aba740414a8ee020376eda3a761
16,869
def read(G): """ Wrap a NetworkX graph class by an ILPGraph class The wrapper class is used store the graph and the related variables of an optimisation problem in a single entity. :param G: a `NetworkX graph <https://networkx.org/documentation/stable/reference/introduction.html#graphs>`__ :return: an :py:class:`~graphilp.imports.ilpgraph.ILPGraph` """ result = ILPGraph() result.set_nx_graph(G) return result
cb5db29d210d944047dbdf806ecfaaa274d517e8
16,870
def slog_det(obs, **kwargs): """Computes the determinant of a matrix of Obs via np.linalg.slogdet.""" def _mat(x): dim = int(np.sqrt(len(x))) if np.sqrt(len(x)) != dim: raise Exception('Input has to have dim**2 entries') mat = [] for i in range(dim): row = [] for j in range(dim): row.append(x[j + dim * i]) mat.append(row) (sign, logdet) = anp.linalg.slogdet(np.array(mat)) return sign * anp.exp(logdet) if isinstance(obs, np.ndarray): return derived_observable(_mat, (1 * (obs.ravel())).tolist(), **kwargs) elif isinstance(obs, list): return derived_observable(_mat, obs, **kwargs) else: raise TypeError('Unproper type of input.')
20b4016653d83303ac671a5d2641d4c344393b0a
16,871
def make_optimiser_form(optimiser): """Make a child form for the optimisation settings. :param optimiser: the Optimiser instance :returns: a subclass of FlaskForm; NB not an instance! """ # This sets up the initial form with the optimiser's parameters OptimiserForm = make_component_form(optimiser) # Now add options for specifying objectives OptimiserForm.obj_min_A = BooleanField('Minimise A', default=True) OptimiserForm.obj_min_sigma_varA = BooleanField('Minimise variance in A') OptimiserForm.obj_min_B = BooleanField('Minimise B') OptimiserForm.obj_max_C = BooleanField('Maximise C') # Options saying which variables to optimise OptimiserForm.var_bool_param = BooleanField( 'Optimise the choice of a binary option', default=True) OptimiserForm.var_int_param = BooleanField('Optimise the range of an integer', default=True) return OptimiserForm
745c4a9c4268d31687215f4acec709a5eacfcbf0
16,872
def prepare_for_evaluate(test_images, test_label): """ It will preprocess and return the images and labels for tesing. :param original images for testing :param original labels for testing :return preprocessed images :return preprocessed labels """ test_d = np.stack([preprocessing_for_testing(test_images[i]) for i in range(10000)], axis=0) test_new_image, test_new_label = test_d, test_label # Shuffle for 20 times for time in range(20): test_new_image, test_new_label = shuffle(test_d, test_label, random_state=randint(0, test_images.shape[0])) return test_new_image, test_new_label
abe60fc558c6cc2c951a4efee758d2746608d8d1
16,873
async def async_setup(hass, config): """Set up the PEVC modbus component.""" hass.data[DOMAIN] = {} return True
cde898e2904f8e9cfcf60d260ee2476326877dd9
16,875
from typing import Any def deserialize_value(val: str) -> Any: """Deserialize a json encoded string in to its original value""" return _unpack_value( seven.json.loads(check.str_param(val, "val")), whitelist_map=_WHITELIST_MAP, descent_path="", )
d01ce83488ea743aae298b15d1fe5f4faac6adbc
16,876
import six import collections def stringify(value): """ PHPCS uses a , separated strings in many places because of how it handles options we have to do bad things with string concatenation. """ if isinstance(value, six.string_types): return value if isinstance(value, collections.Iterable): return ','.join(value) return str(value)
1ca24ff986f3cd02c845ad0e11b8b1cfd3c7f779
16,878
def read_requirements_file(path): """ reads requirements.txt file """ with open(path) as f: requires = [] for line in f.readlines(): if not line: continue requires.append(line.strip()) return requires
ab224bd3adac7adef76a2974a9244042f9aedf84
16,879
def vsa_get_all(context): """ Get all Virtual Storage Array records. """ session = get_session() return session.query(models.VirtualStorageArray).\ options(joinedload('vsa_instance_type')).\ filter_by(deleted=can_read_deleted(context)).\ all()
3568997b060fbeab115ec79c2c0cba77f78c6cba
16,880
import threading def thread_it(obj, timeout = 10): """ General function to handle threading for the physical components of the system. """ thread = threading.Thread(target = obj.run()) thread.start() # Run the 'run' function in the obj obj.ready.wait(timeout = timeout) # Clean up thread.join() obj.ready.clear() return None
02ed60a560ffa65f0364aa7414b1fda0d3e62ac5
16,882
def _subsize_sub_pixel_align_cy_ims(pixel_aligned_cy_ims, subsize, n_samples): """ The inner loop of _sub_pixel_align_cy_ims() that executes on a "subsize" region of the larger image. Is subsize is None then it uses the entire image. """ n_max_failures = n_samples * 2 sub_pixel_offsets = np.zeros((n_samples, pixel_aligned_cy_ims.shape[0], 2)) pixel_aligned_cy0_im = pixel_aligned_cy_ims[0] im_mea = pixel_aligned_cy_ims.shape[-1] assert pixel_aligned_cy_ims.shape[-2] == im_mea def _subregion(im, pos): if subsize is None: return im else: return imops.crop(im, off=pos, dim=WH(subsize, subsize), center=False) sample_i = 0 n_failures = 0 while sample_i < n_samples and n_failures < n_max_failures: try: if subsize is None: pos = XY(0, 0) else: pos = XY( np.random.randint(0, im_mea - subsize - 16), np.random.randint(0, im_mea - subsize - 16), ) subregion_pixel_aligned_cy0_im = _subregion(pixel_aligned_cy0_im, pos) for cy_i, pixel_aligned_cy_im in enumerate(pixel_aligned_cy_ims): if cy_i == 0: continue # Use a small region to improve speed subregion_pixel_aligned_cy_im = _subregion(pixel_aligned_cy_im, pos) try: _dy, _dx = _subpixel_align_one_im( subregion_pixel_aligned_cy0_im, subregion_pixel_aligned_cy_im, ) sub_pixel_offsets[sample_i, cy_i, :] = (_dy, _dx) except Exception: # This is a general exception handler because there # are a number of ways that the _subpixel_align_one_im # can fail including linear algebera, etc. All # of which end up with a skip and a retry. n_failures += 1 raise AlignmentError sample_i += 1 except AlignmentError: # Try again with a new pos if n_failures >= n_max_failures: raise AlignmentError return np.mean(sub_pixel_offsets, axis=0)
f96a2bc9b4c55976fd4c49da3f59afa991c53ff1
16,883
def obj_setclass(this, klass): """ set Class for `this`!! """ return this.setclass(klass)
4447df2f3055f21c9066a254290cdd037e812b64
16,884
def format(number, separator=' ', format=None, add_check_digit=False): """Reformat the number to the standard presentation format. The separator used can be provided. If the format is specified (either 'hex' or 'dec') the number is reformatted in that format, otherwise the current representation is kept. If add_check_digit is True a check digit will be added if it is not present yet.""" # first parse the number number, cd = _parse(number) # format conversions if needed if format == 'dec' and len(number) == 14: # convert to decimal number = '%010d%08d' % (int(number[0:8], 16), int(number[8:14], 16)) if cd: cd = calc_check_digit(number) elif format == 'hex' and len(number) == 18: # convert to hex number = '%08X%06X' % (int(number[0:10]), int(number[10:18])) if cd: cd = calc_check_digit(number) # see if we need to add a check digit if add_check_digit and not cd: cd = calc_check_digit(number) # split number according to format if len(number) == 14: number = [number[i * 2:i * 2 + 2] for i in range(7)] + [cd] else: number = (number[:5], number[5:10], number[10:14], number[14:], cd) return separator.join(x for x in number if x)
6890ed398eb7c173540c0392b9ed8ef66f8d170b
16,885
def parse_equal_statement(line): """Parse super-sequence statements""" seq_names = line.split()[1:] return seq_names
ee0de00a990ac10c365af16dccf491b7ea8ed785
16,886
def B5(n): """Factor Variables B5.""" return np.maximum(0, c4(n) - 3 * np.sqrt(1 - c4(n) ** 2))
bc2fbd91e337310fe5d4326d55440ce2055da650
16,887
def y_yhat_plots(y, yh, title="y and y_score", y_thresh=0.5): """Output plots showing how y and y_hat are related: the "confusion dots" plot is analogous to the confusion table, and the standard ROC plot with its AOC value. The y=1 threshold can be changed with the y_thresh parameter. """ # The predicted y value with threshold = y_thresh y_pred = 1.0 * (yh > y_thresh) # Show table of actual and predicted counts crosstab = pd.crosstab(y, y_pred, rownames=[ 'Actual'], colnames=[' Predicted']) print("\nConfusion matrix (y_thresh={:.3f}):\n\n".format(y_thresh), crosstab) # Calculate the various metrics and rates tn = crosstab[0][0] fp = crosstab[1][0] fn = crosstab[0][1] tp = crosstab[1][1] ##print(" tn =",tn) ##print(" fp =",fp) ##print(" fn =",fn) ##print(" tp =",tp) this_fpr = fp / (fp + tn) this_fnr = fn / (fn + tp) this_recall = tp / (tp + fn) this_precision = tp / (tp + fp) this_accur = (tp + tn) / (tp + fn + fp + tn) this_posfrac = (tp + fn) / (tp + fn + fp + tn) print("\nResults:\n") print(" False Pos = ", 100.0 * this_fpr, "%") print(" False Neg = ", 100.0 * this_fnr, "%") print(" Recall = ", 100.0 * this_recall, "%") print(" Precision = ", 100.0 * this_precision, "%") print("\n Accuracy = ", 100.0 * this_accur, "%") print(" Pos. fract. = ", 100.0 * this_posfrac, "%") # Put them in a dataframe ysframe = pd.DataFrame([y, yh, y_pred], index=[ 'y', 'y-hat', 'y-pred']).transpose() # If the yh is discrete (0 and 1s only) then blur it a bit # for a better visual dots plot if min(abs(yh - 0.5)) > 0.49: ysframe["y-hat"] = (0.51 * ysframe["y-hat"] + 0.49 * np.random.rand(len(yh))) # Make a "confusion dots" plot # Add a blurred y column ysframe['y (blurred)'] = y + 0.1 * np.random.randn(len(y)) # Plot the real y (blurred) vs the predicted probability # Note the flipped ylim values. ysframe.plot.scatter('y-hat', 'y (blurred)', figsize=(12, 5), s=2, xlim=(0.0, 1.0), ylim=(1.8, -0.8)) # show the "correct" locations