content
stringlengths 35
762k
| sha1
stringlengths 40
40
| id
int64 0
3.66M
|
---|---|---|
import base64
def int_to_base64(i: int) -> str:
""" Returns a 12 char length representation of i in base64 """
return base64.b64encode(i.to_bytes(8, 'big')) | 5bd7bb032926a8f429d766632c2ef2af9ee01edc | 16,514 |
def payment_provider(provider_base_config):
"""When it doesn't matter if request is contained within provider the fixture can still be used"""
return TurkuPaymentProviderV3(config=provider_base_config) | d6439a5ef097350682a2e17ccc41aeba1310a78a | 16,515 |
import re
def gradle_extract_data(build_gradle):
"""
Extract the project name and dependencies from a build.gradle file.
:param Path build_gradle: The path of the build.gradle file
:rtype: dict
"""
# Content for dependencies
content_build_gradle = extract_content(build_gradle)
match = re.search(r'apply plugin: ("|\')org.ros2.tools.gradle\1', content_build_gradle)
if not match:
raise RuntimeError("Gradle plugin missing, please add the following to build.gradle: \"apply plugin: 'org.ros2.tools.gradle'\"")
return extract_data(build_gradle) | dd802b8fedb682493a1978ae6cd60be9706580ff | 16,516 |
from typing import Sequence
import torch
def stack_batch_img(
img_tensors: Sequence[torch.Tensor], divisible: int = 0, pad_value: float = 0
) -> torch.Tensor:
"""
Args
:param img_tensors (Sequence[torch.Tensor]):
:param divisible (int):
:param pad_value (float): value to pad
:return: torch.Tensor.
"""
assert len(img_tensors) > 0
assert isinstance(img_tensors, (tuple, list))
assert divisible >= 0
img_heights = []
img_widths = []
for img in img_tensors:
assert img.shape[:-2] == img_tensors[0].shape[:-2]
img_heights.append(img.shape[-2])
img_widths.append(img.shape[-1])
max_h, max_w = max(img_heights), max(img_widths)
if divisible > 0:
max_h = (max_h + divisible - 1) // divisible * divisible
max_w = (max_w + divisible - 1) // divisible * divisible
batch_imgs = []
for img in img_tensors:
padding_size = [0, max_w - img.shape[-1], 0, max_h - img.shape[-2]]
batch_imgs.append(F.pad(img, padding_size, value=pad_value))
return torch.stack(batch_imgs, dim=0).contiguous() | 9952965a89688d742a3342804062cb8051f47f54 | 16,517 |
from evo.core import lie_algebra as lie
def convert_rel_traj_to_abs_traj(traj):
""" Converts a relative pose trajectory to an absolute-pose trajectory.
The incoming trajectory is processed elemente-wise. Poses at each
timestamp are appended to the absolute pose from the previous timestamp.
Args:
traj: A PoseTrajectory3D object with timestamps as indices containing, at a minimum,
columns representing the xyz position and wxyz quaternion-rotation at each
timestamp, corresponding to the pose between previous and current timestamps.
Returns:
A PoseTrajectory3D object with xyz position and wxyz quaternion fields for the
relative pose trajectory corresponding to the relative one given in `traj`.
"""
new_poses = [lie.se3()] # origin at identity
for i in range(0, len(traj.timestamps)):
abs_pose = np.dot(new_poses[-1], traj.poses_se3[i])
new_poses.append(abs_pose)
return trajectory.PoseTrajectory3D(timestamps=traj.timestamps[1:], poses_se3=new_poses) | 57e4972f5bc4ea67bf62b88ea87fc5df8dda0d7c | 16,518 |
def remove(handle):
"""The remove action allows users to remove a roommate."""
user_id = session['user']
roommate = model.roommate.get_roommate(user_id, handle)
# Check if roommate exists
if not roommate:
return abort(404)
if request.method == 'POST':
model.roommate.delete_roommate(roommate.id)
return redirect(url_for('roommate.overview'))
return render_template('/roommate/remove.jinja', roommate=roommate) | b1a279989d3cb463d54c8559352f2ae67f198b40 | 16,519 |
def maxsubarray(list):
"""
Find a maximum subarray following this idea:
Knowing a maximum subarray of list[0..j]
find a maximum subarray of list[0..j+1] which is either
(I) the maximum subarray of list[0..j]
(II) or is a maximum subarray list[i..j+1] for some 0 <= i <= j
We can determine (II) in constant time by keeping a max
subarray ending at the current j.
This is done in the first if of the loop, where the max
subarray ending at j is max(previousSumUntilJ + array[j], array[j])
This works because if array[j] + sum so far is less than array[j]
then the sum of the subarray so far is negative (and less than array[j]
in case it is also negative) so it has a bad impact on the
subarray until J sum and we can safely discard it and start anew
from array[j]
Complexity (n = length of list)
Time complexity: O(n)
Space complexity: O(1)
"""
if len(list) == 0:
return (-1, -1, 0)
# keep the max sum of subarray ending in position j
maxSumJ = list[0]
# keep the starting index of the maxSumJ
maxSumJStart = 0
# keep the sum of the maximum subarray found so far
maxSum = list[0]
# keep the starting index of the current max subarray found
maxStart = 0
# keep the ending index of the current max subarray found
maxEnd = 0
for j in range(1, len(list)):
if maxSumJ + list[j] >= list[j]:
maxSumJ = maxSumJ + list[j]
else:
maxSumJ = list[j]
maxSumJStart = j
if maxSum < maxSumJ:
maxSum = maxSumJ
maxStart = maxSumJStart
maxEnd = j
return (maxSum, maxStart, maxEnd) | a991ca09c0594b0d47eb4dd8be44d093d593cd36 | 16,520 |
def get_merged_threadlocal(bound_logger: BindableLogger) -> Context:
"""
Return a copy of the current thread-local context merged with the context
from *bound_logger*.
.. versionadded:: 21.2.0
"""
ctx = _get_context().copy()
ctx.update(structlog.get_context(bound_logger))
return ctx | 03c2689fd71542c7c007512fb4c2bf76a841a7bc | 16,521 |
def sort_cipher_suites(cipher_suites, ordering):
"""Sorts the given list of CipherSuite instances in a specific order."""
if ordering == 'asc':
return cipher_suites.order_by('name')
elif ordering == 'desc':
return cipher_suites.order_by('-name')
else:
return cipher_suites | 5a554ba1e2e4d82f53f29c5a1c2f4d311f538889 | 16,522 |
def make_1D_distributions(lims, n_points, all_shifts, all_errs, norm=None, max_shifts=None, seed=None):
"""
Generate 1D distributions of chemical shifts from arrays of shifts and errors of each distribution
Inputs: - lims Limits of the distributions
- n_points Number of points in the distributions
- all_shifts Array of shifts for each distribution
- all_errs Array of predicted error for each distribution
- norm Distribution normalization to apply
None: no normalization
"max": top of each distribution set to 1
- max_shifts Maximum number of shifts to consider when constructing the distribution
- seed Seed for the random selection of shifts
Outputs: - x Array of shielding values to plot the distributions against
- ys List of distributions
"""
# Construct the array of shielding values
x = np.linspace(lims[0], lims[1], n_points)
# Generate the distributions
ys = []
for i, (sh, er) in enumerate(zip(all_shifts, all_errs)):
print(" Constructing distribution {}/{}...".format(i+1, len(all_shifts)))
ys.append(make_1D_distribution(x, sh, er, norm=norm, max_shifts=max_shifts, seed=seed))
print(" Distribution constructed!\n")
return x, ys | 87c48b80dc395b4423b88fcbb3307dd53655333e | 16,523 |
def fill_column_values(df, icol=0):
"""
Fills empty values in the targeted column with the value above it.
Parameters
----------
df: pandas.DataFrame
icol: int
Returns
-------
pandas.DataFrame
"""
v = df.iloc[:,icol].fillna('').values.tolist()
vnew = fill_gaps(v)
dfnew = df.copy() # type: pd.DataFrame
dfnew.iloc[:,icol] = vnew
return dfnew | 158939f6436a4c9b5a13a18567ee6061e71df51c | 16,524 |
import torch
def reward(static, tour_indices):
"""
Euclidean distance between all cities / nodes given by tour_indices
"""
# Convert the indices back into a tour
idx = tour_indices.unsqueeze(1).expand(-1, static.size(1), -1)
tour = torch.gather(static.data, 2, idx).permute(0, 2, 1)
# Ensure we're always returning to the depot - note the extra concat
# won't add any extra loss, as the euclidean distance between consecutive
# points is 0
start = static.data[:, :, 0].unsqueeze(1)
y = torch.cat((start, tour, start), dim=1)
# Euclidean distance between each consecutive point
tour_len = torch.sqrt(torch.sum(torch.pow(y[:, :-1] - y[:, 1:], 2), dim=2))
return tour_len.sum(1) | f7197bcfb3699cafa4df3c1430b4f9ee1bf53242 | 16,525 |
def valid_review_queue_name(request):
"""
Given a name for a queue, validates the correctness for our review system
:param request:
:return:
"""
queue = request.matchdict.get('queue')
if queue in all_queues:
request.validated['queue'] = queue
return True
else:
_tn = Translator(get_language_from_cookie(request))
add_error(request, 'Invalid queue', _tn.get(_.internalError))
return False | fc6ef2fb728b18ce84669736f0e4ec1f020ea2bf | 16,526 |
def get_best_straight(possible_straights, hand):
""" get list of indices of hands that make the strongest straight
if no one makes a straight, return empty list
:param possible_straights: ({tuple(str): int})
map tuple of connecting cards --> best straight value they make
:param hand: (set(str)) set of strings
:return: (int) top value in the straight, or 0 if no straight
"""
highest_straight_value = 0 # e.g. 14 for broadway, 5 for the wheel
hand_values = set(
ranks_to_sorted_values(
ranks=[r for r, _ in hand], aces_high=True, aces_low=True
)
)
for connecting_values, max_value in possible_straights.items():
connecting_cards = set(connecting_values) & hand_values
if len(connecting_cards) == 2:
# we've made a straight!
if max_value > highest_straight_value:
highest_straight_value = max_value
return highest_straight_value | f2a470ef3033cac27cb406702daead42d59683aa | 16,528 |
from django.shortcuts import render_to_response, RequestContext
def stats(request):
"""
Display statistics for the web site
"""
views = list(View.objects.all().only('internal_url', 'browser'))
urls = {}
mob_vs_desk = { 'desktop': 0, 'mobile': 0 }
for view in views:
if is_mobile(view.browser):
mob_vs_desk['mobile'] += 1
else:
mob_vs_desk['desktop'] += 1
if not urls.has_key(view.internal_url):
urls[view.internal_url] = 0
urls[view.internal_url] += 1
stats = []
count = 0
for url in urls:
stats.append({'url': url, 'count': urls[url]})
count += urls[url]
stats = sorted(stats, key=lambda k: k['count'], reverse=True)
return render_to_response('admin/appview/view/display_stats.html',
RequestContext(request, { 'stats' : stats,
'total' : count,
'views': mob_vs_desk
}
)
) | 3b63250e6ce3c9ddd09ec8d19c9961b22bfab62a | 16,529 |
def build_argparser():
"""
Builds argument parser.
