code
stringlengths
66
870k
docstring
stringlengths
19
26.7k
func_name
stringlengths
1
138
language
stringclasses
1 value
repo
stringlengths
7
68
path
stringlengths
5
324
url
stringlengths
46
389
license
stringclasses
7 values
def __getitem__(self, key): """See :meth:`object.__getitem__`. Args: key (Hashable): Key associated with the value to retrieve. Returns: object: Lazily-evaluated value of the :class:`Callable` associated with key. """ if key not in self._dict: self._dict[key] = self._lazy_dict[key]() return self._dict[key]
See :meth:`object.__getitem__`. Args: key (Hashable): Key associated with the value to retrieve. Returns: object: Lazily-evaluated value of the :class:`Callable` associated with key.
__getitem__
python
rlworkgroup/garage
src/garage/tf/optimizers/_dtypes.py
https://github.com/rlworkgroup/garage/blob/master/src/garage/tf/optimizers/_dtypes.py
MIT
def get(self, key, default=None): """See :meth:`dict.get`. Args: key (Hashable): Key associated with the value to retreive. default (object): Value to return if key is not present in this :class:`LazyDict`. Returns: object: Value associated with key if the key is present, otherwise default. """ if key in self._lazy_dict: return self[key] return default
See :meth:`dict.get`. Args: key (Hashable): Key associated with the value to retreive. default (object): Value to return if key is not present in this :class:`LazyDict`. Returns: object: Value associated with key if the key is present, otherwise default.
get
python
rlworkgroup/garage
src/garage/tf/optimizers/_dtypes.py
https://github.com/rlworkgroup/garage/blob/master/src/garage/tf/optimizers/_dtypes.py
MIT
def update_plot(self, policy, max_length=np.inf): """Update the policy being plotted. Args: policy (garage.tf.Policy): Policy to visualize. max_length (int or float): The maximum length to allow an episode to be. Defaults to infinity. """ if self.worker_thread.is_alive(): self.queue.put( Message(op=Op.DEMO, args=(policy.get_param_values(), max_length), kwargs=None))
Update the policy being plotted. Args: policy (garage.tf.Policy): Policy to visualize. max_length (int or float): The maximum length to allow an episode to be. Defaults to infinity.
update_plot
python
rlworkgroup/garage
src/garage/tf/plotter/plotter.py
https://github.com/rlworkgroup/garage/blob/master/src/garage/tf/plotter/plotter.py
MIT
def get_action(self, observation): """Return a single action. Args: observation (numpy.ndarray): Observations. Returns: int: Action given input observation. dict(numpy.ndarray): Distribution parameters. """ sample, prob = self.get_actions([observation]) return sample, {k: v[0] for k, v in prob.items()}
Return a single action. Args: observation (numpy.ndarray): Observations. Returns: int: Action given input observation. dict(numpy.ndarray): Distribution parameters.
get_action
python
rlworkgroup/garage
src/garage/tf/policies/categorical_cnn_policy.py
https://github.com/rlworkgroup/garage/blob/master/src/garage/tf/policies/categorical_cnn_policy.py
MIT
def get_actions(self, observations): """Return multiple actions. Args: observations (numpy.ndarray): Observations. Returns: list[int]: Actions given input observations. dict(numpy.ndarray): Distribution parameters. """ if not isinstance(observations[0], np.ndarray) or len(observations[0].shape) > 1: observations = self.observation_space.flatten_n(observations) samples, probs = self._f_prob(np.expand_dims(observations, 1)) return np.squeeze(samples), dict(prob=np.squeeze(probs, axis=1))
Return multiple actions. Args: observations (numpy.ndarray): Observations. Returns: list[int]: Actions given input observations. dict(numpy.ndarray): Distribution parameters.
get_actions
python
rlworkgroup/garage
src/garage/tf/policies/categorical_cnn_policy.py
https://github.com/rlworkgroup/garage/blob/master/src/garage/tf/policies/categorical_cnn_policy.py
MIT
def __getstate__(self): """Object.__getstate__. Returns: dict: The state to be pickled for the instance. """ new_dict = super().__getstate__() del new_dict['_f_prob'] return new_dict
Object.__getstate__. Returns: dict: The state to be pickled for the instance.
__getstate__
python
rlworkgroup/garage
src/garage/tf/policies/categorical_cnn_policy.py
https://github.com/rlworkgroup/garage/blob/master/src/garage/tf/policies/categorical_cnn_policy.py
MIT
def build(self, state_input, name=None): """Build policy. Args: state_input (tf.Tensor) : State input. name (str): Name of the policy, which is also the name scope. Returns: tfp.distributions.OneHotCategorical: Policy distribution. tf.Tensor: Step output, with shape :math:`(N, S^*)`. tf.Tensor: Step hidden state, with shape :math:`(N, S^*)`. tf.Tensor: Initial hidden state , used to reset the hidden state when policy resets. Shape: :math:`(S^*)`. """ _, step_input_var, step_hidden_var = self.inputs return super().build(state_input, step_input_var, step_hidden_var, name=name)
Build policy. Args: state_input (tf.Tensor) : State input. name (str): Name of the policy, which is also the name scope. Returns: tfp.distributions.OneHotCategorical: Policy distribution. tf.Tensor: Step output, with shape :math:`(N, S^*)`. tf.Tensor: Step hidden state, with shape :math:`(N, S^*)`. tf.Tensor: Initial hidden state , used to reset the hidden state when policy resets. Shape: :math:`(S^*)`.
build
python
rlworkgroup/garage
src/garage/tf/policies/categorical_gru_policy.py
https://github.com/rlworkgroup/garage/blob/master/src/garage/tf/policies/categorical_gru_policy.py
MIT
def reset(self, do_resets=None): """Reset the policy. Note: If `do_resets` is None, it will be by default np.array([True]), which implies the policy will not be "vectorized", i.e. number of paralle environments for training data sampling = 1. Args: do_resets (numpy.ndarray): Bool that indicates terminal state(s). """ if do_resets is None: do_resets = [True] do_resets = np.asarray(do_resets) if self._prev_actions is None or len(do_resets) != len( self._prev_actions): self._prev_actions = np.zeros( (len(do_resets), self.action_space.flat_dim)) self._prev_hiddens = np.zeros((len(do_resets), self._hidden_dim)) self._prev_actions[do_resets] = 0. self._prev_hiddens[do_resets] = self._init_hidden.eval()
Reset the policy. Note: If `do_resets` is None, it will be by default np.array([True]), which implies the policy will not be "vectorized", i.e. number of paralle environments for training data sampling = 1. Args: do_resets (numpy.ndarray): Bool that indicates terminal state(s).
reset
python
rlworkgroup/garage
src/garage/tf/policies/categorical_gru_policy.py
https://github.com/rlworkgroup/garage/blob/master/src/garage/tf/policies/categorical_gru_policy.py
MIT
def get_action(self, observation): """Return a single action. Args: observation (numpy.ndarray): Observations. Returns: int: Action given input observation. dict(numpy.ndarray): Distribution parameters. """ actions, agent_infos = self.get_actions([observation]) return actions[0], {k: v[0] for k, v in agent_infos.items()}
Return a single action. Args: observation (numpy.ndarray): Observations. Returns: int: Action given input observation. dict(numpy.ndarray): Distribution parameters.
get_action
python
rlworkgroup/garage
src/garage/tf/policies/categorical_gru_policy.py
https://github.com/rlworkgroup/garage/blob/master/src/garage/tf/policies/categorical_gru_policy.py
MIT
def get_actions(self, observations): """Return multiple actions. Args: observations (numpy.ndarray): Observations. Returns: list[int]: Actions given input observations. dict(numpy.ndarray): Distribution parameters. """ if not isinstance(observations[0], np.ndarray) or len(observations[0].shape) > 1: observations = self.observation_space.flatten_n(observations) if self._state_include_action: assert self._prev_actions is not None all_input = np.concatenate([observations, self._prev_actions], axis=-1) else: all_input = observations probs, hidden_vec = self._f_step_prob(all_input, self._prev_hiddens) actions = list(map(self.action_space.weighted_sample, probs)) prev_actions = self._prev_actions self._prev_actions = self.action_space.flatten_n(actions) self._prev_hiddens = hidden_vec agent_info = dict(prob=probs) if self._state_include_action: agent_info['prev_action'] = np.copy(prev_actions) return actions, agent_info
Return multiple actions. Args: observations (numpy.ndarray): Observations. Returns: list[int]: Actions given input observations. dict(numpy.ndarray): Distribution parameters.
get_actions
python
rlworkgroup/garage
src/garage/tf/policies/categorical_gru_policy.py
https://github.com/rlworkgroup/garage/blob/master/src/garage/tf/policies/categorical_gru_policy.py
MIT
def state_info_specs(self): """State info specifcation. Returns: List[str]: keys and shapes for the information related to the policy's state when taking an action. """ if self._state_include_action: return [ ('prev_action', (self._action_dim, )), ] return []
State info specifcation. Returns: List[str]: keys and shapes for the information related to the policy's state when taking an action.
state_info_specs
python
rlworkgroup/garage
src/garage/tf/policies/categorical_gru_policy.py
https://github.com/rlworkgroup/garage/blob/master/src/garage/tf/policies/categorical_gru_policy.py
MIT
def __getstate__(self): """Object.__getstate__. Returns: dict: the state to be pickled for the instance. """ new_dict = super().__getstate__() del new_dict['_f_step_prob'] del new_dict['_init_hidden'] return new_dict
Object.__getstate__. Returns: dict: the state to be pickled for the instance.
__getstate__
python
rlworkgroup/garage
src/garage/tf/policies/categorical_gru_policy.py
https://github.com/rlworkgroup/garage/blob/master/src/garage/tf/policies/categorical_gru_policy.py
MIT
def build(self, state_input, name=None): """Build policy. Args: state_input (tf.Tensor) : State input. name (str): Name of the policy, which is also the name scope. Returns: tfp.distributions.OneHotCategorical: Policy distribution. tf.Tensor: Step output, with shape :math:`(N, S^*)` tf.Tensor: Step hidden state, with shape :math:`(N, S^*)` tf.Tensor: Step cell state, with shape :math:`(N, S^*)` tf.Tensor: Initial hidden state, used to reset the hidden state when policy resets. Shape: :math:`(S^*)` tf.Tensor: Initial cell state, used to reset the cell state when policy resets. Shape: :math:`(S^*)` """ _, step_input, step_hidden, step_cell = self.inputs return super().build(state_input, step_input, step_hidden, step_cell, name=name)
Build policy. Args: state_input (tf.Tensor) : State input. name (str): Name of the policy, which is also the name scope. Returns: tfp.distributions.OneHotCategorical: Policy distribution. tf.Tensor: Step output, with shape :math:`(N, S^*)` tf.Tensor: Step hidden state, with shape :math:`(N, S^*)` tf.Tensor: Step cell state, with shape :math:`(N, S^*)` tf.Tensor: Initial hidden state, used to reset the hidden state when policy resets. Shape: :math:`(S^*)` tf.Tensor: Initial cell state, used to reset the cell state when policy resets. Shape: :math:`(S^*)`
build
python
rlworkgroup/garage
src/garage/tf/policies/categorical_lstm_policy.py
https://github.com/rlworkgroup/garage/blob/master/src/garage/tf/policies/categorical_lstm_policy.py
MIT
def reset(self, do_resets=None): """Reset the policy. Note: If `do_resets` is None, it will be by default np.array([True]), which implies the policy will not be "vectorized", i.e. number of paralle environments for training data sampling = 1. Args: do_resets (numpy.ndarray): Bool that indicates terminal state(s). """ if do_resets is None: do_resets = [True] do_resets = np.asarray(do_resets) if self._prev_actions is None or len(do_resets) != len( self._prev_actions): self._prev_actions = np.zeros( (len(do_resets), self.action_space.flat_dim)) self._prev_hiddens = np.zeros((len(do_resets), self._hidden_dim)) self._prev_cells = np.zeros((len(do_resets), self._hidden_dim)) self._prev_actions[do_resets] = 0. self._prev_hiddens[do_resets] = self._init_hidden.eval() self._prev_cells[do_resets] = self._init_cell.eval()
Reset the policy. Note: If `do_resets` is None, it will be by default np.array([True]), which implies the policy will not be "vectorized", i.e. number of paralle environments for training data sampling = 1. Args: do_resets (numpy.ndarray): Bool that indicates terminal state(s).
reset
python
rlworkgroup/garage
src/garage/tf/policies/categorical_lstm_policy.py
https://github.com/rlworkgroup/garage/blob/master/src/garage/tf/policies/categorical_lstm_policy.py
MIT
def get_action(self, observation): """Return a single action. Args: observation (numpy.ndarray): Observations. Returns: int: Action given input observation. dict(numpy.ndarray): Distribution parameters. """ actions, agent_infos = self.get_actions([observation]) return actions[0], {k: v[0] for k, v in agent_infos.items()}
Return a single action. Args: observation (numpy.ndarray): Observations. Returns: int: Action given input observation. dict(numpy.ndarray): Distribution parameters.
get_action
python
rlworkgroup/garage
src/garage/tf/policies/categorical_lstm_policy.py
https://github.com/rlworkgroup/garage/blob/master/src/garage/tf/policies/categorical_lstm_policy.py
MIT
def get_actions(self, observations): """Return multiple actions. Args: observations (numpy.ndarray): Observations. Returns: list[int]: Actions given input observations. dict(numpy.ndarray): Distribution parameters. """ if not isinstance(observations[0], np.ndarray) or len(observations[0].shape) > 1: observations = self.observation_space.flatten_n(observations) if self._state_include_action: assert self._prev_actions is not None all_input = np.concatenate([observations, self._prev_actions], axis=-1) else: all_input = observations probs, hidden_vec, cell_vec = self._f_step_prob( all_input, self._prev_hiddens, self._prev_cells) actions = list(map(self.action_space.weighted_sample, probs)) prev_actions = self._prev_actions self._prev_actions = self.action_space.flatten_n(actions) self._prev_hiddens = hidden_vec self._prev_cells = cell_vec agent_info = dict(prob=probs) if self._state_include_action: agent_info['prev_action'] = np.copy(prev_actions) return actions, agent_info
Return multiple actions. Args: observations (numpy.ndarray): Observations. Returns: list[int]: Actions given input observations. dict(numpy.ndarray): Distribution parameters.
get_actions
python
rlworkgroup/garage
src/garage/tf/policies/categorical_lstm_policy.py
https://github.com/rlworkgroup/garage/blob/master/src/garage/tf/policies/categorical_lstm_policy.py
MIT
def state_info_specs(self): """State info specifcation. Returns: List[str]: keys and shapes for the information related to the policy's state when taking an action. """ if self._state_include_action: return [ ('prev_action', (self._action_dim, )), ] return []
State info specifcation. Returns: List[str]: keys and shapes for the information related to the policy's state when taking an action.
state_info_specs
python
rlworkgroup/garage
src/garage/tf/policies/categorical_lstm_policy.py
https://github.com/rlworkgroup/garage/blob/master/src/garage/tf/policies/categorical_lstm_policy.py
MIT
def __getstate__(self): """Object.__getstate__. Returns: dict: the state to be pickled for the instance. """ new_dict = super().__getstate__() del new_dict['_f_step_prob'] del new_dict['_init_hidden'] del new_dict['_init_cell'] return new_dict
Object.__getstate__. Returns: dict: the state to be pickled for the instance.
