content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def start_nodenetrunner(nodenet_uid): """Starts a thread that regularly advances the given nodenet by one step.""" nodenets[nodenet_uid].is_active = True if runner['runner'].paused: runner['runner'].resume() return True
7511f217beb64936d403a5f5472036206f446c90
16,280
def transform_coordinates_3d(coordinates, RT): """ Input: coordinates: [3, N] RT: [4, 4] Return new_coordinates: [3, N] """ if coordinates.shape[0] != 3 and coordinates.shape[1]==3: coordinates = coordinates.transpose() coordinates = np.vstack([coordinates, np.ones((1, coordinates.shape[1]), dtype=np.float32)]) new_coordinates = RT @ coordinates new_coordinates = new_coordinates[:3, :]/new_coordinates[3, :] return new_coordinates
8a31f97bddd1c84a21d4b396e877c2b327e6890b
16,281
def _get_misclass_auroc(preds, targets, criterion, topk=1, expected_data_uncertainty_array=None): """ Get AUROC for Misclassification detection :param preds: Prediction probabilities as numpy array :param targets: Targets as numpy array :param criterion: Criterion to use for scoring on misclassification detection. :param topk: Top-kl class probabilities to consider while making predictions. :param expected_data_uncertainty_array: Expected data uncertainty as numpy array :return: AUROC on misclassification detection """ misclassification_targets = (1 - _misclass_tgt(preds, targets, (topk,))).astype(bool) if criterion == 'entropy': criterion_values = np.sum(-preds * np.log(preds), axis=1) elif criterion == 'confidence': criterion_values = -preds.max(axis=1) elif criterion == 'model_uncertainty': criterion_values = np.sum(-preds * np.log(preds), axis=1) - expected_data_uncertainty_array else: raise NotImplementedError return auroc(misclassification_targets, criterion_values)
282ef66926092e99a62003152daccf733913b6c2
16,282
from typing import Iterable from typing import List def flatten(l: Iterable) -> List: """Return a list of all non-list items in l :param l: list to be flattened :return: """ rval = [] for e in l: if not isinstance(e, str) and isinstance(e, Iterable): if len(list(e)): rval += flatten(e) else: rval.append(e) return rval
2d2202c21e6da7064491d55d5519c259d10f42c0
16,283
def create_note(dataset_id, fhir_store_id, note_id): # noqa: E501 """Create a note Create a note # noqa: E501 :param dataset_id: The ID of the dataset :type dataset_id: str :param fhir_store_id: The ID of the FHIR store :type fhir_store_id: str :param note_id: The ID of the note that is being created :type note_id: str :rtype: NoteCreateResponse """ res = None status = None try: store_name = None try: store_name = "datasets/%s/fhirStores/%s" % \ (dataset_id, fhir_store_id) DbFhirStore.objects.get(name=store_name) except DoesNotExist: status = 400 res = Error("The specified FHIR store was not found", status) return res, status try: note_create_request = NoteCreateRequest.from_dict( connexion.request.get_json()) try: DbPatient.objects.get( fhirStoreName=store_name, identifier=note_create_request.patient_id) except DoesNotExist: status = 400 res = Error("The specified patient was not found", status) return res, status resource_name = "%s/fhir/Note/%s" % (store_name, note_id) DbNote( identifier=note_id, resourceName=resource_name, fhirStoreName=store_name, text=note_create_request.text, type=note_create_request.type, patientId=note_create_request.patient_id ).save() note_resource_name = "%s/fhir/Note/%s" % (store_name, note_id) res = NoteCreateResponse(name=note_resource_name) status = 201 except NotUniqueError as error: status = 409 res = Error("Conflict", status, str(error)) except Exception as error: status = 500 res = Error("Internal error", status, str(error)) return res, status
396f81b4a6035a9f295faebdd1aa313131d0da2b
16,284
def load_credential_from_args(args): """load credential from command Args: args(str): str join `,` Returns: list of credential content """ if ',' not in args: raise file_path_list = args.split(',') if len(file_path_list) != 2: raise if not file_path_list[0].endswith('.key'): file_path_list[0], file_path_list[1] = file_path_list[1], file_path_list[0] return [load_credential_from_file(file_path) for file_path in file_path_list]
4f2e0b1e57ee3baaeb1bab3dc0e7e3874aaeec7c
16,285
def encode(string: str, key: str) -> str: """ Encode string using the Caesar cipher with the given key :param string: string to be encoded :param key: letter to be used as given shift :return: encoded string :raises: ValueError if key len is invalid """ if len(key) > 1: raise ValueError("[ERROR] Length of a key may not exceed 1 for Caesar cipher") return vigener.encode(string, key)
ddba41c5efc01df06290cd6496ef8eb54dbb28be
16,286
def compile_binary(binary, compiler, override_operator=None, **kw): """ If there are more than 10 elements in the `IN` set, inline them to avoid hitting the limit of \ the number of query arguments in Postgres (1<<15). """ # noqa: D200 operator = override_operator or binary.operator if operator is not in_op and operator is not notin_op: return compiler.visit_binary(binary, override_operator=override_operator, **kw) if isinstance(binary.right, BindParameter): right_len = len(binary.right.value) else: right_len = 0 if right_len >= 10: left = compiler.process(binary.left, **kw) kw["literal_binds"] = True use_any = getattr(binary, "any_values", False) and compiler.dialect.name == "postgresql" negate = use_any and operator is notin_op if use_any: # ANY(VALUES ...) seems to be performing the best among these three: # 1. IN (...) # 2. IN(ARRAY[...]) # 3. IN(VALUES ...) right = any_(Grouping(Values( binary.left, literal_binds=True, ).data(TupleWrapper(binary.right.value)))) operator = operators.eq else: right = binary.right right = compiler.process(right, **kw) sql = left + OPERATORS[operator] + right if negate: sql = "NOT (%s)" % sql return sql elif operator is in_op and right_len == 1: # IN (<value>) -> = <value> return compiler.process(binary.left == binary.right.value[0], **kw) return compiler.visit_binary(binary, override_operator=override_operator, **kw)
1798ded35c12d6a3bf2e5edc34dcf11ff70ce697
16,287
from typing import Callable from typing import Iterable from typing import Iterator import itertools def flat_map( fn: Callable[[_T], Iterable[_S]], collection: Iterable[_T] ) -> Iterator[_S]: """Map a function over a collection and flatten the result by one-level""" return itertools.chain.from_iterable(map(fn, collection))
a1a09611f920078cb25a23279004acd00ac23142
16,288
def create_vector_clock(node_id, timeout): """This method builds the initial vector clock for a new key. Parameters ---------- node_id : int the id of one node in the cluster timeout : int the expire timeout of the key Returns ------- dict the vector clock as dictonary """ if node_id is not None and timeout is not None: return { "versions": [{"nodeId": node_id, "version": 1}], "timestamp": timeout } else: raise ValueError("You must gave the node id and the timeout.")
ed6df0e7e493d448f52e5fe47b55df8a1de94543
16,289
def ParseStateFoldersFromFiles(state_files): """Returns list of StateFolder objects parsed from state_files. Args: state_files: list of absolute paths to state files. """ def CreateStateFolder(folderpath, parent_namespace): del parent_namespace # Unused by StateFolder. return state_lib.StateFolder(folderpath) return _ParseFoldersFromFiles(state_files, base_lib.ComponentType.MULTI_STATE, CreateStateFolder)
c70421da1f193ca2dc86f12e7cffd84a1011af22
16,290
def spectral_norm(inputs, epsilon=1e-12, singular_value="left"): """Performs Spectral Normalization on a weight tensor. Details of why this is helpful for GAN's can be found in "Spectral Normalization for Generative Adversarial Networks", Miyato T. et al., 2018. [https://arxiv.org/abs/1802.05957]. Args: inputs: The weight tensor to normalize. epsilon: Epsilon for L2 normalization. singular_value: Which first singular value to store (left or right). Use "auto" to automatically choose the one that has fewer dimensions. Returns: The normalized weight tensor. """ if len(inputs.shape) < 2: raise ValueError( "Spectral norm can only be applied to multi-dimensional tensors") # The paper says to flatten convnet kernel weights from (C_out, C_in, KH, KW) # to (C_out, C_in * KH * KW). Our Conv2D kernel shape is (KH, KW, C_in, C_out) # so it should be reshaped to (KH * KW * C_in, C_out), and similarly for other # layers that put output channels as last dimension. This implies that w # here is equivalent to w.T in the paper. w = tf.reshape(inputs, (-1, inputs.shape[-1])) # Choose whether to persist the first left or first right singular vector. # As the underlying matrix is PSD, this should be equivalent, but in practice # the shape of the persisted vector is different. Here one can choose whether # to maintain the left or right one, or pick the one which has the smaller # dimension. We use the same variable for the singular vector if we switch # from normal weights to EMA weights. var_name = inputs.name.replace("/ExponentialMovingAverage", "").split("/")[-1] var_name = var_name.split(":")[0] + "/u_var" if singular_value == "auto": singular_value = "left" if w.shape[0] <= w.shape[1] else "right" u_shape = (w.shape[0], 1) if singular_value == "left" else (1, w.shape[-1]) u_var = tf.get_variable( var_name, shape=u_shape, dtype=w.dtype, initializer=tf.random_normal_initializer(), trainable=False) u = u_var # Use power iteration method to approximate the spectral norm. # The authors suggest that one round of power iteration was sufficient in the # actual experiment to achieve satisfactory performance. power_iteration_rounds = 1 for _ in range(power_iteration_rounds): if singular_value == "left": # `v` approximates the first right singular vector of matrix `w`. v = tf.math.l2_normalize( tf.matmul(tf.transpose(w), u), axis=None, epsilon=epsilon) u = tf.math.l2_normalize(tf.matmul(w, v), axis=None, epsilon=epsilon) else: v = tf.math.l2_normalize(tf.matmul(u, w, transpose_b=True), epsilon=epsilon) u = tf.math.l2_normalize(tf.matmul(v, w), epsilon=epsilon) # Update the approximation. with tf.control_dependencies([tf.assign(u_var, u, name="update_u")]): u = tf.identity(u) # The authors of SN-GAN chose to stop gradient propagating through u and v # and we maintain that option. u = tf.stop_gradient(u) v = tf.stop_gradient(v) if singular_value == "left": norm_value = tf.matmul(tf.matmul(tf.transpose(u), w), v) else: norm_value = tf.matmul(tf.matmul(v, w), u, transpose_b=True) norm_value.shape.assert_is_fully_defined() norm_value.shape.assert_is_compatible_with([1, 1]) w_normalized = w / norm_value # Deflate normalized weights to match the unnormalized tensor. w_tensor_normalized = tf.reshape(w_normalized, inputs.shape) return w_tensor_normalized
