code
stringlengths
66
870k
docstring
stringlengths
19
26.7k
func_name
stringlengths
1
138
language
stringclasses
1 value
repo
stringlengths
7
68
path
stringlengths
5
324
url
stringlengths
46
389
license
stringclasses
7 values
def get_action(self, observation): r"""Get a single action given an observation. Args: observation (np.ndarray): Observation from the environment. Shape is :math:`env_spec.observation_space`. Returns: tuple: * np.ndarray: Predicted action. Shape is :math:`env_spec.action_space`. * dict: * np.ndarray[float]: Mean of the distribution * np.ndarray[float]: Standard deviation of logarithmic values of the distribution. """ if not isinstance(observation, np.ndarray) and not isinstance( observation, torch.Tensor): observation = self._env_spec.observation_space.flatten(observation) elif isinstance(observation, np.ndarray) and len(observation.shape) > 1: observation = self._env_spec.observation_space.flatten(observation) elif isinstance(observation, torch.Tensor) and len(observation.shape) > 1: observation = torch.flatten(observation) with torch.no_grad(): if isinstance(observation, np.ndarray): observation = np_to_torch(observation) if not isinstance(observation, torch.Tensor): observation = list_to_tensor(observation) observation = observation.unsqueeze(0) action, agent_infos = self.get_actions(observation) return action[0], {k: v[0] for k, v in agent_infos.items()}
Get a single action given an observation. Args: observation (np.ndarray): Observation from the environment. Shape is :math:`env_spec.observation_space`. Returns: tuple: * np.ndarray: Predicted action. Shape is :math:`env_spec.action_space`. * dict: * np.ndarray[float]: Mean of the distribution * np.ndarray[float]: Standard deviation of logarithmic values of the distribution.
get_action
python
rlworkgroup/garage
src/garage/torch/policies/stochastic_policy.py
https://github.com/rlworkgroup/garage/blob/master/src/garage/torch/policies/stochastic_policy.py
MIT
def get_actions(self, observations): r"""Get actions given observations. Args: observations (np.ndarray): Observations from the environment. Shape is :math:`batch_dim \bullet env_spec.observation_space`. Returns: tuple: * np.ndarray: Predicted actions. :math:`batch_dim \bullet env_spec.action_space`. * dict: * np.ndarray[float]: Mean of the distribution. * np.ndarray[float]: Standard deviation of logarithmic values of the distribution. """ if not isinstance(observations[0], np.ndarray) and not isinstance( observations[0], torch.Tensor): observations = self._env_spec.observation_space.flatten_n( observations) # frequently users like to pass lists of torch tensors or lists of # numpy arrays. This handles those conversions. if isinstance(observations, list): if isinstance(observations[0], np.ndarray): observations = np.stack(observations) elif isinstance(observations[0], torch.Tensor): observations = torch.stack(observations) if isinstance(observations[0], np.ndarray) and len(observations[0].shape) > 1: observations = self._env_spec.observation_space.flatten_n( observations) elif isinstance(observations[0], torch.Tensor) and len(observations[0].shape) > 1: observations = torch.flatten(observations, start_dim=1) with torch.no_grad(): if isinstance(observations, np.ndarray): observations = np_to_torch(observations) if not isinstance(observations, torch.Tensor): observations = list_to_tensor(observations) if isinstance(self._env_spec.observation_space, akro.Image): observations /= 255.0 # scale image dist, info = self.forward(observations) return dist.sample().cpu().numpy(), { k: v.detach().cpu().numpy() for (k, v) in info.items() }
Get actions given observations. Args: observations (np.ndarray): Observations from the environment. Shape is :math:`batch_dim \bullet env_spec.observation_space`. Returns: tuple: * np.ndarray: Predicted actions. :math:`batch_dim \bullet env_spec.action_space`. * dict: * np.ndarray[float]: Mean of the distribution. * np.ndarray[float]: Standard deviation of logarithmic values of the distribution.
get_actions
python
rlworkgroup/garage
src/garage/torch/policies/stochastic_policy.py
https://github.com/rlworkgroup/garage/blob/master/src/garage/torch/policies/stochastic_policy.py
MIT
def forward(self, observations): """Compute the action distributions from the observations. Args: observations (torch.Tensor): Batch of observations on default torch device. Returns: torch.distributions.Distribution: Batch distribution of actions. dict[str, torch.Tensor]: Additional agent_info, as torch Tensors. Do not need to be detached, and can be on any device. """
Compute the action distributions from the observations. Args: observations (torch.Tensor): Batch of observations on default torch device. Returns: torch.distributions.Distribution: Batch distribution of actions. dict[str, torch.Tensor]: Additional agent_info, as torch Tensors. Do not need to be detached, and can be on any device.
forward
python
rlworkgroup/garage
src/garage/torch/policies/stochastic_policy.py
https://github.com/rlworkgroup/garage/blob/master/src/garage/torch/policies/stochastic_policy.py
MIT
def forward(self, observations): """Compute the action distributions from the observations. Args: observations (torch.Tensor): Batch of observations on default torch device. Returns: torch.distributions.Distribution: Batch distribution of actions. dict[str, torch.Tensor]: Additional agent_info, as torch Tensors """ dist = self._module(observations) ret_mean = dist.mean.cpu() ret_log_std = (dist.variance.sqrt()).log().cpu() return dist, dict(mean=ret_mean, log_std=ret_log_std)
Compute the action distributions from the observations. Args: observations (torch.Tensor): Batch of observations on default torch device. Returns: torch.distributions.Distribution: Batch distribution of actions. dict[str, torch.Tensor]: Additional agent_info, as torch Tensors
forward
python
rlworkgroup/garage
src/garage/torch/policies/tanh_gaussian_mlp_policy.py
https://github.com/rlworkgroup/garage/blob/master/src/garage/torch/policies/tanh_gaussian_mlp_policy.py
MIT
def __init__(self, env_spec, **kwargs): """Initialize class with multiple attributes. Args: env_spec (EnvSpec): Environment specification. **kwargs: Keyword arguments. """ self._env_spec = env_spec self._obs_dim = env_spec.observation_space.flat_dim self._action_dim = env_spec.action_space.flat_dim MLPModule.__init__(self, input_dim=self._obs_dim + self._action_dim, output_dim=1, **kwargs)
Initialize class with multiple attributes. Args: env_spec (EnvSpec): Environment specification. **kwargs: Keyword arguments.
__init__
python
rlworkgroup/garage
src/garage/torch/q_functions/continuous_mlp_q_function.py
https://github.com/rlworkgroup/garage/blob/master/src/garage/torch/q_functions/continuous_mlp_q_function.py
MIT
def forward(self, observations): """Return Q-value(s). Args: observations (np.ndarray): observations of shape :math: `(N, O*)`. Returns: torch.Tensor: Output value """ # We're given flattened observations. observations = observations.reshape( -1, *self._env_spec.observation_space.shape) return self._cnn_module(observations)
Return Q-value(s). Args: observations (np.ndarray): observations of shape :math: `(N, O*)`. Returns: torch.Tensor: Output value
forward
python
rlworkgroup/garage
src/garage/torch/q_functions/discrete_cnn_q_function.py
https://github.com/rlworkgroup/garage/blob/master/src/garage/torch/q_functions/discrete_cnn_q_function.py
MIT
def forward(self, observations): """Return Q-value(s). Args: observations (np.ndarray): observations of shape :math: `(N, O*)`. Returns: torch.Tensor: Output value """ # We're given flattened observations. observations = observations.reshape( -1, *self._env_spec.observation_space.shape) out = self._module(observations) val = self._val(out) act = self._act(out) act = act - act.mean(1).unsqueeze(1) return val + act
Return Q-value(s). Args: observations (np.ndarray): observations of shape :math: `(N, O*)`. Returns: torch.Tensor: Output value
forward
python
rlworkgroup/garage
src/garage/torch/q_functions/discrete_dueling_cnn_q_function.py
https://github.com/rlworkgroup/garage/blob/master/src/garage/torch/q_functions/discrete_dueling_cnn_q_function.py
MIT
def compute_loss(self, obs, returns): r"""Compute mean value of loss. Args: obs (torch.Tensor): Observation from the environment with shape :math:`(N \dot [T], O*)`. returns (torch.Tensor): Acquired returns with shape :math:`(N, )`. Returns: torch.Tensor: Calculated negative mean scalar value of objective (float). """ dist = self.module(obs) ll = dist.log_prob(returns.reshape(-1, 1)) loss = -ll.mean() return loss
Compute mean value of loss. Args: obs (torch.Tensor): Observation from the environment with shape :math:`(N \dot [T], O*)`. returns (torch.Tensor): Acquired returns with shape :math:`(N, )`. Returns: torch.Tensor: Calculated negative mean scalar value of objective (float).
compute_loss
python
rlworkgroup/garage
src/garage/torch/value_functions/gaussian_mlp_value_function.py
https://github.com/rlworkgroup/garage/blob/master/src/garage/torch/value_functions/gaussian_mlp_value_function.py
MIT
def compute_loss(self, obs, returns): r"""Compute mean value of loss. Args: obs (torch.Tensor): Observation from the environment with shape :math:`(N \dot [T], O*)`. returns (torch.Tensor): Acquired returns with shape :math:`(N, )`. Returns: torch.Tensor: Calculated negative mean scalar value of objective (float). """
Compute mean value of loss. Args: obs (torch.Tensor): Observation from the environment with shape :math:`(N \dot [T], O*)`. returns (torch.Tensor): Acquired returns with shape :math:`(N, )`. Returns: torch.Tensor: Calculated negative mean scalar value of objective (float).
compute_loss
python
rlworkgroup/garage
src/garage/torch/value_functions/value_function.py
https://github.com/rlworkgroup/garage/blob/master/src/garage/torch/value_functions/value_function.py
MIT
def step_env(env, n=10, visualize=True): """Step env helper. Args: env (Environment): Input environment. n (int): Steps. visualize (bool): Whether visualize the environment. """ env.reset() if visualize and issubclass(type(env), Environment): env.visualize() for _ in range(n): print('itr:', _) es = env.step(env.action_space.sample()) if es.last: break
Step env helper. Args: env (Environment): Input environment. n (int): Steps. visualize (bool): Whether visualize the environment.
step_env
python
rlworkgroup/garage
tests/helpers.py
https://github.com/rlworkgroup/garage/blob/master/tests/helpers.py
MIT
def step_env_with_gym_quirks(env, spec, n=10, visualize=True, serialize_env=False): """Step env helper. Args: env (Environment): Input environment. spec (EnvSpec): The environment specification. n (int): Steps. visualize (bool): Whether to visualize the environment. serialize_env (bool): Whether to serialize the environment. """ if serialize_env: # Roundtrip serialization round_trip = cloudpickle.loads(cloudpickle.dumps(env)) assert round_trip.spec == env.spec env = round_trip env.reset() for _ in range(n): es = env.step(env.action_space.sample()) if visualize: if spec.id not in KNOWN_GYM_RENDER_NOT_IMPLEMENTED: env.visualize() else: with pytest.raises(NotImplementedError): env.visualize() if es.last: break env.close()
Step env helper. Args: env (Environment): Input environment. spec (EnvSpec): The environment specification. n (int): Steps. visualize (bool): Whether to visualize the environment. serialize_env (bool): Whether to serialize the environment.
step_env_with_gym_quirks
python
rlworkgroup/garage
tests/helpers.py
https://github.com/rlworkgroup/garage/blob/master/tests/helpers.py
MIT
def convolve(_input, filter_weights, filter_bias, strides, filters, in_channels, hidden_nonlinearity): """Helper function for performing convolution. Args: _input (tf.Tensor): Input tf.Tensor to the CNN. filter_weights (tuple(tf.Tensor)): The weights of the filters. filter_bias (tuple(tf.Tensor)): The bias of the filters. strides (tuple[int]): The stride of the sliding window. For example, (1, 2) means there are two convolutional layers. The stride of the filter for first layer is 1 and that of the second layer is 2. filters (Tuple[Tuple[int, Tuple[int, int]], ...]): Number and dimension of filters. For example, ((3, (3, 5)), (32, (3, 3))) means there are two convolutional layers. The filter for the first layer have 3 channels and its shape is (3 x 5), while the filter for the second layer have 32 channels and its shape is (3 x 3). in_channels (tuple[int]): The number of input channels. hidden_nonlinearity (callable): Activation function for intermediate dense layer(s). It should return a tf.Tensor. Set it to None to maintain a linear activation. Return: tf.Tensor: The output of the convolution. """ batch_size = _input.shape[0] in_width = _input.shape[1] in_height = _input.shape[2] for filter_iter, in_shape, filter_weight, _filter_bias, stride in zip( filters, in_channels, filter_weights, filter_bias, strides): filter_width = filter_iter[1][1] filter_height = filter_iter[1][0] out_width = int((in_width - filter_width) / stride) + 1 out_height = int((in_height - filter_height) / stride) + 1 flatten_filter_size = filter_width * filter_height * in_shape reshape_filter = filter_weight.reshape(flatten_filter_size, -1) image_vector = np.empty( (batch_size, out_width, out_height, flatten_filter_size)) for batch in range(batch_size): for w in range(out_width): for h in range(out_height): image_vector[batch][w][h] = _construct_image_vector( _input, batch, w, h, filter_width, filter_height, in_shape) _input = np.dot(image_vector, reshape_filter) + _filter_bias _input = hidden_nonlinearity(_input).eval() in_width = out_width in_height = out_height return _input
Helper function for performing convolution. Args: _input (tf.Tensor): Input tf.Tensor to the CNN. filter_weights (tuple(tf.Tensor)): The weights of the filters. filter_bias (tuple(tf.Tensor)): The bias of the filters. strides (tuple[int]): The stride of the sliding window. For example, (1, 2) means there are two convolutional layers. The stride of the filter for first layer is 1 and that of the second layer is 2. filters (Tuple[Tuple[int, Tuple[int, int]], ...]): Number and dimension of filters. For example, ((3, (3, 5)), (32, (3, 3))) means there are two convolutional layers. The filter for the first layer have 3 channels and its shape is (3 x 5), while the filter for the second layer have 32 channels and its shape is (3 x 3). in_channels (tuple[int]): The number of input channels. hidden_nonlinearity (callable): Activation function for intermediate dense layer(s). It should return a tf.Tensor. Set it to None to maintain a linear activation. Return: tf.Tensor: The output of the convolution.