__getstate__
python
rlworkgroup/garage
src/garage/tf/policies/categorical_lstm_policy.py
https://github.com/rlworkgroup/garage/blob/master/src/garage/tf/policies/categorical_lstm_policy.py
MIT
def get_action(self, observation): """Return a single action. Args: observation (numpy.ndarray): Observations. Returns: int: Action given input observation. dict(numpy.ndarray): Distribution parameters. """ actions, agent_infos = self.get_actions([observation]) return actions, {k: v[0] for k, v in agent_infos.items()}
Return a single action. Args: observation (numpy.ndarray): Observations. Returns: int: Action given input observation. dict(numpy.ndarray): Distribution parameters.
get_action
python
rlworkgroup/garage
src/garage/tf/policies/categorical_mlp_policy.py
https://github.com/rlworkgroup/garage/blob/master/src/garage/tf/policies/categorical_mlp_policy.py
MIT
def get_actions(self, observations): """Return multiple actions. Args: observations (numpy.ndarray): Observations. Returns: list[int]: Actions given input observations. dict(numpy.ndarray): Distribution parameters. """ if not isinstance(observations[0], np.ndarray) or len(observations[0].shape) > 1: observations = self.observation_space.flatten_n(observations) samples, probs = self._f_prob(np.expand_dims(observations, 1)) return np.squeeze(samples), dict(prob=np.squeeze(probs, axis=1))
Return multiple actions. Args: observations (numpy.ndarray): Observations. Returns: list[int]: Actions given input observations. dict(numpy.ndarray): Distribution parameters.
get_actions
python
rlworkgroup/garage
src/garage/tf/policies/categorical_mlp_policy.py
https://github.com/rlworkgroup/garage/blob/master/src/garage/tf/policies/categorical_mlp_policy.py
MIT
def get_regularizable_vars(self): """Get regularizable weight variables under the Policy scope. Returns: list[tf.Tensor]: Trainable variables. """ trainable = self.get_trainable_vars() return [ var for var in trainable if 'hidden' in var.name and 'kernel' in var.name ]
Get regularizable weight variables under the Policy scope. Returns: list[tf.Tensor]: Trainable variables.
get_regularizable_vars
python
rlworkgroup/garage
src/garage/tf/policies/categorical_mlp_policy.py
https://github.com/rlworkgroup/garage/blob/master/src/garage/tf/policies/categorical_mlp_policy.py
MIT
def get_action(self, observation): """Get single action from this policy for the input observation. Args: observation (numpy.ndarray): Observation from environment. Returns: numpy.ndarray: Predicted action. dict: Empty dict since this policy does not model a distribution. """ actions, agent_infos = self.get_actions([observation]) action = actions[0] return action, {k: v[0] for k, v in agent_infos.items()}
Get single action from this policy for the input observation. Args: observation (numpy.ndarray): Observation from environment. Returns: numpy.ndarray: Predicted action. dict: Empty dict since this policy does not model a distribution.
get_action
python
rlworkgroup/garage
src/garage/tf/policies/continuous_mlp_policy.py
https://github.com/rlworkgroup/garage/blob/master/src/garage/tf/policies/continuous_mlp_policy.py
MIT
def get_actions(self, observations): """Get multiple actions from this policy for the input observations. Args: observations (numpy.ndarray): Observations from environment. Returns: numpy.ndarray: Predicted actions. dict: Empty dict since this policy does not model a distribution. """ if not isinstance(observations[0], np.ndarray) or len(observations[0].shape) > 1: observations = self.observation_space.flatten_n(observations) actions = self._f_prob(observations) actions = self.action_space.unflatten_n(actions) return actions, dict()
Get multiple actions from this policy for the input observations. Args: observations (numpy.ndarray): Observations from environment. Returns: numpy.ndarray: Predicted actions. dict: Empty dict since this policy does not model a distribution.
get_actions
python
rlworkgroup/garage
src/garage/tf/policies/continuous_mlp_policy.py
https://github.com/rlworkgroup/garage/blob/master/src/garage/tf/policies/continuous_mlp_policy.py
MIT
def get_regularizable_vars(self): """Get regularizable weight variables under the Policy scope. Returns: list(tf.Variable): List of regularizable variables. """ trainable = self.get_trainable_vars() return [ var for var in trainable if 'hidden' in var.name and 'kernel' in var.name ]
Get regularizable weight variables under the Policy scope. Returns: list(tf.Variable): List of regularizable variables.
get_regularizable_vars
python
rlworkgroup/garage
src/garage/tf/policies/continuous_mlp_policy.py
https://github.com/rlworkgroup/garage/blob/master/src/garage/tf/policies/continuous_mlp_policy.py
MIT
def __getstate__(self): """Object.__getstate__. Returns: dict: the state to be pickled as the contents for the instance. """ new_dict = super().__getstate__() del new_dict['_f_prob'] return new_dict
Object.__getstate__. Returns: dict: the state to be pickled as the contents for the instance.
__getstate__
python
rlworkgroup/garage
src/garage/tf/policies/continuous_mlp_policy.py
https://github.com/rlworkgroup/garage/blob/master/src/garage/tf/policies/continuous_mlp_policy.py
MIT
def get_action(self, observation): """Get action from this policy for the input observation. Args: observation (numpy.ndarray): Observation from environment. Returns: numpy.ndarray: Single optimal action from this policy. dict: Predicted action and agent information. It returns an empty dict since there is no parameterization. """ opt_actions, agent_infos = self.get_actions([observation]) return opt_actions[0], {k: v[0] for k, v in agent_infos.items()}
Get action from this policy for the input observation. Args: observation (numpy.ndarray): Observation from environment. Returns: numpy.ndarray: Single optimal action from this policy. dict: Predicted action and agent information. It returns an empty dict since there is no parameterization.
get_action
python
rlworkgroup/garage
src/garage/tf/policies/discrete_qf_argmax_policy.py
https://github.com/rlworkgroup/garage/blob/master/src/garage/tf/policies/discrete_qf_argmax_policy.py
MIT
def get_actions(self, observations): """Get actions from this policy for the input observations. Args: observations (numpy.ndarray): Observations from environment. Returns: numpy.ndarray: Optimal actions from this policy. dict: Predicted action and agent information. It returns an empty dict since there is no parameterization. """ if isinstance(self.env_spec.observation_space, akro.Image) and \ len(observations[0].shape) < \ len(self.env_spec.observation_space.shape): observations = self.env_spec.observation_space.unflatten_n( observations) q_vals = self._f_qval(observations) opt_actions = np.argmax(q_vals, axis=1) return opt_actions, dict()
Get actions from this policy for the input observations. Args: observations (numpy.ndarray): Observations from environment. Returns: numpy.ndarray: Optimal actions from this policy. dict: Predicted action and agent information. It returns an empty dict since there is no parameterization.
get_actions
python
rlworkgroup/garage
src/garage/tf/policies/discrete_qf_argmax_policy.py
https://github.com/rlworkgroup/garage/blob/master/src/garage/tf/policies/discrete_qf_argmax_policy.py
MIT
def __getstate__(self): """Object.__getstate__. Returns: dict: the state to be pickled for the instance. """ new_dict = super().__getstate__() del new_dict['_f_qval'] return new_dict
Object.__getstate__. Returns: dict: the state to be pickled for the instance.
__getstate__
python
rlworkgroup/garage
src/garage/tf/policies/discrete_qf_argmax_policy.py
https://github.com/rlworkgroup/garage/blob/master/src/garage/tf/policies/discrete_qf_argmax_policy.py
MIT
def build(self, state_input, name=None): """Build policy. Args: state_input (tf.Tensor) : State input. name (str): Name of the policy, which is also the name scope. Returns: tfp.distributions.MultivariateNormalDiag: Policy distribution. tf.Tensor: Step means, with shape :math:`(N, S^*)`. tf.Tensor: Step log std, with shape :math:`(N, S^*)`. tf.Tensor: Step hidden state, with shape :math:`(N, S^*)`. tf.Tensor: Initial hidden state, with shape :math:`(S^*)`. """ _, step_input_var, step_hidden_var = self.inputs return super().build(state_input, step_input_var, step_hidden_var, name=name)
Build policy. Args: state_input (tf.Tensor) : State input. name (str): Name of the policy, which is also the name scope. Returns: tfp.distributions.MultivariateNormalDiag: Policy distribution. tf.Tensor: Step means, with shape :math:`(N, S^*)`. tf.Tensor: Step log std, with shape :math:`(N, S^*)`. tf.Tensor: Step hidden state, with shape :math:`(N, S^*)`. tf.Tensor: Initial hidden state, with shape :math:`(S^*)`.
build
python
rlworkgroup/garage
src/garage/tf/policies/gaussian_gru_policy.py
https://github.com/rlworkgroup/garage/blob/master/src/garage/tf/policies/gaussian_gru_policy.py
MIT
def reset(self, do_resets=None): """Reset the policy. Note: If `do_resets` is None, it will be by default `np.array([True])` which implies the policy will not be "vectorized", i.e. number of parallel environments for training data sampling = 1. Args: do_resets (numpy.ndarray): Bool that indicates terminal state(s). """ if do_resets is None: do_resets = np.array([True]) if self._prev_actions is None or len(do_resets) != len( self._prev_actions): self._prev_actions = np.zeros( (len(do_resets), self.action_space.flat_dim)) self._prev_hiddens = np.zeros((len(do_resets), self._hidden_dim)) self._prev_actions[do_resets] = 0. self._prev_hiddens[do_resets] = self._init_hidden.eval()
Reset the policy. Note: If `do_resets` is None, it will be by default `np.array([True])` which implies the policy will not be "vectorized", i.e. number of parallel environments for training data sampling = 1. Args: do_resets (numpy.ndarray): Bool that indicates terminal state(s).
reset
python
rlworkgroup/garage
src/garage/tf/policies/gaussian_gru_policy.py
https://github.com/rlworkgroup/garage/blob/master/src/garage/tf/policies/gaussian_gru_policy.py
MIT
def get_action(self, observation): """Get single action from this policy for the input observation. Args: observation (numpy.ndarray): Observation from environment. Returns: numpy.ndarray: Actions dict: Predicted action and agent information. Note: It returns an action and a dict, with keys - mean (numpy.ndarray): Mean of the distribution. - log_std (numpy.ndarray): Log standard deviation of the distribution. - prev_action (numpy.ndarray): Previous action, only present if self._state_include_action is True. """ actions, agent_infos = self.get_actions([observation]) return actions[0], {k: v[0] for k, v in agent_infos.items()}
Get single action from this policy for the input observation. Args: observation (numpy.ndarray): Observation from environment. Returns: numpy.ndarray: Actions dict: Predicted action and agent information. Note: It returns an action and a dict, with keys - mean (numpy.ndarray): Mean of the distribution. - log_std (numpy.ndarray): Log standard deviation of the distribution. - prev_action (numpy.ndarray): Previous action, only present if self._state_include_action is True.
get_action
python
rlworkgroup/garage
src/garage/tf/policies/gaussian_gru_policy.py
https://github.com/rlworkgroup/garage/blob/master/src/garage/tf/policies/gaussian_gru_policy.py
MIT
def get_actions(self, observations): """Get multiple actions from this policy for the input observations. Args: observations (numpy.ndarray): Observations from environment. Returns: numpy.ndarray: Actions dict: Predicted action and agent information. Note: It returns an action and a dict, with keys - mean (numpy.ndarray): Means of the distribution. - log_std (numpy.ndarray): Log standard deviations of the distribution. - prev_action (numpy.ndarray): Previous action, only present if self._state_include_action is True. """ if not isinstance(observations[0], np.ndarray) or len(observations[0].shape) > 1: observations = self.observation_space.flatten_n(observations) if self._state_include_action: assert self._prev_actions is not None all_input = np.concatenate([observations, self._prev_actions], axis=-1) else: all_input = observations means, log_stds, hidden_vec = self._f_step_mean_std( all_input, self._prev_hiddens) rnd = np.random.normal(size=means.shape) samples = rnd * np.exp(log_stds) + means samples = self.action_space.unflatten_n(samples) prev_actions = self._prev_actions self._prev_actions = samples self._prev_hiddens = hidden_vec agent_infos = dict(mean=means, log_std=log_stds) if self._state_include_action: agent_infos['prev_action'] = np.copy(prev_actions) return samples, agent_infos
Get multiple actions from this policy for the input observations. Args: observations (numpy.ndarray): Observations from environment. Returns: numpy.ndarray: Actions dict: Predicted action and agent information. Note: It returns an action and a dict, with keys - mean (numpy.ndarray): Means of the distribution. - log_std (numpy.ndarray): Log standard deviations of the distribution. - prev_action (numpy.ndarray): Previous action, only present if self._state_include_action is True.
get_actions
python
rlworkgroup/garage
src/garage/tf/policies/gaussian_gru_policy.py
https://github.com/rlworkgroup/garage/blob/master/src/garage/tf/policies/gaussian_gru_policy.py
MIT
def state_info_specs(self): """State info specifcation. Returns: List[str]: keys and shapes for the information related to the policy's state when taking an action. """ if self._state_include_action: return [ ('prev_action', (self._action_dim, )), ] return []
State info specifcation. Returns: List[str]: keys and shapes for the information related to the policy's state when taking an action.
state_info_specs
python
rlworkgroup/garage
src/garage/tf/policies/gaussian_gru_policy.py
https://github.com/rlworkgroup/garage/blob/master/src/garage/tf/policies/gaussian_gru_policy.py
MIT
def __getstate__(self): """Object.__getstate__. Returns: dict: the state to be pickled for the instance. """ new_dict = super().__getstate__() del new_dict['_f_step_mean_std'] del new_dict['_init_hidden'] return new_dict
Object.__getstate__. Returns: dict: the state to be pickled for the instance.
