code
stringlengths 66
870k
| docstring
stringlengths 19
26.7k
| func_name
stringlengths 1
138
| language
stringclasses 1
value | repo
stringlengths 7
68
| path
stringlengths 5
324
| url
stringlengths 46
389
| license
stringclasses 7
values |
---|---|---|---|---|---|---|---|
def _compute_kl_constraint(self, all_samples, all_params, set_grad=True):
"""Compute KL divergence.
For each task, compute the KL divergence between the old policy
distribution and current policy distribution.
Args:
all_samples (list[list[_MAMLEpisodeBatch]]): Two
dimensional list of _MAMLEpisodeBatch of size
[meta_batch_size * (num_grad_updates + 1)]
all_params (list[dict]): A list of named parameter dictionaries.
Each dictionary contains key value pair of names (str) and
parameters (torch.Tensor).
set_grad (bool): Whether to enable gradient calculation or not.
Returns:
torch.Tensor: Calculated mean value of KL divergence.
"""
theta = dict(self._policy.named_parameters())
old_theta = dict(self._old_policy.named_parameters())
kls = []
for task_samples, task_params in zip(all_samples, all_params):
for i in range(self._num_grad_updates):
require_grad = i < self._num_grad_updates - 1 or set_grad
self._adapt(task_samples[i], set_grad=require_grad)
update_module_params(self._old_policy, task_params)
with torch.set_grad_enabled(set_grad):
# pylint: disable=protected-access
kl = self._inner_algo._compute_kl_constraint(
task_samples[-1].observations)
kls.append(kl)
update_module_params(self._policy, theta)
update_module_params(self._old_policy, old_theta)
return torch.stack(kls).mean()
|
Compute KL divergence.
For each task, compute the KL divergence between the old policy
distribution and current policy distribution.
Args:
all_samples (list[list[_MAMLEpisodeBatch]]): Two
dimensional list of _MAMLEpisodeBatch of size
[meta_batch_size * (num_grad_updates + 1)]
all_params (list[dict]): A list of named parameter dictionaries.
Each dictionary contains key value pair of names (str) and
parameters (torch.Tensor).
set_grad (bool): Whether to enable gradient calculation or not.
Returns:
torch.Tensor: Calculated mean value of KL divergence.
|
_compute_kl_constraint
|
python
|
rlworkgroup/garage
|
src/garage/torch/algos/maml.py
|
https://github.com/rlworkgroup/garage/blob/master/src/garage/torch/algos/maml.py
|
MIT
|
def _compute_policy_entropy(self, task_samples):
"""Compute policy entropy.
Args:
task_samples (list[_MAMLEpisodeBatch]): Samples data for
one task.
Returns:
torch.Tensor: Computed entropy value.
"""
obs = torch.cat([samples.observations for samples in task_samples])
# pylint: disable=protected-access
entropies = self._inner_algo._compute_policy_entropy(obs)
return entropies.mean()
|
Compute policy entropy.
Args:
task_samples (list[_MAMLEpisodeBatch]): Samples data for
one task.
Returns:
torch.Tensor: Computed entropy value.
|
_compute_policy_entropy
|
python
|
rlworkgroup/garage
|
src/garage/torch/algos/maml.py
|
https://github.com/rlworkgroup/garage/blob/master/src/garage/torch/algos/maml.py
|
MIT
|
def _process_samples(self, episodes):
"""Process sample data based on the collected paths.
Args:
episodes (EpisodeBatch): Collected batch of episodes.
Returns:
_MAMLEpisodeBatch: Processed samples data.
"""
paths = episodes.to_list()
for path in paths:
path['returns'] = discount_cumsum(
path['rewards'], self._inner_algo.discount).copy()
self._train_value_function(paths)
obs = torch.Tensor(episodes.padded_observations)
actions = torch.Tensor(episodes.padded_actions)
rewards = torch.Tensor(episodes.padded_rewards)
valids = torch.Tensor(episodes.lengths).int()
with torch.no_grad():
# pylint: disable=protected-access
baselines = self._inner_algo._value_function(obs)
return _MAMLEpisodeBatch(paths, obs, actions, rewards, valids,
baselines)
|
Process sample data based on the collected paths.
Args:
episodes (EpisodeBatch): Collected batch of episodes.
Returns:
_MAMLEpisodeBatch: Processed samples data.
|
_process_samples
|
python
|
rlworkgroup/garage
|
src/garage/torch/algos/maml.py
|
https://github.com/rlworkgroup/garage/blob/master/src/garage/torch/algos/maml.py
|
MIT
|
def _log_performance(self, itr, all_samples, loss_before, loss_after,
kl_before, kl, policy_entropy):
"""Evaluate performance of this batch.
Args:
itr (int): Iteration number.
all_samples (list[list[_MAMLEpisodeBatch]]): Two
dimensional list of _MAMLEpisodeBatch of size
[meta_batch_size * (num_grad_updates + 1)]
loss_before (float): Loss before optimization step.
loss_after (float): Loss after optimization step.
kl_before (float): KL divergence before optimization step.
kl (float): KL divergence after optimization step.
policy_entropy (float): Policy entropy.
Returns:
float: The average return in last epoch cycle.
"""
tabular.record('Iteration', itr)
name_map = None
if hasattr(self._env, 'all_task_names'):
names = self._env.all_task_names
name_map = dict(zip(names, names))
rtns = log_multitask_performance(
itr,
EpisodeBatch.from_list(
env_spec=self._env.spec,
paths=[
path for task_paths in all_samples
for path in task_paths[self._num_grad_updates].paths
]),
discount=self._inner_algo.discount,
name_map=name_map)
with tabular.prefix(self._policy.name + '/'):
tabular.record('LossBefore', loss_before)
tabular.record('LossAfter', loss_after)
tabular.record('dLoss', loss_before - loss_after)
tabular.record('KLBefore', kl_before)
tabular.record('KLAfter', kl)
tabular.record('Entropy', policy_entropy)
return np.mean(rtns)
|
Evaluate performance of this batch.
Args:
itr (int): Iteration number.
all_samples (list[list[_MAMLEpisodeBatch]]): Two
dimensional list of _MAMLEpisodeBatch of size
[meta_batch_size * (num_grad_updates + 1)]
loss_before (float): Loss before optimization step.
loss_after (float): Loss after optimization step.
kl_before (float): KL divergence before optimization step.
kl (float): KL divergence after optimization step.
policy_entropy (float): Policy entropy.
Returns:
float: The average return in last epoch cycle.
|
_log_performance
|
python
|
rlworkgroup/garage
|
src/garage/torch/algos/maml.py
|
https://github.com/rlworkgroup/garage/blob/master/src/garage/torch/algos/maml.py
|
MIT
|
def adapt_policy(self, exploration_policy, exploration_episodes):
"""Adapt the policy by one gradient steps for a task.
Args:
exploration_policy (Policy): A policy which was returned from
get_exploration_policy(), and which generated
exploration_episodes by interacting with an environment.
The caller may not use this object after passing it into this
method.
exploration_episodes (EpisodeBatch): Episodes with which to adapt,
generated by exploration_policy exploring the environment.
Returns:
Policy: A policy adapted to the task represented by the
exploration_episodes.
"""
old_policy, self._policy = self._policy, exploration_policy
self._inner_algo.policy = exploration_policy
self._inner_optimizer.module = exploration_policy
batch_samples = self._process_samples(exploration_episodes)
self._adapt(batch_samples, set_grad=False)
self._policy = old_policy
self._inner_algo.policy = self._inner_optimizer.module = old_policy
return exploration_policy
|
Adapt the policy by one gradient steps for a task.
Args:
exploration_policy (Policy): A policy which was returned from
get_exploration_policy(), and which generated
exploration_episodes by interacting with an environment.
The caller may not use this object after passing it into this
method.
exploration_episodes (EpisodeBatch): Episodes with which to adapt,
generated by exploration_policy exploring the environment.
Returns:
Policy: A policy adapted to the task represented by the
exploration_episodes.
|
adapt_policy
|
python
|
rlworkgroup/garage
|
src/garage/torch/algos/maml.py
|
https://github.com/rlworkgroup/garage/blob/master/src/garage/torch/algos/maml.py
|
MIT
|
def _get_log_alpha(self, samples_data):
"""Return the value of log_alpha.
Args:
samples_data (dict): Transitions(S,A,R,S') that are sampled from
the replay buffer. It should have the keys 'observation',
'action', 'reward', 'terminal', and 'next_observations'.
Note:
samples_data's entries should be torch.Tensor's with the following
shapes:
observation: :math:`(N, O^*)`
action: :math:`(N, A^*)`
reward: :math:`(N, 1)`
terminal: :math:`(N, 1)`
next_observation: :math:`(N, O^*)`
Raises:
ValueError: If the number of tasks, num_tasks passed to
this algorithm doesn't match the length of the task
one-hot id in the observation vector.
Returns:
torch.Tensor: log_alpha. shape is (1, self.buffer_batch_size)
"""
obs = samples_data['observation']
log_alpha = self._log_alpha
one_hots = obs[:, -self._num_tasks:]
if (log_alpha.shape[0] != one_hots.shape[1]
or one_hots.shape[1] != self._num_tasks
or log_alpha.shape[0] != self._num_tasks):
raise ValueError(
'The number of tasks in the environment does '
'not match self._num_tasks. Are you sure that you passed '
'The correct number of tasks?')
ret = torch.mm(one_hots, log_alpha.unsqueeze(0).t()).squeeze()
return ret
|
Return the value of log_alpha.
Args:
samples_data (dict): Transitions(S,A,R,S') that are sampled from
the replay buffer. It should have the keys 'observation',
'action', 'reward', 'terminal', and 'next_observations'.
Note:
samples_data's entries should be torch.Tensor's with the following
shapes:
observation: :math:`(N, O^*)`
action: :math:`(N, A^*)`
reward: :math:`(N, 1)`
terminal: :math:`(N, 1)`
next_observation: :math:`(N, O^*)`
Raises:
ValueError: If the number of tasks, num_tasks passed to
this algorithm doesn't match the length of the task
one-hot id in the observation vector.
Returns:
torch.Tensor: log_alpha. shape is (1, self.buffer_batch_size)
|
_get_log_alpha
|
python
|
rlworkgroup/garage
|
src/garage/torch/algos/mtsac.py
|
https://github.com/rlworkgroup/garage/blob/master/src/garage/torch/algos/mtsac.py
|
MIT
|
def _evaluate_policy(self, epoch):
"""Evaluate the performance of the policy via deterministic sampling.
Statistics such as (average) discounted return and success rate are
recorded.
Args:
epoch (int): The current training epoch.
Returns:
float: The average return across self._num_evaluation_episodes
episodes
"""
eval_eps = []
for eval_env in self._eval_env:
eval_eps.append(
obtain_evaluation_episodes(
self.policy,
eval_env,
self._max_episode_length_eval,
num_eps=self._num_evaluation_episodes,
deterministic=self._use_deterministic_evaluation))
eval_eps = EpisodeBatch.concatenate(*eval_eps)
last_return = log_multitask_performance(epoch, eval_eps,
self._discount)
return last_return
|
Evaluate the performance of the policy via deterministic sampling.
Statistics such as (average) discounted return and success rate are
recorded.
Args:
epoch (int): The current training epoch.
Returns:
float: The average return across self._num_evaluation_episodes
episodes
|
_evaluate_policy
|
python
|
rlworkgroup/garage
|
src/garage/torch/algos/mtsac.py
|
https://github.com/rlworkgroup/garage/blob/master/src/garage/torch/algos/mtsac.py
|
MIT
|
def to(self, device=None):
"""Put all the networks within the model on device.
Args:
device (str): ID of GPU or CPU.
"""
super().to(device)
if device is None:
device = global_device()
if not self._use_automatic_entropy_tuning:
self._log_alpha = torch.Tensor([self._fixed_alpha] *
self._num_tasks).log().to(device)
else:
self._log_alpha = torch.Tensor(
[self._initial_log_entropy] *
self._num_tasks).to(device).requires_grad_()
self._alpha_optimizer = self._optimizer([self._log_alpha],
lr=self._policy_lr)
|
Put all the networks within the model on device.
Args:
device (str): ID of GPU or CPU.
|
to
|
python
|
rlworkgroup/garage
|
src/garage/torch/algos/mtsac.py
|
https://github.com/rlworkgroup/garage/blob/master/src/garage/torch/algos/mtsac.py
|
MIT
|
def __getstate__(self):
"""Object.__getstate__.
Returns:
dict: the state to be pickled for the instance.
"""
data = self.__dict__.copy()
del data['_replay_buffers']
del data['_context_replay_buffers']
return data
|
Object.__getstate__.
Returns:
dict: the state to be pickled for the instance.
|
__getstate__
|
python
|
rlworkgroup/garage
|
src/garage/torch/algos/pearl.py
|
https://github.com/rlworkgroup/garage/blob/master/src/garage/torch/algos/pearl.py
|
MIT
|
def __setstate__(self, state):
"""Object.__setstate__.
Args:
state (dict): unpickled state.
"""
self.__dict__.update(state)
self._replay_buffers = {
i: PathBuffer(self._replay_buffer_size)
for i in range(self._num_train_tasks)
}
self._context_replay_buffers = {
i: PathBuffer(self._replay_buffer_size)
for i in range(self._num_train_tasks)
}
self._is_resuming = True
|
Object.__setstate__.
Args:
state (dict): unpickled state.
|
__setstate__
|
python
|
rlworkgroup/garage
|
src/garage/torch/algos/pearl.py
|
https://github.com/rlworkgroup/garage/blob/master/src/garage/torch/algos/pearl.py
|
MIT
|
def train(self, trainer):
"""Obtain samples, train, and evaluate for each epoch.
Args:
trainer (Trainer): Gives the algorithm the access to
:method:`Trainer..step_epochs()`, which provides services
such as snapshotting and sampler control.
"""
for _ in trainer.step_epochs():
epoch = trainer.step_itr / self._num_steps_per_epoch
# obtain initial set of samples from all train tasks
if epoch == 0 or self._is_resuming:
for idx in range(self._num_train_tasks):
self._task_idx = idx
self._obtain_samples(trainer, epoch,
self._num_initial_steps, np.inf)
self._is_resuming = False
# obtain samples from random tasks
for _ in range(self._num_tasks_sample):
idx = np.random.randint(self._num_train_tasks)
self._task_idx = idx
self._context_replay_buffers[idx].clear()
# obtain samples with z ~ prior
if self._num_steps_prior > 0:
self._obtain_samples(trainer, epoch, self._num_steps_prior,
np.inf)
# obtain samples with z ~ posterior
if self._num_steps_posterior > 0:
self._obtain_samples(trainer, epoch,
self._num_steps_posterior,
self._update_post_train)
# obtain extras samples for RL training but not encoder
if self._num_extra_rl_steps_posterior > 0:
self._obtain_samples(trainer,
epoch,
self._num_extra_rl_steps_posterior,
self._update_post_train,
add_to_enc_buffer=False)
logger.log('Training...')
# sample train tasks and optimize networks
self._train_once()
trainer.step_itr += 1
logger.log('Evaluating...')
# evaluate
self._policy.reset_belief()
self._evaluator.evaluate(self)
|
Obtain samples, train, and evaluate for each epoch.
Args:
trainer (Trainer): Gives the algorithm the access to
:method:`Trainer..step_epochs()`, which provides services
such as snapshotting and sampler control.
|
train
|
python
|
rlworkgroup/garage
|
src/garage/torch/algos/pearl.py
|
https://github.com/rlworkgroup/garage/blob/master/src/garage/torch/algos/pearl.py
|
MIT
|
def _optimize_policy(self, indices):
"""Perform algorithm optimizing.
Args:
indices (list): Tasks used for training.
