content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
import hmac def get_url(request): """ Use devId and key and some hashing thing to get the url, needs /v3/api as input """ devId = DEV_ID key = KEY request = request + ('&' if ('?' in request) else '?') raw = request + f"devid={devId}" raw = raw.encode() hashed = hmac.new(key, raw, sha1) signature = hashed.hexdigest() raw = raw.decode() return 'http://timetableapi.ptv.vic.gov.au'+raw+f'&signature={signature}'
57e6d8dc6c0f282b227559aed5cd9c1f96f7d5b7
16,635
def _is_mapped_class(cls): """Return True if the given object is a mapped class, :class:`.Mapper`, or :class:`.AliasedClass`.""" if isinstance(cls, (AliasedClass, mapperlib.Mapper)): return True if isinstance(cls, expression.ClauseElement): return False if isinstance(cls, type): manager = attributes.manager_of_class(cls) return manager and _INSTRUMENTOR in manager.info return False
7f09c1f4908bb62977de07ad4366fb8e6cc84cc2
16,636
from bs4 import BeautifulSoup def get_all_links_in_catalog(html) -> list: """Получает список всех ссылок на пункты из каталога.""" _soup = BeautifulSoup(html, 'html.parser') _items = _soup.find('div', class_='catalog_section_list').find_all('li', class_='name') links_list = [] for item in _items: links_list.append(item.find('a', class_='dark_link').get('href')) return links_list
53e4fd9aaad8755ddd19328ae5d5f972cfbcdc3c
16,637
def digitize(n): """Convert a number to a reversed array of digits.""" l = list(str(n)) n_l = [] for d in l: n_l.append(int(d)) n_l.reverse() return n_l
e4355b68da41e4be87ce18b53afb2a406eb120c7
16,638
def _available_algorithms(): """Verify which algorithms are supported on the current machine. This is done by verifying that the required modules and solvers are available. """ available = [] for algorithm in ALGORITHM_NAMES: if "gurobi" in algorithm and not abcrules_gurobi.gb: continue if algorithm == "gmpy2-fractions" and not mpq: continue available.append(algorithm) return available
cd9310cb78d780154c56763cdf14573bc67ae7b5
16,640
import re def symbols(*names, **kwargs): """ Emulates the behaviour of sympy.symbols. """ shape=kwargs.pop('shape', ()) s = names[0] if not isinstance(s, list): s = re.split('\s|,', s) res = [] for t in s: # skip empty strings if not t: continue sym = Symbol(t, shape, **kwargs) res.append(sym) res = tuple(res) if len(res) == 0: # var('') res = None elif len(res) == 1: # var('x') res = res[0] # otherwise var('a b ...') return res
bcaf1827ccee67098e619c3ec825f3b1aeb3f798
16,641
def create_intent(intent, project_id, language_code): """Create intent in dialogflow :param intent: dict, intent for api :param project_id: str, secret project id :param language_code: event with update tg object :return: """ client = dialogflow.IntentsClient() parent = client.project_agent_path(project_id) response = client.create_intent(parent, intent, language_code=language_code) return response
59a150d4456d26f4cd8fa93a2cbfc131278d3ba0
16,642
from typing import List def construct_object_types(list_of_oids: List[str]) -> List[hlapi.ObjectType]: """Builds and returns a list of special 'ObjectType' from pysnmp""" object_types: List[hlapi.ObjectType] = [] for oid in list_of_oids: object_types.append(hlapi.ObjectType(hlapi.ObjectIdentity(oid))) return object_types
24eeb7dbd0de49e702acc574c9264d3e7bcdf904
16,643
def base_sampler(models, nevents, floating_params=None): """ Creates samplers from models. Args: models (list(model)): models to sample nevents (list(int)): number of in each sampler floating_params (list(parameter), optionnal): floating parameter in the samplers Returns: Samplers """ assert all(is_valid_pdf(m) for m in models) assert len(nevents) == len(models) if floating_params: floating_params_names = [f.name for f in floating_params] samplers = [] fixed_params = [] for m in models: def to_fix(p): if floating_params: return p.name in floating_params_names else: return False fixed = [p for p in m.get_params() if not to_fix(p)] fixed_params.append(fixed) for i, (m, p) in enumerate(zip(models, fixed_params)): sampler = m.create_sampler(n=nevents[i], fixed_params=p) samplers.append(sampler) return samplers
af575d4a175239c2af4fe0e61658005a12225e5a
16,644
def menu_maker(): """Top Menu Maker In each html page """ result = "<center>" for i,item in enumerate(page_name): if item == "Home": targets_blank = "" else: targets_blank = 'target="blank"' # Hyper Link To Each Page In HTML File result += '\t<a href="' \ + actual_name[i] + '.html"' + targets_blank + '>' + name_standard(item) + "</a>\n" result += "&nbsp\n" result += "</center>" result = result + "\t\t" + break_line # Add Break line to End Of The Menu return result
6f9b38926d3eab31d1e5d32a49564f083df4f3cc
16,645
import http def project_generate_private_link_post(auth, node, **kwargs): """ creata a new private link object and add it to the node and its selected children""" node_ids = request.json.get('node_ids', []) name = request.json.get('name', '') anonymous = request.json.get('anonymous', False) if node._id not in node_ids: node_ids.insert(0, node._id) nodes = [AbstractNode.load(node_id) for node_id in node_ids] try: new_link = new_private_link( name=name, user=auth.user, nodes=nodes, anonymous=anonymous ) except ValidationError as e: raise HTTPError( http.BAD_REQUEST, data=dict(message_long=e.message) ) return new_link
bd006f64d02bf36509297b1a0778e3488093c682
16,646
def access_token_old_api(authen_code): """ 通过此接口获取登录用户身份(疑似是一个旧接口) :param authen_code: :return: """ # 先获取app_access_token app_access_token = _get_app_access_token() if not app_access_token: return None access_token_old_url = cfg.access_token_old_url headers = {"Content-Type": "application/json"} payload = { "app_id": cfg.app_id, "app_secret": cfg.app_secret, "app_access_token": app_access_token, "grant_type": "authorization_code", "code": authen_code, } result = post_http_request(access_token_old_url, headers=headers, payload=payload) return result
efb34044bc07aee817050ef39e8d8a72da7611fd
16,647
def denoising(image): """improve image quality by remove unimportant details""" denoised = cv2.fastNlMeansDenoisingColored(image, None, 10, 10, 7, 21) return denoised
b5407c1fcd84b49afe5c17e6a221d9da423444f6
16,648
def teams(): """Redirect the to the Slack team authentication url.""" return redirect(auth.get_redirect('team'))
7ea84c5319c7f64a24c7ae42bd0b7467934d8cba
16,649
def _clarans(metric): """Clustering Large Applications based on RANdomized Search.""" # choose which implementation to use, hybrid or cpu get_clusters = _get_clusters(metric, method='cpu') @jit(nopython=True) def clarans(data, k, numlocal, maxneighbor): """Clustering Large Applications based on RANdomized Search. Parameters ---------- data : (n,) ndarray Data set. k : int Number of desired clusters. metric : function Function to compute pairwise distances. numlocal : int Number of times to repeat the search for other local minima. maxneighbor : int Maximum number of the neighbors to look at. Returns ------- clusterid : (n,) ndarray An array containing the number of the cluster to which each object was assigned, where the cluster number is defined as the object number of the objects representing the cluster centroid. error : float The within-cluster sum of distances of the clustering solution. Algorithm --------- 1. Choose an arbitrary node from the data set. 2. Consider a random neighbor of the current node. 3. If the random neighbor has a lower error than the current node, set it as the current node. 4. Repeat step 2-3 ``maxneighbor`` times. 5. Repeat step 1-4 ``numlocal`` times and retain the best clustering. Notes ----- The best way to explain CLARANS is via a graph abstraction. In fact, the process of finding k medoids can be viewed abstractly as searching through a certain graph. In this graph, a set of k objects is called node. Two nodes are neighbors if their sets differ by only one object. Since a node represent a collection of k objects, they can be seen as medoids and hence induce a clustering. Each node can be assigned an error that is defined to be the total dissimilarity (i.e. sum of distances) between every object and the medoid of its cluster. References ---------- .. R.T. Ng, Jiawei Han, "CLARANS: a method for clustering objects for spatial data mining" """ n = data.shape[0] choices = np.arange(n) best_medoids = np.empty(k, dtype=np.uint32) best_error = np.inf min_dist = 0 for _ in range(numlocal): # step 1 # choose an arbitrary node as starting medoids and compute its # error medoids = np.empty(k, dtype=np.uint32) for i in range(k): np.random.shuffle(choices) medoids[i] = choices[-1] choices = choices[:-1] error = 0 for i in range(n): min_dist = np.inf for med in medoids: dist = metric(data[i], data[med]) if dist < min_dist: min_dist = dist error += min_dist for _ in range(maxneighbor): # step 2 # find a random neighbor, i.e. change only one of the medoids # with a random object (that is not already a medoid) of the # whole data set random_neigh = np.copy(medoids) np.random.shuffle(choices) non_med = choices[-1] non_med_i = np.random.choice(k) random_neigh[non_med_i] = non_med # step 3 # compute the error of the random neighbor and compare it with # the current node (i.e. current medoids) new_error = 0 for i in range(n): min_dist = np.inf for med in random_neigh: dist = metric(data[i], data[med]) if dist < min_dist: min_dist = dist new_error += min_dist # choose the induced clustering with lower error if new_error < error: error = new_error choices[-1] = medoids[non_med_i] medoids = random_neigh # retain the clustering solution with the lowest error if error < best_error: best_error = error best_medoids = medoids return get_clusters(data, best_medoids) return clarans
a56321ba094b78eaa6df18917b7c3ad32a3a6bec
16,650
def create_outlier_mask(df, target_var, number_of_stds, grouping_cols=None): """ Create a row-wise mask to filter-out outliers based on target_var. Optionally allows you to filter outliers by group for hier. data. """ def flag_outliers_within_groups(df, target_var, grouping_cols, number_of_stds): groups = df.groupby(grouping_cols) means = groups[target_var].transform('mean') stds = groups[target_var].transform('std') upper_bound = means + stds * number_of_stds lower_bound = means - stds * number_of_stds return df[target_var].between(lower_bound, upper_bound) def flag_outliers_without_groups(df, target_var, number_of_stds): mean_val = df[target_var].mean() std_val = df[target_var].std() upper_bound = (mean_val + (std_val * number_of_stds)) lower_bound = (mean_val - (std_val * number_of_stds)) return (df[target_var] > lower_bound) & (df[target_var] < upper_bound) if grouping_cols: mask = flag_outliers_within_groups( df=df, target_var=target_var, number_of_stds=number_of_stds, grouping_cols=grouping_cols ) else: mask = flag_outliers_without_groups( df=df, target_var=target_var, number_of_stds=number_of_stds ) return mask