__getstate__
python
rlworkgroup/garage
src/garage/tf/policies/gaussian_gru_policy.py
https://github.com/rlworkgroup/garage/blob/master/src/garage/tf/policies/gaussian_gru_policy.py
MIT
def build(self, state_input, name=None): """Build policy. Args: state_input (tf.Tensor) : State input. name (str): Name of the policy, which is also the name scope. Returns: tfp.distributions.MultivariateNormalDiag: Policy distribution. tf.Tensor: Step means, with shape :math:`(N, S^*)`. tf.Tensor: Step log std, with shape :math:`(N, S^*)`. tf.Tensor: Step hidden state, with shape :math:`(N, S^*)`. tf.Tensor: Step cell state, with shape :math:`(N, S^*)`. tf.Tensor: Initial hidden state, with shape :math:`(S^*)`. tf.Tensor: Initial cell state, with shape :math:`(S^*)` """ _, step_input, step_hidden, step_cell = self.inputs return super().build(state_input, step_input, step_hidden, step_cell, name=name)
Build policy. Args: state_input (tf.Tensor) : State input. name (str): Name of the policy, which is also the name scope. Returns: tfp.distributions.MultivariateNormalDiag: Policy distribution. tf.Tensor: Step means, with shape :math:`(N, S^*)`. tf.Tensor: Step log std, with shape :math:`(N, S^*)`. tf.Tensor: Step hidden state, with shape :math:`(N, S^*)`. tf.Tensor: Step cell state, with shape :math:`(N, S^*)`. tf.Tensor: Initial hidden state, with shape :math:`(S^*)`. tf.Tensor: Initial cell state, with shape :math:`(S^*)`
build
python
rlworkgroup/garage
src/garage/tf/policies/gaussian_lstm_policy.py
https://github.com/rlworkgroup/garage/blob/master/src/garage/tf/policies/gaussian_lstm_policy.py
MIT
def reset(self, do_resets=None): """Reset the policy. Note: If `do_resets` is None, it will be by default np.array([True]), which implies the policy will not be "vectorized", i.e. number of paralle environments for training data sampling = 1. Args: do_resets (numpy.ndarray): Bool that indicates terminal state(s). """ if do_resets is None: do_resets = np.array([True]) if self._prev_actions is None or len(do_resets) != len( self._prev_actions): self._prev_actions = np.zeros( (len(do_resets), self.action_space.flat_dim)) self._prev_hiddens = np.zeros((len(do_resets), self._hidden_dim)) self._prev_cells = np.zeros((len(do_resets), self._hidden_dim)) self._prev_actions[do_resets] = 0. self._prev_hiddens[do_resets] = self._init_hidden.eval() self._prev_cells[do_resets] = self._init_cell.eval()
Reset the policy. Note: If `do_resets` is None, it will be by default np.array([True]), which implies the policy will not be "vectorized", i.e. number of paralle environments for training data sampling = 1. Args: do_resets (numpy.ndarray): Bool that indicates terminal state(s).
reset
python
rlworkgroup/garage
src/garage/tf/policies/gaussian_lstm_policy.py
https://github.com/rlworkgroup/garage/blob/master/src/garage/tf/policies/gaussian_lstm_policy.py
MIT
def get_action(self, observation): """Get single action from this policy for the input observation. Args: observation (numpy.ndarray): Observation from environment. Returns: numpy.ndarray: Actions dict: Predicted action and agent information. Note: It returns an action and a dict, with keys - mean (numpy.ndarray): Mean of the distribution. - log_std (numpy.ndarray): Log standard deviation of the distribution. - prev_action (numpy.ndarray): Previous action, only present if self._state_include_action is True. """ actions, agent_infos = self.get_actions([observation]) return actions[0], {k: v[0] for k, v in agent_infos.items()}
Get single action from this policy for the input observation. Args: observation (numpy.ndarray): Observation from environment. Returns: numpy.ndarray: Actions dict: Predicted action and agent information. Note: It returns an action and a dict, with keys - mean (numpy.ndarray): Mean of the distribution. - log_std (numpy.ndarray): Log standard deviation of the distribution. - prev_action (numpy.ndarray): Previous action, only present if self._state_include_action is True.
get_action
python
rlworkgroup/garage
src/garage/tf/policies/gaussian_lstm_policy.py
https://github.com/rlworkgroup/garage/blob/master/src/garage/tf/policies/gaussian_lstm_policy.py
MIT
def get_actions(self, observations): """Get multiple actions from this policy for the input observations. Args: observations (numpy.ndarray): Observations from environment. Returns: numpy.ndarray: Actions dict: Predicted action and agent information. Note: It returns an action and a dict, with keys - mean (numpy.ndarray): Means of the distribution. - log_std (numpy.ndarray): Log standard deviations of the distribution. - prev_action (numpy.ndarray): Previous action, only present if self._state_include_action is True. """ if not isinstance(observations[0], np.ndarray) or len(observations[0].shape) > 1: observations = self.observation_space.flatten_n(observations) if self._state_include_action: assert self._prev_actions is not None all_input = np.concatenate([observations, self._prev_actions], axis=-1) else: all_input = observations means, log_stds, hidden_vec, cell_vec = self._f_step_mean_std( all_input, self._prev_hiddens, self._prev_cells) rnd = np.random.normal(size=means.shape) samples = rnd * np.exp(log_stds) + means samples = self.action_space.unflatten_n(samples) prev_actions = self._prev_actions self._prev_actions = samples self._prev_hiddens = hidden_vec self._prev_cells = cell_vec agent_infos = dict(mean=means, log_std=log_stds) if self._state_include_action: agent_infos['prev_action'] = np.copy(prev_actions) return samples, agent_infos
Get multiple actions from this policy for the input observations. Args: observations (numpy.ndarray): Observations from environment. Returns: numpy.ndarray: Actions dict: Predicted action and agent information. Note: It returns an action and a dict, with keys - mean (numpy.ndarray): Means of the distribution. - log_std (numpy.ndarray): Log standard deviations of the distribution. - prev_action (numpy.ndarray): Previous action, only present if self._state_include_action is True.
get_actions
python
rlworkgroup/garage
src/garage/tf/policies/gaussian_lstm_policy.py
https://github.com/rlworkgroup/garage/blob/master/src/garage/tf/policies/gaussian_lstm_policy.py
MIT
def state_info_specs(self): """State info specifcation. Returns: List[str]: keys and shapes for the information related to the policy's state when taking an action. """ if self._state_include_action: return [ ('prev_action', (self._action_dim, )), ] return []
State info specifcation. Returns: List[str]: keys and shapes for the information related to the policy's state when taking an action.
state_info_specs
python
rlworkgroup/garage
src/garage/tf/policies/gaussian_lstm_policy.py
https://github.com/rlworkgroup/garage/blob/master/src/garage/tf/policies/gaussian_lstm_policy.py
MIT
def __getstate__(self): """Object.__getstate__. Returns: dict: the state to be pickled for the instance. """ new_dict = super().__getstate__() del new_dict['_f_step_mean_std'] del new_dict['_init_hidden'] del new_dict['_init_cell'] return new_dict
Object.__getstate__. Returns: dict: the state to be pickled for the instance.
__getstate__
python
rlworkgroup/garage
src/garage/tf/policies/gaussian_lstm_policy.py
https://github.com/rlworkgroup/garage/blob/master/src/garage/tf/policies/gaussian_lstm_policy.py
MIT
def get_action(self, observation): """Get single action from this policy for the input observation. Args: observation (numpy.ndarray): Observation from environment. Returns: numpy.ndarray: Actions dict: Predicted action and agent information. Note: It returns an action and a dict, with keys - mean (numpy.ndarray): Mean of the distribution. - log_std (numpy.ndarray): Log standard deviation of the distribution. """ actions, agent_infos = self.get_actions([observation]) return actions[0], {k: v[0] for k, v in agent_infos.items()}
Get single action from this policy for the input observation. Args: observation (numpy.ndarray): Observation from environment. Returns: numpy.ndarray: Actions dict: Predicted action and agent information. Note: It returns an action and a dict, with keys - mean (numpy.ndarray): Mean of the distribution. - log_std (numpy.ndarray): Log standard deviation of the distribution.
get_action
python
rlworkgroup/garage
src/garage/tf/policies/gaussian_mlp_policy.py
https://github.com/rlworkgroup/garage/blob/master/src/garage/tf/policies/gaussian_mlp_policy.py
MIT
def get_actions(self, observations): """Get multiple actions from this policy for the input observations. Args: observations (numpy.ndarray): Observations from environment. Returns: numpy.ndarray: Actions dict: Predicted action and agent information. Note: It returns actions and a dict, with keys - mean (numpy.ndarray): Means of the distribution. - log_std (numpy.ndarray): Log standard deviations of the distribution. """ if not isinstance(observations[0], np.ndarray) or len(observations[0].shape) > 1: observations = self.observation_space.flatten_n(observations) samples, means, log_stds = self._f_dist(np.expand_dims( observations, 1)) samples = self.action_space.unflatten_n(np.squeeze(samples, 1)) means = self.action_space.unflatten_n(np.squeeze(means, 1)) log_stds = self.action_space.unflatten_n(np.squeeze(log_stds, 1)) return samples, dict(mean=means, log_std=log_stds)
Get multiple actions from this policy for the input observations. Args: observations (numpy.ndarray): Observations from environment. Returns: numpy.ndarray: Actions dict: Predicted action and agent information. Note: It returns actions and a dict, with keys - mean (numpy.ndarray): Means of the distribution. - log_std (numpy.ndarray): Log standard deviations of the distribution.
get_actions
python
rlworkgroup/garage
src/garage/tf/policies/gaussian_mlp_policy.py
https://github.com/rlworkgroup/garage/blob/master/src/garage/tf/policies/gaussian_mlp_policy.py
MIT
def __getstate__(self): """Object.__getstate__. Returns: dict: the state to be pickled for the instance. """ new_dict = super().__getstate__() del new_dict['_f_dist'] return new_dict
Object.__getstate__. Returns: dict: the state to be pickled for the instance.
__getstate__
python
rlworkgroup/garage
src/garage/tf/policies/gaussian_mlp_policy.py
https://github.com/rlworkgroup/garage/blob/master/src/garage/tf/policies/gaussian_mlp_policy.py
MIT
def _initialize(self): """Build policy to support sampling. After build, get_action_*() methods will be available. """ obs_input = tf.compat.v1.placeholder(tf.float32, shape=(None, None, self.obs_dim)) encoder_input = tf.compat.v1.placeholder( tf.float32, shape=(None, None, self._encoder.input_dim)) latent_input = tf.compat.v1.placeholder( tf.float32, shape=(None, None, self._encoder.output_dim)) with tf.compat.v1.variable_scope(self._encoder.name): encoder_dist = self._encoder.build(encoder_input, name='encoder').dist with tf.compat.v1.variable_scope('concat_obs_latent'): obs_latent_input = tf.concat([obs_input, latent_input], -1) dist, mean_var, log_std_var = super().build( obs_latent_input, # Must named 'default' to # compensate tf default worker name='default').outputs embed_state_input = tf.concat([ obs_input, encoder_dist.sample(seed=deterministic.get_tf_seed_stream()) ], -1) dist_given_task, mean_g_t, log_std_g_t = super().build( embed_state_input, name='given_task').outputs self._f_dist_obs_latent = tf.compat.v1.get_default_session( ).make_callable([ dist.sample(seed=deterministic.get_tf_seed_stream()), mean_var, log_std_var ], feed_list=[obs_input, latent_input]) self._f_dist_obs_task = tf.compat.v1.get_default_session( ).make_callable([ dist_given_task.sample(seed=deterministic.get_tf_seed_stream()), mean_g_t, log_std_g_t ], feed_list=[obs_input, encoder_input])
Build policy to support sampling. After build, get_action_*() methods will be available.