:return argparse.ArgumentParser
"""
banner = "%(prog)s - generate a static file representation of a PEP data repository."
additional_description = "\n..."
parser = _VersionInHelpParser(
description=banner,
epilog=additional_description)
parser.add_argument(
"-V", "--version",
action="version",
version="%(prog)s {v}".format(v=__version__))
parser.add_argument(
"-d", "--data", required=False,
default=PEPHUB_URL,
help="URL/Path to PEP storage tree.")
parser.add_argument(
"-o", "--out", required=False,
default="./out",
help="Outpath for generated PEP tree.")
parser.add_argument(
"-p", "--path", required=False,
help="Path to serve the file server at."
)
# parser for serve command
subparsers = parser.add_subparsers(
help="Functions",
dest="serve"
)
serve_parser = subparsers.add_parser("serve", help="Serve a directory using pythons built-in http library")
serve_parser.set_defaults(
func=serve_directory
)
serve_parser.add_argument(
"-f", "--files", required=False,
help="Files to serve.",
default="./out"
)
return parser | f33679c82a1499db83caf3473b0e5403ebfa52fe | 16,530 |
def abc19():
"""Solution to exercise C-1.19.
Demonstrate how to use Python’s list comprehension syntax to produce
the list [ a , b , c , ..., z ], but without having to type all 26 such
characters literally.
"""
a_idx = 97
return [chr(a_idx + x) for x in range(26)] | c9bb948ad57ddbc138dfbc0c481fabb45de620ba | 16,531 |
def filter_words(data: TD_Data_Dictionary):
"""This function removes all instances of Key.ctrl from the list of keys and
any repeats because of Press and Realese events"""
# NOTE: We may just want to remove all instances of Key.ctrl from the list and anything that follows that
keys = data.get_letters()
return keys | fb34e1758c83af0e30b5ae807a3f852ab7e3be29 | 16,533 |
from typing import Dict
def check_url_secure(
docker_ip: str,
public_port: int,
*,
auth_header: Dict[str, str],
ssl_context: SSLContext,
) -> bool:
"""
Secure form of lovey/pytest/docker/compose.py::check_url() that checks when the secure docker registry service is
operational.
Args:
docker_ip: IP address on which the service is exposed.
public_port: Port on which the service is exposed.
auth_header: HTTP basic authentication header to using when connecting to the service.
ssl_context:
SSL context referencing the trusted root CA certificated to used when negotiating the TLS connection.
Returns:
(bool) True when the service is operational, False otherwise.
"""
try:
https_connection = HTTPSConnection(
context=ssl_context, host=docker_ip, port=public_port
)
https_connection.request("HEAD", "/v2/", headers=auth_header)
return https_connection.getresponse().status < 500
except Exception: # pylint: disable=broad-except
return False | ebdc8f4d175f3be70000022424382f71d9fd73b5 | 16,534 |
def ResNet101(pretrained=False, use_ssld=False, **kwargs):
"""
ResNet101
Args:
pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
If str, means the path of the pretrained model.
use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
Returns:
model: nn.Layer. Specific `ResNet101` model depends on args.
"""
model = ResNet(config=NET_CONFIG["101"], version="vb", **kwargs)
_load_pretrained(pretrained, model, MODEL_URLS["ResNet101"], use_ssld)
return model | 0277c59f9b60d5c6127fb1021eb71b10691bd0f8 | 16,535 |
def LineTextInCurrentBuffer( line_number ):
""" Returns the text on the 1-indexed line (NOT 0-indexed) """
return vim.current.buffer[ line_number - 1 ] | 8c3b51a48e25e8955a00d89619da9e191612861a | 16,536 |
def imported_instrumentor(library):
"""
Convert a library name to that of the correlated auto-instrumentor
in the libraries package.
"""
instrumentor_lib = "signalfx_tracing.libraries.{}_".format(library)
return get_module(instrumentor_lib) | db26277b23f989d8d5323c7c6bde0905b1e2f5ef | 16,537 |
from datetime import datetime
def parse_runtime(log_file):
""" Parse the job run-time from a log-file
"""
with open(log_file, 'r') as f:
for line in f:
l0 = line.rstrip("\n")
break
l1 = tail(log_file, 1)[0].rstrip("\n")
l0 = l0.split()[:2]
l1 = l1.split()[:2]
try:
y0, m0, d0 = list(map(int, l0[0].split('-')))
h0, min0, s0 = list(map(float, l0[1][:-1].split(':')))
except ValueError as e:
print(log_file)
print(l0)
raise e
try:
y1, m1, d1 = list(map(int, l1[0].split('-')))
h1, min1, s1 = list(map(float, l1[1][:-1].split(':')))
except ValueError as e:
print(log_file)
print(l1)
raise e
date0 = datetime.datetime(y0, m0, d0, int(h0), int(min0), int(s0))
date1 = datetime.datetime(y1, m1, d1, int(h1), int(min1), int(s1))
diff = (date1 - date0).total_seconds()
return diff | 75a5a80409918779173eb1e80d6b3f95abf242cb | 16,539 |
def calculateEMA(coin_pair, period, unit):
"""
Returns the Exponential Moving Average for a coin pair
"""
closing_prices = getClosingPrices(coin_pair, period, unit)
previous_EMA = calculateSMA(coin_pair, period, unit)
constant = (2 / (period + 1))
current_EMA = (closing_prices[-1] * (2 / (1 + period))) + (previous_EMA * (1 - (2 / (1 + period))))
return current_EMA | ec884f89c2e8e64ada4384767251d6722c7b63c8 | 16,540 |
def euler_method(r0, N):
"""
euler_method function description:
This method computes the vector r(t)'s using Euler's method.
Args:
r0 - the initial r-value
N - the number of steps in each period
"""
delta_t = (2*np.pi)/N # delta t
r = np.zeros((5*N, 2)) # 5Nx2 array
r[0] = r0 # initial r-value
J = np.array(([0,1],[-1,0])) # antisymmetric matrix (meaning its transpose equals its negative)
for i in range(1, 5*N):
r[i] = r[i-1] + delta_t*(J@(r[i-1])) # euler's method
return r | 6ac3deae5cdb5ce84fa19433b55de80bf04ddf47 | 16,541 |
def main_menu(found_exists):
"""prints main menu and asks for user input
returns task that is chosen by user input"""
show_main_menu(found_exists)
inp = input(">> ")
if inp == "1":
return "update"
elif inp == "2":
return "show_all"
elif inp == "3":
return "show_waypoints"
elif inp == "4":
return "map-menu"
elif inp == "5":
return "show_one"
elif inp == "6":
return "search"
elif inp == "7" and found_exists:
return "show_founds"
elif inp == "8" and found_exists:
return "exit"
elif inp == "7" and not found_exists:
return "exit"
else:
print("Ungueltige Eingabe!") | 61d0bda6a1ddf8bf70a79ff6e7488601d781c5fc | 16,542 |
def fromPsl(psl, qCdsRange=None, inclUnaln=False, projectCds=False, contained=False):
"""generate a PairAlign from a PSL. cdsRange is None or a tuple. In
inclUnaln is True, then include Block objects for unaligned regions"""
qCds = _getCds(qCdsRange, psl.qStrand, psl.qSize)
qSeq = _mkPslSeq(psl.qName, psl.qStart, psl.qEnd, psl.qSize, psl.qStrand, qCds)
tSeq = _mkPslSeq(psl.tName, psl.tStart, psl.tEnd, psl.tSize, psl.tStrand)
aln = PairAlign(qSeq, tSeq)
prevBlk = None
for i in range(psl.blockCount):
prevBlk = _addPslBlk(psl.blocks[i], aln, prevBlk, inclUnaln)
if projectCds and (aln.qSeq.cds is not None):
aln.projectCdsToTarget(contained)
return aln | f1da225d53f36abf5d10589077de934f13c1ca2a | 16,543 |
from typing import Optional
def get_graph(identifier: str, *, rows: Optional[int] = None) -> pybel.BELGraph:
"""Get the graph surrounding a given GO term and its descendants."""
graph = pybel.BELGraph()
enrich_graph(graph, identifier, rows=rows)
return graph | fc004ebd3cdfa70edd01b611987dfd48306ceb80 | 16,545 |
def root_histogram_shape(root_hist, use_matrix_indexing=True):
"""
Return a tuple corresponding to the shape of the histogram.
If use_matrix_indexing is true, the tuple is in 'reversed' zyx
order. Matrix-order is the layout used in the internal buffer
of the root histogram - keep True if reshaping the array).
"""
dim = root_hist.GetDimension()
shape = np.array([root_hist.GetNbinsZ(),
root_hist.GetNbinsY(),
root_hist.GetNbinsX()][3 - dim:]) + 2
if not use_matrix_indexing:
shape = reversed(shape)
return tuple(shape) | 8df83a84f0a3b12bab248949042cd2df5df6f53e | 16,548 |
from typing import Union
def get_weather_sensor_by(
weather_sensor_type_name: str, latitude: float = 0, longitude: float = 0
) -> Union[WeatherSensor, ResponseTuple]:
"""
Search a weather sensor by type and location.
Can create a weather sensor if needed (depends on API mode)
and then inform the requesting user which one to use.