convolve
python
rlworkgroup/garage
tests/helpers.py
https://github.com/rlworkgroup/garage/blob/master/tests/helpers.py
MIT
def recurrent_step_lstm(input_val, num_units, step_hidden, step_cell, w_x_init, w_h_init, b_init, nonlinearity, gate_nonlinearity, forget_bias=1.0): """Helper function for performing feedforward of a lstm cell. Args: input_val (tf.Tensor): Input placeholder. num_units (int): Hidden dimension for LSTM cell. step_hidden (tf.Tensor): Place holder for step hidden state. step_cell (tf.Tensor): Place holder for step cell state. nonlinearity (callable): Activation function for intermediate dense layer(s). It should return a tf.Tensor. Set it to None to maintain a linear activation. w_x_init (callable): Initializer function for the weight of intermediate dense layer(s). The function should return a tf.Tensor. b_init (callable): Initializer function for the bias of intermediate dense layer(s). The function should return a tf.Tensor. gate_nonlinearity (callable): Activation function for recurrent layers. It should return a tf.Tensor. Set it to None to maintain a linear activation. w_h_init (callable): Initializer function for the weight of recurrent layer(s). The function should return a tf.Tensor. forget_bias (float): Bias to be added to the forget gate at initialization. It's used to reduce the scale of forgetting at the beginning of the training. Returns: tf.Tensor: Final hidden state after feedforward. tf.Tensor: Final cell state after feedforward. Note: Incoming gate: i(t) = f_i(x(t) @ W_xi + h(t-1) @ W_hi + w_ci * c(t-1) + b_i) Forget gate: f(t) = f_f(x(t) @ W_xf + h(t-1) @ W_hf + w_cf * c(t-1) + b_f) Cell gate: c(t) = f(t) * c(t - 1) + i(t) * f_c(x(t) @ W_xc + h(t-1) @ W_hc + b_c) Out gate: o(t) = f_o(x(t) @ W_xo + h(t-1) W_ho + w_co * c(t) + b_o) New hidden state: h(t) = o(t) * f_h(c(t)) Incoming, forget, cell, and out vectors must have the same dimension as the hidden state. """ def f(x): """Linear function. Args: x (float): Input variable. Returns: float: Ouput variable. """ return x if nonlinearity is None: nonlinearity = f if gate_nonlinearity is None: gate_nonlinearity = f input_dim = np.prod(input_val.shape[1:]) # Weights for the input gate w_xi = np.full((input_dim, num_units), w_x_init) w_hi = np.full((num_units, num_units), w_h_init) b_i = np.full((num_units, ), b_init) # Weights for the forget gate w_xf = np.full((input_dim, num_units), w_x_init) w_hf = np.full((num_units, num_units), w_h_init) b_f = np.full((num_units, ), b_init) # Weights for the cell gate w_xc = np.full((input_dim, num_units), w_x_init) w_hc = np.full((num_units, num_units), w_h_init) b_c = np.full((num_units, ), b_init) # Weights for the out gate w_xo = np.full((input_dim, num_units), w_x_init) w_ho = np.full((num_units, num_units), w_h_init) b_o = np.full((num_units, ), b_init) w_x_ifco = np.concatenate([w_xi, w_xf, w_xc, w_xo], axis=1) w_h_ifco = np.concatenate([w_hi, w_hf, w_hc, w_ho], axis=1) x_ifco = np.matmul(input_val, w_x_ifco) h_ifco = np.matmul(step_hidden, w_h_ifco) x_i = x_ifco[:, :num_units] x_f = x_ifco[:, num_units:num_units * 2] x_c = x_ifco[:, num_units * 2:num_units * 3] x_o = x_ifco[:, num_units * 3:num_units * 4] h_i = h_ifco[:, :num_units] h_f = h_ifco[:, num_units:num_units * 2] h_c = h_ifco[:, num_units * 2:num_units * 3] h_o = h_ifco[:, num_units * 3:num_units * 4] i = gate_nonlinearity(x_i + h_i + b_i) f = gate_nonlinearity(x_f + h_f + b_f + forget_bias) o = gate_nonlinearity(x_o + h_o + b_o) c = f * step_cell + i * nonlinearity(x_c + h_c + b_c) h = o * nonlinearity(c) return h, c
Helper function for performing feedforward of a lstm cell. Args: input_val (tf.Tensor): Input placeholder. num_units (int): Hidden dimension for LSTM cell. step_hidden (tf.Tensor): Place holder for step hidden state. step_cell (tf.Tensor): Place holder for step cell state. nonlinearity (callable): Activation function for intermediate dense layer(s). It should return a tf.Tensor. Set it to None to maintain a linear activation. w_x_init (callable): Initializer function for the weight of intermediate dense layer(s). The function should return a tf.Tensor. b_init (callable): Initializer function for the bias of intermediate dense layer(s). The function should return a tf.Tensor. gate_nonlinearity (callable): Activation function for recurrent layers. It should return a tf.Tensor. Set it to None to maintain a linear activation. w_h_init (callable): Initializer function for the weight of recurrent layer(s). The function should return a tf.Tensor. forget_bias (float): Bias to be added to the forget gate at initialization. It's used to reduce the scale of forgetting at the beginning of the training. Returns: tf.Tensor: Final hidden state after feedforward. tf.Tensor: Final cell state after feedforward. Note: Incoming gate: i(t) = f_i(x(t) @ W_xi + h(t-1) @ W_hi + w_ci * c(t-1) + b_i) Forget gate: f(t) = f_f(x(t) @ W_xf + h(t-1) @ W_hf + w_cf * c(t-1) + b_f) Cell gate: c(t) = f(t) * c(t - 1) + i(t) * f_c(x(t) @ W_xc + h(t-1) @ W_hc + b_c) Out gate: o(t) = f_o(x(t) @ W_xo + h(t-1) W_ho + w_co * c(t) + b_o) New hidden state: h(t) = o(t) * f_h(c(t)) Incoming, forget, cell, and out vectors must have the same dimension as the hidden state.
recurrent_step_lstm
python
rlworkgroup/garage
tests/helpers.py
https://github.com/rlworkgroup/garage/blob/master/tests/helpers.py
MIT
def recurrent_step_gru(input_val, num_units, step_hidden, w_x_init, w_h_init, b_init, nonlinearity, gate_nonlinearity, forget_bias=1.0): """Helper function for performing feedforward of a GRU cell. Args: input_val (tf.Tensor): Input placeholder. num_units (int): Hidden dimension for GRU cell. step_hidden (tf.Tensor): Place holder for step hidden state. nonlinearity (callable): Activation function for intermediate dense layer(s). It should return a tf.Tensor. Set it to None to maintain a linear activation. w_x_init (callable): Initializer function for the weight of intermediate dense layer(s). The function should return a tf.Tensor. b_init (callable): Initializer function for the bias of intermediate dense layer(s). The function should return a tf.Tensor. gate_nonlinearity (callable): Activation function for recurrent layers. It should return a tf.Tensor. Set it to None to maintain a linear activation. w_h_init (callable): Initializer function for the weight of recurrent layer(s). The function should return a tf.Tensor. forget_bias (float): Bias to be added to the forget gate at initialization. It's used to reduce the scale of forgetting at the beginning of the training. Returns: tf.Tensor: Final hidden state after feedforward. Note: Reset gate: r(t) = f_r(x(t) @ W_xr + h(t-1) @ W_hr + b_r) Update gate: u(t) = f_u(x(t) @ W_xu + h(t-1) @ W_hu + b_u) Cell gate: c(t) = f_c(x(t) @ W_xc + r(t) * (h(t-1) @ W_hc) + b_c) New hidden state: h(t) = u_t * h(t-1) + (1 - u(t)) * c(t) The reset, update, and cell vectors must have the same dimension as the hidden state. """ def f(x): """Linear function. Args: x (float): Input variable. Returns: float: Ouput variable. """ return x del forget_bias if nonlinearity is None: nonlinearity = f if gate_nonlinearity is None: gate_nonlinearity = f input_dim = np.prod(input_val.shape[1:]) # Weights for the update gate w_xz = np.full((input_dim, num_units), w_x_init) w_hz = np.full((num_units, num_units), w_h_init) b_z = np.full((num_units, ), b_init) # Weights for the reset gate w_xr = np.full((input_dim, num_units), w_x_init) w_hr = np.full((num_units, num_units), w_h_init) b_r = np.full((num_units, ), b_init) # Weights for the hidden gate w_xh = np.full((input_dim, num_units), w_x_init) w_hh = np.full((num_units, num_units), w_h_init) b_h = np.full((num_units, ), b_init) w_x_zrh = np.concatenate([w_xz, w_xr, w_xh], axis=1) w_h_zrh = np.concatenate([w_hz, w_hr, w_hh], axis=1) x_zrh = np.matmul(input_val, w_x_zrh) h_zrh = np.matmul(step_hidden, w_h_zrh) x_z = x_zrh[:, :num_units] x_r = x_zrh[:, num_units:num_units * 2] x_h = x_zrh[:, num_units * 2:num_units * 3] h_z = h_zrh[:, :num_units] h_r = h_zrh[:, num_units:num_units * 2] h_h = h_zrh[:, num_units * 2:num_units * 3] z = gate_nonlinearity(x_z + h_z + b_z) r = gate_nonlinearity(x_r + h_r + b_r) hh = nonlinearity(x_h + r * h_h + b_h) h = z * step_hidden + (1 - z) * hh return h
Helper function for performing feedforward of a GRU cell. Args: input_val (tf.Tensor): Input placeholder. num_units (int): Hidden dimension for GRU cell. step_hidden (tf.Tensor): Place holder for step hidden state. nonlinearity (callable): Activation function for intermediate dense layer(s). It should return a tf.Tensor. Set it to None to maintain a linear activation. w_x_init (callable): Initializer function for the weight of intermediate dense layer(s). The function should return a tf.Tensor. b_init (callable): Initializer function for the bias of intermediate dense layer(s). The function should return a tf.Tensor. gate_nonlinearity (callable): Activation function for recurrent layers. It should return a tf.Tensor. Set it to None to maintain a linear activation. w_h_init (callable): Initializer function for the weight of recurrent layer(s). The function should return a tf.Tensor. forget_bias (float): Bias to be added to the forget gate at initialization. It's used to reduce the scale of forgetting at the beginning of the training. Returns: tf.Tensor: Final hidden state after feedforward. Note: Reset gate: r(t) = f_r(x(t) @ W_xr + h(t-1) @ W_hr + b_r) Update gate: u(t) = f_u(x(t) @ W_xu + h(t-1) @ W_hu + b_u) Cell gate: c(t) = f_c(x(t) @ W_xc + r(t) * (h(t-1) @ W_hc) + b_c) New hidden state: h(t) = u_t * h(t-1) + (1 - u(t)) * c(t) The reset, update, and cell vectors must have the same dimension as the hidden state.
recurrent_step_gru
python
rlworkgroup/garage
tests/helpers.py
https://github.com/rlworkgroup/garage/blob/master/tests/helpers.py
MIT
def _construct_image_vector(_input, batch, w, h, filter_width, filter_height, in_shape): """Get sliding window of input image. Args: _input (tf.Tensor): Input tf.Tensor to the CNN. batch (int): Batch index. w (int): Width index. h (int): Height index. filter_width (int): Width of the filter. filter_height (int): Height of the filter. in_shape (int): The number of input channels. Return: np.array: The output of the sliding window. """ sw = np.empty((filter_width, filter_height, in_shape)) for dw in range(filter_width): for dh in range(filter_height): for in_c in range(in_shape): sw[dw][dh][in_c] = _input[batch][w + dw][h + dh][in_c] return sw.flatten()
Get sliding window of input image. Args: _input (tf.Tensor): Input tf.Tensor to the CNN. batch (int): Batch index. w (int): Width index. h (int): Height index. filter_width (int): Width of the filter. filter_height (int): Height of the filter. in_shape (int): The number of input channels. Return: np.array: The output of the sliding window.