_initialize
python
rlworkgroup/garage
src/garage/tf/policies/gaussian_mlp_task_embedding_policy.py
https://github.com/rlworkgroup/garage/blob/master/src/garage/tf/policies/gaussian_mlp_task_embedding_policy.py
MIT
def build(self, obs_input, task_input, name=None): """Build policy. Args: obs_input (tf.Tensor): Observation input. task_input (tf.Tensor): One-hot task id input. name (str): Name of the model, which is also the name scope. Returns: namedtuple: Policy network. namedtuple: Encoder network. """ name = name or 'additional' # Encoder should be outside policy scope with tf.compat.v1.variable_scope(self._encoder.name): enc_net = self._encoder.build(task_input, name=name) latent_var = enc_net.dist.loc embed_state_input = tf.concat([obs_input, latent_var], -1) return super().build(embed_state_input, name=name), enc_net
Build policy. Args: obs_input (tf.Tensor): Observation input. task_input (tf.Tensor): One-hot task id input. name (str): Name of the model, which is also the name scope. Returns: namedtuple: Policy network. namedtuple: Encoder network.
build
python
rlworkgroup/garage
src/garage/tf/policies/gaussian_mlp_task_embedding_policy.py
https://github.com/rlworkgroup/garage/blob/master/src/garage/tf/policies/gaussian_mlp_task_embedding_policy.py
MIT
def get_action(self, observation): """Get action sampled from the policy. Args: observation (np.ndarray): Augmented observation from the environment, with shape :math:`(O+N, )`. O is the dimension of observation, N is the number of tasks. Returns: np.ndarray: Action sampled from the policy, with shape :math:`(A, )`. A is the dimension of action. dict: Action distribution information, with keys: - mean (numpy.ndarray): Mean of the distribution, with shape :math:`(A, )`. A is the dimension of action. - log_std (numpy.ndarray): Log standard deviation of the distribution, with shape :math:`(A, )`. A is the dimension of action. """ actions, agent_infos = self.get_actions([observation]) return actions[0], {k: v[0] for k, v in agent_infos.items()}
Get action sampled from the policy. Args: observation (np.ndarray): Augmented observation from the environment, with shape :math:`(O+N, )`. O is the dimension of observation, N is the number of tasks. Returns: np.ndarray: Action sampled from the policy, with shape :math:`(A, )`. A is the dimension of action. dict: Action distribution information, with keys: - mean (numpy.ndarray): Mean of the distribution, with shape :math:`(A, )`. A is the dimension of action. - log_std (numpy.ndarray): Log standard deviation of the distribution, with shape :math:`(A, )`. A is the dimension of action.
get_action
python
rlworkgroup/garage
src/garage/tf/policies/gaussian_mlp_task_embedding_policy.py
https://github.com/rlworkgroup/garage/blob/master/src/garage/tf/policies/gaussian_mlp_task_embedding_policy.py
MIT
def get_actions(self, observations): """Get actions sampled from the policy. Args: observations (np.ndarray): Augmented observation from the environment, with shape :math:`(T, O+N)`. T is the number of environment steps, O is the dimension of observation, N is the number of tasks. Returns: np.ndarray: Actions sampled from the policy, with shape :math:`(T, A)`. T is the number of environment steps, A is the dimension of action. dict: Action distribution information, with keys: - mean (numpy.ndarray): Mean of the distribution, with shape :math:`(T, A)`. T is the number of environment steps, A is the dimension of action. - log_std (numpy.ndarray): Log standard deviation of the distribution, with shape :math:`(T, A)`. T is the number of environment steps, Z is the dimension of action. """ obses, tasks = zip(*[ self.split_augmented_observation(aug_obs) for aug_obs in observations ]) return self.get_actions_given_tasks(np.array(obses), np.array(tasks))
Get actions sampled from the policy. Args: observations (np.ndarray): Augmented observation from the environment, with shape :math:`(T, O+N)`. T is the number of environment steps, O is the dimension of observation, N is the number of tasks. Returns: np.ndarray: Actions sampled from the policy, with shape :math:`(T, A)`. T is the number of environment steps, A is the dimension of action. dict: Action distribution information, with keys: - mean (numpy.ndarray): Mean of the distribution, with shape :math:`(T, A)`. T is the number of environment steps, A is the dimension of action. - log_std (numpy.ndarray): Log standard deviation of the distribution, with shape :math:`(T, A)`. T is the number of environment steps, Z is the dimension of action.
get_actions
python
rlworkgroup/garage
src/garage/tf/policies/gaussian_mlp_task_embedding_policy.py
https://github.com/rlworkgroup/garage/blob/master/src/garage/tf/policies/gaussian_mlp_task_embedding_policy.py
MIT
def get_action_given_latent(self, observation, latent): """Sample an action given observation and latent. Args: observation (np.ndarray): Observation from the environment, with shape :math:`(O, )`. O is the dimension of observation. latent (np.ndarray): Latent, with shape :math:`(Z, )`. Z is the dimension of the latent embedding. Returns: np.ndarray: Action sampled from the policy, with shape :math:`(A, )`. A is the dimension of action. dict: Action distribution information, with keys: - mean (numpy.ndarray): Mean of the distribution, with shape :math:`(A, )`. A is the dimension of action. - log_std (numpy.ndarray): Log standard deviation of the distribution, with shape :math:`(A, )`. A is the dimension of action. """ flat_obs = self.observation_space.flatten(observation) flat_obs = np.expand_dims([flat_obs], 1) flat_latent = self.latent_space.flatten(latent) flat_latent = np.expand_dims([flat_latent], 1) sample, mean, log_std = self._f_dist_obs_latent(flat_obs, flat_latent) sample = self.action_space.unflatten(np.squeeze(sample, 1)[0]) mean = self.action_space.unflatten(np.squeeze(mean, 1)[0]) log_std = self.action_space.unflatten(np.squeeze(log_std, 1)[0]) return sample, dict(mean=mean, log_std=log_std)
Sample an action given observation and latent. Args: observation (np.ndarray): Observation from the environment, with shape :math:`(O, )`. O is the dimension of observation. latent (np.ndarray): Latent, with shape :math:`(Z, )`. Z is the dimension of the latent embedding. Returns: np.ndarray: Action sampled from the policy, with shape :math:`(A, )`. A is the dimension of action. dict: Action distribution information, with keys: - mean (numpy.ndarray): Mean of the distribution, with shape :math:`(A, )`. A is the dimension of action. - log_std (numpy.ndarray): Log standard deviation of the distribution, with shape :math:`(A, )`. A is the dimension of action.
get_action_given_latent
python
rlworkgroup/garage
src/garage/tf/policies/gaussian_mlp_task_embedding_policy.py
https://github.com/rlworkgroup/garage/blob/master/src/garage/tf/policies/gaussian_mlp_task_embedding_policy.py
MIT
def get_actions_given_latents(self, observations, latents): """Sample a batch of actions given observations and latents. Args: observations (np.ndarray): Observations from the environment, with shape :math:`(T, O)`. T is the number of environment steps, O is the dimension of observation. latents (np.ndarray): Latents, with shape :math:`(T, Z)`. T is the number of environment steps, Z is the dimension of latent embedding. Returns: np.ndarray: Actions sampled from the policy, with shape :math:`(T, A)`. T is the number of environment steps, A is the dimension of action. dict: Action distribution information, , with keys: - mean (numpy.ndarray): Mean of the distribution, with shape :math:`(T, A)`. T is the number of environment steps. A is the dimension of action. - log_std (numpy.ndarray): Log standard deviation of the distribution, with shape :math:`(T, A)`. T is the number of environment steps. A is the dimension of action. """ flat_obses = self.observation_space.flatten_n(observations) flat_obses = np.expand_dims(flat_obses, 1) flat_latents = self.latent_space.flatten_n(latents) flat_latents = np.expand_dims(flat_latents, 1) samples, means, log_stds = self._f_dist_obs_latent( flat_obses, flat_latents) samples = self.action_space.unflatten_n(np.squeeze(samples, 1)) means = self.action_space.unflatten_n(np.squeeze(means, 1)) log_stds = self.action_space.unflatten_n(np.squeeze(log_stds, 1)) return samples, dict(mean=means, log_std=log_stds)
Sample a batch of actions given observations and latents. Args: observations (np.ndarray): Observations from the environment, with shape :math:`(T, O)`. T is the number of environment steps, O is the dimension of observation. latents (np.ndarray): Latents, with shape :math:`(T, Z)`. T is the number of environment steps, Z is the dimension of latent embedding. Returns: np.ndarray: Actions sampled from the policy, with shape :math:`(T, A)`. T is the number of environment steps, A is the dimension of action. dict: Action distribution information, , with keys: - mean (numpy.ndarray): Mean of the distribution, with shape :math:`(T, A)`. T is the number of environment steps. A is the dimension of action. - log_std (numpy.ndarray): Log standard deviation of the distribution, with shape :math:`(T, A)`. T is the number of environment steps. A is the dimension of action.
get_actions_given_latents
python
rlworkgroup/garage
src/garage/tf/policies/gaussian_mlp_task_embedding_policy.py
https://github.com/rlworkgroup/garage/blob/master/src/garage/tf/policies/gaussian_mlp_task_embedding_policy.py
MIT
def get_action_given_task(self, observation, task_id): """Sample an action given observation and task id. Args: observation (np.ndarray): Observation from the environment, with shape :math:`(O, )`. O is the dimension of the observation. task_id (np.ndarray): One-hot task id, with shape :math:`(N, ). N is the number of tasks. Returns: np.ndarray: Action sampled from the policy, with shape :math:`(A, )`. A is the dimension of action. dict: Action distribution information, with keys: - mean (numpy.ndarray): Mean of the distribution, with shape :math:`(A, )`. A is the dimension of action. - log_std (numpy.ndarray): Log standard deviation of the distribution, with shape :math:`(A, )`. A is the dimension of action. """ flat_obs = self.observation_space.flatten(observation) flat_obs = np.expand_dims([flat_obs], 1) task_id = np.expand_dims([task_id], 1) sample, mean, log_std = self._f_dist_obs_task(flat_obs, task_id) sample = self.action_space.unflatten(np.squeeze(sample, 1)[0]) mean = self.action_space.unflatten(np.squeeze(mean, 1)[0]) log_std = self.action_space.unflatten(np.squeeze(log_std, 1)[0]) return sample, dict(mean=mean, log_std=log_std)
Sample an action given observation and task id. Args: observation (np.ndarray): Observation from the environment, with shape :math:`(O, )`. O is the dimension of the observation. task_id (np.ndarray): One-hot task id, with shape :math:`(N, ). N is the number of tasks. Returns: np.ndarray: Action sampled from the policy, with shape :math:`(A, )`. A is the dimension of action. dict: Action distribution information, with keys: - mean (numpy.ndarray): Mean of the distribution, with shape :math:`(A, )`. A is the dimension of action. - log_std (numpy.ndarray): Log standard deviation of the distribution, with shape :math:`(A, )`. A is the dimension of action.
get_action_given_task
python
rlworkgroup/garage
src/garage/tf/policies/gaussian_mlp_task_embedding_policy.py
https://github.com/rlworkgroup/garage/blob/master/src/garage/tf/policies/gaussian_mlp_task_embedding_policy.py
MIT
def get_actions_given_tasks(self, observations, task_ids): """Sample a batch of actions given observations and task ids. Args: observations (np.ndarray): Observations from the environment, with shape :math:`(T, O)`. T is the number of environment steps, O is the dimension of observation. task_ids (np.ndarry): One-hot task ids, with shape :math:`(T, N)`. T is the number of environment steps, N is the number of tasks. Returns: np.ndarray: Actions sampled from the policy, with shape :math:`(T, A)`. T is the number of environment steps, A is the dimension of action. dict: Action distribution information, , with keys: - mean (numpy.ndarray): Mean of the distribution, with shape :math:`(T, A)`. T is the number of environment steps. A is the dimension of action. - log_std (numpy.ndarray): Log standard deviation of the distribution, with shape :math:`(T, A)`. T is the number of environment steps. A is the dimension of action. """ flat_obses = self.observation_space.flatten_n(observations) flat_obses = np.expand_dims(flat_obses, 1) task_ids = np.expand_dims(task_ids, 1) samples, means, log_stds = self._f_dist_obs_task(flat_obses, task_ids) samples = self.action_space.unflatten_n(np.squeeze(samples, 1)) means = self.action_space.unflatten_n(np.squeeze(means, 1)) log_stds = self.action_space.unflatten_n(np.squeeze(log_stds, 1)) return samples, dict(mean=means, log_std=log_stds)
Sample a batch of actions given observations and task ids. Args: observations (np.ndarray): Observations from the environment, with shape :math:`(T, O)`. T is the number of environment steps, O is the dimension of observation. task_ids (np.ndarry): One-hot task ids, with shape :math:`(T, N)`. T is the number of environment steps, N is the number of tasks. Returns: np.ndarray: Actions sampled from the policy, with shape :math:`(T, A)`. T is the number of environment steps, A is the dimension of action. dict: Action distribution information, , with keys: - mean (numpy.ndarray): Mean of the distribution, with shape :math:`(T, A)`. T is the number of environment steps. A is the dimension of action. - log_std (numpy.ndarray): Log standard deviation of the distribution, with shape :math:`(T, A)`. T is the number of environment steps. A is the dimension of action.
get_actions_given_tasks
python
rlworkgroup/garage
src/garage/tf/policies/gaussian_mlp_task_embedding_policy.py
https://github.com/rlworkgroup/garage/blob/master/src/garage/tf/policies/gaussian_mlp_task_embedding_policy.py
MIT
def __getstate__(self): """Object.__getstate__. Returns: dict: The state to be pickled for the instance. """ new_dict = super().__getstate__() del new_dict['_f_dist_obs_latent'] del new_dict['_f_dist_obs_task'] return new_dict
Object.__getstate__. Returns: dict: The state to be pickled for the instance.