on the plot plt.plot([0.0, y_thresh], [0.0, 0.0], '-', color='green', linewidth=5) plt.plot([y_thresh, y_thresh], [0.0, 1.0], '-', color='gray', linewidth=2) plt.plot([y_thresh, 1.0], [1.0, 1.0], '-', color='green', linewidth=5) plt.title("Confusion-dots Plot: " + title, fontsize=16) # some labels ythr2 = y_thresh/2.0 plt.text(ythr2 - 0.03, 1.52, "FN", fontsize=16, color='red') plt.text(ythr2 + 0.5 - 0.03, 1.52, "TP", fontsize=16, color='green') plt.text(ythr2 - 0.03, -0.50, "TN", fontsize=16, color='green') plt.text(ythr2 + 0.5 - 0.03, -0.50, "FP", fontsize=16, color='red') plt.show() # Make the ROC curve # Set the y-hat as the index and sort on it ysframe = ysframe.set_index('y-hat').sort_index() # Put y-hat back as a column (but the sorting remains) ysframe = ysframe.reset_index() # Initialize the counts for threshold = 0 p_thresh = 0 FN = 0 TN = 0 TP = sum(ysframe['y']) FP = len(ysframe) - TP # Assemble the fpr and recall values recall = [] fpr = [] # Go through each sample in y-hat order, # advancing the threshold and adjusting the counts for iprob in range(len(ysframe['y-hat'])): p_thresh = ysframe.iloc[iprob]['y-hat'] if ysframe.iloc[iprob]['y'] == 0: FP -= 1 TN += 1 else: TP -= 1 FN += 1 # Recall and FPR: recall.append(TP / (TP + FN)) fpr.append(FP / (FP + TN)) # Put recall and fpr in the dataframe ysframe['Recall'] = recall ysframe['FPR'] = fpr # - - - ROC - - - could be separate routine zoom_in = False # Calculate the area under the ROC roc_area = 0.0 for ifpr in range(1, len(fpr)): # add on the bit of area (note sign change, going from high fpr to low) roc_area += 0.5 * (recall[ifpr] + recall[ifpr - 1] ) * (fpr[ifpr - 1] - fpr[ifpr]) plt.figure(figsize=(8, 8)) plt.title("ROC: " + title, size=16) plt.plot(fpr, recall, '-b') # Set the scales if zoom_in: plt.xlim(0.0, 0.10) plt.ylim(0.0, 0.50) else: # full range: plt.xlim(0.0, 1.0) plt.ylim(0.0, 1.0) # The reference line plt.plot([0., 1.], [0., 1.], '--', color='orange') # The point at the y_hat = y_tresh threshold if True: plt.plot([this_fpr], [this_recall], 'o', c='blue', markersize=15) plt.xlabel('False Postive Rate', size=16) plt.ylabel('Recall', size=16) plt.annotate('y_hat = {:.2f}'.format(y_thresh), xy=(this_fpr + 0.015, this_recall), size=14, color='blue') plt.annotate(' Pos.Fraction = ' + ' {:.0f}%'.format(100 * this_posfrac), xy=(this_fpr + 0.02, this_recall - 0.03), size=14, color='blue') # Show the ROC area (shows on zoomed-out plot) plt.annotate('ROC Area = ' + str(roc_area) [:5], xy=(0.4, 0.1), size=16, color='blue') # Show the plot plt.show() return ysframe
82a8154bd618cc1451a44b2b42fca0407e9979cb
16,888
def _derive_scores(model, txt_file, base_words): """ Takes a model, a text file, and a list of base words. Returns a dict of {base_word: score}, where score is an integer between 0 and 100 which represents the average similarity of the text to the given word. """ with open(txt_file, 'r') as f: text = f.read() words = sample_words(text) # This is a list of dicts of the form {base_word: score}. raw_scores = [_single_word_score(model, base_words, word) for word in words] summed_scores = {} for base_word in base_words: summed_scores[base_word] = sum([item[base_word] for item in raw_scores]) summed_scores[base_word] = round( 100 * summed_scores[base_word] / len(words) ) return summed_scores
9c377b5dec742f5ba174f780252fd78d162a8713
16,889
def features_ids_argument_parser() -> ArgumentParser: """ Creates a parser suitable to parse the argument describing features ids in different subparsers """ parser = ArgumentParser(add_help=False, parents=[collection_option_parser()]) parser.add_argument(FEATURES_IDS_ARGNAME, nargs='+', help='features identifiers or features UUIDs') return parser
df24ebaff182c88c7ad6cf38e2e4a5784d54a48b
16,891
def isolate_blue_blocks(image, area_min=10, side_ratio=0.5): """Return a sequence of masks on the original area showing significant blocks of blue.""" contours, _ = cv2.findContours( blue(image).astype(np.uint8) * 255, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE ) rects = [] for c in contours: x, y, w, h = cv2.boundingRect(c) if min(w, h) / max(w, h) > side_ratio and cv2.contourArea(c) > area_min: rects.append((x, y, w, h)) masks = np.zeros_like() return filtered
7cd6e895750f208e18c60a48d2bc0e8d1710d6c0
16,892
from typing import Union from io import StringIO from pathlib import Path from typing import Optional from typing import Dict from typing import Callable from typing import List from typing import Tuple def read_gtf( filepath_or_buffer: Union[str, StringIO, Path], expand_attribute_column: bool = True, infer_biotype_column: bool = False, column_converters: Optional[Dict[str, Callable[..., str]]] = None, usecols: Optional[List[str]] = None, features: Optional[Tuple[str]] = None, chunksize: int = 1024 * 1024, ) -> pd.DataFrame: """ Parse a GTF into a dictionary mapping column names to sequences of values. Parameters ---------- filepath_or_buffer : str or buffer object Path to GTF file (may be gzip compressed) or buffer object such as StringIO expand_attribute_column : bool Replace strings of semi-colon separated key-value values in the 'attribute' column with one column per distinct key, with a list of values for each row (using None for rows where key didn't occur). infer_biotype_column : bool Due to the annoying ambiguity of the second GTF column across multiple Ensembl releases, figure out if an older GTF's source column is actually the gene_biotype or transcript_biotype. column_converters : dict, optional Dictionary mapping column names to conversion functions. Will replace empty strings with None and otherwise passes them to given conversion function. usecols : list of str or None Restrict which columns are loaded to the give set. If None, then load all columns. features : set of str or None Drop rows which aren't one of the features in the supplied set chunksize : int """ if isinstance(filepath_or_buffer, str): filepath_or_buffer = Path(filepath_or_buffer) if isinstance(filepath_or_buffer, Path) and not filepath_or_buffer.exists(): logger.exception(f"GTF file does not exist: {filepath_or_buffer}") raise FileNotFoundError if expand_attribute_column: result_df = parse_gtf_and_expand_attributes( filepath_or_buffer, chunksize=chunksize, restrict_attribute_columns=usecols ) else: result_df = parse_gtf( filepath_or_buffer, chunksize=chunksize, features=features ) if column_converters: for column_name in column_converters: result_df[column_name] = result_df[column_name].astype( column_converters[column_name], errors="ignore" ) # Hackishly infer whether the values in the 'source' column of this GTF # are actually representing a biotype by checking for the most common # gene_biotype and transcript_biotype value 'protein_coding' if infer_biotype_column: unique_source_values = result_df["source"].unique() if "protein_coding" in unique_source_values: column_names = result_df.columns.unique() # Disambiguate between the two biotypes by checking if # gene_biotype is already present in another column. If it is, # the 2nd column is the transcript_biotype (otherwise, it's the # gene_biotype) if "gene_biotype" not in column_names: logger.info("Using column 'source' to replace missing 'gene_biotype'") result_df["gene_biotype"] = result_df["source"] if "transcript_biotype" not in column_names: logger.info( "Using column 'source' to replace missing 'transcript_biotype'" ) result_df["transcript_biotype"] = result_df["source"] if usecols is not None: column_names = result_df.columns.unique() valid_columns = [c for c in usecols if c in column_names] result_df = result_df[valid_columns] return result_df
c7478d88ce5d6d6e823bf28c965f366b9b8d1522
16,893
def trimAlphaNum(value): """ Trims alpha numeric characters from start and ending of a given value >>> trimAlphaNum(u'AND 1>(2+3)-- foobar') u' 1>(2+3)-- ' """ while value and value[-1].isalnum(): value = value[:-1] while value and value[0].isalnum(): value = value[1:] return value
e9d44ea5dbe0948b9db0c71a5ffcdd5c80e95746
16,895
def hrm_job_title_represent(id, row=None): """ FK representation """ if row: return row.name elif not id: return current.messages.NONE db = current.db table = db.hrm_job_title r = db(table.id == id).select(table.name, limitby = (0, 1)).first() try: return r.name except: return current.messages.UNKNOWN_OPT
ca3d2bfb4056b28b712f4cbf37c8c91d840c0161
16,896
def is_empty_array_expr(ir: irast.Base) -> bool: """Return True if the given *ir* expression is an empty array expression. """ return ( isinstance(ir, irast.Array) and not ir.elements )
dcf3775e7544ad64e9a533238a9549ed21dc3393
16,897
def get_raw_entity_names_from_annotations(annotations): """ Args: annotated_utterance: annotated utterance Returns: Wikidata entities we received from annotations """ raw_el_output = annotations.get("entity_linking", [{}]) entities = [] try: if raw_el_output: if isinstance(raw_el_output[0], dict): entities = raw_el_output[0].get("entity_ids", []) if isinstance(raw_el_output[0], list): entities = raw_el_output[0][0] except Exception as e: error_message = f"Wrong entity linking output format {raw_el_output} : {e}" sentry_sdk.capture_exception(e) logger.exception(error_message) return entities
482be69ef5fec52b70ade4839b48ae2f4155033b
16,898
def nextPara(file, line): """Go forward one paragraph from the specified line and return the line number of the first line of that paragraph. Paragraphs are delimited by blank lines. It is assumed that the current line is standalone (which is bogus). - file is an array of strings - line is the starting point (zero-based)""" maxLine = len(file) - 1 # Skip over current paragraph while (line != maxLine and not isempty(file[line])): line = line + 1 # Skip over white space while (line != maxLine and isempty(file[line])): line = line + 1 return line