_construct_image_vector
python
rlworkgroup/garage
tests/helpers.py
https://github.com/rlworkgroup/garage/blob/master/tests/helpers.py
MIT
def max_pooling(_input, pool_shape, pool_stride, padding='VALID'): """Helper function for performing max pooling. Args: _input (tf.Tensor): Input tf.Tensor to the CNN. pool_shape (int): Dimension of the pooling layer. pool_stride (int): The stride of the pooling layer. padding (str): The type of padding algorithm to use, either 'SAME' or 'VALID'. Return: tf.Tensor: The output tf.Tensor after max pooling. """ batch_size = _input.shape[0] if padding == 'VALID': height_size = int((_input.shape[1] - pool_shape) / pool_stride) + 1 width_size = int((_input.shape[2] - pool_shape) / pool_stride) + 1 else: height_size = int((_input.shape[1] + pool_stride - 1) / pool_stride) width_size = int((_input.shape[2] + pool_stride - 1) / pool_stride) # max pooling results = np.empty((batch_size, height_size, width_size, _input.shape[3])) for b in range(batch_size): for i in range(0, results.shape[1]): for j in range(0, results.shape[2]): for k in range(_input.shape[3]): row = i * pool_shape col = j * pool_shape results[b][i][j][k] = np.max(_input[b, row:row + pool_shape, col:col + # noqa: W504 pool_shape, k]) return results
Helper function for performing max pooling. Args: _input (tf.Tensor): Input tf.Tensor to the CNN. pool_shape (int): Dimension of the pooling layer. pool_stride (int): The stride of the pooling layer. padding (str): The type of padding algorithm to use, either 'SAME' or 'VALID'. Return: tf.Tensor: The output tf.Tensor after max pooling.
max_pooling
python
rlworkgroup/garage
tests/helpers.py
https://github.com/rlworkgroup/garage/blob/master/tests/helpers.py
MIT
def __init__(self, env=None, env_name='', max_episode_length=100): """Create an AutoStepEnv. Args: env (gym.Env): Environment to be wrapped. env_name (str): Name of the environment. max_episode_length (int): Maximum length of the episode. """ if env_name: super().__init__(gym.make(env_name)) else: super().__init__(env) self._episode_step = 0 self._max_episode_length = max_episode_length
Create an AutoStepEnv. Args: env (gym.Env): Environment to be wrapped. env_name (str): Name of the environment. max_episode_length (int): Maximum length of the episode.
__init__
python
rlworkgroup/garage
tests/wrappers.py
https://github.com/rlworkgroup/garage/blob/master/tests/wrappers.py
MIT
def step(self, action): """Step the wrapped environment. Args: action (np.ndarray): the action. Returns: np.ndarray: Next observation float: Reward bool: Termination signal dict: Environment information """ self._episode_step += 1 next_obs, reward, done, info = self.env.step(action) if self._episode_step == self._max_episode_length: done = True self._episode_step = 0 return next_obs, reward, done, info
Step the wrapped environment. Args: action (np.ndarray): the action. Returns: np.ndarray: Next observation float: Reward bool: Termination signal dict: Environment information
step
python
rlworkgroup/garage
tests/wrappers.py
https://github.com/rlworkgroup/garage/blob/master/tests/wrappers.py
MIT
def setup_method(self): """Setup the Session and default Graph.""" self.graph = tf.Graph() for c in self.graph.collections: self.graph.clear_collection(c) self.graph_manager = self.graph.as_default() self.graph_manager.__enter__() self.sess = tf.compat.v1.Session(graph=self.graph) self.sess_manager = self.sess.as_default() self.sess_manager.__enter__() self.sess.__enter__() logger.add_output(NullOutput()) deterministic.set_seed(1)
Setup the Session and default Graph.
setup_method
python
rlworkgroup/garage
tests/fixtures/fixtures.py
https://github.com/rlworkgroup/garage/blob/master/tests/fixtures/fixtures.py
MIT
def teardown_method(self): """Teardown the Session and default Graph.""" logger.remove_all() self.sess.__exit__(None, None, None) self.sess_manager.__exit__(None, None, None) self.graph_manager.__exit__(None, None, None) self.sess.close() # These del are crucial to prevent ENOMEM in the CI # b/c TensorFlow does not release memory explicitly del self.graph del self.sess gc.collect()
Teardown the Session and default Graph.
teardown_method
python
rlworkgroup/garage
tests/fixtures/fixtures.py
https://github.com/rlworkgroup/garage/blob/master/tests/fixtures/fixtures.py
MIT
def train(self, trainer): """Obtain samplers and start actual training for each epoch. See garage.np.algos.RLAlgorithm train(). Args: trainer (Trainer): Trainer is passed to give algorithm the access to trainer.step_epochs(), which provides services such as snapshotting and sampler control. """
Obtain samplers and start actual training for each epoch. See garage.np.algos.RLAlgorithm train(). Args: trainer (Trainer): Trainer is passed to give algorithm the access to trainer.step_epochs(), which provides services such as snapshotting and sampler control.
train
python
rlworkgroup/garage
tests/fixtures/algos/dummy_algo.py
https://github.com/rlworkgroup/garage/blob/master/tests/fixtures/algos/dummy_algo.py
MIT
def init_opt(self): """Initialize the optimization procedure. If using tensorflow, this may include declaring all the variables and compiling functions. """
Initialize the optimization procedure. If using tensorflow, this may include declaring all the variables and compiling functions.
init_opt
python
rlworkgroup/garage
tests/fixtures/algos/dummy_tf_algo.py
https://github.com/rlworkgroup/garage/blob/master/tests/fixtures/algos/dummy_tf_algo.py
MIT
def optimize_policy(self, samples_data): """Optimize the policy using the samples. Args: samples_data (dict): Processed sample data. """
Optimize the policy using the samples. Args: samples_data (dict): Processed sample data.
optimize_policy
python
rlworkgroup/garage
tests/fixtures/algos/dummy_tf_algo.py
https://github.com/rlworkgroup/garage/blob/master/tests/fixtures/algos/dummy_tf_algo.py
MIT
def render(self, mode='human'): """Render. Args: mode (str): Render mode. """
Render. Args: mode (str): Render mode.
render
python
rlworkgroup/garage
tests/fixtures/envs/dummy/base.py
https://github.com/rlworkgroup/garage/blob/master/tests/fixtures/envs/dummy/base.py
MIT
def action_space(self): """Return an action space. Returns: gym.spaces: The action space of the environment. """ return akro.Box(low=-5.0, high=5.0, shape=self._action_dim, dtype=np.float32)
Return an action space. Returns: gym.spaces: The action space of the environment.
action_space
python
rlworkgroup/garage
tests/fixtures/envs/dummy/dummy_box_env.py
https://github.com/rlworkgroup/garage/blob/master/tests/fixtures/envs/dummy/dummy_box_env.py
MIT
def observation_space(self): """Return the observation space. Returns: akro.Dict: Observation space. """ if self.obs_space_type == 'box': return gym.spaces.Dict({ 'achieved_goal': gym.spaces.Box(low=-200., high=200., shape=(3, ), dtype=np.float32), 'desired_goal': gym.spaces.Box(low=-200., high=200., shape=(3, ), dtype=np.float32), 'observation': gym.spaces.Box(low=-200., high=200., shape=(25, ), dtype=np.float32) }) elif self.obs_space_type == 'image': return gym.spaces.Dict({ 'dummy': gym.spaces.Box(low=0, high=255, shape=(100, 100, 3), dtype=np.uint8), }) else: return gym.spaces.Dict({'dummy': gym.spaces.Discrete(5)})
Return the observation space. Returns: akro.Dict: Observation space.
observation_space
python
rlworkgroup/garage
tests/fixtures/envs/dummy/dummy_dict_env.py
https://github.com/rlworkgroup/garage/blob/master/tests/fixtures/envs/dummy/dummy_dict_env.py
MIT
def action_space(self): """Return the action space. Returns: akro.Box: Action space. """ if self.act_space_type == 'box': return akro.Box(low=-5.0, high=5.0, shape=(1, ), dtype=np.float32) else: return akro.Discrete(5)
Return the action space. Returns: akro.Box: Action space.
action_space
python
rlworkgroup/garage
tests/fixtures/envs/dummy/dummy_dict_env.py
https://github.com/rlworkgroup/garage/blob/master/tests/fixtures/envs/dummy/dummy_dict_env.py
MIT
def compute_reward(self, achieved_goal, goal, info): """Function to compute new reward. Args: achieved_goal (numpy.ndarray): Achieved goal. goal (numpy.ndarray): Original desired goal. info (dict): Extra information. Returns: float: New computed reward. """ del info return np.sum(achieved_goal - goal)
Function to compute new reward. Args: achieved_goal (numpy.ndarray): Achieved goal. goal (numpy.ndarray): Original desired goal. info (dict): Extra information. Returns: float: New computed reward.
compute_reward
python
rlworkgroup/garage
tests/fixtures/envs/dummy/dummy_dict_env.py
https://github.com/rlworkgroup/garage/blob/master/tests/fixtures/envs/dummy/dummy_dict_env.py
MIT
def reset(self): """Reset the environment. Returns: np.ndarray: Environment state. """ self.state = np.ones(self._obs_dim, dtype=np.uint8) self._lives = 5 self.step_called = 0 return self.state
Reset the environment. Returns: np.ndarray: Environment state.
reset
python
rlworkgroup/garage
tests/fixtures/envs/dummy/dummy_discrete_pixel_env.py
https://github.com/rlworkgroup/garage/blob/master/tests/fixtures/envs/dummy/dummy_discrete_pixel_env.py
MIT
def step(self, action): """Step the environment. Before gym fixed overflow issue for sample() in np.uint8 environment, we will handle the sampling here. We need high=256 since np.random.uniform sample from [low, high) (includes low, but excludes high). Args: action (int): Action. Returns: np.ndarray: observation. float: reward. bool: terminal signal. dict: extra environment info. Raises: RuntimeError: step when empty lives left. """ done = False if self.state is not None: # Simulating FIRE action if action == 1: if self._prev_action == 2: done = True obs = np.full(self._obs_dim, 2, dtype=np.uint8) else: if self.random: obs = np.random.uniform(low=0, high=256, size=self._obs_dim).astype( np.uint8) else: obs = self.state + action if self._lives == 0: raise RuntimeError('DummyEnv: Cannot step when lives = 0!') self._lives -= 1 if self._lives == 0: done = True else: raise RuntimeError( 'DummyEnv: reset() must be called before step()!') self.step_called += 1 self._prev_action = action return obs, 0, done, {'ale.lives': self._lives}
Step the environment. Before gym fixed overflow issue for sample() in np.uint8 environment, we will handle the sampling here. We need high=256 since np.random.uniform sample from [low, high) (includes low, but excludes high). Args: action (int): Action. Returns: np.ndarray: observation. float: reward. bool: terminal signal. dict: extra environment info. Raises: RuntimeError: step when empty lives left.
step
python
rlworkgroup/garage
tests/fixtures/envs/dummy/dummy_discrete_pixel_env.py
https://github.com/rlworkgroup/garage/blob/master/tests/fixtures/envs/dummy/dummy_discrete_pixel_env.py
MIT
def __init__(self, frames): """ LazyFrames class from baselines. Openai baselines use this class for FrameStack environment wrapper. It is used for testing garage.envs.wrappers.AtariEnv. garge.envs.wrapper.AtariEnv is used when algorithms are trained using baselines wrappers, e.g. during benchmarking. """ self._frames = frames self._out = None
LazyFrames class from baselines. Openai baselines use this class for FrameStack environment wrapper. It is used for testing garage.envs.wrappers.AtariEnv. garge.envs.wrapper.AtariEnv is used when algorithms are trained using baselines wrappers, e.g. during benchmarking.