"""
num_tasks = len(indices)
context = self._sample_context(indices)
# clear context and reset belief of policy
self._policy.reset_belief(num_tasks=num_tasks)
# data shape is (task, batch, feat)
obs, actions, rewards, next_obs, terms = self._sample_data(indices)
policy_outputs, task_z = self._policy(obs, context)
new_actions, policy_mean, policy_log_std, log_pi = policy_outputs[:4]
# flatten out the task dimension
t, b, _ = obs.size()
obs = obs.view(t * b, -1)
actions = actions.view(t * b, -1)
next_obs = next_obs.view(t * b, -1)
# optimize qf and encoder networks
q1_pred = self._qf1(torch.cat([obs, actions], dim=1), task_z)
q2_pred = self._qf2(torch.cat([obs, actions], dim=1), task_z)
v_pred = self._vf(obs, task_z.detach())
with torch.no_grad():
target_v_values = self.target_vf(next_obs, task_z)
# KL constraint on z if probabilistic
zero_optim_grads(self.context_optimizer)
if self._use_information_bottleneck:
kl_div = self._policy.compute_kl_div()
kl_loss = self._kl_lambda * kl_div
kl_loss.backward(retain_graph=True)
zero_optim_grads(self.qf1_optimizer)
zero_optim_grads(self.qf2_optimizer)
rewards_flat = rewards.view(self._batch_size * num_tasks, -1)
rewards_flat = rewards_flat * self._reward_scale
terms_flat = terms.view(self._batch_size * num_tasks, -1)
q_target = rewards_flat + (
1. - terms_flat) * self._discount * target_v_values
qf_loss = torch.mean((q1_pred - q_target)**2) + torch.mean(
(q2_pred - q_target)**2)
qf_loss.backward()
self.qf1_optimizer.step()
self.qf2_optimizer.step()
self.context_optimizer.step()
# compute min Q on the new actions
q1 = self._qf1(torch.cat([obs, new_actions], dim=1), task_z.detach())
q2 = self._qf2(torch.cat([obs, new_actions], dim=1), task_z.detach())
min_q = torch.min(q1, q2)
# optimize vf
v_target = min_q - log_pi
vf_loss = self.vf_criterion(v_pred, v_target.detach())
zero_optim_grads(self.vf_optimizer)
vf_loss.backward()
self.vf_optimizer.step()
self._update_target_network()
# optimize policy
log_policy_target = min_q
policy_loss = (log_pi - log_policy_target).mean()
mean_reg_loss = self._policy_mean_reg_coeff * (policy_mean**2).mean()
std_reg_loss = self._policy_std_reg_coeff * (policy_log_std**2).mean()
pre_tanh_value = policy_outputs[-1]
pre_activation_reg_loss = self._policy_pre_activation_coeff * (
(pre_tanh_value**2).sum(dim=1).mean())
policy_reg_loss = (mean_reg_loss + std_reg_loss +
pre_activation_reg_loss)
policy_loss = policy_loss + policy_reg_loss
zero_optim_grads(self._policy_optimizer)
policy_loss.backward()
self._policy_optimizer.step()
|
Perform algorithm optimizing.
Args:
indices (list): Tasks used for training.
|
_optimize_policy
|
python
|
rlworkgroup/garage
|
src/garage/torch/algos/pearl.py
|
https://github.com/rlworkgroup/garage/blob/master/src/garage/torch/algos/pearl.py
|
MIT
|
def _obtain_samples(self,
trainer,
itr,
num_samples,
update_posterior_rate,
add_to_enc_buffer=True):
"""Obtain samples.
Args:
trainer (Trainer): Trainer.
itr (int): Index of iteration (epoch).
num_samples (int): Number of samples to obtain.
update_posterior_rate (int): How often (in episodes) to infer
posterior of policy.
add_to_enc_buffer (bool): Whether or not to add samples to encoder
buffer.
"""
self._policy.reset_belief()
total_samples = 0
if update_posterior_rate != np.inf:
num_samples_per_batch = (update_posterior_rate *
self.max_episode_length)
else:
num_samples_per_batch = num_samples
while total_samples < num_samples:
paths = trainer.obtain_samples(itr, num_samples_per_batch,
self._policy,
self._env[self._task_idx])
total_samples += sum([len(path['rewards']) for path in paths])
for path in paths:
p = {
'observations':
path['observations'],
'actions':
path['actions'],
'rewards':
path['rewards'].reshape(-1, 1),
'next_observations':
path['next_observations'],
'dones':
np.array([
step_type == StepType.TERMINAL
for step_type in path['step_types']
]).reshape(-1, 1)
}
self._replay_buffers[self._task_idx].add_path(p)
if add_to_enc_buffer:
self._context_replay_buffers[self._task_idx].add_path(p)
if update_posterior_rate != np.inf:
context = self._sample_context(self._task_idx)
self._policy.infer_posterior(context)
|
Obtain samples.
Args:
trainer (Trainer): Trainer.
itr (int): Index of iteration (epoch).
num_samples (int): Number of samples to obtain.
update_posterior_rate (int): How often (in episodes) to infer
posterior of policy.
add_to_enc_buffer (bool): Whether or not to add samples to encoder
buffer.
|
_obtain_samples
|
python
|
rlworkgroup/garage
|
src/garage/torch/algos/pearl.py
|
https://github.com/rlworkgroup/garage/blob/master/src/garage/torch/algos/pearl.py
|
MIT
|
def _sample_data(self, indices):
"""Sample batch of training data from a list of tasks.
Args:
indices (list): List of task indices to sample from.
Returns:
torch.Tensor: Obervations, with shape :math:`(X, N, O^*)` where X
is the number of tasks. N is batch size.
torch.Tensor: Actions, with shape :math:`(X, N, A^*)`.
torch.Tensor: Rewards, with shape :math:`(X, N, 1)`.
torch.Tensor: Next obervations, with shape :math:`(X, N, O^*)`.
torch.Tensor: Dones, with shape :math:`(X, N, 1)`.
"""
# transitions sampled randomly from replay buffer
initialized = False
for idx in indices:
batch = self._replay_buffers[idx].sample_transitions(
self._batch_size)
if not initialized:
o = batch['observations'][np.newaxis]
a = batch['actions'][np.newaxis]
r = batch['rewards'][np.newaxis]
no = batch['next_observations'][np.newaxis]
d = batch['dones'][np.newaxis]
initialized = True
else:
o = np.vstack((o, batch['observations'][np.newaxis]))
a = np.vstack((a, batch['actions'][np.newaxis]))
r = np.vstack((r, batch['rewards'][np.newaxis]))
no = np.vstack((no, batch['next_observations'][np.newaxis]))
d = np.vstack((d, batch['dones'][np.newaxis]))
o = np_to_torch(o)
a = np_to_torch(a)
r = np_to_torch(r)
no = np_to_torch(no)
d = np_to_torch(d)
return o, a, r, no, d
|
Sample batch of training data from a list of tasks.
Args:
indices (list): List of task indices to sample from.
Returns:
torch.Tensor: Obervations, with shape :math:`(X, N, O^*)` where X
is the number of tasks. N is batch size.
torch.Tensor: Actions, with shape :math:`(X, N, A^*)`.
torch.Tensor: Rewards, with shape :math:`(X, N, 1)`.
torch.Tensor: Next obervations, with shape :math:`(X, N, O^*)`.
torch.Tensor: Dones, with shape :math:`(X, N, 1)`.
|
_sample_data
|
python
|
rlworkgroup/garage
|
src/garage/torch/algos/pearl.py
|
https://github.com/rlworkgroup/garage/blob/master/src/garage/torch/algos/pearl.py
|
MIT
|
def _sample_context(self, indices):
"""Sample batch of context from a list of tasks.
Args:
indices (list): List of task indices to sample from.
Returns:
torch.Tensor: Context data, with shape :math:`(X, N, C)`. X is the
number of tasks. N is batch size. C is the combined size of
observation, action, reward, and next observation if next
observation is used in context. Otherwise, C is the combined
size of observation, action, and reward.
"""
# make method work given a single task index
if not hasattr(indices, '__iter__'):
indices = [indices]
initialized = False
for idx in indices:
batch = self._context_replay_buffers[idx].sample_transitions(
self._embedding_batch_size)
o = batch['observations']
a = batch['actions']
r = batch['rewards']
context = np.hstack((np.hstack((o, a)), r))
if self._use_next_obs_in_context:
context = np.hstack((context, batch['next_observations']))
if not initialized:
final_context = context[np.newaxis]
initialized = True
else:
final_context = np.vstack((final_context, context[np.newaxis]))
final_context = np_to_torch(final_context)
if len(indices) == 1:
final_context = final_context.unsqueeze(0)
return final_context
|
Sample batch of context from a list of tasks.
Args:
indices (list): List of task indices to sample from.
Returns:
torch.Tensor: Context data, with shape :math:`(X, N, C)`. X is the
number of tasks. N is batch size. C is the combined size of
observation, action, reward, and next observation if next
observation is used in context. Otherwise, C is the combined
size of observation, action, and reward.
|
_sample_context
|
python
|
rlworkgroup/garage
|
src/garage/torch/algos/pearl.py
|
https://github.com/rlworkgroup/garage/blob/master/src/garage/torch/algos/pearl.py
|
MIT
|
def _update_target_network(self):
"""Update parameters in the target vf network."""
for target_param, param in zip(self.target_vf.parameters(),
self._vf.parameters()):
target_param.data.copy_(target_param.data *
(1.0 - self._soft_target_tau) +
param.data * self._soft_target_tau)
|
Update parameters in the target vf network.
|
_update_target_network
|
python
|
rlworkgroup/garage
|
src/garage/torch/algos/pearl.py
|
https://github.com/rlworkgroup/garage/blob/master/src/garage/torch/algos/pearl.py
|
MIT
|
def networks(self):
"""Return all the networks within the model.
Returns:
list: A list of networks.
"""
return self._policy.networks + [self._policy] + [
self._qf1, self._qf2, self._vf, self.target_vf
]
|
Return all the networks within the model.
Returns:
list: A list of networks.
|
networks
|
python
|
rlworkgroup/garage
|
src/garage/torch/algos/pearl.py
|
https://github.com/rlworkgroup/garage/blob/master/src/garage/torch/algos/pearl.py
|
MIT
|
def adapt_policy(self, exploration_policy, exploration_episodes):
"""Produce a policy adapted for a task.
Args:
exploration_policy (Policy): A policy which was returned from
get_exploration_policy(), and which generated
exploration_episodes by interacting with an environment.
The caller may not use this object after passing it into this
method.
exploration_episodes (EpisodeBatch): Episodes to which to adapt,
generated by exploration_policy exploring the
environment.
Returns:
Policy: A policy adapted to the task represented by the
exploration_episodes.
"""
total_steps = sum(exploration_episodes.lengths)
o = exploration_episodes.observations
a = exploration_episodes.actions
r = exploration_episodes.rewards.reshape(total_steps, 1)
ctxt = np.hstack((o, a, r)).reshape(1, total_steps, -1)
context = np_to_torch(ctxt)
self._policy.infer_posterior(context)
return self._policy
|
Produce a policy adapted for a task.
Args:
exploration_policy (Policy): A policy which was returned from
get_exploration_policy(), and which generated
exploration_episodes by interacting with an environment.
The caller may not use this object after passing it into this
method.
exploration_episodes (EpisodeBatch): Episodes to which to adapt,
generated by exploration_policy exploring the
environment.
Returns:
Policy: A policy adapted to the task represented by the
exploration_episodes.
|
adapt_policy
|
python
|
rlworkgroup/garage
|
src/garage/torch/algos/pearl.py
|
https://github.com/rlworkgroup/garage/blob/master/src/garage/torch/algos/pearl.py
|
MIT
|
def to(self, device=None):
"""Put all the networks within the model on device.
Args:
device (str): ID of GPU or CPU.
"""
device = device or global_device()
for net in self.networks:
net.to(device)
|
Put all the networks within the model on device.
Args:
device (str): ID of GPU or CPU.
|
to
|
python
|
rlworkgroup/garage
|
src/garage/torch/algos/pearl.py
|
https://github.com/rlworkgroup/garage/blob/master/src/garage/torch/algos/pearl.py
|
MIT
|
def augment_env_spec(cls, env_spec, latent_dim):
"""Augment environment by a size of latent dimension.
Args:
env_spec (EnvSpec): Environment specs to be augmented.
latent_dim (int): Latent dimension.
Returns:
EnvSpec: Augmented environment specs.
"""
obs_dim = int(np.prod(env_spec.observation_space.shape))
action_dim = int(np.prod(env_spec.action_space.shape))
aug_obs = akro.Box(low=-1,
high=1,
shape=(obs_dim + latent_dim, ),
dtype=np.float32)
aug_act = akro.Box(low=-1,
high=1,
shape=(action_dim, ),
dtype=np.float32)
return EnvSpec(aug_obs, aug_act)
|
Augment environment by a size of latent dimension.
Args:
env_spec (EnvSpec): Environment specs to be augmented.
latent_dim (int): Latent dimension.
Returns:
EnvSpec: Augmented environment specs.
|
augment_env_spec
|
python
|
rlworkgroup/garage
|
src/garage/torch/algos/pearl.py
|
https://github.com/rlworkgroup/garage/blob/master/src/garage/torch/algos/pearl.py
|
MIT
|
def get_env_spec(cls, env_spec, latent_dim, module):
"""Get environment specs of encoder with latent dimension.
Args:
env_spec (EnvSpec): Environment specification.
latent_dim (int): Latent dimension.
module (str): Module to get environment specs for.
Returns:
InOutSpec: Module environment specs with latent dimension.
"""
obs_dim = int(np.prod(env_spec.observation_space.shape))
action_dim = int(np.prod(env_spec.action_space.shape))
if module == 'encoder':
in_dim = obs_dim + action_dim + 1
out_dim = latent_dim * 2
elif module == 'vf':
in_dim = obs_dim
out_dim = latent_dim
in_space = akro.Box(low=-1, high=1, shape=(in_dim, ), dtype=np.float32)
out_space = akro.Box(low=-1,
high=1,
shape=(out_dim, ),
dtype=np.float32)
if module == 'encoder':
spec = InOutSpec(in_space, out_space)
elif module == 'vf':
spec = EnvSpec(in_space, out_space)
return spec
|
Get environment specs of encoder with latent dimension.
Args:
env_spec (EnvSpec): Environment specification.
latent_dim (int): Latent dimension.
module (str): Module to get environment specs for.
Returns:
InOutSpec: Module environment specs with latent dimension.
|
get_env_spec
|
python
|
rlworkgroup/garage
|
src/garage/torch/algos/pearl.py
|
https://github.com/rlworkgroup/garage/blob/master/src/garage/torch/algos/pearl.py
|
MIT
|
def step_episode(self):
"""Take a single time-step in the current episode.
Returns:
bool: True iff the episode is done, either due to the environment
indicating termination of due to reaching `max_episode_length`.
"""
if self._eps_length < self._max_episode_length:
a, agent_info = self.agent.get_action(self._prev_obs)
if self._deterministic:
a = agent_info['mean']
a, agent_info = self.agent.get_action(self._prev_obs)
es = self.env.step(a)
self._observations.append(self._prev_obs)
self._env_steps.append(es)
for k, v in agent_info.items():
self._agent_infos[k].append(v)
self._eps_length += 1
if self._accum_context:
s = TimeStep.from_env_step(env_step=es,
last_observation=self._prev_obs,
agent_info=agent_info,
episode_info=self._episode_info)
self.agent.update_context(s)
if not es.last:
self._prev_obs = es.observation
return False
self._lengths.append(self._eps_length)
self._last_observations.append(self._prev_obs)
return True
|
Take a single time-step in the current episode.
Returns:
bool: True iff the episode is done, either due to the environment
indicating termination of due to reaching `max_episode_length`.
|
step_episode
|
python
|
rlworkgroup/garage
|
src/garage/torch/algos/pearl.py
|
https://github.com/rlworkgroup/garage/blob/master/src/garage/torch/algos/pearl.py
|
MIT
|
def rollout(self):
"""Sample a single episode of the agent in the environment.
Returns:
EpisodeBatch: The collected episode.
"""
self.agent.sample_from_belief()
self.start_episode()
while not self.step_episode():
pass
return self.collect_episode()
|
Sample a single episode of the agent in the environment.
Returns:
EpisodeBatch: The collected episode.
|
rollout
|
python
|
rlworkgroup/garage
|
src/garage/torch/algos/pearl.py
|
https://github.com/rlworkgroup/garage/blob/master/src/garage/torch/algos/pearl.py
|
MIT
|
def _compute_objective(self, advantages, obs, actions, rewards):
r"""Compute objective value.
Args:
advantages (torch.Tensor): Advantage value at each step
with shape :math:`(N \dot [T], )`.
obs (torch.Tensor): Observation from the environment
with shape :math:`(N \dot [T], O*)`.
actions (torch.Tensor): Actions fed to the environment
with shape :math:`(N \dot [T], A*)`.
rewards (torch.Tensor): Acquired rewards
with shape :math:`(N \dot [T], )`.
Returns:
torch.Tensor: Calculated objective values
with shape :math:`(N \dot [T], )`.
"""
# Compute constraint
with torch.no_grad():
old_ll = self._old_policy(obs)[0].log_prob(actions)
new_ll = self.policy(obs)[0].log_prob(actions)
likelihood_ratio = (new_ll - old_ll).exp()
# Calculate surrogate
surrogate = likelihood_ratio * advantages
# Clipping the constraint
likelihood_ratio_clip = torch.clamp(likelihood_ratio,
min=1 - self._lr_clip_range,
max=1 + self._lr_clip_range)
# Calculate surrotate clip
surrogate_clip = likelihood_ratio_clip * advantages
return torch.min(surrogate, surrogate_clip)
|
Compute objective value.
Args:
advantages (torch.Tensor): Advantage value at each step
with shape :math:`(N \dot [T], )`.
obs (torch.Tensor): Observation from the environment
with shape :math:`(N \dot [T], O*)`.
actions (torch.Tensor): Actions fed to the environment
with shape :math:`(N \dot [T], A*)`.
rewards (torch.Tensor): Acquired rewards
with shape :math:`(N \dot [T], )`.