eb6961e984fbb8eb5c3d807faa7fa6d016c011b5
16,291
def rs_for_staff(user_id): """Returns simple JSON for research studies in staff user's domain --- tags: - User - ResearchStudy operationId: research_studies_for_staff parameters: - name: user_id in: path description: TrueNTH user ID, typically subject or staff required: true type: integer format: int64 produces: - application/json responses: 200: description: Returns the list of research_studies the requested staff user is associated with. schema: id: nested_research_studies properties: research_study: type: array items: type: object required: - title properties: title: type: string description: Research study title resourceType: type: string description: FHIR like resourceType, "ResearchStudy" 401: description: if missing valid OAuth token or if the authorized user lacks permission to view requested user_id security: - ServiceToken: [] """ user = get_user( user_id, 'view', allow_on_url_authenticated_encounters=True) if user.has_role(ROLE.PATIENT.value): abort( 400, "wrong request path for patient," " see /api/patient/<int:user_id>/research_study") # Assume some staff like role - find all research studies # in the org tree at, above or below all of the user's orgs orgs = set() ot = OrgTree() for org in user.organizations: try: orgs.update(ot.at_and_above_ids(org.id)) except ValueError as ve: raise ValueError(f"Failed at_and_above lookup on {org.id}") orgs.update(ot.here_and_below_id(org.id)) studies = OrganizationResearchProtocol.query.filter( OrganizationResearchProtocol.organization_id.in_( tuple(orgs))).join( ResearchProtocol, OrganizationResearchProtocol.research_protocol_id == ResearchProtocol.id).with_entities( ResearchProtocol.research_study_id).order_by( ResearchProtocol.research_study_id).distinct() results = [ ResearchStudy.query.get(s.research_study_id).as_fhir() for s in studies] return jsonify(research_study=results)
9d36a02cc4909e336730fb27b3bcfe284bcd5d82
16,292
import re import click def validate_memory(_ctx, _param, value): """Validate memory string.""" if value is None: return None if not re.search(r'\d+[KkMmGg]$', value): raise click.BadParameter('Memory format: nnn[K|M|G].') return value
c050863a974c08ccc18fdaa2f03388c8f6674835
16,294
def BlockAvg3D( data , blocksize , mask ): """ 3-D version of block averaging. Mainly applicable to making superpixel averages of datfile traces. Not sure non-averaging calcs makes sense? mask is a currently built for a 2d boolean array of same size as (data[0], data[1]) where pixels to be averaged are True. """ rows = data.shape[0] cols = data.shape[1] frames = data.shape[2] if np.mod(rows,blocksize[0]) == 0 and np.mod(cols,blocksize[1]) == 0: blockR = rows / blocksize[0] blockC = cols / blocksize[1] else: print( 'Error, blocksize not evenly divisible into data size.') return None output = np.zeros((blockR,blockC,frames)) # Previous algorithm was slow and used annoying looping # Improved algorithm that doeesn't need any looping. takes about 1.4 seconds instead of 60. msk = np.array( mask , float ) msk.resize(rows, cols , 1 ) masked = np.array( data , float ) * np.tile( msk , ( 1 , 1 , frames ) ) step1 = masked.reshape(rows , blockC , -1 , frames).sum(2) step2 = np.transpose(step1 , (1,0,2)).reshape(blockC , blockR , -1 , frames).sum(2) step3 = np.transpose(step2 , (1,0,2)) mask1 = mask.reshape(rows , blockC , -1 ).sum(2) count = mask1.transpose().reshape(blockC , blockR , -1).sum(2).transpose() #mask1 = mask.reshape(rows , blockC , -1 , frames).sum(2) #count = mask1.transpose().reshape(blockC , blockR , -1 , frames).sum(2).transpose() output = step3 / count[:,:,np.newaxis] output[ np.isnan(output) ] = 0 output[ np.isinf(output) ] = 0 return output
4c0c9cb60c80f47289e7bff3e50ae3e39dd31c63
16,295
def build(buildconfig: BuildConfig, merge_train_and_test_data: bool = False): """Build regressor or classifier model and return it.""" estimator = buildconfig.algorithm.estimator() if merge_train_and_test_data: train_smiles, train_y = buildconfig.data.get_merged_sets() else: train_smiles, train_y, _, _ = buildconfig.data.get_sets() train_X = descriptor_from_config(train_smiles, buildconfig.descriptor) estimator.fit(train_X, train_y) if merge_train_and_test_data: train_scores = get_merged_train_score(estimator, buildconfig) test_scores = None else: train_scores, test_scores = get_train_test_scores(estimator, buildconfig) return estimator, train_scores, test_scores
9a98f15ae9b966e42cda848169b38a651e727205
16,296
def stellar_radius(M, logg): """Calculate stellar radius given mass and logg""" if not isinstance(M, (int, float)): raise TypeError('Mass must be int or float. {} type given'.format(type(M))) if not isinstance(logg, (int, float)): raise TypeError('logg must be int or float. {} type given'.format(type(logg))) if M < 0: raise ValueError('Only positive stellar masses allowed.') M = float(M) return M/(10**(logg-4.44))
2afbd991c7461d7861370f18d90df840569da857
16,298
def set_plus_row(sets, row): """Update each set in list with values in row.""" for i in range(len(sets)): sets[i].add(row[i]) return sets
87f448dc3199c8d3137d5811dd184b3d2bd7cbe3
16,299
from typing import List from typing import Union def bytes_to_string( bytes_to_convert: List[int], strip_null: bool = False ) -> Union[str, None]: """ Litteral bytes to string :param bytes_to_convert: list of bytes in integer format :return: resulting string """ try: value = "".join(chr(i) for i in bytes_to_convert) if strip_null: return value.strip("\x00") return value # AttributeError when None object has no strip attribute except (ValueError, TypeError, AttributeError): return None
a04dee89fb8aed33b6069a7ff0ca8c497d0a6062
16,300
def interpolate(t,y,num_obs=50): """ Interpolates each trajectory such that observation times coincide for each one. Note: initially cubic interpolation gave great power, but this happens as an artifact of the interpolation, as both trajectories have the same number of observations. Type I error was increased as a result. To avoid this we settled for a linear interpolation between observations. Splines were also tried but gave very bad interpolations. """ t = np.array([np.sort(row) for row in t]) t = np.insert(t, 0, 0, axis=1) t = np.insert(t, len(t[0]), 1, axis=1) y = np.insert(y, 0, y[:,0], axis=1) y = np.insert(y, len(y[0]), y[:,-1], axis=1) new_t = np.zeros(num_obs) new_y = np.zeros(num_obs) for i in range(len(t)): f = interp1d(t[i], y[i], kind='linear') #f = splrep(t[i], y[i]) t_temp = np.random.uniform(low=0.0, high=1.0, size=num_obs)#np.linspace(0.1,0.9,num_obs) y_temp = f(t_temp) #y_temp = splev(t_temp, f, der=0) new_y = np.vstack((new_y, y_temp)) new_t = np.vstack((new_t, t_temp)) return new_t[1:], new_y[1:]
2418aaf207b214069f45571a21a2b97ecd25f244
16,301
import re def locktime_from_duration(duration): """ Parses a duration string and return a locktime timestamp @param duration: A string represent a duration if the format of XXhXXmXXs and return a timestamp @returns: number of seconds represented by the duration string """ if not duration: raise ValueError("Duration needs to be in the format {}".format(DURATION_TEMPLATE)) match = re.search(DURATION_REGX_PATTERN, duration) if not match: raise ValueError("Duration needs to be in the format {}".format(DURATION_TEMPLATE)) values = match.groupdict() result = 0 if values['hours']: result += int(values['hours']) * 60 * 60 if values['minutes']: result += int(values['minutes']) * 60 if values['seconds']: result += int(values['seconds']) return int(result)
c65339ee00e750e4425a68215b0600c71136ee68
16,302
def black_payers_swaption_value_fhess_by_strike( init_swap_rate, option_strike, swap_annuity, option_maturity, vol): """black_payers_swaption_value_fhess_by_strike Second derivative of value of payer's swaption with respect to strike under black model. See :py:func:`black_payers_swaption_value`. .. math:: \\frac{\partial^{2} }{\partial K^{2}} V_{\mathrm{payer}}(K; S, A, T, \sigma) = - A\phi(d_{2}(K)) d_{2}^{\prime}(K) where :math:`S` is `init_swap_rate`, :math:`K` is `option_strike`, :math:`A` is `swap_annuity`, :math:`T` is `option_maturity`, :math:`\sigma` is `vol`, :math:`d_{1}, d_{2}` is defined in :py:func:`black_payers_swaption_value`, :math:`\Phi(\cdot)` is c.d.f. of standard normal distribution, :math:`\phi(\cdot)` is p.d.f. of standard normal distribution. :param float init_swap_rate: initial swap rate. :param float option_strike: :param float swap_annuity: :param float option_maturity: :param float vol: volatility. must be non-negative. :return: value of derivative. :rtype: float :raises AssertionError: if volatility is not positive. """ assert(vol > 0.0) value = mafipy.function.black_scholes_call_value_fhess_by_strike( init_swap_rate, option_strike, 0.0, option_maturity, vol) return swap_annuity * value