__getstate__
python
rlworkgroup/garage
src/garage/tf/policies/gaussian_mlp_task_embedding_policy.py
https://github.com/rlworkgroup/garage/blob/master/src/garage/tf/policies/gaussian_mlp_task_embedding_policy.py
MIT
def get_action(self, observation): """Get action sampled from the policy. Args: observation (np.ndarray): Observation from the environment. Returns: Tuple[np.ndarray, dict[str,np.ndarray]]: Action and extra agent info. """
Get action sampled from the policy. Args: observation (np.ndarray): Observation from the environment. Returns: Tuple[np.ndarray, dict[str,np.ndarray]]: Action and extra agent info.
get_action
python
rlworkgroup/garage
src/garage/tf/policies/policy.py
https://github.com/rlworkgroup/garage/blob/master/src/garage/tf/policies/policy.py
MIT
def get_actions(self, observations): """Get actions given observations. Args: observations (np.ndarray): Observations from the environment. Returns: Tuple[np.ndarray, dict[str,np.ndarray]]: Actions and extra agent infos. """
Get actions given observations. Args: observations (np.ndarray): Observations from the environment. Returns: Tuple[np.ndarray, dict[str,np.ndarray]]: Actions and extra agent infos.
get_actions
python
rlworkgroup/garage
src/garage/tf/policies/policy.py
https://github.com/rlworkgroup/garage/blob/master/src/garage/tf/policies/policy.py
MIT
def get_action(self, observation): """Get action sampled from the policy. Args: observation (np.ndarray): Augmented observation from the environment, with shape :math:`(O+N, )`. O is the dimension of observation, N is the number of tasks. Returns: np.ndarray: Action sampled from the policy, with shape :math:`(A, )`. A is the dimension of action. dict: Action distribution information. """
Get action sampled from the policy. Args: observation (np.ndarray): Augmented observation from the environment, with shape :math:`(O+N, )`. O is the dimension of observation, N is the number of tasks. Returns: np.ndarray: Action sampled from the policy, with shape :math:`(A, )`. A is the dimension of action. dict: Action distribution information.
get_action
python
rlworkgroup/garage
src/garage/tf/policies/task_embedding_policy.py
https://github.com/rlworkgroup/garage/blob/master/src/garage/tf/policies/task_embedding_policy.py
MIT
def get_actions(self, observations): """Get actions sampled from the policy. Args: observations (np.ndarray): Augmented observation from the environment, with shape :math:`(T, O+N)`. T is the number of environment steps, O is the dimension of observation, N is the number of tasks. Returns: np.ndarray: Actions sampled from the policy, with shape :math:`(T, A)`. T is the number of environment steps, A is the dimension of action. dict: Action distribution information. """
Get actions sampled from the policy. Args: observations (np.ndarray): Augmented observation from the environment, with shape :math:`(T, O+N)`. T is the number of environment steps, O is the dimension of observation, N is the number of tasks. Returns: np.ndarray: Actions sampled from the policy, with shape :math:`(T, A)`. T is the number of environment steps, A is the dimension of action. dict: Action distribution information.
get_actions
python
rlworkgroup/garage
src/garage/tf/policies/task_embedding_policy.py
https://github.com/rlworkgroup/garage/blob/master/src/garage/tf/policies/task_embedding_policy.py
MIT
def get_action_given_task(self, observation, task_id): """Sample an action given observation and task id. Args: observation (np.ndarray): Observation from the environment, with shape :math:`(O, )`. O is the dimension of the observation. task_id (np.ndarray): One-hot task id, with shape :math:`(N, ). N is the number of tasks. Returns: np.ndarray: Action sampled from the policy, with shape :math:`(A, )`. A is the dimension of action. dict: Action distribution information. """
Sample an action given observation and task id. Args: observation (np.ndarray): Observation from the environment, with shape :math:`(O, )`. O is the dimension of the observation. task_id (np.ndarray): One-hot task id, with shape :math:`(N, ). N is the number of tasks. Returns: np.ndarray: Action sampled from the policy, with shape :math:`(A, )`. A is the dimension of action. dict: Action distribution information.
get_action_given_task
python
rlworkgroup/garage
src/garage/tf/policies/task_embedding_policy.py
https://github.com/rlworkgroup/garage/blob/master/src/garage/tf/policies/task_embedding_policy.py
MIT
def get_actions_given_tasks(self, observations, task_ids): """Sample a batch of actions given observations and task ids. Args: observations (np.ndarray): Observations from the environment, with shape :math:`(T, O)`. T is the number of environment steps, O is the dimension of observation. task_ids (np.ndarry): One-hot task ids, with shape :math:`(T, N)`. T is the number of environment steps, N is the number of tasks. Returns: np.ndarray: Actions sampled from the policy, with shape :math:`(T, A)`. T is the number of environment steps, A is the dimension of action. dict: Action distribution information. """
Sample a batch of actions given observations and task ids. Args: observations (np.ndarray): Observations from the environment, with shape :math:`(T, O)`. T is the number of environment steps, O is the dimension of observation. task_ids (np.ndarry): One-hot task ids, with shape :math:`(T, N)`. T is the number of environment steps, N is the number of tasks. Returns: np.ndarray: Actions sampled from the policy, with shape :math:`(T, A)`. T is the number of environment steps, A is the dimension of action. dict: Action distribution information.
get_actions_given_tasks
python
rlworkgroup/garage
src/garage/tf/policies/task_embedding_policy.py
https://github.com/rlworkgroup/garage/blob/master/src/garage/tf/policies/task_embedding_policy.py
MIT
def get_action_given_latent(self, observation, latent): """Sample an action given observation and latent. Args: observation (np.ndarray): Observation from the environment, with shape :math:`(O, )`. O is the dimension of observation. latent (np.ndarray): Latent, with shape :math:`(Z, )`. Z is the dimension of latent embedding. Returns: np.ndarray: Action sampled from the policy, with shape :math:`(A, )`. A is the dimension of action. dict: Action distribution information. """
Sample an action given observation and latent. Args: observation (np.ndarray): Observation from the environment, with shape :math:`(O, )`. O is the dimension of observation. latent (np.ndarray): Latent, with shape :math:`(Z, )`. Z is the dimension of latent embedding. Returns: np.ndarray: Action sampled from the policy, with shape :math:`(A, )`. A is the dimension of action. dict: Action distribution information.
get_action_given_latent
python
rlworkgroup/garage
src/garage/tf/policies/task_embedding_policy.py
https://github.com/rlworkgroup/garage/blob/master/src/garage/tf/policies/task_embedding_policy.py
MIT
def get_actions_given_latents(self, observations, latents): """Sample a batch of actions given observations and latents. Args: observations (np.ndarray): Observations from the environment, with shape :math:`(T, O)`. T is the number of environment steps, O is the dimension of observation. latents (np.ndarray): Latents, with shape :math:`(T, Z)`. T is the number of environment steps, Z is the dimension of latent embedding. Returns: np.ndarray: Actions sampled from the policy, with shape :math:`(T, A)`. T is the number of environment steps, A is the dimension of action. dict: Action distribution information. """
Sample a batch of actions given observations and latents. Args: observations (np.ndarray): Observations from the environment, with shape :math:`(T, O)`. T is the number of environment steps, O is the dimension of observation. latents (np.ndarray): Latents, with shape :math:`(T, Z)`. T is the number of environment steps, Z is the dimension of latent embedding. Returns: np.ndarray: Actions sampled from the policy, with shape :math:`(T, A)`. T is the number of environment steps, A is the dimension of action. dict: Action distribution information.
get_actions_given_latents
python
rlworkgroup/garage
src/garage/tf/policies/task_embedding_policy.py
https://github.com/rlworkgroup/garage/blob/master/src/garage/tf/policies/task_embedding_policy.py
MIT
def split_augmented_observation(self, collated): """Splits up observation into one-hot task and environment observation. Args: collated (np.ndarray): Environment observation concatenated with task one-hot, with shape :math:`(O+N, )`. O is the dimension of observation, N is the number of tasks. Returns: np.ndarray: Vanilla environment observation, with shape :math:`(O, )`. O is the dimension of observation. np.ndarray: Task one-hot, with shape :math:`(N, )`. N is the number of tasks. """ task_dim = self.task_space.flat_dim return collated[:-task_dim], collated[-task_dim:]
Splits up observation into one-hot task and environment observation. Args: collated (np.ndarray): Environment observation concatenated with task one-hot, with shape :math:`(O+N, )`. O is the dimension of observation, N is the number of tasks. Returns: np.ndarray: Vanilla environment observation, with shape :math:`(O, )`. O is the dimension of observation. np.ndarray: Task one-hot, with shape :math:`(N, )`. N is the number of tasks.
split_augmented_observation
python
rlworkgroup/garage
src/garage/tf/policies/task_embedding_policy.py
https://github.com/rlworkgroup/garage/blob/master/src/garage/tf/policies/task_embedding_policy.py
MIT
def get_qval(self, observation, action): """Q Value of the network. Args: observation (np.ndarray): Observation input of shape :math:`(N, O*)`. action (np.ndarray): Action input of shape :math:`(N, A*)`. Returns: np.ndarray: Array of shape :math:`(N, )` containing Q values corresponding to each (obs, act) pair. """ if len(observation[0].shape) < len(self._obs_dim): observation = self._env_spec.observation_space.unflatten_n( observation) return self._f_qval(observation, action)
Q Value of the network. Args: observation (np.ndarray): Observation input of shape :math:`(N, O*)`. action (np.ndarray): Action input of shape :math:`(N, A*)`. Returns: np.ndarray: Array of shape :math:`(N, )` containing Q values corresponding to each (obs, act) pair.
get_qval
python
rlworkgroup/garage
src/garage/tf/q_functions/continuous_cnn_q_function.py
https://github.com/rlworkgroup/garage/blob/master/src/garage/tf/q_functions/continuous_cnn_q_function.py
MIT
def build(self, state_input, action_input, name): """Build the symbolic graph for q-network. Args: state_input (tf.Tensor): The state input tf.Tensor of shape :math:`(N, O*)`. action_input (tf.Tensor): The action input tf.Tensor of shape :math:`(N, A*)`. name (str): Network variable scope. Return: tf.Tensor: The output Q value tensor of shape :math:`(N, )`. """ augmented_state_input = state_input if isinstance(self._env_spec.observation_space, akro.Image): augmented_state_input = tf.cast(state_input, tf.float32) / 255.0 return super().build(augmented_state_input, action_input, name=name).outputs
Build the symbolic graph for q-network. Args: state_input (tf.Tensor): The state input tf.Tensor of shape :math:`(N, O*)`. action_input (tf.Tensor): The action input tf.Tensor of shape :math:`(N, A*)`. name (str): Network variable scope. Return: tf.Tensor: The output Q value tensor of shape :math:`(N, )`.
build
python
rlworkgroup/garage
src/garage/tf/q_functions/continuous_cnn_q_function.py
https://github.com/rlworkgroup/garage/blob/master/src/garage/tf/q_functions/continuous_cnn_q_function.py
MIT
def build(self, state_input, name): """Build the symbolic graph for q-network. Args: state_input (tf.Tensor): The state input tf.Tensor to the network. name (str): Network variable scope. Return: tf.Tensor: The tf.Tensor output of Discrete CNN QFunction. """ augmented_state_input = state_input if isinstance(self._env_spec.observation_space, akro.Image): augmented_state_input = tf.cast(state_input, tf.float32) / 255.0 return super().build(augmented_state_input, name=name).outputs
Build the symbolic graph for q-network. Args: state_input (tf.Tensor): The state input tf.Tensor to the network. name (str): Network variable scope. Return: tf.Tensor: The tf.Tensor output of Discrete CNN QFunction.
build
python
rlworkgroup/garage
src/garage/tf/q_functions/discrete_cnn_q_function.py
https://github.com/rlworkgroup/garage/blob/master/src/garage/tf/q_functions/discrete_cnn_q_function.py
MIT
def __call__(self, *args, **kwargs): """Construct the inner class and wrap it. Args: *args: Passed on to inner worker class. **kwargs: Passed on to inner worker class. Returns: TFWorkerWrapper: The wrapped worker. """ wrapper = TFWorkerWrapper() # Need to construct the wrapped class after we've entered the Session. wrapper._inner_worker = self._wrapped_class(*args, **kwargs) return wrapper
Construct the inner class and wrap it. Args: *args: Passed on to inner worker class. **kwargs: Passed on to inner worker class. Returns: TFWorkerWrapper: The wrapped worker.
__call__
python
rlworkgroup/garage
src/garage/tf/samplers/worker.py
https://github.com/rlworkgroup/garage/blob/master/src/garage/tf/samplers/worker.py
MIT
def zero_optim_grads(optim, set_to_none=True): """Sets the gradient of all optimized tensors to None. This is an optimization alternative to calling `optimizer.zero_grad()` Args: optim (torch.nn.Optimizer): The optimizer instance to zero parameter gradients. set_to_none (bool): Set gradients to None instead of calling `zero_grad()`which sets to 0. """ if not set_to_none: optim.zero_grad() return for group in optim.param_groups: for param in group['params']: param.grad = None
Sets the gradient of all optimized tensors to None. This is an optimization alternative to calling `optimizer.zero_grad()` Args: optim (torch.nn.Optimizer): The optimizer instance to zero parameter gradients. set_to_none (bool): Set gradients to None instead of calling `zero_grad()`which sets to 0.