Returns:
torch.Tensor: Calculated objective values
with shape :math:`(N \dot [T], )`.
|
_compute_objective
|
python
|
rlworkgroup/garage
|
src/garage/torch/algos/ppo.py
|
https://github.com/rlworkgroup/garage/blob/master/src/garage/torch/algos/ppo.py
|
MIT
|
def train(self, trainer):
"""Obtain samplers and start actual training for each epoch.
Args:
trainer (Trainer): Gives the algorithm the access to
:method:`~Trainer.step_epochs()`, which provides services
such as snapshotting and sampler control.
Returns:
float: The average return in last epoch cycle.
"""
if not self._eval_env:
self._eval_env = trainer.get_env_copy()
last_return = None
for _ in trainer.step_epochs():
for _ in range(self._steps_per_epoch):
if not (self.replay_buffer.n_transitions_stored >=
self._min_buffer_size):
batch_size = int(self._min_buffer_size)
else:
batch_size = None
trainer.step_episode = trainer.obtain_samples(
trainer.step_itr, batch_size)
path_returns = []
for path in trainer.step_episode:
self.replay_buffer.add_path(
dict(observation=path['observations'],
action=path['actions'],
reward=path['rewards'].reshape(-1, 1),
next_observation=path['next_observations'],
terminal=np.array([
step_type == StepType.TERMINAL
for step_type in path['step_types']
]).reshape(-1, 1)))
path_returns.append(sum(path['rewards']))
assert len(path_returns) == len(trainer.step_episode)
self.episode_rewards.append(np.mean(path_returns))
for _ in range(self._gradient_steps):
policy_loss, qf1_loss, qf2_loss = self.train_once()
last_return = self._evaluate_policy(trainer.step_itr)
self._log_statistics(policy_loss, qf1_loss, qf2_loss)
tabular.record('TotalEnvSteps', trainer.total_env_steps)
trainer.step_itr += 1
return np.mean(last_return)
|
Obtain samplers and start actual training for each epoch.
Args:
trainer (Trainer): Gives the algorithm the access to
:method:`~Trainer.step_epochs()`, which provides services
such as snapshotting and sampler control.
Returns:
float: The average return in last epoch cycle.
|
train
|
python
|
rlworkgroup/garage
|
src/garage/torch/algos/sac.py
|
https://github.com/rlworkgroup/garage/blob/master/src/garage/torch/algos/sac.py
|
MIT
|
def train_once(self, itr=None, paths=None):
"""Complete 1 training iteration of SAC.
Args:
itr (int): Iteration number. This argument is deprecated.
paths (list[dict]): A list of collected paths.
This argument is deprecated.
Returns:
torch.Tensor: loss from actor/policy network after optimization.
torch.Tensor: loss from 1st q-function after optimization.
torch.Tensor: loss from 2nd q-function after optimization.
"""
del itr
del paths
if self.replay_buffer.n_transitions_stored >= self._min_buffer_size:
samples = self.replay_buffer.sample_transitions(
self._buffer_batch_size)
samples = as_torch_dict(samples)
policy_loss, qf1_loss, qf2_loss = self.optimize_policy(samples)
self._update_targets()
return policy_loss, qf1_loss, qf2_loss
|
Complete 1 training iteration of SAC.
Args:
itr (int): Iteration number. This argument is deprecated.
paths (list[dict]): A list of collected paths.
This argument is deprecated.
Returns:
torch.Tensor: loss from actor/policy network after optimization.
torch.Tensor: loss from 1st q-function after optimization.
torch.Tensor: loss from 2nd q-function after optimization.
|
train_once
|
python
|
rlworkgroup/garage
|
src/garage/torch/algos/sac.py
|
https://github.com/rlworkgroup/garage/blob/master/src/garage/torch/algos/sac.py
|
MIT
|
def _get_log_alpha(self, samples_data):
"""Return the value of log_alpha.
Args:
samples_data (dict): Transitions(S,A,R,S') that are sampled from
the replay buffer. It should have the keys 'observation',
'action', 'reward', 'terminal', and 'next_observations'.
This function exists in case there are versions of sac that need
access to a modified log_alpha, such as multi_task sac.
Note:
samples_data's entries should be torch.Tensor's with the following
shapes:
observation: :math:`(N, O^*)`
action: :math:`(N, A^*)`
reward: :math:`(N, 1)`
terminal: :math:`(N, 1)`
next_observation: :math:`(N, O^*)`
Returns:
torch.Tensor: log_alpha
"""
del samples_data
log_alpha = self._log_alpha
return log_alpha
|
Return the value of log_alpha.
Args:
samples_data (dict): Transitions(S,A,R,S') that are sampled from
the replay buffer. It should have the keys 'observation',
'action', 'reward', 'terminal', and 'next_observations'.
This function exists in case there are versions of sac that need
access to a modified log_alpha, such as multi_task sac.
Note:
samples_data's entries should be torch.Tensor's with the following
shapes:
observation: :math:`(N, O^*)`
action: :math:`(N, A^*)`
reward: :math:`(N, 1)`
terminal: :math:`(N, 1)`
next_observation: :math:`(N, O^*)`
Returns:
torch.Tensor: log_alpha
|
_get_log_alpha
|
python
|
rlworkgroup/garage
|
src/garage/torch/algos/sac.py
|
https://github.com/rlworkgroup/garage/blob/master/src/garage/torch/algos/sac.py
|
MIT
|
def _temperature_objective(self, log_pi, samples_data):
"""Compute the temperature/alpha coefficient loss.
Args:
log_pi(torch.Tensor): log probability of actions that are sampled
from the replay buffer. Shape is (1, buffer_batch_size).
samples_data (dict): Transitions(S,A,R,S') that are sampled from
the replay buffer. It should have the keys 'observation',
'action', 'reward', 'terminal', and 'next_observations'.
Note:
samples_data's entries should be torch.Tensor's with the following
shapes:
observation: :math:`(N, O^*)`
action: :math:`(N, A^*)`
reward: :math:`(N, 1)`
terminal: :math:`(N, 1)`
next_observation: :math:`(N, O^*)`
Returns:
torch.Tensor: the temperature/alpha coefficient loss.
"""
alpha_loss = 0
if self._use_automatic_entropy_tuning:
alpha_loss = (-(self._get_log_alpha(samples_data)) *
(log_pi.detach() + self._target_entropy)).mean()
return alpha_loss
|
Compute the temperature/alpha coefficient loss.
Args:
log_pi(torch.Tensor): log probability of actions that are sampled
from the replay buffer. Shape is (1, buffer_batch_size).
samples_data (dict): Transitions(S,A,R,S') that are sampled from
the replay buffer. It should have the keys 'observation',
'action', 'reward', 'terminal', and 'next_observations'.
Note:
samples_data's entries should be torch.Tensor's with the following
shapes:
observation: :math:`(N, O^*)`
action: :math:`(N, A^*)`
reward: :math:`(N, 1)`
terminal: :math:`(N, 1)`
next_observation: :math:`(N, O^*)`
Returns:
torch.Tensor: the temperature/alpha coefficient loss.
|
_temperature_objective
|
python
|
rlworkgroup/garage
|
src/garage/torch/algos/sac.py
|
https://github.com/rlworkgroup/garage/blob/master/src/garage/torch/algos/sac.py
|
MIT
|
def _actor_objective(self, samples_data, new_actions, log_pi_new_actions):
"""Compute the Policy/Actor loss.
Args:
samples_data (dict): Transitions(S,A,R,S') that are sampled from
the replay buffer. It should have the keys 'observation',
'action', 'reward', 'terminal', and 'next_observations'.
new_actions (torch.Tensor): Actions resampled from the policy based
based on the Observations, obs, which were sampled from the
replay buffer. Shape is (action_dim, buffer_batch_size).
log_pi_new_actions (torch.Tensor): Log probability of the new
actions on the TanhNormal distributions that they were sampled
from. Shape is (1, buffer_batch_size).
Note:
samples_data's entries should be torch.Tensor's with the following
shapes:
observation: :math:`(N, O^*)`
action: :math:`(N, A^*)`
reward: :math:`(N, 1)`
terminal: :math:`(N, 1)`
next_observation: :math:`(N, O^*)`
Returns:
torch.Tensor: loss from the Policy/Actor.
"""
obs = samples_data['observation']
with torch.no_grad():
alpha = self._get_log_alpha(samples_data).exp()
min_q_new_actions = torch.min(self._qf1(obs, new_actions),
self._qf2(obs, new_actions))
policy_objective = ((alpha * log_pi_new_actions) -
min_q_new_actions.flatten()).mean()
return policy_objective
|
Compute the Policy/Actor loss.
Args:
samples_data (dict): Transitions(S,A,R,S') that are sampled from
the replay buffer. It should have the keys 'observation',
'action', 'reward', 'terminal', and 'next_observations'.
new_actions (torch.Tensor): Actions resampled from the policy based
based on the Observations, obs, which were sampled from the
replay buffer. Shape is (action_dim, buffer_batch_size).
log_pi_new_actions (torch.Tensor): Log probability of the new
actions on the TanhNormal distributions that they were sampled
from. Shape is (1, buffer_batch_size).
Note:
samples_data's entries should be torch.Tensor's with the following
shapes:
observation: :math:`(N, O^*)`
action: :math:`(N, A^*)`
reward: :math:`(N, 1)`
terminal: :math:`(N, 1)`
next_observation: :math:`(N, O^*)`
Returns:
torch.Tensor: loss from the Policy/Actor.
|
_actor_objective
|
python
|
rlworkgroup/garage
|
src/garage/torch/algos/sac.py
|
https://github.com/rlworkgroup/garage/blob/master/src/garage/torch/algos/sac.py
|
MIT
|
def _critic_objective(self, samples_data):
"""Compute the Q-function/critic loss.
Args:
samples_data (dict): Transitions(S,A,R,S') that are sampled from
the replay buffer. It should have the keys 'observation',
'action', 'reward', 'terminal', and 'next_observations'.
Note:
samples_data's entries should be torch.Tensor's with the following
shapes:
observation: :math:`(N, O^*)`
action: :math:`(N, A^*)`
reward: :math:`(N, 1)`
terminal: :math:`(N, 1)`
next_observation: :math:`(N, O^*)`
Returns:
torch.Tensor: loss from 1st q-function after optimization.
torch.Tensor: loss from 2nd q-function after optimization.
"""
obs = samples_data['observation']
actions = samples_data['action']
rewards = samples_data['reward'].flatten()
terminals = samples_data['terminal'].flatten()
next_obs = samples_data['next_observation']
with torch.no_grad():
alpha = self._get_log_alpha(samples_data).exp()
q1_pred = self._qf1(obs, actions)
q2_pred = self._qf2(obs, actions)
new_next_actions_dist = self.policy(next_obs)[0]
new_next_actions_pre_tanh, new_next_actions = (
new_next_actions_dist.rsample_with_pre_tanh_value())
new_log_pi = new_next_actions_dist.log_prob(
value=new_next_actions, pre_tanh_value=new_next_actions_pre_tanh)
target_q_values = torch.min(
self._target_qf1(next_obs, new_next_actions),
self._target_qf2(
next_obs, new_next_actions)).flatten() - (alpha * new_log_pi)
with torch.no_grad():
q_target = rewards * self._reward_scale + (
1. - terminals) * self._discount * target_q_values
qf1_loss = F.mse_loss(q1_pred.flatten(), q_target)
qf2_loss = F.mse_loss(q2_pred.flatten(), q_target)
return qf1_loss, qf2_loss
|
Compute the Q-function/critic loss.
Args:
samples_data (dict): Transitions(S,A,R,S') that are sampled from
the replay buffer. It should have the keys 'observation',
'action', 'reward', 'terminal', and 'next_observations'.
Note:
samples_data's entries should be torch.Tensor's with the following
shapes:
observation: :math:`(N, O^*)`
action: :math:`(N, A^*)`
reward: :math:`(N, 1)`
terminal: :math:`(N, 1)`
next_observation: :math:`(N, O^*)`
Returns:
torch.Tensor: loss from 1st q-function after optimization.
torch.Tensor: loss from 2nd q-function after optimization.
|
_critic_objective
|
python
|
rlworkgroup/garage
|
src/garage/torch/algos/sac.py
|
https://github.com/rlworkgroup/garage/blob/master/src/garage/torch/algos/sac.py
|
MIT
|
def _caps_regularization_objective(self, action_dists, samples_data):
"""Compute the spatial and temporal regularization loss as in CAPS.
Args:
samples_data (dict): Transitions(S,A,R,S') that are sampled from
the replay buffer. It should have the keys 'observation',
'action', 'reward', 'terminal', and 'next_observations'.
action_dists (torch.distribution.Distribution): Distributions
returned from the policy after feeding through observations.
Returns:
torch.Tensor: combined regularization loss
"""
# torch.tensor is callable and the recommended way to create a scalar
# tensor
# pylint: disable=not-callable
if self._temporal_regularization_factor:
next_action_dists = self.policy(
samples_data['next_observation'])[0]
temporal_loss = self._temporal_regularization_factor * torch.mean(
torch.cdist(action_dists.mean, next_action_dists.mean, p=2))
else:
temporal_loss = torch.tensor(0.)
if self._spatial_regularization_factor:
obs = samples_data['observation']
noisy_action_dists = self.policy(
obs + self._spatial_regularization_dist.sample(obs.shape))[0]
spatial_loss = self._spatial_regularization_factor * torch.mean(
torch.cdist(action_dists.mean, noisy_action_dists.mean, p=2))
else:
spatial_loss = torch.tensor(0.)
return temporal_loss + spatial_loss
|
Compute the spatial and temporal regularization loss as in CAPS.
Args:
samples_data (dict): Transitions(S,A,R,S') that are sampled from
the replay buffer. It should have the keys 'observation',
'action', 'reward', 'terminal', and 'next_observations'.
action_dists (torch.distribution.Distribution): Distributions
returned from the policy after feeding through observations.
Returns:
torch.Tensor: combined regularization loss
|
_caps_regularization_objective
|
python
|
rlworkgroup/garage
|
src/garage/torch/algos/sac.py
|
https://github.com/rlworkgroup/garage/blob/master/src/garage/torch/algos/sac.py
|
MIT
|
def _update_targets(self):
"""Update parameters in the target q-functions."""
target_qfs = [self._target_qf1, self._target_qf2]
qfs = [self._qf1, self._qf2]
for target_qf, qf in zip(target_qfs, qfs):
for t_param, param in zip(target_qf.parameters(), qf.parameters()):
t_param.data.copy_(t_param.data * (1.0 - self._tau) +
param.data * self._tau)
|
Update parameters in the target q-functions.
|
_update_targets
|
python
|
rlworkgroup/garage
|
src/garage/torch/algos/sac.py
|
https://github.com/rlworkgroup/garage/blob/master/src/garage/torch/algos/sac.py
|
MIT
|
def optimize_policy(self, samples_data):
"""Optimize the policy q_functions, and temperature coefficient.
Args:
samples_data (dict): Transitions(S,A,R,S') that are sampled from
the replay buffer. It should have the keys 'observation',
'action', 'reward', 'terminal', and 'next_observations'.
Note:
samples_data's entries should be torch.Tensor's with the following
shapes:
observation: :math:`(N, O^*)`
action: :math:`(N, A^*)`
reward: :math:`(N, 1)`
terminal: :math:`(N, 1)`
next_observation: :math:`(N, O^*)`
Returns:
torch.Tensor: loss from actor/policy network after optimization.
torch.Tensor: loss from 1st q-function after optimization.
torch.Tensor: loss from 2nd q-function after optimization.
"""
obs = samples_data['observation']
qf1_loss, qf2_loss = self._critic_objective(samples_data)
zero_optim_grads(self._qf1_optimizer)
qf1_loss.backward()
self._qf1_optimizer.step()
zero_optim_grads(self._qf2_optimizer)
qf2_loss.backward()
self._qf2_optimizer.step()
action_dists = self.policy(obs)[0]
new_actions_pre_tanh, new_actions = (
action_dists.rsample_with_pre_tanh_value())
log_pi_new_actions = action_dists.log_prob(
value=new_actions, pre_tanh_value=new_actions_pre_tanh)
policy_loss = self._actor_objective(samples_data, new_actions,
log_pi_new_actions)
policy_loss += self._caps_regularization_objective(
action_dists, samples_data)
zero_optim_grads(self._policy_optimizer)
policy_loss.backward()
self._policy_optimizer.step()
if self._use_automatic_entropy_tuning:
alpha_loss = self._temperature_objective(log_pi_new_actions,
samples_data)
zero_optim_grads(self._alpha_optimizer)
alpha_loss.backward()
self._alpha_optimizer.step()
return policy_loss, qf1_loss, qf2_loss
|
Optimize the policy q_functions, and temperature coefficient.
Args:
samples_data (dict): Transitions(S,A,R,S') that are sampled from
the replay buffer. It should have the keys 'observation',
'action', 'reward', 'terminal', and 'next_observations'.