95a7e3e5a0cb8dcc4aa3da1af7e9cb4111cf6b81
16,651
import contextlib def closing_all(*args): """ Return a context manager closing the passed arguments. """ return contextlib.nested(*[contextlib.closing(f) for f in args])
075056e1a92c63d5c1db0cda68d7cb447868653b
16,652
def _non_max_suppression(objects, threshold): """Returns a list of indexes of objects passing the NMS. Args: objects: result candidates. threshold: the threshold of overlapping IoU to merge the boxes. Returns: A list of indexes containings the objects that pass the NMS. """ if len(objects) == 1: return [0] if len(objects) == 0: return [] boxes = np.array([o.bbox for o in objects]) xmins = boxes[:, 0] ymins = boxes[:, 1] xmaxs = boxes[:, 2] ymaxs = boxes[:, 3] areas = (xmaxs - xmins) * (ymaxs - ymins) scores = [o.score for o in objects] idxs = np.argsort(scores) selected_idxs = [] while idxs.size != 0: selected_idx = idxs[-1] selected_idxs.append(selected_idx) overlapped_xmins = np.maximum(xmins[selected_idx], xmins[idxs[:-1]]) overlapped_ymins = np.maximum(ymins[selected_idx], ymins[idxs[:-1]]) overlapped_xmaxs = np.minimum(xmaxs[selected_idx], xmaxs[idxs[:-1]]) overlapped_ymaxs = np.minimum(ymaxs[selected_idx], ymaxs[idxs[:-1]]) w = np.maximum(0, overlapped_xmaxs - overlapped_xmins) h = np.maximum(0, overlapped_ymaxs - overlapped_ymins) intersections = w * h unions = areas[idxs[:-1]] + areas[selected_idx] - intersections ious = intersections / unions idxs = np.delete( idxs, np.concatenate(([len(idxs) - 1], np.where(ious > threshold)[0])) ) return selected_idxs
9952386f5a6c6f11b1fdbd37eaca6c273ea4b506
16,653
def binary_search(x,l): """ Esse algorítmo é o algorítmo de busca binária, mas ele retorna qual o índice o qual devo colocar o elemento para que a lista permaneça ordenada. Input: elemento x e lista l Output: Índice em que o elemento deve ser inserido para manter a ordenação da lista """ lo = 0 # Cota inferior inicial (Lower bound) up = len(l) # Cota superior inicial (Upper bound) while lo < up: mid = int((lo+up)/2) #Ponto Médio if l[mid] < x: lo = mid + 1 else: up = mid return up
457c403ffeb2eb5529c2552bdbe8d7beee9199f2
16,654
def check_abrp(config): """Check for geocodio options and return""" try: abrpOptions = config.abrp.as_dict() except: return {} options = {} abrp_keys = ["enable", "api_key", "token"] for key in abrp_keys: if key not in abrpOptions.keys(): _LOGGER.error(f"Missing required '{key}' option in 'abrp' settings") return {} options[key] = abrpOptions.get(key, None) return options
fa9c0f1643ae2793cf66498dbb8f27a033edeafd
16,655
import click def connect(config, job, attach): """ Connect to job. JOB may be specified by name or ID, but ID is preferred. """ jobs = config.trainml.run(config.trainml.client.jobs.list()) found = search_by_id_name(job, jobs) if None is found: raise click.UsageError("Cannot find specified job.") if found.type != "notebook": try: if attach: config.trainml.run(found.connect(), found.attach()) return config.trainml.run(found.disconnect()) else: return config.trainml.run(found.connect()) except: try: config.trainml.run(found.disconnect()) except: pass raise else: if found.status == "waiting for data/model download": try: if attach: config.trainml.run(found.connect(), found.attach()) config.trainml.run(found.disconnect()) click.echo("Launching...", file=config.stdout) browse(found.notebook_url) else: return config.trainml.run(found.connect()) except: try: config.trainml.run(found.disconnect()) except: pass raise else: config.trainml.run(found.wait_for("running")) click.echo("Launching...", file=config.stdout) browse(found.notebook_url)
8a572a92eb9a0cd31af05218dec3ab369109cb31
16,656
def convert_magicc7_to_openscm_variables(variables, inverse=False): """ Convert MAGICC7 variables to OpenSCM variables Parameters ---------- variables : list_like, str Variables to convert inverse : bool If True, convert the other way i.e. convert OpenSCM variables to MAGICC7 variables Returns ------- ``type(variables)`` Set of converted variables """ if inverse: return apply_string_substitutions( variables, OPENSCM_TO_MAGICC7_VARIABLES_MAPPING ) else: return apply_string_substitutions( variables, MAGICC7_TO_OPENSCM_VARIABLES_MAPPING )
952bca9f07f8e032b33328c1b03470fd3150eabd
16,657
import asyncio import aiohttp async def fetch_disclosure(start, end): """期间沪深二市所有类型的公司公告 Args: start (date like): 开始日期 end (date like): 结束日期 Returns: list: list of dict """ start, end = pd.Timestamp(start), pd.Timestamp(end) start_str = start.strftime(r'%Y-%m-%d') end_str = end.strftime(r'%Y-%m-%d') sem = asyncio.BoundedSemaphore(MAX_WORKER) tasks = [] async with aiohttp.ClientSession() as session: for column in COLUMNS.keys(): tasks.append( _fetch_disclosure(sem, session, column, start_str, end_str)) data = await asyncio.gather(*tasks) res = [] for d in data: res.extend(parse_data(d)) return res
efb6b7706ed73c09c65e5d05567b3fdf38aee887
16,658
from re import T def get_loader( image_dir, attr_path, selected_attrs, crop_size=178, image_size=128, batch_size=16, dataset="CelebA", mode="train", affectnet_emo_descr="emotiw", num_workers=1, ): """Build and return a data loader.""" transform = [] if mode == "train": transform.append(T.RandomHorizontalFlip()) transform.append(T.CenterCrop(crop_size)) transform.append(T.Resize(image_size)) transform.append(T.ToTensor()) transform.append(T.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))) transform = T.Compose(transform) if dataset == "CelebA": dataset = CelebA(image_dir, attr_path, selected_attrs, transform, mode) elif dataset == "RaFD": dataset = ImageFolder(image_dir, transform) elif dataset == "AffectNet": dataset = AffectNet(image_dir, affectnet_emo_descr, transform, mode) data_loader = data.DataLoader( dataset=dataset, batch_size=batch_size, shuffle=(mode == "train"), num_workers=num_workers, ) return data_loader
082d1b81b73df7c817fad024911fe431f8cf4a74
16,659
import json def remove_samples(request, product_id): """Removes passed samples from product with passed id. """ parent_product = Product.objects.get(pk=product_id) for temp_id in request.POST.keys(): if temp_id.startswith("product") is False: continue temp_id = temp_id.split("-")[1] remove_sample(product=parent_product, sample_id=temp_id) # This isn't necessary but it cleans the cache. See lfs.cache listeners # for more parent_product.save() html = [["#samples-inline", manage_samples_inline(request, product_id, as_string=True)]] result = json.dumps({ "html": html, "message": _(u"Samples have been removed.") }, cls=LazyEncoder) return HttpResponse(result, content_type='application/json')
e9d0f112f17af463cfe7ddba2bd606d78fb50b3f
16,660
def csu_to_field(field, radar, units='unitless', long_name='Hydrometeor ID', standard_name='Hydrometeor ID', dz_field='ZC'): """ Adds a newly created field to the Py-ART radar object. If reflectivity is a masked array, make the new field masked the same as reflectivity. """ fill_value = -32768 masked_field = np.ma.asanyarray(field) masked_field.mask = masked_field == fill_value if hasattr(radar.fields[dz_field]['data'], 'mask'): setattr(masked_field, 'mask', np.logical_or(masked_field.mask, radar.fields[dz_field]['data'].mask)) fill_value = radar.fields[dz_field]['_FillValue'] field_dict = {'data': masked_field, 'units': units, 'long_name': long_name, 'standard_name': standard_name, '_FillValue': fill_value} return field_dict
c8052f51bbed2c16c744201b862fa43868d7d527
16,661
def calculate_com(structure): """ Calculates center of mass of the structure (ligand or protein). Parameters ---------- structure : biopython Structure object PDB of choice loaded into biopython (only chains of interest). Returns ------- A list defining center of mass of the structure. """ structure_mass = 0.0 com = np.zeros(3) for atom in structure.get_atoms(): com = com + np.array(list(atom.get_vector())) * atom.mass structure_mass += atom.mass com = com / structure_mass return com
35d6ed62d3943dff0aa1ef0c3a0d04b9235b84ac
16,663
def generate_config(context): """ Generate the deployment configuration. """ resources = [] name = context.properties.get('name', context.env['name']) resources = [ { 'name': name, 'type': 'appengine.v1.version', 'properties': context.properties } ] outputs = [ { 'name': 'name', 'value': '$(ref.{}.name)'.format(name) }, { 'name': 'createTime', 'value': '$(ref.{}.createTime)'.format(name) }, { 'name': 'versionUrl', 'value': '$(ref.{}.versionUrl)'.format(name) } ] return {'resources': resources, 'outputs': outputs}
9a997b87a8d4d8f46edbbb9d2da9f523e5e2fdc6
16,664
def check_regs(region_df, chr_name=None, start_name=None, stop_name=None, strand_name=None, sample_name=None): """ Modifies a region dataframe to be coherent with the GMQL data model :param region_df: a pandas Dataframe of regions that is coherent with the GMQL data model :param chr_name: (optional) which column of :attr:`~.region_df` is the chromosome :param start_name: (optional) which column of :attr:`~.region_df` is the start :param stop_name: (optional) which column of :attr:`~.region_df` is the stop :param strand_name: (optional) which column of :attr:`~.region_df` is the strand :return: a modified pandas Dataframe """ if sample_name is None: region_df.index = np.repeat(default_id_sample, len(region_df)) else: region_df = search_column(region_df, id_sample_aliases, id_sample_types, 'id_sample', sample_name) region_df = region_df.set_index("id_sample", drop=True) region_df = region_df.sort_index() region_df = search_column(region_df, chr_aliases, chr_types, 'chr', chr_name) region_df = search_column(region_df, start_aliases, start_types, 'start', start_name) region_df = search_column(region_df, stop_aliases, stop_types, 'stop', stop_name) region_df = search_column(region_df, strand_aliases, strand_types, 'strand', strand_name) return region_df
ea00a9b755c8dc2943717254ecdb3390bbefe288
16,665