zero_optim_grads
python
rlworkgroup/garage
src/garage/torch/_functions.py
https://github.com/rlworkgroup/garage/blob/master/src/garage/torch/_functions.py
MIT
def compute_advantages(discount, gae_lambda, max_episode_length, baselines, rewards): """Calculate advantages. Advantages are a discounted cumulative sum. Calculate advantages using a baseline according to Generalized Advantage Estimation (GAE) The discounted cumulative sum can be computed using conv2d with filter. filter: [1, (discount * gae_lambda), (discount * gae_lambda) ^ 2, ...] where the length is same with max_episode_length. baselines and rewards are also has same shape. baselines: [ [b_11, b_12, b_13, ... b_1n], [b_21, b_22, b_23, ... b_2n], ... [b_m1, b_m2, b_m3, ... b_mn] ] rewards: [ [r_11, r_12, r_13, ... r_1n], [r_21, r_22, r_23, ... r_2n], ... [r_m1, r_m2, r_m3, ... r_mn] ] Args: discount (float): RL discount factor (i.e. gamma). gae_lambda (float): Lambda, as used for Generalized Advantage Estimation (GAE). max_episode_length (int): Maximum length of a single episode. baselines (torch.Tensor): A 2D vector of value function estimates with shape (N, T), where N is the batch dimension (number of episodes) and T is the maximum episode length experienced by the agent. If an episode terminates in fewer than T time steps, the remaining elements in that episode should be set to 0. rewards (torch.Tensor): A 2D vector of per-step rewards with shape (N, T), where N is the batch dimension (number of episodes) and T is the maximum episode length experienced by the agent. If an episode terminates in fewer than T time steps, the remaining elements in that episode should be set to 0. Returns: torch.Tensor: A 2D vector of calculated advantage values with shape (N, T), where N is the batch dimension (number of episodes) and T is the maximum episode length experienced by the agent. If an episode terminates in fewer than T time steps, the remaining values in that episode should be set to 0. """ adv_filter = torch.full((1, 1, 1, max_episode_length - 1), discount * gae_lambda, dtype=torch.float) adv_filter = torch.cumprod(F.pad(adv_filter, (1, 0), value=1), dim=-1) deltas = (rewards + discount * F.pad(baselines, (0, 1))[:, 1:] - baselines) deltas = F.pad(deltas, (0, max_episode_length - 1)).unsqueeze(0).unsqueeze(0) advantages = F.conv2d(deltas, adv_filter, stride=1).reshape(rewards.shape) return advantages
Calculate advantages. Advantages are a discounted cumulative sum. Calculate advantages using a baseline according to Generalized Advantage Estimation (GAE) The discounted cumulative sum can be computed using conv2d with filter. filter: [1, (discount * gae_lambda), (discount * gae_lambda) ^ 2, ...] where the length is same with max_episode_length. baselines and rewards are also has same shape. baselines: [ [b_11, b_12, b_13, ... b_1n], [b_21, b_22, b_23, ... b_2n], ... [b_m1, b_m2, b_m3, ... b_mn] ] rewards: [ [r_11, r_12, r_13, ... r_1n], [r_21, r_22, r_23, ... r_2n], ... [r_m1, r_m2, r_m3, ... r_mn] ] Args: discount (float): RL discount factor (i.e. gamma). gae_lambda (float): Lambda, as used for Generalized Advantage Estimation (GAE). max_episode_length (int): Maximum length of a single episode. baselines (torch.Tensor): A 2D vector of value function estimates with shape (N, T), where N is the batch dimension (number of episodes) and T is the maximum episode length experienced by the agent. If an episode terminates in fewer than T time steps, the remaining elements in that episode should be set to 0. rewards (torch.Tensor): A 2D vector of per-step rewards with shape (N, T), where N is the batch dimension (number of episodes) and T is the maximum episode length experienced by the agent. If an episode terminates in fewer than T time steps, the remaining elements in that episode should be set to 0. Returns: torch.Tensor: A 2D vector of calculated advantage values with shape (N, T), where N is the batch dimension (number of episodes) and T is the maximum episode length experienced by the agent. If an episode terminates in fewer than T time steps, the remaining values in that episode should be set to 0.
compute_advantages
python
rlworkgroup/garage
src/garage/torch/_functions.py
https://github.com/rlworkgroup/garage/blob/master/src/garage/torch/_functions.py
MIT
def pad_to_last(nums, total_length, axis=-1, val=0): """Pad val to last in nums in given axis. length of the result in given axis should be total_length. Raises: IndexError: If the input axis value is out of range of the nums array Args: nums (numpy.ndarray): The array to pad. total_length (int): The final width of the Array. axis (int): Axis along which a sum is performed. val (int): The value to set the padded value. Returns: torch.Tensor: Padded array """ tensor = torch.Tensor(nums) axis = (axis + len(tensor.shape)) if axis < 0 else axis if len(tensor.shape) <= axis: raise IndexError('axis {} is out of range {}'.format( axis, tensor.shape)) padding_config = [0, 0] * len(tensor.shape) padding_idx = abs(axis - len(tensor.shape)) * 2 - 1 padding_config[padding_idx] = max(total_length - tensor.shape[axis], val) return F.pad(tensor, padding_config)
Pad val to last in nums in given axis. length of the result in given axis should be total_length. Raises: IndexError: If the input axis value is out of range of the nums array Args: nums (numpy.ndarray): The array to pad. total_length (int): The final width of the Array. axis (int): Axis along which a sum is performed. val (int): The value to set the padded value. Returns: torch.Tensor: Padded array
pad_to_last
python
rlworkgroup/garage
src/garage/torch/_functions.py
https://github.com/rlworkgroup/garage/blob/master/src/garage/torch/_functions.py
MIT
def np_to_torch(array): """Numpy arrays to PyTorch tensors. Args: array (np.ndarray): Data in numpy array. Returns: torch.Tensor: float tensor on the global device. """ tensor = torch.from_numpy(array) if tensor.dtype != torch.float32: tensor = tensor.float() return tensor.to(global_device())
Numpy arrays to PyTorch tensors. Args: array (np.ndarray): Data in numpy array. Returns: torch.Tensor: float tensor on the global device.
np_to_torch
python
rlworkgroup/garage
src/garage/torch/_functions.py
https://github.com/rlworkgroup/garage/blob/master/src/garage/torch/_functions.py
MIT
def as_torch_dict(array_dict): """Convert a dict whose values are numpy arrays to PyTorch tensors. Modifies array_dict in place. Args: array_dict (dict): Dictionary of data in numpy arrays Returns: dict: Dictionary of data in PyTorch tensors """ for key, value in array_dict.items(): array_dict[key] = np_to_torch(value) return array_dict
Convert a dict whose values are numpy arrays to PyTorch tensors. Modifies array_dict in place. Args: array_dict (dict): Dictionary of data in numpy arrays Returns: dict: Dictionary of data in PyTorch tensors
as_torch_dict
python
rlworkgroup/garage
src/garage/torch/_functions.py
https://github.com/rlworkgroup/garage/blob/master/src/garage/torch/_functions.py
MIT
def flatten_to_single_vector(tensor): """Collapse the C x H x W values per representation into a single long vector. Reshape a tensor of size (N, C, H, W) into (N, C * H * W). Args: tensor (torch.tensor): batch of data. Returns: torch.Tensor: Reshaped view of that data (analogous to numpy.reshape) """ N = tensor.shape[0] # read in N, C, H, W return tensor.view(N, -1)
Collapse the C x H x W values per representation into a single long vector. Reshape a tensor of size (N, C, H, W) into (N, C * H * W). Args: tensor (torch.tensor): batch of data. Returns: torch.Tensor: Reshaped view of that data (analogous to numpy.reshape)
flatten_to_single_vector
python
rlworkgroup/garage
src/garage/torch/_functions.py
https://github.com/rlworkgroup/garage/blob/master/src/garage/torch/_functions.py
MIT
def update_module_params(module, new_params): # noqa: D202 """Load parameters to a module. This function acts like `torch.nn.Module._load_from_state_dict()`, but it replaces the tensors in module with those in new_params, while `_load_from_state_dict()` loads only the value. Use this function so that the `grad` and `grad_fn` of `new_params` can be restored Args: module (torch.nn.Module): A torch module. new_params (dict): A dict of torch tensor used as the new parameters of this module. This parameters dict should be generated by `torch.nn.Module.named_parameters()` """ named_modules = dict(module.named_modules()) # pylint: disable=protected-access def update(m, name, param): del m._parameters[name] # noqa: E501 setattr(m, name, param) m._parameters[name] = param # noqa: E501 for name, new_param in new_params.items(): if '.' in name: module_name, param_name = tuple(name.rsplit('.', 1)) if module_name in named_modules: update(named_modules[module_name], param_name, new_param) else: update(module, name, new_param)
Load parameters to a module. This function acts like `torch.nn.Module._load_from_state_dict()`, but it replaces the tensors in module with those in new_params, while `_load_from_state_dict()` loads only the value. Use this function so that the `grad` and `grad_fn` of `new_params` can be restored Args: module (torch.nn.Module): A torch module. new_params (dict): A dict of torch tensor used as the new parameters of this module. This parameters dict should be generated by `torch.nn.Module.named_parameters()`
update_module_params
python
rlworkgroup/garage
src/garage/torch/_functions.py
https://github.com/rlworkgroup/garage/blob/master/src/garage/torch/_functions.py
MIT
def soft_update_model(target_model, source_model, tau): """Update model parameter of target and source model. # noqa: D417 Args: target_model (garage.torch.Policy/garage.torch.QFunction): Target model to update. source_model (garage.torch.Policy/QFunction): Source network to update. tau (float): Interpolation parameter for doing the soft target update. """ for target_param, param in zip(target_model.parameters(), source_model.parameters()): target_param.data.copy_(target_param.data * (1.0 - tau) + param.data * tau)
Update model parameter of target and source model. # noqa: D417 Args: target_model (garage.torch.Policy/garage.torch.QFunction): Target model to update. source_model (garage.torch.Policy/QFunction): Source network to update. tau (float): Interpolation parameter for doing the soft target update.
soft_update_model
python
rlworkgroup/garage
src/garage/torch/_functions.py
https://github.com/rlworkgroup/garage/blob/master/src/garage/torch/_functions.py
MIT
def set_gpu_mode(mode, gpu_id=0): """Set GPU mode and device ID. Args: mode (bool): Whether or not to use GPU gpu_id (int): GPU ID """ # pylint: disable=global-statement global _GPU_ID global _USE_GPU global _DEVICE _GPU_ID = gpu_id _USE_GPU = mode _DEVICE = torch.device(('cuda:' + str(_GPU_ID)) if _USE_GPU else 'cpu')
Set GPU mode and device ID. Args: mode (bool): Whether or not to use GPU gpu_id (int): GPU ID
set_gpu_mode
python
rlworkgroup/garage
src/garage/torch/_functions.py
https://github.com/rlworkgroup/garage/blob/master/src/garage/torch/_functions.py
MIT
def prefer_gpu(): """Prefer to use GPU(s) if GPU(s) is detected.""" if torch.cuda.is_available(): set_gpu_mode(True) else: set_gpu_mode(False)
Prefer to use GPU(s) if GPU(s) is detected.
prefer_gpu
python
rlworkgroup/garage
src/garage/torch/_functions.py
https://github.com/rlworkgroup/garage/blob/master/src/garage/torch/_functions.py
MIT
def global_device(): """Returns the global device that torch.Tensors should be placed on. Note: The global device is set by using the function `garage.torch._functions.set_gpu_mode.` If this functions is never called `garage.torch._functions.device()` returns None. Returns: `torch.Device`: The global device that newly created torch.Tensors should be placed on. """ # pylint: disable=global-statement global _DEVICE return _DEVICE
Returns the global device that torch.Tensors should be placed on. Note: The global device is set by using the function `garage.torch._functions.set_gpu_mode.` If this functions is never called `garage.torch._functions.device()` returns None. Returns: `torch.Device`: The global device that newly created torch.Tensors should be placed on.
global_device
python
rlworkgroup/garage
src/garage/torch/_functions.py
https://github.com/rlworkgroup/garage/blob/master/src/garage/torch/_functions.py
MIT
def product_of_gaussians(mus, sigmas_squared): """Compute mu, sigma of product of gaussians. Args: mus (torch.Tensor): Means, with shape :math:`(N, M)`. M is the number of mean values. sigmas_squared (torch.Tensor): Variances, with shape :math:`(N, V)`. V is the number of variance values. Returns: torch.Tensor: Mu of product of gaussians, with shape :math:`(N, 1)`. torch.Tensor: Sigma of product of gaussians, with shape :math:`(N, 1)`. """ sigmas_squared = torch.clamp(sigmas_squared, min=1e-7) sigma_squared = 1. / torch.sum(torch.reciprocal(sigmas_squared), dim=0) mu = sigma_squared * torch.sum(mus / sigmas_squared, dim=0) return mu, sigma_squared
Compute mu, sigma of product of gaussians. Args: mus (torch.Tensor): Means, with shape :math:`(N, M)`. M is the number of mean values. sigmas_squared (torch.Tensor): Variances, with shape :math:`(N, V)`. V is the number of variance values. Returns: torch.Tensor: Mu of product of gaussians, with shape :math:`(N, 1)`. torch.Tensor: Sigma of product of gaussians, with shape :math:`(N, 1)`.
product_of_gaussians
python
rlworkgroup/garage
src/garage/torch/_functions.py
https://github.com/rlworkgroup/garage/blob/master/src/garage/torch/_functions.py
MIT
def state_dict_to(state_dict, device): """Move optimizer to a specified device. Args: state_dict (dict): state dictionary to be moved device (str): ID of GPU or CPU. Returns: dict: state dictionary moved to device """ for param in state_dict.values(): if isinstance(param, torch.Tensor): param.data = param.data.to(device) elif isinstance(param, dict): state_dict_to(param, device) return state_dict
Move optimizer to a specified device. Args: state_dict (dict): state dictionary to be moved device (str): ID of GPU or CPU. Returns: dict: state dictionary moved to device
state_dict_to
python
rlworkgroup/garage
src/garage/torch/_functions.py
https://github.com/rlworkgroup/garage/blob/master/src/garage/torch/_functions.py
MIT
def _value_at_axis(value, axis): """Get the value for a particular axis. Args: value (tuple or list or int): Possible tuple of per-axis values. axis (int): Axis to get value for. Returns: int: the value at the available axis. """ if not isinstance(value, (list, tuple)): return value if len(value) == 1: return value[0] else: return value[axis]
Get the value for a particular axis. Args: value (tuple or list or int): Possible tuple of per-axis values. axis (int): Axis to get value for. Returns: int: the value at the available axis.