"""
# Look for the WeatherSensor object
weather_sensor = (
WeatherSensor.query.filter(
WeatherSensor.weather_sensor_type_name == weather_sensor_type_name
)
.filter(WeatherSensor.latitude == latitude)
.filter(WeatherSensor.longitude == longitude)
.one_or_none()
)
if weather_sensor is None:
create_sensor_if_unknown = False
if current_app.config.get("FLEXMEASURES_MODE", "") == "play":
create_sensor_if_unknown = True
# either create a new weather sensor and post to that
if create_sensor_if_unknown:
current_app.logger.info("CREATING NEW WEATHER SENSOR...")
weather_sensor = WeatherSensor(
name="Weather sensor for %s at latitude %s and longitude %s"
% (weather_sensor_type_name, latitude, longitude),
weather_sensor_type_name=weather_sensor_type_name,
latitude=latitude,
longitude=longitude,
)
db.session.add(weather_sensor)
db.session.flush() # flush so that we can reference the new object in the current db session
# or query and return the nearest sensor and let the requesting user post to that one
else:
nearest_weather_sensor = WeatherSensor.query.order_by(
WeatherSensor.great_circle_distance(
latitude=latitude, longitude=longitude
).asc()
).first()
if nearest_weather_sensor is not None:
return unrecognized_sensor(
nearest_weather_sensor.latitude,
nearest_weather_sensor.longitude,
)
else:
return unrecognized_sensor()
return weather_sensor | b4feb0a75709d1bf27378df6d90420c74e36646c | 16,550 |
import six
def _npy_loads(data):
"""
Deserializes npy-formatted bytes into a numpy array
"""
logger.info("Inside _npy_loads fn")
stream = six.BytesIO(data)
return np.load(stream,allow_pickle=True) | 5e9ee0a0d41403af0a8e1ed41f6d15a677d82c44 | 16,551 |
import dateutil
def parse_string(string):
"""Parse the string to a datetime object.
:param str string: The string to parse
:rtype: `datetime.datetime`
:raises: :exc:`InvalidDateFormat` when date format is invalid
"""
try:
# Try to parse string as a date
value = dateutil.parser.parse(string)
except (OverflowError, TypeError, ValueError):
raise InvalidDateFormat("Invalid date format %r" % (string, ))
return value | 6db2edad31f1febced496c92bfb2d7d76761850a | 16,552 |
def get_elfs_oriented(atoms, density, basis, mode, view = serial_view()):
"""
Outdated, use get_elfs() with "mode='elf'/'nn'" instead.
Like get_elfs, but returns real, oriented elfs
mode = {'elf': Use the ElF algorithm to orient fingerprint,
'nn': Use nearest neighbor algorithm}
"""
return get_elfs(atoms, density, basis, view, orient_mode = mode) | 36b5abe66e9054ab49a25eca753d4a61148a1b1c | 16,553 |
def error_logger(param=None):
"""
Function to get an error logger, object of Logger class.
@param param : Custom parameter that can be passed to the logger.
@return: custom logger
"""
logger = Logger('ERROR_LOGGER', param)
return logger.get_logger() | ca6449c2e63ebdccbd7bd3993dc1d11375e66e29 | 16,555 |
def get_iou(mask, label):
"""
:param mask: predicted mask with 0 for background and 1 for object
:param label: label
:return: iou
"""
# mask = mask.numpy()
# label = labels.numpy()
size = mask.shape
mask = mask.flatten()
label = label.flatten()
m = mask + label
i = len(np.argwhere(m == 2))
u = len(np.argwhere(m != 0))
if u == 0:
u = size[0] * size[1]
iou = float(i) / u
if i == 0 and u == 0:
iou = 1
return iou | 9322d0184a3e28bdd1d5bf3214b7fbe8936d6a21 | 16,557 |
from typing import List
from typing import Set
from typing import Any
def mean_jaccard_distance(sets: List[Set[Any]]) -> float:
"""
Compute the mean Jaccard distance for sets A_1, \dots A_n:
d = \frac{1}{n} \sum_{i=1}^{n-1} \sum_{j=i+1}^n (1 - J(A_i, A_j))
where J(A, B) is the Jaccard index between sets A and B and 1-J(A, B)
is the Jaccard distance.
"""
n = len(sets)
assert n > 0
if n == 1:
return 0
else:
d = 0.0
for i in range(n - 1):
for j in range(i + 1, n):
d += 1 - jaccard_index(sets[i], sets[j])
d /= n * (n - 1) / 2
return d | efbfce8092e2e3a9b5b076c46a636dfa17e2d266 | 16,558 |
def nx_find_connected(graph, start_set, end_set, cutoff=np.inf):
"""Return the nodes in end_set connected to start_set."""
reachable = []
for end in end_set:
if nx_is_reachable(graph, end, start_set):
reachable.append(end)
if len(reachable) >= cutoff:
break
return reachable | a3feb8a172bb610fa4416c6f4a4c0558540d2190 | 16,559 |
def svn_client_proplist(*args):
"""
svn_client_proplist(char target, svn_opt_revision_t revision, svn_boolean_t recurse,
svn_client_ctx_t ctx, apr_pool_t pool) -> svn_error_t
"""
return _client.svn_client_proplist(*args) | 1cc82161292df7b9ba284397a0dcd55da9d0d7c1 | 16,560 |
def dev_transform(signal, input_path='../data/', is_denoised=True):
"""
normalization function that transforms each fature based on the
scaling of the trainning set. This transformation should be done on
test set(developmental set), or any new input for a trained neural
network. Due to existence of a denoising step in the normal_seq funciton,
this transformation can not reproduce the exact same of initial sequences,
instead it transforms to the scale of denoised version of training set.
Parameters
----------
signal : numpy array or pandas dataframe
in the shape of (n_samples, n_features)
input_path : str, default='../data/'
is_denoised : boolean
it specifies the state if original sequence is denoised by a threshold,
if it's set to False it means that user used q=None in normal_seq function.
Returns
-------
transformed : numpy array
a normalised sequence or features
"""
transformed = []
if isinstance(signal, pd.DataFrame):
signal = signal.to_numpy(copy=True)
elif isinstance(signal, list):
signal = np.array(signal)
scales = pd.read_csv(input_path + 'min_max_inputs.csv')
max_element = scales.to_numpy(copy=True)[1, 1:]
min_element = scales.to_numpy(copy=True)[0, 1:]
if signal.ndim == 1:
if is_denoised is True:
signal[signal > max_element] = max_element
transformed.append((signal-min_element)/(
max_element-min_element))
else:
for i in range(signal.shape[1]):
if is_denoised is True:
signal[signal[:, i] > max_element[i]] = max_element[i]
transformed.append((signal[:, i]-min_element[i])/(
max_element[i]-min_element[i]))
transformed = np.array(transformed).T # transpose for correspondence
return transformed | ce6dfe780bb724ae8036502d2b1d1828fce675dc | 16,561 |
def moveTo(self, parent):
"""Move this element to new parent, as last child"""
self.getParent().removeChild(self)
parent.addChild(self)
return self | 40caa9681346db9a6cfb5c95fdb761a9f98e607a | 16,562 |
from datetime import datetime
def coerce_to_end_of_day_datetime(value):
"""
gets the end of day datetime equivalent of given date object.
if the value is not a date, it returns the same input.
:param date value: value to be coerced.
:rtype: datetime | object
"""
if not isinstance(value, datetime) and isinstance(value, date):
return end_of_day(value)
return value | 374e7decf543e5fb40fb7714d4472cf4cfa48cb1 | 16,563 |
def greybody(nu, temperature, beta, A=1.0, logscale=0.0,
units='cgs', frequency_units='Hz', kappa0=4.0, nu0=3000e9,
normalize=max):
"""
Same as modified blackbody... not sure why I have it at all, though the
normalization constants are different.
"""
h,k,c = unitdict[units]['h'],unitdict[units]['k'],unitdict[units]['c']
modification = (1. - exp(-(nu/nu0)**beta))
I = blackbody(nu,temperature,units=units,frequency_units=frequency_units,normalize=normalize)*modification
if normalize and hasattr(I,'__len__'):
if len(I) > 1:
return I/normalize(I) * 10.**logscale
else:
return I * 10.**logscale
else:
return I * 10.**logscale | 89cca39acf5659e8ab7b403c5747b19c119d0e51 | 16,564 |
import copy
def GCLarsen_v0(WF, WS, WD, TI,
pars=[0.435449861, 0.797853685, -0.124807893, 0.136821858, 15.6298, 1.0]):
"""Computes the WindFarm flow and Power using GCLarsen
[Larsen, 2009, A simple Stationary...]
Inputs
----------
WF: WindFarm
Windfarm instance
WS: list
Rotor averaged Undisturbed wind speed [m/s] for each WT
WD: float
Rotor averaged Undisturbed wind direction [deg] for each WT
Meteorological axis. North = 0 [deg], clockwise.
TI: float
Rotor averaged turbulence intensity [-] for each WT
Returns
-------
P_WT: ndarray
Power production of the wind turbines (nWT,1) [W]
U_WT: ndarray
Wind speed at hub height (nWT,1) [m/s]
Ct: ndarray
Thrust coefficients for each wind turbine (nWT,1) [-]
"""
Dist, nDownstream, id0 = WF.turbineDistance(np.mean(WD))
zg = WF.vectWTtoWT[2,:,:]
# Initialize arrays to NaN
Ct = np.nan * np.ones([WF.nWT])
U_WT = copy(WS)
P_WT = np.nan * np.ones([WF.nWT])
# Initialize first upstream turbine
Ct[id0[0]] = WF.WT[id0[0]].get_CT(WS[id0[0]])
P_WT[id0[0]] = WF.WT[id0[0]].get_P(WS[id0[0]])
U_WT[id0[0]] = WS[id0[0]]
for i in range(1, WF.nWT):
cWT = id0[i] # Current wind turbine (wake operating)
cR = WF.WT[cWT].R
LocalDU = np.zeros([WF.nWT, 1])
for j in range(i-1, -1, -1):
# Loop on the upstream turbines (uWT) of the cWT
uWT = id0[j]
uWS = U_WT[uWT] # Wind speed at wind turbine uWT
uR = WF.WT[uWT].R
uCT = Ct[uWT]
if np.isnan(uCT):
uCT = WF.WT[uWT].get_CT(uWS)
# WT2WT vector in wake coordinates
Dist, _,_ = WF.turbineDistance(WD[uWT])
x = Dist[0, uWT, cWT]
y = Dist[1, uWT, cWT]
z = zg[uWT, cWT]
r = np.sqrt(y**2.+z**2.)