from typing import List from typing import Optional from typing import Sequence from typing import Union from typing import Dict from typing import Any from typing import cast def build_assets_job( name: str, assets: List[OpDefinition], source_assets: Optional[Sequence[Union[ForeignAsset, OpDefinition]]] = None, resource_defs: Optional[Dict[str, ResourceDefinition]] = None, description: Optional[str] = None, config: Union[ConfigMapping, Dict[str, Any], PartitionedConfig] = None, tags: Optional[Dict[str, Any]] = None, ) -> JobDefinition: """Builds a job that materializes the given assets. The dependencies between the ops in the job are determined by the asset dependencies defined in the metadata on the provided asset nodes. Args: name (str): The name of the job. assets (List[OpDefinition]): A list of assets or multi-assets - usually constructed using the :py:func:`@asset` or :py:func:`@multi_asset` decorator. source_assets (Optional[Sequence[Union[ForeignAsset, OpDefinition]]]): A list of assets that are not materialized by this job, but that assets in this job depend on. resource_defs (Optional[Dict[str, ResourceDefinition]]): Resource defs to be included in this job. description (Optional[str]): A description of the job. Examples: .. code-block:: python @asset def asset1(): return 5 @asset def asset2(asset1): return my_upstream_asset + 1 my_assets_job = build_assets_job("my_assets_job", assets=[asset1, asset2]) Returns: JobDefinition: A job that materializes the given assets. """ check.str_param(name, "name") check.list_param(assets, "assets", of_type=OpDefinition) check.opt_list_param(source_assets, "source_assets", of_type=(ForeignAsset, OpDefinition)) check.opt_str_param(description, "description") source_assets_by_key = build_source_assets_by_key(source_assets) op_defs = build_op_deps(assets, source_assets_by_key.keys()) root_manager = build_root_manager(source_assets_by_key) return GraphDefinition( name=name, node_defs=cast(List[NodeDefinition], assets), dependencies=op_defs, description=description, input_mappings=None, output_mappings=None, config=None, ).to_job( resource_defs=merge_dicts(resource_defs or {}, {"root_manager": root_manager}), config=config, tags=tags, )
8e2353677e5085f0c1eb53ee24687e020912b2e5
16,666
def createBinarySearchTree(vs): """ Generate a balanced binary search tree based on the given array. Args: vs - an integer array {4, 5, 5, 7, 2, 1, 3} 4 / \ 2 5 / \ / \ 1 3 5 7 """ def _helper(vs, left, right): if left > right: return None mid = (left + right) >> 1 node = TreeNode(vs[mid]) node.left = _helper(vs, left, mid - 1) if node.left: node.left.parent = node node.right = _helper(vs, mid + 1, right) if node.right: node.right.parent = node return node vs = sorted(vs) root = _helper(vs, 0, len(vs) - 1) return root
5e1f7723a4b218d980d7d72ca8f949160ff8042d
16,667
def remove_end_same_as_start_transitions(df, start_col, end_col): """Remove rows corresponding to transitions where start equals end state. Millington 2009 used a methodology where if a combination of conditions didn't result in a transition, this would be represented in the model by specifying a transition with start and end state being the same, and a transition time of 0 years. AgroSuccess will handle 'no transition' rules differently, so these dummy transitions should be excluded. """ def start_different_to_end(row): if row[start_col] == row[end_col]: return False else: return True return df[df.apply(start_different_to_end, axis=1)]
f4b3ddca74e204ed22c75a4f635845869ded9988
16,668
def sieve(iterable, inspector, *keys): """Separates @iterable into multiple lists, with @inspector(item) -> k for k in @keys defining the separation. e.g., sieve(range(10), lambda x: x % 2, 0, 1) -> [[evens], [odds]] """ s = {k: [] for k in keys} for item in iterable: k = inspector(item) if k not in s: raise KeyError(f"Unexpected key <{k}> found by inspector in sieve.") s[inspector(item)].append(item) return [s[k] for k in keys]
6ebb76dfb3131342e08a0be4127fba242d126130
16,670
def get_model(config: BraveConfig) -> embedding_model.MultimodalEmbeddingModel: """Construct a model implementing BraVe. Args: config: Configuration for BraVe. Returns: A `MultimodalEmbeddingModel` to train BraVe. """ init_fn, parameterized_fns = _build_parameterized_fns(config) loss_fn = _build_loss_fn(config, parameterized_fns) forward_fns = { 'broad_video': parameterized_fns.broad_video_embedding, 'broad_audio': parameterized_fns.broad_audio_embedding, 'narrow_video': parameterized_fns.narrow_video_embedding, } return embedding_model.MultimodalEmbeddingModel( init_fn=init_fn, forward_fns=forward_fns, loss_fn=loss_fn, evaluate_fn=_build_eval_fn(forward_fns), train_dataset_builder_fn=_train_dataset_builder(config), )
eceff13cf9ec5bd5cdd126af52bbd4eb6fad6ebe
16,671
def upilab6_1_5 () : """ 6.1.5. Exercice UpyLaB 6.2 - Parcours vert bleu rouge (D’après une idée de Jacky Trinh le 19/02/2018) Monsieur Germain est une personne très âgée. Il aimerait préparer une liste de courses à faire à l’avance. Ayant un budget assez serré, il voudrait que sa liste de courses soit dans ses capacités. Son seul petit souci est qu’il a une très mauvaise vue et n’arrive donc pas à voir le prix associé à chaque produit contenu dans le catalogue de courses. Écrire une fonction calcul_prix(produits, catalogue) où : produits est un dictionnaire contenant, comme clés, les produits souhaités par Monsieur Germain et comme valeurs associées, la quantité désirée de chacun d’entre eux, catalogue est un dictionnaire contenant tous les produits du magasin avec leur prix associé. La fonction retourne le montant total des achats de Monsieur Germain. Exemple : L’appel suivant de la fonction : calcul_prix({"brocoli":2, "mouchoirs":5, "bouteilles d'eau":6}, {"brocoli":1.50, "bouteilles d'eau":1, "bière":2, "savon":2.50, "mouchoirs":0.80}) doit retourner : 13.0 """ def calcul_prix(produits, catalogue): somme = 0 for p in produits: somme += catalogue[p] * produits[p] return somme test = [({'pack de fruits': 1, 'poisson': 2, 'jambon': 1, 'citron': 1, 'tomate': 1, 'pâtes': 1, 'sucre': 1, 'pack de légumes': 1, 'café': 1, 'brocoli': 1, 'déodorant': 1, 'bière': 1}, {'confiture': 3.15, 'vin': 6.3, 'poisson': 6.45, 'jambon': 2.1, 'pain': 1.25, 'shampooing': 2.5, "bouteilles d'eau": 1, 'tomate': 0.75, 'yaourts': 2.85, 'sucre': 0.65, 'pack de légumes': 4.2, 'café': 4.75, 'brocoli': 1.5, 'riz': 3.1, 'jus de fruits': 2.25, 'déodorant': 2.2, 'dentifrice': 1.95, 'fromage': 2.65, 'chocolats': 3.2, 'pack de fruits': 3.3, 'viande': 5.2, 'petits gâteaux': 4.35, 'citron': 0.9, 'mouchoirs': 0.8, 'frites': 3.55, 'farine': 0.95, 'pâtes': 1.1, 'savon': 1.9, 'bière': 2, 'huile': 1.65}), ({'chocolats': 1, 'jambon': 1, 'citron': 1, 'fromage': 2, 'yaourts': 1, 'pâtes': 2, 'savon': 1, 'pack de légumes': 1, 'café': 2, 'brocoli': 1, 'riz': 2, 'mouchoirs': 1}, {'confiture': 3.15, 'vin': 6.3, 'poisson': 6.45, 'jambon': 2.1, 'pain': 1.25, 'shampooing': 2.5, "bouteilles d'eau": 1, 'tomate': 0.75, 'yaourts': 2.85, 'sucre': 0.65, 'pack de légumes': 4.2, 'café': 4.75, 'brocoli': 1.5, 'riz': 3.1, 'jus de fruits': 2.25, 'déodorant': 2.2, 'dentifrice': 1.95, 'fromage': 2.65, 'chocolats': 3.2, 'pack de fruits': 3.3, 'viande': 5.2, 'petits gâteaux': 4.35, 'citron': 0.9, 'mouchoirs': 0.8, 'frites': 3.55, 'farine': 0.95, 'pâtes': 1.1, 'savon': 1.9, 'bière': 2, 'huile': 1.65})] reponse =[36.35, 40.650000000000006] for produits, catalogue in test : print("Le pépé a besoin de : ") for article in produits : print(produits[article], " x l'article : ", article) cout = calcul_prix(produits, catalogue) print( "cela coûtera", cout) printt("tes réussi ? : ", cout == reponse[test.index((produit,catalogue))])
198a11e4059c39550bb398a473711073677a41d4
16,672
import torch def construct_filtering_input_data(xyz_s, xyz_t, data, overlapped_pair_tensors, dist_th=0.05, mutuals_flag=None): """ Prepares the input dictionary for the filtering network Args: xyz_s (torch tensor): coordinates of the sampled points in the source point cloud [b,n,3] xyz_t (torch tensor): coordinates of the correspondences from the traget point cloud [b,n,3] data (dict): input data from the data loader dist_th (float): distance threshold to determine if the correspondence is an inlier or an outlier mutuals (torch tensor): torch tensor of the mutually nearest neighbors (can be used as side information to the filtering network) Returns: filtering_data (dict): input data for the filtering network """ filtering_data = {} Rs, ts = extract_transformation_matrices(data['T_global_0'], overlapped_pair_tensors) ys = transformation_residuals(xyz_s, xyz_t, Rs, ts) xs = torch.cat((xyz_s,xyz_t),dim=-1) # [b, n, 6] if mutuals_flag is not None: xs = torch.cat((xs,mutuals_flag.reshape(-1,1)), dim=-1) # [b, n, 7] # Threshold ys based on the distance threshol ys_binary = (ys < dist_th).type(xs.type()) # Construct the data dictionary filtering_data['xs'] = xs filtering_data['ys'] = ys filtering_data['ts'] = ts filtering_data['Rs'] = Rs return filtering_data
ca316834cc87e1527e4563407138aa92a46b92a3
16,673
def rmean(x, N): """ cutting off the edges. """ s = int(N-1) return np.convolve(x, np.ones((N,))/N)[s:-s]
eb34bd21523e685184155e65ccddc34e2eb6a428
16,674
def add_variant_to_existing_lines(group, variant, total_quantity): """ Adds variant to existing lines with same variant. Variant is added by increasing quantity of lines with same variant, as long as total_quantity of variant will be added or there is no more lines with same variant. Returns quantity that could not be fulfilled with existing lines. """ # order descending by lines' stock available quantity lines = group.lines.filter( product=variant.product, product_sku=variant.sku, stock__isnull=False).order_by( F('stock__quantity_allocated') - F('stock__quantity')) quantity_left = total_quantity for line in lines: quantity = ( line.stock.quantity_available if quantity_left > line.stock.quantity_available else quantity_left) line.quantity += quantity line.save() Stock.objects.allocate_stock(line.stock, quantity) quantity_left -= quantity if quantity_left == 0: break return quantity_left
1e958db4c684f0bf3f2d821fc06f422cc60d0168
16,675
def calculate_position(c, t): """ Calculates a position given a set of quintic coefficients and a time. Args c: List of coefficients generated by a quintic polynomial trajectory generator. t: Time at which to calculate the position Returns Position """ return c[0] * t**5 + c[1] * t**4 + c[2] * t**3 + c[3] * t**2 + c[4] * t + c[5]