0645992c65e9e13ee44ad3debfe30fb0b05bfae7
16,303
def get_resource(cls): """ gets the resource of a timon class if existing """ if not cls.resources: return None resources = cls.resources assert len(resources) == 1 return TiMonResource.get(resources[0])
370f0af23fcfe0bf5da3b39012a5e1e9c29b6f0e
16,304
def _log(x): """_log to prevent np.log_log(0), caluculate np.log(x + EPS) Args: x (array) Returns: array: same shape as x, log equals np.log(x + EPS) """ if np.any(x < 0): print("log < 0") exit() return np.log(x + EPS)
e7e7b963cf3cec02ace34256ccdf954a2d61dd4a
16,305
import math def gauss_distribution(x, mu, sigma): """ Calculate value of gauss (normal) distribution Parameters ---------- x : float Input argument mu : Mean of distribution sigma : Standard deviation Returns ------- float Probability, values from range [0-1] """ return 1 / (2 * math.sqrt(math.pi) * sigma) * math.exp(-(1 / 2) * ((x - mu) / sigma) ** 2)
05cf2c14b337b45a81ddbe7655b4d7cf21e352cd
16,306
def extend_vocab_OOV(source_words, word2id, vocab_size, max_unk_words): """ Map source words to their ids, including OOV words. Also return a list of OOVs in the article. WARNING: if the number of oovs in the source text is more than max_unk_words, ignore and replace them as <unk> Args: source_words: list of words (strings) word2id: vocab word2id vocab_size: the maximum acceptable index of word in vocab Returns: ids: A list of word ids (integers); OOVs are represented by their temporary article OOV number. If the vocabulary size is 50k and the article has 3 OOVs, then these temporary OOV numbers will be 50000, 50001, 50002. oovs: A list of the OOV words in the article (strings), in the order corresponding to their temporary article OOV numbers. """ src_ext = [] oov_dict = {} for w in source_words: if w in word2id and word2id[w] < vocab_size: # a OOV can be either outside the vocab or id>=vocab_size src_ext.append(word2id[w]) else: if len(oov_dict) < max_unk_words: # e.g. 50000 for the first article OOV, 50001 for the second... word_id = oov_dict.get(w, len(oov_dict) + vocab_size) oov_dict[w] = word_id src_ext.append(word_id) else: # exceeds the maximum number of acceptable oov words, replace it with <unk> word_id = word2id[UNK_WORD] src_ext.append(word_id) oov_list = [w for w, w_id in sorted(oov_dict.items(), key=lambda x:x[1])] return src_ext, oov_dict, oov_list
2d1b92d9d6b9b3885a7dda6c8d72d80d3b8ecad0
16,307
def isint(s): """**Returns**: True if s is the string representation of an integer :param s: the candidate string to test **Precondition**: s is a string """ try: x = int(s) return True except: return False
b15598aee937bcce851ee6c39aa2ba96a84a5dd5
16,308
def create_app(config_name): """function creating the flask app""" app = Flask(__name__, instance_relative_config=True) app.config.from_object(config[config_name]) app.config.from_pyfile('config.py') app.register_blueprint(v2) app.register_error_handler(404, not_found) app.register_error_handler(405, bad_request) app.register_error_handler(500, internal_server_error) db_conn.create_tables() return app
7e49a1ee9bae07a7628842855c3524794efaa9c5
16,309
def build_attention_network(features2d, attention_groups, attention_layers_per_group, is_training): """Builds attention network. Args: features2d: A Tensor of type float32. A 4-D float tensor of shape [batch_size, height, width, channels]. attention_groups: (Integer) Number of network groups. attention_layers_per_group: (Integer) Number of layers per group. is_training: (Boolean) To indicate training or inference modes. Returns: features_embedded: A Tensor of type float32. A 4-D float tensor of shape [batch_size, height, width, channels]. """ channels = features2d.shape.as_list()[-1] with tf.variable_scope("attention_network"): features_embedded = features2d for i in range(attention_groups): filters = channels // 2**(i+1) for j in range(attention_layers_per_group): features_embedded = tf.layers.conv2d( features_embedded, filters=filters, kernel_size=3 if j == (attention_layers_per_group-1) else 1, strides=1, dilation_rate=(2, 2) if j == (attention_layers_per_group-1) else (1, 1), activation=None, use_bias=False, name="features2d_embedding%d_%d" %(i, j), padding="same") features_embedded = tf.layers.batch_normalization( features_embedded, training=is_training, momentum=MOMENTUM, epsilon=EPS, name="features2d_embedding%d_%d" %(i, j)) features_embedded = tf.nn.relu(features_embedded) tf.logging.info("Constructing layer: %s", features_embedded) return features_embedded
c665994b88027c24ed86e01514fa3fc176a3258a
16,310
def get_catalog_config(catalog): """ get the config dict of *catalog* """ return resolve_config_alias(available_catalogs[catalog])
4d36bc8be8ca2992424f0b97f28d3ac8d852c027
16,311
def manhatten(type_profile, song_profile): """ Calculate the Manhatten distance between the profile of specific output_colums value (e.g. specific composer) and the profile of a song """ # Sort profiles by frequency type_profile = type_profile.most_common() song_profile = song_profile.most_common() flat_type_profile = [ngram for (ngram, freq) in type_profile] flat_song_profile = [ngram for (ngram, freq) in song_profile] manhatten = 0 for i in range(len(flat_song_profile)): ngram = flat_song_profile[i] if ngram in flat_type_profile: manhatten += abs(flat_type_profile.index(ngram) - i) else: manhatten += abs(len(flat_type_profile) - i) return manhatten
4703585f9f60551bf2a5e2762612d45efb47a453
16,312
def raven(request): """lets you know whether raven is being used""" return { 'RAVEN': RAVEN }
3e047db45a597cf808e5227b358a9833fc0a4fc3
16,313
from typing import Union def _non_max_suppress_mask( bbox: np.array, scores: np.array, classes: np.array, masks: Union[np.array, None], filter_class: int, iou: float = 0.8, confidence: float = 0.001, ) -> tuple: """Perform non max suppression on the detection output if it is mask. :param bbox: Bbox outputs. :param scores: Score outputs. :param classes: Class outputs. :param masks: Mask outputs :param filter_class: The specific class required. :param iou: The intersection of union value to be considered. :param confidence: The confidence threshold for scores. :returns: tuple of suppressed bbox, suppressed scores, suppressed classes, and suppressed masks. """ filter_idx = _filter_class_and_zero_scores( scores, classes, filter_class, confidence, ) scores_filter = np.array(np.array(scores)[filter_idx]) bbox_filter = np.array(np.array(bbox)[filter_idx]) classes_filter = np.array(np.array(classes)[filter_idx]) masks_filter = np.array(np.array(masks)[filter_idx]) areas = np.empty(masks_filter.shape[0]) for index, mask in enumerate(masks_filter): areas[index] = np.count_nonzero(mask) sorted_scores = scores_filter.argsort()[::-1] keep = [] while sorted_scores.size > 0: score = sorted_scores[0] # keep the largest sorted score (sorted_scores[0] represent the largest score) keep.append(score) # with: # x = [0 0 1 1] and y = [0 1 1 0], # the intersect is x && y element-wise -> [0 0 1 0] intersect = np.empty_like(sorted_scores[1:]) for index, others in enumerate(masks_filter[sorted_scores[1:]]): intersect[index] = np.count_nonzero( np.logical_and(masks_filter[score], others) ) overlap = intersect / ( areas[score] + areas[sorted_scores[1:]] - intersect ) sorted_scores = sorted_scores[ np.union1d( np.where(overlap <= 1 - iou)[0], np.where( classes_filter[sorted_scores[1:]] != classes_filter[score] ), ) + 1 ] detection_boxes = list(map(tuple, bbox_filter[keep])) detection_scores = list(scores_filter[keep]) detection_classes = list(classes_filter[keep]) detection_masks = list(masks_filter[keep]) detection_boxes = [ (float(item[0]), float(item[1]), float(item[2]), float(item[3])) for item in detection_boxes ] detection_scores = [float(item) for item in detection_scores] detection_classes = [int(item) for item in detection_classes] return ( detection_boxes, detection_scores, detection_classes, detection_masks, )
742261f1854f2ad6d01046926c6017b72a1917a4
16,314
def _mark_untranslated_strings(translation_dict): """Marks all untranslated keys as untranslated by surrounding them with lte and gte symbols. This function modifies the translation dictionary passed into it in-place and then returns it. """ # This was a requirement when burton was written, but may be an unwanted # side effect for other projects that adopt burton. We should replace it # with something more flexible. for key in translation_dict: if key is not None and translation_dict[key] is None: translation_dict[key] = u"\u2264" + key + u"\u2265" return translation_dict
d15ac2d0fe8d50d5357bcc1e54b9666f7076aefd
16,316
import warnings import codecs def build(app, path): """ Build and return documents without known warnings :param app: :param path: :return: """ with warnings.catch_warnings(): # Ignore warnings emitted by docutils internals. warnings.filterwarnings( "ignore", "'U' mode is deprecated", DeprecationWarning) app.build() #return (app.outdir / path).read_text() with codecs.open((app.outdir / path), 'r', encoding='utf-8') as content_file: return content_file.read()
09049aad0d46d07144c3d564deb0e5aaf1b828ca
16,317