# Calculate the wake width of uWT at the position of cWT
Rw = get_Rw(x, uR, TI[uWT], uCT, pars)[0]
if (r <= Rw+cR or uWS > 0):
LocalDU[uWT] = uWS*get_dUeq(x,y,z,cR,uR,uCT,TI[uWT],pars)
# Wake superposition
DU = LocalDU.sum()
U_WT[cWT] = U_WT[cWT] + DU
if U_WT[cWT] > WF.WT[cWT].u_cutin:
Ct[cWT] = WF.WT[cWT].get_CT(U_WT[cWT])
P_WT[cWT] = WF.WT[cWT].get_P(U_WT[cWT])
else:
Ct[cWT] = WF.WT[cWT].CT_idle
P_WT[cWT] = 0.0
return (P_WT,U_WT,Ct) | a075074b0cee9b36fdf3411804ff4eff2f5fe63b | 16,565 |
def guess_table_address(*args):
"""
guess_table_address(insn) -> ea_t
Guess the jump table address (ibm pc specific)
@param insn (C++: const insn_t &)
"""
return _ida_ua.guess_table_address(*args) | 073773e33b5cf4c59f3a3c892d5a53320c2c1f4b | 16,566 |
def get_elbs(account, region):
""" Get elastic load balancers """
elb_data = []
aws_accounts = AwsAccounts()
if not account:
session = boto3.session.Session(region_name=region)
for account_rec in aws_accounts.all():
elb_data.extend(
query_elbs_for_account(account_rec, region, session))
elif account.isdigit() and len(account) == 12:
session = boto3.session.Session()
aws_account = aws_accounts.with_number(account)
if aws_account:
elb_data.append(
query_elbs_for_account(
aws_account, region, session))
else:
return dict(Message="Account not found"), 404
# print(elb_data)
return dict(LoadBalancers=elb_data), 200 | 32b059c7929b0adae3df7b8393fd062f5a281cc3 | 16,568 |
def likelihood_params(ll_mode, mode, behav_tuple, num_induc, inner_dims, inv_link, tbin, jitter,
J, cutoff, neurons, mapping_net, C):
"""
Create the likelihood object.
"""
if mode is not None:
kernel_tuples_, ind_list = kernel_used(mode, behav_tuple, num_induc, inner_dims)
if ll_mode =='hZIP':
inv_link_hetero = 'sigmoid'
elif ll_mode =='hCMP':
inv_link_hetero = 'identity'
elif ll_mode =='hNB':
inv_link_hetero = 'softplus'
else:
inv_link_hetero = None
if inv_link_hetero is not None:
mean_func = np.zeros((inner_dims))
kt, ind_list = kernel_used(mode, behav_tuple, num_induc, inner_dims)
gp_lvms = GP_params(ind_list, kt, num_induc, neurons, inv_link, jitter, mean_func, None,
learn_mean=True)
else:
gp_lvms = None
inv_link_hetero = None
if ll_mode == 'IBP':
likelihood = mdl.likelihoods.Bernoulli(tbin, inner_dims, inv_link)
elif ll_mode == 'IP':
likelihood = mdl.likelihoods.Poisson(tbin, inner_dims, inv_link)
elif ll_mode == 'ZIP' or ll_mode =='hZIP':
alpha = .1*np.ones(inner_dims)
likelihood = mdl.likelihoods.ZI_Poisson(tbin, inner_dims, inv_link, alpha, dispersion_mapping=gp_lvms)
#inv_link_hetero = lambda x: torch.sigmoid(x)/tbin
elif ll_mode == 'NB' or ll_mode =='hNB':
r_inv = 10.*np.ones(inner_dims)
likelihood = mdl.likelihoods.Negative_binomial(tbin, inner_dims, inv_link, r_inv, dispersion_mapping=gp_lvms)
elif ll_mode == 'CMP' or ll_mode =='hCMP':
log_nu = np.zeros(inner_dims)
likelihood = mdl.likelihoods.COM_Poisson(tbin, inner_dims, inv_link, log_nu, J=J, dispersion_mapping=gp_lvms)
elif ll_mode == 'IG': # renewal process
shape = np.ones(inner_dims)
likelihood = mdl.likelihoods.Gamma(tbin, inner_dims, inv_link, shape, allow_duplicate=False)
elif ll_mode == 'IIG': # renewal process
mu_t = np.ones(inner_dims)
likelihood = mdl.likelihoods.invGaussian(tbin, inner_dims, inv_link, mu_t, allow_duplicate=False)
elif ll_mode == 'LN': # renewal process
sigma_t = np.ones(inner_dims)
likelihood = mdl.likelihoods.logNormal(tbin, inner_dims, inv_link, sigma_t, allow_duplicate=False)
elif ll_mode == 'U':
likelihood = mdl.likelihoods.Universal(inner_dims//C, C, inv_link, cutoff, mapping_net)
else:
raise NotImplementedError
return likelihood | 2e817c4fdfdd9a65d138f61166ef8fbb3154460b | 16,570 |
def is_num_idx(k):
"""This key corresponds to """
return k.endswith("_x") and (k.startswith("tap_x") or k.startswith("sig")) | bd4ed2c9c4a24ae423ec6c738d99b31ace6ec267 | 16,571 |
def convert_to_boolarr(int_arr, cluster_id):
"""
:param int_arr: array of integers which relate to no, one or multiple clusters
cluster_id: 0=Pleiades, 1=Meingast 1, 2=Hyades, 3=Alpha Per, 4=Coma Ber
"""
return np.array((np.floor(int_arr/2**cluster_id) % 2), dtype=bool) | c769ca07ea32a9e0ab0d230cd3574e5b71434de4 | 16,572 |
def serialize(root):
#
"""Serialization is the process of converting a data structure or object
into a sequence of bits so that it can be stored in a file or memory buffer,
or transmitted across a network connection link to be reconstructed later in
the same or another computer environment.
Design an algorithm to serialize and deserialize a binary tree. There is no
restriction on how your serialization/deserialization algorithm should work.
You just need to ensure that a binary tree can be serialized to a string and
this string can be deserialized to the original tree structure.
Input:
1
/ \
2 3
/ \
4 5
1
/ \
2 3
/ \
4 56 7
1
/ \
10 11
/ \
100 101 110 111
Output: [1,2,3,null,null,4,5]
0 = 0
1 = 2**0 + 1
2 = 2**0 + 2
3 = 2**1 + 1
4 = 2**1 + 2
5 = 2**2 + 1
6 = 2**2 + 2**1
7 = 2**2 + 2**1 + 2**0
"""
queue = [(root, "1")]
indices = {}
max_location = 0
while queue:
node, location = queue.pop(0)
current_location = int(location, 2)
max_location = max(max_location, current_location)
indices[int(location, 2)] = node.val
if node.left:
queue.append((node.left, location + "0"))
if node.right:
queue.append((node.right, location + "1"))
result = [None] * (max_location + 1)
for k, v in indices.items():
result[k] = v
return result[1:] | a2bec43b384302d5218e8c62c83bc069be3bcbd3 | 16,573 |
def ensure_daemon(f):
"""A decorator for running an integration test with and without the daemon enabled."""
def wrapper(self, *args, **kwargs):
for enable_daemon in [False, True]:
enable_daemon_str = str(enable_daemon)
env = {
"HERMETIC_ENV": "PANTS_PANTSD,PANTS_SUBPROCESSDIR",
"PANTS_PANTSD": enable_daemon_str,
}
with environment_as(**env):
try:
f(self, *args, **kwargs)
except Exception:
print(f"Test failed with enable-pantsd={enable_daemon}:")
if not enable_daemon:
print(
"Skipping run with pantsd=true because it already "
"failed with pantsd=false."
)
raise
finally:
kill_daemon()
return wrapper | d9005c48d489b8b5da1f9687b78d1f455aaf3d62 | 16,574 |
from adaptivefiltering.pdal import execute_pdal_pipeline
from adaptivefiltering.pdal import PDALInMemoryDataSet
import json
def reproject_dataset(dataset, out_srs, in_srs=None):
"""Standalone function to reproject a given dataset with the option of forcing an input reference system
:param out_srs:
The desired output format in WKT.
:type out_srs: str
:param in_srs:
The input format in WKT from which to convert. The default is the dataset's current reference system.
:type in_srs: str
:return:
A reprojected dataset
:rtype: adaptivefiltering.DataSet
"""
dataset = PDALInMemoryDataSet.convert(dataset)
if in_srs is None:
in_srs = dataset.spatial_reference
config = {
"type": "filters.reprojection",
"in_srs": in_srs,
"out_srs": out_srs,
}
pipeline = execute_pdal_pipeline(dataset=dataset, config=config)
spatial_reference = json.loads(pipeline.metadata)["metadata"][
"filters.reprojection"
]["comp_spatialreference"]
return PDALInMemoryDataSet(
pipeline=pipeline,
spatial_reference=spatial_reference,
) | 0380442a837f89bbf06d0d1b5e9917e7309876ad | 16,575 |
def conditional(condition, decorator):
""" Decorator for a conditionally applied decorator.
Example:
@conditional(get_config('use_cache'), ormcache)
def fn():
pass
"""
if condition:
return decorator
else:
return lambda fn: fn | 7c17ad3aaacffd0008ec1cf66871ea6755f7869a | 16,576 |
import statistics
def variance(data, mu=None):
"""Compute variance over a list."""
if mu is None:
mu = statistics.mean(data)
return sum([(x - mu) ** 2 for x in data]) / len(data) | 92f89d35c2ae5abf742b10ba838a381d6f74e92c | 16,577 |
def make_note(outfile, headers, paragraphs, **kw):
"""Builds a pdf file named outfile based on headers and
paragraphs, formatted according to parameters in kw.
:param outfile: outfile name
:param headers: <OrderedDict> of headers
:param paragraphs: <OrderedDict> of paragraphs
:param kw: keyword arguments for formatting
"""
story = [Paragraph(x, headers[x]) for x in headers.keys()]
for headline, paragraph in paragraphs.items():
story.append(Paragraph(headline, paragraph.get("style", h3)))
if not paragraph.has_key("tpl"):
for sub_headline, sub_paragraph in paragraph.items():
story.append(Paragraph(sub_headline, paragraph.get("style", h4)))
story.append(Paragraph(sub_paragraph.get("tpl").render(**kw), p))
else:
if isinstance(paragraph.get("tpl"), Template):
story.append(Paragraph(paragraph.get("tpl").render(**kw), p))
elif isinstance(paragraph.get("tpl"), Table):
story.append(Spacer(1, 0.2 * inch))
story.append(paragraph.get("tpl"))
story.append(Spacer(1, 0.2 * inch))
else:
pass
doc = SimpleDocTemplate(outfile)
doc.build(story, onFirstPage=formatted_page, onLaterPages=formatted_page)
return doc | d9bc331167649210cf18e76bcff4099817c28458 | 16,578 |
import stat
def output_file_exists(filename):
"""Check if a file exists and its size is > 0"""
if not file_exists(filename):
return False
st = stat(filename)
if st[stat_module.ST_SIZE] == 0:
return False
return True | ad2f3a7451feefd32fe98da7fc3bfca9852b080c | 16,579 |
def IMF_N(m,a=.241367,b=.241367,c=.497056):
"""
returns number of stars with mass m
"""
# a,b,c = (.241367,.241367,.497056)
# a=b=c=1/3.6631098624
if .1 <= m <= .3:
res = c*( m**(-1.2) )
elif .3 < m <= 1.:
res = b*( m**(-1.8) )
elif 1. < m <= 100.:
# res = a*( m**(-1.3)-100**(-1.3) )/1.3
res = a*( m**(-2.3) )
else:
res = 0
return res | 4d120af2840a793468335cddd867f6d29940d415 | 16,580 |
def features_disable(partial_name, partial_name_field, force, **kwargs):
"""Disable a feature"""
mode = "disable"
params = {"mode": "force"} if force else None
feature = _okta_get("features", partial_name,
selector=_selector_field_find(partial_name_field, partial_name))
feature_id = feature["id"]
rv = okta_manager.call_okta(f"/features/{feature_id}/{mode}",
REST.post, params=params)
return rv | 5477a43ad2f849669a6a209abfc835f0f4ee453a | 16,581 |
def _get_images():
"""Get the official AWS public AMIs created by Flambe
that have tag 'Creator: [email protected]'
ATTENTION: why not just search the tags? We need to make sure
the AMIs we pick were created by the Flambe team. Because of tags
values not being unique, anyone can create a public AMI with
'Creator: [email protected]' as a tag. If we pick that AMI, then
we could potentially be creating instances with unknown AMIs,
causing potential security issues.