927737b41006df13e7bf751b06756eea02542491
16,676
def get_dqa(df): """Method to get DQA issues.""" try: df0 = df[(df.dob == '') | (df.dqa_sex != 'OK') | (df.dqa_age != 'OK') | (df.case_status == 'Pending')] df1 = df0[['cpims_id', 'child_names', 'age', 'case_category', 'dqa_sex', 'dqa_dob', 'dqa_age', 'case_status', 'case_date']].drop_duplicates() # print(df1) except Exception as e: print('Error getting data frame - %s' % (e)) brdf = Blank() brdf.index = [] return brdf else: return df1
f2c30e87937ce4fac1dd00cd597ee52946d80d07
16,677
import pickle def get_3C_coords(name): """ Formatted J2000 right ascension and declination and IAU name Returns the formatted J2000 right ascension and declination and IAU name given the 3C name. Example >>> ra,dec,iau = get_3C_coords('3C286') >>> print ra,dec,iau 13h31m08.287984s 30d30'32.958850" 1331+305 @param name : 3C name, like 3C123 @return: ra, dec, IAU_name """ dbfile = open(cal_dir+'3C_VLA_cals','r') data = pickle.load(dbfile) dbfile.close() return data[name]
1e48ca0535c6cdb5eb2330f3dcfd666e40eef33f
16,678
import json def get(player): """Get the cipher that corresponding to the YouTube player version. Args: player (dict): Contains the 'sts' value and URL of the YouTube player. Note: If the cipher is missing in known ciphers, then the 'update' method will be used. """ if DIR.exists() and CIPHERS.exists(): try: with CIPHERS.open('r') as file: ciphers = json.load(file) cipher = ciphers.get(player['sts']) if cipher is not None: return cipher else: return update(player) except json.decoder.JSONDecodeError: return update(player) else: return update(player)
dd658d8aad775fa7871e3efa642b0aad89f8f801
16,679
def divide(x, y): """A version of divide that also rounds.""" return round(x / y)
1bf9e5859298886db7c928613f459f163958ca7b
16,680
def create_root_ca_cert(root_common_name, root_private_key, days=365): """ This method will create a root ca certificate. :param root_common_name: The common name for the certificate. :param root_private_key: The private key for the certificate. :param days: The number of days for which the certificate is valid. The default is 1 year or 365 days. :return: The root certificate. :rtype: :class:`x509.Certificate` """ file_root_certificate = "demoCA/newcerts/ca_cert.pem" root_public_key = root_private_key.public_key() subject = x509.Name( [x509.NameAttribute(NameOID.COMMON_NAME, str.encode(root_common_name).decode("utf-8"))] ) builder = create_cert_builder( subject=subject, issuer_name=subject, public_key=root_public_key, days=days, is_ca=True ) root_cert = builder.sign( private_key=root_private_key, algorithm=hashes.SHA256(), backend=default_backend() ) with open(file_root_certificate, "wb") as f: f.write(root_cert.public_bytes(serialization.Encoding.PEM)) return root_cert
5bf83b8ba56c6dde9f6c2ed022c113350425aa33
16,681
def hist1d(arr, bins=None, amp_range=None, weights=None, color=None, show_stat=True, log=False,\ figsize=(6,5), axwin=(0.15, 0.12, 0.78, 0.80),\ title=None, xlabel=None, ylabel=None, titwin=None): """Makes historgam from input array of values (arr), which are sorted in number of bins (bins) in the range (amp_range=(amin,amax)) """ #print 'hist1d: title=%s, size=%d' % (title, arr.size) if arr.size==0: return None, None, None fig = plt.figure(figsize=figsize, dpi=80, facecolor='w', edgecolor='w', frameon=True) if titwin is not None: fig.canvas.set_window_title(titwin) elif title is not None: fig.canvas.set_window_title(title) axhi = fig.add_axes(axwin) hbins = bins if bins is not None else 100 hi = axhi.hist(arr.ravel(), bins=hbins, range=amp_range, weights=weights, color=color, log=log) #, log=logYIsOn) if amp_range is not None: axhi.set_xlim(amp_range) # axhi.set_autoscale_on(False) # suppress autoscailing if title is not None: axhi.set_title(title, color='k', fontsize=20) if xlabel is not None: axhi.set_xlabel(xlabel, fontsize=14) if ylabel is not None: axhi.set_ylabel(ylabel, fontsize=14) if show_stat: weights, bins, patches = hi add_stat_text(axhi, weights, bins) return fig, axhi, hi
c74771de0df0e9f4d65490a09346d2af18d53cc7
16,682
def format_validate_parameter(param): """ Format a template parameter for validate template API call Formats a template parameter and its schema information from the engine's internal representation (i.e. a Parameter object and its associated Schema object) to a representation expected by the current API (for example to be compatible to CFN syntax). """ # map of Schema object types to API expected types schema_to_api_types = { param.schema.STRING: api.PARAM_TYPE_STRING, param.schema.NUMBER: api.PARAM_TYPE_NUMBER, param.schema.LIST: api.PARAM_TYPE_COMMA_DELIMITED_LIST, param.schema.MAP: api.PARAM_TYPE_JSON, param.schema.BOOLEAN: api.PARAM_TYPE_BOOLEAN } res = { api.PARAM_TYPE: schema_to_api_types.get(param.schema.type, param.schema.type), api.PARAM_DESCRIPTION: param.description(), api.PARAM_NO_ECHO: 'true' if param.hidden() else 'false', api.PARAM_LABEL: param.label() } if param.has_value(): res[api.PARAM_DEFAULT] = param.value() constraint_description = [] # build constraints for c in param.schema.constraints: if isinstance(c, constr.Length): if c.min is not None: res[api.PARAM_MIN_LENGTH] = c.min if c.max is not None: res[api.PARAM_MAX_LENGTH] = c.max elif isinstance(c, constr.Range): if c.min is not None: res[api.PARAM_MIN_VALUE] = c.min if c.max is not None: res[api.PARAM_MAX_VALUE] = c.max elif isinstance(c, constr.AllowedValues): res[api.PARAM_ALLOWED_VALUES] = list(c.allowed) elif isinstance(c, constr.AllowedPattern): res[api.PARAM_ALLOWED_PATTERN] = c.pattern elif isinstance(c, constr.CustomConstraint): res[api.PARAM_CUSTOM_CONSTRAINT] = c.name if c.description: constraint_description.append(c.description) if constraint_description: res[api.PARAM_CONSTRAINT_DESCRIPTION] = " ".join( constraint_description) return res
4ed21c80bf567beca448065089bfe22fef6cfb17
16,683
import string def get_template(name): """Retrieve the template by name Args: name: name of template Returns: :obj:`string.Template`: template """ file_name = "{name}.template".format(name=name) data = resource_string("pyscaffoldext.beeproject.templates", file_name) return string.Template(data.decode("UTF-8"))
933e597b48b5ed01a29d191fd0fe04371b1baeb6
16,684
def box3d_overlap(boxes, qboxes, criterion=-1, z_axis=1, z_center=1.0): """kitti camera format z_axis=1. """ bev_axes = list(range(7)) bev_axes.pop(z_axis + 3) bev_axes.pop(z_axis) # t = time.time() # rinc = box_np_ops.rinter_cc(boxes[:, bev_axes], qboxes[:, bev_axes]) rinc = rotate_iou_gpu_eval(boxes[:, bev_axes], qboxes[:, bev_axes], 2) # print("riou time", time.time() - t) box3d_overlap_kernel(boxes, qboxes, rinc, criterion, z_axis, z_center) return rinc
45aa39e9f55f8198ccbe5faf6a00cf27279057fa
16,685
def _apply_graph_transform_tool_rewrites(g, input_node_names, output_node_names): # type: (gde.Graph, List[str], List[str]) -> tf.GraphDef """ Use the [Graph Transform Tool]( https://github.com/tensorflow/tensorflow/blob/master/tensorflow/tools/ graph_transforms/README.md) to perform a series of pre-deployment rewrites. Args: g: GDE representation of the core graph. input_node_names: Names of placeholder nodes that are used as inputs to the graph for inference. Placeholders NOT on this list will be considered dead code. output_node_names: Names of nodes that produce tensors that are outputs of the graph for inference purposes. Nodes not necessary to produce these tensors will be considered dead code. Returns: GraphDef representation of rewritten graph. """ # Invoke the Graph Transform Tool using the undocumented Python APIs under # tensorflow.tools.graph_transforms after_tf_rewrites_graph_def = graph_transforms.TransformGraph( g.to_graph_def(), inputs=input_node_names, outputs=output_node_names, # Use the set of transforms recommended in the README under "Optimizing # for Deployment" transforms=['strip_unused_nodes(type=float, shape="1,299,299,3")', 'remove_nodes(op=Identity, op=CheckNumerics)', 'fold_constants(ignore_errors=true)', 'fold_batch_norms', 'fold_old_batch_norms'] ) return after_tf_rewrites_graph_def
15d9609357d45fd164fd1569d35669148e66acd8
16,686
def big_bcast(comm, objs, root=0, return_split_info=False, MAX_BYTES=INT_MAX): """ Broadcast operation that can exceed the MPI limit of ~4 GiB. See documentation on :meth:`big_gather` for details. Parameters ---------- comm: mpi4py.MPI.Intracomm MPI communicator to use. objs: objects Data to gather from all processes. root: int Rank of process to receive the data. return_split_info: bool On root process, also a return a dictionary describing how the data were split. Used for testing. MAX_BYTES: int Maximum bytes per chunk. Defaults to the INT_MAX of 32 bit integers. Used for testing. Returns ------- list of objects: Length Npus list, such that the n'th entry is the data gathered from the n'th process. This is only filled on the root process. Other processes get None. dict: If return_split_info, the root process also gets a dictionary containing: - ranges: A list of tuples, giving the start and end byte of each chunk. - MAX_BYTES: The size limit that was used. Notes ----- Running this on MPI.COMM_WORLD means that every process gets a full copy of `objs`, potentially using up available memory. This function is currently used to send large data once to each node, to be put in shared memory. """ bufsize = None nopickle = False shape = None dtype = None if comm.rank == root: if isinstance(objs, np.ndarray): shape = objs.shape dtype = objs.dtype buf = objs.tobytes() nopickle = True else: buf = dumps(objs) bufsize = len(buf) # Sizes of send buffers to be sent from each rank. bufsize = comm.bcast(bufsize, root=root) nopickle = comm.bcast(nopickle, root=root) if nopickle: shape = comm.bcast(shape, root=root) dtype = comm.bcast(dtype, root=root) if comm.rank != root: buf = np.empty(bufsize, dtype=bytes) # Ranges of output bytes for each chunk. start = 0 end = 0 ranges = [] while end < bufsize: end = min(start + MAX_BYTES, bufsize) ranges.append((start, end)) start += MAX_BYTES for start, end in ranges: comm.Bcast([buf[start:end], MPI.BYTE], root=root) if nopickle: result = np.frombuffer(buf, dtype=dtype) result = result.reshape(shape) else: result = loads(buf) split_info_dict = {'MAX_BYTES': MAX_BYTES, 'ranges': ranges} if return_split_info: return result, split_info_dict return result
341591b207ef793b32e6b727f14533dbe119312d
16,687