a104042225bc9404a5b5fe8f5410a3021e45f64d
16,899
def build_asignar_anexos_query(filters, request): """ Construye el query de búsqueda a partir de los filtros. """ return filters.buildQuery().filter(ambito__path__istartswith=request.get_perfil().ambito.path).order_by('nombre')
1a176182fa0559bac56df17f32345d2c4c22b1f1
16,900
def _median(data): """Return the median (middle value) of numeric data. When the number of data points is odd, return the middle data point. When the number of data points is even, the median is interpolated by taking the average of the two middle values: >>> median([1, 3, 5]) 3 >>> median([1, 3, 5, 7]) 4.0 """ data = sorted(data) n = len(data) if n == 0: raise ValueError("no median for empty data") if n % 2 == 1: return data[n // 2] else: i = n // 2 return (data[i - 1] + data[i]) / 2
f05a6b067f95fc9e3fc9350b163b3e89c0792814
16,902
def num_translate(value: str) -> str: """переводит числительное с английского на русский """ str_out = NUM_DICT.get(value) return str_out
8555556843ea5235f462dbb7b092eaa09168ab0e
16,903
def get_patch_shape(corpus_file): """Gets the patch shape (height, width) from the corpus file. Args: corpus_file: Path to a TFRecords file. Returns: A tuple (height, width), extracted from the first record. Raises: ValueError: if the corpus_file is empty. """ example = tf.train.Example() try: example.ParseFromString(next(tf.python_io.tf_record_iterator(corpus_file))) except StopIteration as e: raise ValueError('corpus_file cannot be empty: %s' % e) return (example.features.feature['height'].int64_list.value[0], example.features.feature['width'].int64_list.value[0])
054a43d1aa7809b55c57fa0e7574dd43273f4bae
16,904
import re def _TopologicallySortedEnvVarKeys(env): """Takes a dict |env| whose values are strings that can refer to other keys, for example env['foo'] = '$(bar) and $(baz)'. Returns a list L of all keys of env such that key2 is after key1 in L if env[key2] refers to env[key1]. Throws an Exception in case of dependency cycles. """ # Since environment variables can refer to other variables, the evaluation # order is important. Below is the logic to compute the dependency graph # and sort it. regex = re.compile(r'\$\{([a-zA-Z0-9\-_]+)\}') def GetEdges(node): # Use a definition of edges such that user_of_variable -> used_varible. # This happens to be easier in this case, since a variable's # definition contains all variables it references in a single string. # We can then reverse the result of the topological sort at the end. # Since: reverse(topsort(DAG)) = topsort(reverse_edges(DAG)) matches = set([v for v in regex.findall(env[node]) if v in env]) for dependee in matches: assert '${' not in dependee, 'Nested variables not supported: ' + dependee return matches try: # Topologically sort, and then reverse, because we used an edge definition # that's inverted from the expected result of this function (see comment # above). order = gyp.common.TopologicallySorted(env.keys(), GetEdges) order.reverse() return order except gyp.common.CycleError as e: raise GypError( 'Xcode environment variables are cyclically dependent: ' + str(e.nodes))
78ee345ed67d61994245efff8b103d908aa1a7a4
16,905
def get_children_as_dict(parent): """For a given parent object, return all children as a dictionary with the childs tag as key""" child_list = getChildElementsListWithSpecificXpath(parent, "*") child_dict = {} for child in child_list: value = get_children_as_dict(child) if child.tag not in child_dict: child_dict[child.tag] = [value] if value != {} else [child.text] else: child_dict[child.tag].append(value if value != {} else child.text) return child_dict
054d3591a34536c79e0e5b3715dad6e414d29d46
16,906
import itertools import six def get_multi_tower_fn(num_gpus, variable_strategy, model_fn, device_setter_fn, lr_provider): """Returns a function that will build the resnet model. Args: num_gpus: number of GPUs to use (obviously) variable_strategy: "GPU" or "CPU" model_fn: The function providing the model as in loss, gradvars, preds = model_fn(is_training, features, labels, data_format, params) lr_provider: a function that takes a tf.train.get_global_step() and returns a learning rate value for that step device_setter_fn: A device setter """ def _multi_tower_model_fn(features, labels, mode, params): """A model function that distributes models amongst towers. Support single host, one or more GPU training. Parameter distribution can be either one of the following scheme. 1. CPU is the parameter server and manages gradient updates. 2. Parameters are distributed evenly across all GPUs, and the first GPU manages gradient updates. Args: features: a list of tensors, one for each tower labels: a list of tensors, one for each tower mode: ModeKeys.TRAIN or EVAL params: Hyperparameters suitable for tuning Returns: A EstimatorSpec object. """ is_training = (mode == tf.estimator.ModeKeys.TRAIN) momentum = params.momentum tower_features = features tower_labels = labels tower_losses = [] tower_gradvars = [] tower_preds = [] # channels first (NCHW) is normally optimal on GPU and channels last (NHWC) # on CPU. The exception is Intel MKL on CPU which is optimal with # channels_last. data_format = params.data_format if not data_format: if num_gpus == 0: data_format = 'channels_last' else: data_format = 'channels_first' if num_gpus == 0: num_devices = 1 device_type = 'cpu' else: num_devices = num_gpus device_type = 'gpu' for i in range(num_devices): worker_device = '/{}:{}'.format(device_type, i) device_setter = device_setter_fn( variable_strategy, worker_device, num_gpus) with tf.variable_scope('neural_network', reuse=bool(i != 0)): with tf.name_scope('tower_%d' % i) as name_scope: with tf.device(device_setter): loss, gradvars, preds = \ model_fn(is_training, tower_features[i], tower_labels[i], data_format, params) tower_losses.append(loss) tower_gradvars.append(gradvars) tower_preds.append(preds) if i == 0: # Only trigger batch_norm moving mean and variance update from # the 1st tower. Ideally, we should grab the updates from all # towers but these stats accumulate extremely fast so we can # ignore the other stats from the other towers without # significant detriment. update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS, name_scope) # Now compute global loss and gradients. gradvars = [] with tf.name_scope('gradient_averaging'): all_grads = {} for grad, var in itertools.chain(*tower_gradvars): if grad is not None: all_grads.setdefault(var, []).append(grad) for var, grads in six.iteritems(all_grads): # Average gradients on the same device as the variables # to which they apply. with tf.device(var.device): if len(grads) == 1: avg_grad = grads[0] else: avg_grad = tf.multiply(tf.add_n(grads), 1. / len(grads)) gradvars.append((avg_grad, var)) # Device that runs the ops to apply global gradient updates. consolidation_device = '/gpu:0' if variable_strategy == 'GPU' else '/cpu:0' with tf.device(consolidation_device): learning_rate = lr_provider(tf.train.get_global_step()) loss = tf.reduce_mean(tower_losses, name='loss') examples_sec_hook = reporting_utils.ExamplesPerSecondHook( params.train_batch_size, every_n_steps=10) tensors_to_log = {'learning_rate': learning_rate, 'loss': loss} logging_hook = tf.train.LoggingTensorHook( tensors=tensors_to_log, every_n_iter=100) train_hooks = [logging_hook, examples_sec_hook] optimizer = tf.train.MomentumOptimizer( learning_rate=learning_rate, momentum=momentum) if params.sync: raise ValueError("We don't support parallel processing at the moment.") # optimizer = tf.train.SyncReplicasOptimizer( # optimizer, replicas_to_aggregate=num_workers) # sync_replicas_hook = optimizer.make_session_run_hook(params.is_chief) # train_hooks.append(sync_replicas_hook) train_op = [ optimizer.apply_gradients( gradvars, global_step=tf.train.get_global_step()) ] # noinspection PyUnboundLocalVariable train_op.extend(update_ops) train_op = tf.group(*train_op) predictions = { 'classes': tf.concat([p['classes'] for p in tower_preds], axis=0), 'probabilities': tf.concat([p['probabilities'] for p in tower_preds], axis=0) } stacked_labels = tf.concat(labels, axis=0) metrics = { 'accuracy': tf.metrics.accuracy(stacked_labels, predictions['classes']) } # noinspection PyUnboundLocalVariable return tf.estimator.EstimatorSpec( mode=mode, predictions=predictions, loss=loss, train_op=train_op, training_hooks=train_hooks, eval_metric_ops=metrics) return _multi_tower_model_fn
72e149d25cc6c80a8ea4c5f35f9215cb71aa2a65
16,908
from typing import Union def extract_by_css( content: str, selector: str, *, first: bool = True ) -> Union[str, list]: """Extract values from HTML content using CSS selector. :param content: HTML content :param selector: CSS selector :param first: (optional) return first found element or all of them :return: value of the 1st found element or emtpy string if not found; or a list of all found elements """ extracted = ScrapySelector(text=content).css(selector).extract() if first: result = extracted[0] if len(extracted) > 0 else "" else: result = extracted return result
b03d76c893c0f23da332c9978bedc5c9c408e840
16,909
def generate_styles(): """ Create custom style rules """ # Set navbar so it's always at the top css_string = "#navbar-top{background-color: white; z-index: 100;}" # Set glossdef tip css_string += "a.tip{text-decoration:none; font-weight:bold; cursor:pointer; color:#2196F3;}" css_string += "a.tip:hover{position: relative;border-bottom: 1px dashed #2196F3;}" # Set glossdef span css_string += "a.tip span{display: none;background-color: white;font-weight: normal;border:1px solid gray;width: 250px;}" css_string += "a.tip:hover span{display: block;position: absolute;z-index: 100;padding: 5px 15px;}" return css_string