By filtering by our acount id (which can be public), then we can
make sure that all AMIs that are being scanned were created
by Flambe team.
"""
client = boto3.client('ec2')
return client.describe_images(Owners=[const.AWS_FLAMBE_ACCOUNT],
Filters=[{'Name': 'tag:Creator', 'Values': ['[email protected]']}]) | 975596ff9eb1c9c0864cadb41edc2b1a4d009790 | 16,582 |
def ar_coefficient(x, param):
"""
This feature calculator fits the unconditional maximum likelihood
of an autoregressive AR(k) process.
The k parameter is the maximum lag of the process
.. math::
X_{t}=\\varphi_0 +\\sum _{{i=1}}^{k}\\varphi_{i}X_{{t-i}}+\\varepsilon_{t}
For the configurations from param which should contain the maxlag "k" and such an AR process is calculated. Then
the coefficients :math:`\\varphi_{i}` whose index :math:`i` contained from "coeff" are returned.
:param x: the time series to calculate the feature of
:type x: numpy.ndarray
:param param: contains dictionaries {"coeff": x, "k": y} with x,y int
:type param: list
:return x: the different feature values
:return type: pandas.Series
"""
calculated_ar_params = {}
x_as_list = list(x)
calculated_AR = AR(x_as_list)
res = {}
k = param["k"]
p = param["coeff"]
column_name = "k_{}__coeff_{}".format(k, p)
if k not in calculated_ar_params:
try:
calculated_ar_params[k] = calculated_AR.fit(maxlag=k, solver="mle").params
except (np.linalg.LinAlgError, ValueError):
calculated_ar_params[k] = [np.NaN]*k
mod = calculated_ar_params[k]
if p <= k:
try:
res[column_name] = mod[p]
except IndexError:
res[column_name] = 0
else:
res[column_name] = np.NaN
return [value for key, value in res.items()][0] | a7a7171a44055d23457fd622d7e893f839f17bcf | 16,583 |
from faker import Faker
import random
def address_factory(sqla):
"""Create a fake address."""
fake = Faker() # Use a generic one; others may not have all methods.
addresslines = fake.address().splitlines()
areas = sqla.query(Area).all()
if not areas:
create_multiple_areas(sqla, random.randint(3, 6))
areas = sqla.query(Area).all()
current_area = random.choice(areas)
address = {
'name': fake.name(),
'address': addresslines[0],
'city': addresslines[1].split(",")[0],
'area_id': current_area.id,
'country_code': current_area.country_code,
'latitude': random.random() * 0.064116 + -2.933783,
'longitude': random.random() * 0.09952 + -79.055411
}
return address | 91f4558887025841d99ab6e65795111bbc804238 | 16,585 |
from pm4py.util import constants
from pm4py.algo.discovery.dfg.adapters.pandas.df_statistics import get_dfg_graph
from pm4py.statistics.start_activities.pandas import get as start_activities_module
from pm4py.statistics.end_activities.pandas import get as end_activities_module
from pm4py.algo.discovery.dfg.variants import performance as dfg_discovery
from pm4py.statistics.start_activities.log import get as start_activities_module
from pm4py.statistics.end_activities.log import get as end_activities_module
from typing import Union
from typing import List
from typing import Tuple
def discover_performance_dfg(log: Union[EventLog, pd.DataFrame], business_hours: bool = False, worktiming: List[int] = [7, 17], weekends: List[int] = [6, 7]) -> Tuple[dict, dict, dict]:
"""
Discovers a performance directly-follows graph from an event log
Parameters
---------------
log
Event log
business_hours
Enables/disables the computation based on the business hours (default: False)
worktiming
(If the business hours are enabled) The hour range in which the resources of the log are working (default: 7 to 17)
weekends
(If the business hours are enabled) The weekends days (default: Saturday (6), Sunday (7))
Returns
---------------
performance_dfg
Performance DFG
start_activities
Start activities
end_activities
End activities
"""
general_checks_classical_event_log(log)
if check_is_pandas_dataframe(log):
check_pandas_dataframe_columns(log)
properties = get_properties(log)
activity_key = properties[constants.PARAMETER_CONSTANT_ACTIVITY_KEY] if constants.PARAMETER_CONSTANT_ACTIVITY_KEY in properties else xes_constants.DEFAULT_NAME_KEY
timestamp_key = properties[constants.PARAMETER_CONSTANT_TIMESTAMP_KEY] if constants.PARAMETER_CONSTANT_TIMESTAMP_KEY in properties else xes_constants.DEFAULT_TIMESTAMP_KEY
case_id_key = properties[constants.PARAMETER_CONSTANT_CASEID_KEY] if constants.PARAMETER_CONSTANT_CASEID_KEY in properties else constants.CASE_CONCEPT_NAME
dfg = get_dfg_graph(log, activity_key=activity_key, timestamp_key=timestamp_key, case_id_glue=case_id_key, measure="performance", perf_aggregation_key="all",
business_hours=business_hours, worktiming=worktiming, weekends=weekends)
start_activities = start_activities_module.get_start_activities(log, parameters=properties)
end_activities = end_activities_module.get_end_activities(log, parameters=properties)
else:
properties = get_properties(log)
properties[dfg_discovery.Parameters.AGGREGATION_MEASURE] = "all"
properties[dfg_discovery.Parameters.BUSINESS_HOURS] = business_hours
properties[dfg_discovery.Parameters.WORKTIMING] = worktiming
properties[dfg_discovery.Parameters.WEEKENDS] = weekends
dfg = dfg_discovery.apply(log, parameters=properties)
start_activities = start_activities_module.get_start_activities(log, parameters=properties)
end_activities = end_activities_module.get_end_activities(log, parameters=properties)
return dfg, start_activities, end_activities | df8d9669c7e2a4cd3170cb1c5a1ecc7e7811649e | 16,586 |
import warnings
def mifs(data, target_variable, prev_variables_index, candidate_variable_index, **kwargs):
"""
This estimator computes the Mutual Information Feature Selection criterion.
Parameters
----------
data : np.array matrix
Matrix of data set. Columns are variables, rows are observations.
target_variable : int or float
Target variable. Can not be in data!
prev_variables_index: list of ints, set of ints
Indexes of previously selected variables.
candidate_variable_index : int
Index of candidate variable in data matrix.
beta: float
Impact of redundancy segment in MIFS approximation. Higher the beta is, higher the impact.
Returns
-------
j_criterion_value : float
J_criterion approximated by the Mutual Information Feature Selection.
"""
assert isinstance(data, np.ndarray), "Argument 'data' must be a numpy matrix"
assert isinstance(target_variable, np.ndarray), "Argument 'target_variable' must be a numpy matrix"
assert isinstance(candidate_variable_index, int), "Argument 'candidate_variable_index' must be an integer"
assert len(data.shape) == 2, "For 'data' argument use numpy array of shape (n,p)"
assert data.shape[0] == len(target_variable), "Number of rows in 'data' must equal target_variable length"
assert candidate_variable_index < data.shape[1], "Index 'candidate_variable_index' out of range in 'data'"
for i in prev_variables_index:
assert isinstance(i, int), "All previous variable indexes must be int."
if kwargs.get('beta') is None:
beta = 1
warnings.warn("Parameter `beta` not provided, default value of 1 is selected.", Warning)
else:
beta = kwargs.pop('beta')
assert isinstance(beta, int) or isinstance(beta, float), "Argument 'beta' must be int or float"
candidate_variable = data[:, candidate_variable_index]
if len(prev_variables_index) == 0:
redundancy_sum = 0
else:
redundancy_sum = np.apply_along_axis(mutual_information, axis=0, arr=data[:, prev_variables_index], vector_2=candidate_variable).sum()
return mutual_information(candidate_variable, target_variable) - beta*redundancy_sum | 058ebdbb831d7fb52c4b5f053ba7bb8a1ce7f144 | 16,587 |
def input_thing():
"""输入物品信息"""
name_str, price_str, weight_str = input('请输入物品信息(名称 价格 重量):').split()
return name_str, int(price_str), int(weight_str) | 2a986e9479e8e4262cfab89f258af3536c5fefe3 | 16,588 |
def extract_features_mask(img, mask):
"""Computes law texture features for masked area of image."""