def get_task(appname, taskqueue, identifier): """Gets identified task in a taskqueue Request ------- ``` GET http://asynx.host/apps/:appname/taskqueues/:taskqueue/tasks/:identifier ``` Parameters: - appname: url param, string, the application name under which the queue lies - taskqueue: url param, string, the name of the taskqueue in which the task belongs - identifier: url param, string, the identifier to the task. the identifier can be: - id, form: {integer} or id:{integer}; - uuid, form: uuid:{string} - cname, form: cname:{string} Request body: Do not supply a request body with this method Response -------- Task resource same as `insert_task`. """ try: kind, kind_id = validate(forms.identifier_form, identifier) except MultipleInvalid as e: raise IdentifierNotFound(str(e)) tq = TaskQueue(appname, taskqueue) if kind == 'id': task = tq.get_task(kind_id) elif kind == 'uuid': task = tq.get_task_by_uuid(kind_id) elif kind == 'cname': task = tq.get_task_by_cname(kind_id) return jsonify(task)
c11aadab178776a6246163f2146e9a91d949e3bc
16,688
def assign_style_props(df, color=None, marker=None, linestyle=None, cmap=None): """Assign the style properties for a plot Parameters ---------- df : pd.DataFrame data to be used for style properties """ if color is None and cmap is not None: raise ValueError('`cmap` must be provided with the `color` argument') # determine color, marker, and linestyle for each line n = len(df[color].unique()) if color in df.columns else \ len(df[list(set(df.columns) & set(IAMC_IDX))].drop_duplicates()) defaults = default_props(reset=True, num_colors=n, colormap=cmap) props = {} rc = run_control() kinds = [('color', color), ('marker', marker), ('linestyle', linestyle)] for kind, var in kinds: rc_has_kind = kind in rc if var in df.columns: rc_has_var = rc_has_kind and var in rc[kind] props_for_kind = {} for val in df[var].unique(): if rc_has_var and val in rc[kind][var]: props_for_kind[val] = rc[kind][var][val] # cycle any way to keep defaults the same next(defaults[kind]) else: props_for_kind[val] = next(defaults[kind]) props[kind] = props_for_kind # update for special properties only if they exist in props if 'color' in props: d = props['color'] values = list(d.values()) # find if any colors in our properties corresponds with special colors # we know about overlap_idx = np.in1d(values, list(PYAM_COLORS.keys())) if overlap_idx.any(): # some exist in our special set keys = np.array(list(d.keys()))[overlap_idx] values = np.array(values)[overlap_idx] # translate each from pyam name, like AR6-SSP2-45 to proper color # designation for k, v in zip(keys, values): d[k] = PYAM_COLORS[v] # replace props with updated dict without special colors props['color'] = d return props
93bd50e81a988594a42bce26a48d9d24e0e9c6ba
16,690
def to_dbtext(text): """Helper to turn a string into a db.Text instance. Args: text: a string. Returns: A db.Text instance. """ if isinstance(text, unicode): # A TypeError is raised if text is unicode and an encoding is given. return db.Text(text) else: try: return db.Text(text, encoding='utf-8') except UnicodeDecodeError: return db.Text(text, encoding='latin-1')
74704f42e8cb05be24df3b32e8964382da9c488e
16,691
import zmq import time def zmq_init(pub_port, sub_port_list): """ Initialize the ZeroMQ publisher and subscriber. `My` publisher publishes `my` data to the neighbors. `My` subscriber listen to the ports of other neighbors. `sub_port_list` stores all the possible neighbors' TCP ports. The data packs are wrapped as an XBee interface, compatable with the XBee transmission and reception functions in this module. Args: pub_port(str/int): TCP port for the publisher. sub_port_list(list): TCP port list for the subscriber to listen to. Returns: list: `my` publisher and `my` subscriber (i.e. listener). """ pub = zmq.Context().socket(zmq.PUB) pub.bind('tcp://*:%s' % pub_port) sub = zmq.Context().socket(zmq.SUB) for port in sub_port_list: if sub_port_list[port] != pub_port: sub.connect('tcp://127.0.0.1:%s' % sub_port_list[port]) time.sleep(0.05) sub.setsockopt(zmq.SUBSCRIBE, 'XBEE') return [pub, sub]
fcde81e7387d49e99cd864cea233b1ba02ac679c
16,692
def dot(u, v): """ Returns the dot product of the two vectors. >>> u1 = Vec([1, 2]) >>> u2 = Vec([1, 2]) >>> u1*u2 5 >>> u1 == Vec([1, 2]) True >>> u2 == Vec([1, 2]) True """ assert u.size == v.size sum = 0 for index, (compv, compu) in enumerate(zip(u.store,v.store)): sum = sum + compv * compu return sum
e431800750c8f7c14d7412753814e2498fdd3c09
16,694
def isvalid(number, numbers, choices=2): """Meh >>> isvalid(40, (35, 20, 15, 25, 47)) True >>> isvalid(62, (20, 15, 25, 47, 40)) True >>> isvalid(127, (182, 150, 117, 102, 95)) False """ return number in sums(numbers, choices)
c32ee0fe1509c0c1f48bdf8f6b9f8fe5b00fb8f8
16,695
def from_rotation_matrix(rotation_matrix: type_alias.TensorLike, name: str = "quaternion_from_rotation_matrix" ) -> tf.Tensor: """Converts a rotation matrix representation to a quaternion. Warning: This function is not smooth everywhere. Note: In the following, A1 to An are optional batch dimensions. Args: rotation_matrix: A tensor of shape `[A1, ..., An, 3, 3]`, where the last two dimensions represent a rotation matrix. name: A name for this op that defaults to "quaternion_from_rotation_matrix". Returns: A tensor of shape `[A1, ..., An, 4]`, where the last dimension represents a normalized quaternion. Raises: ValueError: If the shape of `rotation_matrix` is not supported. """ with tf.name_scope(name): rotation_matrix = tf.convert_to_tensor(value=rotation_matrix) shape.check_static( tensor=rotation_matrix, tensor_name="rotation_matrix", has_rank_greater_than=1, has_dim_equals=((-1, 3), (-2, 3))) rotation_matrix = rotation_matrix_3d.assert_rotation_matrix_normalized( rotation_matrix) trace = tf.linalg.trace(rotation_matrix) eps_addition = asserts.select_eps_for_addition(rotation_matrix.dtype) rows = tf.unstack(rotation_matrix, axis=-2) entries = [tf.unstack(row, axis=-1) for row in rows] def tr_positive(): sq = tf.sqrt(trace + 1.0) * 2. # sq = 4 * qw. qw = 0.25 * sq qx = safe_ops.safe_unsigned_div(entries[2][1] - entries[1][2], sq) qy = safe_ops.safe_unsigned_div(entries[0][2] - entries[2][0], sq) qz = safe_ops.safe_unsigned_div(entries[1][0] - entries[0][1], sq) return tf.stack((qx, qy, qz, qw), axis=-1) def cond_1(): sq = tf.sqrt(1.0 + entries[0][0] - entries[1][1] - entries[2][2] + eps_addition) * 2. # sq = 4 * qx. qw = safe_ops.safe_unsigned_div(entries[2][1] - entries[1][2], sq) qx = 0.25 * sq qy = safe_ops.safe_unsigned_div(entries[0][1] + entries[1][0], sq) qz = safe_ops.safe_unsigned_div(entries[0][2] + entries[2][0], sq) return tf.stack((qx, qy, qz, qw), axis=-1) def cond_2(): sq = tf.sqrt(1.0 + entries[1][1] - entries[0][0] - entries[2][2] + eps_addition) * 2. # sq = 4 * qy. qw = safe_ops.safe_unsigned_div(entries[0][2] - entries[2][0], sq) qx = safe_ops.safe_unsigned_div(entries[0][1] + entries[1][0], sq) qy = 0.25 * sq qz = safe_ops.safe_unsigned_div(entries[1][2] + entries[2][1], sq) return tf.stack((qx, qy, qz, qw), axis=-1) def cond_3(): sq = tf.sqrt(1.0 + entries[2][2] - entries[0][0] - entries[1][1] + eps_addition) * 2. # sq = 4 * qz. qw = safe_ops.safe_unsigned_div(entries[1][0] - entries[0][1], sq) qx = safe_ops.safe_unsigned_div(entries[0][2] + entries[2][0], sq) qy = safe_ops.safe_unsigned_div(entries[1][2] + entries[2][1], sq) qz = 0.25 * sq return tf.stack((qx, qy, qz, qw), axis=-1) def cond_idx(cond): cond = tf.expand_dims(cond, -1) cond = tf.tile(cond, [1] * (rotation_matrix.shape.ndims - 2) + [4]) return cond where_2 = tf.where( cond_idx(entries[1][1] > entries[2][2]), cond_2(), cond_3()) where_1 = tf.where( cond_idx((entries[0][0] > entries[1][1]) & (entries[0][0] > entries[2][2])), cond_1(), where_2) quat = tf.where(cond_idx(trace > 0), tr_positive(), where_1) return quat
2eab1984206c57ec64c4be2b3652008773d9c037
16,696
def mark_text(text): """Compact rules processor""" attrs = {} rules = [] weight = 0 attrs['len'] = len(text) text = text.replace('.', ' ').replace(',', ' ').replace(u'№', ' ').strip().lower() words = text.split() textjunk = [] spaced = 0 attrs['wl'] = len(words) attrs['junkl'] = 0 attrs['mwords'] = [] for w in words: n = len(w) curw = 0 # is spaced if len(w) == 1: if w.isdigit(): if n > 3: curw +=1 if 'SP' not in rules: rules.append('SP') spaced = 0 else: spaced += 1 else: if spaced > 3: curw +=1 if 'SP' not in rules: rules.append('SP') spaced = 0 # is misspelled ? if n in MISSPELL_WORDS.keys(): if w in MISSPELL_WORDS[n]: curw += 1 if 'MS' not in rules: rules.append('MS') # is latin word pat, latweight = is_latin_word(w) if latweight > 0: curw += latweight if 'LT' not in rules: rules.append('LT') junk = 0 # is this text junk if curw > 0: junk = 1 else: if n in ALLDICT_WORDS.keys(): if w in ALLDICT_WORDS[n]: junk = 1 elif len(w) < 3 or w.isdigit(): junk = 1 attrs['junkl'] += junk if junk == 0: attrs['mwords'].append(w) weight += curw if spaced > 3: if 'SP' not in rules: rules.append('SP') weight += 1 isjunk = attrs['wl'] == attrs['junkl'] attrs['junksh'] = attrs['junkl'] * 100.0 / attrs['wl'] if attrs['wl'] > 0 else 0 # for junk in textjunk: # if not junk: isjunk = False if isjunk: weight += 10 rules.append('JU') return weight, rules, attrs
7287535d3a9c3bb302f9cc98ca6e7fa2ec4c9a40
16,697
def model_flux(t_dec,B,P_max,R,Ne,d_l,z,mp,me,e,c,sigma_t,time,nu,Gamma,E_k, n,eps_b,eps_e,p,j_ang): """ Function for deriving the flux for the spectrum or light curve at given times and frequencies """ # calculate lorentz factors, characteristic frequencies and # jet break time gamma_m = Gamma*eps_e*((p-2)/(p-1))*(mp/me) gamma_c = (6*np.pi*me*c)/(sigma_t*Gamma*B**2*time) gamma_crit = (6*np.pi*me*c)/(sigma_t*Gamma*B**2*t_dec) t_jb = 86400*(((1/0.057)*j_ang*((1+z)/2)**(3/8)*(E_k/1e53)**(1/8)* (n/0.1)**(-1/8))**(8/3)) nu_m0 = (gamma_m**2*Gamma*e*B)/(2*np.pi*me*c) nu_c0 = (gamma_c**2*Gamma*e*B)/(2*np.pi*me*c) flux_max = (Ne*P_max*1e26)/(4*np.pi*d_l**2) # At times smaller than the deceleration timescale if time <= t_dec: flux_n = spec_flux(flux_max,time,nu,p,nu_m0,nu_c0) flux_n = flux_n*(time/t_dec)**3 return flux_n # At times greater than the deceleration timescale if time > t_dec: if p > 2: nu_m = nu_m0*(time/t_dec)**(-3/2) nu_c = nu_c0*(time/t_dec)**(-1/2) if p < 2: nu_m = nu_m0*(time/t_dec)**((-3*(p+2))/(8*(p-1))) nu_c = nu_c0*(time/t_dec)**(-1/2) if time > t_jb: nu_c = nu_c0*(t_jb/t_dec)**(-1/2) flux_max = flux_max*(time/t_jb)**(-1) if p > 2: nu_m = nu_m0*(t_jb/t_dec)**(-3/2)*(time/t_jb)**(-2) if p < 2: nu_m = (nu_m0*(t_jb/t_dec)**((-3*(p+2))/(8*(p-1)))*(time/t_jb) **(-(p+2)/(2*(p-1)))) flux_n = spec_flux(flux_max,time,nu,p,nu_m,nu_c) return flux_n