44b36321dedba352c6aa30a352c7cd65cca1f79a
16,910
from pathlib import Path def get_config_file() -> Path: """ Get default config file. """ return get_project_root()/'data/config/config.yaml'
92bc2af7e55b424bcf10355790f377c90a73cf9b
16,911
def kilometers_to_miles(dist_km): """Converts km distance to miles PARAMETERS ---------- dist_km : float Scalar distance in kilometers RETURNS ------- dist_mi : float Scalar distance in kilometers """ return dist_km / 1.609344
61707d483961e92dcd290c7b0cd8ba8f650c7b5b
16,912
def _objc_provider_framework_name(path): """Returns the name of the framework from an `objc` provider path. Args: path: A path that came from an `objc` provider. Returns: A string containing the name of the framework (e.g., `Foo` for `Foo.framework`). """ return path.rpartition("/")[2].partition(".")[0]
607c040a9a9c56a793473ffcba779fc7d7a64ed5
16,913
def sample_publisher(name='EA'): """Create and return a sample publisher""" return Publisher.objects.create(name=name)
da3d859897c9c3a6f98aa9a7950d77d1390a7527
16,915
def AddGlobalFile(gfile): """ Add a global file to the cmd string. @return string containing knob """ string = '' if gfile: string = ' --global_file ' + gfile return string
70c4bee610766bbea4faf4e463f88ee65f8804f5
16,916
def read_file(filename): """Opens the file with the given filename and creates the puzzle in it. Returns a pair consisting of the puzzle grid and the list of clues. Assumes that the first line gives the size. Afterwards, the rows and clues are given. The description of the rows and clues may interleave arbitrarily. """ size = 0 out_list = [] rows = [] clues = [] with open(filename, 'r') as file: for line in file: line = line.replace('\n', '') line = split_type(line) if line[0] == 'SIZE': size = int(line[1]) elif line[0] == 'ROW': rows.append(read_row(line[1])) else: clues.append(read_clue(line[1])) return (rows, clues)
332ea941aef3b484e2083bfcc734d4bc9fd7f62c
16,918
def login_user(request): """View to login a new user""" user = authenticate(username=request.POST['EMail'][:30], password=request.POST['Password']) if user is not None: if user.is_active: login(request, user) send_email("ROCK ON!!!", "User login - " + user.first_name + " " + user.last_name) # Redirect to a success page. return HttpResponse('success') else: # Return a 'disabled account' error message return HttpResponse('Account disabled') else: # Return an 'invalid login' error message. return HttpResponse('Invalid username or password')
ce3c126192df1aeab171438587cdc78a51ebda77
16,919
def gdf_convex_hull(gdf): """ Creates a convex hull around the total extent of a GeoDataFrame. Used to define a polygon for retrieving geometries within. When calculating densities for urban blocks we need to retrieve the full extent of e.g. buildings within the blocks, not crop them to an arbitrary bounding box. Parameters ---------- gdf : geodataframe currently accepts a projected gdf Returns ------- shapely polygon """ ### INSERT CHECK FOR CRS HERE? # project gdf back to geographic coordinates as footprints_from_polygon # requires it gdf_temp = ox.projection.project_gdf(gdf, to_latlong=True) # determine the boundary polygon to fetch buildings within # buffer originally 0.000225, buffer actually needs to go whole block away # to get complete highways therefor trying 0.001 boundary=gdf_temp.cascaded_union.convex_hull.buffer(0.001) # NOTE - maybe more efficient to generate boundary first then reproject second? return boundary
c636e67b77ed312a952e7f4af3b3535c983417e3
16,920
from typing import Dict from typing import Any def room_operating_mode(mode: str) -> Dict[str, Any]: """Payload to set operating mode for :class:`~pymultimatic.model.component.Room`. """ return {"operationMode": mode}
df5d1434d5994eca266a3fd06b6a742710bad0eb
16,921
from typing import Dict from typing import Any def _validate_options(data: Dict[str, Any]) -> Dict[str, Any]: """ Looks up the exporter_type from the data, selects the correct export options serializer based on the exporter_type and finally validates the data using that serializer. :param data: A dict of data to serialize using an exporter options serializer. :return: validated export options data """ option_serializers = table_exporter_registry.get_option_serializer_map() validated_exporter_type = validate_data(BaseExporterOptionsSerializer, data) serializer = option_serializers[validated_exporter_type["exporter_type"]] return validate_data(serializer, data)
8d380d3052c3e1cd4d859fa46829034ba1cf6860
16,922
def householder_name (name, rank): """Returns if the name conforms to Householder notation. >>> householder_name('A_1', 2) True >>> householder_name('foobar', 1) False """ base, _, _ = split_name(name) if base in ['0', '1']: return True elif rank == 0: if base in GREEK_ALPHA: return True elif rank == 1: if len(base) == 1 and base.isalpha() and base.islower(): return True elif rank == 2: if len(base) == 1 and base.isupper() and base.isalpha(): return True return False
63ff3395e065a79b4d5ee76fb3092efa0cb32b2b
16,923
def calculateDerivatives(x,t,id): """ dxdt, x0, id_, x_mean = calculateDerivatives(x,t,id) Missing data is assumed to be encoded as np.nan """ nm = ~np.isnan(t) & ~np.isnan(x) # not missing id_u = np.unique(id) id_ = [] dxdt = [] x0 = [] x_mean = [] for k in range(0,len(id_u)): rowz = id==id_u[k] rowz = rowz & nm t_k = t[rowz] x_k = x[rowz] if np.sum(rowz)>1: # Gradient via linear regression lm = np.polyfit(t_k,x_k,1) id_.append(id_u[k]) dxdt.append(lm[0]) x0.append(lm[1]) x_mean.append(np.nanmean(x_k)) print('k = {0} \n * n = {1}\n * dx/dt = {2} | x0 = {3} | mean(x) = {4}'.format(k,sum(rowz),dxdt[-1],x0[-1],x_mean[-1])) #plt.plot(t[rowz],x[rowz],'x') #plt.plot([min(t[rowz]),max(t[rowz])],[min(t[rowz]),max(t[rowz])]*dxdt[-1] + x0[-1],'-') #plt.show() # Remove any nan dxdt_isnan = np.isnan(dxdt) x0_isnan = np.isnan(x0) dxdt = np.delete(dxdt,np.where(dxdt_isnan | x0_isnan)[0]) x0 = np.delete(x0,np.where(dxdt_isnan | x0_isnan)[0]) id_u = np.delete(id_u,np.where(dxdt_isnan | x0_isnan)[0]) return dxdt, x0, id_, x_mean
86a6e2fc3e50e65ffd162728b79b50ab6ee09a81
16,924
import requests import time def SolveCaptcha(api_key, site_key, url): """ Uses the 2Captcha service to solve Captcha's for you. Captcha's are held in iframes; to solve the captcha, you need a part of the url of the iframe. The iframe is usually inside a div with id=gRecaptcha. The part of the url we need is the query parameter k, this is called the site_key: www.google.com/recaptcha/api2/anchor?ar=1&k=6LcleDIUAAAAANqkex-vX88sMHw8FXuJQ3A4JKK9&co=aHR0cHM6Ly93d3cuZGljZS5jb206NDQz&hl=en&v=oqtdXEs9TE9ZUAIhXNz5JBt_&size=normal&cb=rpcg9w84syix k=6LcleDIUAAAAANqkex-vX88sMHw8FXuJQ3A4JKK9 Here the site_key is 6LcleDIUAAAAANqkex-vX88sMHw8FXuJQ3A4JKK9 You also need to supply the url of the current page you're on. This function will return a string with the response key from captcha validating the test. This needs to be inserted into an input field with the id=g-recaptcha-response. :param api_key: The 2Captcha API key. :param site_key: The site_key extracted from the Captcha iframe url :param url: url of the site you're on :return: The response from captcha validating the test """ print("Solving Captcha...") print("Sending Request...") request_response = requests.get("https://2captcha.com/in.php?", params={ "googlekey": site_key, "method": "userrecaptcha", "pageurl": url, "key": api_key, "json": 1, "invisible": 0, }) request_response.raise_for_status() print("Waiting for Response...") time.sleep(30) answer_response_json = {'status': 0, 'request': 'CAPCHA_NOT_READY'} while answer_response_json['request'] == 'CAPCHA_NOT_READY': answer_response = requests.get("https://2captcha.com/res.php", params={ "key": api_key, "action": "get", "id": request_response.json()['request'], "json": 1 }) answer_response_json = answer_response.json() print(answer_response_json) time.sleep(5) if answer_response_json['status'] == 1: print("Solved!") return answer_response_json['request'] elif answer_response_json['request'] == 'ERROR_CAPTCHA_UNSOLVABLE': raise TimeoutError("ERROR_CAPTCHA_UNSOLVABLE") else: raise Exception(answer_response_json['request'])
e610a265d03be65bfd6321a266776a8102c227d0
16,925
def clean_crn(crn, duplicates = True, trivial = True, inter = None): """Takes a crn and removes trivial / duplicate reactions. """ new = [] seen = set() for [R, P] in crn: lR = sorted(interpret(R, inter)) if inter else sorted(R) lP = sorted(interpret(P, inter)) if inter else sorted(P) tR = tuple(lR) tP = tuple(lP) if trivial and tR == tP: continue if duplicates and (tR, tP) in seen: continue new.append([lR, lP]) seen.add((tR, tP)) return new
28f4e8eac7b6aea0505491ef55ce54d8d05f0069
16,927
def get_db_mapping(mesh_id): """Return mapping to another name space for a MeSH ID, if it exists. Parameters ---------- mesh_id : str The MeSH ID whose mappings is to be returned. Returns ------- tuple or None A tuple consisting of a DB namespace and ID for the mapping or None if not available. """ return mesh_to_db.get(mesh_id)
ae3f8de5c93ab0230a7c87edfa2d3996a9c8667b
16,928
def MC_dBESQ_gateway(N = 10**6, t = 0, n0 = 0, test = 'laguerre', method = 'laguerre', args = [], num_decimal = 4): """ Monte Carlo estimator of expected dBESQ using birth-death simulation, exact BESQ solution, dLaguerre simulation or PDE systems. :param N: int, Number of simulations :param T: positive float, Simulation horizon :param x0: initial value of X :param method: simulation method, currently support {'birth-death', 'exact-besq', 'laguerre', 'pde'} :param test: defines test function :args: arguments to define test function """ if method == 'birth-death': if test == 'laguerre': f = lambda n : eval_laguerre(n, 1) xt_array = bd_simulator(t, x0=n0, num_paths=N, method='bessel', num_threads=4) return np.mean(f(xt_array)).round(num_decimal) elif method == 'exact-besq': if test == 'laguerre': return np.mean(exp(-t+1)*jv(0, 2*np.sqrt(np.random.gamma(n0+1)))).round(num_decimal) elif method == 'laguerre': if test == 'laguerre': f = lambda n : eval_laguerre(n, 1) s = log(t / 2) def poisson_x0(): return np.random.poisson(np.random.gamma(n0+1)) xt_array = bd_simulator(s, x0=poisson_x0, num_paths=N, method='laguerre', num_threads=4) return np.mean(f(np.random.poisson(t/2 *np.random.gamma(xt_array+1)))).round(num_decimal)