Note:
samples_data's entries should be torch.Tensor's with the following
shapes:
observation: :math:`(N, O^*)`
action: :math:`(N, A^*)`
reward: :math:`(N, 1)`
terminal: :math:`(N, 1)`
next_observation: :math:`(N, O^*)`
Returns:
torch.Tensor: loss from actor/policy network after optimization.
torch.Tensor: loss from 1st q-function after optimization.
torch.Tensor: loss from 2nd q-function after optimization.
|
optimize_policy
|
python
|
rlworkgroup/garage
|
src/garage/torch/algos/sac.py
|
https://github.com/rlworkgroup/garage/blob/master/src/garage/torch/algos/sac.py
|
MIT
|
def _evaluate_policy(self, epoch):
"""Evaluate the performance of the policy via deterministic sampling.
Statistics such as (average) discounted return and success rate are
recorded.
Args:
epoch (int): The current training epoch.
Returns:
float: The average return across self._num_evaluation_episodes
episodes
"""
eval_episodes = obtain_evaluation_episodes(
self.policy,
self._eval_env,
self._max_episode_length_eval,
num_eps=self._num_evaluation_episodes,
deterministic=self._use_deterministic_evaluation)
last_return = log_performance(epoch,
eval_episodes,
discount=self._discount)
return last_return
|
Evaluate the performance of the policy via deterministic sampling.
Statistics such as (average) discounted return and success rate are
recorded.
Args:
epoch (int): The current training epoch.
Returns:
float: The average return across self._num_evaluation_episodes
episodes
|
_evaluate_policy
|
python
|
rlworkgroup/garage
|
src/garage/torch/algos/sac.py
|
https://github.com/rlworkgroup/garage/blob/master/src/garage/torch/algos/sac.py
|
MIT
|
def _log_statistics(self, policy_loss, qf1_loss, qf2_loss):
"""Record training statistics to dowel such as losses and returns.
Args:
policy_loss (torch.Tensor): loss from actor/policy network.
qf1_loss (torch.Tensor): loss from 1st qf/critic network.
qf2_loss (torch.Tensor): loss from 2nd qf/critic network.
"""
with torch.no_grad():
tabular.record('AlphaTemperature/mean',
self._log_alpha.exp().mean().item())
tabular.record('Policy/Loss', policy_loss.item())
tabular.record('QF/{}'.format('Qf1Loss'), float(qf1_loss))
tabular.record('QF/{}'.format('Qf2Loss'), float(qf2_loss))
tabular.record('ReplayBuffer/buffer_size',
self.replay_buffer.n_transitions_stored)
tabular.record('Average/TrainAverageReturn',
np.mean(self.episode_rewards))
|
Record training statistics to dowel such as losses and returns.
Args:
policy_loss (torch.Tensor): loss from actor/policy network.
qf1_loss (torch.Tensor): loss from 1st qf/critic network.
qf2_loss (torch.Tensor): loss from 2nd qf/critic network.
|
_log_statistics
|
python
|
rlworkgroup/garage
|
src/garage/torch/algos/sac.py
|
https://github.com/rlworkgroup/garage/blob/master/src/garage/torch/algos/sac.py
|
MIT
|
def networks(self):
"""Return all the networks within the model.
Returns:
list: A list of networks.
"""
return [
self.policy, self._qf1, self._qf2, self._target_qf1,
self._target_qf2
]
|
Return all the networks within the model.
Returns:
list: A list of networks.
|
networks
|
python
|
rlworkgroup/garage
|
src/garage/torch/algos/sac.py
|
https://github.com/rlworkgroup/garage/blob/master/src/garage/torch/algos/sac.py
|
MIT
|
def to(self, device=None):
"""Put all the networks within the model on device.
Args:
device (str): ID of GPU or CPU.
"""
if device is None:
device = global_device()
for net in self.networks:
net.to(device)
if not self._use_automatic_entropy_tuning:
self._log_alpha = list_to_tensor([self._fixed_alpha
]).log().to(device)
else:
self._log_alpha = self._log_alpha.detach().to(
device).requires_grad_()
self._alpha_optimizer = self._optimizer([self._log_alpha],
lr=self._policy_lr)
self._alpha_optimizer.load_state_dict(
state_dict_to(self._alpha_optimizer.state_dict(), device))
self._qf1_optimizer.load_state_dict(
state_dict_to(self._qf1_optimizer.state_dict(), device))
self._qf2_optimizer.load_state_dict(
state_dict_to(self._qf2_optimizer.state_dict(), device))
self._policy_optimizer.load_state_dict(
state_dict_to(self._policy_optimizer.state_dict(), device))
|
Put all the networks within the model on device.
Args:
device (str): ID of GPU or CPU.
|
to
|
python
|
rlworkgroup/garage
|
src/garage/torch/algos/sac.py
|
https://github.com/rlworkgroup/garage/blob/master/src/garage/torch/algos/sac.py
|
MIT
|
def _get_action(self, action, noise_scale):
"""Select action based on policy.
Action can be added with noise.
Args:
action (float): Action.
noise_scale (float): Noise scale added to action.
Return:
float: Action selected by the policy.
"""
action += noise_scale * np.random.randn(self._action_dim)
# pylint: disable=invalid-unary-operand-type
return np.clip(action, -self._max_action, self._max_action)
|
Select action based on policy.
Action can be added with noise.
Args:
action (float): Action.
noise_scale (float): Noise scale added to action.
Return:
float: Action selected by the policy.
|
_get_action
|
python
|
rlworkgroup/garage
|
src/garage/torch/algos/td3.py
|
https://github.com/rlworkgroup/garage/blob/master/src/garage/torch/algos/td3.py
|
MIT
|
def train(self, trainer):
"""Obtain samplers and start actual training for each epoch.
Args:
trainer (Trainer): Experiment trainer, which provides services
such as snapshotting and sampler control.
"""
if not self._eval_env:
self._eval_env = trainer.get_env_copy()
trainer.enable_logging = False
for _ in trainer.step_epochs():
for cycle in range(self._steps_per_epoch):
# Obtain trasnsition batch and store it in replay buffer.
# Get action randomly from environment within warm-up steps.
# Afterwards, get action from policy.
if self._uniform_random_policy and \
trainer.step_itr < self._start_steps:
trainer.step_episode = trainer.obtain_episodes(
trainer.step_itr,
agent_update=self._uniform_random_policy)
else:
trainer.step_episode = trainer.obtain_episodes(
trainer.step_itr, agent_update=self.exploration_policy)
self._replay_buffer.add_episode_batch(trainer.step_episode)
# Update after warm-up steps.
if trainer.total_env_steps >= self._update_after:
self._train_once(trainer.step_itr)
# Evaluate and log the results.
if (cycle == 0 and self._replay_buffer.n_transitions_stored >=
self._min_buffer_size):
trainer.enable_logging = True
eval_eps = self._evaluate_policy()
log_performance(trainer.step_episode,
eval_eps,
discount=self._discount,
prefix='Training')
log_performance(trainer.step_itr,
eval_eps,
discount=self._discount,
prefix='Evaluation')
trainer.step_itr += 1
|
Obtain samplers and start actual training for each epoch.
Args:
trainer (Trainer): Experiment trainer, which provides services
such as snapshotting and sampler control.
|
train
|
python
|
rlworkgroup/garage
|
src/garage/torch/algos/td3.py
|
https://github.com/rlworkgroup/garage/blob/master/src/garage/torch/algos/td3.py
|
MIT
|
def _train_once(self, itr):
"""Perform one iteration of training.
Args:
itr (int): Iteration number.
"""
for grad_step_timer in range(self._grad_steps_per_env_step):
if (self._replay_buffer.n_transitions_stored >=
self._min_buffer_size):
# Sample from buffer
samples = self._replay_buffer.sample_transitions(
self._buffer_batch_size)
samples = as_torch_dict(samples)
# Optimize
qf_loss, y, q, policy_loss = torch_to_np(
self._optimize_policy(samples, grad_step_timer))
self._episode_policy_losses.append(policy_loss)
self._episode_qf_losses.append(qf_loss)
self._epoch_ys.append(y)
self._epoch_qs.append(q)
if itr % self._steps_per_epoch == 0:
logger.log('Training finished')
epoch = itr // self._steps_per_epoch
if (self._replay_buffer.n_transitions_stored >=
self._min_buffer_size):
tabular.record('Epoch', epoch)
self._log_statistics()
|
Perform one iteration of training.
Args:
itr (int): Iteration number.
|
_train_once
|
python
|
rlworkgroup/garage
|
src/garage/torch/algos/td3.py
|
https://github.com/rlworkgroup/garage/blob/master/src/garage/torch/algos/td3.py
|
MIT
|
def _optimize_policy(self, samples_data, grad_step_timer):
"""Perform algorithm optimization.
Args:
samples_data (dict): Processed batch data.
grad_step_timer (int): Iteration number of the gradient time
taken in the env.
Returns:
float: Loss predicted by the q networks
(critic networks).
float: Q value (min) predicted by one of the
target q networks.
float: Q value (min) predicted by one of the
current q networks.
float: Loss predicted by the policy
(action network).
"""
rewards = samples_data['rewards'].to(global_device()).reshape(-1, 1)
terminals = samples_data['terminals'].to(global_device()).reshape(
-1, 1)
actions = samples_data['actions'].to(global_device())
observations = samples_data['observations'].to(global_device())
next_observations = samples_data['next_observations'].to(
global_device())
next_inputs = next_observations
inputs = observations
with torch.no_grad():
# Select action according to policy and add clipped noise
noise = (torch.randn_like(actions) * self._policy_noise).clamp(
-self._policy_noise_clip, self._policy_noise_clip)
next_actions = (self._target_policy(next_inputs) + noise).clamp(
-self._max_action, self._max_action)
# Compute the target Q value
target_Q1 = self._target_qf_1(next_inputs, next_actions)
target_Q2 = self._target_qf_2(next_inputs, next_actions)
target_q = torch.min(target_Q1, target_Q2)
target_Q = rewards * self._reward_scaling + (
1. - terminals) * self._discount * target_q
# Get current Q values
current_Q1 = self._qf_1(inputs, actions)
current_Q2 = self._qf_2(inputs, actions)
current_Q = torch.min(current_Q1, current_Q2)
# Compute critic loss
critic_loss = F.mse_loss(current_Q1, target_Q) + F.mse_loss(
current_Q2, target_Q)
# Optimize critic
zero_optim_grads(self._qf_optimizer_1)
zero_optim_grads(self._qf_optimizer_2)
critic_loss.backward()
self._qf_optimizer_1.step()
self._qf_optimizer_2.step()
# Deplay policy updates
if grad_step_timer % self._update_actor_interval == 0:
# Compute actor loss
actions = self.policy(inputs)
self._actor_loss = -self._qf_1(inputs, actions).mean()
# Optimize actor
zero_optim_grads(self._policy_optimizer)
self._actor_loss.backward()
self._policy_optimizer.step()
# update target networks
self._update_network_parameters()
return (critic_loss.detach(), target_Q, current_Q.detach(),
self._actor_loss.detach())
|
Perform algorithm optimization.
Args:
samples_data (dict): Processed batch data.
grad_step_timer (int): Iteration number of the gradient time
taken in the env.
Returns:
float: Loss predicted by the q networks
(critic networks).
float: Q value (min) predicted by one of the
target q networks.
float: Q value (min) predicted by one of the
current q networks.
float: Loss predicted by the policy
(action network).
|
_optimize_policy
|
python
|
rlworkgroup/garage
|
src/garage/torch/algos/td3.py
|
https://github.com/rlworkgroup/garage/blob/master/src/garage/torch/algos/td3.py
|
MIT
|
def _evaluate_policy(self):
"""Evaluate the performance of the policy via deterministic rollouts.
Statistics such as (average) discounted return and success rate are
recorded.
Returns:
TrajectoryBatch: Evaluation trajectories, representing the best
current performance of the algorithm.
"""
return obtain_evaluation_episodes(
self.exploration_policy,
self._eval_env,
self._max_episode_length_eval,
num_eps=self._num_evaluation_episodes,
deterministic=self._use_deterministic_evaluation)
|
Evaluate the performance of the policy via deterministic rollouts.
Statistics such as (average) discounted return and success rate are
recorded.
Returns:
TrajectoryBatch: Evaluation trajectories, representing the best
current performance of the algorithm.
|
_evaluate_policy
|
python
|
rlworkgroup/garage
|
src/garage/torch/algos/td3.py
|
https://github.com/rlworkgroup/garage/blob/master/src/garage/torch/algos/td3.py
|
MIT
|
def _update_network_parameters(self):
"""Update parameters in actor network and critic networks."""
soft_update_model(self._target_qf_1, self._qf_1, self._tau)
soft_update_model(self._target_qf_2, self._qf_2, self._tau)
soft_update_model(self._target_policy, self.policy, self._tau)
|
Update parameters in actor network and critic networks.
|
_update_network_parameters
|
python
|
rlworkgroup/garage
|
src/garage/torch/algos/td3.py
|
https://github.com/rlworkgroup/garage/blob/master/src/garage/torch/algos/td3.py
|
MIT
|
def _log_statistics(self):
"""Output training statistics to dowel such as losses and returns."""
tabular.record('Policy/AveragePolicyLoss',
np.mean(self._episode_policy_losses))
tabular.record('QFunction/AverageQFunctionLoss',
np.mean(self._episode_qf_losses))
tabular.record('QFunction/AverageQ', np.mean(self._epoch_qs))
tabular.record('QFunction/MaxQ', np.max(self._epoch_qs))
tabular.record('QFunction/AverageAbsQ',
np.mean(np.abs(self._epoch_qs)))
tabular.record('QFunction/AverageY', np.mean(self._epoch_ys))
tabular.record('QFunction/MaxY', np.max(self._epoch_ys))
tabular.record('QFunction/AverageAbsY',
np.mean(np.abs(self._epoch_ys)))
|
Output training statistics to dowel such as losses and returns.
|
_log_statistics
|
python
|
rlworkgroup/garage
|
src/garage/torch/algos/td3.py
|
https://github.com/rlworkgroup/garage/blob/master/src/garage/torch/algos/td3.py
|
MIT
|
def networks(self):
"""Return all the networks within the model.
Returns:
list: A list of networks.
"""
return [
self.policy, self._qf_1, self._qf_2, self._target_policy,
self._target_qf_1, self._target_qf_2
]
|
Return all the networks within the model.
Returns:
list: A list of networks.
|
networks
|
python
|
rlworkgroup/garage
|
src/garage/torch/algos/td3.py
|
https://github.com/rlworkgroup/garage/blob/master/src/garage/torch/algos/td3.py
|
MIT
|
def to(self, device=None):
"""Put all the networks within the model on device.
Args:
device (str): ID of GPU or CPU.
"""
device = device or global_device()
for net in self.networks:
net.to(device)
|
Put all the networks within the model on device.
Args:
device (str): ID of GPU or CPU.
|
to
|
python
|
rlworkgroup/garage
|
src/garage/torch/algos/td3.py
|
https://github.com/rlworkgroup/garage/blob/master/src/garage/torch/algos/td3.py
|
MIT
|
def _compute_objective(self, advantages, obs, actions, rewards):
r"""Compute objective value.
Args:
advantages (torch.Tensor): Advantage value at each step
with shape :math:`(N \dot [T], )`.
obs (torch.Tensor): Observation from the environment
with shape :math:`(N \dot [T], O*)`.
actions (torch.Tensor): Actions fed to the environment
with shape :math:`(N \dot [T], A*)`.
rewards (torch.Tensor): Acquired rewards
with shape :math:`(N \dot [T], )`.
Returns:
torch.Tensor: Calculated objective values
with shape :math:`(N \dot [T], )`.
"""
with torch.no_grad():
old_ll = self._old_policy(obs)[0].log_prob(actions)
new_ll = self.policy(obs)[0].log_prob(actions)
likelihood_ratio = (new_ll - old_ll).exp()
# Calculate surrogate
surrogate = likelihood_ratio * advantages
return surrogate
|
Compute objective value.
Args:
advantages (torch.Tensor): Advantage value at each step
with shape :math:`(N \dot [T], )`.
obs (torch.Tensor): Observation from the environment
with shape :math:`(N \dot [T], O*)`.
actions (torch.Tensor): Actions fed to the environment
with shape :math:`(N \dot [T], A*)`.
rewards (torch.Tensor): Acquired rewards
with shape :math:`(N \dot [T], )`.
Returns:
torch.Tensor: Calculated objective values
with shape :math:`(N \dot [T], )`.
|
_compute_objective
|
python
|
rlworkgroup/garage
|
src/garage/torch/algos/trpo.py
|
https://github.com/rlworkgroup/garage/blob/master/src/garage/torch/algos/trpo.py
|
MIT
|
def _train_policy(self, obs, actions, rewards, advantages):
r"""Train the policy.