__init__
python
rlworkgroup/garage
tests/fixtures/envs/dummy/dummy_discrete_pixel_env_baselines.py
https://github.com/rlworkgroup/garage/blob/master/tests/fixtures/envs/dummy/dummy_discrete_pixel_env_baselines.py
MIT
def fixture_exp(snapshot_config, sess): """Dummy fixture experiment function. Args: snapshot_config (garage.experiment.SnapshotConfig): The snapshot configuration used by Trainer to create the snapshotter. If None, it will create one with default settings. sess (tf.Session): An optional TensorFlow session. A new session will be created immediately if not provided. Returns: np.ndarray: Values of the parameters evaluated in the current session """ with TFTrainer(snapshot_config=snapshot_config, sess=sess) as trainer: env = GymEnv('CartPole-v1', max_episode_length=100) policy = CategoricalMLPPolicy(name='policy', env_spec=env.spec, hidden_sizes=(8, 8)) baseline = LinearFeatureBaseline(env_spec=env.spec) sampler = LocalSampler(agents=policy, envs=env, max_episode_length=env.spec.max_episode_length) algo = VPG(env_spec=env.spec, policy=policy, baseline=baseline, sampler=sampler, discount=0.99, optimizer_args=dict(learning_rate=0.01, )) trainer.setup(algo, env) trainer.train(n_epochs=5, batch_size=100) return policy.get_param_values()
Dummy fixture experiment function. Args: snapshot_config (garage.experiment.SnapshotConfig): The snapshot configuration used by Trainer to create the snapshotter. If None, it will create one with default settings. sess (tf.Session): An optional TensorFlow session. A new session will be created immediately if not provided. Returns: np.ndarray: Values of the parameters evaluated in the current session
fixture_exp
python
rlworkgroup/garage
tests/fixtures/experiment/fixture_experiment.py
https://github.com/rlworkgroup/garage/blob/master/tests/fixtures/experiment/fixture_experiment.py
MIT
def network_output_spec(self): """Network output spec. Returns: list[str]: Name of the model outputs, in order. """ return [ 'all_output', 'step_output', 'step_hidden', 'init_hidden', 'dist' ]
Network output spec. Returns: list[str]: Name of the model outputs, in order.
network_output_spec
python
rlworkgroup/garage
tests/fixtures/models/simple_categorical_gru_model.py
https://github.com/rlworkgroup/garage/blob/master/tests/fixtures/models/simple_categorical_gru_model.py
MIT
def _build(self, obs_input, step_obs_input, step_hidden, name=None): """Build model. Args: obs_input (tf.Tensor): Entire time-series observation input. step_obs_input (tf.Tensor): Single timestep observation input. step_hidden (tf.Tensor): Hidden state for step. name (str): Name of the model, also the name scope. Returns: tf.Tensor: Entire time-series outputs. tf.Tensor: Step output. tf.Tensor: Step hidden state. tf.Tensor: Initial hidden state. tfp.distributions.OneHotCategorical: Distribution. """ outputs, output, step_hidden, hidden_init_var = super()._build( obs_input, step_obs_input, step_hidden, name) dist = tfp.distributions.OneHotCategorical(outputs) return outputs, output, step_hidden, hidden_init_var, dist
Build model. Args: obs_input (tf.Tensor): Entire time-series observation input. step_obs_input (tf.Tensor): Single timestep observation input. step_hidden (tf.Tensor): Hidden state for step. name (str): Name of the model, also the name scope. Returns: tf.Tensor: Entire time-series outputs. tf.Tensor: Step output. tf.Tensor: Step hidden state. tf.Tensor: Initial hidden state. tfp.distributions.OneHotCategorical: Distribution.
_build
python
rlworkgroup/garage
tests/fixtures/models/simple_categorical_gru_model.py
https://github.com/rlworkgroup/garage/blob/master/tests/fixtures/models/simple_categorical_gru_model.py
MIT
def network_output_spec(self): """Network output spec. Returns: list[str]: Name of the model outputs, in order. """ return [ 'all_output', 'step_output', 'step_hidden', 'step_cell', 'init_hidden', 'init_cell', 'dist' ]
Network output spec. Returns: list[str]: Name of the model outputs, in order.
network_output_spec
python
rlworkgroup/garage
tests/fixtures/models/simple_categorical_lstm_model.py
https://github.com/rlworkgroup/garage/blob/master/tests/fixtures/models/simple_categorical_lstm_model.py
MIT
def _build(self, obs_input, step_obs_input, step_hidden, step_cell, name=None): """Build model. Args: obs_input (tf.Tensor): Entire time-series observation input. step_obs_input (tf.Tensor): Single timestep observation input. step_hidden (tf.Tensor): Hidden state for step. step_cell (tf.Tensor): Cell state for step. name (str): Name of the model, also the name scope. Returns: tf.Tensor: Entire time-series outputs. tf.Tensor: Step output. tf.Tensor: Step hidden state. tf.Tensor: Step cell state. tf.Tensor: Initial hidden state. tf.Tensor: Initial cell state. tfp.distributions.OneHotCategorical: Distribution. """ (outputs, output, step_hidden, step_cell, hidden_init_var, cell_init_var) = super()._build(obs_input, step_obs_input, step_hidden, step_cell, name) dist = tfp.distributions.OneHotCategorical(outputs) return (outputs, output, step_hidden, step_cell, hidden_init_var, cell_init_var, dist)
Build model. Args: obs_input (tf.Tensor): Entire time-series observation input. step_obs_input (tf.Tensor): Single timestep observation input. step_hidden (tf.Tensor): Hidden state for step. step_cell (tf.Tensor): Cell state for step. name (str): Name of the model, also the name scope. Returns: tf.Tensor: Entire time-series outputs. tf.Tensor: Step output. tf.Tensor: Step hidden state. tf.Tensor: Step cell state. tf.Tensor: Initial hidden state. tf.Tensor: Initial cell state. tfp.distributions.OneHotCategorical: Distribution.
_build
python
rlworkgroup/garage
tests/fixtures/models/simple_categorical_lstm_model.py
https://github.com/rlworkgroup/garage/blob/master/tests/fixtures/models/simple_categorical_lstm_model.py
MIT
def _build(self, obs_input, name=None): """Build model. Args: obs_input (tf.Tensor): Observation inputs. name (str): Name of the model, also the name scope. Returns: tf.Tensor: Network outputs. tfp.distributions.OneHotCategorical: Distribution. """ prob = super()._build(obs_input, name) dist = tfp.distributions.OneHotCategorical(prob) return prob, dist
Build model. Args: obs_input (tf.Tensor): Observation inputs. name (str): Name of the model, also the name scope. Returns: tf.Tensor: Network outputs. tfp.distributions.OneHotCategorical: Distribution.
_build
python
rlworkgroup/garage
tests/fixtures/models/simple_categorical_mlp_model.py
https://github.com/rlworkgroup/garage/blob/master/tests/fixtures/models/simple_categorical_mlp_model.py
MIT
def _build(self, obs_input, name=None): """Build model given input placeholder(s). Args: obs_input (tf.Tensor): Tensor input for state. name (str): Inner model name, also the variable scope of the inner model, if exist. One example is garage.tf.models.Sequential. Return: tf.Tensor: Tensor output of the model. """ del name height_size = self.input_dim[0] width_size = self.input_dim[1] for filter_iter, stride in zip(self.filters, self.strides): if self.padding == 'SAME': height_size = int((height_size + stride - 1) / stride) width_size = int((width_size + stride - 1) / stride) else: height_size = int( (height_size - filter_iter[1][0]) / stride) + 1 width_size = int((width_size - filter_iter[1][1]) / stride) + 1 flatten_shape = height_size * width_size * self.filters[-1][0] return_var = tf.compat.v1.get_variable( 'return_var', (), initializer=tf.constant_initializer(0.5)) return tf.fill((tf.shape(obs_input)[0], flatten_shape), return_var)
Build model given input placeholder(s). Args: obs_input (tf.Tensor): Tensor input for state. name (str): Inner model name, also the variable scope of the inner model, if exist. One example is garage.tf.models.Sequential. Return: tf.Tensor: Tensor output of the model.
_build
python
rlworkgroup/garage
tests/fixtures/models/simple_cnn_model.py
https://github.com/rlworkgroup/garage/blob/master/tests/fixtures/models/simple_cnn_model.py
MIT
def _build(self, obs_input, name=None): """Build model given input placeholder(s). Args: obs_input (tf.Tensor): Tensor input for state. name (str): Inner model name, also the variable scope of the inner model, if exist. One example is garage.tf.models.Sequential. Return: tf.Tensor: Tensor output of the model. """ del name height_size = self.input_dim[0] width_size = self.input_dim[1] for filter_iter, stride in zip(self.filters, self.strides): if self.padding == 'SAME': height_size = int((height_size + stride - 1) / stride) width_size = int((width_size + stride - 1) / stride) new_height = height_size + self.pool_strides[0] - 1 height_size = int(new_height / self.pool_strides[0]) new_width = width_size + self.pool_strides[1] - 1 width_size = int(new_width / self.pool_strides[1]) else: height_size = int( (height_size - filter_iter[1][0]) / stride) + 1 width_size = int((width_size - filter_iter[1][1]) / stride) + 1 new_height = height_size - self.pool_shapes[0] height_size = int(new_height / self.pool_strides[0]) + 1 new_width = width_size - self.pool_shapes[0] width_size = int(new_width / self.pool_strides[1]) + 1 flatten_shape = height_size * width_size * self.filters[-1][0] return_var = tf.compat.v1.get_variable( 'return_var', (), initializer=tf.constant_initializer(0.5)) return tf.fill((tf.shape(obs_input)[0], flatten_shape), return_var)
Build model given input placeholder(s). Args: obs_input (tf.Tensor): Tensor input for state. name (str): Inner model name, also the variable scope of the inner model, if exist. One example is garage.tf.models.Sequential. Return: tf.Tensor: Tensor output of the model.
_build
python
rlworkgroup/garage
tests/fixtures/models/simple_cnn_model_with_max_pooling.py
https://github.com/rlworkgroup/garage/blob/master/tests/fixtures/models/simple_cnn_model_with_max_pooling.py
MIT
def _build(self, obs_input, step_obs_input, step_hidden, name=None): """Build model given input placeholder(s). Args: obs_input (tf.Tensor): Place holder for entire time-series inputs. step_obs_input (tf.Tensor): Place holder for step inputs. step_hidden (tf.Tensor): Place holder for step hidden state. name (str): Inner model name, also the variable scope of the inner model, if exist. One example is garage.tf.models.Sequential. Return: tf.Tensor: Entire time-series outputs. tf.Tensor: Step output. tf.Tensor: Step hidden state. tf.Tensor: Initial hidden state. """ del name return_var = tf.compat.v1.get_variable( 'return_var', (), initializer=tf.constant_initializer(0.5)) outputs = tf.fill( (tf.shape(obs_input)[0], tf.shape(obs_input)[1], self.output_dim), return_var) output = tf.fill((tf.shape(step_obs_input)[0], self.output_dim), return_var) hidden_init_var = tf.compat.v1.get_variable( name='initial_hidden', shape=(self.hidden_dim, ), initializer=tf.zeros_initializer(), trainable=False, dtype=tf.float32) return outputs, output, step_hidden, hidden_init_var
Build model given input placeholder(s). Args: obs_input (tf.Tensor): Place holder for entire time-series inputs. step_obs_input (tf.Tensor): Place holder for step inputs. step_hidden (tf.Tensor): Place holder for step hidden state. name (str): Inner model name, also the variable scope of the inner model, if exist. One example is garage.tf.models.Sequential. Return: tf.Tensor: Entire time-series outputs. tf.Tensor: Step output. tf.Tensor: Step hidden state. tf.Tensor: Initial hidden state.
_build
python
rlworkgroup/garage
tests/fixtures/models/simple_gru_model.py
https://github.com/rlworkgroup/garage/blob/master/tests/fixtures/models/simple_gru_model.py
MIT
def network_input_spec(self): """Network input spec. Return: list[str]: List of key(str) for the network outputs. """ return [ 'full_input', 'step_input', 'step_hidden_input', 'step_cell_input' ]
Network input spec. Return: list[str]: List of key(str) for the network outputs.
network_input_spec
python
rlworkgroup/garage
tests/fixtures/models/simple_lstm_model.py
https://github.com/rlworkgroup/garage/blob/master/tests/fixtures/models/simple_lstm_model.py
MIT
def network_output_spec(self): """Network output spec. Return: list[str]: List of key(str) for the network outputs. """ return [ 'all_output', 'step_output', 'step_hidden', 'step_cell', 'init_hidden', 'init_cell' ]
Network output spec. Return: list[str]: List of key(str) for the network outputs.
network_output_spec
python
rlworkgroup/garage
tests/fixtures/models/simple_lstm_model.py
https://github.com/rlworkgroup/garage/blob/master/tests/fixtures/models/simple_lstm_model.py
MIT
def _build(self, obs_input, step_obs_input, step_hidden, step_cell, name=None): """Build model given input placeholder(s). Args: obs_input (tf.Tensor): Place holder for entire time-series inputs. step_obs_input (tf.Tensor): Place holder for step inputs. step_hidden (tf.Tensor): Place holder for step hidden state. step_cell (tf.Tensor): Place holder for step cell state. name (str): Inner model name, also the variable scope of the inner model, if exist. One example is garage.tf.models.Sequential. Return: tf.Tensor: Entire time-series outputs. tf.Tensor: Step output. tf.Tensor: Step hidden state. tf.Tensor: Step cell state. tf.Tensor: Initial hidden state. tf.Tensor: Initial cell state. """ del name return_var = tf.compat.v1.get_variable( 'return_var', (), initializer=tf.constant_initializer(0.5)) outputs = tf.fill( (tf.shape(obs_input)[0], tf.shape(obs_input)[1], self.output_dim), return_var) output = tf.fill((tf.shape(step_obs_input)[0], self.output_dim), return_var) hidden_init_var = tf.compat.v1.get_variable( name='initial_hidden', shape=(self.hidden_dim, ), initializer=tf.zeros_initializer(), trainable=False, dtype=tf.float32) cell_init_var = tf.compat.v1.get_variable( name='initial_cell', shape=(self.hidden_dim, ), initializer=tf.zeros_initializer(), trainable=False, dtype=tf.float32) return (outputs, output, step_hidden, step_cell, hidden_init_var, cell_init_var)
Build model given input placeholder(s). Args: obs_input (tf.Tensor): Place holder for entire time-series inputs. step_obs_input (tf.Tensor): Place holder for step inputs. step_hidden (tf.Tensor): Place holder for step hidden state. step_cell (tf.Tensor): Place holder for step cell state. name (str): Inner model name, also the variable scope of the inner model, if exist. One example is garage.tf.models.Sequential. Return: tf.Tensor: Entire time-series outputs. tf.Tensor: Step output. tf.Tensor: Step hidden state. tf.Tensor: Step cell state. tf.Tensor: Initial hidden state. tf.Tensor: Initial cell state.