def SMWatConstrained(CSM, ci, cj, matchFunction, hvPenalty = -0.3, backtrace = False): """ Implicit Smith Waterman alignment on a binary cross-similarity matrix with constraints :param CSM: A binary N x M cross-similarity matrix :param ci: The index along the first sequence that must be matched to cj :param cj: The index along the second sequence that must be matched to ci :param matchFunction: A function that scores matching/mismatching :param hvPenalty: The amount by which to penalize horizontal/vertical moves :returns (Distance (scalar), (N+1)x(M+1) dynamic programming matrix) """ res1 = SMWat(CSM[0:ci+1, 0:cj+1], matchFunction, hvPenalty, backtrace = backtrace, backidx = [ci+1, cj+1]) CSM2 = np.fliplr(np.flipud(CSM[ci::, cj::])) res2 = SMWat(CSM2, matchFunction, hvPenalty, backtrace = backtrace, backidx = [CSM2.shape[0], CSM2.shape[1]]) res = {'score':res1['D'][-1, -1] + res2['D'][-1, -1]} res['D1'] = res1['D'] res['D2'] = res2['D'] if backtrace: path2 = [[ci+1+(CSM2.shape[0]+1-x), cj+1+(CSM2.shape[1]+1-y)] for [x, y] in res2['path']] res['path'] = res1['path'] + path2 return res
a66f17bb40e201a6758c1add4a1590672724dc3e
16,319
def check_images( coords, species, lattice, PBC=[1, 1, 1], tm=Tol_matrix(prototype="atomic"), tol=None, d_factor=1.0, ): """ Given a set of (unfiltered) frac coordinates, checks if the periodic images are too close. Args: coords: a list of fractional coordinates species: the atomic species of each coordinate lattice: a 3x3 lattice matrix PBC: the periodic boundary conditions tm: a Tol_matrix object tol: a single override value for the distance tolerances d_factor: the tolerance is multiplied by this amount. Larger values mean atoms must be farther apart Returns: False if distances are too close. True if distances are not too close """ # If no PBC, there are no images to check if PBC == [0, 0, 0]: return True # Create image coords from given coords and PBC coords = np.array(coords) m = create_matrix(PBC=PBC, omit=True) new_coords = [] new_species = [] for v in m: for v2 in coords + v: new_coords.append(v2) new_coords = np.array(new_coords) # Create a distance matrix dm = distance_matrix(coords, new_coords, lattice, PBC=[0, 0, 0]) # Define tolerances if tol is None: tols = np.zeros((len(species), len(species))) for i, s1 in enumerate(species): for j, s2 in enumerate(species): if i <= j: tols[i][j] = tm.get_tol(s1, s2) tols[j][i] = tm.get_tol(s1, s2) tols2 = np.tile(tols, int(len(new_coords) / len(coords))) if (dm < tols2).any(): return False else: return True elif tol is not None: if (dm < tol).any(): return False else: return True return True
20f3ada0aa391d989b638a835581226bd79439f7
16,320
def get_hamming_distances(genomes): """Calculate pairwise Hamming distances between the given list of genomes and return the nonredundant array of values for use with scipy's squareform function. Bases other than standard nucleotides (A, T, C, G) are ignored. Parameters ---------- genomes : list a list of strings corresponding to genomes that should be compared Returns ------- list a list of distinct Hamming distances as a vector-form distance vector >>> genomes = ["ATGCT", "ATGCT", "ACGCT"] >>> get_hamming_distances(genomes) [0, 1, 1] >>> genomes = ["AT-GCT", "AT--CT", "AC--CT"] >>> get_hamming_distances(genomes) [0, 1, 1] """ # Define an array of valid nucleotides to use in pairwise distance calculations. # Using a numpy array of byte strings allows us to apply numpy.isin later. nucleotides = np.array([b'A', b'T', b'C', b'G']) # Convert genome strings into numpy arrays to enable vectorized comparisons. genome_arrays = [ np.frombuffer(genome.encode(), dtype="S1") for genome in genomes ] # Precalculate positions of valid bases (A, T, C, and G) in each genome to speed up later comparisons. valid_bases = [ np.isin(genome_array, nucleotides) for genome_array in genome_arrays ] # Calculate Hamming distance between all distinct pairs of genomes at valid bases. # The resulting list is a reduced representation of a symmetric matrix that can be # converted to a square matrix with scipy's squareform function: # https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.squareform.html hamming_distances = [] for i in range(len(genomes)): # Only compare the current genome, i, with all later genomes. # This avoids repeating comparisons or comparing each genome to itself. for j in range(i + 1, len(genomes)): # Find all mismatches between these two genomes. mismatches = genome_arrays[i] != genome_arrays[j] # Count the number of mismatches where both genomes have valid bases. hamming_distances.append((mismatches & valid_bases[i] & valid_bases[j]).sum()) return hamming_distances
dad2e9583bd7fcbbbb87dd93d180e4de39ea3083
16,321
from typing import Dict def serialize(name: str, engine: str) -> Dict: """Get dictionary serialization for a dataset locator. Parameters ---------- name: string Unique dataset name. engine: string Unique identifier of the database engine (API). Returns ------- dict """ return {'name': name, 'database': engine}
9ab11318050caf3feb4664310e491ed48e7e5357
16,322
import torch def repackage_hidden(h): """ Wraps hidden states in new Variables, to detach them from their history. """ if isinstance(h, torch.Tensor): return h.detach() else: return tuple(v.detach() for v in h)
0ab8cffeaafaf6f39e2938ce2005dbca1d3d7496
16,323
def support_acctgroup_acctproject(version): """ Whether this Lustre version supports acctgroup and acctproject """ if version.lv_name == "es2": return False return True
858ec772a90e66431731ffcdd145fa7e56daad02
16,325
def decodeInventoryEntry_level1(document): """ Decodes a basic entry such as: '6 lobster cake' or '6' cakes @param document : NLP Doc object :return: Status if decoded correctly (true, false), and Inventory object """ count = Inventory(str(document)) for token in document: if token.pos_ == (u'NOUN' or u'NNS' or u'NN'): item = str(token) for child in token.children: if child.dep_ == u'compound' or child.dep_ == u'ad': item = str(child) + str(item) elif child.dep_ == u'nummod': count.amount = str(child).strip() for numerical_child in child.children: # this isn't arithmetic rather than treating it such as a string count.amount = str(numerical_child) + str(count.amount).strip() else: print "WARNING: unknown child: " + str(child) + ':'+str(child.dep_) count.item = item count.unit = item return count
a283f3630a18cdbb0cc22664e583f00866ff759b
16,326
from typing import Collection def from_ir_objs(ir_objs: Collection[IrCell]) -> AnnData: """\ Convert a collection of :class:`IrCell` objects to an :class:`~anndata.AnnData`. This is useful for converting arbitrary data formats into the scirpy :ref:`data-structure`. {doc_working_model} Parameters ---------- ir_objs Returns ------- :class:`~anndata.AnnData` object with :term:`IR` information in `obs`. """ ir_df = pd.DataFrame.from_records( (_process_ir_cell(x) for x in ir_objs), index="cell_id" ) adata = AnnData(obs=ir_df, X=np.empty([ir_df.shape[0], 0])) _sanitize_anndata(adata) return adata
55e95b2673d6aec02ae5aa7fb5cec014db17cdc7
16,328
def welcome(): """List all available api routes.""" return ( f"Available Routes:<br/>" f"/api/v1.0/precipitation<br/>" f"/api/v1.0/stations<br/>" f"/api/v1.0/tobs<br/>" f"/api/v1.0/start<br/>" f"/api/v1.0/start/end" )
bac64c3b2d2e5d883f627dada658cdd9359b61b0
16,330
from typing import List def get_cases_from_input_df(input_df: pd.DataFrame) -> List[Case]: """ Get the case attributes :return: """ cases: List[Case] = [] for index, row in input_df.iterrows(): # Create a case object from the row values in the input df cases.append(Case.from_dict(row.to_dict())) return cases
34b820880691456fde3ab260be02646590aeafd7
16,331
from typing import AnyStr import unicodedata def normalize_nfc(txt: AnyStr) -> bytes: """ Normalize message to NFC and return bytes suitable for protobuf. This seems to be bitcoin-qt standard of doing things. """ str_txt = txt.decode() if isinstance(txt, bytes) else txt return unicodedata.normalize("NFC", str_txt).encode()
12b6e037225878e0bbca1d52d9f58d57abb35746
16,333
from typing import Callable from typing import Any import threading import functools def synchronized(wrapped: Callable[..., Any]) -> Any: """The missing @synchronized decorator https://git.io/vydTA""" _lock = threading.RLock() @functools.wraps(wrapped) def _wrapper(*args, **kwargs): with _lock: return wrapped(*args, **kwargs) return _wrapper
39da1efeb93c8dbdba570763d2e66dc8d9d84fc5
16,334
def corrgroups60__decision_tree(): """ Decision Tree """ return sklearn.tree.DecisionTreeRegressor(random_state=0)
fb2405c54208705a105b225e1dd269d45892b7be
16,335
def auth_required(*auth_methods): """ Decorator that protects enpoints through multiple mechanisms Example:: @app.route('/dashboard') @auth_required('token', 'session') def dashboard(): return 'Dashboard' :param auth_methods: Specified mechanisms. """ login_mechanisms = { 'token': lambda: _check_token(), 'basic': lambda: _check_http_auth(), 'session': lambda: current_user.is_authenticated() } def wrapper(fn): @wraps(fn) def decorated_view(*args, **kwargs): h = {} mechanisms = [(method, login_mechanisms.get(method)) for method in auth_methods] for method, mechanism in mechanisms: if mechanism and mechanism(): return fn(*args, **kwargs) elif method == 'basic': r = _security.default_http_auth_realm h['WWW-Authenticate'] = 'Basic realm="%s"' % r if _security._unauthorized_callback: return _security._unauthorized_callback() else: return _get_unauthorized_response(headers=h) return decorated_view return wrapper
c6613e594abbb979352fe3ec96018fe52109bab0
16,336
def _get_default_data_dir_name(): """ Gets default data directory """ return _get_path(DATA_DIR)
b4207e108a9f08a72b47c44ab43b3971e67e8165
16,337