6d09ca8ef2f772e194c7ae656ec4bf9e8a2b6948
16,929
def resolve_image(image): """ Resolve an informal image tag into a full Docker image tag. Any tag available on Docker Hub for Neo4j can be used, and if no 'neo4j:' prefix exists, this will be added automatically. The default edition is Community, unless a cluster is being created in which case Enterprise edition is selected instead. Explicit selection of Enterprise edition can be made by adding an '-enterprise' suffix to the image tag. If a 'file:' URI is passed in here instead of an image tag, the Docker image will be loaded from that file instead. Examples of valid tags: - 3.4.6 - neo4j:3.4.6 - latest - file:/home/me/image.tar """ if image.startswith("file:"): return load_image_from_file(image[5:]) elif ":" in image: return image else: return "neo4j:" + image
7d03b936f90c459a2dade179d9e38bd17c8c1af8
16,931
def _cifar_meanstd_normalize(image): """Mean + stddev whitening for CIFAR-10 used in ResNets. Args: image: Numpy array or TF Tensor, with values in [0, 255] Returns: image: Numpy array or TF Tensor, shifted and scaled by mean/stdev on CIFAR-10 dataset. """ # Channel-wise means and std devs calculated from the CIFAR-10 training set cifar_means = [125.3, 123.0, 113.9] cifar_devs = [63.0, 62.1, 66.7] rescaled_means = [x / 255. for x in cifar_means] rescaled_devs = [x / 255. for x in cifar_devs] image = (image - rescaled_means) / rescaled_devs return image
286ab555d30fd779c093e3b8801821f8370e1ca8
16,932
def get_value_counts_and_frequencies(elem: Variable, data: pd.DataFrame) -> Categories: """Call function to generate frequencies depending on the variable type Input: elem: dict data: pandas DataFrame Output: statistics: OrderedDict """ statistics: Categories = Categories() _scale = elem["scale"] statistics.update(get_categorical_frequencies(elem, data)) return statistics
7afe35dc605c1eb25158c8a948eeabcfb0027dc6
16,933
def determineLinearRegions(data, minLength=.1, minR2=.96, maxSlopeInterceptDiff=.75): """ Determine regions of a plot that are approximately linear by performing linear least-squares on a rolling window. Parameters ---------- data : array_like Data within which linear regions are to be identified minLength : int or float The minimum length of a linear segment, either as an integer number of indices, or as a float fraction of the overall data length. minR2 : float The minimum r-squared value for a region to be considered linear. maxSlopeInterceptDiff : float The float percentage difference allowed between slopes and intercepts of adjacent slices for them to be considered the same region. Returns ------- regionIndices : np.ndarray[N,2] The start and end indices for the N detected regions. slopes : np.ndarray[N] The slope of each region. intercepts : np.ndarray[N] The intercept of each region. """ if minLength < 1: minLinSteps = int(len(data)*minLength) else: minLinSteps = int(minLength) inLinearRegion = False linearRegions = [] slopes = [] intercepts = [] # Perform least squares on a rolling window i = 0 while i < len(data) - minLinSteps: xArr = np.arange(i, i+minLinSteps) slope, intercept, r2, p_value, std_err = linregress(xArr, data[i:i+minLinSteps]) if np.abs(r2) > minR2: if inLinearRegion: # Calculate how different new slope is from old one if np.abs((np.mean(slopes[-1]) - slope) / np.mean(slopes[-1])) < maxSlopeInterceptDiff and np.abs((np.mean(intercepts[-1]) - intercept) / np.mean(intercepts[-1])) < maxSlopeInterceptDiff: # This is still the same linear region, so we extend the bounds linearRegions[-1][1] = i+minLinSteps # And average in the slopes and intercepts slopes[-1] += [slope] intercepts[-1] += [intercept] else: # Otherwise, we have a new linear region, which we start # at the end of the other one i = linearRegions[-1][1] inLinearRegion = False continue else: # New linear region linearRegions.append([i, i+minLinSteps]) slopes.append([slope]) intercepts.append([intercept]) inLinearRegion = True else: inLinearRegion = False i += 1 slopes = np.array([np.mean(s) for s in slopes]) intercepts = np.array([np.mean(inter) for inter in intercepts]) return np.array(linearRegions), slopes, intercepts
318672634082ae87b18f087e8aee65efc1da3f59
16,934
def compute_dispersion(aperture, beam, dispersion_type, dispersion_start, mean_dispersion_delta, num_pixels, redshift, aperture_low, aperture_high, weight=1, offset=0, function_type=None, order=None, Pmin=None, Pmax=None, *coefficients): """ Compute a dispersion mapping from a IRAF multi-spec description. :param aperture: The aperture number. :param beam: The beam number. :param dispersion_type: An integer representing the dispersion type: 0: linear dispersion 1: log-linear dispersion 2: non-linear dispersion :param dispersion_start: The value of the dispersion at the first physical pixel. :param mean_dispersion_delta: The mean difference between dispersion pixels. :param num_pixels: The number of pixels. :param redshift: The redshift of the object. This is accounted for by adjusting the dispersion scale without rebinning: >> dispersion_adjusted = dispersion / (1 + redshift) :param aperture_low: The lower limit of the spatial axis used to compute the dispersion. :param aperture_high: The upper limit of the spatial axis used to compute the dispersion. :param weight: [optional] A multiplier to apply to all dispersion values. :param offset: [optional] A zero-point offset to be applied to all the dispersion values. :param function_type: [optional] An integer representing the function type to use when a non-linear dispersion mapping (i.e. `dispersion_type = 2`) has been specified: 1: Chebyshev polynomial 2: Legendre polynomial 3: Cubic spline 4: Linear spline 5: Pixel coordinate array 6: Sampled coordinate array :param order: [optional] The order of the Legendre or Chebyshev function supplied. :param Pmin: [optional] The minimum pixel value, or lower limit of the range of physical pixel coordinates. :param Pmax: [optional] The maximum pixel value, or upper limit of the range of physical pixel coordinates. :param coefficients: [optional] The `order` number of coefficients that define the Legendre or Chebyshev polynomial functions. :returns: An array containing the computed dispersion values. """ if dispersion_type in (0, 1): # Simple linear or logarithmic spacing dispersion = \ dispersion_start + np.arange(num_pixels) * mean_dispersion_delta if dispersion_start == 1: dispersion = 10.**dispersion elif dispersion_type == 2: # Non-linear mapping. if function_type is None: raise ValueError("function type required for non-linear mapping") elif function_type not in range(1, 7): raise ValueError( "function type {0} not recognised".format(function_type)) if function_type == 1: order = int(order) n = np.linspace(-1, 1, Pmax - Pmin + 1) temp = np.zeros((Pmax - Pmin + 1, order), dtype=float) temp[:, 0] = 1 temp[:, 1] = n for i in range(2, order): temp[:, i] = 2 * n * temp[:, i-1] - temp[:, i-2] for i in range(0, order): temp[:, i] *= coefficients[i] dispersion = temp.sum(axis=1) elif function_type == 2: # Legendre polynomial. if None in (order, Pmin, Pmax, coefficients): raise TypeError("order, Pmin, Pmax and coefficients required " "for a Chebyshev or Legendre polynomial") Pmean = (Pmax + Pmin)/2 Pptp = Pmax - Pmin x = (np.arange(num_pixels) + 1 - Pmean)/(Pptp/2) p0 = np.ones(num_pixels) p1 = mean_dispersion_delta dispersion = coefficients[0] * p0 + coefficients[1] * p1 for i in range(2, int(order)): if function_type == 1: # Chebyshev p2 = 2 * x * p1 - p0 else: # Legendre p2 = ((2*i - 1)*x*p1 - (i - 1)*p0) / i dispersion += p2 * coefficients[i] p0, p1 = (p1, p2) elif function_type == 3: # Cubic spline. if None in (order, Pmin, Pmax, coefficients): raise TypeError("order, Pmin, Pmax and coefficients required " "for a cubic spline mapping") s = (np.arange(num_pixels, dtype=float) + 1 - Pmin)/(Pmax - Pmin) \ * order j = s.astype(int).clip(0, order - 1) a, b = (j + 1 - s, s - j) x = np.array([ a**3, 1 + 3*a*(1 + a*b), 1 + 3*b*(1 + a*b), b**3]) dispersion = np.dot(np.array(coefficients), x.T) else: raise NotImplementedError("function type not implemented yet") else: raise ValueError( "dispersion type {0} not recognised".format(dispersion_type)) # Apply redshift correction. dispersion = weight * (dispersion + offset) / (1 + redshift) return dispersion
94fcb70652bad0f2fa26cf73981129f3ae949d8b
16,935
def normalize_pcp_area(pcp): """ Normalizes a pcp so that the sum of its content is 1, outputting a pcp with up to 3 decimal points. """ pcp = np.divide(pcp, np.sum(pcp)) new_format = [] for item in pcp: new_format.append(item) return np.array(new_format)
ea0feeda3f8515b538ae62b08aad09a16ddb2a73
16,936
def calc_line_flux(spec, ws, ivar, w0, w1, u_flux): """ calculate the flux and flux error of the line within the range w0 and w1 using trapz rule""" u_spec = spec.unit u_ws = ws.unit ivar = ivar.to(1./(u_spec**2)) spec_uless = np.array(spec) ws_uless = np.array(ws) ivar_uless = np.array(ivar) if ivar.unit != (1./(spec.unit**2)): raise Exception("[spector] spec and ivar units inconsistent") # select region to integrate select_ws = (ws_uless > w0) & (ws_uless < w1) ws_sel = ws_uless[select_ws] spec_sel = spec_uless[select_ws] ivar_sel = ivar_uless[select_ws] var_sel = 1./ivar_sel # integrate f, fvar = trapz_var(x=ws_sel, y=spec_sel, yvar=var_sel) f = (f*u_spec*u_ws).to(u_flux) ferr = (np.sqrt(fvar)*u_spec*u_ws).to(u_flux) return f, ferr