_value_at_axis
python
rlworkgroup/garage
src/garage/torch/_functions.py
https://github.com/rlworkgroup/garage/blob/master/src/garage/torch/_functions.py
MIT
def output_height_2d(layer, height): """Compute the output height of a torch.nn.Conv2d, assuming NCHW format. This requires knowing the input height. Because NCHW format makes this very easy to mix up, this is a seperate function from conv2d_output_height. It also works on torch.nn.MaxPool2d. This function implements the formula described in the torch.nn.Conv2d documentation: https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html Args: layer (torch.nn.Conv2d): The layer to compute output size for. height (int): The height of the input image. Returns: int: The height of the output image. """ assert isinstance(layer, (torch.nn.Conv2d, torch.nn.MaxPool2d)) padding = _value_at_axis(layer.padding, 0) dilation = _value_at_axis(layer.dilation, 0) kernel_size = _value_at_axis(layer.kernel_size, 0) stride = _value_at_axis(layer.stride, 0) return math.floor((height + 2 * padding - dilation * (kernel_size - 1) - 1) / stride + 1)
Compute the output height of a torch.nn.Conv2d, assuming NCHW format. This requires knowing the input height. Because NCHW format makes this very easy to mix up, this is a seperate function from conv2d_output_height. It also works on torch.nn.MaxPool2d. This function implements the formula described in the torch.nn.Conv2d documentation: https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html Args: layer (torch.nn.Conv2d): The layer to compute output size for. height (int): The height of the input image. Returns: int: The height of the output image.
output_height_2d
python
rlworkgroup/garage
src/garage/torch/_functions.py
https://github.com/rlworkgroup/garage/blob/master/src/garage/torch/_functions.py
MIT
def output_width_2d(layer, width): """Compute the output width of a torch.nn.Conv2d, assuming NCHW format. This requires knowing the input width. Because NCHW format makes this very easy to mix up, this is a seperate function from conv2d_output_height. It also works on torch.nn.MaxPool2d. This function implements the formula described in the torch.nn.Conv2d documentation: https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html Args: layer (torch.nn.Conv2d): The layer to compute output size for. width (int): The width of the input image. Returns: int: The width of the output image. """ assert isinstance(layer, (torch.nn.Conv2d, torch.nn.MaxPool2d)) padding = _value_at_axis(layer.padding, 1) dilation = _value_at_axis(layer.dilation, 1) kernel_size = _value_at_axis(layer.kernel_size, 1) stride = _value_at_axis(layer.stride, 1) return math.floor((width + 2 * padding - dilation * (kernel_size - 1) - 1) / stride + 1)
Compute the output width of a torch.nn.Conv2d, assuming NCHW format. This requires knowing the input width. Because NCHW format makes this very easy to mix up, this is a seperate function from conv2d_output_height. It also works on torch.nn.MaxPool2d. This function implements the formula described in the torch.nn.Conv2d documentation: https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html Args: layer (torch.nn.Conv2d): The layer to compute output size for. width (int): The width of the input image. Returns: int: The width of the output image.
output_width_2d
python
rlworkgroup/garage
src/garage/torch/_functions.py
https://github.com/rlworkgroup/garage/blob/master/src/garage/torch/_functions.py
MIT
def train(self, trainer): """Obtain samplers and start actual training for each epoch. Args: trainer (Trainer): Experiment trainer, for services such as snapshotting and sampler control. """ if not self._eval_env: self._eval_env = trainer.get_env_copy() for epoch in trainer.step_epochs(): if self._eval_env is not None: log_performance(epoch, obtain_evaluation_episodes( self.learner, self._eval_env), discount=1.0) losses = self._train_once(trainer, epoch) with tabular.prefix(self._name + '/'): tabular.record('MeanLoss', np.mean(losses)) tabular.record('StdLoss', np.std(losses))
Obtain samplers and start actual training for each epoch. Args: trainer (Trainer): Experiment trainer, for services such as snapshotting and sampler control.
train
python
rlworkgroup/garage
src/garage/torch/algos/bc.py
https://github.com/rlworkgroup/garage/blob/master/src/garage/torch/algos/bc.py
MIT
def _train_once(self, trainer, epoch): """Obtain samplers and train for one epoch. Args: trainer (Trainer): Experiment trainer, which may be used to obtain samples. epoch (int): The current epoch. Returns: List[float]: Losses. """ batch = self._obtain_samples(trainer, epoch) indices = np.random.permutation(len(batch.actions)) minibatches = np.array_split(indices, self._minibatches_per_epoch) losses = [] for minibatch in minibatches: observations = np_to_torch(batch.observations[minibatch]) actions = np_to_torch(batch.actions[minibatch]) self._optimizer.zero_grad() loss = self._compute_loss(observations, actions) loss.backward() losses.append(loss.item()) self._optimizer.step() return losses
Obtain samplers and train for one epoch. Args: trainer (Trainer): Experiment trainer, which may be used to obtain samples. epoch (int): The current epoch. Returns: List[float]: Losses.
_train_once
python
rlworkgroup/garage
src/garage/torch/algos/bc.py
https://github.com/rlworkgroup/garage/blob/master/src/garage/torch/algos/bc.py
MIT
def _obtain_samples(self, trainer, epoch): """Obtain samples from self._source. Args: trainer (Trainer): Experiment trainer, which may be used to obtain samples. epoch (int): The current epoch. Returns: TimeStepBatch: Batch of samples. """ if isinstance(self._source, Policy): batch = trainer.obtain_episodes(epoch) log_performance(epoch, batch, 1.0, prefix='Expert') return batch else: batches = [] while (sum(len(batch.actions) for batch in batches) < self._batch_size): batches.append(next(self._source)) return TimeStepBatch.concatenate(*batches)
Obtain samples from self._source. Args: trainer (Trainer): Experiment trainer, which may be used to obtain samples. epoch (int): The current epoch. Returns: TimeStepBatch: Batch of samples.
_obtain_samples
python
rlworkgroup/garage
src/garage/torch/algos/bc.py
https://github.com/rlworkgroup/garage/blob/master/src/garage/torch/algos/bc.py
MIT
def _compute_loss(self, observations, expert_actions): """Compute loss of self._learner on the expert_actions. Args: observations (torch.Tensor): Observations used to select actions. Has shape :math:`(B, O^*)`, where :math:`B` is the batch dimension and :math:`O^*` are the observation dimensions. expert_actions (torch.Tensor): The actions of the expert. Has shape :math:`(B, A^*)`, where :math:`B` is the batch dimension and :math:`A^*` are the action dimensions. Returns: torch.Tensor: The loss through which gradient can be propagated back to the learner. Depends on self._loss. """ learner_output = self.learner(observations) if self._loss == 'mse': if isinstance(learner_output, torch.Tensor): # We must have a deterministic policy as the learner. learner_actions = learner_output else: # We must have a StochasticPolicy as the learner. action_dist, _ = learner_output learner_actions = action_dist.rsample() return torch.mean((expert_actions - learner_actions)**2) else: assert self._loss == 'log_prob' # We already checked that we have a StochasticPolicy as the learner action_dist, _ = learner_output return -torch.mean(action_dist.log_prob(expert_actions))
Compute loss of self._learner on the expert_actions. Args: observations (torch.Tensor): Observations used to select actions. Has shape :math:`(B, O^*)`, where :math:`B` is the batch dimension and :math:`O^*` are the observation dimensions. expert_actions (torch.Tensor): The actions of the expert. Has shape :math:`(B, A^*)`, where :math:`B` is the batch dimension and :math:`A^*` are the action dimensions. Returns: torch.Tensor: The loss through which gradient can be propagated back to the learner. Depends on self._loss.
_compute_loss
python
rlworkgroup/garage
src/garage/torch/algos/bc.py
https://github.com/rlworkgroup/garage/blob/master/src/garage/torch/algos/bc.py
MIT
def train(self, trainer): """Obtain samplers and start actual training for each epoch. Args: trainer (Trainer): Experiment trainer. Returns: float: The average return in last epoch cycle. """ if not self._eval_env: self._eval_env = trainer.get_env_copy() last_returns = [float('nan')] trainer.enable_logging = False for _ in trainer.step_epochs(): for cycle in range(self._steps_per_epoch): trainer.step_episode = trainer.obtain_episodes( trainer.step_itr) if hasattr(self.exploration_policy, 'update'): self.exploration_policy.update(trainer.step_episode) self.train_once(trainer.step_itr, trainer.step_episode) if (cycle == 0 and self.replay_buffer.n_transitions_stored >= self._min_buffer_size): trainer.enable_logging = True eval_eps = obtain_evaluation_episodes( self.policy, self._eval_env) last_returns = log_performance(trainer.step_itr, eval_eps, discount=self._discount) trainer.step_itr += 1 return np.mean(last_returns)
Obtain samplers and start actual training for each epoch. Args: trainer (Trainer): Experiment trainer. Returns: float: The average return in last epoch cycle.
train
python
rlworkgroup/garage
src/garage/torch/algos/ddpg.py
https://github.com/rlworkgroup/garage/blob/master/src/garage/torch/algos/ddpg.py
MIT
def train_once(self, itr, episodes): """Perform one iteration of training. Args: itr (int): Iteration number. episodes (EpisodeBatch): Batch of episodes. """ self.replay_buffer.add_episode_batch(episodes) epoch = itr / self._steps_per_epoch for _ in range(self._n_train_steps): if (self.replay_buffer.n_transitions_stored >= self._min_buffer_size): samples = self.replay_buffer.sample_transitions( self._buffer_batch_size) samples['rewards'] *= self._reward_scale qf_loss, y, q, policy_loss = torch_to_np( self.optimize_policy(samples)) self._episode_policy_losses.append(policy_loss) self._episode_qf_losses.append(qf_loss) self._epoch_ys.append(y) self._epoch_qs.append(q) if itr % self._steps_per_epoch == 0: logger.log('Training finished') if (self.replay_buffer.n_transitions_stored >= self._min_buffer_size): tabular.record('Epoch', epoch) tabular.record('Policy/AveragePolicyLoss', np.mean(self._episode_policy_losses)) tabular.record('QFunction/AverageQFunctionLoss', np.mean(self._episode_qf_losses)) tabular.record('QFunction/AverageQ', np.mean(self._epoch_qs)) tabular.record('QFunction/MaxQ', np.max(self._epoch_qs)) tabular.record('QFunction/AverageAbsQ', np.mean(np.abs(self._epoch_qs))) tabular.record('QFunction/AverageY', np.mean(self._epoch_ys)) tabular.record('QFunction/MaxY', np.max(self._epoch_ys)) tabular.record('QFunction/AverageAbsY', np.mean(np.abs(self._epoch_ys)))
Perform one iteration of training. Args: itr (int): Iteration number. episodes (EpisodeBatch): Batch of episodes.
train_once
python
rlworkgroup/garage
src/garage/torch/algos/ddpg.py
https://github.com/rlworkgroup/garage/blob/master/src/garage/torch/algos/ddpg.py
MIT
def optimize_policy(self, samples_data): """Perform algorithm optimizing. Args: samples_data (dict): Processed batch data. Returns: action_loss: Loss of action predicted by the policy network. qval_loss: Loss of Q-value predicted by the Q-network. ys: y_s. qval: Q-value predicted by the Q-network. """ transitions = as_torch_dict(samples_data) observations = transitions['observations'] rewards = transitions['rewards'].reshape(-1, 1) actions = transitions['actions'] next_observations = transitions['next_observations'] terminals = transitions['terminals'].reshape(-1, 1) next_inputs = next_observations inputs = observations with torch.no_grad(): next_actions = self._target_policy(next_inputs) target_qvals = self._target_qf(next_inputs, next_actions) clip_range = (-self._clip_return, 0. if self._clip_pos_returns else self._clip_return) y_target = rewards + (1.0 - terminals) * self._discount * target_qvals y_target = torch.clamp(y_target, clip_range[0], clip_range[1]) # optimize critic qval = self._qf(inputs, actions) qf_loss = torch.nn.MSELoss() qval_loss = qf_loss(qval, y_target) zero_optim_grads(self._qf_optimizer) qval_loss.backward() self._qf_optimizer.step() # optimize actor actions = self.policy(inputs) action_loss = -1 * self._qf(inputs, actions).mean() zero_optim_grads(self._policy_optimizer) action_loss.backward() self._policy_optimizer.step() # update target networks self.update_target() return (qval_loss.detach(), y_target, qval.detach(), action_loss.detach())
Perform algorithm optimizing. Args: samples_data (dict): Processed batch data. Returns: action_loss: Loss of action predicted by the policy network. qval_loss: Loss of Q-value predicted by the Q-network. ys: y_s. qval: Q-value predicted by the Q-network.
optimize_policy
python
rlworkgroup/garage
src/garage/torch/algos/ddpg.py
https://github.com/rlworkgroup/garage/blob/master/src/garage/torch/algos/ddpg.py
MIT
def update_target(self): """Update parameters in the target policy and Q-value network.""" for t_param, param in zip(self._target_qf.parameters(), self._qf.parameters()): t_param.data.copy_(t_param.data * (1.0 - self._tau) + param.data * self._tau) for t_param, param in zip(self._target_policy.parameters(), self.policy.parameters()): t_param.data.copy_(t_param.data * (1.0 - self._tau) + param.data * self._tau)
Update parameters in the target policy and Q-value network.
update_target
python
rlworkgroup/garage
src/garage/torch/algos/ddpg.py
https://github.com/rlworkgroup/garage/blob/master/src/garage/torch/algos/ddpg.py
MIT
def train(self, trainer): """Obtain samplers and start actual training for each epoch. Args: trainer (Trainer): Experiment trainer. Returns: float: The average return in last epoch cycle. """ if not self._eval_env: self._eval_env = trainer.get_env_copy() last_returns = [float('nan')] if self._min_buffer_size > self.replay_buffer.n_transitions_stored: num_warmup_steps = (self._min_buffer_size - self.replay_buffer.n_transitions_stored) self.replay_buffer.add_episode_batch( trainer.obtain_episodes(0, num_warmup_steps)) trainer.enable_logging = True for _ in trainer.step_epochs(): if (self.replay_buffer.n_transitions_stored >= self._min_buffer_size): logger.log('Evaluating policy') params_before = self.exploration_policy.get_param_values() eval_eps = obtain_evaluation_episodes( (self.exploration_policy if not self._deterministic_eval else self.policy), self._eval_env, num_eps=self._num_eval_episodes, max_episode_length=self._max_episode_length_eval) self.exploration_policy.set_param_values(params_before) last_returns = log_performance(trainer.step_itr, eval_eps, discount=self._discount) self._episode_reward_mean.extend(last_returns) tabular.record('Evaluation/100EpRewardMean', np.mean(self._episode_reward_mean)) for _ in range(self._steps_per_epoch): trainer.step_episode = trainer.obtain_episodes( trainer.step_itr) if hasattr(self.exploration_policy, 'update'): self.exploration_policy.update(trainer.step_episode) self._train_once(trainer.step_itr, trainer.step_episode) trainer.step_itr += 1 return np.mean(last_returns)
Obtain samplers and start actual training for each epoch. Args: trainer (Trainer): Experiment trainer. Returns: float: The average return in last epoch cycle.
train
python
rlworkgroup/garage
src/garage/torch/algos/dqn.py
https://github.com/rlworkgroup/garage/blob/master/src/garage/torch/algos/dqn.py
MIT
def _train_once(self, itr, episodes): """Perform one iteration of training. Args: itr (int): Iteration number. episodes (EpisodeBatch): Batch of episodes. """ self.replay_buffer.add_episode_batch(episodes) epoch = itr / self._steps_per_epoch for _ in range(self._n_train_steps): if (self.replay_buffer.n_transitions_stored >= self._min_buffer_size): timesteps = self.replay_buffer.sample_timesteps( self._buffer_batch_size) qf_loss, y, q = tuple(v.cpu().numpy() for v in self._optimize_qf(timesteps)) self._episode_qf_losses.append(qf_loss) self._epoch_ys.append(y) self._epoch_qs.append(q) if itr % self._steps_per_epoch == 0: self._log_eval_results(epoch) if itr % self._target_update_freq == 0: self._target_qf = copy.deepcopy(self._qf)
Perform one iteration of training. Args: itr (int): Iteration number. episodes (EpisodeBatch): Batch of episodes.