15658d57ae5d837d416731427e1227eb304b4b75
16,699
def fix_lng_degrees(lng: float) -> float: """ For a lng degree outside [-180;180] return the appropriate degree assuming -180 = 180°W and 180 = 180°E. """ sign = 1 if lng > 0 else -1 lng_adj = (abs(lng) % 360) * sign if lng_adj > 180: return (lng_adj % 180) - 180 elif lng_adj < -180: return lng_adj % 180 return lng_adj
bde58152883874095b15ec38cfb24ea68d73c188
16,700
def create_code(traits): """Assign bits to list of traits. """ code = 1 result = {INVALID: code} if not traits: return result for trait in traits: code = code << 1 result[trait] = code return result
cfc7b1662edaf7f3e3763009a460157f7ec677bb
16,701
from typing import List from typing import Dict from typing import Any from typing import Optional def get_current_table(grid_id: str) -> List[Dict[Any, Any]]: """ Get current Data from the grid Args: grid_id: Grid ID to retrieve data from. Returns: list: Exsiting grid data. """ current_table: Optional[List[dict]] = demisto.incidents()[0].get("CustomFields", {}).get(grid_id) if current_table is None: raise ValueError(f"The grid id isn't valid: {grid_id}") return pd.DataFrame(current_table)
d1a8c21398aa2aca54ca587aa577c8ff50d8d46f
16,702
def read_graph(filepath): """Creates a graph based on the content of the file at given filepath. Parameters ---------- filename : filepath Path to a file containing an adjacency matrix. """ g_data = np.loadtxt(open(filepath, "rb"), delimiter=",") return nx.from_numpy_matrix(g_data)
74e0b687c6cf9e404d9446505799a84b5680c5b3
16,703
def get_seed(seed=None): """Get valid Numpy random seed value""" # https://groups.google.com/forum/#!topic/briansupport/9ErDidIBBFM random = np.random.RandomState(seed) return random.randint(0, 2147483647)
5ac1280a30265518edcf8bb07a03cfe5fb0ae21d
16,704
import typing import inspect def resolve_lookup( context: dict, lookup: str, call_functions: bool = True ) -> typing.Any: """ Helper function to extract a value out of a context-dict. A lookup string can access attributes, dict-keys, methods without parameters and indexes by using the dot-accessor (e.g. ``person.name``) This is based on the implementation of the variable lookup of the django template system: https://github.com/django/django/blob/master/django/template/base.py """ current = context for bit in lookup.split("."): try: current = current[bit] except (TypeError, AttributeError, KeyError, ValueError, IndexError): try: current = getattr(current, bit) except (TypeError, AttributeError): # Reraise if the exception was raised by a @property if not isinstance(current, dict) and bit in dir(current): raise try: # list-index lookup current = current[int(bit)] except ( IndexError, # list index out of range ValueError, # invalid literal for int() KeyError, # current is a dict without `int(bit)` key TypeError, ): # unsubscriptable object return None # raise LookupError( # "Failed lookup for key " "[%s] in %r", (bit, current) # ) # missing attribute if callable(current) and call_functions: try: # method call (assuming no args required) current = current() except TypeError: signature = inspect.signature(current) # type: ignore try: signature.bind() except TypeError: # arguments *were* required pass # but we continue because we might use an attribute on the object instead of calling it else: raise return current
a2090f2488ee10f7c11684952fd7a2498f6d4979
16,706
def check_actions_tool(tool): """2.2.x to 2.3.0 upgrade step checker """ atool = getToolByName(tool, 'portal_actions') try: atool['user']['change_password'] except KeyError: return True try: atool['global']['members_register'] except KeyError: return True try: atool['global']['search_form'] except KeyError: return True try: atool['global']['search'] except KeyError: return True try: atool['global']['syndication'] except KeyError: return True return False
2ecc6064cd26aa670743c25018dd27e2ce0f41ca
16,707
def integer_byte_length(number): """ Number of bytes needed to represent a integer excluding any prefix 0 bytes. :param number: Integer value. If num is 0, returns 0. :returns: The number of bytes in the integer. """ quanta, remainder = divmod(integer_bit_length(number), 8) if remainder: quanta += 1 return quanta
0de5828117107461e23e36cf3c38bab0850b7203
16,708
def ones(input_dim, output_dim, name=None): """All zeros.""" initial = tf.ones((input_dim, output_dim), dtype=tf.float32) return tf.Variable(initial, name=name)
02867b278e224e436e470a9eaeac32b44e99a99a
16,709
def enrichment_score2(mat, idx, line_width, norm_factors, distance_range=(20, 40), window_size=10, stats_test_log=({}, {})): """ Calculate the enrichment score of a stripe given its location, width and the contact matrix Parameters: ---------- mat: np.array (2D) Contact matrix generated with strata2horizontal() or strata2vertical() idx: int The location (index) of the candidate stripe line_width: int Stripe width (# of bins) norm_factors: np.array (1D) The vector of normalization factors of the contact map. distance_range: tuple The distance range (# of bins) for the diagonal for calculating the scores window_size: int Window size (# of bins) stats_test_log: tuple of dict Previous log for accelerating statistical tests Returns ---------- new_mat: np.array (1D) The enrichment score of each pixel along the candidate stripe """ _calculated_values, _poisson_stats = stats_test_log half = int(line_width // 2) x1, x2 = idx - half, idx - half + line_width if x1 == x2: x2 += 1 new_mat = np.zeros((distance_range[1] - distance_range[0],)) for j in range(distance_range[0], distance_range[1]): y = j - distance_range[0] _min_temp = subsetNpMatrix(mat, (x1, x2), (j - window_size - half, j + window_size + half + 1)) line_min = np.median([_min_temp]) # print(_min_temp, line_min) _inner_neighbor = subsetNpMatrix(mat, (idx - half - window_size, x1), (j - window_size - half, j + window_size + half + 1)) _outer_neighbor = subsetNpMatrix(mat, (x2 + 1, idx + half + window_size + 1), (j - window_size - half, j + window_size + half + 1)) if _outer_neighbor.size == 0 or _inner_neighbor.size == 0: continue neighbor_mean = max(np.mean(_inner_neighbor), np.mean(_outer_neighbor)) # There should be a lower bound for the expected value, # otherwise situations like (exp=0.01 and obs=0.02) would also be significant # Currently we can set this to 0 until KR norm factors can be loaded lower_b = 1 / norm_factors[idx] # This should be (1 / KR_norm_factors) if we refer to JuiceTools HICCUPS _exp = max(neighbor_mean, lower_b) _obs = int(line_min) # the same as floor function when line_min > 0 # _calculated_values: store all calculated exp-obs pairs in dictionary, in which keys are obs since # they are always integers. Each _calculated_values[obs] is a binary tree for quick searching, # and each tree leaf is a exp value corresponding to the obs value. Since exp values are float, # there is also an integer index attached for searching the exp-obs in dictionary _poisson_stats # (float cannot be dict keys). # _poisson_stats: record all calculated result in a dict. It should be # _poisson_stats[(_exp, _obs)] = -log10(p). But _exp is a float and cannot be a dict key, we give # each _exp a unique index and use the index. # stats_log: record all p value calculation. Just for benchmarking. Delete this when publishing. # global _calculated_values, _poisson_stats # , stats_log tolerance = 0.02 # check if obs is a value calculated before if _obs in _calculated_values: # Find the nearest _exp values which were calculated before # One larger, one smaller (_upper, _lower) = _calculated_values[_obs].search(_exp) # If _upper is close enough to _exp, directly use the p value from (_upper-_obs) pair if _upper is not None and (_upper.key - _exp) < tolerance * _exp: _exp = _upper.key _exp_idx = _upper.val # The integer index for _upper (float cannot be dict keys!) mlog_p_val = _poisson_stats[(_exp_idx, _obs)] else: # Else, calculate p value for _obs-_exp pair and store them in _calculated_values and _poisson_stats _exp_idx = _calculated_values[_obs].insert(_exp) # insert to the binary tree and return an index Poiss = poisson(_exp) p_val = 1 - Poiss.cdf(_obs) if 0 < p_val < 1: mlog_p_val = - np.log10(p_val) else: # Some p values are too small, -log(0) will return an error, so we use -1 to temporarily replace mlog_p_val = -1 _poisson_stats[(_exp_idx, _obs)] = mlog_p_val # stats_log.append([_exp, _obs, mlog_p_val]) else: # If _obs is not used before, generate a new binary tree _calculated_values[_obs] _calculated_values[_obs] = AVLTree() _exp_idx = _calculated_values[_obs].insert(_exp) # calculate p value for _obs-_exp pair and store them in _calculated_values and _poisson_stats Poiss = poisson(_exp) p_val = 1 - Poiss.cdf(_obs) if 0 < p_val < 1: mlog_p_val = - np.log10(p_val) else: # Some p values are too small, -log(0) will return an error, so we use -1 to temporarily replace mlog_p_val = -1 _poisson_stats[(_exp_idx, _obs)] = mlog_p_val # stats_log.append([_exp, _obs, mlog_p_val]) # Store enrichment score in new_mat new_mat[y] = mlog_p_val new_mat[new_mat < 0] = np.max(new_mat) # Replace all "-1"s with the largest -log(p) return new_mat
bfb987bd2e2d0770d81f811ba2486893b62d269d
16,710
def paginate(data, page=1, per_page=None): """Create a paginated response of the given query set. Arguments: data -- A flask_mongoengine.BaseQuerySet instance """ per_page = app.config['DEFAULT_PER_PAGE'] if not per_page else per_page pagination_obj = data.paginate(page=page, per_page=per_page) return { 'data': build_pagination_data(pagination_obj), 'meta': build_pagination_metadata(pagination_obj), }
c5a692067e5f58a971762316c83bcfe6f75051bf
16,711
def compute_mean_wind_dirs(res_path, dset, gids, fracs): """ Compute mean wind directions for given dset and gids """ with Resource(res_path) as f: wind_dirs = np.radians(f[dset, :, gids]) sin = np.mean(np.sin(wind_dirs) * fracs, axis=1) cos = np.mean(np.cos(wind_dirs) * fracs, axis=1) mean_wind_dirs = np.degrees(np.arctan2(sin, cos)) mask = mean_wind_dirs < 0 mean_wind_dirs[mask] += 360 return mean_wind_dirs
bd3f91cc0f4b05f630d252f6026e3f27c56cd134
16,712