78206ce98025ead64e207bd69a8adf1a31178744
16,937
def boolean(entry, option_key="True/False", **kwargs): """ Simplest check in computer logic, right? This will take user input to flick the switch on or off Args: entry (str): A value such as True, On, Enabled, Disabled, False, 0, or 1. option_key (str): What kind of Boolean we are setting. What Option is this for? Returns: Boolean """ error = f"Must enter 0 (false) or 1 (true) for {option_key}. Also accepts True, False, On, Off, Yes, No, Enabled, and Disabled" if not isinstance(entry, str): raise ValueError(error) entry = entry.upper() if entry in ("1", "TRUE", "ON", "ENABLED", "ENABLE", "YES"): return True if entry in ("0", "FALSE", "OFF", "DISABLED", "DISABLE", "NO"): return False raise ValueError(error)
d62b36d08651d02719b5866b7798c36efd2a018f
16,938
import tqdm import copy def edge_preserving_filter(ref_map: np.ndarray, guided_image: np.ndarray, window_size: int, epsilon: float = 1e-10) -> np.ndarray: """ Perform edge - preserving filtering on the newly created reference map. :param ref_map: Classification reference map. :param guided_image: Guided image as a mean over all bands from hyperspectral data. :param window_size: Size of the convolving window. :param epsilon: Regularizer constant. :return: Improved classification map. """ print("Window size = {}".format(window_size)) col_indexes, row_indexes = \ range(0, ref_map.shape[ROW_AXIS], window_size), range(0, ref_map.shape[COLUMNS_AXIS], window_size) print("Calculating coefficients:") a_k_map, b_k_map = np.empty(shape=ref_map.shape), np.empty(shape=ref_map.shape) for i in tqdm(range(ref_map.shape[SPECTRAL_AXIS]), total=ref_map.shape[SPECTRAL_AXIS]): for row, col in product(col_indexes, row_indexes): p_k = copy(ref_map[row:row + window_size, col:col + window_size, i]) i_k = copy(guided_image[row:row + window_size, col:col + window_size]) sum_ = np.sum(i_k * p_k - np.mean(i_k) * np.mean(p_k)) / (window_size ** 2) a_k = sum_ / (np.var(i_k) + epsilon) b_k = np.mean(p_k) - a_k * np.mean(i_k) a_k_map[row:row + window_size, col:col + window_size, i] = a_k b_k_map[row:row + window_size, col:col + window_size, i] = b_k output_image = np.empty(shape=ref_map.shape) print("Calculating new \"improved\" classification map:") for i in tqdm(range(ref_map.shape[SPECTRAL_AXIS]), total=ref_map.shape[SPECTRAL_AXIS]): for row_index, col_index in product(range(ref_map.shape[ROW_AXIS]), range(ref_map.shape[COLUMNS_AXIS])): a_k_sum, b_k_sum = 0, 0 row_sub_indexes, col_sub_indexes = \ list(filter(lambda x: 0 <= x < ref_map.shape[ROW_AXIS], list(range(row_index - floor(window_size / 2), row_index + ceil(window_size / 2))))), \ list(filter(lambda x: 0 <= x < ref_map.shape[COLUMNS_AXIS], list(range(col_index - floor(window_size / 2), col_index + ceil(window_size / 2))))) for sub_row_idx, sub_col_idx in product(row_sub_indexes, col_sub_indexes): a_k_sum += a_k_map[sub_row_idx, sub_col_idx, i] b_k_sum += b_k_map[sub_row_idx, sub_col_idx, i] a_k_sum, b_k_sum = a_k_sum / (row_sub_indexes.__len__() * col_sub_indexes.__len__()), \ b_k_sum / (row_sub_indexes.__len__() * col_sub_indexes.__len__()) output_image[row_index, col_index, i] = a_k_sum * guided_image[row_index, col_index] + b_k_sum output_image = np.argmax(output_image, axis=-1) + BG_CLASS return output_image
1ca88240c26fd4eae67f869bc95a8b0ce885260b
16,939
from typing import List def preprocess_annotated_utterance( annotated_utterance: str, not_entity: str = NOT_ENTITY, ) -> List[str]: """Character Level Entity Label Producer Named-entity of each character is extracted by XML-like annotation. Also, they would be collected in a list conform to the order of characters in the sentence. Args: annotated_utterance (a string): An utterance with annotations looks like <a>blabla</a>. It is a special format for labeling named-entity in an utterance. not_entity (a string, default = "DONT_CARE"): A representation of words that we don't care about. Returns: entities (a list of string): A list of named-entity labels in character level. Examples: >>> from ynlu.sdk.evaluation.utils import preprocess_annotated_utterance >>> preprocess_annotated_utterance( annotated_utterance="<drink>Coffee</drink>, please.", not_entity="n", ) >>> ["drink", "drink", "drink", "drink", "drink", "drink", "n", "n", "n", "n", "n", "n", "n", "n", "n"] """ clean_utterance = remove_annotation(annotated_utterance) entity_word_pair = FINDALL_PROG.findall(annotated_utterance) entities = [not_entity] * len(clean_utterance) begin_index = 0 for entity, word in entity_word_pair: start_idx = clean_utterance.find(word, begin_index) if start_idx == -1: raise ValueError( "Word {} can not be found in {}".format(word, clean_utterance), ) entities[start_idx: start_idx + len(word)] = [entity] * len(word) begin_index = start_idx + len(word) return entities
b148f19017b97a0f4859abc129cdca50fd187c15
16,940
from typing import List from typing import Tuple import jinja2 def generate_constant_table( name: str, constants: List[Constant], *, data_type: str = "LREAL", guid: str = "", lookup_by_key: bool = False, **kwargs ) -> Tuple[str, str]: """ Generate a GVL constant table, with no interpolation. Parameters ---------- name : str The code block name. constants : list of Constant Dictionary of name to dataframe. data_type : str, optional The data type. Defaults to LREAL. guid : str, optional The function block globally unique identifier / GUID. table_prefix : str, optional The name with which to prefix all table arrays. lookup_input : str, optional The function block input variable name - the indexed parameter which you're looking up in the table. lookup_index : int, optional The per-row array index of the lookup value. Not fully supported just let; leave this at 0 for now. row_delta_variable : str, optional The auto-generated code delta variable. Not necessary to set, unless you really want to customize the output. **kwargs : Additional keyword arguments to pass to or override in the template. Returns ------- code : str The constant table source code. """ template_kw = dict( name=name, guid=guid or guid_from_string(name), data_type=data_type, constants=constants, ) template_kw.update(kwargs) template_fn = ( CONSTANT_GVL_LOOKUP_TEMPLATE if lookup_by_key else CONSTANT_GVL_TEMPLATE ) template = jinja2.Template(open(template_fn, "rt").read()) return template.render(template_kw)
54b491ac3673c68a0e7ef819389e393e921d841f
16,941
def filter_stop_words(text): """ Filter all stop words from a string to reduce headline size. :param text: text to filter :return: shortened headline """ words = filter(lambda w: not w in s, text.split()) line = "" l = 0 for w in words: if l < 20: line += w + " " l += 1 else: return line.strip() return line.strip()
d27b63018fa8f7b2d072e768c54ce4a056c58ff1
16,942
def importPublicKey(publickey): """ Cette fonction permet de exporter la clé public, elle prend en paramètre use clé public """ return RSA.importKey(publickey)
b744efc95fc154edcf4149134b7b307e75a0bb17
16,943
def _format_contact(resource, key): """ Return the contact field with the correct values. This is mainly stripping out the unecessary fields from the telecom part of the response. """ contacts = resource.pop(key) resource[key] = [] for contact in contacts: contact["telecom"] = _format_telecom( contact, "telecom", add_textphone_extension=False, whitelist=["id", "use", "period", "extension"] ) resource[key].append(contact) return resource[key]
57291dfdf2a724df2cd2342891aa96309648a9c1
16,944
from datetime import datetime def get_day_type(date): """ Returns if a date is a weeday or weekend :param date datetime: :return string: """ # check if date is a datetime.date if not isinstance(date, datetime.date): raise TypeError('date is not a datetime.date') day_type = "" if date.weekday() in (0, 1, 2, 3, 4): day_type = c.WEEKDAY else: day_type = c.WEEKEND return day_type
72d74746a7782e0f45b3b7d0292b4cbd4ad9f167
16,945
def case_insensitive_equals(name1: str, name2: str) -> bool: """ Convenience method to check whether two strings match, irrespective of their case and any surrounding whitespace. """ return name1.strip().lower() == name2.strip().lower()
28b7e5bfb5e69cf425e1e8983895f1ad42b59342
16,946
def get_access_token(cmd, subscription=None, resource=None, scopes=None, resource_type=None, tenant=None): """ get AAD token to access to a specified resource. Use 'az cloud show' command for other Azure resources """ if resource is None and resource_type: endpoints_attr_name = cloud_resource_type_mappings[resource_type] resource = getattr(cmd.cli_ctx.cloud.endpoints, endpoints_attr_name) profile = Profile(cli_ctx=cmd.cli_ctx) creds, subscription, tenant = profile.get_raw_token(subscription=subscription, resource=resource, scopes=scopes, tenant=tenant) result = { 'tokenType': creds[0], 'accessToken': creds[1], # 'expires_on': creds[2].get('expires_on', None), 'expiresOn': creds[2].get('expiresOn', None), 'tenant': tenant } if subscription: result['subscription'] = subscription return result
9a5190db41e4061698ead3846a6e53f42e64deed
16,947
def ensure_listable(obj): """Ensures obj is a list-like container type""" return obj if isinstance(obj, (list, tuple, set)) else [obj]
bdc5dbe7e06c1cc13afde28762043ac3fb65e5ac
16,948
def merge_dicts(*dicts: dict) -> dict: """Merge dictionaries into first one.""" merged_dict = dicts[0].copy() for dict_to_merge in dicts[1:]: for key, value in dict_to_merge.items(): if key not in merged_dict or value == merged_dict[key]: merged_dict[key] = value else: raise ValueError( f"Test {key} already has a mark we don't want to overwrite: \n" f"- existing: {merged_dict[key]} " f"- new value: {value}" ) merged_dict.update(dict_to_merge) return merged_dict