Args:
obs (torch.Tensor): Observation from the environment
with shape :math:`(N, O*)`.
actions (torch.Tensor): Actions fed to the environment
with shape :math:`(N, A*)`.
rewards (torch.Tensor): Acquired rewards
with shape :math:`(N, )`.
advantages (torch.Tensor): Advantage value at each step
with shape :math:`(N, )`.
Returns:
torch.Tensor: Calculated mean scalar value of policy loss (float).
"""
# pylint: disable=protected-access
zero_optim_grads(self._policy_optimizer._optimizer)
loss = self._compute_loss_with_adv(obs, actions, rewards, advantages)
loss.backward()
self._policy_optimizer.step(
f_loss=lambda: self._compute_loss_with_adv(obs, actions, rewards,
advantages),
f_constraint=lambda: self._compute_kl_constraint(obs))
return loss
|
Train the policy.
Args:
obs (torch.Tensor): Observation from the environment
with shape :math:`(N, O*)`.
actions (torch.Tensor): Actions fed to the environment
with shape :math:`(N, A*)`.
rewards (torch.Tensor): Acquired rewards
with shape :math:`(N, )`.
advantages (torch.Tensor): Advantage value at each step
with shape :math:`(N, )`.
Returns:
torch.Tensor: Calculated mean scalar value of policy loss (float).
|
_train_policy
|
python
|
rlworkgroup/garage
|
src/garage/torch/algos/trpo.py
|
https://github.com/rlworkgroup/garage/blob/master/src/garage/torch/algos/trpo.py
|
MIT
|
def _train_once(self, itr, eps):
"""Train the algorithm once.
Args:
itr (int): Iteration number.
eps (EpisodeBatch): A batch of collected paths.
Returns:
numpy.float64: Calculated mean value of undiscounted returns.
"""
obs = np_to_torch(eps.padded_observations)
rewards = np_to_torch(eps.padded_rewards)
returns = np_to_torch(
np.stack([
discount_cumsum(reward, self.discount)
for reward in eps.padded_rewards
]))
valids = eps.lengths
with torch.no_grad():
baselines = self._value_function(obs)
if self._maximum_entropy:
policy_entropies = self._compute_policy_entropy(obs)
rewards += self._policy_ent_coeff * policy_entropies
obs_flat = np_to_torch(eps.observations)
actions_flat = np_to_torch(eps.actions)
rewards_flat = np_to_torch(eps.rewards)
returns_flat = torch.cat(filter_valids(returns, valids))
advs_flat = self._compute_advantage(rewards, valids, baselines)
with torch.no_grad():
policy_loss_before = self._compute_loss_with_adv(
obs_flat, actions_flat, rewards_flat, advs_flat)
vf_loss_before = self._value_function.compute_loss(
obs_flat, returns_flat)
kl_before = self._compute_kl_constraint(obs)
self._train(obs_flat, actions_flat, rewards_flat, returns_flat,
advs_flat)
with torch.no_grad():
policy_loss_after = self._compute_loss_with_adv(
obs_flat, actions_flat, rewards_flat, advs_flat)
vf_loss_after = self._value_function.compute_loss(
obs_flat, returns_flat)
kl_after = self._compute_kl_constraint(obs)
policy_entropy = self._compute_policy_entropy(obs)
with tabular.prefix(self.policy.name):
tabular.record('/LossBefore', policy_loss_before.item())
tabular.record('/LossAfter', policy_loss_after.item())
tabular.record('/dLoss',
(policy_loss_before - policy_loss_after).item())
tabular.record('/KLBefore', kl_before.item())
tabular.record('/KL', kl_after.item())
tabular.record('/Entropy', policy_entropy.mean().item())
with tabular.prefix(self._value_function.name):
tabular.record('/LossBefore', vf_loss_before.item())
tabular.record('/LossAfter', vf_loss_after.item())
tabular.record('/dLoss',
vf_loss_before.item() - vf_loss_after.item())
self._old_policy.load_state_dict(self.policy.state_dict())
undiscounted_returns = log_performance(itr,
eps,
discount=self._discount)
return np.mean(undiscounted_returns)
|
Train the algorithm once.
Args:
itr (int): Iteration number.
eps (EpisodeBatch): A batch of collected paths.
Returns:
numpy.float64: Calculated mean value of undiscounted returns.
|
_train_once
|
python
|
rlworkgroup/garage
|
src/garage/torch/algos/vpg.py
|
https://github.com/rlworkgroup/garage/blob/master/src/garage/torch/algos/vpg.py
|
MIT
|
def train(self, trainer):
"""Obtain samplers and start actual training for each epoch.
Args:
trainer (Trainer): Gives the algorithm the access to
:method:`~Trainer.step_epochs()`, which provides services
such as snapshotting and sampler control.
Returns:
float: The average return in last epoch cycle.
"""
last_return = None
for _ in trainer.step_epochs():
for _ in range(self._n_samples):
eps = trainer.obtain_episodes(trainer.step_itr)
last_return = self._train_once(trainer.step_itr, eps)
trainer.step_itr += 1
return last_return
|
Obtain samplers and start actual training for each epoch.
Args:
trainer (Trainer): Gives the algorithm the access to
:method:`~Trainer.step_epochs()`, which provides services
such as snapshotting and sampler control.
Returns:
float: The average return in last epoch cycle.
|
train
|
python
|
rlworkgroup/garage
|
src/garage/torch/algos/vpg.py
|
https://github.com/rlworkgroup/garage/blob/master/src/garage/torch/algos/vpg.py
|
MIT
|
def _train(self, obs, actions, rewards, returns, advs):
r"""Train the policy and value function with minibatch.
Args:
obs (torch.Tensor): Observation from the environment with shape
:math:`(N, O*)`.
actions (torch.Tensor): Actions fed to the environment with shape
:math:`(N, A*)`.
rewards (torch.Tensor): Acquired rewards with shape :math:`(N, )`.
returns (torch.Tensor): Acquired returns with shape :math:`(N, )`.
advs (torch.Tensor): Advantage value at each step with shape
:math:`(N, )`.
"""
for dataset in self._policy_optimizer.get_minibatch(
obs, actions, rewards, advs):
self._train_policy(*dataset)
for dataset in self._vf_optimizer.get_minibatch(obs, returns):
self._train_value_function(*dataset)
|
Train the policy and value function with minibatch.
Args:
obs (torch.Tensor): Observation from the environment with shape
:math:`(N, O*)`.
actions (torch.Tensor): Actions fed to the environment with shape
:math:`(N, A*)`.
rewards (torch.Tensor): Acquired rewards with shape :math:`(N, )`.
returns (torch.Tensor): Acquired returns with shape :math:`(N, )`.
advs (torch.Tensor): Advantage value at each step with shape
:math:`(N, )`.
|
_train
|
python
|
rlworkgroup/garage
|
src/garage/torch/algos/vpg.py
|
https://github.com/rlworkgroup/garage/blob/master/src/garage/torch/algos/vpg.py
|
MIT
|
def _train_policy(self, obs, actions, rewards, advantages):
r"""Train the policy.
Args:
obs (torch.Tensor): Observation from the environment
with shape :math:`(N, O*)`.
actions (torch.Tensor): Actions fed to the environment
with shape :math:`(N, A*)`.
rewards (torch.Tensor): Acquired rewards
with shape :math:`(N, )`.
advantages (torch.Tensor): Advantage value at each step
with shape :math:`(N, )`.
Returns:
torch.Tensor: Calculated mean scalar value of policy loss (float).
"""
# pylint: disable=protected-access
zero_optim_grads(self._policy_optimizer._optimizer)
loss = self._compute_loss_with_adv(obs, actions, rewards, advantages)
loss.backward()
self._policy_optimizer.step()
return loss
|
Train the policy.
Args:
obs (torch.Tensor): Observation from the environment
with shape :math:`(N, O*)`.
actions (torch.Tensor): Actions fed to the environment
with shape :math:`(N, A*)`.
rewards (torch.Tensor): Acquired rewards
with shape :math:`(N, )`.
advantages (torch.Tensor): Advantage value at each step
with shape :math:`(N, )`.
Returns:
torch.Tensor: Calculated mean scalar value of policy loss (float).
|
_train_policy
|
python
|
rlworkgroup/garage
|
src/garage/torch/algos/vpg.py
|
https://github.com/rlworkgroup/garage/blob/master/src/garage/torch/algos/vpg.py
|
MIT
|
def _train_value_function(self, obs, returns):
r"""Train the value function.
Args:
obs (torch.Tensor): Observation from the environment
with shape :math:`(N, O*)`.
returns (torch.Tensor): Acquired returns
with shape :math:`(N, )`.
Returns:
torch.Tensor: Calculated mean scalar value of value function loss
(float).
"""
# pylint: disable=protected-access
zero_optim_grads(self._vf_optimizer._optimizer)
loss = self._value_function.compute_loss(obs, returns)
loss.backward()
self._vf_optimizer.step()
return loss
|
Train the value function.
Args:
obs (torch.Tensor): Observation from the environment
with shape :math:`(N, O*)`.
returns (torch.Tensor): Acquired returns
with shape :math:`(N, )`.
Returns:
torch.Tensor: Calculated mean scalar value of value function loss
(float).
|
_train_value_function
|
python
|
rlworkgroup/garage
|
src/garage/torch/algos/vpg.py
|
https://github.com/rlworkgroup/garage/blob/master/src/garage/torch/algos/vpg.py
|
MIT
|
def _compute_loss(self, obs, actions, rewards, valids, baselines):
r"""Compute mean value of loss.
Notes: P is the maximum episode length (self.max_episode_length)
Args:
obs (torch.Tensor): Observation from the environment
with shape :math:`(N, P, O*)`.
actions (torch.Tensor): Actions fed to the environment
with shape :math:`(N, P, A*)`.
rewards (torch.Tensor): Acquired rewards
with shape :math:`(N, P)`.
valids (list[int]): Numbers of valid steps in each episode
baselines (torch.Tensor): Value function estimation at each step
with shape :math:`(N, P)`.
Returns:
torch.Tensor: Calculated negative mean scalar value of
objective (float).
"""
obs_flat = torch.cat(filter_valids(obs, valids))
actions_flat = torch.cat(filter_valids(actions, valids))
rewards_flat = torch.cat(filter_valids(rewards, valids))
advantages_flat = self._compute_advantage(rewards, valids, baselines)
return self._compute_loss_with_adv(obs_flat, actions_flat,
rewards_flat, advantages_flat)
|
Compute mean value of loss.
Notes: P is the maximum episode length (self.max_episode_length)
Args:
obs (torch.Tensor): Observation from the environment
with shape :math:`(N, P, O*)`.
actions (torch.Tensor): Actions fed to the environment
with shape :math:`(N, P, A*)`.
rewards (torch.Tensor): Acquired rewards
with shape :math:`(N, P)`.
valids (list[int]): Numbers of valid steps in each episode
baselines (torch.Tensor): Value function estimation at each step
with shape :math:`(N, P)`.
Returns:
torch.Tensor: Calculated negative mean scalar value of
objective (float).
|
_compute_loss
|
python
|
rlworkgroup/garage
|
src/garage/torch/algos/vpg.py
|
https://github.com/rlworkgroup/garage/blob/master/src/garage/torch/algos/vpg.py
|
MIT
|
def _compute_loss_with_adv(self, obs, actions, rewards, advantages):
r"""Compute mean value of loss.
Args:
obs (torch.Tensor): Observation from the environment
with shape :math:`(N \dot [T], O*)`.
actions (torch.Tensor): Actions fed to the environment
with shape :math:`(N \dot [T], A*)`.
rewards (torch.Tensor): Acquired rewards
with shape :math:`(N \dot [T], )`.
advantages (torch.Tensor): Advantage value at each step
with shape :math:`(N \dot [T], )`.
Returns:
torch.Tensor: Calculated negative mean scalar value of objective.
"""
objectives = self._compute_objective(advantages, obs, actions, rewards)
if self._entropy_regularzied:
policy_entropies = self._compute_policy_entropy(obs)
objectives += self._policy_ent_coeff * policy_entropies
return -objectives.mean()
|
Compute mean value of loss.
Args:
obs (torch.Tensor): Observation from the environment
with shape :math:`(N \dot [T], O*)`.
actions (torch.Tensor): Actions fed to the environment
with shape :math:`(N \dot [T], A*)`.
rewards (torch.Tensor): Acquired rewards
with shape :math:`(N \dot [T], )`.
advantages (torch.Tensor): Advantage value at each step
with shape :math:`(N \dot [T], )`.
Returns:
torch.Tensor: Calculated negative mean scalar value of objective.
|
_compute_loss_with_adv
|
python
|
rlworkgroup/garage
|
src/garage/torch/algos/vpg.py
|
https://github.com/rlworkgroup/garage/blob/master/src/garage/torch/algos/vpg.py
|
MIT
|
def _compute_advantage(self, rewards, valids, baselines):
r"""Compute mean value of loss.
Notes: P is the maximum episode length (self.max_episode_length)
Args:
rewards (torch.Tensor): Acquired rewards
with shape :math:`(N, P)`.
valids (list[int]): Numbers of valid steps in each episode
baselines (torch.Tensor): Value function estimation at each step
with shape :math:`(N, P)`.
Returns:
torch.Tensor: Calculated advantage values given rewards and
baselines with shape :math:`(N \dot [T], )`.
"""
advantages = compute_advantages(self._discount, self._gae_lambda,
self.max_episode_length, baselines,
rewards)
advantage_flat = torch.cat(filter_valids(advantages, valids))
if self._center_adv:
means = advantage_flat.mean()
variance = advantage_flat.var()
advantage_flat = (advantage_flat - means) / (variance + 1e-8)
if self._positive_adv:
advantage_flat -= advantage_flat.min()
return advantage_flat
|
Compute mean value of loss.
Notes: P is the maximum episode length (self.max_episode_length)
Args:
rewards (torch.Tensor): Acquired rewards
with shape :math:`(N, P)`.
valids (list[int]): Numbers of valid steps in each episode
baselines (torch.Tensor): Value function estimation at each step
with shape :math:`(N, P)`.
Returns:
torch.Tensor: Calculated advantage values given rewards and
baselines with shape :math:`(N \dot [T], )`.
|
_compute_advantage
|
python
|
rlworkgroup/garage
|
src/garage/torch/algos/vpg.py
|
https://github.com/rlworkgroup/garage/blob/master/src/garage/torch/algos/vpg.py
|
MIT
|
def _compute_kl_constraint(self, obs):
r"""Compute KL divergence.
Compute the KL divergence between the old policy distribution and
current policy distribution.
Notes: P is the maximum episode length (self.max_episode_length)
Args:
obs (torch.Tensor): Observation from the environment
with shape :math:`(N, P, O*)`.
Returns:
torch.Tensor: Calculated mean scalar value of KL divergence
(float).
"""
with torch.no_grad():
old_dist = self._old_policy(obs)[0]
new_dist = self.policy(obs)[0]
kl_constraint = torch.distributions.kl.kl_divergence(
old_dist, new_dist)
return kl_constraint.mean()
|
Compute KL divergence.
Compute the KL divergence between the old policy distribution and
current policy distribution.
Notes: P is the maximum episode length (self.max_episode_length)
Args:
obs (torch.Tensor): Observation from the environment
with shape :math:`(N, P, O*)`.
Returns:
torch.Tensor: Calculated mean scalar value of KL divergence
(float).
|
_compute_kl_constraint
|
python
|
rlworkgroup/garage
|
src/garage/torch/algos/vpg.py
|
https://github.com/rlworkgroup/garage/blob/master/src/garage/torch/algos/vpg.py
|
MIT
|
def _compute_policy_entropy(self, obs):
r"""Compute entropy value of probability distribution.
Notes: P is the maximum episode length (self.max_episode_length)
Args:
obs (torch.Tensor): Observation from the environment
with shape :math:`(N, P, O*)`.
Returns:
torch.Tensor: Calculated entropy values given observation
with shape :math:`(N, P)`.
"""
if self._stop_entropy_gradient:
with torch.no_grad():
policy_entropy = self.policy(obs)[0].entropy()
else:
policy_entropy = self.policy(obs)[0].entropy()
# This prevents entropy from becoming negative for small policy std
if self._use_softplus_entropy:
policy_entropy = F.softplus(policy_entropy)
return policy_entropy
|
Compute entropy value of probability distribution.
Notes: P is the maximum episode length (self.max_episode_length)
Args:
obs (torch.Tensor): Observation from the environment
with shape :math:`(N, P, O*)`.
Returns:
torch.Tensor: Calculated entropy values given observation
with shape :math:`(N, P)`.
|
_compute_policy_entropy
|
python
|
rlworkgroup/garage
|
src/garage/torch/algos/vpg.py
|
https://github.com/rlworkgroup/garage/blob/master/src/garage/torch/algos/vpg.py
|
MIT
|
def _compute_objective(self, advantages, obs, actions, rewards):
r"""Compute objective value.