import numpy def plot_area_and_score(samples: SampleList, compound_name: str, include_none: bool = False): """ Plot the peak area and score for the compound with the given name :param samples: A list of samples to plot on the chart :param compound_name: :param include_none: Whether samples where the compound was not found should be plotted. """ peak_areas, scores = samples.get_areas_and_scores(compound_name, include_none) fig, ax1 = plt.subplots() y_positions = numpy.arange(len(peak_areas)) y_positions = [x * 1.5 for x in y_positions] bar_width = 0.5 offset = bar_width / 2 area_y_pos = [x + offset for x in y_positions] area_bar = ax1.barh( area_y_pos, list(peak_areas.values()), label="Peak Area", color="tab:orange", height=bar_width, ) ax1.set_xscale("log") ax1.set_xlabel("Log10(Peak Area)") ax2 = ax1.twiny() score_scatter = ax2.scatter(list(scores.values()), area_y_pos, label="Score", color="tab:blue") ax2.set_xlabel("Score") ax1.barh([], [], label="Score", color="tab:blue", height=bar_width) ax1.set_yticks(y_positions) ax1.set_yticklabels(list(peak_areas.keys())) fig.suptitle(f"Peak Area and Score for {compound_name}\n") fig.set_size_inches(A4_landscape) plt.tight_layout() plt.subplots_adjust(top=0.9) ax1.legend() return fig, ax1, ax2
cce2dd3c3fca742627dca5c893f498d83e0d7840
16,713
def get_strides(fm: NpuFeatureMap) -> NpuShape3D: """Calculates STRIDE_C/Y/X""" if fm.strides is not None: return fm.strides elem_size = fm.data_type.size_in_bytes() if fm.layout == NpuLayout.NHWC: stride_c = elem_size stride_x = fm.shape.depth * stride_c stride_y = fm.shape.width * stride_x else: stride_x = 16 * elem_size stride_c = stride_x * fm.shape.width stride_y = elem_size * fm.shape.width * numeric_util.round_up(fm.shape.depth, 16) return NpuShape3D(depth=stride_c, height=stride_y, width=stride_x)
e933fd3b06fb53e44b81bcb28341137a14990dec
16,714
def gram_linear(x): """Compute Gram (kernel) matrix for a linear kernel. Args: x: A num_examples x num_features matrix of features. Returns: A num_examples x num_examples Gram matrix of examples. """ return x.dot(x.T)
f0a625d3ca6b846396c3c7c723b1bc8130a6c140
16,715
def to_feature(shape, properties={}): """ Create a GeoJSON Feature object for the given shapely.geometry :shape:. Optionally give the Feature a :properties: dict. """ collection = to_feature_collection(shape) feature = collection["features"][0] feature["properties"] = properties # remove some unecessary and redundant data if "id" in feature: del feature["id"] if isinstance(shape, shapely.geometry.Point) and "bbox" in feature: del feature["bbox"] return dict(feature)
39d8e7658ae2043c081d137f0a69ddd4344876fc
16,716
def read_responses(file): """ Read dialogs from file :param file: str, file path to the dataset :return: list, a list of dialogue (context) contained in file """ with open(file, 'r') as f: samples = f.read().split('<|endoftext|>') samples = samples[1:] # responses = [i.strip() for i in f.readlines() if len(i.strip()) != 0] return samples
e654a075622f04c3eca6c18e3d092593387ef237
16,717
def build_parametric_ev(data, onset, name, value, duration=None, center=None, scale=None): """Make design info for a multi-column constant-value ev. Parameters ---------- data : DataFrame Input data; must have "run" column and any others specified. onset : string Column name containing event onset information. name : string Condition name to use for this ev. value : string Column name containing event amplitude information. duration : string, float, or ``None`` Column name containing event duration information, or a value to use for all events, or ``None`` to model events as impulses. center : float, optional Value to center the ``value`` column at before scaling. If absent, center at the mean across runs. scale : callable, optional Function to scale the centered value column with. Returns ------- ev : DataFrame Returned DataFrame will have "run", "onset", "duration", "value", and "condition" columns. """ ev = data[["run", onset, value]].copy() ev.columns = ["run", "onset", "value"] # Center the event amplitude if center is None: ev["value"] -= ev.value.mean() else: ev["value"] = ev.value - center # (Possibly) scale the event amplitude if scale is not None: ev["value"] = scale(ev["value"]) # Set a condition name for all events ev["condition"] = name # Determine the event duration ev = _add_duration_information(data, ev, duration) return ev
47400052e2b2f4bf8217d9eaf71a83257180f5c4
16,718
import operator import bisect def time_aware_indexes(t, train_size, test_size, granularity, start_date=None): """Return a list of indexes that partition the list t by time. Sorts the list of dates t before dividing into training and testing partitions, ensuring a 'history-aware' split in the ensuing classification task. Args: t (np.ndarray): Array of timestamp tags. train_size (int): The training window size W (in τ). test_size (int): The testing window size Δ (in τ). granularity (str): The unit of time τ, used to denote the window size. Acceptable values are 'year|quarter|month|week|day'. start_date (date): The date to begin partioning from (eg. to align with the start of the year). Returns: (list, list): Indexing for the training partition. List of indexings for the testing partitions. """ # Order the dates as well as their original positions with_indexes = zip(t, range(len(t))) ordered = sorted(with_indexes, key=operator.itemgetter(0)) # Split out the dates from the indexes dates = [tup[0] for tup in ordered] indexes = [tup[1] for tup in ordered] # Get earliest date start_date = utils.resolve_date(start_date) if start_date else ordered[0][0] # Slice out training partition boundary = start_date + get_relative_delta(train_size, granularity) to_idx = bisect.bisect_left(dates, boundary) train = indexes[:to_idx] tests = [] # Slice out testing partitions while to_idx < len(indexes): boundary += get_relative_delta(test_size, granularity) from_idx = to_idx to_idx = bisect.bisect_left(dates, boundary) tests.append(indexes[from_idx:to_idx]) return train, tests
96e27c7a3f7284476d615a8d03f7c365f0406187
16,719
def send_invite_mail(invite, request): """ Send an email invitation to user not yet registered in the system. :param invite: ProjectInvite object :param request: HTTP request :return: Amount of sent email (int) """ invite_url = build_invite_url(invite, request) message = get_invite_body( project=invite.project, issuer=invite.issuer, role_name=invite.role.name, invite_url=invite_url, date_expire_str=localtime(invite.date_expire).strftime( '%Y-%m-%d %H:%M' ), ) message += get_invite_message(invite.message) message += get_email_footer() subject = get_invite_subject(invite.project) return send_mail(subject, message, [invite.email], request)
4554bb6bea20e03749739026583d6215714febbf
16,720
def binary_n(total_N, min_n=50): """ Creates a list of values by successively halving the total length total_N until the resulting value is less than min_n. Non-integer results are rounded down. Args: total_N (int): total length Kwargs: min_n (int): minimal length after division Returns: list of integers: total_N/2, total_N/4, total_N/8, ... until total_N/2^i < min_n """ max_exp = np.log2(1.0 * total_N / min_n) max_exp = int(np.floor(max_exp)) return [int(np.floor(1.0 * total_N / (2**i))) for i in range(1, max_exp + 1)]
240296c6024243da5750cb5aa7e64bea45ae91ca
16,722
def thresholding(pred,label,thres): """ Given the threshold return boolean matrix with 1 if > thres 0 if <= 1 """ conf =[] for i in thres: pr_th,lab_th = (pred>i),(label>i) conf += confusion(pr_th,lab_th) return np.array(conf).reshape(-1,4)
97727a75b4f7648c82a095c7804709e9a52f13ed
16,723
def unicode_test(request, oid): """Simple view to test funky characters from the database.""" funky = News.objects.using('livewhale').get(pk=oid) return render(request, 'bridge/unicode.html', {'funky': funky})
8357d76bfc22fdc3f12176332a4b19fd3bfb79c9
16,724
from typing import Optional from typing import Dict from typing import Any def _field_to_schema_object(field: BaseType, apistrap: Optional[Apistrap]) -> Optional[Dict[str, Any]]: """ Convert a field definition to OpenAPI 3 schema. :param field: the field to be converted :param apistrap: the extension used for adding reusable schema definitions :return: a schema """ if isinstance(field, ModelType): return _model_field_to_schema_object(field, apistrap) elif isinstance(field, ListType): if isinstance(field.field, ModelType): return _model_array_to_schema_object(field, apistrap) elif isinstance(field.field, BaseType): return _primitive_array_to_schema_object(field) elif isinstance(field, DictType): if isinstance(field.field, ModelType): return _model_dict_to_schema_object(field, apistrap) elif isinstance(field.field, UnionType): return _union_dict_to_schema_object(field, apistrap) elif isinstance(field.field, ListType) and isinstance(field.field.field, ModelType): return _dict_of_model_lists_to_schema_object(field, apistrap) elif isinstance(field.field, BaseType): return _primitive_dict_to_schema_object(field) elif isinstance(field, StringType): return _string_field_to_schema_object(field, apistrap) elif isinstance(field, AnyType): return {} elif isinstance(field, UnionType): return _union_field_to_schema_object(field, apistrap) elif isinstance(field, DiscriminatedModelType): return _discriminated_model_field_to_schema_object(field, apistrap) elif isinstance(field, PolyModelType): return _poly_model_field_to_schema_object(field, apistrap) elif isinstance(field, BaseType): return _primitive_field_to_schema_object(field) return None
1451f8795dc39d3168c141fd0ad8dd2615903163
16,725