_build
python
rlworkgroup/garage
tests/fixtures/models/simple_lstm_model.py
https://github.com/rlworkgroup/garage/blob/master/tests/fixtures/models/simple_lstm_model.py
MIT
def _build(self, obs_input, act_input, name=None): """Build model given input placeholder(s). Args: obs_input (tf.Tensor): Tensor input for state. act_input (tf.Tensor): Tensor input for action. name (str): Inner model name, also the variable scope of the inner model, if exist. One example is garage.tf.models.Sequential. Return: tf.Tensor: Tensor output of the model. """ del name del act_input return_var = tf.compat.v1.get_variable( 'return_var', (), initializer=tf.constant_initializer(0.5)) return tf.fill((tf.shape(obs_input)[0], self.output_dim), return_var)
Build model given input placeholder(s). Args: obs_input (tf.Tensor): Tensor input for state. act_input (tf.Tensor): Tensor input for action. name (str): Inner model name, also the variable scope of the inner model, if exist. One example is garage.tf.models.Sequential. Return: tf.Tensor: Tensor output of the model.
_build
python
rlworkgroup/garage
tests/fixtures/models/simple_mlp_merge_model.py
https://github.com/rlworkgroup/garage/blob/master/tests/fixtures/models/simple_mlp_merge_model.py
MIT
def _build(self, obs_input, name=None): """Build model given input placeholder(s). Args: obs_input (tf.Tensor): Tensor input for state. name (str): Inner model name, also the variable scope of the inner model, if exist. One example is garage.tf.models.Sequential. Return: tf.Tensor: Tensor output of the model. """ del name return_var = tf.compat.v1.get_variable( 'return_var', (), initializer=tf.constant_initializer(0.5)) return tf.fill((tf.shape(obs_input)[0], self.output_dim), return_var)
Build model given input placeholder(s). Args: obs_input (tf.Tensor): Tensor input for state. name (str): Inner model name, also the variable scope of the inner model, if exist. One example is garage.tf.models.Sequential. Return: tf.Tensor: Tensor output of the model.
_build
python
rlworkgroup/garage
tests/fixtures/models/simple_mlp_model.py
https://github.com/rlworkgroup/garage/blob/master/tests/fixtures/models/simple_mlp_model.py
MIT
def get_actions(self, observations): """Get multiple actions from this policy for the input observations. Args: observations (numpy.ndarray): Observations from environment. Returns: numpy.ndarray: Predicted actions. dict: Distribution parameters. """ n = len(observations) action, action_info = self.get_action(None) return [action] * n, action_info
Get multiple actions from this policy for the input observations. Args: observations (numpy.ndarray): Observations from environment. Returns: numpy.ndarray: Predicted actions. dict: Distribution parameters.
get_actions
python
rlworkgroup/garage
tests/fixtures/policies/dummy_policy.py
https://github.com/rlworkgroup/garage/blob/master/tests/fixtures/policies/dummy_policy.py
MIT
def __getstate__(self): """Object.__getstate__. Returns: dict: the state to be pickled for the instance. """ new_dict = super().__getstate__() del new_dict['_q_val'] return new_dict
Object.__getstate__. Returns: dict: the state to be pickled for the instance.
__getstate__
python
rlworkgroup/garage
tests/fixtures/q_functions/simple_q_function.py
https://github.com/rlworkgroup/garage/blob/master/tests/fixtures/q_functions/simple_q_function.py
MIT
def ray_local_session_fixture(): """Initializes Ray and shuts down Ray in local mode. Yields: None: Yield is for purposes of pytest module style. All statements before the yield are apart of module setup, and all statements after the yield are apart of module teardown. """ if not ray.is_initialized(): ray.init(local_mode=True, ignore_reinit_error=True, log_to_driver=False, include_dashboard=False) yield if ray.is_initialized(): ray.shutdown()
Initializes Ray and shuts down Ray in local mode. Yields: None: Yield is for purposes of pytest module style. All statements before the yield are apart of module setup, and all statements after the yield are apart of module teardown.
ray_local_session_fixture
python
rlworkgroup/garage
tests/fixtures/sampler/ray_fixtures.py
https://github.com/rlworkgroup/garage/blob/master/tests/fixtures/sampler/ray_fixtures.py
MIT
def ray_session_fixture(): """Initializes Ray and shuts down Ray. Yields: None: Yield is for purposes of pytest module style. All statements before the yield are apart of module setup, and all statements after the yield are apart of module teardown. """ if not ray.is_initialized(): ray.init(_memory=52428800, object_store_memory=78643200, ignore_reinit_error=True, log_to_driver=False, include_dashboard=False) yield if ray.is_initialized(): ray.shutdown()
Initializes Ray and shuts down Ray. Yields: None: Yield is for purposes of pytest module style. All statements before the yield are apart of module setup, and all statements after the yield are apart of module teardown.
ray_session_fixture
python
rlworkgroup/garage
tests/fixtures/sampler/ray_fixtures.py
https://github.com/rlworkgroup/garage/blob/master/tests/fixtures/sampler/ray_fixtures.py
MIT
def train(self, trainer): """Obtain samplers and start actual training for each epoch. Args: trainer (Trainer): Trainer is passed to give algorithm the access to trainer.step_epochs(), which provides services such as snapshotting and sampler control. """
Obtain samplers and start actual training for each epoch. Args: trainer (Trainer): Trainer is passed to give algorithm the access to trainer.step_epochs(), which provides services such as snapshotting and sampler control.
train
python
rlworkgroup/garage
tests/fixtures/tf/algos/dummy_off_policy_algo.py
https://github.com/rlworkgroup/garage/blob/master/tests/fixtures/tf/algos/dummy_off_policy_algo.py
MIT
def train_once(self, itr, paths): """Perform one step of policy optimization given one batch of samples. Args: itr (int): Iteration number. paths (list[dict]): A list of collected paths. """
Perform one step of policy optimization given one batch of samples. Args: itr (int): Iteration number. paths (list[dict]): A list of collected paths.
train_once
python
rlworkgroup/garage
tests/fixtures/tf/algos/dummy_off_policy_algo.py
https://github.com/rlworkgroup/garage/blob/master/tests/fixtures/tf/algos/dummy_off_policy_algo.py
MIT
def optimize_policy(self, samples_data): """Optimize the policy using the samples. Args: samples_data (dict): Processed sample data. """
Optimize the policy using the samples. Args: samples_data (dict): Processed sample data.
optimize_policy
python
rlworkgroup/garage
tests/fixtures/tf/algos/dummy_off_policy_algo.py
https://github.com/rlworkgroup/garage/blob/master/tests/fixtures/tf/algos/dummy_off_policy_algo.py
MIT
def test_tf_make_optimizer_with_type(self): """Test make_optimizer function with type as first argument.""" optimizer_type = tf.compat.v1.train.AdamOptimizer lr = 0.123 optimizer = make_optimizer(optimizer_type, learning_rate=lr, name='testOptimizer') assert isinstance(optimizer, optimizer_type) self.sess.run(tf.compat.v1.global_variables_initializer()) assert optimizer._name == 'testOptimizer' assert np.allclose( optimizer._lr, lr ) # Adam holds the value of learning rate in private variable self._lr
Test make_optimizer function with type as first argument.
test_tf_make_optimizer_with_type
python
rlworkgroup/garage
tests/garage/test_functions.py
https://github.com/rlworkgroup/garage/blob/master/tests/garage/test_functions.py
MIT
def test_tf_make_optimizer_with_tuple(self): """Test make_optimizer function with tuple as first argument.""" lr = 0.123 optimizer_type = (tf.compat.v1.train.AdamOptimizer, { 'learning_rate': lr }) optimizer = make_optimizer(optimizer_type) # pylint: disable=isinstance-second-argument-not-valid-type assert isinstance(optimizer, optimizer_type) self.sess.run(tf.compat.v1.global_variables_initializer()) assert np.allclose( optimizer._lr, lr ) # Adam holds the value of learning rate in private variable self._lr
Test make_optimizer function with tuple as first argument.
test_tf_make_optimizer_with_tuple
python
rlworkgroup/garage
tests/garage/test_functions.py
https://github.com/rlworkgroup/garage/blob/master/tests/garage/test_functions.py
MIT
def test_torch_make_optimizer_with_type(self): """Test make_optimizer function with type as first argument.""" optimizer_type = torch.optim.Adam module = torch.nn.Linear(2, 1) lr = 0.123 optimizer = make_optimizer(optimizer_type, module=module, lr=lr) assert isinstance(optimizer, optimizer_type) assert optimizer.defaults['lr'] == lr
Test make_optimizer function with type as first argument.
test_torch_make_optimizer_with_type
python
rlworkgroup/garage
tests/garage/test_functions.py
https://github.com/rlworkgroup/garage/blob/master/tests/garage/test_functions.py
MIT
def test_torch_make_optimizer_with_tuple(self): """Test make_optimizer function with tuple as first argument.""" optimizer_type = (torch.optim.Adam, {'lr': 0.1}) module = torch.nn.Linear(2, 1) optimizer = make_optimizer(optimizer_type, module=module) # pylint: disable=isinstance-second-argument-not-valid-type assert isinstance(optimizer, optimizer_type) assert optimizer.defaults['lr'] == optimizer_type[1]['lr']
Test make_optimizer function with tuple as first argument.
test_torch_make_optimizer_with_tuple
python
rlworkgroup/garage
tests/garage/test_functions.py
https://github.com/rlworkgroup/garage/blob/master/tests/garage/test_functions.py
MIT
def _init_multi_env_wrapper(self, env_names, sample_strategy=uniform_random_strategy): """helper function to initialize multi_env_wrapper Args: env_names (list(str)): List of Environment names. sample_strategy (func): A sampling strategy. Returns: garage.envs.multi_env_wrapper: Multi env wrapper. """ task_envs = [GymEnv(name) for name in env_names] return MultiEnvWrapper(task_envs, sample_strategy=sample_strategy)
helper function to initialize multi_env_wrapper Args: env_names (list(str)): List of Environment names. sample_strategy (func): A sampling strategy. Returns: garage.envs.multi_env_wrapper: Multi env wrapper.