def point_inside_triangle(p, t, tol=None): """ Test to see if a point is inside a triangle. The point is first projected to the plane of the triangle for this test. :param ndarray p: Point inside triangle. :param ndarray t: Triangle vertices. :param float tol: Tolerance for barycentric coordinate check. :return: *True* if point is inside triangle, *False* if not. :rtype: bool """ if tol is None: tol = Settings.ptol v01 = t[1] - t[0] v02 = t[2] - t[0] vp = p - t[0] d01 = dot(v01, v01) d12 = dot(v01, v02) d02 = dot(v02, v02) dp1 = dot(vp, v01) dp2 = dot(vp, v02) denom = d01 * d02 - d12 * d12 if denom == 0.: return False u = (d02 * dp1 - d12 * dp2) / denom v = (d01 * dp2 - d12 * dp1) / denom if u >= -tol and v >= -tol and u + v <= 1. + tol: return True return False
a7a4dd52dfa65fdd9e3cb3ac151c7895acb3abb8
16,338
from datetime import datetime def merge_dfs(x, y): """Merge the two dataframes and download a CSV.""" df = pd.merge(x, y, on='Collection_Number', how='outer') indexed_df = df.set_index(['Collection_Number']) indexed_df['Access_Notes_Regarding_Storage_Locations'].fillna('No note', inplace=True) today = datetime.datetime.today().strftime('%Y-%m-%d') output_file = 'storage_locations_' + str(today) + '.csv' indexed_df.to_csv(output_file) print('Location report exported as ' + output_file) return indexed_df
9856d4394ca628fd7eb0f58e6cc805494410c51e
16,339
def consumer(func): """A decorator function that takes care of starting a coroutine automatically on call. See http://www.dabeaz.com/generators/ for more details. """ def start(*args, **kwargs): cr = func(*args, **kwargs) next(cr) return cr return start
e834a081c1f43545684bb4102a92b186c8825f30
16,340
def convert_openfermion_op(openfermion_op, n_qubits=None): """convert_openfermion_op Args: openfermion_op (:class:`openfermion.ops.QubitOperator`) n_qubit (:class:`int`): if None (default), it automatically calculates the number of qubits required to represent the given operator Returns: :class:`qulacs.GeneralQuantumOperator` """ if n_qubits is None: _n_qubits = _count_qubit_in_qubit_operator(openfermion_op) else: _n_qubits = n_qubits res = GeneralQuantumOperator(_n_qubits) for pauli_product in openfermion_op.terms: coef = float(np.real(openfermion_op.terms[pauli_product])) pauli_string = '' for pauli_operator in pauli_product: pauli_string += pauli_operator[1] + ' ' + str(pauli_operator[0]) pauli_string += ' ' res.add_operator(coef, pauli_string[:-1]) return res
416eccc82fbd7dbdcf61ba62f5176ca3e12a01db
16,341
def recommend(uid, data, model, top_n = 100): """ Returns the mean and covariance matrix of the demeaned dataset X (e.g. for PCA) Parameters ---------- uid : int user id data : surprise object with data The entire system, ratings of users (Constructed with reader from surprise) model : susrprise object Trained algorithm top_n : int The number of movies to recommend Returns ------- pd.DataFrame recommended movies pd.DataFram predicted ratings for the recommended movies data_update predicted movies and ratings in the movielens format (uid, iid, rating) """ all_movie_ids = data.df['iid'].unique() uid_rated = data.df[data.df['uid'] == uid]['iid'] movies_to_recommend = np.setdiff1d(all_movie_ids, uid_rated) if len(movies_to_recommend) == 0: print('NO MOVIES TO RECOMMEND!') prediction_set = [[uid, iid, 0] for iid in movies_to_recommend] #here 0 is arbitrary, ratings don't matter predictions = model.test(prediction_set) pred_ratings = np.array([pred.est for pred in predictions]) top = pred_ratings.argsort()[::-1][:top_n] data_update = pd.DataFrame([[uid, movies_to_recommend[top][i], pred_ratings[top][i]] for i in range(top_n)], columns = ['uid', 'iid', 'rating']) return movies_to_recommend[top], pred_ratings[top], data_update
b156826359e3310c8872a07428d0073795ef071b
16,345
def cluster_info(arr): """ number of clusters (nonzero fields separated by 0s) in array and size of cluster """ data = [] k2coord = [] coord2k = np.empty_like(arr).astype(np.int64) k = -1 new_cluster = True for i in range(0,len(arr)): if arr[i] == 0: new_cluster = True coord2k[i] = -1 else: if new_cluster == True: k += 1 k2coord.append([i]) data.append(0) else: k2coord[k].append(i) data[k] += 1 coord2k[i] = k new_cluster = False Ncl = len(data) # number of clusters Nk = data # Nk[k] = size of cluster k return Ncl, Nk, k2coord, coord2k
23a3d58b13ba4af4977cd25a1dc45d116fd812b5
16,347
def set_or_none(list_l): """Function to avoid list->set transformation to return set={None}.""" if list_l == [None]: res = None else: res = set(list_l) return res
ee5fb4539e63afc7fd8013610229d9ab784b88c5
16,348
import re def case_mismatch(vm_type, param): """Return True if vm_type matches a portion of param in a case insensitive search, but does not equal that portion; return False otherwise. The "portions" of param are delimited by "_". """ re_portion = re.compile( "(^(%(x)s)_)|(_(%(x)s)_)|(_(%(x)s)$)" % dict(x=vm_type), re.IGNORECASE ) found = re_portion.search(param) if found: param_vm_type = [x for x in found.groups()[1::2] if x][0] return param_vm_type != vm_type else: return False
e7fb565ac6e10fd15dd62a64fbf7f14a8bcfde6b
16,349
def _async_os(cls): """ Aliases for aiofiles.os""" return aiofiles.os
ad37b21f22ed5203451ac8eb4b7a53f4572fec73
16,350
import torch def corruption_function(x: torch.Tensor): """ Applies the Gsaussian blur to x """ return torchdrift.data.functional.gaussian_blur(x, severity=5)
54b98c6bddb187689c0e70fc2dbf0f3c56e25ad1
16,351
def filter_by_filename(conn, im_ids, imported_filename): """Filter list of image ids by originalFile name Sometimes we know the filename of an image that has been imported into OMERO but not necessarily the image ID. This is frequently the case when we want to annotate a recently imported image. This funciton will help to filter a list of image IDs to only those associated with a particular filename. Parameters ---------- conn : ``omero.gateway.BlitzGateway`` object OMERO connection. im_ids : list of int List of OMERO image IDs. imported_filename : str The full filename (with extension) of the file whose OMERO image we are looking for. NOT the path of the image. Returns ------- filtered_im_ids : list of int Filtered list of images with originalFile name matching ``imported_filename``. Notes ----- This function should be used as a filter on an image list that has been already narrowed down as much as possible. Note that many different images in OMERO may share the same filename (e.g., image.tif). Examples -------- >>> im_ids = get_image_ids(conn, dataset=303) >>> im_ids = filter_by_filename(conn, im_ids, "feb_2020.tif")] """ q = conn.getQueryService() params = Parameters() params.map = {"oname": rstring(imported_filename)} results = q.projection( "SELECT i.id FROM Image i" " JOIN i.fileset fs" " JOIN fs.usedFiles u" " JOIN u.originalFile o" " WHERE o.name=:oname", params, conn.SERVICE_OPTS ) im_id_matches = [r[0].val for r in results] return list(set(im_ids) & set(im_id_matches))
bf9625c06929a80f21a4683b1da687535f296e59
16,352
def get_count(): """ :return: 计数的值 """ counter = Counters.query.filter(Counters.id == 1).first() return make_succ_response(0) if counter is None else make_succ_response(counter.count)
be0ab2773e661b8e5e34f685b59f16cfdee6b26d
16,353
import math def perm(x, y=None): """Return the number of ways to choose k items from n items without repetition and with order.""" if not isinstance(x, int) or (not isinstance(y, int) and y is not None): raise ValueError(f"Expected integers. Received [{type(x)}] {x} and [{type(y)}] {y}") return math.perm(x, y)
c9ad65c6ce3cc3e5ba488c5f2ddd1aabbdc7da6a
16,354
from typing import Union def ui(candles: np.ndarray, period: int = 14, scalar: float = 100, source_type: str = "close", sequential: bool = False) -> Union[float, np.ndarray]: """ Ulcer Index (UI) :param candles: np.ndarray :param period: int - default: 14 :param scalar: float - default: 100 :param source_type: str - default: "close" :param sequential: bool - default: False :return: float | np.ndarray """ candles = slice_candles(candles, sequential) source = get_candle_source(candles, source_type=source_type) highest_close = talib.MAX(source, period) downside = scalar * (source - highest_close) downside /= highest_close d2 = downside * downside res = np.sqrt(talib.SUM(d2, period) / period) return res if sequential else res[-1]
1f99a6ee849094f3a695812e37035a13f36e8c49
16,357
def _padwithzeros(vector, pad_width, iaxis, kwargs): """Pad with zeros""" vector[: pad_width[0]] = 0 vector[-pad_width[1] :] = 0 return vector
1a3a9fc4fd3b0fc17a905fa9ecd283d60310655d
16,358
def fill_from_sparse_coo(t,elems): """ :param elems: non-zero elements defined in COO format (tuple(indices),value) :type elems: list[tuple(tuple(int),value)] """ for e in elems: t[e[0]]=e[1] return t
73c6892464d7d7cf34f40fe1dde9973950cdef79
16,359
def download_responses(survey_id): """Download survey responses.""" if request.method == 'GET': csv = survey_service.download_responses(survey_id) return Response( csv, mimetype='text/csv', headers={'Content-disposition': 'attachment; filename=surveydata.csv'})
8513caf582b87bf0cd5db80622c530d1ec1c3ef2
16,360
from collections import deque from typing import Iterable from typing import Deque def array_shift(data: Iterable, shift: int) -> Deque: """ left(-) or right(+) shift of array >>> arr = range(10) >>> array_shift(arr, -3) deque([3, 4, 5, 6, 7, 8, 9, 0, 1, 2]) >>> array_shift(arr, 3) deque([7, 8, 9, 0, 1, 2, 3, 4, 5, 6]) """ deq = deque(data) deq.rotate(shift) return deq
c14e115808592808bc9b0cf20fa8bc3d5ece7768
16,361