Args:
advantages (torch.Tensor): Advantage value at each step
with shape :math:`(N \dot [T], )`.
obs (torch.Tensor): Observation from the environment
with shape :math:`(N \dot [T], O*)`.
actions (torch.Tensor): Actions fed to the environment
with shape :math:`(N \dot [T], A*)`.
rewards (torch.Tensor): Acquired rewards
with shape :math:`(N \dot [T], )`.
Returns:
torch.Tensor: Calculated objective values
with shape :math:`(N \dot [T], )`.
"""
del rewards
log_likelihoods = self.policy(obs)[0].log_prob(actions)
return log_likelihoods * advantages
|
Compute objective value.
Args:
advantages (torch.Tensor): Advantage value at each step
with shape :math:`(N \dot [T], )`.
obs (torch.Tensor): Observation from the environment
with shape :math:`(N \dot [T], O*)`.
actions (torch.Tensor): Actions fed to the environment
with shape :math:`(N \dot [T], A*)`.
rewards (torch.Tensor): Acquired rewards
with shape :math:`(N \dot [T], )`.
Returns:
torch.Tensor: Calculated objective values
with shape :math:`(N \dot [T], )`.
|
_compute_objective
|
python
|
rlworkgroup/garage
|
src/garage/torch/algos/vpg.py
|
https://github.com/rlworkgroup/garage/blob/master/src/garage/torch/algos/vpg.py
|
MIT
|
def log_prob(self, value, pre_tanh_value=None, epsilon=1e-6):
"""The log likelihood of a sample on the this Tanh Distribution.
Args:
value (torch.Tensor): The sample whose loglikelihood is being
computed.
pre_tanh_value (torch.Tensor): The value prior to having the tanh
function applied to it but after it has been sampled from the
normal distribution.
epsilon (float): Regularization constant. Making this value larger
makes the computation more stable but less precise.
Note:
when pre_tanh_value is None, an estimate is made of what the
value is. This leads to a worse estimation of the log_prob.
If the value being used is collected from functions like
`sample` and `rsample`, one can instead use functions like
`sample_return_pre_tanh_value` or
`rsample_return_pre_tanh_value`
Returns:
torch.Tensor: The log likelihood of value on the distribution.
"""
# pylint: disable=arguments-differ
if pre_tanh_value is None:
pre_tanh_value = torch.log(
(1 + epsilon + value) / (1 + epsilon - value)) / 2
norm_lp = self._normal.log_prob(pre_tanh_value)
ret = (norm_lp - torch.sum(
torch.log(self._clip_but_pass_gradient((1. - value**2)) + epsilon),
axis=-1))
return ret
|
The log likelihood of a sample on the this Tanh Distribution.
Args:
value (torch.Tensor): The sample whose loglikelihood is being
computed.
pre_tanh_value (torch.Tensor): The value prior to having the tanh
function applied to it but after it has been sampled from the
normal distribution.
epsilon (float): Regularization constant. Making this value larger
makes the computation more stable but less precise.
Note:
when pre_tanh_value is None, an estimate is made of what the
value is. This leads to a worse estimation of the log_prob.
If the value being used is collected from functions like
`sample` and `rsample`, one can instead use functions like
`sample_return_pre_tanh_value` or
`rsample_return_pre_tanh_value`
Returns:
torch.Tensor: The log likelihood of value on the distribution.
|
log_prob
|
python
|
rlworkgroup/garage
|
src/garage/torch/distributions/tanh_normal.py
|
https://github.com/rlworkgroup/garage/blob/master/src/garage/torch/distributions/tanh_normal.py
|
MIT
|
def rsample_with_pre_tanh_value(self, sample_shape=torch.Size()):
"""Return a sample, sampled from this TanhNormal distribution.
Returns the sampled value before the tanh transform is applied and the
sampled value with the tanh transform applied to it.
Args:
sample_shape (list): shape of the return.
Note:
Gradients pass through this operation.
Returns:
torch.Tensor: Samples from this distribution.
torch.Tensor: Samples from the underlying
:obj:`torch.distributions.Normal` distribution, prior to being
transformed with `tanh`.
"""
z = self._normal.rsample(sample_shape)
return z, torch.tanh(z)
|
Return a sample, sampled from this TanhNormal distribution.
Returns the sampled value before the tanh transform is applied and the
sampled value with the tanh transform applied to it.
Args:
sample_shape (list): shape of the return.
Note:
Gradients pass through this operation.
Returns:
torch.Tensor: Samples from this distribution.
torch.Tensor: Samples from the underlying
:obj:`torch.distributions.Normal` distribution, prior to being
transformed with `tanh`.
|
rsample_with_pre_tanh_value
|
python
|
rlworkgroup/garage
|
src/garage/torch/distributions/tanh_normal.py
|
https://github.com/rlworkgroup/garage/blob/master/src/garage/torch/distributions/tanh_normal.py
|
MIT
|
def _from_distribution(cls, new_normal):
"""Construct a new TanhNormal distribution from a normal distribution.
Args:
new_normal (Independent(Normal)): underlying normal dist for
the new TanhNormal distribution.
Returns:
TanhNormal: A new distribution whose underlying normal dist
is new_normal.
"""
# pylint: disable=protected-access
new = cls(torch.zeros(1), torch.zeros(1))
new._normal = new_normal
return new
|
Construct a new TanhNormal distribution from a normal distribution.
Args:
new_normal (Independent(Normal)): underlying normal dist for
the new TanhNormal distribution.
Returns:
TanhNormal: A new distribution whose underlying normal dist
is new_normal.
|
_from_distribution
|
python
|
rlworkgroup/garage
|
src/garage/torch/distributions/tanh_normal.py
|
https://github.com/rlworkgroup/garage/blob/master/src/garage/torch/distributions/tanh_normal.py
|
MIT
|
def expand(self, batch_shape, _instance=None):
"""Returns a new TanhNormal distribution.
(or populates an existing instance provided by a derived class) with
batch dimensions expanded to `batch_shape`. This method calls
:class:`~torch.Tensor.expand` on the distribution's parameters. As
such, this does not allocate new memory for the expanded distribution
instance. Additionally, this does not repeat any args checking or
parameter broadcasting in `__init__.py`, when an instance is first
created.
Args:
batch_shape (torch.Size): the desired expanded size.
_instance(instance): new instance provided by subclasses that
need to override `.expand`.
Returns:
Instance: New distribution instance with batch dimensions expanded
to `batch_size`.
"""
new_normal = self._normal.expand(batch_shape, _instance)
new = self._from_distribution(new_normal)
return new
|
Returns a new TanhNormal distribution.
(or populates an existing instance provided by a derived class) with
batch dimensions expanded to `batch_shape`. This method calls
:class:`~torch.Tensor.expand` on the distribution's parameters. As
such, this does not allocate new memory for the expanded distribution
instance. Additionally, this does not repeat any args checking or
parameter broadcasting in `__init__.py`, when an instance is first
created.
Args:
batch_shape (torch.Size): the desired expanded size.
_instance(instance): new instance provided by subclasses that
need to override `.expand`.
Returns:
Instance: New distribution instance with batch dimensions expanded
to `batch_size`.
|
expand
|
python
|
rlworkgroup/garage
|
src/garage/torch/distributions/tanh_normal.py
|
https://github.com/rlworkgroup/garage/blob/master/src/garage/torch/distributions/tanh_normal.py
|
MIT
|
def _clip_but_pass_gradient(x, lower=0., upper=1.):
"""Clipping function that allows for gradients to flow through.
Args:
x (torch.Tensor): value to be clipped
lower (float): lower bound of clipping
upper (float): upper bound of clipping
Returns:
torch.Tensor: x clipped between lower and upper.
"""
clip_up = (x > upper).float()
clip_low = (x < lower).float()
with torch.no_grad():
clip = ((upper - x) * clip_up + (lower - x) * clip_low)
return x + clip
|
Clipping function that allows for gradients to flow through.
Args:
x (torch.Tensor): value to be clipped
lower (float): lower bound of clipping
upper (float): upper bound of clipping
Returns:
torch.Tensor: x clipped between lower and upper.
|
_clip_but_pass_gradient
|
python
|
rlworkgroup/garage
|
src/garage/torch/distributions/tanh_normal.py
|
https://github.com/rlworkgroup/garage/blob/master/src/garage/torch/distributions/tanh_normal.py
|
MIT
|
def spec(self):
"""garage.InOutSpec: Input and output space."""
input_space = akro.Box(-np.inf, np.inf, self._input_dim)
output_space = akro.Box(-np.inf, np.inf, self._output_dim)
return InOutSpec(input_space, output_space)
|
garage.InOutSpec: Input and output space.
|
spec
|
python
|
rlworkgroup/garage
|
src/garage/torch/embeddings/mlp_encoder.py
|
https://github.com/rlworkgroup/garage/blob/master/src/garage/torch/embeddings/mlp_encoder.py
|
MIT
|
def reset(self, do_resets=None):
"""Reset the encoder.
This is effective only to recurrent encoder. do_resets is effective
only to vectoried encoder.
For a vectorized encoder, do_resets is an array of boolean indicating
which internal states to be reset. The length of do_resets should be
equal to the length of inputs.
Args:
do_resets (numpy.ndarray): Bool array indicating which states
to be reset.
"""
|
Reset the encoder.
This is effective only to recurrent encoder. do_resets is effective
only to vectoried encoder.
For a vectorized encoder, do_resets is an array of boolean indicating
which internal states to be reset. The length of do_resets should be
equal to the length of inputs.
Args:
do_resets (numpy.ndarray): Bool array indicating which states
to be reset.
|
reset
|
python
|
rlworkgroup/garage
|
src/garage/torch/embeddings/mlp_encoder.py
|
https://github.com/rlworkgroup/garage/blob/master/src/garage/torch/embeddings/mlp_encoder.py
|
MIT
|
def forward(self, x):
"""Forward method.
Args:
x (torch.Tensor): Input values. Should match image_format
specified at construction (either NCHW or NCWH).
Returns:
List[torch.Tensor]: Output values
"""
# Transform single values into batch, if necessary.
if len(x.shape) == 3:
x = x.unsqueeze(0)
# This should be the single place in torch that image normalization
# happens
if isinstance(self.spec.input_space, akro.Image):
x = torch.div(x, 255.0)
assert len(x.shape) == 4
if self._format == 'NHWC':
# Convert to internal NCHW format
x = x.permute((0, 3, 1, 2))
for layer in self._cnn_layers:
x = layer(x)
if self._format == 'NHWC':
# Convert back to NHWC (just in case)
x = x.permute((0, 2, 3, 1))
# Remove non-batch dimensions
x = x.reshape(x.shape[0], -1)
# Apply final linearity, if it was requested.
if self._final_layer is not None:
x = self._final_layer(x)
return x
|
Forward method.
Args:
x (torch.Tensor): Input values. Should match image_format
specified at construction (either NCHW or NCWH).
Returns:
List[torch.Tensor]: Output values
|
forward
|
python
|
rlworkgroup/garage
|
src/garage/torch/modules/cnn_module.py
|
https://github.com/rlworkgroup/garage/blob/master/src/garage/torch/modules/cnn_module.py
|
MIT
|
def _check_spec(spec, image_format):
"""Check that an InOutSpec is suitable for a CNNModule.
Args:
spec (garage.InOutSpec): Specification of inputs and outputs. The
input should be in 'NCHW' format: [batch_size, channel, height,
width]. Will print a warning if the channel size is not 1 or 3.
If output_space is specified, then a final linear layer will be
inserted to map to that dimensionality. If output_space is None,
it will be filled in with the computed output space.
image_format (str): Either 'NCHW' or 'NHWC'. Should match the input
specification. Gym uses NHWC by default, but PyTorch uses NCHW by
default.
Returns:
tuple[int, int, int]: The input channels, height, and width.
Raises:
ValueError: If spec isn't suitable for a CNNModule.
"""
# pylint: disable=no-else-raise
input_space = spec.input_space
output_space = spec.output_space
# Don't use isinstance, since akro.Space is guaranteed to inherit from
# gym.Space
if getattr(input_space, 'shape', None) is None:
raise ValueError(
f'input_space to CNNModule is {input_space}, but should be an '
f'akro.Box or akro.Image')
elif len(input_space.shape) != 3:
raise ValueError(
f'Input to CNNModule is {input_space}, but should have three '
f'dimensions.')
if (output_space is not None and not (hasattr(output_space, 'shape')
and len(output_space.shape) == 1)):
raise ValueError(
f'output_space to CNNModule is {output_space}, but should be '
f'an akro.Box with a single dimension or None')
if image_format == 'NCHW':
in_channels = spec.input_space.shape[0]
height = spec.input_space.shape[1]
width = spec.input_space.shape[2]
elif image_format == 'NHWC':
height = spec.input_space.shape[0]
width = spec.input_space.shape[1]
in_channels = spec.input_space.shape[2]
else:
raise ValueError(
f'image_format has value {image_format!r}, but must be either '
f"'NCHW' or 'NHWC'")
if in_channels not in (1, 3):
warnings.warn(
f'CNNModule input has {in_channels} channels, but '
f'1 or 3 channels are typical. Consider changing the CNN '
f'image_format.')
return in_channels, height, width
|
Check that an InOutSpec is suitable for a CNNModule.
Args:
spec (garage.InOutSpec): Specification of inputs and outputs. The
input should be in 'NCHW' format: [batch_size, channel, height,
width]. Will print a warning if the channel size is not 1 or 3.
If output_space is specified, then a final linear layer will be
inserted to map to that dimensionality. If output_space is None,
it will be filled in with the computed output space.
image_format (str): Either 'NCHW' or 'NHWC'. Should match the input
specification. Gym uses NHWC by default, but PyTorch uses NCHW by
default.
Returns:
tuple[int, int, int]: The input channels, height, and width.
Raises:
ValueError: If spec isn't suitable for a CNNModule.
|
_check_spec
|
python
|
rlworkgroup/garage
|
src/garage/torch/modules/cnn_module.py
|
https://github.com/rlworkgroup/garage/blob/master/src/garage/torch/modules/cnn_module.py
|
MIT
|
def to(self, *args, **kwargs):
"""Move the module to the specified device.
Args:
*args: args to pytorch to function.
**kwargs: keyword args to pytorch to function.
"""
super().to(*args, **kwargs)
buffers = dict(self.named_buffers())
if not isinstance(self._log_std, torch.nn.Parameter):
self._log_std = buffers['log_std']
self._min_std_param = buffers['min_std_param']
self._max_std_param = buffers['max_std_param']
|
Move the module to the specified device.
Args:
*args: args to pytorch to function.
**kwargs: keyword args to pytorch to function.
|
to
|
python
|
rlworkgroup/garage
|
src/garage/torch/modules/gaussian_mlp_module.py
|
https://github.com/rlworkgroup/garage/blob/master/src/garage/torch/modules/gaussian_mlp_module.py
|
MIT
|
def forward(self, *inputs):
"""Forward method.
Args:
*inputs: Input to the module.
Returns:
torch.distributions.independent.Independent: Independent
distribution.
"""
mean, log_std_uncentered = self._get_mean_and_log_std(*inputs)
if self._min_std_param or self._max_std_param:
log_std_uncentered = log_std_uncentered.clamp(
min=(None if self._min_std_param is None else
self._min_std_param.item()),
max=(None if self._max_std_param is None else
self._max_std_param.item()))
if self._std_parameterization == 'exp':
std = log_std_uncentered.exp()
else:
std = log_std_uncentered.exp().exp().add(1.).log()
dist = self._norm_dist_class(mean, std)
# This control flow is needed because if a TanhNormal distribution is
# wrapped by torch.distributions.Independent, then custom functions
# such as rsample_with_pretanh_value of the TanhNormal distribution
# are not accessable.
if not isinstance(dist, TanhNormal):
# Makes it so that a sample from the distribution is treated as a
# single sample and not dist.batch_shape samples.
dist = Independent(dist, 1)
return dist
|
Forward method.
Args:
*inputs: Input to the module.
Returns:
torch.distributions.independent.Independent: Independent
distribution.
|
forward
|
python
|
rlworkgroup/garage
|
src/garage/torch/modules/gaussian_mlp_module.py
|
https://github.com/rlworkgroup/garage/blob/master/src/garage/torch/modules/gaussian_mlp_module.py
|
MIT
|
def _get_mean_and_log_std(self, x):
"""Get mean and std of Gaussian distribution given inputs.
Args:
x: Input to the module.
Returns:
torch.Tensor: The mean of Gaussian distribution.
torch.Tensor: The variance of Gaussian distribution.
"""
mean = self._mean_module(x)
return mean, self._log_std
|
Get mean and std of Gaussian distribution given inputs.
Args:
x: Input to the module.
Returns:
torch.Tensor: The mean of Gaussian distribution.
torch.Tensor: The variance of Gaussian distribution.
|
_get_mean_and_log_std
|
python
|
rlworkgroup/garage
|
src/garage/torch/modules/gaussian_mlp_module.py
|
https://github.com/rlworkgroup/garage/blob/master/src/garage/torch/modules/gaussian_mlp_module.py
|
MIT
|
def _check_parameter_for_output_layer(cls, var_name, var, n_heads):
"""Check input parameters for output layer are valid.