_init_multi_env_wrapper
python
rlworkgroup/garage
tests/garage/envs/test_multi_env_wrapper.py
https://github.com/rlworkgroup/garage/blob/master/tests/garage/envs/test_multi_env_wrapper.py
MIT
def test_tasks_from_same_env(self): """test init with multiple tasks from same env""" envs = ['CartPole-v0', 'CartPole-v0'] mt_env = self._init_multi_env_wrapper(envs) assert mt_env.num_tasks == 2
test init with multiple tasks from same env
test_tasks_from_same_env
python
rlworkgroup/garage
tests/garage/envs/test_multi_env_wrapper.py
https://github.com/rlworkgroup/garage/blob/master/tests/garage/envs/test_multi_env_wrapper.py
MIT
def test_tasks_from_different_envs(self): """test init with multiple tasks from different env""" envs = ['CartPole-v0', 'CartPole-v1'] mt_env = self._init_multi_env_wrapper(envs) assert mt_env.num_tasks == 2
test init with multiple tasks from different env
test_tasks_from_different_envs
python
rlworkgroup/garage
tests/garage/envs/test_multi_env_wrapper.py
https://github.com/rlworkgroup/garage/blob/master/tests/garage/envs/test_multi_env_wrapper.py
MIT
def test_raise_exception_when_different_obs_space(self): """test if exception is raised when using tasks with different obs space""" # noqa: E501 envs = ['CartPole-v0', 'Blackjack-v0'] with pytest.raises(ValueError): _ = self._init_multi_env_wrapper(envs)
test if exception is raised when using tasks with different obs space
test_raise_exception_when_different_obs_space
python
rlworkgroup/garage
tests/garage/envs/test_multi_env_wrapper.py
https://github.com/rlworkgroup/garage/blob/master/tests/garage/envs/test_multi_env_wrapper.py
MIT
def test_raise_exception_when_different_action_space(self): """test if exception is raised when using tasks with different action space""" # noqa: E501 envs = ['LunarLander-v2', 'LunarLanderContinuous-v2'] with pytest.raises(ValueError): _ = self._init_multi_env_wrapper(envs)
test if exception is raised when using tasks with different action space
test_raise_exception_when_different_action_space
python
rlworkgroup/garage
tests/garage/envs/test_multi_env_wrapper.py
https://github.com/rlworkgroup/garage/blob/master/tests/garage/envs/test_multi_env_wrapper.py
MIT
def test_default_active_task_is_none(self): """test if default active task is none""" envs = ['CartPole-v0', 'CartPole-v1'] mt_env = self._init_multi_env_wrapper( envs, sample_strategy=round_robin_strategy) assert mt_env._active_task_index is None
test if default active task is none
test_default_active_task_is_none
python
rlworkgroup/garage
tests/garage/envs/test_multi_env_wrapper.py
https://github.com/rlworkgroup/garage/blob/master/tests/garage/envs/test_multi_env_wrapper.py
MIT
def test_one_hot_observation_space(self): """test one hot representation of observation space""" envs = ['CartPole-v0', 'CartPole-v1'] mt_env = self._init_multi_env_wrapper(envs) cartpole = GymEnv('CartPole-v0') cartpole_lb, cartpole_ub = cartpole.observation_space.bounds obs_space = akro.Box(np.concatenate([cartpole_lb, np.zeros(2)]), np.concatenate([cartpole_ub, np.ones(2)])) assert mt_env.observation_space.shape == obs_space.shape assert ( mt_env.observation_space.bounds[0] == obs_space.bounds[0]).all() assert ( mt_env.observation_space.bounds[1] == obs_space.bounds[1]).all()
test one hot representation of observation space
test_one_hot_observation_space
python
rlworkgroup/garage
tests/garage/envs/test_multi_env_wrapper.py
https://github.com/rlworkgroup/garage/blob/master/tests/garage/envs/test_multi_env_wrapper.py
MIT
def test_task_remains_same_between_multiple_step_calls(self): """test if active_task remains same between multiple step calls""" envs = ['CartPole-v0', 'CartPole-v1'] mt_env = self._init_multi_env_wrapper( envs, sample_strategy=round_robin_strategy) mt_env.reset() tasks = [] for _ in envs: es = mt_env.step(1) tasks.append(es.env_info['task_id']) assert tasks[0] == 0 and tasks[1] == 0
test if active_task remains same between multiple step calls
test_task_remains_same_between_multiple_step_calls
python
rlworkgroup/garage
tests/garage/envs/test_multi_env_wrapper.py
https://github.com/rlworkgroup/garage/blob/master/tests/garage/envs/test_multi_env_wrapper.py
MIT
def test_one_hot_observation(self): """test if output of step function is correct""" envs = ['CartPole-v0', 'CartPole-v0'] mt_env = self._init_multi_env_wrapper( envs, sample_strategy=round_robin_strategy) obs, _ = mt_env.reset() assert (obs[-2:] == np.array([1., 0.])).all() obs = mt_env.step(1).observation assert (obs[-2:] == np.array([1., 0.])).all() obs, _ = mt_env.reset() assert (obs[-2:] == np.array([0., 1.])).all() obs = mt_env.step(1).observation assert (obs[-2:] == np.array([0., 1.])).all()
test if output of step function is correct
test_one_hot_observation
python
rlworkgroup/garage
tests/garage/envs/test_multi_env_wrapper.py
https://github.com/rlworkgroup/garage/blob/master/tests/garage/envs/test_multi_env_wrapper.py
MIT
def test_pickleable(env_ids): """Test Bullet environments are pickle-able""" for env_id in env_ids: # extract id string env_id = env_id.replace('- ', '') env = BulletEnv(env_id) round_trip = pickle.loads(pickle.dumps(env)) assert round_trip env.close()
Test Bullet environments are pickle-able
test_pickleable
python
rlworkgroup/garage
tests/garage/envs/bullet/test_bullet_env.py
https://github.com/rlworkgroup/garage/blob/master/tests/garage/envs/bullet/test_bullet_env.py
MIT
def test_pickle_creates_new_server(env_ids): """Test pickling a Bullet environment creates a new connection. If all pickling create new connections, no repetition of client id should be found. """ n_env = 4 for env_id in env_ids: # extract id string env_id = env_id.replace('- ', '') bullet_env = BulletEnv(env_id) envs = [pickle.loads(pickle.dumps(bullet_env)) for _ in range(n_env)] id_set = set() if hasattr(bullet_env._env, '_pybullet_client'): id_set.add(bullet_env._env._pybullet_client._client) for e in envs: new_id = e._env._pybullet_client._client assert new_id not in id_set id_set.add(new_id) elif hasattr(bullet_env._env, '_p'): if isinstance(bullet_env._env._p, BulletClient): id_set.add(bullet_env._env._p._client) for e in envs: new_id = e._env._p._client assert new_id not in id_set id_set.add(new_id) else: # Some environments have _p as the pybullet module, and they # don't store client id, so can't check here pass for env in envs: env.close()
Test pickling a Bullet environment creates a new connection. If all pickling create new connections, no repetition of client id should be found.
test_pickle_creates_new_server
python
rlworkgroup/garage
tests/garage/envs/bullet/test_bullet_env.py
https://github.com/rlworkgroup/garage/blob/master/tests/garage/envs/bullet/test_bullet_env.py
MIT
def test_grayscale_reset(self): """ RGB to grayscale conversion using scikit-image. Weights used for conversion: Y = 0.2125 R + 0.7154 G + 0.0721 B Reference: http://scikit-image.org/docs/dev/api/skimage.color.html#skimage.color.rgb2grey """ grayscale_output = np.round( np.dot(self.env.reset()[:, :, :3], [0.2125, 0.7154, 0.0721])).astype(np.uint8) np.testing.assert_array_almost_equal(grayscale_output, self.env_g.reset())
RGB to grayscale conversion using scikit-image. Weights used for conversion: Y = 0.2125 R + 0.7154 G + 0.0721 B Reference: http://scikit-image.org/docs/dev/api/skimage.color.html#skimage.color.rgb2grey
test_grayscale_reset
python
rlworkgroup/garage
tests/garage/envs/wrappers/test_grayscale_env.py
https://github.com/rlworkgroup/garage/blob/master/tests/garage/envs/wrappers/test_grayscale_env.py
MIT
def test_deterministic_tfp_seed_stream(): """Test deterministic behavior of TFP SeedStream""" deterministic.set_seed(0) with tf.compat.v1.Session() as sess: rand_tensor = sess.run( tf.random.uniform((5, 5), seed=deterministic.get_tf_seed_stream(), dtype=tf.dtypes.float32)) sess.run(tf.random.uniform((5, 5), dtype=tf.dtypes.float32)) rand_tensor2 = sess.run( tf.random.uniform((5, 5), seed=deterministic.get_tf_seed_stream(), dtype=tf.dtypes.float32)) deterministic_tensor = np.array( [[0.10550332, 0.14218152, 0.5544759, 0.3720839, 0.6899766], [0.47086394, 0.5401237, 0.21653509, 0.42823565, 0.6927656], [0.16598761, 0.48356044, 0.36901915, 0.97140956, 0.07564807], [0.6694747, 0.21241283, 0.72315156, 0.631876, 0.34476352], [0.8718543, 0.4879316, 0.76272845, 0.04737151, 0.39661574]], dtype=np.float32) deterministic_tensor2 = np.array( [[0.9950017, 0.52794397, 0.7703887, 0.8688295, 0.78926384], [0.6301824, 0.45042813, 0.6257613, 0.7717335, 0.8412994], [0.30846167, 0.71520185, 0.13243473, 0.8455602, 0.01623428], [0.01353145, 0.23445582, 0.36002636, 0.3576231, 0.61981404], [0.47964382, 0.55043316, 0.3270856, 0.7003857, 0.53755534]], dtype=np.float32) assert np.allclose(rand_tensor, deterministic_tensor) assert np.allclose(rand_tensor2, deterministic_tensor2)
Test deterministic behavior of TFP SeedStream
test_deterministic_tfp_seed_stream
python
rlworkgroup/garage
tests/garage/experiment/test_deterministic.py
https://github.com/rlworkgroup/garage/blob/master/tests/garage/experiment/test_deterministic.py
MIT
def setup_method(self): """Setup method which is called before every test.""" self.env = normalize(GymEnv('InvertedDoublePendulum-v2')) self.policy = GaussianMLPPolicy( env_spec=self.env.spec, hidden_sizes=(64, 64), hidden_nonlinearity=torch.tanh, output_nonlinearity=None, ) self.value_function = GaussianMLPValueFunction(env_spec=self.env.spec) deterministic.set_seed(0) self.sampler = LocalSampler( agents=self.policy, envs=self.env, max_episode_length=self.env.spec.max_episode_length, is_tf_worker=True)
Setup method which is called before every test.
setup_method
python
rlworkgroup/garage
tests/garage/experiment/test_trainer.py
https://github.com/rlworkgroup/garage/blob/master/tests/garage/experiment/test_trainer.py
MIT
def test_ddpg_pendulum(self): """Test DDPG with Pendulum environment. This environment has a [-3, 3] action_space bound. """ with TFTrainer(snapshot_config, sess=self.sess) as trainer: env = normalize( GymEnv('InvertedPendulum-v2', max_episode_length=100)) policy = ContinuousMLPPolicy(env_spec=env.spec, hidden_sizes=[64, 64], hidden_nonlinearity=tf.nn.relu, output_nonlinearity=tf.nn.tanh) exploration_policy = AddOrnsteinUhlenbeckNoise(env.spec, policy, sigma=0.2) qf = ContinuousMLPQFunction(env_spec=env.spec, hidden_sizes=[64, 64], hidden_nonlinearity=tf.nn.relu) replay_buffer = PathBuffer(capacity_in_transitions=int(1e6)) sampler = LocalSampler( agents=exploration_policy, envs=env, max_episode_length=env.spec.max_episode_length, is_tf_worker=True, worker_class=FragmentWorker) algo = DDPG( env_spec=env.spec, policy=policy, policy_lr=1e-4, qf_lr=1e-3, qf=qf, replay_buffer=replay_buffer, sampler=sampler, steps_per_epoch=20, target_update_tau=1e-2, n_train_steps=50, discount=0.9, min_buffer_size=int(5e3), exploration_policy=exploration_policy, ) trainer.setup(algo, env) last_avg_ret = trainer.train(n_epochs=10, batch_size=100) assert last_avg_ret > 10 env.close()
Test DDPG with Pendulum environment. This environment has a [-3, 3] action_space bound.
test_ddpg_pendulum
python
rlworkgroup/garage
tests/garage/tf/algos/test_ddpg.py
https://github.com/rlworkgroup/garage/blob/master/tests/garage/tf/algos/test_ddpg.py
MIT
def test_ddpg_pendulum_with_decayed_weights(self): """Test DDPG with Pendulum environment and decayed weights. This environment has a [-3, 3] action_space bound. """ with TFTrainer(snapshot_config, sess=self.sess) as trainer: env = normalize( GymEnv('InvertedPendulum-v2', max_episode_length=100)) policy = ContinuousMLPPolicy(env_spec=env.spec, hidden_sizes=[64, 64], hidden_nonlinearity=tf.nn.relu, output_nonlinearity=tf.nn.tanh) exploration_policy = AddOrnsteinUhlenbeckNoise(env.spec, policy, sigma=0.2) qf = ContinuousMLPQFunction(env_spec=env.spec, hidden_sizes=[64, 64], hidden_nonlinearity=tf.nn.relu) replay_buffer = PathBuffer(capacity_in_transitions=int(1e6)) sampler = LocalSampler( agents=exploration_policy, envs=env, max_episode_length=env.spec.max_episode_length, is_tf_worker=True, worker_class=FragmentWorker) algo = DDPG( env_spec=env.spec, policy=policy, policy_lr=1e-4, qf_lr=1e-3, qf=qf, replay_buffer=replay_buffer, sampler=sampler, steps_per_epoch=20, target_update_tau=1e-2, n_train_steps=50, discount=0.9, policy_weight_decay=0.01, qf_weight_decay=0.01, min_buffer_size=int(5e3), exploration_policy=exploration_policy, ) trainer.setup(algo, env) last_avg_ret = trainer.train(n_epochs=10, batch_size=100) assert last_avg_ret > 10 env.close()
Test DDPG with Pendulum environment and decayed weights. This environment has a [-3, 3] action_space bound.