preprocessed_img = laws_texture.preprocess_image(img, size=15)
law_images = laws_texture.filter_image(preprocessed_img, LAW_MASKS)
law_energy = laws_texture.compute_energy(law_images, 10)
energy_features_list = []
for type, energy in law_energy.items():
# extract features for mask
energy_masked = energy[np.where(mask != 0)]
energy_feature = np.mean(energy_masked, dtype=np.float32)
energy_features_list.append(energy_feature)
return energy_features_list | e184695fb2879cf9fd418e7110498717585b4878 | 16,589 |
def construct_grid_with_k_connectivity(n1,n2,k,figu = False):
"""Constructs directed grid graph with side lengths n1 and n2 and neighborhood connectivity k"""
"""For plotting the adjacency matrix give fig = true"""
def feuclidhorz(u , v):
return np.sqrt((u[0] - (v[0]-n2))**2+(u[1] - v[1])**2)
def feuclidvert(u , v):
return np.sqrt((u[0] - (v[0]))**2+(u[1] - (v[1]-n1))**2 )
def fperiodeuc(u , v):
return np.sqrt((u[0] - (v[0]-n2))**2 + (u[1] - (v[1]-n1))**2 )
def finvperiodic(u,v):
return fperiodeuc(v,u)
def finvvert(u,v):
return feuclidvert(v,u)
def finvhorz(u,v):
return feuclidhorz(v,u)
def fperiodeucb(u , v):
return np.sqrt((u[0]-n2 - (v[0]))**2 + (u[1] - (v[1]-n1))**2 )
def fperiodeucc(v, u):
return np.sqrt((u[0]-n2 - (v[0]))**2 + (u[1] - (v[1]-n1))**2 )
def fchhorz(u , v):
return max(abs(u[0] - (v[0]-n2)), abs(u[1] - v[1]))
def fchvert(u , v):
return max(abs(u[0] - (v[0])),abs(u[1] - (v[1]-n1)) )
def fperiodch(u , v):
return max(abs(u[0] - (v[0]-n2)) , abs(u[1] - (v[1]-n1)) )
def finvperiodicch(u,v):
return fperiodch(v,u)
def finvvertch(u,v):
return fchvert(v,u)
def finvhorzch(u,v):
return fchhorz(v,u)
def fperiodchb(u , v):
return max(abs(u[0]-n2 - (v[0])) , abs(u[1] - (v[1]-n1)))
def fperiodchc(v, u):
return max(abs(u[0]-n2 - (v[0])) , abs(u[1] - (v[1]-n1)) )
def fperiodchd(u , v):
return max(abs(n2-u[0] - (v[0])) , abs(u[1] - (n1-v[1])))
def fperiodche(v, u):
return max(abs(n2-u[0] - (v[0])) , abs(u[1] - (n1-v[1])) )
#distF = distance Function
#distM = distance meter
for case in switch(k):
if case(4):
distF = 'euclidean'
distM = 1 #.41
break
if case(8):
distF = 'euclidean'
distM = 1.5
break
if case(12):
distF = 'euclidean'
distM = 2
break
if case(20):
distF = 'euclidean'
distM = 2.3 #2.5
break
if case(24): #check this again
distF = 'chebyshev'
distM = 2 #or euclidean 2.9
break
if case(36):
distF = 'euclidean'
distM = 3.5
break
if case(44):
distF = 'euclidean'
distM = 3.8
break
if case(28):
distF = 'euclidean'
distM = 3
break
if case(48):
distF = 'euclidean'
distM = 4
break
x = np.linspace(1,n1,n1)
y = np.linspace(1,n2,n2)
X,Y = np.meshgrid(x,y)
XY = np.vstack((Y.flatten(), X.flatten()))
adj = squareform( (pdist(XY.T, metric = distF)) <= distM )
if k!= 24:
adjb = squareform( (pdist(XY.T, metric = feuclidhorz)) <= distM )
adjc = squareform( (pdist(XY.T, metric = feuclidvert)) <= distM )
adjd = squareform( (pdist(XY.T, metric = fperiodeuc)) <= distM )
adje = squareform( (pdist(XY.T, metric = finvperiodic)) <= distM )
adjf = squareform( (pdist(XY.T, metric = finvvert)) <= distM )
adjg = squareform( (pdist(XY.T, metric = finvhorz)) <= distM )
adjx = squareform( (pdist(XY.T, metric = fperiodeucc)) <= distM )
adjy = squareform( (pdist(XY.T, metric = fperiodeucb)) <= distM )
Adj = ( adj + adjb +adjc+adjd+adje+adjf+adjg+adjx+adjy >=1)
if k == 24:
adjb = squareform( (pdist(XY.T, metric = fchhorz)) <= distM )
adjc = squareform( (pdist(XY.T, metric = fchvert)) <= distM )
adjd = squareform( (pdist(XY.T, metric = fperiodch)) <= distM )
adje = squareform( (pdist(XY.T, metric = finvperiodicch)) <= distM )
adjf = squareform( (pdist(XY.T, metric = finvvertch)) <= distM )
adjg = squareform( (pdist(XY.T, metric = finvhorzch)) <= distM )
adjx = squareform( (pdist(XY.T, metric = fperiodchb)) <= distM )
adjy = squareform( (pdist(XY.T, metric = fperiodchc)) <= distM )
Adj = ( adj + adjb +adjc+adjd+adje+adjf+adjg+adjx+adjy >=1)
#Adj = ( adj+adjb >=1 )
#print adj
#plt.plot(sum(Adj))
if figu:
plt.figure(figsize=(1000,1000))
plt.imshow(Adj,interpolation = 'none', extent = [0,n1*n2 , n1*n2,0] )
plt.xticks(np.arange(n1*n2))
plt.yticks(np.arange(n1*n2))
plt.grid(ls = 'solid')
#plt.colorbar()
""" #text portion
min_val = 0
max_val = n1*n2
diff = 1
ind_array = np.arange(min_val, max_val, diff)
x, y = np.meshgrid(ind_array, ind_array)
for x_val, y_val in zip(x.flatten(), y.flatten()):
c = adj[x_val,y_val]
plt.text(x_val+0.5, y_val+0.5, '%.2f' % c, fontsize=8,va='center', ha='center')
"""
G = nx.from_numpy_matrix(Adj)
return (G,Adj) | 46b690f02c4f025719424582acecff43580543da | 16,590 |
import array
def _optimal_shift(pos, r_pad, log):
"""
Find the shift for the periodic unit cube that would minimise the padding.
"""
npts, ndim = pos.shape
# +1 whenever a region starts, -1 when it finishes
start_end = empty(npts*2, dtype=np.int32)
start_end[:npts] = 1
start_end[npts:] = -1
pad_min = []
# Go along each axis, find the point that would require least padding
for ax in range(ndim):
start_reg = pos[:,ax] - r_pad
end_reg = pos[:,ax] + r_pad
# make periodic
start_reg -= floor(start_reg)
end_reg -= floor(end_reg)
# Order from 0-1, add 1 whenever we come into range of a new point, -1
# whenever we leave
idx_sort = argsort(concatenate([start_reg, end_reg]))
region_change = cumsum(start_end[idx_sort])
# Find the minimum
min_chg = argmin(region_change)
# Note since this is the minimum trough:
# start_end[idx_sort[min_chg]==-1 (a trough)
# start_end[idx_sort[min_chg+1]] == +1 (otherwise it wasnt the minimum)
trough0 = end_reg[idx_sort[min_chg]-npts] # has to be a -1 (i.e. region end)
if min_chg+1==2*npts:
trough1 = start_reg[idx_sort[0]]+1
mid_trough = 0.5 * (trough0 + trough1)
mid_trough -= floor(mid_trough)
else:
trough1 = start_reg[idx_sort[min_chg+1]]
mid_trough = 0.5 * (trough0 + trough1)
pad_min.append(mid_trough)
shift = array([1.0-x for x in pad_min], dtype=pos.dtype)
print("Best shift", ', '.join('%.3f'%x for x in shift), file=log)
return shift | cac3c56307ea3d240ebe838ea4d26bb38c62dc3c | 16,592 |
def ShowActStack(cmd_args=None):
""" Routine to print out the stack of a specific thread.
usage: showactstack <activation>
"""
if cmd_args == None or len(cmd_args) < 1:
print "No arguments passed"
print ShowAct.__doc__.strip()
return False
threadval = kern.GetValueFromAddress(cmd_args[0], 'thread *')
print GetThreadSummary.header
print GetThreadSummary(threadval)
print GetThreadBackTrace(threadval, prefix="\t")
return | 43b0eca326465fe9dc7b0207ba448d75da7e9889 | 16,593 |
import json
def load_request(possible_keys):
"""Given list of possible keys, return any matching post data"""
pdata = request.json
if pdata is None:
pdata = json.loads(request.body.getvalue().decode('utf-8'))
for k in possible_keys:
if k not in pdata:
pdata[k] = None
# print('pkeys: %s pdata: %s' % (possible_keys, pdata))
return pdata | b21c503fac56398be6745a10fb95889128c6e2b2 | 16,595 |
import random
def get_random_tcp_start_pos():
""" reachability area:
x = [-0.2; 0.4]
y = [-0.28; -0.1] """
z_up = 0.6
tcp_x = round(random.uniform(-0.2, 0.4), 4)
tcp_y = round(random.uniform(-0.28, -0.1), 4)
start_tcp_pos = (tcp_x, tcp_y, z_up)
# start_tcp_pos = (-0.2, -0.28, z_up)
return start_tcp_pos | adf87dec45bf5a81c321f94c93d45a67f0aeff0d | 16,596 |
def CalculateChiv3p(mol):
"""
#################################################################
Calculation of valence molecular connectivity chi index for
path order 3
---->Chiv3
Usage:
result=CalculateChiv3p(mol)
Input: mol is a molecule object.
Output: result is a numeric value
#################################################################
"""
return _CalculateChivnp(mol,NumPath=3) | 27405fce52540a0de9c4c1c2d5a35454681554fa | 16,597 |
from typing import Tuple
from typing import Optional
def coerce(version: str) -> Tuple[Version, Optional[str]]:
"""
Convert an incomplete version string into a semver-compatible Version
object
* Tries to detect a "basic" version string (``major.minor.patch``).
* If not enough components can be found, missing components are
set to zero to obtain a valid semver version.
:param str version: the version string to convert
:return: a tuple with a :class:`Version` instance (or ``None``
if it's not a version) and the rest of the string which doesn't
belong to a basic version.
:rtype: tuple(:class:`Version` | None, str)
"""
match = BASEVERSION.search(version)
if not match:
return (None, version)
ver = {
key: 0 if value is None else value for key, value in match.groupdict().items()
}
ver = Version(**ver)
rest = match.string[match.end():] # noqa:E203
return ver, rest | e712533aa05444ad47403fc10e7f2ec29b8132ec | 16,598 |
def choose_wyckoff(wyckoffs, number):
"""
choose the wyckoff sites based on the current number of atoms
rules
1, the newly added sites is equal/less than the required number.
2, prefer the sites with large multiplicity
"""
for wyckoff in wyckoffs:
if len(wyckoff[0]) <= number:
return choose(wyckoff)
return False | 14b276d8aa50e84f47d77f6796e193cc96ddd0a9 | 16,599 |
def _to_system(abbreviation):
"""Converts an abbreviation to a system identifier.
Args:
abbreviation: a `pronto.Term.id`
Returns:
a system identifier
"""
try:
return {
'HP': 'http://www.human-phenotype-ontology.org/'
}[abbreviation]
except KeyError:
raise RuntimeError(
'system abbreviation \'%s\' is not supported' % abbreviation) | f43942b242e67866028a385e6614133dc25b31b0 | 16,600 |
from typing import Union
def apply_gate(circ: QuantumCircuit, qreg: QuantumRegister, gate: GateObj,
parameterise: bool = False, param: Union[Parameter, tuple] = None):
"""Applies a gate to a quantum circuit.