b32a9f4bed149144a3f75b43ed45c8de4351f3d1
16,949
from re import X def winner(board): """ Returns the winner of the game, if there is one. """ for moves in _winner_moves(): if all(board[i][j] is X for (i, j) in moves): return X elif all(board[i][j] is O for (i, j) in moves): return O return None
c6e3b35b2cf37ff3da4fe5cd306f7a6f78603f16
16,950
def specified_kwargs(draw, *keys_values_defaults: KVD): """Generates valid kwargs given expected defaults. When we can't realistically use hh.kwargs() and thus test whether xp infact defaults correctly, this strategy lets us remove generated arguments if they are of the default value anyway. """ kw = {} for keyword, value, default in keys_values_defaults: if value is not default or draw(booleans()): kw[keyword] = value return kw
bd3dfdcbb084a87b0c60d9221692f8fbd3e70333
16,951
def add_image(): """User uploads a new landmark image, and inserts into db.""" imageURL = request.form.get("imageURL") landmark_id = request.form.get("landmark_id") new_image = LandmarkImage(landmark_id=landmark_id, imageurl=imageURL) db.session.add(new_image) db.session.commit() return "Success"
dce5f9c21daef67b1a13b1d590fe027213c408e0
16,952
def merge(link1: Node, link2: Node) -> Node: """ Merge two linklists. Parameters ----------- link1: Node link2: Node Returns --------- out: Node Notes ------ """ link = Node(None) ptr = link while link1 and link2: if link1.val <= link2.val: ptr.next = link1 #Node(link1.val) ptr = ptr.next link1 = link1.next else: ptr.next = link2 #Node(link2.val) ptr = ptr.next link2 = link2.next while link1: ptr.next = Node(link1.val) ptr = ptr.next link1 = link1.next while link2: ptr.next = Node(link2.val) ptr = ptr.next link2 = link2.next return link.next
5d40acbd1ffb595a7f4605c3181ede19fb4adbb3
16,953
def l1_norm_optimization(a_i, b_i, c_i, w_i=None): """Solve l1-norm optimization problem.""" cvx.solvers.options['show_progress'] = not CVX_SUPRESS_PRINT # Non-Weighted optimization: if w_i is None: # Problem must be formulated as sum |P*x - q| P = cvx.matrix([[cvx.matrix(a_i)], [cvx.matrix(b_i)]]) q = cvx.matrix(c_i * -1) # Solve the l1-norm problem u = cvx.l1.l1(P, q) # Get results x0, y0 = u[0], u[1] # Weighted optimization: else: # Problem must be formulated as sum |P*x - q| P = cvx.matrix([[cvx.matrix(np.multiply(a_i, w_i))], [cvx.matrix(np.multiply(b_i, w_i))]]) q = cvx.matrix(np.multiply(w_i, c_i * -1)) # Solve the l1-norm problem u = cvx.l1.l1(P, q) # Get results x0, y0 = u[0], u[1] # return resulting point return (x0, y0)
0966516185c99b936a1fcc8b3d4c74e67587bc63
16,954
def set_order(market, order_type, amount, price, keys, stop_price=None): """ Create an order Arguments: market (str) : market name, order_type (str) : may be "limit", "market", "market_by_quote", "limit_stop_loss" amount (float) : positive if BUY order, and negative for SELL price (float) : price of 1 ask currency in a quoted currency. Necessary only when type is "limit" keys (dict): { "private" : "", "public" : "" } Optional arguments: stop_price (float) : price when activates "limit_stop_loss" type order. If None then the same as price Returns: (list) [ [0] (int) order ID, [1] (NoneType) not in use, [2] (NoneType) not in use, [3] (str) name of the market, [4] (int) time stamp of the creation in ms, [5] (int) time stamp of the update in ms, [6] (str) initial volume, [7] (str) order volume, [8] (str) order type ("LIMIT" or "MARKET"), [9] (NoneType) not in use, [10] (NoneType) not in use, [11] (NoneType) not in use, [12] (NoneType) not in use, [13] (str) order status, [14] (NoneType) not in use, [15] (NoneType) not in use, [16] (str) order price, [17] (str) average price of deals in order, [18] (NoneType) not is use, [19] (str) for stop price but None for other orders, [20] (NoneType) not in use, [21] (NoneType) not in use, [22] (NoneType) not in use, [23] (NoneType) not in use, [24] (NoneType) not in use, [25] (NoneType) not in use, [26] (NoneType) not in use, [27] (NoneType) not in use, [28] (NoneType) not in use, [29] (NoneType) not in use, [30] (NoneType) not in use, [31] (NoneType) not in use, ] """ body = { "symbol": market, "type": order_type, "amount": amount, "price": price, "stop_price": price, } return _request("auth/w/order/submit", body=body, keys=keys)
8f9823be8a39d404062114432604c8480aed20c6
16,955
import calendar def convert_ts(tt): """ tt: time.struct_time(tm_year=2012, tm_mon=10, tm_mday=23, tm_hour=0, tm_min=0, tm_sec=0, tm_wday=1, tm_yday=297, tm_isdst=-1) >>> tt = time.strptime("23.10.2012", "%d.%m.%Y") >>> convert_ts(tt) 1350950400 tt: time.struct_time(tm_year=1513, tm_mon=1, tm_mday=1, tm_hour=0, tm_min=0, tm_sec=0, tm_wday=2, tm_yday=1, tm_isdst=0) >>> tt = time.strptime("1.1.1513", "%d.%m.%Y") >>> convert_ts(tt) 0 >>> tt = 12 >>> convert_ts(tt) """ try: ts = calendar.timegm(tt) """ As from the github issue https://github.com/prashanthellina/rsslurp/issues/680, there are some cases where we might get timestamp in negative values, so consider 0 if the converted timestamp is negative value. """ if ts < 0: ts = 0 except TypeError: ts = None return ts
a3c2f5ae3d556290b6124d60fd4f84c1c2685195
16,956
def data_context_path_computation_context_path_comp_serviceuuid_optimization_constraint_name_post(uuid, tapi_common_name_and_value=None): # noqa: E501 """data_context_path_computation_context_path_comp_serviceuuid_optimization_constraint_name_post creates tapi.common.NameAndValue # noqa: E501 :param uuid: Id of path-comp-service :type uuid: str :param tapi_common_name_and_value: tapi.common.NameAndValue to be added to list :type tapi_common_name_and_value: dict | bytes :rtype: None """ if connexion.request.is_json: tapi_common_name_and_value = TapiCommonNameAndValue.from_dict(connexion.request.get_json()) # noqa: E501 return 'do some magic!'
fef62699a5a16385ffeeb47f252c1a3142fa9c96
16,957
import re import json def receive_github_hook(request): """a hook is sent on some set of events, specifically: push/deploy: indicates that the content for the repository changed pull_request: there is an update to a pull request. This function checks that (globally) the event is valid, and if so, runs a function depending on the event. """ # We do these checks again for sanity if request.method == "POST": if DISABLE_WEBHOOKS: return JsonResponseMessage(message="Webhooks disabled") if not re.search("GitHub-Hookshot", request.META["HTTP_USER_AGENT"]): return JsonResponseMessage(message="Agent not allowed") # Only allow application/json content type if request.META["CONTENT_TYPE"] != "application/json": return JsonResponseMessage(message="Incorrect content type") # Check that it's coming from the right place required_headers = ["HTTP_X_GITHUB_DELIVERY", "HTTP_X_GITHUB_EVENT"] if not check_headers(request, required_headers): return JsonResponseMessage(message="Agent not allowed") # Has to be a push, deployment, or pull_request event = request.META["HTTP_X_GITHUB_EVENT"] # Ping happens on setup if event == "ping": return JsonResponseMessage( message="Ping received, no action taken.", status=200 ) # But don't allow types beyond push, deploy, pr if event not in ["push", "deployment", "pull_request", "repository"]: return JsonResponseMessage(message="Incorrect delivery method.") # A signature is also required signature = request.META.get("HTTP_X_HUB_SIGNATURE") if not signature: return JsonResponseMessage(message="Missing credentials.") # Parse the body payload = load_body(request) repo = payload.get("repository") repo_name = repo["full_name"] # If it's a repository event, might be transferred or renamed if event == "repository": if payload.get("action") == "transferred": owner = payload["changes"]["owner"]["from"]["user"]["login"] repo_name = "%s/%s" % (owner, repo.get("name")) # Retrieve the article try: article = Article.objects.get(repo__full_name=repo_name) except Article.DoesNotExist: return JsonResponseMessage(message="Article not found", status=404) # Don't continue if the repository is archived (this shouldn't happen) if article.archived: return JsonResponseMessage(message="Repository is archived.") # Validate the payload with the collection secret status = validate_payload( secret=str(article.secret), payload=request.body, request_signature=signature, ) if not status: return JsonResponseMessage(message="Invalid credentials.") # Branch must be master branch = payload.get("ref", "refs/heads/master").replace("refs/heads/", "") # Update repo metadata that might change article.repo = repo article.save() # Submit job with django_rq to update article if event == "pull_request": against_branch = payload["pull_request"]["base"]["ref"] branch = payload["pull_request"]["head"]["ref"] if not branch.startswith("update/term") or against_branch != "master": return JsonResponseMessage(message="Ignoring branch.", status=200) # Requesting user is derived from branch user = branch.replace("update/term-", "").split("-")[0] res = django_rq.enqueue( update_pullrequest, article_uuid=article.uuid, user=user, action=payload["action"], url=payload["pull_request"]["html_url"], number=payload["number"], merged_at=payload["pull_request"]["merged_at"], ) elif event in ["push", "deployment"]: if branch != "master": return JsonResponseMessage(message="Ignoring branch.", status=200) article.commit = payload["after"] article.save() res = django_rq.enqueue(update_article, article_uuid=article.uuid) elif event == "repository": res = django_rq.enqueue( repository_change, article_uuid=article.uuid, action=payload["action"], repo=json.dumps(payload["repository"]), ) return JsonResponseMessage( message="Hook received and parsing.", status=200, status_message="Received" ) return JsonResponseMessage(message="Invalid request.")