def convert_to_timetable(trains): """ 列車データを時刻表データに変換する関数 Args: trains (list of list of `Section`): 列車データ Returns: timetable (list): 時刻表データ timetable[from_station][to_station][dep_time] = (from_time, to_time) -> 現在時刻が dep_time の時に from_station から to_station まで直近の列車で移動する場合の 乗車・下車時刻(0時からの経過分)のタプル """ max_time = 1 + max([section.to_time for train in trains for section in train]) n_stations = len(set([section.to_station for train in trains for section in train])) timetable = [[[(max_time, max_time) for _ in range(max_time)] for _ in range(n_stations)] for _ in range(n_stations)] # Step0: 次ステップの探索用に (時刻, 駅) についてのグラフ(adj)を作成 adj = defaultdict(list) target_time_flag = [0 for _ in range(max_time)] for train in trains: for section in train: adj[(section.from_time, section.from_station)].append((section.to_time, section.to_station)) target_time_flag[section.from_time] = 1 target_time_flag[section.to_time] = 1 target_times = [t for t in range(max_time) if target_time_flag[t] == 1] for station in range(n_stations): for from_time, to_time in zip(target_times[:-1], target_times[1:]): adj[(from_time, station)].append((to_time, station)) # Step1: 出発時刻 = 乗車時刻 のデータを登録 for train in trains: for section in train: # 他の駅への最速到着時刻をBFSで求める min_to_time = [max_time for _ in range(n_stations)] min_to_time[section.from_station] = section.from_time que = deque([(section.from_time, section.from_station)]) visited = defaultdict(int) visited[(section.from_time, section.from_station)] = 1 while len(que) > 0: from_time, from_station = que.popleft() for to_time, to_station in adj[(from_time, from_station)]: if visited[(to_time, to_station)] == 1: continue min_to_time[to_station] = min(to_time, min_to_time[to_station]) que.append((to_time, to_station)) visited[(to_time, to_station)] = 1 # 出発時刻 = 乗車時刻 のデータを登録 for to_station in range(n_stations): if to_station == section.from_station: continue to_time = min_to_time[to_station] if to_time == max_time: continue timetable[section.from_station][to_station][section.from_time] = (section.from_time, to_time) # Step2: 出発時刻 != 乗車時刻 のデータを登録 # 例えば駅1→2の始発列車を考え、5:00(300)発・5:05(305)着だとする。 # step1では timetable[1][2][300] = (300, 305) とデータが登録される。 # ここで駅1を5:00(300)より前に出発するとしても、駅1で待機して同じ列車に乗ることになるため、 # t < 300 に対して timetable[1][2][t] = (300, 305) となるはず。 # step1ではこのデータは入らないので、ここで入れる。 for t in range(max_time - 2, - 1, - 1): for from_station in range(n_stations): for to_station in range(n_stations): timetable[from_station][to_station][t] = \ min(timetable[from_station][to_station][t], timetable[from_station][to_station][t + 1]) return timetable
042238b090af1b4b4e4a8cf469f9bbcd49edc9af
16,362
import math def parents(level, idx): """ Return all the (grand-)parents of the Healpix pixel idx at level (in nested format) :param level: Resolution level :param idx: Pixel index :return: All the parents of the pixel """ assert idx < 12 * 2 ** (2 * level) plpairs = [] for ind in range(level, 0, -1): idx = int(math.floor(idx / 4)) plpairs.append(tuple((ind - 1, idx))) level -= 1 return plpairs[::-1]
355c3acffa07065de10049059ef064abefdd7ca0
16,363
def precise_inst_ht(vert_list, spacing, offset): """ Uses a set of Vertical Angle Observations taken to a levelling staff at regular intervals to determine the height of the instrument above a reference mark :param vert_list: List of Vertical (Zenith) Angle Observations (minimum of 3) in Decimal Degrees format :param spacing: Distance in metres between each vertical angle observation :param offset: Lowest observed height above reference mark :return: Instrument Height above reference mark and its standard deviation """ if len(vert_list) < 3: raise ValueError('ValueError: 3 or more vertical angles required') vert_list.sort(reverse=True) vert_pairs = [(va1, va2) for va1, va2 in zip(vert_list, vert_list[1:])] base_ht = [] height_comp = [] for num, pair in enumerate(vert_pairs): base_ht_pair = offset + num * spacing base_ht.append(base_ht_pair) dist_a = sin(radians(pair[1])) * (spacing / (sin(radians(pair[0] - pair[1])))) delta_ht = dist_a * (sin(radians(pair[0] - 90))) height_comp.append(delta_ht + base_ht[num]) return round(mean(height_comp), 5), round(stdev(height_comp), 5)
d88cf0dc289f2ef96d4b60dabf17c6e4bd04e549
16,364
def _parse_transform_set(transform_dict, imputer_string, n_images=None): """Parse a dictionary read from yaml into a TransformSet object Parameters ---------- transform_dict : dictionary The dictionary as read from the yaml config file containing config key-value pairs imputer_string : string The name of the imputer (could be None) n_images : int > 0 The number of images being read in. Required because we need to create a new image transform for each image Returns ------- image_transforms : list A list of image Transform objects imputer : Imputer An Imputer object global_transforms : list A list of global Transform objects """ image_transforms = [] global_transforms = [] if imputer_string in _imputers: imputer = _imputers[imputer_string]() else: imputer = None if transform_dict is not None: for t in transform_dict: if type(t) is str: t = {t: {}} key, params = list(t.items())[0] if key in _image_transforms: image_transforms.append([_image_transforms[key](**params) for k in range(n_images)]) elif key in _global_transforms: global_transforms.append(_global_transforms[key](**params)) return image_transforms, imputer, global_transforms
47e3bf72c9e70bff22bebee7e73a14c349761116
16,365
import json import random def initialize_train_test_dataset(dataset): """ Create train and test dataset by random sampling. pct: percentage of training """ pct = 0.80 if dataset in ['reddit', 'gab']: dataset_fname = './data/A-Benchmark-Dataset-for-Learning-to-Intervene-in-Online-Hate-Speech-master/' + dataset + '.csv' xlist, ylist, zlist = read_EMNLP2019(dataset_fname) hate_num = 0 for y in ylist: for i in y.strip('[]').split(', '): hate_num += 1 X_text, Y_text = [], [] line_num = 0 for x, y, z in zip(xlist, ylist, zlist): x = x.strip().split('\n') for i in y.strip('[]').split(', '): X_text.append('. '.join(x[int(i) - 1].split('. ')[1:]).strip('\t')) # Only the hate speech line. temp = [] for j in split_response_func(z): if j.lower() == 'n/a': continue temp.append(j) Y_text.append(temp) line_num += 1 elif dataset == 'conan': all_text = [json.loads(line) for line in open('./data/CONAN/CONAN.json', 'r')] EN_text = [x for x in all_text[0]['conan'] if x['cn_id'][:2] == 'EN'] X_text = [x['hateSpeech'].strip() for x in EN_text] Y_text = [[x['counterSpeech'].strip()] for x in EN_text] hate_num = len(X_text) random_index = [x for x in range(hate_num)] random.shuffle(random_index) train_index = sorted(random_index[:int(pct*len(random_index))]) train_x_text = [X_text[i] for i in range(hate_num) if i in train_index] train_y_text = [Y_text[i] for i in range(hate_num) if i in train_index] test_x_text = [X_text[i] for i in range(hate_num) if i not in train_index] test_y_text = [Y_text[i] for i in range(hate_num) if i not in train_index] return train_x_text, train_y_text, test_x_text, test_y_text
bac5876be313a85213badcce667af550e8f3f65a
16,366
def load_raw_data_xlsx(files): """ Load data from an xlsx file After loading, the date column in the raw data is converted to a UTC datetime Parameters ---------- files : list A list of files to read. See the Notes section for more information Returns ------- list A list containing a DataFrame for each file that was read Notes ----- - Files is an array of maps containing the following data with the keyword (keyword) + ('file_name') the name of the xlsx file + ('date_column') the name of the date_column in the raw_data + ('time_zone') specifier for the timezone the raw data is recorded in + ('sheet_name') name or list of names of the sheets that are to be read + ('combine') boolean, all datasheets with true are combined into one, all others are read individually + ('start_column') Columns between this and ('end_column') are loaded + ('end_column') """ print('Importing XLSX Data...') combined_files = [] individual_files = [] for xlsx_file in files: print('importing ' + xlsx_file['file_name']) # if isinstance(file_name, str): # file_name = [file_name,'UTC'] date_column = xlsx_file['date_column'] raw_data = pd.read_excel(INPATH + xlsx_file['file_name'], xlsx_file['sheet_name'], parse_dates=[date_column]) # convert load data to UTC if(xlsx_file['time_zone'] != 'UTC'): raw_data[date_column] = pd.to_datetime(raw_data[date_column]).dt.tz_localize(xlsx_file['time_zone'], ambiguous="infer").dt.tz_convert('UTC').dt.strftime('%Y-%m-%d %H:%M:%S') else: if (xlsx_file['dayfirst']): raw_data[date_column] = pd.to_datetime(raw_data[date_column], format='%d-%m-%Y %H:%M:%S').dt.tz_localize(None) else: raw_data[date_column] = pd.to_datetime(raw_data[date_column], format='%Y-%m-%d %H:%M:%S').dt.tz_localize(None) if(xlsx_file['data_abs']): raw_data.loc[:, xlsx_file['start_column']:xlsx_file['end_column']] = raw_data.loc[:, xlsx_file['start_column']:xlsx_file['end_column']].abs() # rename column IDs, specifically Time, this will be used later as the df index raw_data.rename(columns={date_column: 'Time'}, inplace=True) raw_data.head() # now the data is positive and set to UTC raw_data.info() # interpolating for missing entries created by asfreq and original missing values if any raw_data.interpolate(method='time', inplace=True) if(xlsx_file['combine']): combined_files.append(raw_data) else: individual_files.append(raw_data) if(len(combined_files) > 0): individual_files.append(pd.concat(combined_files)) return individual_files
a2aebdb4d972ef7f46970b3e8fc14ef40ae42bb8
16,367