_train_once
python
rlworkgroup/garage
src/garage/torch/algos/dqn.py
https://github.com/rlworkgroup/garage/blob/master/src/garage/torch/algos/dqn.py
MIT
def _log_eval_results(self, epoch): """Log evaluation results after an epoch. Args: epoch (int): Current epoch. """ logger.log('Training finished') if self.replay_buffer.n_transitions_stored >= self._min_buffer_size: tabular.record('Epoch', epoch) tabular.record('QFunction/AverageQFunctionLoss', np.mean(self._episode_qf_losses)) tabular.record('QFunction/AverageQ', np.mean(self._epoch_qs)) tabular.record('QFunction/MaxQ', np.max(self._epoch_qs)) tabular.record('QFunction/AverageAbsQ', np.mean(np.abs(self._epoch_qs))) tabular.record('QFunction/AverageY', np.mean(self._epoch_ys)) tabular.record('QFunction/MaxY', np.max(self._epoch_ys)) tabular.record('QFunction/AverageAbsY', np.mean(np.abs(self._epoch_ys)))
Log evaluation results after an epoch. Args: epoch (int): Current epoch.
_log_eval_results
python
rlworkgroup/garage
src/garage/torch/algos/dqn.py
https://github.com/rlworkgroup/garage/blob/master/src/garage/torch/algos/dqn.py
MIT
def _optimize_qf(self, timesteps): """Perform algorithm optimizing. Args: timesteps (TimeStepBatch): Processed batch data. Returns: qval_loss: Loss of Q-value predicted by the Q-network. ys: y_s. qval: Q-value predicted by the Q-network. """ observations = np_to_torch(timesteps.observations) rewards = np_to_torch(timesteps.rewards).reshape(-1, 1) rewards *= self._reward_scale actions = np_to_torch(timesteps.actions) next_observations = np_to_torch(timesteps.next_observations) terminals = np_to_torch(timesteps.terminals).reshape(-1, 1) next_inputs = next_observations inputs = observations with torch.no_grad(): if self._double_q: # Use online qf to get optimal actions selected_actions = torch.argmax(self._qf(next_inputs), axis=1) # use target qf to get Q values for those actions selected_actions = selected_actions.long().unsqueeze(1) best_qvals = torch.gather(self._target_qf(next_inputs), dim=1, index=selected_actions) else: target_qvals = self._target_qf(next_inputs) best_qvals, _ = torch.max(target_qvals, 1) best_qvals = best_qvals.unsqueeze(1) rewards_clipped = rewards if self._clip_reward is not None: rewards_clipped = torch.clamp(rewards, -1 * self._clip_reward, self._clip_reward) y_target = (rewards_clipped + (1.0 - terminals) * self._discount * best_qvals) y_target = y_target.squeeze(1) # optimize qf qvals = self._qf(inputs) selected_qs = torch.sum(qvals * actions, axis=1) qval_loss = F.smooth_l1_loss(selected_qs, y_target) zero_optim_grads(self._qf_optimizer) qval_loss.backward() # optionally clip the gradients if self._clip_grad is not None: torch.nn.utils.clip_grad_norm_(self.policy.parameters(), self._clip_grad) self._qf_optimizer.step() return (qval_loss.detach(), y_target, selected_qs.detach())
Perform algorithm optimizing. Args: timesteps (TimeStepBatch): Processed batch data. Returns: qval_loss: Loss of Q-value predicted by the Q-network. ys: y_s. qval: Q-value predicted by the Q-network.
_optimize_qf
python
rlworkgroup/garage
src/garage/torch/algos/dqn.py
https://github.com/rlworkgroup/garage/blob/master/src/garage/torch/algos/dqn.py
MIT
def to(self, device=None): """Put all the networks within the model on device. Args: device (str): ID of GPU or CPU. """ if device is None: device = global_device() logger.log('Using device: ' + str(device)) self._qf = self._qf.to(device) self._target_qf = self._target_qf.to(device)
Put all the networks within the model on device. Args: device (str): ID of GPU or CPU.
to
python
rlworkgroup/garage
src/garage/torch/algos/dqn.py
https://github.com/rlworkgroup/garage/blob/master/src/garage/torch/algos/dqn.py
MIT
def train(self, trainer): """Obtain samples and start training for each epoch. Args: trainer (Trainer): Gives the algorithm access to :method:`~Trainer.step_epochs()`, which provides services such as snapshotting and sampler control. Returns: float: The average return in last epoch cycle. """ last_return = None for _ in trainer.step_epochs(): all_samples, all_params = self._obtain_samples(trainer) last_return = self._train_once(trainer, all_samples, all_params) trainer.step_itr += 1 return last_return
Obtain samples and start training for each epoch. Args: trainer (Trainer): Gives the algorithm access to :method:`~Trainer.step_epochs()`, which provides services such as snapshotting and sampler control. Returns: float: The average return in last epoch cycle.
train
python
rlworkgroup/garage
src/garage/torch/algos/maml.py
https://github.com/rlworkgroup/garage/blob/master/src/garage/torch/algos/maml.py
MIT
def _train_once(self, trainer, all_samples, all_params): """Train the algorithm once. Args: trainer (Trainer): The experiment runner. all_samples (list[list[_MAMLEpisodeBatch]]): A two dimensional list of _MAMLEpisodeBatch of size [meta_batch_size * (num_grad_updates + 1)] all_params (list[dict]): A list of named parameter dictionaries. Each dictionary contains key value pair of names (str) and parameters (torch.Tensor). Returns: float: Average return. """ itr = trainer.step_itr old_theta = dict(self._policy.named_parameters()) kl_before = self._compute_kl_constraint(all_samples, all_params, set_grad=False) meta_objective = self._compute_meta_loss(all_samples, all_params) zero_optim_grads(self._meta_optimizer) meta_objective.backward() self._meta_optimize(all_samples, all_params) # Log loss_after = self._compute_meta_loss(all_samples, all_params, set_grad=False) kl_after = self._compute_kl_constraint(all_samples, all_params, set_grad=False) with torch.no_grad(): policy_entropy = self._compute_policy_entropy( [task_samples[0] for task_samples in all_samples]) average_return = self._log_performance( itr, all_samples, meta_objective.item(), loss_after.item(), kl_before.item(), kl_after.item(), policy_entropy.mean().item()) if self._meta_evaluator and itr % self._evaluate_every_n_epochs == 0: self._meta_evaluator.evaluate(self) update_module_params(self._old_policy, old_theta) return average_return
Train the algorithm once. Args: trainer (Trainer): The experiment runner. all_samples (list[list[_MAMLEpisodeBatch]]): A two dimensional list of _MAMLEpisodeBatch of size [meta_batch_size * (num_grad_updates + 1)] all_params (list[dict]): A list of named parameter dictionaries. Each dictionary contains key value pair of names (str) and parameters (torch.Tensor). Returns: float: Average return.
_train_once
python
rlworkgroup/garage
src/garage/torch/algos/maml.py
https://github.com/rlworkgroup/garage/blob/master/src/garage/torch/algos/maml.py
MIT
def _train_value_function(self, paths): """Train the value function. Args: paths (list[dict]): A list of collected paths. Returns: torch.Tensor: Calculated mean scalar value of value function loss (float). """ # MAML resets a value function to its initial state before training. self._value_function.load_state_dict(self._initial_vf_state) obs = np.concatenate([path['observations'] for path in paths], axis=0) returns = np.concatenate([path['returns'] for path in paths]) obs = np_to_torch(obs) returns = np_to_torch(returns.astype(np.float32)) vf_loss = self._value_function.compute_loss(obs, returns) # pylint: disable=protected-access zero_optim_grads(self._inner_algo._vf_optimizer._optimizer) vf_loss.backward() # pylint: disable=protected-access self._inner_algo._vf_optimizer.step() return vf_loss
Train the value function. Args: paths (list[dict]): A list of collected paths. Returns: torch.Tensor: Calculated mean scalar value of value function loss (float).
_train_value_function
python
rlworkgroup/garage
src/garage/torch/algos/maml.py
https://github.com/rlworkgroup/garage/blob/master/src/garage/torch/algos/maml.py
MIT
def _obtain_samples(self, trainer): """Obtain samples for each task before and after the fast-adaptation. Args: trainer (Trainer): A trainer instance to obtain samples. Returns: tuple: Tuple of (all_samples, all_params). all_samples (list[_MAMLEpisodeBatch]): A list of size [meta_batch_size * (num_grad_updates + 1)] all_params (list[dict]): A list of named parameter dictionaries. """ tasks = self._task_sampler.sample(self._meta_batch_size) all_samples = [[] for _ in range(len(tasks))] all_params = [] theta = dict(self._policy.named_parameters()) for i, env_up in enumerate(tasks): for j in range(self._num_grad_updates + 1): episodes = trainer.obtain_episodes(trainer.step_itr, env_update=env_up) batch_samples = self._process_samples(episodes) all_samples[i].append(batch_samples) # The last iteration does only sampling but no adapting if j < self._num_grad_updates: # A grad need to be kept for the next grad update # Except for the last grad update require_grad = j < self._num_grad_updates - 1 self._adapt(batch_samples, set_grad=require_grad) all_params.append(dict(self._policy.named_parameters())) # Restore to pre-updated policy update_module_params(self._policy, theta) return all_samples, all_params
Obtain samples for each task before and after the fast-adaptation. Args: trainer (Trainer): A trainer instance to obtain samples. Returns: tuple: Tuple of (all_samples, all_params). all_samples (list[_MAMLEpisodeBatch]): A list of size [meta_batch_size * (num_grad_updates + 1)] all_params (list[dict]): A list of named parameter dictionaries.
_obtain_samples
python
rlworkgroup/garage
src/garage/torch/algos/maml.py
https://github.com/rlworkgroup/garage/blob/master/src/garage/torch/algos/maml.py
MIT
def _adapt(self, batch_samples, set_grad=True): """Performs one MAML inner step to update the policy. Args: batch_samples (_MAMLEpisodeBatch): Samples data for one task and one gradient step. set_grad (bool): if False, update policy parameters in-place. Else, allow taking gradient of functions of updated parameters with respect to pre-updated parameters. """ # pylint: disable=protected-access loss = self._inner_algo._compute_loss(*batch_samples[1:]) # Update policy parameters with one SGD step self._inner_optimizer.set_grads_none() loss.backward(create_graph=set_grad) with torch.set_grad_enabled(set_grad): self._inner_optimizer.step()
Performs one MAML inner step to update the policy. Args: batch_samples (_MAMLEpisodeBatch): Samples data for one task and one gradient step. set_grad (bool): if False, update policy parameters in-place. Else, allow taking gradient of functions of updated parameters with respect to pre-updated parameters.
_adapt
python
rlworkgroup/garage
src/garage/torch/algos/maml.py
https://github.com/rlworkgroup/garage/blob/master/src/garage/torch/algos/maml.py
MIT
def _compute_meta_loss(self, all_samples, all_params, set_grad=True): """Compute loss to meta-optimize. Args: all_samples (list[list[_MAMLEpisodeBatch]]): A two dimensional list of _MAMLEpisodeBatch of size [meta_batch_size * (num_grad_updates + 1)] all_params (list[dict]): A list of named parameter dictionaries. Each dictionary contains key value pair of names (str) and parameters (torch.Tensor). set_grad (bool): Whether to enable gradient calculation or not. Returns: torch.Tensor: Calculated mean value of loss. """ theta = dict(self._policy.named_parameters()) old_theta = dict(self._old_policy.named_parameters()) losses = [] for task_samples, task_params in zip(all_samples, all_params): for i in range(self._num_grad_updates): require_grad = i < self._num_grad_updates - 1 or set_grad self._adapt(task_samples[i], set_grad=require_grad) update_module_params(self._old_policy, task_params) with torch.set_grad_enabled(set_grad): # pylint: disable=protected-access last_update = task_samples[-1] loss = self._inner_algo._compute_loss(*last_update[1:]) losses.append(loss) update_module_params(self._policy, theta) update_module_params(self._old_policy, old_theta) return torch.stack(losses).mean()
Compute loss to meta-optimize. Args: all_samples (list[list[_MAMLEpisodeBatch]]): A two dimensional list of _MAMLEpisodeBatch of size [meta_batch_size * (num_grad_updates + 1)] all_params (list[dict]): A list of named parameter dictionaries. Each dictionary contains key value pair of names (str) and parameters (torch.Tensor). set_grad (bool): Whether to enable gradient calculation or not. Returns: torch.Tensor: Calculated mean value of loss.
_compute_meta_loss
python
rlworkgroup/garage
src/garage/torch/algos/maml.py
https://github.com/rlworkgroup/garage/blob/master/src/garage/torch/algos/maml.py
MIT