from typing import Dict from typing import Any def drop_test(robot, *, z_rot: float, min_torque: bool, initial_height: float = 1.) -> Dict[str, Any]: """Params which have been tested for this task: nfe = 20, total_time = 1.0, vary_timestep_with=(0.8,1.2), 5 mins for solving if min_torque is True, quite a bit more time is needed as IPOPT refines things """ nfe = len(robot.m.fe) ncp = len(robot.m.cp) tested_models = ('3D monoped', '3D biped', '3D quadruped', '3D prismatic monoped') if not robot.name in tested_models: visual.warn( f'This robot configuration ("{robot.name}") hasn\'t been tested!\n' f'Tested models are: {tested_models}') body = robot['base_B'] if robot.name == '3D quadruped' else robot['base'] # start at the origin body['q'][1, ncp, 'x'].fix(0) body['q'][1, ncp, 'y'].fix(0) body['q'][1, ncp, 'z'].fix(initial_height) # fix initial angle for link in robot.links: for ang in ('phi', 'theta'): link['q'][1, ncp, ang].fix(0) link['q'][1, ncp, 'psi'].fix(z_rot) # start stationary for link in robot.links: for q in link.pyomo_sets['q_set']: link['dq'][1, ncp, q].fix(0) # init to y plane for link in robot.links: for ang in ('phi', 'theta'): link['q'][:, :, ang].value = 0 link['q'][:, :, 'psi'].value = z_rot # legs slightly forward at the end uplopairs = (('upper', 'lower'),) if robot.name == '3D monoped' \ else (('UL', 'LL'), ('UR', 'LR')) if robot.name == '3D biped' \ else (('UFL', 'LFL'), ('UFR', 'LFR'), ('UBL', 'LBL'), ('UBR', 'LBR')) if robot.name == '3D quadruped' \ else tuple() # <- iterating over this will result in the body not being evaluated for upper, lower in uplopairs: ang = 0.01 if not ( robot.name == '3D quadruped' and upper[1] == 'B') else -0.01 robot[upper]['q'][nfe, ncp, 'theta'].setlb(ang) robot[lower]['q'][nfe, ncp, 'theta'].setub(-ang) # but not properly fallen over body['q'][nfe, ncp, 'z'].setlb(0.2) # objective: reduce CoT, etc utils.remove_constraint_if_exists(robot.m, 'cost') torque_cost = torque_squared_penalty(robot) pen_cost = feet_penalty(robot) robot.m.cost = Objective(expr=(torque_cost if min_torque else 0) + 1000*pen_cost) return {'torque': torque_cost, 'penalty': pen_cost}
e6a070fd52356a314e5d2992d03fa61ead40f950
16,727
from typing import List from typing import Union from datetime import datetime from typing import Dict from typing import Any import httpx from typing import cast def get_user_list( *, client: Client, an_enum_value: List[AnEnum], some_date: Union[date, datetime], ) -> Union[ List[AModel], HTTPValidationError, ]: """ Get a list of things """ url = "{}/tests/".format(client.base_url) headers: Dict[str, Any] = client.get_headers() json_an_enum_value = [] for an_enum_value_item_data in an_enum_value: an_enum_value_item = an_enum_value_item_data.value json_an_enum_value.append(an_enum_value_item) if isinstance(some_date, date): json_some_date = some_date.isoformat() else: json_some_date = some_date.isoformat() params: Dict[str, Any] = { "an_enum_value": json_an_enum_value, "some_date": json_some_date, } response = httpx.get(url=url, headers=headers, params=params,) if response.status_code == 200: return [AModel.from_dict(item) for item in cast(List[Dict[str, Any]], response.json())] if response.status_code == 422: return HTTPValidationError.from_dict(cast(Dict[str, Any], response.json())) else: raise ApiResponseError(response=response)
77ca30fafb6c29f4cb04d25b52b7cca37e3ede04
16,728
def old_func5(self, x): """Summary. Bizarre indentation. """ return x
5bc9cdbc406fa49960613578296e81bdd4eeb771
16,729
def get_dotenv_variable(var_name: str) -> str: """ """ try: return config.get(var_name) except KeyError: error_msg = f"{var_name} not found!\nSet the '{var_name}' environment variable" raise ImproperlyConfigured(error_msg)
e3a06f3a439f5eb238688805985fb54eea7221e4
16,731
def load_dataset(): """ Create a PyTorch Dataset for the images. Notes ----- - See https://discuss.pytorch.org/t/computing-the-mean-and-std-of-dataset/34949 """ transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.9720, 0.9720, 0.9720), (0.1559, 0.1559, 0.1559)) # Normalize with the mean and std of the whole dataset ]) dataset = ImageFolder(root='images', transform=transform) return dataset
204e33cb7cb79ef81349b083e21ed6779c04dad0
16,732
def vote(pred1, pred2, pred3=None): """Hard voting for the ensembles""" vote_ = [] index = [] if pred3 is None: mean = np.mean([pred1, pred2], axis=0) for s, x in enumerate(mean): if x == 1 or x == 0: vote_.append(int(x)) else: vote_.append(pred2[s]) index.append(s) else: mean = np.mean([pred1, pred2, pred3], axis=0) for s, x in enumerate(mean): if x == 1 or x == 0: vote_.append(int(x)) elif x > 0.5: vote_.append(1) index.append(s) else: vote_.append(0) index.append(s) return mean, vote_, index
a24858c0f14fe51a70ff2c0146a4e1aa3a2afdeb
16,734
from pathlib import Path def generate_master_flat( science_frame : CCDData, bias_path : Path, dark_path : Path, flat_path : Path, use_cache : bool=True ) -> CCDData: """ """ cache_path = generate_cache_path(science_frame, flat_path) / 'flat' if use_cache and cache_path.is_dir(): flat_frames = ccdp.ImageFileCollection(location=cache_path) else: cache_path.mkdir(parents=True, exist_ok=True) flat_frames = calibrate_flat(science_frame=science_frame, bias_path=bias_path, dark_path=dark_path, flat_path=flat_path, output_path=cache_path) ccd = select_flat_frame(science_frame=science_frame, flat_frames=flat_frames) return ccd
5448e6f95e1d2c9249ac9419c767e675dc424c5b
16,735
def natrix_mqttclient(client_id): """Generate a natrix mqtt client. This function encapsulates all configurations about natrix mqtt client. Include: - client_id The unique id about mqtt connection. - username & password Username is device serial number which used to identify who am I; :return: """ client = NatrixMQTTClient(client_id) return client
20960873f265068aff035ec554b880fa93c49e32
16,736
def insert_singletons(words, singletons, p=0.5): """ Replace singletons by the unknown word with a probability p. """ new_words = [] for word in words: if word in singletons and np.random.uniform() < p: new_words.append(0) else: new_words.append(word) return new_words
c99e9ed38287c175cd97f9cec0c0f8fb8f3629a7
16,737
def talk(text, is_yelling=False, trim=False, verbose=True): """ Prints text is_yelling capitalizes text trim - trims whitespace from both ends verbose - if you want to print something on screen returns transformed text """ if trim: text = text.strip() if is_yelling: text = text.upper() if verbose: print(text) # printing is considered a side effect inside a function return text
22728a877460b4504653e2a0ea9ecdf81fa422f9
16,738
def getNorthPoleAngle(target, position, C, B, camera): """ Get angle north pole of target makes with image y-axis, in radians. """ # get target spin axis # the last row of the matrix is the north pole vector, *per spice docs* # seems correct, as it's nearly 0,0,1 Bz = B[2] print 'Bz=north pole spin axis',Bz # get target radius, km nvalues, radii = spice.bodvrd(target, 'RADII', 3) targetRadiusEquator = (radii[0] + radii[1]) / 2 targetRadiusPoles = radii[2] targetRadius = sum(radii) / 3 # flatteningCoefficient = (targetRadiusEquator - targetRadiusPoles) / targetRadiusEquator # print 'target radius in km', targetRadius # get north pole location positionNP = position + targetRadius * Bz print 'positionNP=north pole in world coords', positionNP # get target position in camera space c = np.dot(C, position) cNP = np.dot(C, positionNP) print 'c=position in camera space',c print 'cNP=north pole in camera space',cNP # get camera fov and focal length fovDegrees = config.cameraFOVs[camera] # 0.424 or 3.169 deg fovRadians = fovDegrees * math.pi / 180 f = 1.0 / math.tan(fovRadians/2) # focal length (relative to screen halfwidth of 1.0) print 'f=focal length',f # get camera-to-screen matrix S cz = c[2] fz = f/cz # print 'fz=f/cz',fz S = np.array([[fz,0,0],[0,fz,0]]) # get screen coordinate (-1 to 1, -1 to 1) s = np.dot(S, c) sNP = np.dot(S, cNP) # ie sx=cx*f/cz; sy=cy*f/cz print 's=screen space (-1 to 1)',s print 'sNP=screen space north pole (-1 to 1)',sNP # get angle between north pole and image y-axis npDelta = sNP-s npRadians = math.atan(npDelta[0]/npDelta[1]) npAngle = npRadians * 180/math.pi print 'npAngle',npAngle return npRadians
cf6d79ef3af005a170694d5fe00b93e9dd2665dd
16,739
def ray_casting(polygon, ray_line): """ checks number of intersection a ray makes with polygon parameters: Polygon, ray (line) output: number of intersection """ vertex_num = polygon.get_count() ray_casting_result = [False] * vertex_num ''' count for vertices that is colinear and intersects with ray ''' vertex_colinear_intersect_with_ray = 0 cursor = polygon.head for index in range(vertex_num): edge = LineSegment(cursor.data, cursor.next.data) ray_casting_result[index] = does_lines_intersect(edge, ray_line) cursor = cursor.next ''' added to check whether vertex is colinear with ray ''' if is_vertex_colinear(ray_line, cursor.data) and ray_casting_result[index]: vertex_colinear_intersect_with_ray = vertex_colinear_intersect_with_ray + 1 # print(ray_casting_result) # print(vertex_colinear_intersect_with_ray) ''' adjusted for colinear vertices ''' return ray_casting_result.count(True) - vertex_colinear_intersect_with_ray
004c73fbef35bec5af35b6b93cc5b2bdb2e40f33
16,740
def ErrorWrapper(err, resource_name): """Wraps http errors to handle resources names with more than 4 '/'s. Args: err: An apitools.base.py.exceptions.HttpError. resource_name: The requested resource name. Returns: A googlecloudsdk.api_lib.util.exceptions.HttpException. """ exc = exceptions.HttpException(err) if exc.payload.status_code == 404: # status_code specific error message exc.error_format = ('{{api_name}}: {resource_name} not found.').format( resource_name=resource_name) else: # override default error message exc.error_format = ('Unknown error. Status code {status_code}.') return exc
ebcce6241f88d0fa4f093f6823d0ccb9ae1bd431
16,743
def get_str_cmd(cmd_lst): """Returns a string with the command to execute""" params = [] for param in cmd_lst: if len(param) > 12: params.append('"{p}"'.format(p=param)) else: params.append(param) return ' '.join(params)
a7cc28293eb381604112265a99b9c03e762c2f2c
16,744
def calculate_score(arr): """Inside calculate_score() check for a blackjack (a hand with only 2 cards: ace + 10) and return 0 instead of the actual score. 0 will represent a blackjack in our game. It check for an 11 (ace). If the score is already over 21, remove the 11 and replace it with a 1""" if sum(arr) == 21 and len(arr) == 2: return 0 # represents blackjack if sum(arr) > 21 and 11 in arr: arr.remove(11) arr.append(1) return sum(arr)
0890c55068b8a92d9f1f577ccf2c5a770f7887d4
16,745
def tt_true(alpha): """Is the propositional sentence alpha a tautology? (alpha will be coerced to an expr.) >>> tt_true(expr("(P >> Q) <=> (~P | Q)")) True """ return tt_entails(TRUE, expr(alpha))
91ca0d445407f50d4b985e16428dfeb7f1e1b5a2
16,746
import configparser def show_config_data_by_section(data:configparser.ConfigParser, section:str): """Print a section's data by section name Args: data (configparser.ConfigParser): Data section (str): Section name """ if not _check_data_section_ok(data, section): return None val = data[section] print("[{}]".format(section)) for k, v in val.items(): print("{} = {}".format(k, v)) print()
620abac7791a9e34707236ea6186b4e77591a393
16,748