More complicated gates such as RXX gates should be decomposed into single qubit
gates and CNOTs prior to calling this function. If parameterise is True, then
qiskit's placeholder parameter theta will be used in place of any explicit
parameters.
"""
if not isinstance(gate.qubits, list):
q = gate.qubits
params = gate.params
if gate.name == 'I':
pass
elif gate.name == 'H':
circ.h(qreg[q])
elif gate.name == 'HSdag':
circ.h(qreg[q])
circ.s(qreg[q])
circ.h(qreg[q])
elif gate.name == 'X':
circ.x(qreg[q])
elif gate.name == 'Y':
circ.y(qreg[q])
elif gate.name == 'Z':
circ.z(qreg[q])
elif gate.name == 'RX':
if parameterise:
circ.rx(param, qreg[q])
else:
circ.rx(params, qreg[q])
elif gate.name == 'RY':
if parameterise:
circ.ry(param, qreg[q])
else:
circ.ry(params, qreg[q])
elif gate.name == 'RZ':
if parameterise:
circ.rz(param, qreg[q])
else:
circ.rz(params, qreg[q])
elif gate.name == 'U3':
if parameterise:
_params = [i for i in param]
circ.u3(_params[0], _params[1], _params[2], qreg[q])
else:
circ.u3(params[0], params[1], params[2], qreg[q])
else:
cntrl = gate.qubits[0]
trgt = gate.qubits[1]
circ.cx(qreg[cntrl], qreg[trgt])
return circ | 0babd68efb8bae67c5f610bcca3eb9f3b67630ad | 16,601 |
from typing import Tuple
import codecs
def preprocess_datasets(data: str, seed: int = 0) -> Tuple:
"""Load and preprocess raw datasets (Yahoo! R3 or Coat)."""
if data == 'yahoo':
with codecs.open(f'../data/{data}/train.txt', 'r', 'utf-8', errors='ignore') as f:
data_train = pd.read_csv(f, delimiter='\t', header=None)
data_train.rename(columns={0: 'user', 1: 'item', 2: 'rate'}, inplace=True)
with codecs.open(f'../data/{data}/test.txt', 'r', 'utf-8', errors='ignore') as f:
data_test = pd.read_csv(f, delimiter='\t', header=None)
data_test.rename(columns={0: 'user', 1: 'item', 2: 'rate'}, inplace=True)
for _data in [data_train, data_test]:
_data.user, _data.item = _data.user - 1, _data.item - 1
elif data == 'coat':
col = {'level_0': 'user', 'level_1': 'item', 2: 'rate', 0: 'rate'}
with codecs.open(f'../data/{data}/train.ascii', 'r', 'utf-8', errors='ignore') as f:
data_train = pd.read_csv(f, delimiter=' ', header=None)
data_train = data_train.stack().reset_index().rename(columns=col)
data_train = data_train[data_train.rate.values != 0].reset_index(drop=True)
with codecs.open(f'../data/{data}/test.ascii', 'r', 'utf-8', errors='ignore') as f:
data_test = pd.read_csv(f, delimiter=' ', header=None)
data_test = data_test.stack().reset_index().rename(columns=col)
data_test = data_test[data_test.rate.values != 0].reset_index(drop=True)
test = data_test.values
train, val = train_test_split(data_train.values, test_size=0.1, random_state=seed)
num_users, num_items = train[:, 0].max() + 1, train[:, 1].max() + 1
return train, val, test, num_users, num_items | 78a7bfe7968ad47f797728ffb43c804ab8af6298 | 16,602 |
def loadSentimentVector(file_name):
"""
Load sentiment vector
[Surprise, Sorrow, Love, Joy, Hate, Expect, Anxiety, Anger]
"""
contents = [
line.strip('\n').split() for line in open(file_name, 'r').readlines()
]
sentiment_dict = {
line[0].decode('utf-8'): [float(w) for w in line[1:]]
for line in contents
}
return sentiment_dict | 5d0d1f4598eeed455d080236720adcae357b6485 | 16,603 |
def unique_boxes(boxes, scale=1.0):
"""Return indices of unique boxes."""
v = np.array([1, 1e3, 1e6, 1e9])
hashes = np.round(boxes * scale).dot(v)
_, index = np.unique(hashes, return_index=True)
return np.sort(index) | fc9ab64356192828659f025af6aa112205fc838c | 16,604 |
def HEX2DEC(*args) -> Function:
"""
Converts a signed hexadecimal number to decimal format.
Learn more: https//support.google.com/docs/answer/3093192
"""
return Function("HEX2DEC", args) | b4741d02acae7169854d1193ae5b43f6736257dc | 16,606 |
def find_edges(mesh, key):
""" Temp replacement for mesh.findEdges().
This is painfully slow.
"""
for edge in mesh.edges:
v = edge.vertices
if key[0] == v[0] and key[1] == v[1]:
return edge.index | 98247b64a0e5671a7dbbf314f314cef2c5c8aae3 | 16,607 |
def thumbnail(link):
"""
Returns the URL to a thumbnail for a given identifier.
"""
targetid, service = _targetid(link), _service(link)
if targetid:
if service in _OEMBED_MAP:
try:
return _embed_json(service, targetid)["thumbnail_url"]
except (ValueError, KeyError):
return None
elif service == "bandcamp":
# Sometime in the future, parse the HTML for the image_src meta tag
return None
return None | 9ca78af2a65a41a70fef73c35383ae9214fb2d96 | 16,608 |
def valve_gas_cv(m_dot, p_1, p_2, m_molar, T):
"""Find the required valve Cv for a given mass flow and pressure drop.
Assumes that a compressible gas is flowing through the valve.
Arguments:
m_dot (scalar): Mass flow rate [units: kilogram second**-1].
p_1 (scalar): Inlet pressure [units: pascal].
p_2 (scalar): Outlet pressure [units: pascal].
m_molar (scalar): Gas molar mass [units: kilogram mole**-1].
T (scalar): Gas temperature [units: kelvin].
Returns:
scalar: Valve flow coefficient Cv [units: gallon minute**-1 psi**-1].
"""
# Specific gravity of the gas [units: dimensionless]:
spec_grav = m_molar / proptools.constants.m_molar_air
# Convert gas flow to standard cubic feet per hour
flow_scfh = m_dot_to_scfh(m_dot, m_molar)
# Determine if the flow is choked.
# Checking if `p_1 >= 2 * p_2` is suggested by [1].
# There is a more accurate choked flow criterion which depends
# on the ratio of specific heats.
choked = p_1 >= 2 * p_2
if choked:
cv = flow_scfh / 0.08821 * (spec_grav * T)**0.5 / p_1
else:
cv = flow_scfh / 0.1040 * (spec_grav * T / (p_1**2 - p_2**2))**0.5
return cv | 07bd3f45392e03eb6744b98a3fde022aa517c4fc | 16,609 |
def frequency_based_dissim(record, modes):
"""
Frequency-based dissimilarity function
inspired by "Improving K-Modes Algorithm Considering Frequencies of Attribute Values in Mode" by He et al.
"""
list_dissim = []
for cluster_mode in modes:
sum_dissim = 0
for i in range(len(record)): #zip(record,cluster_mode.mode):
#if (elem1 != elem2):
if (record[i] != cluster_mode.attrs[i]):
sum_dissim += 1
else:
sum_dissim += 1 - cluster_mode.attr_frequencies[i]
list_dissim.append(sum_dissim)
return list_dissim | 80e21763d6f90ddc5a448f46247fd12253de5dbb | 16,610 |
def _process_create_group(event: dict) -> list:
""" Process CreateGroup event. This function doesn't set tags. """
return [event['responseElements']['group']['groupName']] | 978b3ffc3c4aa72165914b79dc06cb7691c5c5a5 | 16,611 |
from typing import Any
from typing import List
def tree_labels(t: Node):
"""Collect all labels of a tree into a list."""
def f(label: Any, folded_subtrees: List) -> List:
return [label] + folded_subtrees
def g(folded_first: List, folded_rest: List) -> List:
return folded_first + folded_rest
return foldtree(f, g, [], t) | 7ad1703a090cd761a99cd5323c9258e8d2d551b8 | 16,612 |
def find_best_split(rows):
"""Find the best question to ask by iterating over every feature / value
and calculating the information gain."""
best_gain = 0 # keep track of the best information gain
best_question = None # keep train of the feature / value that produced it
current_uncertainty = gini(rows)
n_features = len(rows[0]) - 1 # number of columns
for col in range(n_features): # for each feature
values = set([row[col] for row in rows]) # unique values in the column
for val in values: # for each value
question = Question(col, val)
# try splitting the dataset
true_rows, false_rows = partition(rows, question)
# Skip this split if it doesn't divide the
# dataset.
if len(true_rows) == 0 or len(false_rows) == 0:
continue
# Calculate the information gain from this split
gain = info_gain(true_rows, false_rows, current_uncertainty)
# You actually can use '>' instead of '>=' here
# but I wanted the tree to look a certain way for our
# toy dataset.
if gain >= best_gain:
best_gain, best_question = gain, question
return best_gain, best_question | 9b197c99b41e64e37b499b5d4b3c7758cda3b56e | 16,613 |
def pad_data(data, context_size, target_size, pad_at_begin= False):
"""
Performs data padding for both target and aggregate consumption
:param data: The aggregate power
:type data: np.array
:param context_size: The input sequence length
:type context_size: int
:param target_size: The target sequence length
:type target_size: int
:param pad_at_begin: Specified how the padded values are inserted, defaults to False
:type pad_at_begin: bool, optional
:return: The padded aggregate power.
:rtype: np.array
"""
sequence_length = context_size + target_size
units_to_pad = sequence_length // 2
padding = (context_size,target_size) if pad_at_begin else (units_to_pad,units_to_pad+1)
if data.ndim==1:
new_mains = np.pad(data, padding,'constant',constant_values=(0,0))
return new_mains
else:
new_mains = []
for i in range(data.shape[-1]):
new_mains.append(np.pad(data[:,i], padding,'constant',constant_values=(0,0)))
return np.stack(new_mains).T | 1b698a849a4ca82d87ce6c5711220b61cd21252b | 16,614 |
def egg_translator(cell):
"""If the cell has the DNA for harboring its offspring inside it, granting it additional food
and protection at the risk of the parent cell, it is an egg.