def filter_production_hosts(nr): """ Filter the hosts inventory, which match the production attribute. :param nr: An initialised Nornir inventory, used for processing. :return target_hosts: The targeted nornir hosts after being processed through nornir filtering. """ # Execute filter based on hosts being in production target_hosts = nr.filter(F(production__eq=True)) # Print seperator and header print("=" * 50) print("The hosts running in Production are:") # Iterate over filtered results and printout information for host, data in target_hosts.inventory.hosts.items(): print( f"Host: {Fore.CYAN}{host} " + Fore.RESET + f"- Platform: {Fore.CYAN}{data.platform} " + Fore.RESET + f"- OS Version: {Fore.CYAN}{data['os_version']} " + Fore.RESET + f"- Production?: {Fore.CYAN}{data['production']}" ) # Print total and seperator print(f"Total: {len(target_hosts.inventory.hosts.items())}") print("=" * 50) # Return filtered hosts return target_hosts
006524e7b014d3f908955fb81d9f928ac7df25d8
16,368
import random def get_lightmap(map_name="random"): """ Fetches the right lightmap given command line argument. """ assert map_name in ["default", "random"] + list(CONSTANTS.ALL_LIGHTMAPS.keys()), f"Unknown lightmap {map_name}..." if map_name == "random": map_name = random.choice(list(CONSTANTS.ALL_LIGHTMAPS.keys())) elif map_name == "default": map_name = "Subway_Lights" lightmap = sl.LightMap(CONSTANTS.ALL_LIGHTMAPS[map_name]) return lightmap
04ea7e901bbde8ba900469d8ed87b1b3c158809a
16,369
def kill_instance(cook_url, instance, assert_response=True, expected_status_code=204): """Kill an instance""" params = {'instance': [instance]} response = session.delete(f'{cook_url}/rawscheduler', params=params) if assert_response: assert expected_status_code == response.status_code, response.text return response
3daa954579b15deedc5a66e77a2178a5682bd1a3
16,370
def _get_n_batch_from_dataloader(dataloader: DataLoader) -> int: """Get a batch number in dataloader. Args: dataloader: torch dataloader Returns: A batch number in dataloader """ n_data = _get_n_data_from_dataloader(dataloader) n_batch = dataloader.batch_size if dataloader.batch_size else 1 return n_data // n_batch
182e5566c6b9c83d3dabc3c99f32aedf1e3c21e7
16,371
def get_hidden() -> list: """ Returns places that should NOT be shown in the addressbook """ return __hidden_places__
8d201c25dd3272b2a3b2292ef3d8fa5293a97967
16,372
def wait_for_unit_state(reactor, docker_client, unit_name, expected_activation_states): """ Wait until a unit is in the requested state. :param IReactorTime reactor: The reactor implementation to use to delay. :param docker_client: A ``DockerClient`` instance. :param unicode unit_name: The name of the unit. :param expected_activation_states: Activation states to wait for. :return: ``Deferred`` that fires when required state has been reached. """ def is_in_states(units): for unit in units: if unit.name == unit_name: if unit.activation_state in expected_activation_states: return True def check_if_in_states(): responded = docker_client.list() responded.addCallback(is_in_states) return responded return loop_until(reactor, check_if_in_states)
73278f8762a9b0c5d78ea4d5e098bb7a41b97072
16,373
def get_list_primitives(): """Get list of primitive words.""" return g_primitives
2429b646fbe2fbcc344e08ddffb64ccf2a2d853d
16,374
def make_graph(edge_list, threshold=0.0, max_connections=10): """Return 2 way graph from edge_list based on threshold""" graph = defaultdict(list) edge_list.sort(reverse=True, key=lambda x: x[1]) for nodes, weight in edge_list: a, b = nodes if weight > threshold: if len(graph[a]) < max_connections: graph[a].append(gv.connection(b, weight)) if len(graph[b]) < max_connections: graph[b].append(gv.connection(a, weight)) print(f'Total graph nodes considered : {len(graph.keys())}') print(f'Total graph connections considered : {sum(map(len, graph.values()))}') return graph
c9414a0b8df8b9de46ad444b376c5316f1960cd0
16,375
def ping(request): """Ping view.""" checked = {} for service in services_to_check: checked[service.name] = service().check() if all(item[0] for item in checked.values()): return HttpResponse( PINGDOM_TEMPLATE.format(status='OK'), content_type='text/xml', ) else: body = PINGDOM_TEMPLATE.format(status='FALSE') for service_result in filter(lambda x: x[0] is False, checked.values()): body += COMMENT_TEMPLATE.format(comment=service_result[1]) return HttpResponse( body, status=status.HTTP_500_INTERNAL_SERVER_ERROR, content_type='text/xml', )
09b3bd76c59e4d69678a6ce9c3018f638248ff88
16,376
import numbers def _num_samples(x): """Return number of samples in array-like x.""" message = 'Expected sequence or array-like, got %s' % type(x) if hasattr(x, 'fit') and callable(x.fit): # Don't get num_samples from an ensembles length! raise TypeError(message) if not hasattr(x, '__len__') and not hasattr(x, 'shape'): if hasattr(x, '__array__'): x = np.asarray(x) else: raise TypeError(message) if hasattr(x, 'shape') and x.shape is not None: if len(x.shape) == 0: raise TypeError("Singleton array %r cannot be considered" " a valid collection." % x) # Check that shape is returning an integer or default to len # Dask dataframes may not return numeric shape[0] value if isinstance(x.shape[0], numbers.Integral): return x.shape[0]
18133457621ec7c79add6d0ff9ab8b1b0c17d524
16,377
def inf_compress_idb(*args): """ inf_compress_idb() -> bool """ return _ida_ida.inf_compress_idb(*args)
fd4ef3c50b9fef7213d9f37a0326f5e9f06b9822
16,378
def tokens_history(corpus_id): """ History of changes in the corpus :param corpus_id: ID of the corpus """ corpus = Corpus.query.get_or_404(corpus_id) tokens = corpus.get_history(page=int_or(request.args.get("page"), 1), limit=int_or(request.args.get("limit"), 20)) return render_template_with_nav_info('main/tokens_history.html', corpus=corpus, tokens=tokens)
d87e4486cb2141b3c59e86a3483f4c445476ca20
16,379
def Hidden(request): """ Hidden Field with a visible friend.. """ schema = schemaish.Structure() schema.add('Visible', schemaish.String()) schema.add('Hidden', schemaish.String()) form = formish.Form(schema, 'form') form['Hidden'].widget = formish.Hidden() return form
3f5d96339c39c7cf186d4d45d837b0e95402d328
16,381
def train_and_eval(trial: optuna.Trial, study_dir: str, seed: int): """ Objective function for the Optuna `Study` to maximize. .. note:: Optuna expects only the `trial` argument, thus we use `functools.partial` to sneak in custom arguments. :param trial: Optuna Trial object for hyper-parameter optimization :param study_dir: the parent directory for all trials in this study :param seed: seed value for the random number generators, pass `None` for no seeding :return: objective function value """ # Synchronize seeds between Optuna trials pyrado.set_seed(seed) # Load the data data_set_name = "oscillation_50Hz_initpos-0.5" data = pd.read_csv(osp.join(pyrado.PERMA_DIR, "time_series", f"{data_set_name}.csv")) if data_set_name == "daily_min_temperatures": data = to.tensor(data["Temp"].values, dtype=to.get_default_dtype()).view(-1, 1) elif data_set_name == "monthly_sunspots": data = to.tensor(data["Sunspots"].values, dtype=to.get_default_dtype()).view(-1, 1) elif "oscillation" in data_set_name: data = to.tensor(data["Positions"].values, dtype=to.get_default_dtype()).view(-1, 1) else: raise pyrado.ValueErr( given=data_set_name, eq_constraint="'daily_min_temperatures', 'monthly_sunspots', " "'oscillation_50Hz_initpos-0.5', or 'oscillation_100Hz_initpos-0.4", ) # Dataset data_set_hparam = dict( name=data_set_name, ratio_train=0.7, window_size=trial.suggest_int("dataset_window_size", 1, 100), standardize_data=False, scale_min_max_data=True, ) dataset = TimeSeriesDataSet(data, **data_set_hparam) # Policy policy_hparam = dict( dt=0.02 if "oscillation" in data_set_name else 1.0, hidden_size=trial.suggest_int("policy_hidden_size", 2, 51), obs_layer=None, activation_nonlin=fcn_from_str( trial.suggest_categorical("policy_activation_nonlin", ["to_tanh", "to_sigmoid"]) ), mirrored_conv_weights=trial.suggest_categorical("policy_mirrored_conv_weights", [True, False]), conv_out_channels=1, conv_kernel_size=None, conv_padding_mode=trial.suggest_categorical("policy_conv_padding_mode", ["zeros", "circular"]), tau_init=trial.suggest_loguniform("policy_tau_init", 1e-2, 1e3), tau_learnable=True, kappa_init=trial.suggest_categorical("policy_kappa_init", [0, 1e-4, 1e-2]), kappa_learnable=True, potential_init_learnable=trial.suggest_categorical("policy_potential_init_learnable", [True, False]), init_param_kwargs=trial.suggest_categorical("policy_init_param_kwargs", [None, dict(bell=True)]), use_cuda=False, ) policy = NFPolicy(spec=EnvSpec(act_space=InfBoxSpace(shape=1), obs_space=InfBoxSpace(shape=1)), **policy_hparam) # Algorithm algo_hparam = dict( windowed=trial.suggest_categorical("algo_windowed", [True, False]), max_iter=1000, optim_class=optim.Adam, optim_hparam=dict( lr=trial.suggest_uniform("optim_lr", 5e-4, 5e-2), eps=trial.suggest_uniform("optim_eps", 1e-8, 1e-5), weight_decay=trial.suggest_uniform("optim_weight_decay", 5e-5, 5e-3), ), loss_fcn=nn.MSELoss(), ) csv_logger = create_csv_step_logger(osp.join(study_dir, f"trial_{trial.number}")) algo = TSPred(study_dir, dataset, policy, **algo_hparam, logger=csv_logger) # Train without saving the results algo.train(snapshot_mode="latest", seed=seed) # Evaluate num_init_samples = dataset.window_size _, loss_trn = TSPred.evaluate( policy, dataset.data_trn_inp, dataset.data_trn_targ, windowed=algo.windowed, num_init_samples=num_init_samples, cascaded=False, ) _, loss_tst = TSPred.evaluate( policy, dataset.data_tst_inp, dataset.data_tst_targ, windowed=algo.windowed, num_init_samples=num_init_samples, cascaded=False, ) return loss_trn
07e1cff3ab9954172ce4c09f673881109df6f08c
16,382
def random_active_qubits(nqubits, nmin=None, nactive=None): """Generates random list of target and control qubits.""" all_qubits = np.arange(nqubits) np.random.shuffle(all_qubits) if nactive is None: nactive = np.random.randint(nmin + 1, nqubits) return list(all_qubits[:nactive])