Args:
var_name (str): variable name
var (any): variable to be checked
n_heads (int): number of head
Returns:
list: list of variables (length of n_heads)
Raises:
ValueError: if the variable is a list but length of the variable
is not equal to n_heads
"""
if isinstance(var, (list, tuple)):
if len(var) == 1:
return list(var) * n_heads
if len(var) == n_heads:
return var
msg = ('{} should be either an integer or a collection of length '
'n_heads ({}), but {} provided.')
raise ValueError(msg.format(var_name, n_heads, var))
return [copy.deepcopy(var) for _ in range(n_heads)]
|
Check input parameters for output layer are valid.
Args:
var_name (str): variable name
var (any): variable to be checked
n_heads (int): number of head
Returns:
list: list of variables (length of n_heads)
Raises:
ValueError: if the variable is a list but length of the variable
is not equal to n_heads
|
_check_parameter_for_output_layer
|
python
|
rlworkgroup/garage
|
src/garage/torch/modules/multi_headed_mlp_module.py
|
https://github.com/rlworkgroup/garage/blob/master/src/garage/torch/modules/multi_headed_mlp_module.py
|
MIT
|
def forward(self, input_val):
"""Forward method.
Args:
input_val (torch.Tensor): Input values with (N, *, input_dim)
shape.
Returns:
List[torch.Tensor]: Output values
"""
x = input_val
for layer in self._layers:
x = layer(x)
return [output_layer(x) for output_layer in self._output_layers]
|
Forward method.
Args:
input_val (torch.Tensor): Input values with (N, *, input_dim)
shape.
Returns:
List[torch.Tensor]: Output values
|
forward
|
python
|
rlworkgroup/garage
|
src/garage/torch/modules/multi_headed_mlp_module.py
|
https://github.com/rlworkgroup/garage/blob/master/src/garage/torch/modules/multi_headed_mlp_module.py
|
MIT
|
def _build_hessian_vector_product(func, params, reg_coeff=1e-5):
"""Computes Hessian-vector product using Pearlmutter's algorithm.
`Pearlmutter, Barak A. "Fast exact multiplication by the Hessian." Neural
computation 6.1 (1994): 147-160.`
Args:
func (callable): A function that returns a torch.Tensor. Hessian of
the return value will be computed.
params (list[torch.Tensor]): A list of function parameters.
reg_coeff (float): A small value so that A -> A + reg*I.
Returns:
function: It can be called to get the final result.
"""
param_shapes = [p.shape or torch.Size([1]) for p in params]
f = func()
f_grads = torch.autograd.grad(f, params, create_graph=True)
def _eval(vector):
"""The evaluation function.
Args:
vector (torch.Tensor): The vector to be multiplied with
Hessian.
Returns:
torch.Tensor: The product of Hessian of function f and v.
"""
unflatten_vector = unflatten_tensors(vector, param_shapes)
assert len(f_grads) == len(unflatten_vector)
grad_vector_product = torch.sum(
torch.stack(
[torch.sum(g * x) for g, x in zip(f_grads, unflatten_vector)]))
hvp = list(
torch.autograd.grad(grad_vector_product, params,
retain_graph=True))
for i, (hx, p) in enumerate(zip(hvp, params)):
if hx is None:
hvp[i] = torch.zeros_like(p)
flat_output = torch.cat([h.reshape(-1) for h in hvp])
return flat_output + reg_coeff * vector
return _eval
|
Computes Hessian-vector product using Pearlmutter's algorithm.
`Pearlmutter, Barak A. "Fast exact multiplication by the Hessian." Neural
computation 6.1 (1994): 147-160.`
Args:
func (callable): A function that returns a torch.Tensor. Hessian of
the return value will be computed.
params (list[torch.Tensor]): A list of function parameters.
reg_coeff (float): A small value so that A -> A + reg*I.
Returns:
function: It can be called to get the final result.
|
_build_hessian_vector_product
|
python
|
rlworkgroup/garage
|
src/garage/torch/optimizers/conjugate_gradient_optimizer.py
|
https://github.com/rlworkgroup/garage/blob/master/src/garage/torch/optimizers/conjugate_gradient_optimizer.py
|
MIT
|
def _eval(vector):
"""The evaluation function.
Args:
vector (torch.Tensor): The vector to be multiplied with
Hessian.
Returns:
torch.Tensor: The product of Hessian of function f and v.
"""
unflatten_vector = unflatten_tensors(vector, param_shapes)
assert len(f_grads) == len(unflatten_vector)
grad_vector_product = torch.sum(
torch.stack(
[torch.sum(g * x) for g, x in zip(f_grads, unflatten_vector)]))
hvp = list(
torch.autograd.grad(grad_vector_product, params,
retain_graph=True))
for i, (hx, p) in enumerate(zip(hvp, params)):
if hx is None:
hvp[i] = torch.zeros_like(p)
flat_output = torch.cat([h.reshape(-1) for h in hvp])
return flat_output + reg_coeff * vector
|
The evaluation function.
Args:
vector (torch.Tensor): The vector to be multiplied with
Hessian.
Returns:
torch.Tensor: The product of Hessian of function f and v.
|
_eval
|
python
|
rlworkgroup/garage
|
src/garage/torch/optimizers/conjugate_gradient_optimizer.py
|
https://github.com/rlworkgroup/garage/blob/master/src/garage/torch/optimizers/conjugate_gradient_optimizer.py
|
MIT
|
def _conjugate_gradient(f_Ax, b, cg_iters, residual_tol=1e-10):
"""Use Conjugate Gradient iteration to solve Ax = b. Demmel p 312.
Args:
f_Ax (callable): A function to compute Hessian vector product.
b (torch.Tensor): Right hand side of the equation to solve.
cg_iters (int): Number of iterations to run conjugate gradient
algorithm.
residual_tol (float): Tolerence for convergence.
Returns:
torch.Tensor: Solution x* for equation Ax = b.
"""
p = b.clone()
r = b.clone()
x = torch.zeros_like(b)
rdotr = torch.dot(r, r)
for _ in range(cg_iters):
z = f_Ax(p)
v = rdotr / torch.dot(p, z)
x += v * p
r -= v * z
newrdotr = torch.dot(r, r)
mu = newrdotr / rdotr
p = r + mu * p
rdotr = newrdotr
if rdotr < residual_tol:
break
return x
|
Use Conjugate Gradient iteration to solve Ax = b. Demmel p 312.
Args:
f_Ax (callable): A function to compute Hessian vector product.
b (torch.Tensor): Right hand side of the equation to solve.
cg_iters (int): Number of iterations to run conjugate gradient
algorithm.
residual_tol (float): Tolerence for convergence.
Returns:
torch.Tensor: Solution x* for equation Ax = b.
|
_conjugate_gradient
|
python
|
rlworkgroup/garage
|
src/garage/torch/optimizers/conjugate_gradient_optimizer.py
|
https://github.com/rlworkgroup/garage/blob/master/src/garage/torch/optimizers/conjugate_gradient_optimizer.py
|
MIT
|
def step(self, f_loss, f_constraint): # pylint: disable=arguments-differ
"""Take an optimization step.
Args:
f_loss (callable): Function to compute the loss.
f_constraint (callable): Function to compute the constraint value.
"""
# Collect trainable parameters and gradients
params = []
grads = []
for group in self.param_groups:
for p in group['params']:
if p.grad is not None:
params.append(p)
grads.append(p.grad.reshape(-1))
flat_loss_grads = torch.cat(grads)
# Build Hessian-vector-product function
f_Ax = _build_hessian_vector_product(f_constraint, params,
self._hvp_reg_coeff)
# Compute step direction
step_dir = _conjugate_gradient(f_Ax, flat_loss_grads, self._cg_iters)
# Replace nan with 0.
step_dir[step_dir.ne(step_dir)] = 0.
# Compute step size
step_size = np.sqrt(2.0 * self._max_constraint_value *
(1. /
(torch.dot(step_dir, f_Ax(step_dir)) + 1e-8)))
if np.isnan(step_size):
step_size = 1.
descent_step = step_size * step_dir
# Update parameters using backtracking line search
self._backtracking_line_search(params, descent_step, f_loss,
f_constraint)
|
Take an optimization step.
Args:
f_loss (callable): Function to compute the loss.
f_constraint (callable): Function to compute the constraint value.
|
step
|
python
|
rlworkgroup/garage
|
src/garage/torch/optimizers/conjugate_gradient_optimizer.py
|
https://github.com/rlworkgroup/garage/blob/master/src/garage/torch/optimizers/conjugate_gradient_optimizer.py
|
MIT
|
def state(self):
"""dict: The hyper-parameters of the optimizer."""
return {
'max_constraint_value': self._max_constraint_value,
'cg_iters': self._cg_iters,
'max_backtracks': self._max_backtracks,
'backtrack_ratio': self._backtrack_ratio,
'hvp_reg_coeff': self._hvp_reg_coeff,
'accept_violation': self._accept_violation,
}
|
dict: The hyper-parameters of the optimizer.
|
state
|
python
|
rlworkgroup/garage
|
src/garage/torch/optimizers/conjugate_gradient_optimizer.py
|
https://github.com/rlworkgroup/garage/blob/master/src/garage/torch/optimizers/conjugate_gradient_optimizer.py
|
MIT
|
def __setstate__(self, state):
"""Restore the optimizer state.
Args:
state (dict): State dictionary.
"""
if 'hvp_reg_coeff' not in state['state']:
warnings.warn(
'Resuming ConjugateGradientOptimizer with lost state. '
'This behavior is fixed if pickling from garage>=2020.02.0.')
self.defaults = state['defaults']
# Set the fields manually so that the setter gets called.
self.state = state['state']
self.param_groups = state['param_groups']
|
Restore the optimizer state.
Args:
state (dict): State dictionary.
|
__setstate__
|
python
|
rlworkgroup/garage
|
src/garage/torch/optimizers/conjugate_gradient_optimizer.py
|
https://github.com/rlworkgroup/garage/blob/master/src/garage/torch/optimizers/conjugate_gradient_optimizer.py
|
MIT
|
def zero_grad(self):
"""Sets gradients of all model parameters to zero."""
for param in self.module.parameters():
if param.grad is not None:
param.grad.detach_()
param.grad.zero_()
|
Sets gradients of all model parameters to zero.
|
zero_grad
|
python
|
rlworkgroup/garage
|
src/garage/torch/optimizers/differentiable_sgd.py
|
https://github.com/rlworkgroup/garage/blob/master/src/garage/torch/optimizers/differentiable_sgd.py
|
MIT
|
def set_grads_none(self):
"""Sets gradients for all model parameters to None.
This is an alternative to `zero_grad` which sets
gradients to zero.
"""
for param in self.module.parameters():
if param.grad is not None:
param.grad = None
|
Sets gradients for all model parameters to None.
This is an alternative to `zero_grad` which sets
gradients to zero.
|
set_grads_none
|
python
|
rlworkgroup/garage
|
src/garage/torch/optimizers/differentiable_sgd.py
|
https://github.com/rlworkgroup/garage/blob/master/src/garage/torch/optimizers/differentiable_sgd.py
|
MIT
|
def get_minibatch(self, *inputs):
r"""Yields a batch of inputs.
Notes: P is the size of minibatch (self._minibatch_size)
Args:
*inputs (list[torch.Tensor]): A list of inputs. Each input has
shape :math:`(N \dot [T], *)`.
Yields:
list[torch.Tensor]: A list batch of inputs. Each batch has shape
:math:`(P, *)`.
"""
batch_dataset = BatchDataset(inputs, self._minibatch_size)
for _ in range(self._max_optimization_epochs):
for dataset in batch_dataset.iterate():
yield dataset
|
Yields a batch of inputs.
Notes: P is the size of minibatch (self._minibatch_size)
Args:
*inputs (list[torch.Tensor]): A list of inputs. Each input has
shape :math:`(N \dot [T], *)`.
Yields:
list[torch.Tensor]: A list batch of inputs. Each batch has shape
:math:`(P, *)`.
|
get_minibatch
|
python
|
rlworkgroup/garage
|
src/garage/torch/optimizers/optimizer_wrapper.py
|
https://github.com/rlworkgroup/garage/blob/master/src/garage/torch/optimizers/optimizer_wrapper.py
|
MIT
|
def forward(self, observations):
"""Compute the action distributions from the observations.
Args:
observations (torch.Tensor): Observations to act on.
Returns:
torch.distributions.Distribution: Batch distribution of actions.
dict[str, torch.Tensor]: Additional agent_info, as torch Tensors.
Do not need to be detached, and can be on any device.
"""
# We're given flattened observations.
observations = observations.reshape(
-1, *self._env_spec.observation_space.shape)
cnn_output = self._cnn_module(observations)
mlp_output = self._mlp_module(cnn_output)[0]
logits = torch.softmax(mlp_output, axis=1)
dist = torch.distributions.Categorical(logits=logits)
return dist, {}
|
Compute the action distributions from the observations.
Args:
observations (torch.Tensor): Observations to act on.
Returns:
torch.distributions.Distribution: Batch distribution of actions.
dict[str, torch.Tensor]: Additional agent_info, as torch Tensors.
Do not need to be detached, and can be on any device.
|
forward
|
python
|
rlworkgroup/garage
|
src/garage/torch/policies/categorical_cnn_policy.py
|
https://github.com/rlworkgroup/garage/blob/master/src/garage/torch/policies/categorical_cnn_policy.py
|
MIT
|
def reset_belief(self, num_tasks=1):
r"""Reset :math:`q(z \| c)` to the prior and sample a new z from the prior.
Args:
num_tasks (int): Number of tasks.
"""
# reset distribution over z to the prior
mu = torch.zeros(num_tasks, self._latent_dim).to(global_device())
if self._use_information_bottleneck:
var = torch.ones(num_tasks, self._latent_dim).to(global_device())
else:
var = torch.zeros(num_tasks, self._latent_dim).to(global_device())
self.z_means = mu
self.z_vars = var
# sample a new z from the prior
self.sample_from_belief()
# reset the context collected so far
self._context = None
# reset any hidden state in the encoder network (relevant for RNN)
self._context_encoder.reset()
|
Reset :math:`q(z \| c)` to the prior and sample a new z from the prior.
Args:
num_tasks (int): Number of tasks.
|
reset_belief
|
python
|
rlworkgroup/garage
|
src/garage/torch/policies/context_conditioned_policy.py
|
https://github.com/rlworkgroup/garage/blob/master/src/garage/torch/policies/context_conditioned_policy.py
|
MIT
|
def sample_from_belief(self):
"""Sample z using distributions from current means and variances."""
if self._use_information_bottleneck:
posteriors = [
torch.distributions.Normal(m, torch.sqrt(s)) for m, s in zip(
torch.unbind(self.z_means), torch.unbind(self.z_vars))
]
z = [d.rsample() for d in posteriors]
self.z = torch.stack(z)
else:
self.z = self.z_means
|
Sample z using distributions from current means and variances.
|
sample_from_belief
|
python
|
rlworkgroup/garage
|
src/garage/torch/policies/context_conditioned_policy.py
|
https://github.com/rlworkgroup/garage/blob/master/src/garage/torch/policies/context_conditioned_policy.py
|
MIT
|
def update_context(self, timestep):
"""Append single transition to the current context.
Args:
timestep (garage._dtypes.TimeStep): Timestep containing transition
information to be added to context.
"""
o = torch.as_tensor(timestep.observation[None, None, ...],
device=global_device()).float()
a = torch.as_tensor(timestep.action[None, None, ...],
device=global_device()).float()
r = torch.as_tensor(np.array([timestep.reward])[None, None, ...],
device=global_device()).float()
no = torch.as_tensor(timestep.next_observation[None, None, ...],
device=global_device()).float()
if self._use_next_obs:
data = torch.cat([o, a, r, no], dim=2)
else:
data = torch.cat([o, a, r], dim=2)
if self._context is None:
self._context = data
else:
self._context = torch.cat([self._context, data], dim=1)
|
Append single transition to the current context.
Args:
timestep (garage._dtypes.TimeStep): Timestep containing transition
information to be added to context.
|
update_context
|
python
|
rlworkgroup/garage
|
src/garage/torch/policies/context_conditioned_policy.py
|
https://github.com/rlworkgroup/garage/blob/master/src/garage/torch/policies/context_conditioned_policy.py
|
MIT
|
def infer_posterior(self, context):
r"""Compute :math:`q(z \| c)` as a function of input context and sample new z.
Args:
context (torch.Tensor): Context values, with shape
:math:`(X, N, C)`. X is the number of tasks. N is batch size. C
is the combined size of observation, action, reward, and next
observation if next observation is used in context. Otherwise,
C is the combined size of observation, action, and reward.