Active DNA: x,A,(C/D),x,x,x
"""
dna = cell.dna.split(',')
if dna[1] == 'A' and dna[2] == 'C':
return True
elif dna[1] == 'A' and dna[2] == 'D':
return True
else:
return False
del dna[:] | af0d9097c8a0b5002722c79d6ec8262a66cc375d | 16,617 |
def all_different_cst(xs, cst):
"""
all_different_cst(xs, cst)
Ensure that all elements in xs + cst are distinct
"""
return [AllDifferent([(x + c) for (x,c) in zip(xs,cst)])] | dfc75a54a92a4c8c2ef76af74250b9125c9bb647 | 16,618 |
def processing(task, region: dict, raster: str, parameters: dict):
"""
Cuts the raster according to given region and applies some filters
in order to find the district heating potentials and
related indicators.
Inputs :
* region : selected zone where the district heating potential is studied.
* raster : raster of the heat demand.
* parameters : the pixel and area thresholds.
Output :
* Indicators :
* Graphics : Potential of areas that pass the filters.
* Layer : Areas that pass the filters.
"""
with TemporaryDirectory(dir=settings.TESTDATA_DIR) as temp_dir:
clipped_raster = join(temp_dir, "raster_tmp.tif")
clip_raster(src=raster, shapes=region, dst=clipped_raster)
(
geo_transform,
total_heat_demand,
areas,
filtered_map,
total_potential,
areas_potential,
) = get_areas(
heat_density_map=clipped_raster,
pixel_threshold=parameters["Heat demand in hectare (MWh/ha)"],
district_heating_zone_threshold=parameters[
"Heat demand in a DH zone (GWh/year)"
],
)
dst_raster = join(temp_dir, "dst.tif")
write_raster(
map_array=filtered_map,
projection=get_projection(geofile=clipped_raster),
geotransform=geo_transform,
dst=dst_raster,
)
raster_name = "areas.tif"
with open(dst_raster, mode="rb") as raster_fd:
task.post_raster(raster_name=raster_name, raster_fd=raster_fd)
response = get_response(
total_potential=total_potential,
total_heat_demand=total_heat_demand,
areas_potential=areas_potential,
raster_name=raster_name,
)
validate(response)
return response | 63a5548e886b575011e716e05a589715f027c316 | 16,619 |
import random
def randbit():
"""Returns a random bit."""
return random.randrange(2) | 4b47101df7368b7cb423920e6a5338b76ab4ecaa | 16,620 |
def calc_points(goals, assists):
"""
Calculate the total traditional and weighted points for all
players, grouped by player id.
Author: Rasmus Säfvenberg
Parameters
----------
goals : pandas.DataFrame
A data frame with total goals and weighted assists per player.
assists : pandas.DataFrame
A data frame with total assists and weighted assists per player.
Returns
-------
points : pandas.DataFrame
A data frame with total points and weighted points per player.
"""
# Specify columns to keep for merging
goals = goals[["PlayerId", "PlayerName", "Position", "Goals", "WeightedGoals"]]
assists = assists[["PlayerId", "PlayerName", "Position", "Assists", "WeightedAssists"]]
# Combine goals and assists
points = goals.merge(assists, on=["PlayerId", "PlayerName", "Position"],
how="outer")
# Fill missing values with 0 (some players only score goals etc.)
points.fillna(0, inplace=True)
# Calculate points = goals + assists
points["Points"] = points["Goals"] + points["Assists"]
# Calculate weighted points = weighted goals + weighted assists
points["WeightedPoints"] = points["WeightedGoals"] + points["WeightedAssists"]
# Sort by weighted points
points.sort_values("WeightedPoints", ascending=False, inplace=True)
return points | 1801cf2602a473bdf532e1c0ee58b883dc3e79d1 | 16,621 |
import io
import base64
def file_to_base64(path):
"""
Convert specified file to base64 string
Args:
path (string): path to file
Return:
string: base64 encoded file content
"""
with io.open(path, 'rb') as file_to_convert:
return base64.b64encode(file_to_convert.read()) | 0c942f8f4d29943c5a3aac6c954d9e2b1b2898a3 | 16,623 |
def get_simverb(subset=None):
"""
Get SimVerb-3500 data
:return: (pairs, scores)
"""
simverb = []
if subset == 'dev':
name = '500-dev'
elif subset == 'test':
name = '3000-test'
else:
name = '3500'
with open('../data/SimVerb-3500/SimVerb-{}.txt'.format(name)) as f:
f.readline() # first line is headings
for line in f:
simverb.append(line.strip().split('\t'))
all_pairs = [(x[0], x[1]) for x in simverb]
all_scores = np.array([float(x[3]) for x in simverb])
return (all_pairs, all_scores) | 5cec49bd232a883836029b8b011f09f360176910 | 16,624 |
def sample_image(size, min_r, max_r, circles, squares, pixel_value):
"""Generate image with geometrical shapes (circles and squares).
"""
img = np.zeros((size, size, 2))
loc = []
if pixel_value is None:
vals = np.random.randint(0, 256, circles + squares)
else:
vals = [pixel_value] * (circles + squares)
for f, v in zip(["c"] * circles + ["s"] * squares, vals):
r = np.random.randint(min_r, max_r + 1)
xc, yc = np.random.randint(r, size - r + 1, 2)
if f == "c":
mask = circle(xc, yc, r, (size, size))
if f == "s":
mask = polygon((xc - r, xc + r, xc + r, xc - r),
(yc - r, yc - r, yc + r, yc + r), (size, size))
img[:, :, ["c", "s"].index(f)][mask] = v
loc.append([xc, yc, r])
return img, np.array(loc) | 25ab1afcd7256bc07ee55ac2e12cf9d834cb798c | 16,625 |
def host_allocations(auth):
"""Retrieve host allocations"""
response = API.get(auth, '/os-hosts/allocations')
return response.json()['allocations'] | 505eeb0502f6480445ec5dff1cd3203eda96d475 | 16,626 |
def rosenbrock_grad(x, y):
"""Gradient of Rosenbrock function."""
return (-400 * x * (-(x ** 2) + y) + 2 * x - 2, -200 * x ** 2 + 200 * y) | c7acf0bbe11a6d1cbb38b6853eb1b508e3846657 | 16,627 |
def extractYoujinsite(item):
"""
"""
vol, chp, frag, postfix = extractVolChapterFragmentPostfix(item['title'])
if '[God & Devil World]' in item['tags'] and (chp or vol):
return buildReleaseMessageWithType(item, 'Shenmo Xitong', vol, chp, frag=frag, postfix=postfix)
if '[LBD&A]' in item['tags'] and (chp or vol):
return buildReleaseMessageWithType(item, 'Line between Devil and Angel', vol, chp, frag=frag, postfix=postfix)
if '[VW: Conquer the World]' in item['tags'] and (chp or vol):
return buildReleaseMessageWithType(item, 'VW: Conquering the World', vol, chp, frag=frag, postfix=postfix)
return False | 11463288cdcc7268b0b4657934dd8872a7d36580 | 16,629 |
def get_logger() -> Logger:
""" This function returns the logger for this project """
return getLogger(LOGGER_NAME) | 33e11a06c357552c35f9ef089fd303ad15db0884 | 16,632 |
import json
def write_guess_json(guesser, filename, fold, run_length=200, censor_features=["id", "label"], num_guesses=5):
"""
Returns the vocab, which is a list of all features.
"""
vocab = [kBIAS]
print("Writing guesses to %s" % filename)
num = 0
with open(filename, 'w') as outfile:
total = len(fold)
for qq in fold:
num += 1
if num % (total // 80) == 0:
print('.', end='', flush=True)
runs = qq.runs(run_length)
guesses = guesser.guess(runs[0], max_n_guesses=5)
for rr in runs[0]:
guesses = guesser.guess([rr], max_n_guesses=num_guesses)
for raw_guess in guesses[0]:
gg, ss = raw_guess
guess = {"id": qq.qanta_id,
"guess:%s" % gg: 1,
"run_length": len(rr)/1000,
"score": ss,
"label": qq.page==gg,
"category:%s" % qq.category: 1,
"year:%s" % qq.year: 1}
for ii in guess:
# Don't let it use features that would allow cheating
if ii not in censor_features and ii not in vocab:
vocab.append(ii)
outfile.write(json.dumps(guess, sort_keys=True))
outfile.write("\n")
print("")
return vocab | 9f0055289ff462b0b3c067ea1e0a68c66a74136c | 16,633 |
def upgrade_to_4g(region, strategy, costs, global_parameters,
core_lut, country_parameters):
"""
Reflects the baseline scenario of needing to build a single dedicated
network.
"""
backhaul = '{}_backhaul'.format(strategy.split('_')[2])
sharing = strategy.split('_')[3]
geotype = region['geotype'].split(' ')[0]
# generation_core_backhaul_sharing_networks_spectrum_tax
network_strategy = strategy.split('_')[4]
networks = country_parameters['networks']['baseline' + '_' + geotype]
if network_strategy == 'srn' and geotype == 'rural':
sharing = 'cns'
shared_assets = INFRA_SHARING_ASSETS[sharing]
assets = {
'single_sector_antenna': costs['single_sector_antenna'],
'single_remote_radio_unit': costs['single_remote_radio_unit'],
'io_fronthaul': costs['io_fronthaul'],
'processing': costs['processing'],
'io_s1_x2': costs['io_s1_x2'],
'control_unit': costs['control_unit'],
'cooling_fans': costs['cooling_fans'],
'distributed_power_supply_converter': costs['distributed_power_supply_converter'],
'bbu_cabinet': costs['bbu_cabinet'],
'installation': costs['installation'],
'site_rental': costs['site_rental_{}'.format(geotype)],
'router': costs['router'],
'backhaul': get_backhaul_costs(region, backhaul, costs, core_lut),
'core_edge': core_costs(region, 'core_edge', costs, core_lut, strategy, country_parameters),
'core_node': core_costs(region, 'core_node', costs, core_lut, strategy, country_parameters),
'regional_edge': regional_net_costs(region, 'regional_edge', costs, core_lut, strategy, country_parameters),
'regional_node': regional_net_costs(region, 'regional_node', costs, core_lut, strategy, country_parameters),
'per_site_spectrum_acquisition_cost': costs['per_site_spectrum_acquisition_cost'],
'per_site_administration_cost': costs['per_site_administration_cost'],
}
cost_structure = {}
for key, value in assets.items():
if not key in shared_assets:
cost_structure[key] = value
else:
if network_strategy == 'srn' and geotype == 'rural':
value = value * (1 / networks)
cost_structure[key] = value
else:
value = value / networks
cost_structure[key] = value
return cost_structure | 947afef6d550b9022109c665fc311511f428e9f8 | 16,634 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.