test_ddpg_pendulum_with_decayed_weights
python
rlworkgroup/garage
tests/garage/tf/algos/test_ddpg.py
https://github.com/rlworkgroup/garage/blob/master/tests/garage/tf/algos/test_ddpg.py
MIT
def test_npo_with_unknown_pg_loss(self): """Test NPO with unkown pg loss.""" with pytest.raises(ValueError, match='Invalid pg_loss'): NPO( env_spec=self.env.spec, policy=self.policy, baseline=self.baseline, sampler=self.sampler, pg_loss='random pg_loss', )
Test NPO with unkown pg loss.
test_npo_with_unknown_pg_loss
python
rlworkgroup/garage
tests/garage/tf/algos/test_npo.py
https://github.com/rlworkgroup/garage/blob/master/tests/garage/tf/algos/test_npo.py
MIT
def test_npo_with_invalid_entropy_method(self): """Test NPO with invalid entropy method.""" with pytest.raises(ValueError, match='Invalid entropy_method'): NPO( env_spec=self.env.spec, policy=self.policy, baseline=self.baseline, sampler=self.sampler, entropy_method=None, )
Test NPO with invalid entropy method.
test_npo_with_invalid_entropy_method
python
rlworkgroup/garage
tests/garage/tf/algos/test_npo.py
https://github.com/rlworkgroup/garage/blob/master/tests/garage/tf/algos/test_npo.py
MIT
def test_npo_with_max_entropy_and_center_adv(self): """Test NPO with max entropy and center_adv.""" with pytest.raises(ValueError): NPO( env_spec=self.env.spec, policy=self.policy, baseline=self.baseline, sampler=self.sampler, entropy_method='max', center_adv=True, )
Test NPO with max entropy and center_adv.
test_npo_with_max_entropy_and_center_adv
python
rlworkgroup/garage
tests/garage/tf/algos/test_npo.py
https://github.com/rlworkgroup/garage/blob/master/tests/garage/tf/algos/test_npo.py
MIT
def test_npo_with_max_entropy_and_no_stop_entropy_gradient(self): """Test NPO with max entropy and false stop_entropy_gradient.""" with pytest.raises(ValueError): NPO( env_spec=self.env.spec, policy=self.policy, baseline=self.baseline, sampler=self.sampler, entropy_method='max', stop_entropy_gradient=False, )
Test NPO with max entropy and false stop_entropy_gradient.
test_npo_with_max_entropy_and_no_stop_entropy_gradient
python
rlworkgroup/garage
tests/garage/tf/algos/test_npo.py
https://github.com/rlworkgroup/garage/blob/master/tests/garage/tf/algos/test_npo.py
MIT
def test_npo_with_invalid_no_entropy_configuration(self): """Test NPO with invalid no entropy configuration.""" with pytest.raises(ValueError): NPO( env_spec=self.env.spec, policy=self.policy, baseline=self.baseline, sampler=self.sampler, entropy_method='no_entropy', policy_ent_coeff=0.02, )
Test NPO with invalid no entropy configuration.
test_npo_with_invalid_no_entropy_configuration
python
rlworkgroup/garage
tests/garage/tf/algos/test_npo.py
https://github.com/rlworkgroup/garage/blob/master/tests/garage/tf/algos/test_npo.py
MIT
def test_ppo_with_maximum_entropy(self): """Test PPO with maxium entropy method.""" with TFTrainer(snapshot_config, sess=self.sess) as trainer: algo = PPO(env_spec=self.env.spec, policy=self.policy, baseline=self.baseline, sampler=self.sampler, discount=0.99, lr_clip_range=0.01, optimizer_args=dict(batch_size=32, max_optimization_epochs=10), stop_entropy_gradient=True, entropy_method='max', policy_ent_coeff=0.02, center_adv=False) trainer.setup(algo, self.env) last_avg_ret = trainer.train(n_epochs=10, batch_size=2048) assert last_avg_ret > 35
Test PPO with maxium entropy method.
test_ppo_with_maximum_entropy
python
rlworkgroup/garage
tests/garage/tf/algos/test_ppo.py
https://github.com/rlworkgroup/garage/blob/master/tests/garage/tf/algos/test_ppo.py
MIT
def test_ppo_with_neg_log_likeli_entropy_estimation_and_max(self): """ Test PPO with negative log likelihood entropy estimation and max entropy method. """ with TFTrainer(snapshot_config, sess=self.sess) as trainer: algo = PPO(env_spec=self.env.spec, policy=self.policy, baseline=self.baseline, sampler=self.sampler, discount=0.99, lr_clip_range=0.01, optimizer_args=dict(batch_size=32, max_optimization_epochs=10), stop_entropy_gradient=True, use_neg_logli_entropy=True, entropy_method='max', policy_ent_coeff=0.02, center_adv=False) trainer.setup(algo, self.env) last_avg_ret = trainer.train(n_epochs=10, batch_size=2048) assert last_avg_ret > 35
Test PPO with negative log likelihood entropy estimation and max entropy method.
test_ppo_with_neg_log_likeli_entropy_estimation_and_max
python
rlworkgroup/garage
tests/garage/tf/algos/test_ppo.py
https://github.com/rlworkgroup/garage/blob/master/tests/garage/tf/algos/test_ppo.py
MIT
def test_ppo_with_neg_log_likeli_entropy_estimation_and_regularized(self): """ Test PPO with negative log likelihood entropy estimation and regularized entropy method. """ with TFTrainer(snapshot_config, sess=self.sess) as trainer: algo = PPO(env_spec=self.env.spec, policy=self.policy, baseline=self.baseline, sampler=self.sampler, discount=0.99, lr_clip_range=0.01, optimizer_args=dict(batch_size=32, max_optimization_epochs=10), stop_entropy_gradient=True, use_neg_logli_entropy=True, entropy_method='regularized', policy_ent_coeff=0.0, center_adv=True) trainer.setup(algo, self.env) last_avg_ret = trainer.train(n_epochs=10, batch_size=2048) assert last_avg_ret > 35
Test PPO with negative log likelihood entropy estimation and regularized entropy method.
test_ppo_with_neg_log_likeli_entropy_estimation_and_regularized
python
rlworkgroup/garage
tests/garage/tf/algos/test_ppo.py
https://github.com/rlworkgroup/garage/blob/master/tests/garage/tf/algos/test_ppo.py
MIT
def test_ppo_with_regularized_entropy(self): """Test PPO with regularized entropy method.""" with TFTrainer(snapshot_config, sess=self.sess) as trainer: algo = PPO(env_spec=self.env.spec, policy=self.policy, baseline=self.baseline, sampler=self.sampler, discount=0.99, lr_clip_range=0.01, optimizer_args=dict(batch_size=32, max_optimization_epochs=10), stop_entropy_gradient=False, entropy_method='regularized', policy_ent_coeff=0.02, center_adv=True) trainer.setup(algo, self.env) last_avg_ret = trainer.train(n_epochs=10, batch_size=2048) assert last_avg_ret > 35
Test PPO with regularized entropy method.
test_ppo_with_regularized_entropy
python
rlworkgroup/garage
tests/garage/tf/algos/test_ppo.py
https://github.com/rlworkgroup/garage/blob/master/tests/garage/tf/algos/test_ppo.py
MIT
def test_ppo_pendulum_recurrent_continuous_baseline(self): """Test PPO with Pendulum environment and recurrent policy.""" with TFTrainer(snapshot_config) as trainer: env = normalize( GymEnv('InvertedDoublePendulum-v2', max_episode_length=100)) policy = GaussianLSTMPolicy(env_spec=env.spec, ) baseline = ContinuousMLPBaseline( env_spec=env.spec, hidden_sizes=(32, 32), ) sampler = LocalSampler( agents=policy, envs=env, max_episode_length=env.spec.max_episode_length, is_tf_worker=True) algo = PPO( env_spec=env.spec, policy=policy, baseline=baseline, sampler=sampler, discount=0.99, gae_lambda=0.95, lr_clip_range=0.2, optimizer_args=dict( batch_size=32, max_optimization_epochs=10, ), stop_entropy_gradient=True, entropy_method='max', policy_ent_coeff=0.02, center_adv=False, ) trainer.setup(algo, env) last_avg_ret = trainer.train(n_epochs=10, batch_size=2048) assert last_avg_ret > 100 env.close()
Test PPO with Pendulum environment and recurrent policy.
test_ppo_pendulum_recurrent_continuous_baseline
python
rlworkgroup/garage
tests/garage/tf/algos/test_ppo.py
https://github.com/rlworkgroup/garage/blob/master/tests/garage/tf/algos/test_ppo.py
MIT
def test_ppo_pendulum_lstm(self): """Test PPO with Pendulum environment and recurrent policy.""" with TFTrainer(snapshot_config) as trainer: env = normalize( GymEnv('InvertedDoublePendulum-v2', max_episode_length=100)) lstm_policy = GaussianLSTMPolicy(env_spec=env.spec) baseline = GaussianMLPBaseline( env_spec=env.spec, hidden_sizes=(32, 32), ) sampler = LocalSampler( agents=lstm_policy, envs=env, max_episode_length=env.spec.max_episode_length, is_tf_worker=True) algo = PPO( env_spec=env.spec, policy=lstm_policy, baseline=baseline, sampler=sampler, discount=0.99, gae_lambda=0.95, lr_clip_range=0.2, optimizer_args=dict( batch_size=32, max_optimization_epochs=10, ), stop_entropy_gradient=True, entropy_method='max', policy_ent_coeff=0.02, center_adv=False, ) trainer.setup(algo, env) last_avg_ret = trainer.train(n_epochs=10, batch_size=2048) assert last_avg_ret > 60
Test PPO with Pendulum environment and recurrent policy.
test_ppo_pendulum_lstm
python
rlworkgroup/garage
tests/garage/tf/algos/test_ppo.py
https://github.com/rlworkgroup/garage/blob/master/tests/garage/tf/algos/test_ppo.py
MIT
def test_ppo_pendulum_gru(self): """Test PPO with Pendulum environment and recurrent policy.""" with TFTrainer(snapshot_config) as trainer: env = normalize( GymEnv('InvertedDoublePendulum-v2', max_episode_length=100)) gru_policy = GaussianGRUPolicy(env_spec=env.spec) baseline = GaussianMLPBaseline( env_spec=env.spec, hidden_sizes=(32, 32), ) sampler = LocalSampler( agents=gru_policy, envs=env, max_episode_length=env.spec.max_episode_length, is_tf_worker=True) algo = PPO( env_spec=env.spec, policy=gru_policy, baseline=baseline, sampler=sampler, discount=0.99, gae_lambda=0.95, lr_clip_range=0.2, optimizer_args=dict( batch_size=32, max_optimization_epochs=10, ), stop_entropy_gradient=True, entropy_method='max', policy_ent_coeff=0.02, center_adv=False, ) trainer.setup(algo, env) last_avg_ret = trainer.train(n_epochs=10, batch_size=2048) assert last_avg_ret > 80
Test PPO with Pendulum environment and recurrent policy.
test_ppo_pendulum_gru
python
rlworkgroup/garage
tests/garage/tf/algos/test_ppo.py
https://github.com/rlworkgroup/garage/blob/master/tests/garage/tf/algos/test_ppo.py
MIT
def test_reps_cartpole(self): """Test REPS with gym Cartpole environment.""" with TFTrainer(snapshot_config, sess=self.sess) as trainer: env = GymEnv('CartPole-v0') policy = CategoricalMLPPolicy(env_spec=env.spec, hidden_sizes=[32, 32]) baseline = LinearFeatureBaseline(env_spec=env.spec) sampler = LocalSampler( agents=policy, envs=env, max_episode_length=env.spec.max_episode_length, is_tf_worker=True) algo = REPS(env_spec=env.spec, policy=policy, baseline=baseline, sampler=sampler, discount=0.99) trainer.setup(algo, env) last_avg_ret = trainer.train(n_epochs=10, batch_size=4000) assert last_avg_ret > 5 env.close()
Test REPS with gym Cartpole environment.
test_reps_cartpole
python
rlworkgroup/garage
tests/garage/tf/algos/test_reps.py
https://github.com/rlworkgroup/garage/blob/master/tests/garage/tf/algos/test_reps.py
MIT
def circle(r, n): """Generate n points on a circle of radius r. Args: r (float): Radius of the circle. n (int): Number of points to generate. Yields: tuple(float, float): Coordinate of a point. """ for t in np.arange(0, 2 * np.pi, 2 * np.pi / n): yield r * np.sin(t), r * np.cos(t)
Generate n points on a circle of radius r. Args: r (float): Radius of the circle. n (int): Number of points to generate. Yields: tuple(float, float): Coordinate of a point.
circle
python
rlworkgroup/garage
tests/garage/tf/algos/test_te.py
https://github.com/rlworkgroup/garage/blob/master/tests/garage/tf/algos/test_te.py
MIT
def test_trpo_unknown_kl_constraint(self): """Test TRPO with unkown KL constraints.""" with pytest.raises(ValueError, match='Invalid kl_constraint'): TRPO( env_spec=self.env.spec, policy=self.policy, baseline=self.baseline, sampler=self.sampler, discount=0.99, gae_lambda=0.98, policy_ent_coeff=0.0, kl_constraint='random kl_constraint', )
Test TRPO with unkown KL constraints.