"""
params = self._context_encoder.forward(context)
params = params.view(context.size(0), -1,
self._context_encoder.output_dim)
# with probabilistic z, predict mean and variance of q(z | c)
if self._use_information_bottleneck:
mu = params[..., :self._latent_dim]
sigma_squared = F.softplus(params[..., self._latent_dim:])
z_params = [
product_of_gaussians(m, s)
for m, s in zip(torch.unbind(mu), torch.unbind(sigma_squared))
]
self.z_means = torch.stack([p[0] for p in z_params])
self.z_vars = torch.stack([p[1] for p in z_params])
else:
self.z_means = torch.mean(params, dim=1)
self.sample_from_belief()
|
Compute :math:`q(z \| c)` as a function of input context and sample new z.
Args:
context (torch.Tensor): Context values, with shape
:math:`(X, N, C)`. X is the number of tasks. N is batch size. C
is the combined size of observation, action, reward, and next
observation if next observation is used in context. Otherwise,
C is the combined size of observation, action, and reward.
|
infer_posterior
|
python
|
rlworkgroup/garage
|
src/garage/torch/policies/context_conditioned_policy.py
|
https://github.com/rlworkgroup/garage/blob/master/src/garage/torch/policies/context_conditioned_policy.py
|
MIT
|
def forward(self, obs, context):
"""Given observations and context, get actions and probs from policy.
Args:
obs (torch.Tensor): Observation values, with shape
:math:`(X, N, O)`. X is the number of tasks. N is batch size. O
is the size of the flattened observation space.
context (torch.Tensor): Context values, with shape
:math:`(X, N, C)`. X is the number of tasks. N is batch size. C
is the combined size of observation, action, reward, and next
observation if next observation is used in context. Otherwise,
C is the combined size of observation, action, and reward.
Returns:
tuple:
* torch.Tensor: Predicted action values.
* np.ndarray: Mean of distribution.
* np.ndarray: Log std of distribution.
* torch.Tensor: Log likelihood of distribution.
* torch.Tensor: Sampled values from distribution before
applying tanh transformation.
torch.Tensor: z values, with shape :math:`(N, L)`. N is batch size.
L is the latent dimension.
"""
self.infer_posterior(context)
self.sample_from_belief()
task_z = self.z
# task, batch
t, b, _ = obs.size()
obs = obs.view(t * b, -1)
task_z = [z.repeat(b, 1) for z in task_z]
task_z = torch.cat(task_z, dim=0)
# run policy, get log probs and new actions
obs_z = torch.cat([obs, task_z.detach()], dim=1)
dist = self._policy(obs_z)[0]
pre_tanh, actions = dist.rsample_with_pre_tanh_value()
log_pi = dist.log_prob(value=actions, pre_tanh_value=pre_tanh)
log_pi = log_pi.unsqueeze(1)
mean = dist.mean.to('cpu').detach().numpy()
log_std = (dist.variance**.5).log().to('cpu').detach().numpy()
return (actions, mean, log_std, log_pi, pre_tanh), task_z
|
Given observations and context, get actions and probs from policy.
Args:
obs (torch.Tensor): Observation values, with shape
:math:`(X, N, O)`. X is the number of tasks. N is batch size. O
is the size of the flattened observation space.
context (torch.Tensor): Context values, with shape
:math:`(X, N, C)`. X is the number of tasks. N is batch size. C
is the combined size of observation, action, reward, and next
observation if next observation is used in context. Otherwise,
C is the combined size of observation, action, and reward.
Returns:
tuple:
* torch.Tensor: Predicted action values.
* np.ndarray: Mean of distribution.
* np.ndarray: Log std of distribution.
* torch.Tensor: Log likelihood of distribution.
* torch.Tensor: Sampled values from distribution before
applying tanh transformation.
torch.Tensor: z values, with shape :math:`(N, L)`. N is batch size.
L is the latent dimension.
|
forward
|
python
|
rlworkgroup/garage
|
src/garage/torch/policies/context_conditioned_policy.py
|
https://github.com/rlworkgroup/garage/blob/master/src/garage/torch/policies/context_conditioned_policy.py
|
MIT
|
def get_action(self, obs):
"""Sample action from the policy, conditioned on the task embedding.
Args:
obs (torch.Tensor): Observation values, with shape :math:`(1, O)`.
O is the size of the flattened observation space.
Returns:
torch.Tensor: Output action value, with shape :math:`(1, A)`.
A is the size of the flattened action space.
dict:
* np.ndarray[float]: Mean of the distribution.
* np.ndarray[float]: Standard deviation of logarithmic values
of the distribution.
"""
z = self.z
obs = torch.as_tensor(obs[None], device=global_device()).float()
obs_in = torch.cat([obs, z], dim=1)
action, info = self._policy.get_action(obs_in)
return action, info
|
Sample action from the policy, conditioned on the task embedding.
Args:
obs (torch.Tensor): Observation values, with shape :math:`(1, O)`.
O is the size of the flattened observation space.
Returns:
torch.Tensor: Output action value, with shape :math:`(1, A)`.
A is the size of the flattened action space.
dict:
* np.ndarray[float]: Mean of the distribution.
* np.ndarray[float]: Standard deviation of logarithmic values
of the distribution.
|
get_action
|
python
|
rlworkgroup/garage
|
src/garage/torch/policies/context_conditioned_policy.py
|
https://github.com/rlworkgroup/garage/blob/master/src/garage/torch/policies/context_conditioned_policy.py
|
MIT
|
def compute_kl_div(self):
r"""Compute :math:`KL(q(z|c) \| p(z))`.
Returns:
float: :math:`KL(q(z|c) \| p(z))`.
"""
prior = torch.distributions.Normal(
torch.zeros(self._latent_dim).to(global_device()),
torch.ones(self._latent_dim).to(global_device()))
posteriors = [
torch.distributions.Normal(mu, torch.sqrt(var)) for mu, var in zip(
torch.unbind(self.z_means), torch.unbind(self.z_vars))
]
kl_divs = [
torch.distributions.kl.kl_divergence(post, prior)
for post in posteriors
]
kl_div_sum = torch.sum(torch.stack(kl_divs))
return kl_div_sum
|
Compute :math:`KL(q(z|c) \| p(z))`.
Returns:
float: :math:`KL(q(z|c) \| p(z))`.
|
compute_kl_div
|
python
|
rlworkgroup/garage
|
src/garage/torch/policies/context_conditioned_policy.py
|
https://github.com/rlworkgroup/garage/blob/master/src/garage/torch/policies/context_conditioned_policy.py
|
MIT
|
def __init__(self, env_spec, name='DeterministicMLPPolicy', **kwargs):
"""Initialize class with multiple attributes.
Args:
env_spec (EnvSpec): Environment specification.
name (str): Policy name.
**kwargs: Additional keyword arguments passed to the MLPModule.
"""
super().__init__(env_spec, name)
self._obs_dim = env_spec.observation_space.flat_dim
self._action_dim = env_spec.action_space.flat_dim
self._module = MLPModule(input_dim=self._obs_dim,
output_dim=self._action_dim,
**kwargs)
|
Initialize class with multiple attributes.
Args:
env_spec (EnvSpec): Environment specification.
name (str): Policy name.
**kwargs: Additional keyword arguments passed to the MLPModule.
|
__init__
|
python
|
rlworkgroup/garage
|
src/garage/torch/policies/deterministic_mlp_policy.py
|
https://github.com/rlworkgroup/garage/blob/master/src/garage/torch/policies/deterministic_mlp_policy.py
|
MIT
|
def get_action(self, observation):
"""Get a single action given an observation.
Args:
observation (np.ndarray): Observation from the environment.
Returns:
tuple:
* np.ndarray: Predicted action.
* dict:
* np.ndarray[float]: Mean of the distribution
* np.ndarray[float]: Log of standard deviation of the
distribution
"""
if not isinstance(observation, np.ndarray) and not isinstance(
observation, torch.Tensor):
observation = self._env_spec.observation_space.flatten(observation)
elif isinstance(observation,
np.ndarray) and len(observation.shape) > 1:
observation = self._env_spec.observation_space.flatten(observation)
elif isinstance(observation,
torch.Tensor) and len(observation.shape) > 1:
observation = torch.flatten(observation)
with torch.no_grad():
observation = torch.Tensor(observation).unsqueeze(0)
action, agent_infos = self.get_actions(observation)
return action[0], {k: v[0] for k, v in agent_infos.items()}
|
Get a single action given an observation.
Args:
observation (np.ndarray): Observation from the environment.
Returns:
tuple:
* np.ndarray: Predicted action.
* dict:
* np.ndarray[float]: Mean of the distribution
* np.ndarray[float]: Log of standard deviation of the
distribution
|
get_action
|
python
|
rlworkgroup/garage
|
src/garage/torch/policies/deterministic_mlp_policy.py
|
https://github.com/rlworkgroup/garage/blob/master/src/garage/torch/policies/deterministic_mlp_policy.py
|
MIT
|
def get_actions(self, observations):
"""Get actions given observations.
Args:
observations (np.ndarray): Observations from the environment.
Returns:
tuple:
* np.ndarray: Predicted actions.
* dict:
* np.ndarray[float]: Mean of the distribution
* np.ndarray[float]: Log of standard deviation of the
distribution
"""
if not isinstance(observations[0], np.ndarray) and not isinstance(
observations[0], torch.Tensor):
observations = self._env_spec.observation_space.flatten_n(
observations)
# frequently users like to pass lists of torch tensors or lists of
# numpy arrays. This handles those conversions.
if isinstance(observations, list):
if isinstance(observations[0], np.ndarray):
observations = np.stack(observations)
elif isinstance(observations[0], torch.Tensor):
observations = torch.stack(observations)
if isinstance(observations[0],
np.ndarray) and len(observations[0].shape) > 1:
observations = self._env_spec.observation_space.flatten_n(
observations)
elif isinstance(observations[0],
torch.Tensor) and len(observations[0].shape) > 1:
observations = torch.flatten(observations, start_dim=1)
if isinstance(self._env_spec.observation_space, akro.Image) and \
len(observations.shape) < \
len(self._env_spec.observation_space.shape):
observations = self._env_spec.observation_space.unflatten_n(
observations)
with torch.no_grad():
x = self(torch.Tensor(observations).to(global_device()))
return x.cpu().numpy(), dict()
|
Get actions given observations.
Args:
observations (np.ndarray): Observations from the environment.
Returns:
tuple:
* np.ndarray: Predicted actions.
* dict:
* np.ndarray[float]: Mean of the distribution
* np.ndarray[float]: Log of standard deviation of the
distribution
|
get_actions
|
python
|
rlworkgroup/garage
|
src/garage/torch/policies/deterministic_mlp_policy.py
|
https://github.com/rlworkgroup/garage/blob/master/src/garage/torch/policies/deterministic_mlp_policy.py
|
MIT
|
def forward(self, observations):
"""Compute the action distributions from the observations.
Args:
observations(torch.Tensor): Batch of observations of shape
:math:`(N, O)`. Observations should be flattened even
if they are images as the underlying Q network handles
unflattening.
Returns:
torch.distributions.Distribution: Batch distribution of actions.
dict[str, torch.Tensor]: Additional agent_info, as torch Tensors.
Do not need to be detached, and can be on any device.
"""
# We're given flattened observations.
observations = observations.reshape(
-1, *self._env_spec.observation_space.shape)
output = self._cnn_module(observations)
logits = torch.softmax(output, axis=1)
dist = torch.distributions.Bernoulli(logits=logits)
return dist, {}
|
Compute the action distributions from the observations.
Args:
observations(torch.Tensor): Batch of observations of shape
:math:`(N, O)`. Observations should be flattened even
if they are images as the underlying Q network handles
unflattening.
Returns:
torch.distributions.Distribution: Batch distribution of actions.
dict[str, torch.Tensor]: Additional agent_info, as torch Tensors.
Do not need to be detached, and can be on any device.
|
forward
|
python
|
rlworkgroup/garage
|
src/garage/torch/policies/discrete_cnn_policy.py
|
https://github.com/rlworkgroup/garage/blob/master/src/garage/torch/policies/discrete_cnn_policy.py
|
MIT
|
def forward(self, observations):
"""Get actions corresponding to a batch of observations.
Args:
observations(torch.Tensor): Batch of observations of shape
:math:`(N, O)`. Observations should be flattened even
if they are images as the underlying Q network handles
unflattening.
Returns:
torch.Tensor: Batch of actions of shape :math:`(N, A)`
"""
qs = self._qf(observations)
return torch.argmax(qs, dim=1)
|
Get actions corresponding to a batch of observations.
Args:
observations(torch.Tensor): Batch of observations of shape
:math:`(N, O)`. Observations should be flattened even
if they are images as the underlying Q network handles
unflattening.
Returns:
torch.Tensor: Batch of actions of shape :math:`(N, A)`
|
forward
|
python
|
rlworkgroup/garage
|
src/garage/torch/policies/discrete_qf_argmax_policy.py
|
https://github.com/rlworkgroup/garage/blob/master/src/garage/torch/policies/discrete_qf_argmax_policy.py
|
MIT
|
def get_action(self, observation):
"""Get a single action given an observation.
Args:
observation (np.ndarray): Observation with shape :math:`(O, )`.
Returns:
torch.Tensor: Predicted action with shape :math:`(A, )`.
dict: Empty since this policy does not produce a distribution.
"""
act, info = self.get_actions(np.expand_dims(observation, axis=0))
return act[0], info
|
Get a single action given an observation.
Args:
observation (np.ndarray): Observation with shape :math:`(O, )`.
Returns:
torch.Tensor: Predicted action with shape :math:`(A, )`.
dict: Empty since this policy does not produce a distribution.
|
get_action
|
python
|
rlworkgroup/garage
|
src/garage/torch/policies/discrete_qf_argmax_policy.py
|
https://github.com/rlworkgroup/garage/blob/master/src/garage/torch/policies/discrete_qf_argmax_policy.py
|
MIT
|
def get_actions(self, observations):
"""Get actions given observations.
Args:
observations (np.ndarray): Batch of observations, should
have shape :math:`(N, O)`.
Returns:
torch.Tensor: Predicted actions. Tensor has shape :math:`(N, A)`.
dict: Empty since this policy does not produce a distribution.
"""
with torch.no_grad():
return self(np_to_torch(observations)).cpu().numpy(), dict()
|
Get actions given observations.
Args:
observations (np.ndarray): Batch of observations, should
have shape :math:`(N, O)`.
Returns:
torch.Tensor: Predicted actions. Tensor has shape :math:`(N, A)`.
dict: Empty since this policy does not produce a distribution.
|
get_actions
|
python
|
rlworkgroup/garage
|
src/garage/torch/policies/discrete_qf_argmax_policy.py
|
https://github.com/rlworkgroup/garage/blob/master/src/garage/torch/policies/discrete_qf_argmax_policy.py
|
MIT
|
def forward(self, observations):
"""Compute the action distributions from the observations.
Args:
observations (torch.Tensor): Batch of observations on default
torch device.
Returns:
torch.distributions.Distribution: Batch distribution of actions.
dict[str, torch.Tensor]: Additional agent_info, as torch Tensors
"""
dist = self._module(observations)
return (dist, dict(mean=dist.mean, log_std=(dist.variance**.5).log()))
|
Compute the action distributions from the observations.
Args:
observations (torch.Tensor): Batch of observations on default
torch device.
Returns:
torch.distributions.Distribution: Batch distribution of actions.
dict[str, torch.Tensor]: Additional agent_info, as torch Tensors
|
forward
|
python
|
rlworkgroup/garage
|
src/garage/torch/policies/gaussian_mlp_policy.py
|
https://github.com/rlworkgroup/garage/blob/master/src/garage/torch/policies/gaussian_mlp_policy.py
|
MIT
|
def get_action(self, observation):
"""Get action sampled from the policy.
Args:
observation (np.ndarray): Observation from the environment.
Returns:
Tuple[np.ndarray, dict[str,np.ndarray]]: Action and extra agent
info.
"""
|
Get action sampled from the policy.
Args:
observation (np.ndarray): Observation from the environment.
Returns:
Tuple[np.ndarray, dict[str,np.ndarray]]: Action and extra agent
info.
|
get_action
|
python
|
rlworkgroup/garage
|
src/garage/torch/policies/policy.py
|
https://github.com/rlworkgroup/garage/blob/master/src/garage/torch/policies/policy.py
|
MIT
|
def get_actions(self, observations):
"""Get actions given observations.
Args:
observations (np.ndarray): Observations from the environment.
Returns:
Tuple[np.ndarray, dict[str,np.ndarray]]: Actions and extra agent
infos.
"""
|
Get actions given observations.
Args:
observations (np.ndarray): Observations from the environment.
Returns:
Tuple[np.ndarray, dict[str,np.ndarray]]: Actions and extra agent
infos.
|
get_actions
|
python
|
rlworkgroup/garage
|
src/garage/torch/policies/policy.py
|
https://github.com/rlworkgroup/garage/blob/master/src/garage/torch/policies/policy.py
|
MIT
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.