874a71c3c9c002f3714ce0b4bb80586e8d67d7e8
16,958
import torch def dice(y, t, normalize=True, class_weight=None, ignore_label=-1, reduce='mean', eps=1e-08): """ Differentable Dice coefficient. See: https://arxiv.org/pdf/1606.04797.pdf Args: y (~torch.Tensor): Probability t (~torch.Tensor): Ground-truth label normalize (bool, optional): If True, calculate the dice coefficients for each class and take the average. Defaults to True. class_weight (list or ndarray, optional): Defaults to None. ignore_label (int, optional): Defaults to -1. reduce (str, optional): Defaults to 'mean'. eps (float, optional): Defaults to 1e-08. """ _check_type_forward(y, t) device = y.device dtype = y.dtype if class_weight is not None: class_weight = torch.as_tensor(class_weight, dtype=dtype, device=device) b, c = y.shape[:2] t_onehot = to_onehot(t, n_class=c) y = y.view(b, c, -1) t_onehot = t_onehot.view(b, c, -1) if ignore_label != -1: t_onehot = torch.cat( (t_onehot[:, :ignore_label], t_onehot[:, ignore_label + 1:]), dim=1) y = torch.cat( (y[:, :ignore_label], y[:, ignore_label + 1:]), dim=1) intersection = y * t_onehot cardinality = y + t_onehot if normalize: # NOTE: channel-wise intersection = torch.sum(intersection, dim=-1) cardinality = torch.sum(cardinality, dim=-1) ret = (2. * intersection / (cardinality + eps)) if class_weight is not None: ret *= class_weight ret = torch.mean(ret, dim=1) else: intersection = torch.sum(intersection, dim=(0, 2)) cardinality = torch.sum(cardinality, dim=(0, 2)) ret = (2. * intersection / (cardinality + eps)) if class_weight is not None: ret *= class_weight if reduce == 'mean': ret = torch.mean(ret) else: raise NotImplementedError('unsupported reduce type..') return ret
dd0b6fb75688ed0579a3bf9a513f73d0b785e57e
16,959
def read_start_params(path_or_database): """Load the start parameters DataFrame. Args: path_or_database (pathlib.Path, str or sqlalchemy.MetaData) Returns: params (pd.DataFrame): see :ref:`params`. """ database = load_database(**_process_path_or_database(path_or_database)) optimization_problem = read_last_rows( database=database, table_name="optimization_problem", n_rows=1, return_type="dict_of_lists", ) start_params = optimization_problem["params"][0] return start_params
31cc6d5f538a8616f9eda676e4bf8757f02f1cb3
16,960
def calcCovariance(modes): """Return covariance matrix calculated for given *modes*.""" if isinstance(modes, Mode): array = modes._getArray() return np.outer(array, array) * modes.getVariance() elif isinstance(modes, ModeSet): array = modes._getArray() return np.dot(array, np.dot(np.diag(modes.getVariances()), array.T)) elif isinstance(modes, NMA): return modes.getCovariance() else: raise TypeError('modes must be a Mode, NMA, or ModeSet instance')
7803e765dcf4ad40158040013691bd0f3d7775be
16,962
def sparse_tensor_value_to_texts(value): """ Given a :class:`tf.SparseTensor` ``value``, return an array of Python strings representing its values. This function has been modified from Mozilla DeepSpeech: https://github.com/mozilla/DeepSpeech/blob/master/util/text.py # This Source Code Form is subject to the terms of the Mozilla Public # License, v. 2.0. If a copy of the MPL was not distributed with this # file, You can obtain one at http://mozilla.org/MPL/2.0/. """ return sparse_tuple_to_texts((value.indices, value.values, value.dense_shape))
e1133532ecd88478d9a5a96773e413992e6566f8
16,963
def coding_problem_45(rand5): """ Using a function rand5() that returns an integer from 1 to 5 (inclusive) with uniform probability, implement a function rand7() that returns an integer from 1 to 7 (inclusive). Note: for n >= 24, rand5() ** n is a multiple of 7 and therefore rand5() ** 24 % 7 is an unbiased implementation of rand7(). To avoid having to rely on big integer libraries, we use the property (a + b) % n == ((a % n) + b) % n which is easy to prove by decomposing a into a // n * n + a % n. >>> from random import randint >>> rand5 = lambda: randint(0, 4) >>> rand7 = coding_problem_45(rand5) >>> 0 <= rand7 < 7 True """ rand7 = 0 for _ in range(24): rand7 = (rand7 * 5 + rand5()) % 7 return rand7
8e26c6f95d953e0a8b3d8a33232c886742a535ce
16,964
def handle_rss_api(output, kwargs): """ Special handler for API-call 'set_config' [rss] """ name = kwargs.get('keyword') if not name: name = kwargs.get('name') if not name: return None feed = config.get_config('rss', name) if feed: feed.set_dict(kwargs) else: config.ConfigRSS(name, kwargs) action = kwargs.get('filter_action') if action in ('add', 'update'): # Use the general function, but catch the redirect-raise try: kwargs['feed'] = name sabnzbd.interface.ConfigRss('/').internal_upd_rss_filter(**kwargs) except cherrypy.HTTPRedirect: pass elif action == 'delete': # Use the general function, but catch the redirect-raise try: kwargs['feed'] = name sabnzbd.interface.ConfigRss('/').internal_del_rss_filter(**kwargs) except cherrypy.HTTPRedirect: pass return name
73bd10dc2a40cc1648423372e8fcae065e83dbce
16,965
def progress(job_id, user: User = Depends(auth_user), db: Session = Depends(get_db)): """ Get a user's progress on a specific job. """ job = _job(db, job_id) check_job_user(db, user, job) progress = rules.get_progress_report(db, job, user) return progress
fc581297463bc46ce461811d7f675cc99ee63b65
16,966
import json def getRoom(borough): """Return a JSON dataset for property type of airbnb listing""" prpt = db.session.query(data.Borough, data.Room_Type, data.Price, data.Review_Rating, data.review_scores_cleanliness, data.review_scores_value, data.host_response_rate).statement df = pd.read_sql_query(prpt, db.session.bind) df = df[df['Borough'] == borough] df["host_response_rate"] = df["host_response_rate"].str.replace("%", "").astype(float) df["review_scores_cleanliness"] = df["review_scores_cleanliness"].str.replace(".", "").astype(float) df["review_scores_value"] = df["review_scores_value"].str.replace(".", "").astype(float) df1 = df.groupby('Room_Type').count().reset_index() df2 = df.groupby('Room_Type').mean().reset_index().round(2) df = pd.merge(df1, df2, on='Room_Type') df = df[['Room_Type', 'Borough', 'Price_y', 'Review_Rating_y', 'review_scores_cleanliness_y', 'review_scores_value_y', 'host_response_rate_y']].rename( columns={'Price_y': 'Avg_price', 'Review_Rating_y':'RRate', 'review_scores_cleanliness_y':'RClean', 'review_scores_value_y':'RValue', 'host_response_rate_y':'HostResponseR' }) df['percent'] = round((df.Borough/df.Borough.sum())*100, 2) d = df.to_dict('records') return json.dumps(d)
2ae05f1f5a501b0a8e25dfc7b212cb0aeecbc0f1
16,967
def get_info(name_file, what='V', parent_folder='txt_files'): """Get data from txt file and convert to data list :param name_file : name of the file, without txt extension :param what : V = vertices, E = edges, R = pose :param parent_folder""" file_path = get_file_path(name_file, parent_folder) if what == 'V' or what == 'R': my_type = 'float' else: my_type = 'int' data_dict = read_data_txt(file_path, my_type) data = as_list(data_dict) return data
f06608340622c7173dffabb6c08f178b9e887e73
16,968
def receive_message( sock, operation, request_id, max_message_size=MAX_MESSAGE_SIZE): """Receive a raw BSON message or raise socket.error.""" header = _receive_data_on_socket(sock, 16) length = _UNPACK_INT(header[:4])[0] actual_op = _UNPACK_INT(header[12:])[0] if operation != actual_op: raise ProtocolError("Got opcode %r but expected " "%r" % (actual_op, operation)) # No request_id for exhaust cursor "getMore". if request_id is not None: response_id = _UNPACK_INT(header[8:12])[0] if request_id != response_id: raise ProtocolError("Got response id %r but expected " "%r" % (response_id, request_id)) if length <= 16: raise ProtocolError("Message length (%r) not longer than standard " "message header size (16)" % (length,)) if length > max_message_size: raise ProtocolError("Message length (%r) is larger than server max " "message size (%r)" % (length, max_message_size)) return _receive_data_on_socket(sock, length - 16)
0c1cd762a2a0889d2894993e0f5362e0acdaee36
16,969
def cycle_interval(starting_value, num_frames, min_val, max_val): """Cycles through the state space in a single cycle.""" starting_in_01 = (starting_value - min_val) / (max_val - min_val) grid = np.linspace(starting_in_01, starting_in_01 + 2., num=num_frames, endpoint=False) grid -= np.maximum(0, 2 * grid - 2) grid += np.maximum(0, -2 * grid) return grid * (max_val - min_val) + min_val
34fa0d60b9d5d99eee9666d70c77e4375d37ace8
16,970
def commit_ref_info(repos, skip_invalid=False): """ Returns a dict of information about what commit should be tagged in each repo. If the information in the passed-in dictionary is invalid in any way, this function will throw an error unless `skip_invalid` is set to True, in which case the invalid information will simply be logged and ignored. Arguments: repos (dict): A dict mapping Repository objects to openedx.yaml data. skip_invalid (bool): if true, log invalid data in `repos`, but keep going. Returns: A dict mapping Repositories to a dict about the ref to tag, like this:: { Repository(<full_repo_name>): { "ref": "name of tag or branch" "ref_type": "tag", # or "branch" "sha": "1234566789abcdef", "message": "The commit message" "author": { "name": "author's name", "email": "author's email" } "committer": { "name": "committer's name", "email": "committer's email", } }, Repository(<next_repo_name>): {...}, ... } """ ref_info = {} for repo, repo_data in nice_tqdm(repos.items(), desc='Find commits'): # are we specifying a ref? ref = repo_data["openedx-release"].get("ref") if ref: try: ref_info[repo] = get_latest_commit_for_ref(repo, ref) except (GitHubError, ValueError): if skip_invalid: msg = "Invalid ref {ref} in repo {repo}".format( ref=ref, repo=repo.full_name ) log.error(msg) continue else: raise return ref_info
86425248cd4a90aa75d03c2965d63aba3a38e81d
16,971
def function(x, axis=0, fast=False): """ Estimate the autocorrelation function of a time series using the FFT. :param x: The time series. If multidimensional, set the time axis using the ``axis`` keyword argument and the function will be computed for every other axis. :param axis: (optional) The time axis of ``x``. Assumed to be the first axis if not specified. :param fast: (optional) If ``True``, only use the largest ``2^n`` entries for efficiency. (default: False) """ x = np.atleast_1d(x) m = [slice(None), ] * len(x.shape) # For computational efficiency, crop the chain to the largest power of # two if requested. if fast: n = int(2**np.floor(np.log2(x.shape[axis]))) m[axis] = slice(0, n) x = x else: n = x.shape[axis] # Compute the FFT and then (from that) the auto-correlation function. f = np.fft.fft(x-np.mean(x, axis=axis), n=2*n, axis=axis) m[axis] = slice(0, n) acf = np.fft.ifft(f * np.conjugate(f), axis=axis)[m].real m[axis] = 0 return acf / acf[m]
cb71d63ee35adde701eba91e068b0f6898005f04
16,972
def find_binaries(*args, **kwargs): """Given images data, return a list of dicts containing details of all binaries in the image which can be identified with image_id or image_tag. One of image_id or image_tag must be specified. :params: See `find_image` :exception: exceptions.ImageNotFound :exception: exceptions.ParameterError :exception: exceptions.NoPackages :return: A list of dicts: As per the Twistlock API, each dict takes the form: { name: 'binary name', path: 'full path to the binary including the name' md5: 'md5 hash for the binary' cveCount: 'Number of CVEs reported for the binary' } """ image = find_image(*args, **kwargs) return image['data']['binaries']
0bc4345279f11cc751f4aee62a7773f0fa21643a
16,973
import copy def solve_version(d): """ solve version difference, argument map d is deepcopied. """ # make copy d = copy.deepcopy(d) v = d.get('version', 0) # functions in _update for f in _update_chain[v:]: d = f(d) return d
ce6a412cc2350a3f6c97c7e1f649a537c35f6722
16,974