test_trpo_unknown_kl_constraint
python
rlworkgroup/garage
tests/garage/tf/algos/test_trpo.py
https://github.com/rlworkgroup/garage/blob/master/tests/garage/tf/algos/test_trpo.py
MIT
def test_trpo_soft_kl_constraint(self): """Test TRPO with unkown KL constraints.""" with TFTrainer(snapshot_config, sess=self.sess) as trainer: algo = TRPO(env_spec=self.env.spec, policy=self.policy, baseline=self.baseline, sampler=self.sampler, discount=0.99, gae_lambda=0.98, policy_ent_coeff=0.0, kl_constraint='soft') trainer.setup(algo, self.env) last_avg_ret = trainer.train(n_epochs=10, batch_size=2048) assert last_avg_ret > 45
Test TRPO with unkown KL constraints.
test_trpo_soft_kl_constraint
python
rlworkgroup/garage
tests/garage/tf/algos/test_trpo.py
https://github.com/rlworkgroup/garage/blob/master/tests/garage/tf/algos/test_trpo.py
MIT
def test_cg(self): """Solve Ax = b using Conjugate gradient method.""" a = np.linspace(-np.pi, np.pi, 25).reshape((5, 5)) a = a.T.dot(a) # make sure a is positive semi-definite b = np.linspace(-np.pi, np.pi, 5) x = _cg(a.dot, b, cg_iters=5) assert np.allclose(a.dot(x), b)
Solve Ax = b using Conjugate gradient method.
test_cg
python
rlworkgroup/garage
tests/garage/tf/optimizers/test_conjugate_gradient_optimizer.py
https://github.com/rlworkgroup/garage/blob/master/tests/garage/tf/optimizers/test_conjugate_gradient_optimizer.py
MIT
def test_pearl_mutter_hvp_1x1(self): """Test Hessian-vector product for a function with one variable.""" policy = HelperPolicy(n_vars=1) x = policy.get_params()[0] a_val = np.array([5.0]) a = tf.constant([0.0]) f = a * (x**2) expected_hessian = 2 * a_val vector = np.array([10.0]) expected_hvp = expected_hessian * vector reg_coeff = 1e-5 hvp = PearlmutterHVP() self.sess.run(tf.compat.v1.global_variables_initializer()) hvp.update_hvp(f, policy, (a, ), reg_coeff) hx = hvp.build_eval(np.array([a_val])) computed_hvp = hx(vector) assert np.allclose(computed_hvp, expected_hvp)
Test Hessian-vector product for a function with one variable.
test_pearl_mutter_hvp_1x1
python
rlworkgroup/garage
tests/garage/tf/optimizers/test_conjugate_gradient_optimizer.py
https://github.com/rlworkgroup/garage/blob/master/tests/garage/tf/optimizers/test_conjugate_gradient_optimizer.py
MIT
def test_pearl_mutter_hvp_2x2(self, a_val, b_val, x_val, y_val, vector): """Test Hessian-vector product for a function with two variables.""" a_val = [a_val] b_val = [b_val] vector = np.array([vector], dtype=np.float32) policy = HelperPolicy(n_vars=2) params = policy.get_params() x, y = params[0], params[1] a = tf.constant(a_val) b = tf.constant(b_val) f = a * (x**2) + b * (y**2) expected_hessian = compute_hessian(f, [x, y]) expected_hvp = tf.matmul(vector, expected_hessian) reg_coeff = 1e-5 hvp = PearlmutterHVP() self.sess.run(tf.compat.v1.global_variables_initializer()) self.sess.run(x.assign([x_val])) self.sess.run(y.assign([y_val])) hvp.update_hvp(f, policy, (a, b), reg_coeff) hx = hvp.build_eval((np.array(a_val), np.array(b_val))) hvp = hx(vector[0]) expected_hvp = expected_hvp.eval() assert np.allclose(hvp, expected_hvp, atol=1e-6)
Test Hessian-vector product for a function with two variables.
test_pearl_mutter_hvp_2x2
python
rlworkgroup/garage
tests/garage/tf/optimizers/test_conjugate_gradient_optimizer.py
https://github.com/rlworkgroup/garage/blob/master/tests/garage/tf/optimizers/test_conjugate_gradient_optimizer.py
MIT
def test_pearl_mutter_hvp_2x2_non_diagonal(self, a_val, b_val, x_val, y_val, vector): """Test Hessian-vector product for a function with two variables whose Hessian is non-diagonal. """ a_val = [a_val] b_val = [b_val] vector = np.array([vector], dtype=np.float32) policy = HelperPolicy(n_vars=2) params = policy.get_params() x, y = params[0], params[1] a = tf.constant(a_val) b = tf.constant(b_val) f = a * (x**3) + b * (y**3) + (x**2) * y + (y**2) * x expected_hessian = compute_hessian(f, [x, y]) expected_hvp = tf.matmul(vector, expected_hessian) reg_coeff = 1e-5 hvp = PearlmutterHVP() self.sess.run(tf.compat.v1.global_variables_initializer()) self.sess.run(x.assign([x_val])) self.sess.run(y.assign([y_val])) hvp.update_hvp(f, policy, (a, b), reg_coeff) hx = hvp.build_eval((np.array(a_val), np.array(b_val))) hvp = hx(vector[0]) expected_hvp = expected_hvp.eval() assert np.allclose(hvp, expected_hvp)
Test Hessian-vector product for a function with two variables whose Hessian is non-diagonal.
test_pearl_mutter_hvp_2x2_non_diagonal
python
rlworkgroup/garage
tests/garage/tf/optimizers/test_conjugate_gradient_optimizer.py
https://github.com/rlworkgroup/garage/blob/master/tests/garage/tf/optimizers/test_conjugate_gradient_optimizer.py
MIT
def test_finite_difference_hvp(self): """Test Hessian-vector product for a function with one variable.""" policy = HelperPolicy(n_vars=1) x = policy.get_params()[0] a_val = np.array([5.0]) a = tf.constant([0.0]) f = a * (x**2) expected_hessian = 2 * a_val vector = np.array([10.0]) expected_hvp = expected_hessian * vector reg_coeff = 1e-5 hvp = FiniteDifferenceHVP() self.sess.run(tf.compat.v1.global_variables_initializer()) hvp.update_hvp(f, policy, (a, ), reg_coeff) hx = hvp.build_eval(np.array([a_val])) computed_hvp = hx(vector) assert np.allclose(computed_hvp, expected_hvp)
Test Hessian-vector product for a function with one variable.
test_finite_difference_hvp
python
rlworkgroup/garage
tests/garage/tf/optimizers/test_conjugate_gradient_optimizer.py
https://github.com/rlworkgroup/garage/blob/master/tests/garage/tf/optimizers/test_conjugate_gradient_optimizer.py
MIT
def test_finite_difference_hvp_2x2(self, a_val, b_val, x_val, y_val, vector): """Test Hessian-vector product for a function with two variables.""" a_val = [a_val] b_val = [b_val] vector = np.array([vector], dtype=np.float32) policy = HelperPolicy(n_vars=2) params = policy.get_params() x, y = params[0], params[1] a = tf.constant(a_val) b = tf.constant(b_val) f = a * (x**2) + b * (y**2) expected_hessian = compute_hessian(f, [x, y]) expected_hvp = tf.matmul(vector, expected_hessian) reg_coeff = 1e-8 hvp = FiniteDifferenceHVP(base_eps=1.0) self.sess.run(tf.compat.v1.global_variables_initializer()) self.sess.run(x.assign([x_val])) self.sess.run(y.assign([y_val])) hvp.update_hvp(f, policy, (a, b), reg_coeff) hx = hvp.build_eval((np.array(a_val), np.array(b_val))) hvp = hx(vector[0]) expected_hvp = expected_hvp.eval() assert np.allclose(hvp, expected_hvp)
Test Hessian-vector product for a function with two variables.
test_finite_difference_hvp_2x2
python
rlworkgroup/garage
tests/garage/tf/optimizers/test_conjugate_gradient_optimizer.py
https://github.com/rlworkgroup/garage/blob/master/tests/garage/tf/optimizers/test_conjugate_gradient_optimizer.py
MIT
def test_finite_difference_hvp_2x2_non_diagonal(self, a_val, b_val, x_val, y_val, vector): """Test Hessian-vector product for a function with two variables whose Hessian is non-diagonal. """ a_val = [a_val] b_val = [b_val] vector = np.array([vector], dtype=np.float32) policy = HelperPolicy(n_vars=2) params = policy.get_params() x, y = params[0], params[1] a = tf.constant(a_val) b = tf.constant(b_val) f = a * (x**3) + b * (y**3) + (x**2) * y + (y**2) * x expected_hessian = compute_hessian(f, [x, y]) expected_hvp = tf.matmul(vector, expected_hessian) reg_coeff = 1e-5 hvp = FiniteDifferenceHVP(base_eps=1) self.sess.run(tf.compat.v1.global_variables_initializer()) self.sess.run(x.assign([x_val])) self.sess.run(y.assign([y_val])) hvp.update_hvp(f, policy, (a, b), reg_coeff) hx = hvp.build_eval((np.array(a_val), np.array(b_val))) hvp = hx(vector[0]) expected_hvp = expected_hvp.eval() assert np.allclose(hvp, expected_hvp)
Test Hessian-vector product for a function with two variables whose Hessian is non-diagonal.
test_finite_difference_hvp_2x2_non_diagonal
python
rlworkgroup/garage
tests/garage/tf/optimizers/test_conjugate_gradient_optimizer.py
https://github.com/rlworkgroup/garage/blob/master/tests/garage/tf/optimizers/test_conjugate_gradient_optimizer.py
MIT
def test_does_not_support_dict_obs_space(self, filters, strides, padding, hidden_sizes): """Test that policy raises error if passed a dict obs space.""" env = GymEnv(DummyDictEnv(act_space_type='discrete')) with pytest.raises(ValueError): CategoricalCNNPolicy(env_spec=env.spec, filters=filters, strides=strides, padding=padding, hidden_sizes=hidden_sizes)
Test that policy raises error if passed a dict obs space.
test_does_not_support_dict_obs_space
python
rlworkgroup/garage
tests/garage/tf/policies/test_categorical_cnn_policy.py
https://github.com/rlworkgroup/garage/blob/master/tests/garage/tf/policies/test_categorical_cnn_policy.py
MIT
def test_does_not_support_dict_obs_space(self): """Test that policy raises error if passed a dict obs space.""" env = GymEnv(DummyDictEnv(act_space_type='discrete')) with pytest.raises(ValueError): qf = SimpleQFunction(env.spec, name='does_not_support_dict_obs_space') DiscreteQFArgmaxPolicy(env_spec=env.spec, qf=qf)
Test that policy raises error if passed a dict obs space.
test_does_not_support_dict_obs_space
python
rlworkgroup/garage
tests/garage/tf/policies/test_discrete_qf_argmax_policy.py
https://github.com/rlworkgroup/garage/blob/master/tests/garage/tf/policies/test_discrete_qf_argmax_policy.py
MIT
def test_invalid_action_spaces(self): """Test that policy raises error if passed a dict obs space.""" env = GymEnv(DummyDictEnv(act_space_type='box')) with pytest.raises(ValueError): qf = SimpleQFunction(env.spec) DiscreteQFArgmaxPolicy(env_spec=env.spec, qf=qf)
Test that policy raises error if passed a dict obs space.
test_invalid_action_spaces
python
rlworkgroup/garage
tests/garage/tf/policies/test_discrete_qf_argmax_policy.py
https://github.com/rlworkgroup/garage/blob/master/tests/garage/tf/policies/test_discrete_qf_argmax_policy.py
MIT
def test_obs_unflattened(self): """Test if a flattened image obs is passed to get_action then it is unflattened. """ obs = self.env.observation_space.sample() action, _ = self.policy.get_action( self.env.observation_space.flatten(obs)) self.env.step(action)
Test if a flattened image obs is passed to get_action then it is unflattened.
test_obs_unflattened
python
rlworkgroup/garage
tests/garage/tf/policies/test_discrete_qf_argmax_policy.py
https://github.com/rlworkgroup/garage/blob/master/tests/garage/tf/policies/test_discrete_qf_argmax_policy.py
MIT
def test_utils_set_gpu_mode(): """Test setting gpu mode to False to force CPU.""" if torch.cuda.is_available(): set_gpu_mode(mode=True) assert global_device() == torch.device('cuda:0') assert tu._USE_GPU else: set_gpu_mode(mode=False) assert global_device() == torch.device('cpu') assert not tu._USE_GPU assert not tu._GPU_ID
Test setting gpu mode to False to force CPU.
test_utils_set_gpu_mode
python
rlworkgroup/garage
tests/garage/torch/test_functions.py
https://github.com/rlworkgroup/garage/blob/master/tests/garage/torch/test_functions.py
MIT