c9bab4d02a0afc569907c6ec838d0020878a345a
16,383
import re import requests import random import hashlib from bs4 import BeautifulSoup def main(host: str, username: str, password: str): """メイン. Args: host: ホスト名又はIPアドレス username: ユーザ名 password: パスワード """ url: str = f"http://{host}/" rlogintoken: re.Pattern = re.compile(r"creatHiddenInput\(\"Frm_Logintoken\", *\"(\d+)\"\)") rloginchecktoken: re.Pattern = re.compile(r"creatHiddenInput\(\"Frm_Loginchecktoken\", *\"(\d+)\"\)") s: requests.Session = requests.Session() res: requests.Response = s.get(url) m: typ.Optional[re.Match] = rlogintoken.search(res.text) if m is None: print("error 1") return 1 logintoken: str = m[1] m = rloginchecktoken.search(res.text) if m is None: print("error 2") return 2 loginchecktoken: str = m[1] pwd_random: int = round(random.random() * 89999999) + 10000000 before_password = hashlib.md5(f"{password}{pwd_random}".encode("utf-8")).hexdigest() params: typ.Dict[str, str] = {} params["action"] = "login" params["Username"] = username params["Password"] = before_password params["Frm_Logintoken"] = logintoken params["UserRandomNum"] = str(pwd_random) params["Frm_Loginchecktoken"] = loginchecktoken res2: requests.Response = s.post(url, data=params, allow_redirects=False) if res2.status_code != 302: print("error 3") return 3 res3: requests.Response = s.get(f"{url}getpage.gch?pid=1002&nextpage=pon_status_lan_link_info_t.gch") if res3.status_code != 200: print("error 4") return 4 columns: typ.List[str] = [ "ポート名", "受信したデータ量(byte)", "受信したパケットの総数", "マルチキャストパケットの受信数", "ブロードキャストパケットの受信数", "送信したデータ量(byte)", "送信されたパケットの総数", "マルチキャストパケットの送信数", "ブロードキャストパケットの送信数", ] indexdic: typ.Dict[str, int] = {} for i, c in enumerate(columns): indexdic[c] = i print(", ".join(columns)) soup = BeautifulSoup(res3.text, "html.parser") index: int = -1 values: typ.List = [] for td in soup.find_all("td"): if index != -1: values[index] = td.text.strip() index = -1 else: index = indexdic.get(td.text.strip(), -1) if index == 0: if len(values) > 0: print(", ".join(values)) values = [""] * len(columns) if len(values) > 0: print(", ".join(values))
36efbd8dc18b891934f690091ef8709e0eddb3ce
16,384
from typing import List import requests def create_label(project_id: int, label_name: str, templates: list, session=konfuzio_session()) -> List[dict]: """ Create a Label and associate it with templates. If no templates are specified, the label is associated with the first default template of the project. :param project_id: Project ID where to create the label :param label_name: Name for the label :param templates: Templates that use the label :param session: Session to connect to the server :return: Label ID in the Konfuzio APP. """ url = get_create_label_url() if len(templates) == 0: prj_templates = get_project_templates() default_template = [t for t in prj_templates if t['is_default']][0] templates_ids = [default_template['id']] else: templates_ids = [template.id for template in templates] data = {"project": project_id, "text": label_name, "templates": templates_ids} r = session.post(url=url, data=data) assert r.status_code == requests.codes.created, f'Status of request: {r}' label_id = r.json()['id'] return label_id
4dda5f7ac6473be76212c03deb6beb7980b44105
16,385
def home(): """ Home page """ return render_template("index.html")
0ac607593cc98871d97c111fc2ca89aa980af83f
16,386
def get_from_parameterdata_or_dict(params,key,**kwargs): """ Get the value corresponding to a key from an object that can be either a ParameterData or a dictionary. :param params: a dict or a ParameterData object :param key: a key :param default: a default value. If not present, and if key is not present in params, a KeyError is raised, as in params[key] :return: the corresponding value """ if isinstance(params,ParameterData): params = params.get_dict() if 'default' in kwargs: return params.get(key,kwargs['default']) else: return params[key]
864936e9b43c18e4a8dfd7d88c1cedda28fdb23d
16,388
import torch def test_input_type(temp_files, fsdp_config, input_cls): """Test FSDP with input being a list or a dict, only single GPU.""" if torch_version() < (1, 7, 0): # This test runs multiple test cases in a single process. On 1.6.0 it # throw an error like this: # RuntimeError: Container is already initialized! Cannot initialize it twice! pytest.skip("older pytorch doesn't work well with single process dist_init multiple times") result = dist_init(rank=0, world_size=1, filename=temp_files[0], filename_rpc=temp_files[1]) assert result, "Dist init failed" assert isinstance(fsdp_config, dict), str(fsdp_config) class Model(Module): def __init__(self): super().__init__() self.layer = Linear(4, 4) def forward(self, input): if isinstance(input, list): input = input[0] else: assert isinstance(input, dict), input input = input["in"] return self.layer(input) model = FSDP(Model(), **fsdp_config).cuda() optim = SGD(model.parameters(), lr=0.1) for _ in range(5): in_data = torch.rand(64, 4).cuda() in_data.requires_grad = True if input_cls is list: in_data = [in_data] else: assert input_cls is dict in_data = {"in": in_data} out = model(in_data) out.sum().backward() optim.step() optim.zero_grad() model.assert_state(TrainingState.IDLE) teardown()
6bf7d03f51088518e85d3e6ea8f59bcc86e4a0b4
16,389
def get_heroesplayed_players(matchs_data, team_longname): """Returns a dict linking each player to - the heroes he/she played - if it was a win (1) or a loss (0) """ picks = get_picks(matchs_data, team_longname) players = get_players(picks) results = get_results(matchs_data, team_longname) heroes_played = {item: [[], []] for item in players} for pl in players: i = 0 for rd in picks: if pl in rd.keys(): heroes_played[pl][0].append(rd[pl]) if results[i] == 1: heroes_played[pl][1].append(1) else: heroes_played[pl][1].append(0) i += 1 return heroes_played
53dc68642a4cca7b80ede7b2d54098eb9274b1af
16,390
def autofmt(filename, validfmts, defaultfmt=None): """Infer the format of a file from its filename. As a convention all the format to be forced with prefix followed by a colon (e.g. "fmt:filename"). `validfmts` is a list of acceptable file formats `defaultfmt` is the format to use if the extension is not on the valid list returns `filename`,`fmt` """ colonix = filename.find(":") if colonix != -1: extension = filename[:colonix] filename = filename[(colonix+1):] else: extension = None for validfmt in validfmts: if filename.endswith(validfmt): extension = filename[-len(validfmt):] return filename, (extension.lower() if extension in validfmts else defaultfmt)
3e39325f43f8b4a87074a38f7d576d17669151fb
16,391
def get_or_add_dukaan(): """ Add a new business """ if request.method == "POST": payload = request.json # payload = change_case(payload, "lower") business = db.dukaans.find_one({"name": payload["name"]}) if business is not None: return ( jsonify( { "success": False, "message": "Business name already exists, Please choose another name.", } ), 400, ) for required_key in business_schema: if required_key not in payload.keys(): return jsonify({"message": f"Missing {required_key} parameter"}), 400 db.dukaans.insert_one(payload) return jsonify({"success": True, "dukaan": clean_dict_helper(payload)}), 201 dukaans = list(db.dukaans.find({}).limit(5)) for dukaan in dukaans: if len(dukaan.get("categories", [])) > 0: dukaan["categories"] = [ db.categories.find_one({"_id": ObjectId(_id)})["name"] for _id in dukaan["categories"] ] ratings = list(db.ratings.find({"business": str(dukaan["_id"])}, {"rating": 1})) if len(ratings) > 0: ratings_sum = sum([r["rating"] for r in ratings]) dukaan["avg_rating"] = float(ratings_sum) / float(len(ratings)) else: dukaan["avg_rating"] = 0.0 return jsonify({"success": True, "dukaans": clean_dict_helper(dukaans)})
e522ac8394b7b70949e2854e10251f3bc51279ae
16,392
def nearest(a, num): """ Finds the array's nearest value to a given num. Args: a (ndarray): An array. num (float): The value to find the nearest to. Returns: float. The normalized array. """ a = np.array(a, dtype=float) return a.flat[np.abs(a - num).argmin()]
cadbad68add910ced502a6802592d1c043f1c914
16,393
def hex_string(data): """Return a hex dump of a string as a string. The output produced is in the standard 16 characters per line hex + ascii format: 00000000: 40 00 00 00 00 00 00 00 40 00 00 00 01 00 04 80 @....... @....... 00000010: 01 01 00 00 00 00 00 01 00 00 00 00 ........ .... """ pos = 0 # Position in data line = 0 # Line of data hex = "" # Hex display ascii = "" # ASCII display result = "" while pos < len(data): # Start with header if pos % 16 == 0: hex = "%08x: " % (line * 16) ascii = "" # Add character hex = hex + "%02x " % (ord(data[pos])) if ord(data[pos]) < 32 or ord(data[pos]) > 176: ascii = ascii + '.' else: ascii = ascii + data[pos] pos = pos + 1 # Add separator if half way if pos % 16 == 8: hex = hex + " " ascii = ascii + " " # End of line if pos % 16 == 0: result = result + "%s %s\n" % (hex, ascii) line = line + 1 # Leftover bits if pos % 16 != 0: # Pad hex string for i in range(0, (16 - (pos % 16))): hex = hex + " " # Half way separator if (pos % 16) < 8: hex = hex + " " result = result + "%s %s\n" % (hex, ascii) return result
7f827b4f8049b43e86d35bd972f5b6aaa2190869
16,394
def extract_ego_time_point(history: SimulationHistory) -> npt.NDArray[int]: """ Extract time point in simulation history. :param history: Simulation history. :return An array of time in micro seconds. """ time_point = np.array( [sample.ego_state.time_point.time_us for sample in history.data] ) return time_point
4860b2c7032ea232ace2680c704e4a59051b6c5c
16,396